SelectionDAGISel.cpp revision 2e28d627d086d38a7e62fc2e3b6f4b9ef24ecf07
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/MRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/Compiler.h"
48#include <algorithm>
49using namespace llvm;
50
51#ifndef NDEBUG
52static cl::opt<bool>
53ViewISelDAGs("view-isel-dags", cl::Hidden,
54          cl::desc("Pop up a window to show isel dags as they are selected"));
55static cl::opt<bool>
56ViewSchedDAGs("view-sched-dags", cl::Hidden,
57          cl::desc("Pop up a window to show sched dags as they are processed"));
58static cl::opt<bool>
59ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
60      cl::desc("Pop up a window to show SUnit dags after they are processed"));
61#else
62static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
63#endif
64
65//===---------------------------------------------------------------------===//
66///
67/// RegisterScheduler class - Track the registration of instruction schedulers.
68///
69//===---------------------------------------------------------------------===//
70MachinePassRegistry RegisterScheduler::Registry;
71
72//===---------------------------------------------------------------------===//
73///
74/// ISHeuristic command line option for instruction schedulers.
75///
76//===---------------------------------------------------------------------===//
77namespace {
78  cl::opt<RegisterScheduler::FunctionPassCtor, false,
79          RegisterPassParser<RegisterScheduler> >
80  ISHeuristic("pre-RA-sched",
81              cl::init(&createDefaultScheduler),
82              cl::desc("Instruction schedulers available (before register"
83                       " allocation):"));
84
85  static RegisterScheduler
86  defaultListDAGScheduler("default", "  Best scheduler for the target",
87                          createDefaultScheduler);
88} // namespace
89
90namespace { struct AsmOperandInfo; }
91
92namespace {
93  /// RegsForValue - This struct represents the physical registers that a
94  /// particular value is assigned and the type information about the value.
95  /// This is needed because values can be promoted into larger registers and
96  /// expanded into multiple smaller registers than the value.
97  struct VISIBILITY_HIDDEN RegsForValue {
98    /// Regs - This list holds the register (for legal and promoted values)
99    /// or register set (for expanded values) that the value should be assigned
100    /// to.
101    std::vector<unsigned> Regs;
102
103    /// RegVT - The value type of each register.
104    ///
105    MVT::ValueType RegVT;
106
107    /// ValueVT - The value type of the LLVM value, which may be promoted from
108    /// RegVT or made from merging the two expanded parts.
109    MVT::ValueType ValueVT;
110
111    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
112
113    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
114      : RegVT(regvt), ValueVT(valuevt) {
115        Regs.push_back(Reg);
116    }
117    RegsForValue(const std::vector<unsigned> &regs,
118                 MVT::ValueType regvt, MVT::ValueType valuevt)
119      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
120    }
121
122    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
123    /// this value and returns the result as a ValueVT value.  This uses
124    /// Chain/Flag as the input and updates them for the output Chain/Flag.
125    /// If the Flag pointer is NULL, no flag is used.
126    SDOperand getCopyFromRegs(SelectionDAG &DAG,
127                              SDOperand &Chain, SDOperand *Flag) const;
128
129    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
130    /// specified value into the registers specified by this object.  This uses
131    /// Chain/Flag as the input and updates them for the output Chain/Flag.
132    /// If the Flag pointer is NULL, no flag is used.
133    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
134                       SDOperand &Chain, SDOperand *Flag) const;
135
136    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
137    /// operand list.  This adds the code marker and includes the number of
138    /// values added into it.
139    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
140                              std::vector<SDOperand> &Ops) const;
141  };
142}
143
144namespace llvm {
145  //===--------------------------------------------------------------------===//
146  /// createDefaultScheduler - This creates an instruction scheduler appropriate
147  /// for the target.
148  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
149                                      SelectionDAG *DAG,
150                                      MachineBasicBlock *BB) {
151    TargetLowering &TLI = IS->getTargetLowering();
152
153    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
154      return createTDListDAGScheduler(IS, DAG, BB);
155    } else {
156      assert(TLI.getSchedulingPreference() ==
157           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
158      return createBURRListDAGScheduler(IS, DAG, BB);
159    }
160  }
161
162
163  //===--------------------------------------------------------------------===//
164  /// FunctionLoweringInfo - This contains information that is global to a
165  /// function that is used when lowering a region of the function.
166  class FunctionLoweringInfo {
167  public:
168    TargetLowering &TLI;
169    Function &Fn;
170    MachineFunction &MF;
171    MachineRegisterInfo &RegInfo;
172
173    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
174
175    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
176    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
177
178    /// ValueMap - Since we emit code for the function a basic block at a time,
179    /// we must remember which virtual registers hold the values for
180    /// cross-basic-block values.
181    DenseMap<const Value*, unsigned> ValueMap;
182
183    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
184    /// the entry block.  This allows the allocas to be efficiently referenced
185    /// anywhere in the function.
186    std::map<const AllocaInst*, int> StaticAllocaMap;
187
188#ifndef NDEBUG
189    SmallSet<Instruction*, 8> CatchInfoLost;
190    SmallSet<Instruction*, 8> CatchInfoFound;
191#endif
192
193    unsigned MakeReg(MVT::ValueType VT) {
194      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
195    }
196
197    /// isExportedInst - Return true if the specified value is an instruction
198    /// exported from its block.
199    bool isExportedInst(const Value *V) {
200      return ValueMap.count(V);
201    }
202
203    unsigned CreateRegForValue(const Value *V);
204
205    unsigned InitializeRegForValue(const Value *V) {
206      unsigned &R = ValueMap[V];
207      assert(R == 0 && "Already initialized this value register!");
208      return R = CreateRegForValue(V);
209    }
210  };
211}
212
213/// isSelector - Return true if this instruction is a call to the
214/// eh.selector intrinsic.
215static bool isSelector(Instruction *I) {
216  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
217    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
218            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
219  return false;
220}
221
222/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
223/// PHI nodes or outside of the basic block that defines it, or used by a
224/// switch instruction, which may expand to multiple basic blocks.
225static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
226  if (isa<PHINode>(I)) return true;
227  BasicBlock *BB = I->getParent();
228  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
229    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
230        // FIXME: Remove switchinst special case.
231        isa<SwitchInst>(*UI))
232      return true;
233  return false;
234}
235
236/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
237/// entry block, return true.  This includes arguments used by switches, since
238/// the switch may expand into multiple basic blocks.
239static bool isOnlyUsedInEntryBlock(Argument *A) {
240  BasicBlock *Entry = A->getParent()->begin();
241  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
242    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
243      return false;  // Use not in entry block.
244  return true;
245}
246
247FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
248                                           Function &fn, MachineFunction &mf)
249    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
250
251  // Create a vreg for each argument register that is not dead and is used
252  // outside of the entry block for the function.
253  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
254       AI != E; ++AI)
255    if (!isOnlyUsedInEntryBlock(AI))
256      InitializeRegForValue(AI);
257
258  // Initialize the mapping of values to registers.  This is only set up for
259  // instruction values that are used outside of the block that defines
260  // them.
261  Function::iterator BB = Fn.begin(), EB = Fn.end();
262  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
263    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
264      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
265        const Type *Ty = AI->getAllocatedType();
266        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
267        unsigned Align =
268          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
269                   AI->getAlignment());
270
271        TySize *= CUI->getZExtValue();   // Get total allocated size.
272        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
273        StaticAllocaMap[AI] =
274          MF.getFrameInfo()->CreateStackObject(TySize, Align);
275      }
276
277  for (; BB != EB; ++BB)
278    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
279      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
280        if (!isa<AllocaInst>(I) ||
281            !StaticAllocaMap.count(cast<AllocaInst>(I)))
282          InitializeRegForValue(I);
283
284  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
285  // also creates the initial PHI MachineInstrs, though none of the input
286  // operands are populated.
287  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
288    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
289    MBBMap[BB] = MBB;
290    MF.getBasicBlockList().push_back(MBB);
291
292    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
293    // appropriate.
294    PHINode *PN;
295    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
296      if (PN->use_empty()) continue;
297
298      MVT::ValueType VT = TLI.getValueType(PN->getType());
299      unsigned NumRegisters = TLI.getNumRegisters(VT);
300      unsigned PHIReg = ValueMap[PN];
301      assert(PHIReg && "PHI node does not have an assigned virtual register!");
302      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
303      for (unsigned i = 0; i != NumRegisters; ++i)
304        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
305    }
306  }
307}
308
309/// CreateRegForValue - Allocate the appropriate number of virtual registers of
310/// the correctly promoted or expanded types.  Assign these registers
311/// consecutive vreg numbers and return the first assigned number.
312unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
313  MVT::ValueType VT = TLI.getValueType(V->getType());
314
315  unsigned NumRegisters = TLI.getNumRegisters(VT);
316  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
317
318  unsigned R = MakeReg(RegisterVT);
319  for (unsigned i = 1; i != NumRegisters; ++i)
320    MakeReg(RegisterVT);
321
322  return R;
323}
324
325//===----------------------------------------------------------------------===//
326/// SelectionDAGLowering - This is the common target-independent lowering
327/// implementation that is parameterized by a TargetLowering object.
328/// Also, targets can overload any lowering method.
329///
330namespace llvm {
331class SelectionDAGLowering {
332  MachineBasicBlock *CurMBB;
333
334  DenseMap<const Value*, SDOperand> NodeMap;
335
336  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
337  /// them up and then emit token factor nodes when possible.  This allows us to
338  /// get simple disambiguation between loads without worrying about alias
339  /// analysis.
340  std::vector<SDOperand> PendingLoads;
341
342  /// Case - A struct to record the Value for a switch case, and the
343  /// case's target basic block.
344  struct Case {
345    Constant* Low;
346    Constant* High;
347    MachineBasicBlock* BB;
348
349    Case() : Low(0), High(0), BB(0) { }
350    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
351      Low(low), High(high), BB(bb) { }
352    uint64_t size() const {
353      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
354      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
355      return (rHigh - rLow + 1ULL);
356    }
357  };
358
359  struct CaseBits {
360    uint64_t Mask;
361    MachineBasicBlock* BB;
362    unsigned Bits;
363
364    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
365      Mask(mask), BB(bb), Bits(bits) { }
366  };
367
368  typedef std::vector<Case>           CaseVector;
369  typedef std::vector<CaseBits>       CaseBitsVector;
370  typedef CaseVector::iterator        CaseItr;
371  typedef std::pair<CaseItr, CaseItr> CaseRange;
372
373  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
374  /// of conditional branches.
375  struct CaseRec {
376    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
377    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
378
379    /// CaseBB - The MBB in which to emit the compare and branch
380    MachineBasicBlock *CaseBB;
381    /// LT, GE - If nonzero, we know the current case value must be less-than or
382    /// greater-than-or-equal-to these Constants.
383    Constant *LT;
384    Constant *GE;
385    /// Range - A pair of iterators representing the range of case values to be
386    /// processed at this point in the binary search tree.
387    CaseRange Range;
388  };
389
390  typedef std::vector<CaseRec> CaseRecVector;
391
392  /// The comparison function for sorting the switch case values in the vector.
393  /// WARNING: Case ranges should be disjoint!
394  struct CaseCmp {
395    bool operator () (const Case& C1, const Case& C2) {
396      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
397      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
398      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
399      return CI1->getValue().slt(CI2->getValue());
400    }
401  };
402
403  struct CaseBitsCmp {
404    bool operator () (const CaseBits& C1, const CaseBits& C2) {
405      return C1.Bits > C2.Bits;
406    }
407  };
408
409  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
410
411public:
412  // TLI - This is information that describes the available target features we
413  // need for lowering.  This indicates when operations are unavailable,
414  // implemented with a libcall, etc.
415  TargetLowering &TLI;
416  SelectionDAG &DAG;
417  const TargetData *TD;
418  AliasAnalysis &AA;
419
420  /// SwitchCases - Vector of CaseBlock structures used to communicate
421  /// SwitchInst code generation information.
422  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
423  /// JTCases - Vector of JumpTable structures used to communicate
424  /// SwitchInst code generation information.
425  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
426  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
427
428  /// FuncInfo - Information about the function as a whole.
429  ///
430  FunctionLoweringInfo &FuncInfo;
431
432  /// GCI - Garbage collection metadata for the function.
433  CollectorMetadata *GCI;
434
435  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
436                       AliasAnalysis &aa,
437                       FunctionLoweringInfo &funcinfo,
438                       CollectorMetadata *gci)
439    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
440      FuncInfo(funcinfo), GCI(gci) {
441  }
442
443  /// getRoot - Return the current virtual root of the Selection DAG.
444  ///
445  SDOperand getRoot() {
446    if (PendingLoads.empty())
447      return DAG.getRoot();
448
449    if (PendingLoads.size() == 1) {
450      SDOperand Root = PendingLoads[0];
451      DAG.setRoot(Root);
452      PendingLoads.clear();
453      return Root;
454    }
455
456    // Otherwise, we have to make a token factor node.
457    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
458                                 &PendingLoads[0], PendingLoads.size());
459    PendingLoads.clear();
460    DAG.setRoot(Root);
461    return Root;
462  }
463
464  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
465
466  void visit(Instruction &I) { visit(I.getOpcode(), I); }
467
468  void visit(unsigned Opcode, User &I) {
469    // Note: this doesn't use InstVisitor, because it has to work with
470    // ConstantExpr's in addition to instructions.
471    switch (Opcode) {
472    default: assert(0 && "Unknown instruction type encountered!");
473             abort();
474      // Build the switch statement using the Instruction.def file.
475#define HANDLE_INST(NUM, OPCODE, CLASS) \
476    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
477#include "llvm/Instruction.def"
478    }
479  }
480
481  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
482
483  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
484                        const Value *SV, SDOperand Root,
485                        bool isVolatile, unsigned Alignment);
486
487  SDOperand getValue(const Value *V);
488
489  void setValue(const Value *V, SDOperand NewN) {
490    SDOperand &N = NodeMap[V];
491    assert(N.Val == 0 && "Already set a value for this node!");
492    N = NewN;
493  }
494
495  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
496                            std::set<unsigned> &OutputRegs,
497                            std::set<unsigned> &InputRegs);
498
499  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
500                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
501                            unsigned Opc);
502  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
503  void ExportFromCurrentBlock(Value *V);
504  void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
505                   MachineBasicBlock *LandingPad = NULL);
506
507  // Terminator instructions.
508  void visitRet(ReturnInst &I);
509  void visitBr(BranchInst &I);
510  void visitSwitch(SwitchInst &I);
511  void visitUnreachable(UnreachableInst &I) { /* noop */ }
512
513  // Helpers for visitSwitch
514  bool handleSmallSwitchRange(CaseRec& CR,
515                              CaseRecVector& WorkList,
516                              Value* SV,
517                              MachineBasicBlock* Default);
518  bool handleJTSwitchCase(CaseRec& CR,
519                          CaseRecVector& WorkList,
520                          Value* SV,
521                          MachineBasicBlock* Default);
522  bool handleBTSplitSwitchCase(CaseRec& CR,
523                               CaseRecVector& WorkList,
524                               Value* SV,
525                               MachineBasicBlock* Default);
526  bool handleBitTestsSwitchCase(CaseRec& CR,
527                                CaseRecVector& WorkList,
528                                Value* SV,
529                                MachineBasicBlock* Default);
530  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
531  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
532  void visitBitTestCase(MachineBasicBlock* NextMBB,
533                        unsigned Reg,
534                        SelectionDAGISel::BitTestCase &B);
535  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
536  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
537                            SelectionDAGISel::JumpTableHeader &JTH);
538
539  // These all get lowered before this pass.
540  void visitInvoke(InvokeInst &I);
541  void visitUnwind(UnwindInst &I);
542
543  void visitBinary(User &I, unsigned OpCode);
544  void visitShift(User &I, unsigned Opcode);
545  void visitAdd(User &I) {
546    if (I.getType()->isFPOrFPVector())
547      visitBinary(I, ISD::FADD);
548    else
549      visitBinary(I, ISD::ADD);
550  }
551  void visitSub(User &I);
552  void visitMul(User &I) {
553    if (I.getType()->isFPOrFPVector())
554      visitBinary(I, ISD::FMUL);
555    else
556      visitBinary(I, ISD::MUL);
557  }
558  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
559  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
560  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
561  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
562  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
563  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
564  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
565  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
566  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
567  void visitShl (User &I) { visitShift(I, ISD::SHL); }
568  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
569  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
570  void visitICmp(User &I);
571  void visitFCmp(User &I);
572  // Visit the conversion instructions
573  void visitTrunc(User &I);
574  void visitZExt(User &I);
575  void visitSExt(User &I);
576  void visitFPTrunc(User &I);
577  void visitFPExt(User &I);
578  void visitFPToUI(User &I);
579  void visitFPToSI(User &I);
580  void visitUIToFP(User &I);
581  void visitSIToFP(User &I);
582  void visitPtrToInt(User &I);
583  void visitIntToPtr(User &I);
584  void visitBitCast(User &I);
585
586  void visitExtractElement(User &I);
587  void visitInsertElement(User &I);
588  void visitShuffleVector(User &I);
589
590  void visitGetElementPtr(User &I);
591  void visitSelect(User &I);
592
593  void visitMalloc(MallocInst &I);
594  void visitFree(FreeInst &I);
595  void visitAlloca(AllocaInst &I);
596  void visitLoad(LoadInst &I);
597  void visitStore(StoreInst &I);
598  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
599  void visitCall(CallInst &I);
600  void visitInlineAsm(CallSite CS);
601  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
602  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
603
604  void visitVAStart(CallInst &I);
605  void visitVAArg(VAArgInst &I);
606  void visitVAEnd(CallInst &I);
607  void visitVACopy(CallInst &I);
608
609  void visitMemIntrinsic(CallInst &I, unsigned Op);
610
611  void visitUserOp1(Instruction &I) {
612    assert(0 && "UserOp1 should not exist at instruction selection time!");
613    abort();
614  }
615  void visitUserOp2(Instruction &I) {
616    assert(0 && "UserOp2 should not exist at instruction selection time!");
617    abort();
618  }
619};
620} // end namespace llvm
621
622
623/// getCopyFromParts - Create a value that contains the
624/// specified legal parts combined into the value they represent.
625static SDOperand getCopyFromParts(SelectionDAG &DAG,
626                                  const SDOperand *Parts,
627                                  unsigned NumParts,
628                                  MVT::ValueType PartVT,
629                                  MVT::ValueType ValueVT,
630                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
631  if (!MVT::isVector(ValueVT) || NumParts == 1) {
632    SDOperand Val = Parts[0];
633
634    // If the value was expanded, copy from the top part.
635    if (NumParts > 1) {
636      assert(NumParts == 2 &&
637             "Cannot expand to more than 2 elts yet!");
638      SDOperand Hi = Parts[1];
639      if (!DAG.getTargetLoweringInfo().isLittleEndian())
640        std::swap(Val, Hi);
641      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
642    }
643
644    // Otherwise, if the value was promoted or extended, truncate it to the
645    // appropriate type.
646    if (PartVT == ValueVT)
647      return Val;
648
649    if (MVT::isVector(PartVT)) {
650      assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
651      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
652    }
653
654    if (MVT::isVector(ValueVT)) {
655      assert(NumParts == 1 &&
656             MVT::getVectorElementType(ValueVT) == PartVT &&
657             MVT::getVectorNumElements(ValueVT) == 1 &&
658             "Only trivial scalar-to-vector conversions should get here!");
659      return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
660    }
661
662    if (MVT::isInteger(PartVT) &&
663        MVT::isInteger(ValueVT)) {
664      if (ValueVT < PartVT) {
665        // For a truncate, see if we have any information to
666        // indicate whether the truncated bits will always be
667        // zero or sign-extension.
668        if (AssertOp != ISD::DELETED_NODE)
669          Val = DAG.getNode(AssertOp, PartVT, Val,
670                            DAG.getValueType(ValueVT));
671        return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
672      } else {
673        return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
674      }
675    }
676
677    if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT))
678      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val, DAG.getIntPtrConstant(0));
679
680    if (MVT::getSizeInBits(PartVT) == MVT::getSizeInBits(ValueVT))
681      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
682
683    assert(0 && "Unknown mismatch!");
684  }
685
686  // Handle a multi-element vector.
687  MVT::ValueType IntermediateVT, RegisterVT;
688  unsigned NumIntermediates;
689  unsigned NumRegs =
690    DAG.getTargetLoweringInfo()
691      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
692                              RegisterVT);
693
694  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
695  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
696  assert(RegisterVT == Parts[0].getValueType() &&
697         "Part type doesn't match part!");
698
699  // Assemble the parts into intermediate operands.
700  SmallVector<SDOperand, 8> Ops(NumIntermediates);
701  if (NumIntermediates == NumParts) {
702    // If the register was not expanded, truncate or copy the value,
703    // as appropriate.
704    for (unsigned i = 0; i != NumParts; ++i)
705      Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
706                                PartVT, IntermediateVT);
707  } else if (NumParts > 0) {
708    // If the intermediate type was expanded, build the intermediate operands
709    // from the parts.
710    assert(NumParts % NumIntermediates == 0 &&
711           "Must expand into a divisible number of parts!");
712    unsigned Factor = NumParts / NumIntermediates;
713    for (unsigned i = 0; i != NumIntermediates; ++i)
714      Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
715                                PartVT, IntermediateVT);
716  }
717
718  // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
719  // operands.
720  return DAG.getNode(MVT::isVector(IntermediateVT) ?
721                       ISD::CONCAT_VECTORS :
722                       ISD::BUILD_VECTOR,
723                     ValueVT, &Ops[0], NumIntermediates);
724}
725
726/// getCopyToParts - Create a series of nodes that contain the
727/// specified value split into legal parts.
728static void getCopyToParts(SelectionDAG &DAG,
729                           SDOperand Val,
730                           SDOperand *Parts,
731                           unsigned NumParts,
732                           MVT::ValueType PartVT) {
733  TargetLowering &TLI = DAG.getTargetLoweringInfo();
734  MVT::ValueType PtrVT = TLI.getPointerTy();
735  MVT::ValueType ValueVT = Val.getValueType();
736
737  if (!MVT::isVector(ValueVT) || NumParts == 1) {
738    // If the value was expanded, copy from the parts.
739    if (NumParts > 1) {
740      for (unsigned i = 0; i != NumParts; ++i)
741        Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
742                               DAG.getConstant(i, PtrVT));
743      if (!DAG.getTargetLoweringInfo().isLittleEndian())
744        std::reverse(Parts, Parts + NumParts);
745      return;
746    }
747
748    // If there is a single part and the types differ, this must be
749    // a promotion.
750    if (PartVT != ValueVT) {
751      if (MVT::isVector(PartVT)) {
752        assert(MVT::isVector(ValueVT) &&
753               "Not a vector-vector cast?");
754        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
755      } else if (MVT::isVector(ValueVT)) {
756        assert(NumParts == 1 &&
757               MVT::getVectorElementType(ValueVT) == PartVT &&
758               MVT::getVectorNumElements(ValueVT) == 1 &&
759               "Only trivial vector-to-scalar conversions should get here!");
760        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
761                          DAG.getConstant(0, PtrVT));
762      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
763        if (PartVT < ValueVT)
764          Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
765        else
766          Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
767      } else if (MVT::isFloatingPoint(PartVT) &&
768                 MVT::isFloatingPoint(ValueVT)) {
769        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
770      } else if (MVT::getSizeInBits(PartVT) ==
771                 MVT::getSizeInBits(ValueVT)) {
772        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
773      } else {
774        assert(0 && "Unknown mismatch!");
775      }
776    }
777    Parts[0] = Val;
778    return;
779  }
780
781  // Handle a multi-element vector.
782  MVT::ValueType IntermediateVT, RegisterVT;
783  unsigned NumIntermediates;
784  unsigned NumRegs =
785    DAG.getTargetLoweringInfo()
786      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
787                              RegisterVT);
788  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
789
790  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
791  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
792
793  // Split the vector into intermediate operands.
794  SmallVector<SDOperand, 8> Ops(NumIntermediates);
795  for (unsigned i = 0; i != NumIntermediates; ++i)
796    if (MVT::isVector(IntermediateVT))
797      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
798                           IntermediateVT, Val,
799                           DAG.getConstant(i * (NumElements / NumIntermediates),
800                                           PtrVT));
801    else
802      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
803                           IntermediateVT, Val,
804                           DAG.getConstant(i, PtrVT));
805
806  // Split the intermediate operands into legal parts.
807  if (NumParts == NumIntermediates) {
808    // If the register was not expanded, promote or copy the value,
809    // as appropriate.
810    for (unsigned i = 0; i != NumParts; ++i)
811      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
812  } else if (NumParts > 0) {
813    // If the intermediate type was expanded, split each the value into
814    // legal parts.
815    assert(NumParts % NumIntermediates == 0 &&
816           "Must expand into a divisible number of parts!");
817    unsigned Factor = NumParts / NumIntermediates;
818    for (unsigned i = 0; i != NumIntermediates; ++i)
819      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
820  }
821}
822
823
824SDOperand SelectionDAGLowering::getValue(const Value *V) {
825  SDOperand &N = NodeMap[V];
826  if (N.Val) return N;
827
828  const Type *VTy = V->getType();
829  MVT::ValueType VT = TLI.getValueType(VTy);
830  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
831    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
832      visit(CE->getOpcode(), *CE);
833      SDOperand N1 = NodeMap[V];
834      assert(N1.Val && "visit didn't populate the ValueMap!");
835      return N1;
836    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
837      return N = DAG.getGlobalAddress(GV, VT);
838    } else if (isa<ConstantPointerNull>(C)) {
839      return N = DAG.getConstant(0, TLI.getPointerTy());
840    } else if (isa<UndefValue>(C)) {
841      if (!isa<VectorType>(VTy))
842        return N = DAG.getNode(ISD::UNDEF, VT);
843
844      // Create a BUILD_VECTOR of undef nodes.
845      const VectorType *PTy = cast<VectorType>(VTy);
846      unsigned NumElements = PTy->getNumElements();
847      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
848
849      SmallVector<SDOperand, 8> Ops;
850      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
851
852      // Create a VConstant node with generic Vector type.
853      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
854      return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
855                             &Ops[0], Ops.size());
856    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
857      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
858    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
859      unsigned NumElements = PTy->getNumElements();
860      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
861
862      // Now that we know the number and type of the elements, push a
863      // Constant or ConstantFP node onto the ops list for each element of
864      // the vector constant.
865      SmallVector<SDOperand, 8> Ops;
866      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
867        for (unsigned i = 0; i != NumElements; ++i)
868          Ops.push_back(getValue(CP->getOperand(i)));
869      } else {
870        assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
871        SDOperand Op;
872        if (MVT::isFloatingPoint(PVT))
873          Op = DAG.getConstantFP(0, PVT);
874        else
875          Op = DAG.getConstant(0, PVT);
876        Ops.assign(NumElements, Op);
877      }
878
879      // Create a BUILD_VECTOR node.
880      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
881      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
882                                      Ops.size());
883    } else {
884      // Canonicalize all constant ints to be unsigned.
885      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
886    }
887  }
888
889  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
890    std::map<const AllocaInst*, int>::iterator SI =
891    FuncInfo.StaticAllocaMap.find(AI);
892    if (SI != FuncInfo.StaticAllocaMap.end())
893      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
894  }
895
896  unsigned InReg = FuncInfo.ValueMap[V];
897  assert(InReg && "Value not in map!");
898
899  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
900  unsigned NumRegs = TLI.getNumRegisters(VT);
901
902  std::vector<unsigned> Regs(NumRegs);
903  for (unsigned i = 0; i != NumRegs; ++i)
904    Regs[i] = InReg + i;
905
906  RegsForValue RFV(Regs, RegisterVT, VT);
907  SDOperand Chain = DAG.getEntryNode();
908
909  return RFV.getCopyFromRegs(DAG, Chain, NULL);
910}
911
912
913void SelectionDAGLowering::visitRet(ReturnInst &I) {
914  if (I.getNumOperands() == 0) {
915    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
916    return;
917  }
918  SmallVector<SDOperand, 8> NewValues;
919  NewValues.push_back(getRoot());
920  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
921    SDOperand RetOp = getValue(I.getOperand(i));
922
923    // If this is an integer return value, we need to promote it ourselves to
924    // the full width of a register, since getCopyToParts and Legalize will use
925    // ANY_EXTEND rather than sign/zero.
926    // FIXME: C calling convention requires the return type to be promoted to
927    // at least 32-bit. But this is not necessary for non-C calling conventions.
928    if (MVT::isInteger(RetOp.getValueType()) &&
929        RetOp.getValueType() < MVT::i64) {
930      MVT::ValueType TmpVT;
931      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
932        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
933      else
934        TmpVT = MVT::i32;
935      const Function *F = I.getParent()->getParent();
936      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
937      if (F->paramHasAttr(0, ParamAttr::SExt))
938        ExtendKind = ISD::SIGN_EXTEND;
939      if (F->paramHasAttr(0, ParamAttr::ZExt))
940        ExtendKind = ISD::ZERO_EXTEND;
941      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
942      NewValues.push_back(RetOp);
943      NewValues.push_back(DAG.getConstant(false, MVT::i32));
944    } else {
945      MVT::ValueType VT = RetOp.getValueType();
946      unsigned NumParts = TLI.getNumRegisters(VT);
947      MVT::ValueType PartVT = TLI.getRegisterType(VT);
948      SmallVector<SDOperand, 4> Parts(NumParts);
949      getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT);
950      for (unsigned i = 0; i < NumParts; ++i) {
951        NewValues.push_back(Parts[i]);
952        NewValues.push_back(DAG.getConstant(false, MVT::i32));
953      }
954    }
955  }
956  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
957                          &NewValues[0], NewValues.size()));
958}
959
960/// ExportFromCurrentBlock - If this condition isn't known to be exported from
961/// the current basic block, add it to ValueMap now so that we'll get a
962/// CopyTo/FromReg.
963void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
964  // No need to export constants.
965  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
966
967  // Already exported?
968  if (FuncInfo.isExportedInst(V)) return;
969
970  unsigned Reg = FuncInfo.InitializeRegForValue(V);
971  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
972}
973
974bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
975                                                    const BasicBlock *FromBB) {
976  // The operands of the setcc have to be in this block.  We don't know
977  // how to export them from some other block.
978  if (Instruction *VI = dyn_cast<Instruction>(V)) {
979    // Can export from current BB.
980    if (VI->getParent() == FromBB)
981      return true;
982
983    // Is already exported, noop.
984    return FuncInfo.isExportedInst(V);
985  }
986
987  // If this is an argument, we can export it if the BB is the entry block or
988  // if it is already exported.
989  if (isa<Argument>(V)) {
990    if (FromBB == &FromBB->getParent()->getEntryBlock())
991      return true;
992
993    // Otherwise, can only export this if it is already exported.
994    return FuncInfo.isExportedInst(V);
995  }
996
997  // Otherwise, constants can always be exported.
998  return true;
999}
1000
1001static bool InBlock(const Value *V, const BasicBlock *BB) {
1002  if (const Instruction *I = dyn_cast<Instruction>(V))
1003    return I->getParent() == BB;
1004  return true;
1005}
1006
1007/// FindMergedConditions - If Cond is an expression like
1008void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1009                                                MachineBasicBlock *TBB,
1010                                                MachineBasicBlock *FBB,
1011                                                MachineBasicBlock *CurBB,
1012                                                unsigned Opc) {
1013  // If this node is not part of the or/and tree, emit it as a branch.
1014  Instruction *BOp = dyn_cast<Instruction>(Cond);
1015
1016  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1017      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1018      BOp->getParent() != CurBB->getBasicBlock() ||
1019      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1020      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1021    const BasicBlock *BB = CurBB->getBasicBlock();
1022
1023    // If the leaf of the tree is a comparison, merge the condition into
1024    // the caseblock.
1025    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1026        // The operands of the cmp have to be in this block.  We don't know
1027        // how to export them from some other block.  If this is the first block
1028        // of the sequence, no exporting is needed.
1029        (CurBB == CurMBB ||
1030         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1031          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1032      BOp = cast<Instruction>(Cond);
1033      ISD::CondCode Condition;
1034      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1035        switch (IC->getPredicate()) {
1036        default: assert(0 && "Unknown icmp predicate opcode!");
1037        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1038        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1039        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1040        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1041        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1042        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1043        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1044        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1045        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1046        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1047        }
1048      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1049        ISD::CondCode FPC, FOC;
1050        switch (FC->getPredicate()) {
1051        default: assert(0 && "Unknown fcmp predicate opcode!");
1052        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1053        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1054        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1055        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1056        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1057        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1058        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1059        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1060        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1061        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1062        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1063        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1064        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1065        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1066        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1067        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1068        }
1069        if (FiniteOnlyFPMath())
1070          Condition = FOC;
1071        else
1072          Condition = FPC;
1073      } else {
1074        Condition = ISD::SETEQ; // silence warning.
1075        assert(0 && "Unknown compare instruction");
1076      }
1077
1078      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1079                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1080      SwitchCases.push_back(CB);
1081      return;
1082    }
1083
1084    // Create a CaseBlock record representing this branch.
1085    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1086                                   NULL, TBB, FBB, CurBB);
1087    SwitchCases.push_back(CB);
1088    return;
1089  }
1090
1091
1092  //  Create TmpBB after CurBB.
1093  MachineFunction::iterator BBI = CurBB;
1094  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1095  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1096
1097  if (Opc == Instruction::Or) {
1098    // Codegen X | Y as:
1099    //   jmp_if_X TBB
1100    //   jmp TmpBB
1101    // TmpBB:
1102    //   jmp_if_Y TBB
1103    //   jmp FBB
1104    //
1105
1106    // Emit the LHS condition.
1107    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1108
1109    // Emit the RHS condition into TmpBB.
1110    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1111  } else {
1112    assert(Opc == Instruction::And && "Unknown merge op!");
1113    // Codegen X & Y as:
1114    //   jmp_if_X TmpBB
1115    //   jmp FBB
1116    // TmpBB:
1117    //   jmp_if_Y TBB
1118    //   jmp FBB
1119    //
1120    //  This requires creation of TmpBB after CurBB.
1121
1122    // Emit the LHS condition.
1123    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1124
1125    // Emit the RHS condition into TmpBB.
1126    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1127  }
1128}
1129
1130/// If the set of cases should be emitted as a series of branches, return true.
1131/// If we should emit this as a bunch of and/or'd together conditions, return
1132/// false.
1133static bool
1134ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1135  if (Cases.size() != 2) return true;
1136
1137  // If this is two comparisons of the same values or'd or and'd together, they
1138  // will get folded into a single comparison, so don't emit two blocks.
1139  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1140       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1141      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1142       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1143    return false;
1144  }
1145
1146  return true;
1147}
1148
1149void SelectionDAGLowering::visitBr(BranchInst &I) {
1150  // Update machine-CFG edges.
1151  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1152
1153  // Figure out which block is immediately after the current one.
1154  MachineBasicBlock *NextBlock = 0;
1155  MachineFunction::iterator BBI = CurMBB;
1156  if (++BBI != CurMBB->getParent()->end())
1157    NextBlock = BBI;
1158
1159  if (I.isUnconditional()) {
1160    // If this is not a fall-through branch, emit the branch.
1161    if (Succ0MBB != NextBlock)
1162      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1163                              DAG.getBasicBlock(Succ0MBB)));
1164
1165    // Update machine-CFG edges.
1166    CurMBB->addSuccessor(Succ0MBB);
1167    return;
1168  }
1169
1170  // If this condition is one of the special cases we handle, do special stuff
1171  // now.
1172  Value *CondVal = I.getCondition();
1173  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1174
1175  // If this is a series of conditions that are or'd or and'd together, emit
1176  // this as a sequence of branches instead of setcc's with and/or operations.
1177  // For example, instead of something like:
1178  //     cmp A, B
1179  //     C = seteq
1180  //     cmp D, E
1181  //     F = setle
1182  //     or C, F
1183  //     jnz foo
1184  // Emit:
1185  //     cmp A, B
1186  //     je foo
1187  //     cmp D, E
1188  //     jle foo
1189  //
1190  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1191    if (BOp->hasOneUse() &&
1192        (BOp->getOpcode() == Instruction::And ||
1193         BOp->getOpcode() == Instruction::Or)) {
1194      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1195      // If the compares in later blocks need to use values not currently
1196      // exported from this block, export them now.  This block should always
1197      // be the first entry.
1198      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1199
1200      // Allow some cases to be rejected.
1201      if (ShouldEmitAsBranches(SwitchCases)) {
1202        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1203          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1204          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1205        }
1206
1207        // Emit the branch for this block.
1208        visitSwitchCase(SwitchCases[0]);
1209        SwitchCases.erase(SwitchCases.begin());
1210        return;
1211      }
1212
1213      // Okay, we decided not to do this, remove any inserted MBB's and clear
1214      // SwitchCases.
1215      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1216        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1217
1218      SwitchCases.clear();
1219    }
1220  }
1221
1222  // Create a CaseBlock record representing this branch.
1223  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1224                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1225  // Use visitSwitchCase to actually insert the fast branch sequence for this
1226  // cond branch.
1227  visitSwitchCase(CB);
1228}
1229
1230/// visitSwitchCase - Emits the necessary code to represent a single node in
1231/// the binary search tree resulting from lowering a switch instruction.
1232void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1233  SDOperand Cond;
1234  SDOperand CondLHS = getValue(CB.CmpLHS);
1235
1236  // Build the setcc now.
1237  if (CB.CmpMHS == NULL) {
1238    // Fold "(X == true)" to X and "(X == false)" to !X to
1239    // handle common cases produced by branch lowering.
1240    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1241      Cond = CondLHS;
1242    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1243      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1244      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1245    } else
1246      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1247  } else {
1248    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1249
1250    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1251    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1252
1253    SDOperand CmpOp = getValue(CB.CmpMHS);
1254    MVT::ValueType VT = CmpOp.getValueType();
1255
1256    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1257      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1258    } else {
1259      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1260      Cond = DAG.getSetCC(MVT::i1, SUB,
1261                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1262    }
1263
1264  }
1265
1266  // Set NextBlock to be the MBB immediately after the current one, if any.
1267  // This is used to avoid emitting unnecessary branches to the next block.
1268  MachineBasicBlock *NextBlock = 0;
1269  MachineFunction::iterator BBI = CurMBB;
1270  if (++BBI != CurMBB->getParent()->end())
1271    NextBlock = BBI;
1272
1273  // If the lhs block is the next block, invert the condition so that we can
1274  // fall through to the lhs instead of the rhs block.
1275  if (CB.TrueBB == NextBlock) {
1276    std::swap(CB.TrueBB, CB.FalseBB);
1277    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1278    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1279  }
1280  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1281                                 DAG.getBasicBlock(CB.TrueBB));
1282  if (CB.FalseBB == NextBlock)
1283    DAG.setRoot(BrCond);
1284  else
1285    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1286                            DAG.getBasicBlock(CB.FalseBB)));
1287  // Update successor info
1288  CurMBB->addSuccessor(CB.TrueBB);
1289  CurMBB->addSuccessor(CB.FalseBB);
1290}
1291
1292/// visitJumpTable - Emit JumpTable node in the current MBB
1293void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1294  // Emit the code for the jump table
1295  assert(JT.Reg != -1U && "Should lower JT Header first!");
1296  MVT::ValueType PTy = TLI.getPointerTy();
1297  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1298  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1299  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1300                          Table, Index));
1301  return;
1302}
1303
1304/// visitJumpTableHeader - This function emits necessary code to produce index
1305/// in the JumpTable from switch case.
1306void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1307                                         SelectionDAGISel::JumpTableHeader &JTH) {
1308  // Subtract the lowest switch case value from the value being switched on
1309  // and conditional branch to default mbb if the result is greater than the
1310  // difference between smallest and largest cases.
1311  SDOperand SwitchOp = getValue(JTH.SValue);
1312  MVT::ValueType VT = SwitchOp.getValueType();
1313  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1314                              DAG.getConstant(JTH.First, VT));
1315
1316  // The SDNode we just created, which holds the value being switched on
1317  // minus the the smallest case value, needs to be copied to a virtual
1318  // register so it can be used as an index into the jump table in a
1319  // subsequent basic block.  This value may be smaller or larger than the
1320  // target's pointer type, and therefore require extension or truncating.
1321  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1322    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1323  else
1324    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1325
1326  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1327  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1328  JT.Reg = JumpTableReg;
1329
1330  // Emit the range check for the jump table, and branch to the default
1331  // block for the switch statement if the value being switched on exceeds
1332  // the largest case in the switch.
1333  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1334                               DAG.getConstant(JTH.Last-JTH.First,VT),
1335                               ISD::SETUGT);
1336
1337  // Set NextBlock to be the MBB immediately after the current one, if any.
1338  // This is used to avoid emitting unnecessary branches to the next block.
1339  MachineBasicBlock *NextBlock = 0;
1340  MachineFunction::iterator BBI = CurMBB;
1341  if (++BBI != CurMBB->getParent()->end())
1342    NextBlock = BBI;
1343
1344  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1345                                 DAG.getBasicBlock(JT.Default));
1346
1347  if (JT.MBB == NextBlock)
1348    DAG.setRoot(BrCond);
1349  else
1350    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1351                            DAG.getBasicBlock(JT.MBB)));
1352
1353  return;
1354}
1355
1356/// visitBitTestHeader - This function emits necessary code to produce value
1357/// suitable for "bit tests"
1358void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1359  // Subtract the minimum value
1360  SDOperand SwitchOp = getValue(B.SValue);
1361  MVT::ValueType VT = SwitchOp.getValueType();
1362  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1363                              DAG.getConstant(B.First, VT));
1364
1365  // Check range
1366  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1367                                    DAG.getConstant(B.Range, VT),
1368                                    ISD::SETUGT);
1369
1370  SDOperand ShiftOp;
1371  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1372    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1373  else
1374    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1375
1376  // Make desired shift
1377  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1378                                    DAG.getConstant(1, TLI.getPointerTy()),
1379                                    ShiftOp);
1380
1381  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1382  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1383  B.Reg = SwitchReg;
1384
1385  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1386                                  DAG.getBasicBlock(B.Default));
1387
1388  // Set NextBlock to be the MBB immediately after the current one, if any.
1389  // This is used to avoid emitting unnecessary branches to the next block.
1390  MachineBasicBlock *NextBlock = 0;
1391  MachineFunction::iterator BBI = CurMBB;
1392  if (++BBI != CurMBB->getParent()->end())
1393    NextBlock = BBI;
1394
1395  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1396  if (MBB == NextBlock)
1397    DAG.setRoot(BrRange);
1398  else
1399    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1400                            DAG.getBasicBlock(MBB)));
1401
1402  CurMBB->addSuccessor(B.Default);
1403  CurMBB->addSuccessor(MBB);
1404
1405  return;
1406}
1407
1408/// visitBitTestCase - this function produces one "bit test"
1409void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1410                                            unsigned Reg,
1411                                            SelectionDAGISel::BitTestCase &B) {
1412  // Emit bit tests and jumps
1413  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1414
1415  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1416                                SwitchVal,
1417                                DAG.getConstant(B.Mask,
1418                                                TLI.getPointerTy()));
1419  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1420                                  DAG.getConstant(0, TLI.getPointerTy()),
1421                                  ISD::SETNE);
1422  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1423                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1424
1425  // Set NextBlock to be the MBB immediately after the current one, if any.
1426  // This is used to avoid emitting unnecessary branches to the next block.
1427  MachineBasicBlock *NextBlock = 0;
1428  MachineFunction::iterator BBI = CurMBB;
1429  if (++BBI != CurMBB->getParent()->end())
1430    NextBlock = BBI;
1431
1432  if (NextMBB == NextBlock)
1433    DAG.setRoot(BrAnd);
1434  else
1435    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1436                            DAG.getBasicBlock(NextMBB)));
1437
1438  CurMBB->addSuccessor(B.TargetBB);
1439  CurMBB->addSuccessor(NextMBB);
1440
1441  return;
1442}
1443
1444void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1445  // Retrieve successors.
1446  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1447  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1448
1449  if (isa<InlineAsm>(I.getCalledValue()))
1450    visitInlineAsm(&I);
1451  else
1452    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1453
1454  // If the value of the invoke is used outside of its defining block, make it
1455  // available as a virtual register.
1456  if (!I.use_empty()) {
1457    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1458    if (VMI != FuncInfo.ValueMap.end())
1459      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1460  }
1461
1462  // Drop into normal successor.
1463  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1464                          DAG.getBasicBlock(Return)));
1465
1466  // Update successor info
1467  CurMBB->addSuccessor(Return);
1468  CurMBB->addSuccessor(LandingPad);
1469}
1470
1471void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1472}
1473
1474/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1475/// small case ranges).
1476bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1477                                                  CaseRecVector& WorkList,
1478                                                  Value* SV,
1479                                                  MachineBasicBlock* Default) {
1480  Case& BackCase  = *(CR.Range.second-1);
1481
1482  // Size is the number of Cases represented by this range.
1483  unsigned Size = CR.Range.second - CR.Range.first;
1484  if (Size > 3)
1485    return false;
1486
1487  // Get the MachineFunction which holds the current MBB.  This is used when
1488  // inserting any additional MBBs necessary to represent the switch.
1489  MachineFunction *CurMF = CurMBB->getParent();
1490
1491  // Figure out which block is immediately after the current one.
1492  MachineBasicBlock *NextBlock = 0;
1493  MachineFunction::iterator BBI = CR.CaseBB;
1494
1495  if (++BBI != CurMBB->getParent()->end())
1496    NextBlock = BBI;
1497
1498  // TODO: If any two of the cases has the same destination, and if one value
1499  // is the same as the other, but has one bit unset that the other has set,
1500  // use bit manipulation to do two compares at once.  For example:
1501  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1502
1503  // Rearrange the case blocks so that the last one falls through if possible.
1504  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1505    // The last case block won't fall through into 'NextBlock' if we emit the
1506    // branches in this order.  See if rearranging a case value would help.
1507    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1508      if (I->BB == NextBlock) {
1509        std::swap(*I, BackCase);
1510        break;
1511      }
1512    }
1513  }
1514
1515  // Create a CaseBlock record representing a conditional branch to
1516  // the Case's target mbb if the value being switched on SV is equal
1517  // to C.
1518  MachineBasicBlock *CurBlock = CR.CaseBB;
1519  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1520    MachineBasicBlock *FallThrough;
1521    if (I != E-1) {
1522      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1523      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1524    } else {
1525      // If the last case doesn't match, go to the default block.
1526      FallThrough = Default;
1527    }
1528
1529    Value *RHS, *LHS, *MHS;
1530    ISD::CondCode CC;
1531    if (I->High == I->Low) {
1532      // This is just small small case range :) containing exactly 1 case
1533      CC = ISD::SETEQ;
1534      LHS = SV; RHS = I->High; MHS = NULL;
1535    } else {
1536      CC = ISD::SETLE;
1537      LHS = I->Low; MHS = SV; RHS = I->High;
1538    }
1539    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1540                                   I->BB, FallThrough, CurBlock);
1541
1542    // If emitting the first comparison, just call visitSwitchCase to emit the
1543    // code into the current block.  Otherwise, push the CaseBlock onto the
1544    // vector to be later processed by SDISel, and insert the node's MBB
1545    // before the next MBB.
1546    if (CurBlock == CurMBB)
1547      visitSwitchCase(CB);
1548    else
1549      SwitchCases.push_back(CB);
1550
1551    CurBlock = FallThrough;
1552  }
1553
1554  return true;
1555}
1556
1557static inline bool areJTsAllowed(const TargetLowering &TLI) {
1558  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1559          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1560}
1561
1562/// handleJTSwitchCase - Emit jumptable for current switch case range
1563bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1564                                              CaseRecVector& WorkList,
1565                                              Value* SV,
1566                                              MachineBasicBlock* Default) {
1567  Case& FrontCase = *CR.Range.first;
1568  Case& BackCase  = *(CR.Range.second-1);
1569
1570  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1571  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1572
1573  uint64_t TSize = 0;
1574  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1575       I!=E; ++I)
1576    TSize += I->size();
1577
1578  if (!areJTsAllowed(TLI) || TSize <= 3)
1579    return false;
1580
1581  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1582  if (Density < 0.4)
1583    return false;
1584
1585  DOUT << "Lowering jump table\n"
1586       << "First entry: " << First << ". Last entry: " << Last << "\n"
1587       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1588
1589  // Get the MachineFunction which holds the current MBB.  This is used when
1590  // inserting any additional MBBs necessary to represent the switch.
1591  MachineFunction *CurMF = CurMBB->getParent();
1592
1593  // Figure out which block is immediately after the current one.
1594  MachineBasicBlock *NextBlock = 0;
1595  MachineFunction::iterator BBI = CR.CaseBB;
1596
1597  if (++BBI != CurMBB->getParent()->end())
1598    NextBlock = BBI;
1599
1600  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1601
1602  // Create a new basic block to hold the code for loading the address
1603  // of the jump table, and jumping to it.  Update successor information;
1604  // we will either branch to the default case for the switch, or the jump
1605  // table.
1606  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1607  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1608  CR.CaseBB->addSuccessor(Default);
1609  CR.CaseBB->addSuccessor(JumpTableBB);
1610
1611  // Build a vector of destination BBs, corresponding to each target
1612  // of the jump table. If the value of the jump table slot corresponds to
1613  // a case statement, push the case's BB onto the vector, otherwise, push
1614  // the default BB.
1615  std::vector<MachineBasicBlock*> DestBBs;
1616  int64_t TEI = First;
1617  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1618    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1619    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1620
1621    if ((Low <= TEI) && (TEI <= High)) {
1622      DestBBs.push_back(I->BB);
1623      if (TEI==High)
1624        ++I;
1625    } else {
1626      DestBBs.push_back(Default);
1627    }
1628  }
1629
1630  // Update successor info. Add one edge to each unique successor.
1631  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1632  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1633         E = DestBBs.end(); I != E; ++I) {
1634    if (!SuccsHandled[(*I)->getNumber()]) {
1635      SuccsHandled[(*I)->getNumber()] = true;
1636      JumpTableBB->addSuccessor(*I);
1637    }
1638  }
1639
1640  // Create a jump table index for this jump table, or return an existing
1641  // one.
1642  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1643
1644  // Set the jump table information so that we can codegen it as a second
1645  // MachineBasicBlock
1646  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1647  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1648                                        (CR.CaseBB == CurMBB));
1649  if (CR.CaseBB == CurMBB)
1650    visitJumpTableHeader(JT, JTH);
1651
1652  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1653
1654  return true;
1655}
1656
1657/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1658/// 2 subtrees.
1659bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1660                                                   CaseRecVector& WorkList,
1661                                                   Value* SV,
1662                                                   MachineBasicBlock* Default) {
1663  // Get the MachineFunction which holds the current MBB.  This is used when
1664  // inserting any additional MBBs necessary to represent the switch.
1665  MachineFunction *CurMF = CurMBB->getParent();
1666
1667  // Figure out which block is immediately after the current one.
1668  MachineBasicBlock *NextBlock = 0;
1669  MachineFunction::iterator BBI = CR.CaseBB;
1670
1671  if (++BBI != CurMBB->getParent()->end())
1672    NextBlock = BBI;
1673
1674  Case& FrontCase = *CR.Range.first;
1675  Case& BackCase  = *(CR.Range.second-1);
1676  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1677
1678  // Size is the number of Cases represented by this range.
1679  unsigned Size = CR.Range.second - CR.Range.first;
1680
1681  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1682  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1683  double FMetric = 0;
1684  CaseItr Pivot = CR.Range.first + Size/2;
1685
1686  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1687  // (heuristically) allow us to emit JumpTable's later.
1688  uint64_t TSize = 0;
1689  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1690       I!=E; ++I)
1691    TSize += I->size();
1692
1693  uint64_t LSize = FrontCase.size();
1694  uint64_t RSize = TSize-LSize;
1695  DOUT << "Selecting best pivot: \n"
1696       << "First: " << First << ", Last: " << Last <<"\n"
1697       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1698  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1699       J!=E; ++I, ++J) {
1700    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1701    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1702    assert((RBegin-LEnd>=1) && "Invalid case distance");
1703    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1704    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1705    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1706    // Should always split in some non-trivial place
1707    DOUT <<"=>Step\n"
1708         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1709         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1710         << "Metric: " << Metric << "\n";
1711    if (FMetric < Metric) {
1712      Pivot = J;
1713      FMetric = Metric;
1714      DOUT << "Current metric set to: " << FMetric << "\n";
1715    }
1716
1717    LSize += J->size();
1718    RSize -= J->size();
1719  }
1720  if (areJTsAllowed(TLI)) {
1721    // If our case is dense we *really* should handle it earlier!
1722    assert((FMetric > 0) && "Should handle dense range earlier!");
1723  } else {
1724    Pivot = CR.Range.first + Size/2;
1725  }
1726
1727  CaseRange LHSR(CR.Range.first, Pivot);
1728  CaseRange RHSR(Pivot, CR.Range.second);
1729  Constant *C = Pivot->Low;
1730  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1731
1732  // We know that we branch to the LHS if the Value being switched on is
1733  // less than the Pivot value, C.  We use this to optimize our binary
1734  // tree a bit, by recognizing that if SV is greater than or equal to the
1735  // LHS's Case Value, and that Case Value is exactly one less than the
1736  // Pivot's Value, then we can branch directly to the LHS's Target,
1737  // rather than creating a leaf node for it.
1738  if ((LHSR.second - LHSR.first) == 1 &&
1739      LHSR.first->High == CR.GE &&
1740      cast<ConstantInt>(C)->getSExtValue() ==
1741      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1742    TrueBB = LHSR.first->BB;
1743  } else {
1744    TrueBB = new MachineBasicBlock(LLVMBB);
1745    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1746    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1747  }
1748
1749  // Similar to the optimization above, if the Value being switched on is
1750  // known to be less than the Constant CR.LT, and the current Case Value
1751  // is CR.LT - 1, then we can branch directly to the target block for
1752  // the current Case Value, rather than emitting a RHS leaf node for it.
1753  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1754      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1755      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1756    FalseBB = RHSR.first->BB;
1757  } else {
1758    FalseBB = new MachineBasicBlock(LLVMBB);
1759    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1760    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1761  }
1762
1763  // Create a CaseBlock record representing a conditional branch to
1764  // the LHS node if the value being switched on SV is less than C.
1765  // Otherwise, branch to LHS.
1766  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1767                                 TrueBB, FalseBB, CR.CaseBB);
1768
1769  if (CR.CaseBB == CurMBB)
1770    visitSwitchCase(CB);
1771  else
1772    SwitchCases.push_back(CB);
1773
1774  return true;
1775}
1776
1777/// handleBitTestsSwitchCase - if current case range has few destination and
1778/// range span less, than machine word bitwidth, encode case range into series
1779/// of masks and emit bit tests with these masks.
1780bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1781                                                    CaseRecVector& WorkList,
1782                                                    Value* SV,
1783                                                    MachineBasicBlock* Default){
1784  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1785
1786  Case& FrontCase = *CR.Range.first;
1787  Case& BackCase  = *(CR.Range.second-1);
1788
1789  // Get the MachineFunction which holds the current MBB.  This is used when
1790  // inserting any additional MBBs necessary to represent the switch.
1791  MachineFunction *CurMF = CurMBB->getParent();
1792
1793  unsigned numCmps = 0;
1794  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1795       I!=E; ++I) {
1796    // Single case counts one, case range - two.
1797    if (I->Low == I->High)
1798      numCmps +=1;
1799    else
1800      numCmps +=2;
1801  }
1802
1803  // Count unique destinations
1804  SmallSet<MachineBasicBlock*, 4> Dests;
1805  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1806    Dests.insert(I->BB);
1807    if (Dests.size() > 3)
1808      // Don't bother the code below, if there are too much unique destinations
1809      return false;
1810  }
1811  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1812       << "Total number of comparisons: " << numCmps << "\n";
1813
1814  // Compute span of values.
1815  Constant* minValue = FrontCase.Low;
1816  Constant* maxValue = BackCase.High;
1817  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1818                   cast<ConstantInt>(minValue)->getSExtValue();
1819  DOUT << "Compare range: " << range << "\n"
1820       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1821       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1822
1823  if (range>=IntPtrBits ||
1824      (!(Dests.size() == 1 && numCmps >= 3) &&
1825       !(Dests.size() == 2 && numCmps >= 5) &&
1826       !(Dests.size() >= 3 && numCmps >= 6)))
1827    return false;
1828
1829  DOUT << "Emitting bit tests\n";
1830  int64_t lowBound = 0;
1831
1832  // Optimize the case where all the case values fit in a
1833  // word without having to subtract minValue. In this case,
1834  // we can optimize away the subtraction.
1835  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1836      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1837    range = cast<ConstantInt>(maxValue)->getSExtValue();
1838  } else {
1839    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1840  }
1841
1842  CaseBitsVector CasesBits;
1843  unsigned i, count = 0;
1844
1845  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1846    MachineBasicBlock* Dest = I->BB;
1847    for (i = 0; i < count; ++i)
1848      if (Dest == CasesBits[i].BB)
1849        break;
1850
1851    if (i == count) {
1852      assert((count < 3) && "Too much destinations to test!");
1853      CasesBits.push_back(CaseBits(0, Dest, 0));
1854      count++;
1855    }
1856
1857    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1858    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1859
1860    for (uint64_t j = lo; j <= hi; j++) {
1861      CasesBits[i].Mask |=  1ULL << j;
1862      CasesBits[i].Bits++;
1863    }
1864
1865  }
1866  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1867
1868  SelectionDAGISel::BitTestInfo BTC;
1869
1870  // Figure out which block is immediately after the current one.
1871  MachineFunction::iterator BBI = CR.CaseBB;
1872  ++BBI;
1873
1874  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1875
1876  DOUT << "Cases:\n";
1877  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1878    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1879         << ", BB: " << CasesBits[i].BB << "\n";
1880
1881    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1882    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1883    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1884                                                CaseBB,
1885                                                CasesBits[i].BB));
1886  }
1887
1888  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1889                                     -1U, (CR.CaseBB == CurMBB),
1890                                     CR.CaseBB, Default, BTC);
1891
1892  if (CR.CaseBB == CurMBB)
1893    visitBitTestHeader(BTB);
1894
1895  BitTestCases.push_back(BTB);
1896
1897  return true;
1898}
1899
1900
1901// Clusterify - Transform simple list of Cases into list of CaseRange's
1902unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1903                                          const SwitchInst& SI) {
1904  unsigned numCmps = 0;
1905
1906  // Start with "simple" cases
1907  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1908    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1909    Cases.push_back(Case(SI.getSuccessorValue(i),
1910                         SI.getSuccessorValue(i),
1911                         SMBB));
1912  }
1913  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1914
1915  // Merge case into clusters
1916  if (Cases.size()>=2)
1917    // Must recompute end() each iteration because it may be
1918    // invalidated by erase if we hold on to it
1919    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
1920      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1921      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1922      MachineBasicBlock* nextBB = J->BB;
1923      MachineBasicBlock* currentBB = I->BB;
1924
1925      // If the two neighboring cases go to the same destination, merge them
1926      // into a single case.
1927      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1928        I->High = J->High;
1929        J = Cases.erase(J);
1930      } else {
1931        I = J++;
1932      }
1933    }
1934
1935  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1936    if (I->Low != I->High)
1937      // A range counts double, since it requires two compares.
1938      ++numCmps;
1939  }
1940
1941  return numCmps;
1942}
1943
1944void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1945  // Figure out which block is immediately after the current one.
1946  MachineBasicBlock *NextBlock = 0;
1947  MachineFunction::iterator BBI = CurMBB;
1948
1949  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1950
1951  // If there is only the default destination, branch to it if it is not the
1952  // next basic block.  Otherwise, just fall through.
1953  if (SI.getNumOperands() == 2) {
1954    // Update machine-CFG edges.
1955
1956    // If this is not a fall-through branch, emit the branch.
1957    if (Default != NextBlock)
1958      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1959                              DAG.getBasicBlock(Default)));
1960
1961    CurMBB->addSuccessor(Default);
1962    return;
1963  }
1964
1965  // If there are any non-default case statements, create a vector of Cases
1966  // representing each one, and sort the vector so that we can efficiently
1967  // create a binary search tree from them.
1968  CaseVector Cases;
1969  unsigned numCmps = Clusterify(Cases, SI);
1970  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1971       << ". Total compares: " << numCmps << "\n";
1972
1973  // Get the Value to be switched on and default basic blocks, which will be
1974  // inserted into CaseBlock records, representing basic blocks in the binary
1975  // search tree.
1976  Value *SV = SI.getOperand(0);
1977
1978  // Push the initial CaseRec onto the worklist
1979  CaseRecVector WorkList;
1980  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1981
1982  while (!WorkList.empty()) {
1983    // Grab a record representing a case range to process off the worklist
1984    CaseRec CR = WorkList.back();
1985    WorkList.pop_back();
1986
1987    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1988      continue;
1989
1990    // If the range has few cases (two or less) emit a series of specific
1991    // tests.
1992    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1993      continue;
1994
1995    // If the switch has more than 5 blocks, and at least 40% dense, and the
1996    // target supports indirect branches, then emit a jump table rather than
1997    // lowering the switch to a binary tree of conditional branches.
1998    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1999      continue;
2000
2001    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2002    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2003    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2004  }
2005}
2006
2007
2008void SelectionDAGLowering::visitSub(User &I) {
2009  // -0.0 - X --> fneg
2010  const Type *Ty = I.getType();
2011  if (isa<VectorType>(Ty)) {
2012    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2013      const VectorType *DestTy = cast<VectorType>(I.getType());
2014      const Type *ElTy = DestTy->getElementType();
2015      if (ElTy->isFloatingPoint()) {
2016        unsigned VL = DestTy->getNumElements();
2017        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2018        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2019        if (CV == CNZ) {
2020          SDOperand Op2 = getValue(I.getOperand(1));
2021          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2022          return;
2023        }
2024      }
2025    }
2026  }
2027  if (Ty->isFloatingPoint()) {
2028    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2029      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2030        SDOperand Op2 = getValue(I.getOperand(1));
2031        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2032        return;
2033      }
2034  }
2035
2036  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2037}
2038
2039void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2040  SDOperand Op1 = getValue(I.getOperand(0));
2041  SDOperand Op2 = getValue(I.getOperand(1));
2042
2043  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2044}
2045
2046void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2047  SDOperand Op1 = getValue(I.getOperand(0));
2048  SDOperand Op2 = getValue(I.getOperand(1));
2049
2050  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2051      MVT::getSizeInBits(Op2.getValueType()))
2052    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2053  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2054    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2055
2056  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2057}
2058
2059void SelectionDAGLowering::visitICmp(User &I) {
2060  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2061  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2062    predicate = IC->getPredicate();
2063  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2064    predicate = ICmpInst::Predicate(IC->getPredicate());
2065  SDOperand Op1 = getValue(I.getOperand(0));
2066  SDOperand Op2 = getValue(I.getOperand(1));
2067  ISD::CondCode Opcode;
2068  switch (predicate) {
2069    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2070    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2071    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2072    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2073    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2074    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2075    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2076    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2077    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2078    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2079    default:
2080      assert(!"Invalid ICmp predicate value");
2081      Opcode = ISD::SETEQ;
2082      break;
2083  }
2084  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2085}
2086
2087void SelectionDAGLowering::visitFCmp(User &I) {
2088  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2089  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2090    predicate = FC->getPredicate();
2091  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2092    predicate = FCmpInst::Predicate(FC->getPredicate());
2093  SDOperand Op1 = getValue(I.getOperand(0));
2094  SDOperand Op2 = getValue(I.getOperand(1));
2095  ISD::CondCode Condition, FOC, FPC;
2096  switch (predicate) {
2097    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2098    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2099    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2100    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2101    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2102    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2103    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2104    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2105    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2106    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2107    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2108    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2109    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2110    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2111    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2112    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2113    default:
2114      assert(!"Invalid FCmp predicate value");
2115      FOC = FPC = ISD::SETFALSE;
2116      break;
2117  }
2118  if (FiniteOnlyFPMath())
2119    Condition = FOC;
2120  else
2121    Condition = FPC;
2122  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2123}
2124
2125void SelectionDAGLowering::visitSelect(User &I) {
2126  SDOperand Cond     = getValue(I.getOperand(0));
2127  SDOperand TrueVal  = getValue(I.getOperand(1));
2128  SDOperand FalseVal = getValue(I.getOperand(2));
2129  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2130                           TrueVal, FalseVal));
2131}
2132
2133
2134void SelectionDAGLowering::visitTrunc(User &I) {
2135  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2136  SDOperand N = getValue(I.getOperand(0));
2137  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2138  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2139}
2140
2141void SelectionDAGLowering::visitZExt(User &I) {
2142  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2143  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2144  SDOperand N = getValue(I.getOperand(0));
2145  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2146  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2147}
2148
2149void SelectionDAGLowering::visitSExt(User &I) {
2150  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2151  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2152  SDOperand N = getValue(I.getOperand(0));
2153  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2154  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2155}
2156
2157void SelectionDAGLowering::visitFPTrunc(User &I) {
2158  // FPTrunc is never a no-op cast, no need to check
2159  SDOperand N = getValue(I.getOperand(0));
2160  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2161  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2162}
2163
2164void SelectionDAGLowering::visitFPExt(User &I){
2165  // FPTrunc is never a no-op cast, no need to check
2166  SDOperand N = getValue(I.getOperand(0));
2167  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2168  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2169}
2170
2171void SelectionDAGLowering::visitFPToUI(User &I) {
2172  // FPToUI is never a no-op cast, no need to check
2173  SDOperand N = getValue(I.getOperand(0));
2174  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2175  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2176}
2177
2178void SelectionDAGLowering::visitFPToSI(User &I) {
2179  // FPToSI is never a no-op cast, no need to check
2180  SDOperand N = getValue(I.getOperand(0));
2181  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2182  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2183}
2184
2185void SelectionDAGLowering::visitUIToFP(User &I) {
2186  // UIToFP is never a no-op cast, no need to check
2187  SDOperand N = getValue(I.getOperand(0));
2188  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2189  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2190}
2191
2192void SelectionDAGLowering::visitSIToFP(User &I){
2193  // UIToFP is never a no-op cast, no need to check
2194  SDOperand N = getValue(I.getOperand(0));
2195  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2196  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2197}
2198
2199void SelectionDAGLowering::visitPtrToInt(User &I) {
2200  // What to do depends on the size of the integer and the size of the pointer.
2201  // We can either truncate, zero extend, or no-op, accordingly.
2202  SDOperand N = getValue(I.getOperand(0));
2203  MVT::ValueType SrcVT = N.getValueType();
2204  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2205  SDOperand Result;
2206  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2207    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2208  else
2209    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2210    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2211  setValue(&I, Result);
2212}
2213
2214void SelectionDAGLowering::visitIntToPtr(User &I) {
2215  // What to do depends on the size of the integer and the size of the pointer.
2216  // We can either truncate, zero extend, or no-op, accordingly.
2217  SDOperand N = getValue(I.getOperand(0));
2218  MVT::ValueType SrcVT = N.getValueType();
2219  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2220  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2221    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2222  else
2223    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2224    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2225}
2226
2227void SelectionDAGLowering::visitBitCast(User &I) {
2228  SDOperand N = getValue(I.getOperand(0));
2229  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2230
2231  // BitCast assures us that source and destination are the same size so this
2232  // is either a BIT_CONVERT or a no-op.
2233  if (DestVT != N.getValueType())
2234    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2235  else
2236    setValue(&I, N); // noop cast.
2237}
2238
2239void SelectionDAGLowering::visitInsertElement(User &I) {
2240  SDOperand InVec = getValue(I.getOperand(0));
2241  SDOperand InVal = getValue(I.getOperand(1));
2242  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2243                                getValue(I.getOperand(2)));
2244
2245  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2246                           TLI.getValueType(I.getType()),
2247                           InVec, InVal, InIdx));
2248}
2249
2250void SelectionDAGLowering::visitExtractElement(User &I) {
2251  SDOperand InVec = getValue(I.getOperand(0));
2252  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2253                                getValue(I.getOperand(1)));
2254  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2255                           TLI.getValueType(I.getType()), InVec, InIdx));
2256}
2257
2258void SelectionDAGLowering::visitShuffleVector(User &I) {
2259  SDOperand V1   = getValue(I.getOperand(0));
2260  SDOperand V2   = getValue(I.getOperand(1));
2261  SDOperand Mask = getValue(I.getOperand(2));
2262
2263  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2264                           TLI.getValueType(I.getType()),
2265                           V1, V2, Mask));
2266}
2267
2268
2269void SelectionDAGLowering::visitGetElementPtr(User &I) {
2270  SDOperand N = getValue(I.getOperand(0));
2271  const Type *Ty = I.getOperand(0)->getType();
2272
2273  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2274       OI != E; ++OI) {
2275    Value *Idx = *OI;
2276    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2277      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2278      if (Field) {
2279        // N = N + Offset
2280        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2281        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2282                        DAG.getIntPtrConstant(Offset));
2283      }
2284      Ty = StTy->getElementType(Field);
2285    } else {
2286      Ty = cast<SequentialType>(Ty)->getElementType();
2287
2288      // If this is a constant subscript, handle it quickly.
2289      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2290        if (CI->getZExtValue() == 0) continue;
2291        uint64_t Offs =
2292            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2293        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2294                        DAG.getIntPtrConstant(Offs));
2295        continue;
2296      }
2297
2298      // N = N + Idx * ElementSize;
2299      uint64_t ElementSize = TD->getABITypeSize(Ty);
2300      SDOperand IdxN = getValue(Idx);
2301
2302      // If the index is smaller or larger than intptr_t, truncate or extend
2303      // it.
2304      if (IdxN.getValueType() < N.getValueType()) {
2305        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2306      } else if (IdxN.getValueType() > N.getValueType())
2307        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2308
2309      // If this is a multiply by a power of two, turn it into a shl
2310      // immediately.  This is a very common case.
2311      if (isPowerOf2_64(ElementSize)) {
2312        unsigned Amt = Log2_64(ElementSize);
2313        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2314                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2315        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2316        continue;
2317      }
2318
2319      SDOperand Scale = DAG.getIntPtrConstant(ElementSize);
2320      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2321      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2322    }
2323  }
2324  setValue(&I, N);
2325}
2326
2327void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2328  // If this is a fixed sized alloca in the entry block of the function,
2329  // allocate it statically on the stack.
2330  if (FuncInfo.StaticAllocaMap.count(&I))
2331    return;   // getValue will auto-populate this.
2332
2333  const Type *Ty = I.getAllocatedType();
2334  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2335  unsigned Align =
2336    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2337             I.getAlignment());
2338
2339  SDOperand AllocSize = getValue(I.getArraySize());
2340  MVT::ValueType IntPtr = TLI.getPointerTy();
2341  if (IntPtr < AllocSize.getValueType())
2342    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2343  else if (IntPtr > AllocSize.getValueType())
2344    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2345
2346  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2347                          DAG.getIntPtrConstant(TySize));
2348
2349  // Handle alignment.  If the requested alignment is less than or equal to
2350  // the stack alignment, ignore it.  If the size is greater than or equal to
2351  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2352  unsigned StackAlign =
2353    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2354  if (Align <= StackAlign)
2355    Align = 0;
2356
2357  // Round the size of the allocation up to the stack alignment size
2358  // by add SA-1 to the size.
2359  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2360                          DAG.getIntPtrConstant(StackAlign-1));
2361  // Mask out the low bits for alignment purposes.
2362  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2363                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2364
2365  SDOperand Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2366  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2367                                                    MVT::Other);
2368  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2369  setValue(&I, DSA);
2370  DAG.setRoot(DSA.getValue(1));
2371
2372  // Inform the Frame Information that we have just allocated a variable-sized
2373  // object.
2374  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2375}
2376
2377void SelectionDAGLowering::visitLoad(LoadInst &I) {
2378  SDOperand Ptr = getValue(I.getOperand(0));
2379
2380  SDOperand Root;
2381  if (I.isVolatile())
2382    Root = getRoot();
2383  else {
2384    // Do not serialize non-volatile loads against each other.
2385    Root = DAG.getRoot();
2386  }
2387
2388  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2389                           Root, I.isVolatile(), I.getAlignment()));
2390}
2391
2392SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2393                                            const Value *SV, SDOperand Root,
2394                                            bool isVolatile,
2395                                            unsigned Alignment) {
2396  SDOperand L =
2397    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2398                isVolatile, Alignment);
2399
2400  if (isVolatile)
2401    DAG.setRoot(L.getValue(1));
2402  else
2403    PendingLoads.push_back(L.getValue(1));
2404
2405  return L;
2406}
2407
2408
2409void SelectionDAGLowering::visitStore(StoreInst &I) {
2410  Value *SrcV = I.getOperand(0);
2411  SDOperand Src = getValue(SrcV);
2412  SDOperand Ptr = getValue(I.getOperand(1));
2413  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2414                           I.isVolatile(), I.getAlignment()));
2415}
2416
2417/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2418/// node.
2419void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2420                                                unsigned Intrinsic) {
2421  bool HasChain = !I.doesNotAccessMemory();
2422  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2423
2424  // Build the operand list.
2425  SmallVector<SDOperand, 8> Ops;
2426  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2427    if (OnlyLoad) {
2428      // We don't need to serialize loads against other loads.
2429      Ops.push_back(DAG.getRoot());
2430    } else {
2431      Ops.push_back(getRoot());
2432    }
2433  }
2434
2435  // Add the intrinsic ID as an integer operand.
2436  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2437
2438  // Add all operands of the call to the operand list.
2439  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2440    SDOperand Op = getValue(I.getOperand(i));
2441    assert(TLI.isTypeLegal(Op.getValueType()) &&
2442           "Intrinsic uses a non-legal type?");
2443    Ops.push_back(Op);
2444  }
2445
2446  std::vector<MVT::ValueType> VTs;
2447  if (I.getType() != Type::VoidTy) {
2448    MVT::ValueType VT = TLI.getValueType(I.getType());
2449    if (MVT::isVector(VT)) {
2450      const VectorType *DestTy = cast<VectorType>(I.getType());
2451      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2452
2453      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2454      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2455    }
2456
2457    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2458    VTs.push_back(VT);
2459  }
2460  if (HasChain)
2461    VTs.push_back(MVT::Other);
2462
2463  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2464
2465  // Create the node.
2466  SDOperand Result;
2467  if (!HasChain)
2468    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2469                         &Ops[0], Ops.size());
2470  else if (I.getType() != Type::VoidTy)
2471    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2472                         &Ops[0], Ops.size());
2473  else
2474    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2475                         &Ops[0], Ops.size());
2476
2477  if (HasChain) {
2478    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2479    if (OnlyLoad)
2480      PendingLoads.push_back(Chain);
2481    else
2482      DAG.setRoot(Chain);
2483  }
2484  if (I.getType() != Type::VoidTy) {
2485    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2486      MVT::ValueType VT = TLI.getValueType(PTy);
2487      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2488    }
2489    setValue(&I, Result);
2490  }
2491}
2492
2493/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2494static GlobalVariable *ExtractTypeInfo (Value *V) {
2495  V = IntrinsicInst::StripPointerCasts(V);
2496  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2497  assert (GV || isa<ConstantPointerNull>(V) &&
2498          "TypeInfo must be a global variable or NULL");
2499  return GV;
2500}
2501
2502/// addCatchInfo - Extract the personality and type infos from an eh.selector
2503/// call, and add them to the specified machine basic block.
2504static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2505                         MachineBasicBlock *MBB) {
2506  // Inform the MachineModuleInfo of the personality for this landing pad.
2507  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2508  assert(CE->getOpcode() == Instruction::BitCast &&
2509         isa<Function>(CE->getOperand(0)) &&
2510         "Personality should be a function");
2511  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2512
2513  // Gather all the type infos for this landing pad and pass them along to
2514  // MachineModuleInfo.
2515  std::vector<GlobalVariable *> TyInfo;
2516  unsigned N = I.getNumOperands();
2517
2518  for (unsigned i = N - 1; i > 2; --i) {
2519    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2520      unsigned FilterLength = CI->getZExtValue();
2521      unsigned FirstCatch = i + FilterLength + !FilterLength;
2522      assert (FirstCatch <= N && "Invalid filter length");
2523
2524      if (FirstCatch < N) {
2525        TyInfo.reserve(N - FirstCatch);
2526        for (unsigned j = FirstCatch; j < N; ++j)
2527          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2528        MMI->addCatchTypeInfo(MBB, TyInfo);
2529        TyInfo.clear();
2530      }
2531
2532      if (!FilterLength) {
2533        // Cleanup.
2534        MMI->addCleanup(MBB);
2535      } else {
2536        // Filter.
2537        TyInfo.reserve(FilterLength - 1);
2538        for (unsigned j = i + 1; j < FirstCatch; ++j)
2539          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2540        MMI->addFilterTypeInfo(MBB, TyInfo);
2541        TyInfo.clear();
2542      }
2543
2544      N = i;
2545    }
2546  }
2547
2548  if (N > 3) {
2549    TyInfo.reserve(N - 3);
2550    for (unsigned j = 3; j < N; ++j)
2551      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2552    MMI->addCatchTypeInfo(MBB, TyInfo);
2553  }
2554}
2555
2556/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2557/// we want to emit this as a call to a named external function, return the name
2558/// otherwise lower it and return null.
2559const char *
2560SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2561  switch (Intrinsic) {
2562  default:
2563    // By default, turn this into a target intrinsic node.
2564    visitTargetIntrinsic(I, Intrinsic);
2565    return 0;
2566  case Intrinsic::vastart:  visitVAStart(I); return 0;
2567  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2568  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2569  case Intrinsic::returnaddress:
2570    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2571                             getValue(I.getOperand(1))));
2572    return 0;
2573  case Intrinsic::frameaddress:
2574    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2575                             getValue(I.getOperand(1))));
2576    return 0;
2577  case Intrinsic::setjmp:
2578    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2579    break;
2580  case Intrinsic::longjmp:
2581    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2582    break;
2583  case Intrinsic::memcpy_i32:
2584  case Intrinsic::memcpy_i64:
2585    visitMemIntrinsic(I, ISD::MEMCPY);
2586    return 0;
2587  case Intrinsic::memset_i32:
2588  case Intrinsic::memset_i64:
2589    visitMemIntrinsic(I, ISD::MEMSET);
2590    return 0;
2591  case Intrinsic::memmove_i32:
2592  case Intrinsic::memmove_i64:
2593    visitMemIntrinsic(I, ISD::MEMMOVE);
2594    return 0;
2595
2596  case Intrinsic::dbg_stoppoint: {
2597    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2598    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2599    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2600      SDOperand Ops[5];
2601
2602      Ops[0] = getRoot();
2603      Ops[1] = getValue(SPI.getLineValue());
2604      Ops[2] = getValue(SPI.getColumnValue());
2605
2606      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2607      assert(DD && "Not a debug information descriptor");
2608      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2609
2610      Ops[3] = DAG.getString(CompileUnit->getFileName());
2611      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2612
2613      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2614    }
2615
2616    return 0;
2617  }
2618  case Intrinsic::dbg_region_start: {
2619    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2620    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2621    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2622      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2623      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2624                              DAG.getConstant(LabelID, MVT::i32),
2625                              DAG.getConstant(0, MVT::i32)));
2626    }
2627
2628    return 0;
2629  }
2630  case Intrinsic::dbg_region_end: {
2631    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2632    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2633    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2634      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2635      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2636                              DAG.getConstant(LabelID, MVT::i32),
2637                              DAG.getConstant(0, MVT::i32)));
2638    }
2639
2640    return 0;
2641  }
2642  case Intrinsic::dbg_func_start: {
2643    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2644    if (!MMI) return 0;
2645    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2646    Value *SP = FSI.getSubprogram();
2647    if (SP && MMI->Verify(SP)) {
2648      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
2649      // what (most?) gdb expects.
2650      DebugInfoDesc *DD = MMI->getDescFor(SP);
2651      assert(DD && "Not a debug information descriptor");
2652      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
2653      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
2654      unsigned SrcFile = MMI->RecordSource(CompileUnit->getDirectory(),
2655                                           CompileUnit->getFileName());
2656      // Record the source line but does create a label. It will be emitted
2657      // at asm emission time.
2658      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
2659    }
2660
2661    return 0;
2662  }
2663  case Intrinsic::dbg_declare: {
2664    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2665    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2666    Value *Variable = DI.getVariable();
2667    if (MMI && Variable && MMI->Verify(Variable))
2668      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
2669                              getValue(DI.getAddress()), getValue(Variable)));
2670    return 0;
2671  }
2672
2673  case Intrinsic::eh_exception: {
2674    if (ExceptionHandling) {
2675      if (!CurMBB->isLandingPad()) {
2676        // FIXME: Mark exception register as live in.  Hack for PR1508.
2677        unsigned Reg = TLI.getExceptionAddressRegister();
2678        if (Reg) CurMBB->addLiveIn(Reg);
2679      }
2680      // Insert the EXCEPTIONADDR instruction.
2681      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2682      SDOperand Ops[1];
2683      Ops[0] = DAG.getRoot();
2684      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2685      setValue(&I, Op);
2686      DAG.setRoot(Op.getValue(1));
2687    } else {
2688      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2689    }
2690    return 0;
2691  }
2692
2693  case Intrinsic::eh_selector_i32:
2694  case Intrinsic::eh_selector_i64: {
2695    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2696    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2697                         MVT::i32 : MVT::i64);
2698
2699    if (ExceptionHandling && MMI) {
2700      if (CurMBB->isLandingPad())
2701        addCatchInfo(I, MMI, CurMBB);
2702      else {
2703#ifndef NDEBUG
2704        FuncInfo.CatchInfoLost.insert(&I);
2705#endif
2706        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
2707        unsigned Reg = TLI.getExceptionSelectorRegister();
2708        if (Reg) CurMBB->addLiveIn(Reg);
2709      }
2710
2711      // Insert the EHSELECTION instruction.
2712      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2713      SDOperand Ops[2];
2714      Ops[0] = getValue(I.getOperand(1));
2715      Ops[1] = getRoot();
2716      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2717      setValue(&I, Op);
2718      DAG.setRoot(Op.getValue(1));
2719    } else {
2720      setValue(&I, DAG.getConstant(0, VT));
2721    }
2722
2723    return 0;
2724  }
2725
2726  case Intrinsic::eh_typeid_for_i32:
2727  case Intrinsic::eh_typeid_for_i64: {
2728    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2729    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2730                         MVT::i32 : MVT::i64);
2731
2732    if (MMI) {
2733      // Find the type id for the given typeinfo.
2734      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2735
2736      unsigned TypeID = MMI->getTypeIDFor(GV);
2737      setValue(&I, DAG.getConstant(TypeID, VT));
2738    } else {
2739      // Return something different to eh_selector.
2740      setValue(&I, DAG.getConstant(1, VT));
2741    }
2742
2743    return 0;
2744  }
2745
2746  case Intrinsic::eh_return: {
2747    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2748
2749    if (MMI && ExceptionHandling) {
2750      MMI->setCallsEHReturn(true);
2751      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2752                              MVT::Other,
2753                              getRoot(),
2754                              getValue(I.getOperand(1)),
2755                              getValue(I.getOperand(2))));
2756    } else {
2757      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2758    }
2759
2760    return 0;
2761  }
2762
2763   case Intrinsic::eh_unwind_init: {
2764     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2765       MMI->setCallsUnwindInit(true);
2766     }
2767
2768     return 0;
2769   }
2770
2771   case Intrinsic::eh_dwarf_cfa: {
2772     if (ExceptionHandling) {
2773       MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
2774       SDOperand CfaArg;
2775       if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2776         CfaArg = DAG.getNode(ISD::TRUNCATE,
2777                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2778       else
2779         CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2780                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2781
2782       SDOperand Offset = DAG.getNode(ISD::ADD,
2783                                      TLI.getPointerTy(),
2784                                      DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
2785                                                  TLI.getPointerTy()),
2786                                      CfaArg);
2787       setValue(&I, DAG.getNode(ISD::ADD,
2788                                TLI.getPointerTy(),
2789                                DAG.getNode(ISD::FRAMEADDR,
2790                                            TLI.getPointerTy(),
2791                                            DAG.getConstant(0,
2792                                                            TLI.getPointerTy())),
2793                                Offset));
2794     } else {
2795       setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2796     }
2797
2798     return 0;
2799  }
2800
2801  case Intrinsic::sqrt:
2802    setValue(&I, DAG.getNode(ISD::FSQRT,
2803                             getValue(I.getOperand(1)).getValueType(),
2804                             getValue(I.getOperand(1))));
2805    return 0;
2806  case Intrinsic::powi:
2807    setValue(&I, DAG.getNode(ISD::FPOWI,
2808                             getValue(I.getOperand(1)).getValueType(),
2809                             getValue(I.getOperand(1)),
2810                             getValue(I.getOperand(2))));
2811    return 0;
2812  case Intrinsic::sin:
2813    setValue(&I, DAG.getNode(ISD::FSIN,
2814                             getValue(I.getOperand(1)).getValueType(),
2815                             getValue(I.getOperand(1))));
2816    return 0;
2817  case Intrinsic::cos:
2818    setValue(&I, DAG.getNode(ISD::FCOS,
2819                             getValue(I.getOperand(1)).getValueType(),
2820                             getValue(I.getOperand(1))));
2821    return 0;
2822  case Intrinsic::pow:
2823    setValue(&I, DAG.getNode(ISD::FPOW,
2824                             getValue(I.getOperand(1)).getValueType(),
2825                             getValue(I.getOperand(1)),
2826                             getValue(I.getOperand(2))));
2827    return 0;
2828  case Intrinsic::pcmarker: {
2829    SDOperand Tmp = getValue(I.getOperand(1));
2830    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2831    return 0;
2832  }
2833  case Intrinsic::readcyclecounter: {
2834    SDOperand Op = getRoot();
2835    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2836                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2837                                &Op, 1);
2838    setValue(&I, Tmp);
2839    DAG.setRoot(Tmp.getValue(1));
2840    return 0;
2841  }
2842  case Intrinsic::part_select: {
2843    // Currently not implemented: just abort
2844    assert(0 && "part_select intrinsic not implemented");
2845    abort();
2846  }
2847  case Intrinsic::part_set: {
2848    // Currently not implemented: just abort
2849    assert(0 && "part_set intrinsic not implemented");
2850    abort();
2851  }
2852  case Intrinsic::bswap:
2853    setValue(&I, DAG.getNode(ISD::BSWAP,
2854                             getValue(I.getOperand(1)).getValueType(),
2855                             getValue(I.getOperand(1))));
2856    return 0;
2857  case Intrinsic::cttz: {
2858    SDOperand Arg = getValue(I.getOperand(1));
2859    MVT::ValueType Ty = Arg.getValueType();
2860    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2861    setValue(&I, result);
2862    return 0;
2863  }
2864  case Intrinsic::ctlz: {
2865    SDOperand Arg = getValue(I.getOperand(1));
2866    MVT::ValueType Ty = Arg.getValueType();
2867    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2868    setValue(&I, result);
2869    return 0;
2870  }
2871  case Intrinsic::ctpop: {
2872    SDOperand Arg = getValue(I.getOperand(1));
2873    MVT::ValueType Ty = Arg.getValueType();
2874    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2875    setValue(&I, result);
2876    return 0;
2877  }
2878  case Intrinsic::stacksave: {
2879    SDOperand Op = getRoot();
2880    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2881              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2882    setValue(&I, Tmp);
2883    DAG.setRoot(Tmp.getValue(1));
2884    return 0;
2885  }
2886  case Intrinsic::stackrestore: {
2887    SDOperand Tmp = getValue(I.getOperand(1));
2888    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2889    return 0;
2890  }
2891  case Intrinsic::prefetch:
2892    // FIXME: Currently discarding prefetches.
2893    return 0;
2894
2895  case Intrinsic::var_annotation:
2896    // Discard annotate attributes
2897    return 0;
2898
2899  case Intrinsic::init_trampoline: {
2900    const Function *F =
2901      cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
2902
2903    SDOperand Ops[6];
2904    Ops[0] = getRoot();
2905    Ops[1] = getValue(I.getOperand(1));
2906    Ops[2] = getValue(I.getOperand(2));
2907    Ops[3] = getValue(I.getOperand(3));
2908    Ops[4] = DAG.getSrcValue(I.getOperand(1));
2909    Ops[5] = DAG.getSrcValue(F);
2910
2911    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
2912                                DAG.getNodeValueTypes(TLI.getPointerTy(),
2913                                                      MVT::Other), 2,
2914                                Ops, 6);
2915
2916    setValue(&I, Tmp);
2917    DAG.setRoot(Tmp.getValue(1));
2918    return 0;
2919  }
2920
2921  case Intrinsic::gcroot:
2922    if (GCI) {
2923      Value *Alloca = I.getOperand(1);
2924      Constant *TypeMap = cast<Constant>(I.getOperand(2));
2925
2926      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
2927      GCI->addStackRoot(FI->getIndex(), TypeMap);
2928    }
2929    return 0;
2930
2931  case Intrinsic::gcread:
2932  case Intrinsic::gcwrite:
2933    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
2934    return 0;
2935
2936  case Intrinsic::flt_rounds: {
2937    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
2938    return 0;
2939  }
2940
2941  case Intrinsic::trap: {
2942    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
2943    return 0;
2944  }
2945  }
2946}
2947
2948
2949void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
2950                                       bool IsTailCall,
2951                                       MachineBasicBlock *LandingPad) {
2952  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2953  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2954  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2955  unsigned BeginLabel = 0, EndLabel = 0;
2956
2957  TargetLowering::ArgListTy Args;
2958  TargetLowering::ArgListEntry Entry;
2959  Args.reserve(CS.arg_size());
2960  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2961       i != e; ++i) {
2962    SDOperand ArgNode = getValue(*i);
2963    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
2964
2965    unsigned attrInd = i - CS.arg_begin() + 1;
2966    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
2967    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
2968    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
2969    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
2970    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
2971    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
2972    Args.push_back(Entry);
2973  }
2974
2975  bool MarkTryRange = LandingPad ||
2976    // C++ requires special handling of 'nounwind' calls.
2977    (CS.doesNotThrow());
2978
2979  if (MarkTryRange && ExceptionHandling && MMI) {
2980    // Insert a label before the invoke call to mark the try range.  This can be
2981    // used to detect deletion of the invoke via the MachineModuleInfo.
2982    BeginLabel = MMI->NextLabelID();
2983    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2984                            DAG.getConstant(BeginLabel, MVT::i32),
2985                            DAG.getConstant(1, MVT::i32)));
2986  }
2987
2988  std::pair<SDOperand,SDOperand> Result =
2989    TLI.LowerCallTo(getRoot(), CS.getType(),
2990                    CS.paramHasAttr(0, ParamAttr::SExt),
2991                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
2992                    Callee, Args, DAG);
2993  if (CS.getType() != Type::VoidTy)
2994    setValue(CS.getInstruction(), Result.first);
2995  DAG.setRoot(Result.second);
2996
2997  if (MarkTryRange && ExceptionHandling && MMI) {
2998    // Insert a label at the end of the invoke call to mark the try range.  This
2999    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3000    EndLabel = MMI->NextLabelID();
3001    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3002                            DAG.getConstant(EndLabel, MVT::i32),
3003                            DAG.getConstant(1, MVT::i32)));
3004
3005    // Inform MachineModuleInfo of range.
3006    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3007  }
3008}
3009
3010
3011void SelectionDAGLowering::visitCall(CallInst &I) {
3012  const char *RenameFn = 0;
3013  if (Function *F = I.getCalledFunction()) {
3014    if (F->isDeclaration()) {
3015      if (unsigned IID = F->getIntrinsicID()) {
3016        RenameFn = visitIntrinsicCall(I, IID);
3017        if (!RenameFn)
3018          return;
3019      }
3020    }
3021
3022    // Check for well-known libc/libm calls.  If the function is internal, it
3023    // can't be a library call.
3024    unsigned NameLen = F->getNameLen();
3025    if (!F->hasInternalLinkage() && NameLen) {
3026      const char *NameStr = F->getNameStart();
3027      if (NameStr[0] == 'c' &&
3028          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3029           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3030        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3031            I.getOperand(1)->getType()->isFloatingPoint() &&
3032            I.getType() == I.getOperand(1)->getType() &&
3033            I.getType() == I.getOperand(2)->getType()) {
3034          SDOperand LHS = getValue(I.getOperand(1));
3035          SDOperand RHS = getValue(I.getOperand(2));
3036          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3037                                   LHS, RHS));
3038          return;
3039        }
3040      } else if (NameStr[0] == 'f' &&
3041                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3042                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3043                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3044        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3045            I.getOperand(1)->getType()->isFloatingPoint() &&
3046            I.getType() == I.getOperand(1)->getType()) {
3047          SDOperand Tmp = getValue(I.getOperand(1));
3048          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3049          return;
3050        }
3051      } else if (NameStr[0] == 's' &&
3052                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3053                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3054                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3055        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3056            I.getOperand(1)->getType()->isFloatingPoint() &&
3057            I.getType() == I.getOperand(1)->getType()) {
3058          SDOperand Tmp = getValue(I.getOperand(1));
3059          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3060          return;
3061        }
3062      } else if (NameStr[0] == 'c' &&
3063                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3064                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3065                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3066        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3067            I.getOperand(1)->getType()->isFloatingPoint() &&
3068            I.getType() == I.getOperand(1)->getType()) {
3069          SDOperand Tmp = getValue(I.getOperand(1));
3070          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3071          return;
3072        }
3073      }
3074    }
3075  } else if (isa<InlineAsm>(I.getOperand(0))) {
3076    visitInlineAsm(&I);
3077    return;
3078  }
3079
3080  SDOperand Callee;
3081  if (!RenameFn)
3082    Callee = getValue(I.getOperand(0));
3083  else
3084    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3085
3086  LowerCallTo(&I, Callee, I.isTailCall());
3087}
3088
3089
3090/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3091/// this value and returns the result as a ValueVT value.  This uses
3092/// Chain/Flag as the input and updates them for the output Chain/Flag.
3093/// If the Flag pointer is NULL, no flag is used.
3094SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3095                                        SDOperand &Chain, SDOperand *Flag)const{
3096  // Copy the legal parts from the registers.
3097  unsigned NumParts = Regs.size();
3098  SmallVector<SDOperand, 8> Parts(NumParts);
3099  for (unsigned i = 0; i != NumParts; ++i) {
3100    SDOperand Part = Flag ?
3101                     DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3102                     DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3103    Chain = Part.getValue(1);
3104    if (Flag)
3105      *Flag = Part.getValue(2);
3106    Parts[i] = Part;
3107  }
3108
3109  // Assemble the legal parts into the final value.
3110  return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3111}
3112
3113/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3114/// specified value into the registers specified by this object.  This uses
3115/// Chain/Flag as the input and updates them for the output Chain/Flag.
3116/// If the Flag pointer is NULL, no flag is used.
3117void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3118                                 SDOperand &Chain, SDOperand *Flag) const {
3119  // Get the list of the values's legal parts.
3120  unsigned NumParts = Regs.size();
3121  SmallVector<SDOperand, 8> Parts(NumParts);
3122  getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3123
3124  // Copy the parts into the registers.
3125  for (unsigned i = 0; i != NumParts; ++i) {
3126    SDOperand Part = Flag ?
3127                     DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3128                     DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3129    Chain = Part.getValue(0);
3130    if (Flag)
3131      *Flag = Part.getValue(1);
3132  }
3133}
3134
3135/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3136/// operand list.  This adds the code marker and includes the number of
3137/// values added into it.
3138void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3139                                        std::vector<SDOperand> &Ops) const {
3140  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3141  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3142  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3143    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3144}
3145
3146/// isAllocatableRegister - If the specified register is safe to allocate,
3147/// i.e. it isn't a stack pointer or some other special register, return the
3148/// register class for the register.  Otherwise, return null.
3149static const TargetRegisterClass *
3150isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3151                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
3152  MVT::ValueType FoundVT = MVT::Other;
3153  const TargetRegisterClass *FoundRC = 0;
3154  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3155       E = MRI->regclass_end(); RCI != E; ++RCI) {
3156    MVT::ValueType ThisVT = MVT::Other;
3157
3158    const TargetRegisterClass *RC = *RCI;
3159    // If none of the the value types for this register class are valid, we
3160    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3161    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3162         I != E; ++I) {
3163      if (TLI.isTypeLegal(*I)) {
3164        // If we have already found this register in a different register class,
3165        // choose the one with the largest VT specified.  For example, on
3166        // PowerPC, we favor f64 register classes over f32.
3167        if (FoundVT == MVT::Other ||
3168            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3169          ThisVT = *I;
3170          break;
3171        }
3172      }
3173    }
3174
3175    if (ThisVT == MVT::Other) continue;
3176
3177    // NOTE: This isn't ideal.  In particular, this might allocate the
3178    // frame pointer in functions that need it (due to them not being taken
3179    // out of allocation, because a variable sized allocation hasn't been seen
3180    // yet).  This is a slight code pessimization, but should still work.
3181    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3182         E = RC->allocation_order_end(MF); I != E; ++I)
3183      if (*I == Reg) {
3184        // We found a matching register class.  Keep looking at others in case
3185        // we find one with larger registers that this physreg is also in.
3186        FoundRC = RC;
3187        FoundVT = ThisVT;
3188        break;
3189      }
3190  }
3191  return FoundRC;
3192}
3193
3194
3195namespace {
3196/// AsmOperandInfo - This contains information for each constraint that we are
3197/// lowering.
3198struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3199  /// ConstraintCode - This contains the actual string for the code, like "m".
3200  std::string ConstraintCode;
3201
3202  /// ConstraintType - Information about the constraint code, e.g. Register,
3203  /// RegisterClass, Memory, Other, Unknown.
3204  TargetLowering::ConstraintType ConstraintType;
3205
3206  /// CallOperand/CallOperandval - If this is the result output operand or a
3207  /// clobber, this is null, otherwise it is the incoming operand to the
3208  /// CallInst.  This gets modified as the asm is processed.
3209  SDOperand CallOperand;
3210  Value *CallOperandVal;
3211
3212  /// ConstraintVT - The ValueType for the operand value.
3213  MVT::ValueType ConstraintVT;
3214
3215  /// AssignedRegs - If this is a register or register class operand, this
3216  /// contains the set of register corresponding to the operand.
3217  RegsForValue AssignedRegs;
3218
3219  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3220    : InlineAsm::ConstraintInfo(info),
3221      ConstraintType(TargetLowering::C_Unknown),
3222      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3223  }
3224
3225  void ComputeConstraintToUse(const TargetLowering &TLI);
3226
3227  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3228  /// busy in OutputRegs/InputRegs.
3229  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3230                         std::set<unsigned> &OutputRegs,
3231                         std::set<unsigned> &InputRegs) const {
3232     if (isOutReg)
3233       OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3234     if (isInReg)
3235       InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3236   }
3237};
3238} // end anon namespace.
3239
3240/// getConstraintGenerality - Return an integer indicating how general CT is.
3241static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3242  switch (CT) {
3243    default: assert(0 && "Unknown constraint type!");
3244    case TargetLowering::C_Other:
3245    case TargetLowering::C_Unknown:
3246      return 0;
3247    case TargetLowering::C_Register:
3248      return 1;
3249    case TargetLowering::C_RegisterClass:
3250      return 2;
3251    case TargetLowering::C_Memory:
3252      return 3;
3253  }
3254}
3255
3256void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3257  assert(!Codes.empty() && "Must have at least one constraint");
3258
3259  std::string *Current = &Codes[0];
3260  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3261  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3262    ConstraintCode = *Current;
3263    ConstraintType = CurType;
3264  } else {
3265    unsigned CurGenerality = getConstraintGenerality(CurType);
3266
3267    // If we have multiple constraints, try to pick the most general one ahead
3268    // of time.  This isn't a wonderful solution, but handles common cases.
3269    for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3270      TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3271      unsigned ThisGenerality = getConstraintGenerality(ThisType);
3272      if (ThisGenerality > CurGenerality) {
3273        // This constraint letter is more general than the previous one,
3274        // use it.
3275        CurType = ThisType;
3276        Current = &Codes[j];
3277        CurGenerality = ThisGenerality;
3278      }
3279    }
3280
3281    ConstraintCode = *Current;
3282    ConstraintType = CurType;
3283  }
3284
3285  if (ConstraintCode == "X") {
3286    if (isa<BasicBlock>(CallOperandVal) || isa<ConstantInt>(CallOperandVal))
3287      return;
3288    // This matches anything.  Labels and constants we handle elsewhere
3289    // ('X' is the only thing that matches labels).  Otherwise, try to
3290    // resolve it to something we know about by looking at the actual
3291    // operand type.
3292    std::string s = "";
3293    TLI.lowerXConstraint(ConstraintVT, s);
3294    if (s!="") {
3295      ConstraintCode = s;
3296      ConstraintType = TLI.getConstraintType(ConstraintCode);
3297    }
3298  }
3299}
3300
3301
3302void SelectionDAGLowering::
3303GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3304                     std::set<unsigned> &OutputRegs,
3305                     std::set<unsigned> &InputRegs) {
3306  // Compute whether this value requires an input register, an output register,
3307  // or both.
3308  bool isOutReg = false;
3309  bool isInReg = false;
3310  switch (OpInfo.Type) {
3311  case InlineAsm::isOutput:
3312    isOutReg = true;
3313
3314    // If this is an early-clobber output, or if there is an input
3315    // constraint that matches this, we need to reserve the input register
3316    // so no other inputs allocate to it.
3317    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3318    break;
3319  case InlineAsm::isInput:
3320    isInReg = true;
3321    isOutReg = false;
3322    break;
3323  case InlineAsm::isClobber:
3324    isOutReg = true;
3325    isInReg = true;
3326    break;
3327  }
3328
3329
3330  MachineFunction &MF = DAG.getMachineFunction();
3331  std::vector<unsigned> Regs;
3332
3333  // If this is a constraint for a single physreg, or a constraint for a
3334  // register class, find it.
3335  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3336    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3337                                     OpInfo.ConstraintVT);
3338
3339  unsigned NumRegs = 1;
3340  if (OpInfo.ConstraintVT != MVT::Other)
3341    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3342  MVT::ValueType RegVT;
3343  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3344
3345
3346  // If this is a constraint for a specific physical register, like {r17},
3347  // assign it now.
3348  if (PhysReg.first) {
3349    if (OpInfo.ConstraintVT == MVT::Other)
3350      ValueVT = *PhysReg.second->vt_begin();
3351
3352    // Get the actual register value type.  This is important, because the user
3353    // may have asked for (e.g.) the AX register in i32 type.  We need to
3354    // remember that AX is actually i16 to get the right extension.
3355    RegVT = *PhysReg.second->vt_begin();
3356
3357    // This is a explicit reference to a physical register.
3358    Regs.push_back(PhysReg.first);
3359
3360    // If this is an expanded reference, add the rest of the regs to Regs.
3361    if (NumRegs != 1) {
3362      TargetRegisterClass::iterator I = PhysReg.second->begin();
3363      TargetRegisterClass::iterator E = PhysReg.second->end();
3364      for (; *I != PhysReg.first; ++I)
3365        assert(I != E && "Didn't find reg!");
3366
3367      // Already added the first reg.
3368      --NumRegs; ++I;
3369      for (; NumRegs; --NumRegs, ++I) {
3370        assert(I != E && "Ran out of registers to allocate!");
3371        Regs.push_back(*I);
3372      }
3373    }
3374    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3375    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3376    return;
3377  }
3378
3379  // Otherwise, if this was a reference to an LLVM register class, create vregs
3380  // for this reference.
3381  std::vector<unsigned> RegClassRegs;
3382  const TargetRegisterClass *RC = PhysReg.second;
3383  if (RC) {
3384    // If this is an early clobber or tied register, our regalloc doesn't know
3385    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3386    // and let the regalloc do the right thing.
3387    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3388        // If there is some other early clobber and this is an input register,
3389        // then we are forced to pre-allocate the input reg so it doesn't
3390        // conflict with the earlyclobber.
3391        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3392      RegVT = *PhysReg.second->vt_begin();
3393
3394      if (OpInfo.ConstraintVT == MVT::Other)
3395        ValueVT = RegVT;
3396
3397      // Create the appropriate number of virtual registers.
3398      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3399      for (; NumRegs; --NumRegs)
3400        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
3401
3402      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3403      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3404      return;
3405    }
3406
3407    // Otherwise, we can't allocate it.  Let the code below figure out how to
3408    // maintain these constraints.
3409    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3410
3411  } else {
3412    // This is a reference to a register class that doesn't directly correspond
3413    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3414    // registers from the class.
3415    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3416                                                         OpInfo.ConstraintVT);
3417  }
3418
3419  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3420  unsigned NumAllocated = 0;
3421  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3422    unsigned Reg = RegClassRegs[i];
3423    // See if this register is available.
3424    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3425        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3426      // Make sure we find consecutive registers.
3427      NumAllocated = 0;
3428      continue;
3429    }
3430
3431    // Check to see if this register is allocatable (i.e. don't give out the
3432    // stack pointer).
3433    if (RC == 0) {
3434      RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3435      if (!RC) {        // Couldn't allocate this register.
3436        // Reset NumAllocated to make sure we return consecutive registers.
3437        NumAllocated = 0;
3438        continue;
3439      }
3440    }
3441
3442    // Okay, this register is good, we can use it.
3443    ++NumAllocated;
3444
3445    // If we allocated enough consecutive registers, succeed.
3446    if (NumAllocated == NumRegs) {
3447      unsigned RegStart = (i-NumAllocated)+1;
3448      unsigned RegEnd   = i+1;
3449      // Mark all of the allocated registers used.
3450      for (unsigned i = RegStart; i != RegEnd; ++i)
3451        Regs.push_back(RegClassRegs[i]);
3452
3453      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3454                                         OpInfo.ConstraintVT);
3455      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3456      return;
3457    }
3458  }
3459
3460  // Otherwise, we couldn't allocate enough registers for this.
3461  return;
3462}
3463
3464
3465/// visitInlineAsm - Handle a call to an InlineAsm object.
3466///
3467void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
3468  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3469
3470  /// ConstraintOperands - Information about all of the constraints.
3471  std::vector<AsmOperandInfo> ConstraintOperands;
3472
3473  SDOperand Chain = getRoot();
3474  SDOperand Flag;
3475
3476  std::set<unsigned> OutputRegs, InputRegs;
3477
3478  // Do a prepass over the constraints, canonicalizing them, and building up the
3479  // ConstraintOperands list.
3480  std::vector<InlineAsm::ConstraintInfo>
3481    ConstraintInfos = IA->ParseConstraints();
3482
3483  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3484  // constraint.  If so, we can't let the register allocator allocate any input
3485  // registers, because it will not know to avoid the earlyclobbered output reg.
3486  bool SawEarlyClobber = false;
3487
3488  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3489  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3490    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3491    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3492
3493    MVT::ValueType OpVT = MVT::Other;
3494
3495    // Compute the value type for each operand.
3496    switch (OpInfo.Type) {
3497    case InlineAsm::isOutput:
3498      if (!OpInfo.isIndirect) {
3499        // The return value of the call is this value.  As such, there is no
3500        // corresponding argument.
3501        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3502        OpVT = TLI.getValueType(CS.getType());
3503      } else {
3504        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3505      }
3506      break;
3507    case InlineAsm::isInput:
3508      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3509      break;
3510    case InlineAsm::isClobber:
3511      // Nothing to do.
3512      break;
3513    }
3514
3515    // If this is an input or an indirect output, process the call argument.
3516    // BasicBlocks are labels, currently appearing only in asm's.
3517    if (OpInfo.CallOperandVal) {
3518      if (isa<BasicBlock>(OpInfo.CallOperandVal))
3519        OpInfo.CallOperand =
3520          DAG.getBasicBlock(FuncInfo.MBBMap[cast<BasicBlock>(
3521                                                 OpInfo.CallOperandVal)]);
3522      else {
3523        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3524        const Type *OpTy = OpInfo.CallOperandVal->getType();
3525        // If this is an indirect operand, the operand is a pointer to the
3526        // accessed type.
3527        if (OpInfo.isIndirect)
3528          OpTy = cast<PointerType>(OpTy)->getElementType();
3529
3530        // If OpTy is not a first-class value, it may be a struct/union that we
3531        // can tile with integers.
3532        if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3533          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3534          switch (BitSize) {
3535          default: break;
3536          case 1:
3537          case 8:
3538          case 16:
3539          case 32:
3540          case 64:
3541            OpTy = IntegerType::get(BitSize);
3542            break;
3543          }
3544        }
3545
3546        OpVT = TLI.getValueType(OpTy, true);
3547      }
3548    }
3549
3550    OpInfo.ConstraintVT = OpVT;
3551
3552    // Compute the constraint code and ConstraintType to use.
3553    OpInfo.ComputeConstraintToUse(TLI);
3554
3555    // Keep track of whether we see an earlyclobber.
3556    SawEarlyClobber |= OpInfo.isEarlyClobber;
3557
3558    // If this is a memory input, and if the operand is not indirect, do what we
3559    // need to to provide an address for the memory input.
3560    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3561        !OpInfo.isIndirect) {
3562      assert(OpInfo.Type == InlineAsm::isInput &&
3563             "Can only indirectify direct input operands!");
3564
3565      // Memory operands really want the address of the value.  If we don't have
3566      // an indirect input, put it in the constpool if we can, otherwise spill
3567      // it to a stack slot.
3568
3569      // If the operand is a float, integer, or vector constant, spill to a
3570      // constant pool entry to get its address.
3571      Value *OpVal = OpInfo.CallOperandVal;
3572      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3573          isa<ConstantVector>(OpVal)) {
3574        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3575                                                 TLI.getPointerTy());
3576      } else {
3577        // Otherwise, create a stack slot and emit a store to it before the
3578        // asm.
3579        const Type *Ty = OpVal->getType();
3580        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
3581        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3582        MachineFunction &MF = DAG.getMachineFunction();
3583        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3584        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3585        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3586        OpInfo.CallOperand = StackSlot;
3587      }
3588
3589      // There is no longer a Value* corresponding to this operand.
3590      OpInfo.CallOperandVal = 0;
3591      // It is now an indirect operand.
3592      OpInfo.isIndirect = true;
3593    }
3594
3595    // If this constraint is for a specific register, allocate it before
3596    // anything else.
3597    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3598      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3599  }
3600  ConstraintInfos.clear();
3601
3602
3603  // Second pass - Loop over all of the operands, assigning virtual or physregs
3604  // to registerclass operands.
3605  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3606    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3607
3608    // C_Register operands have already been allocated, Other/Memory don't need
3609    // to be.
3610    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3611      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3612  }
3613
3614  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3615  std::vector<SDOperand> AsmNodeOperands;
3616  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3617  AsmNodeOperands.push_back(
3618          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3619
3620
3621  // Loop over all of the inputs, copying the operand values into the
3622  // appropriate registers and processing the output regs.
3623  RegsForValue RetValRegs;
3624
3625  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3626  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3627
3628  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3629    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3630
3631    switch (OpInfo.Type) {
3632    case InlineAsm::isOutput: {
3633      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3634          OpInfo.ConstraintType != TargetLowering::C_Register) {
3635        // Memory output, or 'other' output (e.g. 'X' constraint).
3636        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3637
3638        // Add information to the INLINEASM node to know about this output.
3639        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3640        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3641                                                        TLI.getPointerTy()));
3642        AsmNodeOperands.push_back(OpInfo.CallOperand);
3643        break;
3644      }
3645
3646      // Otherwise, this is a register or register class output.
3647
3648      // Copy the output from the appropriate register.  Find a register that
3649      // we can use.
3650      if (OpInfo.AssignedRegs.Regs.empty()) {
3651        cerr << "Couldn't allocate output reg for contraint '"
3652             << OpInfo.ConstraintCode << "'!\n";
3653        exit(1);
3654      }
3655
3656      if (!OpInfo.isIndirect) {
3657        // This is the result value of the call.
3658        assert(RetValRegs.Regs.empty() &&
3659               "Cannot have multiple output constraints yet!");
3660        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3661        RetValRegs = OpInfo.AssignedRegs;
3662      } else {
3663        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3664                                                      OpInfo.CallOperandVal));
3665      }
3666
3667      // Add information to the INLINEASM node to know that this register is
3668      // set.
3669      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3670                                               AsmNodeOperands);
3671      break;
3672    }
3673    case InlineAsm::isInput: {
3674      SDOperand InOperandVal = OpInfo.CallOperand;
3675
3676      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3677        // If this is required to match an output register we have already set,
3678        // just use its register.
3679        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3680
3681        // Scan until we find the definition we already emitted of this operand.
3682        // When we find it, create a RegsForValue operand.
3683        unsigned CurOp = 2;  // The first operand.
3684        for (; OperandNo; --OperandNo) {
3685          // Advance to the next operand.
3686          unsigned NumOps =
3687            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3688          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3689                  (NumOps & 7) == 4 /*MEM*/) &&
3690                 "Skipped past definitions?");
3691          CurOp += (NumOps>>3)+1;
3692        }
3693
3694        unsigned NumOps =
3695          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3696        if ((NumOps & 7) == 2 /*REGDEF*/) {
3697          // Add NumOps>>3 registers to MatchedRegs.
3698          RegsForValue MatchedRegs;
3699          MatchedRegs.ValueVT = InOperandVal.getValueType();
3700          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3701          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3702            unsigned Reg =
3703              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3704            MatchedRegs.Regs.push_back(Reg);
3705          }
3706
3707          // Use the produced MatchedRegs object to
3708          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3709          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3710          break;
3711        } else {
3712          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3713          assert(0 && "matching constraints for memory operands unimp");
3714        }
3715      }
3716
3717      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3718        assert(!OpInfo.isIndirect &&
3719               "Don't know how to handle indirect other inputs yet!");
3720
3721        std::vector<SDOperand> Ops;
3722        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3723                                         Ops, DAG);
3724        if (Ops.empty()) {
3725          cerr << "Invalid operand for inline asm constraint '"
3726               << OpInfo.ConstraintCode << "'!\n";
3727          exit(1);
3728        }
3729
3730        // Add information to the INLINEASM node to know about this input.
3731        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
3732        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3733                                                        TLI.getPointerTy()));
3734        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
3735        break;
3736      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3737        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3738        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3739               "Memory operands expect pointer values");
3740
3741        // Add information to the INLINEASM node to know about this input.
3742        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3743        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3744                                                        TLI.getPointerTy()));
3745        AsmNodeOperands.push_back(InOperandVal);
3746        break;
3747      }
3748
3749      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3750              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3751             "Unknown constraint type!");
3752      assert(!OpInfo.isIndirect &&
3753             "Don't know how to handle indirect register inputs yet!");
3754
3755      // Copy the input into the appropriate registers.
3756      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3757             "Couldn't allocate input reg!");
3758
3759      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3760
3761      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3762                                               AsmNodeOperands);
3763      break;
3764    }
3765    case InlineAsm::isClobber: {
3766      // Add the clobbered value to the operand list, so that the register
3767      // allocator is aware that the physreg got clobbered.
3768      if (!OpInfo.AssignedRegs.Regs.empty())
3769        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3770                                                 AsmNodeOperands);
3771      break;
3772    }
3773    }
3774  }
3775
3776  // Finish up input operands.
3777  AsmNodeOperands[0] = Chain;
3778  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3779
3780  Chain = DAG.getNode(ISD::INLINEASM,
3781                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3782                      &AsmNodeOperands[0], AsmNodeOperands.size());
3783  Flag = Chain.getValue(1);
3784
3785  // If this asm returns a register value, copy the result from that register
3786  // and set it as the value of the call.
3787  if (!RetValRegs.Regs.empty()) {
3788    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3789
3790    // If the result of the inline asm is a vector, it may have the wrong
3791    // width/num elts.  Make sure to convert it to the right type with
3792    // bit_convert.
3793    if (MVT::isVector(Val.getValueType())) {
3794      const VectorType *VTy = cast<VectorType>(CS.getType());
3795      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3796
3797      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3798    }
3799
3800    setValue(CS.getInstruction(), Val);
3801  }
3802
3803  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3804
3805  // Process indirect outputs, first output all of the flagged copies out of
3806  // physregs.
3807  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3808    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3809    Value *Ptr = IndirectStoresToEmit[i].second;
3810    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3811    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3812  }
3813
3814  // Emit the non-flagged stores from the physregs.
3815  SmallVector<SDOperand, 8> OutChains;
3816  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3817    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3818                                    getValue(StoresToEmit[i].second),
3819                                    StoresToEmit[i].second, 0));
3820  if (!OutChains.empty())
3821    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3822                        &OutChains[0], OutChains.size());
3823  DAG.setRoot(Chain);
3824}
3825
3826
3827void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3828  SDOperand Src = getValue(I.getOperand(0));
3829
3830  MVT::ValueType IntPtr = TLI.getPointerTy();
3831
3832  if (IntPtr < Src.getValueType())
3833    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3834  else if (IntPtr > Src.getValueType())
3835    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3836
3837  // Scale the source by the type size.
3838  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
3839  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3840                    Src, DAG.getIntPtrConstant(ElementSize));
3841
3842  TargetLowering::ArgListTy Args;
3843  TargetLowering::ArgListEntry Entry;
3844  Entry.Node = Src;
3845  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3846  Args.push_back(Entry);
3847
3848  std::pair<SDOperand,SDOperand> Result =
3849    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3850                    DAG.getExternalSymbol("malloc", IntPtr),
3851                    Args, DAG);
3852  setValue(&I, Result.first);  // Pointers always fit in registers
3853  DAG.setRoot(Result.second);
3854}
3855
3856void SelectionDAGLowering::visitFree(FreeInst &I) {
3857  TargetLowering::ArgListTy Args;
3858  TargetLowering::ArgListEntry Entry;
3859  Entry.Node = getValue(I.getOperand(0));
3860  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3861  Args.push_back(Entry);
3862  MVT::ValueType IntPtr = TLI.getPointerTy();
3863  std::pair<SDOperand,SDOperand> Result =
3864    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3865                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3866  DAG.setRoot(Result.second);
3867}
3868
3869// EmitInstrWithCustomInserter - This method should be implemented by targets
3870// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3871// instructions are special in various ways, which require special support to
3872// insert.  The specified MachineInstr is created but not inserted into any
3873// basic blocks, and the scheduler passes ownership of it to this method.
3874MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3875                                                       MachineBasicBlock *MBB) {
3876  cerr << "If a target marks an instruction with "
3877       << "'usesCustomDAGSchedInserter', it must implement "
3878       << "TargetLowering::EmitInstrWithCustomInserter!\n";
3879  abort();
3880  return 0;
3881}
3882
3883void SelectionDAGLowering::visitVAStart(CallInst &I) {
3884  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3885                          getValue(I.getOperand(1)),
3886                          DAG.getSrcValue(I.getOperand(1))));
3887}
3888
3889void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3890  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3891                             getValue(I.getOperand(0)),
3892                             DAG.getSrcValue(I.getOperand(0)));
3893  setValue(&I, V);
3894  DAG.setRoot(V.getValue(1));
3895}
3896
3897void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3898  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3899                          getValue(I.getOperand(1)),
3900                          DAG.getSrcValue(I.getOperand(1))));
3901}
3902
3903void SelectionDAGLowering::visitVACopy(CallInst &I) {
3904  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3905                          getValue(I.getOperand(1)),
3906                          getValue(I.getOperand(2)),
3907                          DAG.getSrcValue(I.getOperand(1)),
3908                          DAG.getSrcValue(I.getOperand(2))));
3909}
3910
3911/// TargetLowering::LowerArguments - This is the default LowerArguments
3912/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3913/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3914/// integrated into SDISel.
3915std::vector<SDOperand>
3916TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3917  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3918  std::vector<SDOperand> Ops;
3919  Ops.push_back(DAG.getRoot());
3920  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3921  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3922
3923  // Add one result value for each formal argument.
3924  std::vector<MVT::ValueType> RetVals;
3925  unsigned j = 1;
3926  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3927       I != E; ++I, ++j) {
3928    MVT::ValueType VT = getValueType(I->getType());
3929    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3930    unsigned OriginalAlignment =
3931      getTargetData()->getABITypeAlignment(I->getType());
3932
3933    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3934    // that is zero extended!
3935    if (F.paramHasAttr(j, ParamAttr::ZExt))
3936      Flags &= ~(ISD::ParamFlags::SExt);
3937    if (F.paramHasAttr(j, ParamAttr::SExt))
3938      Flags |= ISD::ParamFlags::SExt;
3939    if (F.paramHasAttr(j, ParamAttr::InReg))
3940      Flags |= ISD::ParamFlags::InReg;
3941    if (F.paramHasAttr(j, ParamAttr::StructRet))
3942      Flags |= ISD::ParamFlags::StructReturn;
3943    if (F.paramHasAttr(j, ParamAttr::ByVal)) {
3944      Flags |= ISD::ParamFlags::ByVal;
3945      const PointerType *Ty = cast<PointerType>(I->getType());
3946      const Type *ElementTy = Ty->getElementType();
3947      unsigned FrameAlign = Log2_32(getByValTypeAlignment(ElementTy));
3948      unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
3949      Flags |= (FrameAlign << ISD::ParamFlags::ByValAlignOffs);
3950      Flags |= (FrameSize  << ISD::ParamFlags::ByValSizeOffs);
3951    }
3952    if (F.paramHasAttr(j, ParamAttr::Nest))
3953      Flags |= ISD::ParamFlags::Nest;
3954    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3955
3956    switch (getTypeAction(VT)) {
3957    default: assert(0 && "Unknown type action!");
3958    case Legal:
3959      RetVals.push_back(VT);
3960      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3961      break;
3962    case Promote:
3963      RetVals.push_back(getTypeToTransformTo(VT));
3964      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3965      break;
3966    case Expand: {
3967      // If this is an illegal type, it needs to be broken up to fit into
3968      // registers.
3969      MVT::ValueType RegisterVT = getRegisterType(VT);
3970      unsigned NumRegs = getNumRegisters(VT);
3971      for (unsigned i = 0; i != NumRegs; ++i) {
3972        RetVals.push_back(RegisterVT);
3973        // if it isn't first piece, alignment must be 1
3974        if (i > 0)
3975          Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3976            (1 << ISD::ParamFlags::OrigAlignmentOffs);
3977        Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3978      }
3979      break;
3980    }
3981    }
3982  }
3983
3984  RetVals.push_back(MVT::Other);
3985
3986  // Create the node.
3987  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3988                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3989                               &Ops[0], Ops.size()).Val;
3990  unsigned NumArgRegs = Result->getNumValues() - 1;
3991  DAG.setRoot(SDOperand(Result, NumArgRegs));
3992
3993  // Set up the return result vector.
3994  Ops.clear();
3995  unsigned i = 0;
3996  unsigned Idx = 1;
3997  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3998      ++I, ++Idx) {
3999    MVT::ValueType VT = getValueType(I->getType());
4000
4001    switch (getTypeAction(VT)) {
4002    default: assert(0 && "Unknown type action!");
4003    case Legal:
4004      Ops.push_back(SDOperand(Result, i++));
4005      break;
4006    case Promote: {
4007      SDOperand Op(Result, i++);
4008      if (MVT::isInteger(VT)) {
4009        if (F.paramHasAttr(Idx, ParamAttr::SExt))
4010          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
4011                           DAG.getValueType(VT));
4012        else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4013          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
4014                           DAG.getValueType(VT));
4015        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
4016      } else {
4017        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
4018        Op = DAG.getNode(ISD::FP_ROUND, VT, Op, DAG.getIntPtrConstant(1));
4019      }
4020      Ops.push_back(Op);
4021      break;
4022    }
4023    case Expand: {
4024      MVT::ValueType PartVT = getRegisterType(VT);
4025      unsigned NumParts = getNumRegisters(VT);
4026      SmallVector<SDOperand, 4> Parts(NumParts);
4027      for (unsigned j = 0; j != NumParts; ++j)
4028        Parts[j] = SDOperand(Result, i++);
4029      Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
4030      break;
4031    }
4032    }
4033  }
4034  assert(i == NumArgRegs && "Argument register count mismatch!");
4035  return Ops;
4036}
4037
4038
4039/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4040/// implementation, which just inserts an ISD::CALL node, which is later custom
4041/// lowered by the target to something concrete.  FIXME: When all targets are
4042/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4043std::pair<SDOperand, SDOperand>
4044TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4045                            bool RetTyIsSigned, bool isVarArg,
4046                            unsigned CallingConv, bool isTailCall,
4047                            SDOperand Callee,
4048                            ArgListTy &Args, SelectionDAG &DAG) {
4049  SmallVector<SDOperand, 32> Ops;
4050  Ops.push_back(Chain);   // Op#0 - Chain
4051  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4052  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4053  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4054  Ops.push_back(Callee);
4055
4056  // Handle all of the outgoing arguments.
4057  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4058    MVT::ValueType VT = getValueType(Args[i].Ty);
4059    SDOperand Op = Args[i].Node;
4060    unsigned Flags = ISD::ParamFlags::NoFlagSet;
4061    unsigned OriginalAlignment =
4062      getTargetData()->getABITypeAlignment(Args[i].Ty);
4063
4064    if (Args[i].isSExt)
4065      Flags |= ISD::ParamFlags::SExt;
4066    if (Args[i].isZExt)
4067      Flags |= ISD::ParamFlags::ZExt;
4068    if (Args[i].isInReg)
4069      Flags |= ISD::ParamFlags::InReg;
4070    if (Args[i].isSRet)
4071      Flags |= ISD::ParamFlags::StructReturn;
4072    if (Args[i].isByVal) {
4073      Flags |= ISD::ParamFlags::ByVal;
4074      const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4075      const Type *ElementTy = Ty->getElementType();
4076      unsigned FrameAlign = Log2_32(getByValTypeAlignment(ElementTy));
4077      unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4078      Flags |= (FrameAlign << ISD::ParamFlags::ByValAlignOffs);
4079      Flags |= (FrameSize  << ISD::ParamFlags::ByValSizeOffs);
4080    }
4081    if (Args[i].isNest)
4082      Flags |= ISD::ParamFlags::Nest;
4083    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
4084
4085    switch (getTypeAction(VT)) {
4086    default: assert(0 && "Unknown type action!");
4087    case Legal:
4088      Ops.push_back(Op);
4089      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4090      break;
4091    case Promote:
4092      if (MVT::isInteger(VT)) {
4093        unsigned ExtOp;
4094        if (Args[i].isSExt)
4095          ExtOp = ISD::SIGN_EXTEND;
4096        else if (Args[i].isZExt)
4097          ExtOp = ISD::ZERO_EXTEND;
4098        else
4099          ExtOp = ISD::ANY_EXTEND;
4100        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
4101      } else {
4102        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
4103        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
4104      }
4105      Ops.push_back(Op);
4106      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4107      break;
4108    case Expand: {
4109      MVT::ValueType PartVT = getRegisterType(VT);
4110      unsigned NumParts = getNumRegisters(VT);
4111      SmallVector<SDOperand, 4> Parts(NumParts);
4112      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
4113      for (unsigned i = 0; i != NumParts; ++i) {
4114        // if it isn't first piece, alignment must be 1
4115        unsigned MyFlags = Flags;
4116        if (i != 0)
4117          MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4118            (1 << ISD::ParamFlags::OrigAlignmentOffs);
4119
4120        Ops.push_back(Parts[i]);
4121        Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
4122      }
4123      break;
4124    }
4125    }
4126  }
4127
4128  // Figure out the result value types.
4129  MVT::ValueType VT = getValueType(RetTy);
4130  MVT::ValueType RegisterVT = getRegisterType(VT);
4131  unsigned NumRegs = getNumRegisters(VT);
4132  SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
4133  for (unsigned i = 0; i != NumRegs; ++i)
4134    RetTys[i] = RegisterVT;
4135
4136  RetTys.push_back(MVT::Other);  // Always has a chain.
4137
4138  // Create the CALL node.
4139  SDOperand Res = DAG.getNode(ISD::CALL,
4140                              DAG.getVTList(&RetTys[0], NumRegs + 1),
4141                              &Ops[0], Ops.size());
4142  Chain = Res.getValue(NumRegs);
4143
4144  // Gather up the call result into a single value.
4145  if (RetTy != Type::VoidTy) {
4146    ISD::NodeType AssertOp = ISD::AssertSext;
4147    if (!RetTyIsSigned)
4148      AssertOp = ISD::AssertZext;
4149    SmallVector<SDOperand, 4> Results(NumRegs);
4150    for (unsigned i = 0; i != NumRegs; ++i)
4151      Results[i] = Res.getValue(i);
4152    Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
4153  }
4154
4155  return std::make_pair(Res, Chain);
4156}
4157
4158SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4159  assert(0 && "LowerOperation not implemented for this target!");
4160  abort();
4161  return SDOperand();
4162}
4163
4164SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4165                                                 SelectionDAG &DAG) {
4166  assert(0 && "CustomPromoteOperation not implemented for this target!");
4167  abort();
4168  return SDOperand();
4169}
4170
4171/// getMemsetValue - Vectorized representation of the memset value
4172/// operand.
4173static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4174                                SelectionDAG &DAG) {
4175  MVT::ValueType CurVT = VT;
4176  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4177    uint64_t Val   = C->getValue() & 255;
4178    unsigned Shift = 8;
4179    while (CurVT != MVT::i8) {
4180      Val = (Val << Shift) | Val;
4181      Shift <<= 1;
4182      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4183    }
4184    return DAG.getConstant(Val, VT);
4185  } else {
4186    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4187    unsigned Shift = 8;
4188    while (CurVT != MVT::i8) {
4189      Value =
4190        DAG.getNode(ISD::OR, VT,
4191                    DAG.getNode(ISD::SHL, VT, Value,
4192                                DAG.getConstant(Shift, MVT::i8)), Value);
4193      Shift <<= 1;
4194      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4195    }
4196
4197    return Value;
4198  }
4199}
4200
4201/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4202/// used when a memcpy is turned into a memset when the source is a constant
4203/// string ptr.
4204static SDOperand getMemsetStringVal(MVT::ValueType VT,
4205                                    SelectionDAG &DAG, TargetLowering &TLI,
4206                                    std::string &Str, unsigned Offset) {
4207  uint64_t Val = 0;
4208  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4209  if (TLI.isLittleEndian())
4210    Offset = Offset + MSB - 1;
4211  for (unsigned i = 0; i != MSB; ++i) {
4212    Val = (Val << 8) | (unsigned char)Str[Offset];
4213    Offset += TLI.isLittleEndian() ? -1 : 1;
4214  }
4215  return DAG.getConstant(Val, VT);
4216}
4217
4218/// getMemBasePlusOffset - Returns base and offset node for the
4219static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4220                                      SelectionDAG &DAG, TargetLowering &TLI) {
4221  MVT::ValueType VT = Base.getValueType();
4222  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4223}
4224
4225/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4226/// to replace the memset / memcpy is below the threshold. It also returns the
4227/// types of the sequence of  memory ops to perform memset / memcpy.
4228static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4229                                     unsigned Limit, uint64_t Size,
4230                                     unsigned Align, TargetLowering &TLI) {
4231  MVT::ValueType VT;
4232
4233  if (TLI.allowsUnalignedMemoryAccesses()) {
4234    VT = MVT::i64;
4235  } else {
4236    switch (Align & 7) {
4237    case 0:
4238      VT = MVT::i64;
4239      break;
4240    case 4:
4241      VT = MVT::i32;
4242      break;
4243    case 2:
4244      VT = MVT::i16;
4245      break;
4246    default:
4247      VT = MVT::i8;
4248      break;
4249    }
4250  }
4251
4252  MVT::ValueType LVT = MVT::i64;
4253  while (!TLI.isTypeLegal(LVT))
4254    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4255  assert(MVT::isInteger(LVT));
4256
4257  if (VT > LVT)
4258    VT = LVT;
4259
4260  unsigned NumMemOps = 0;
4261  while (Size != 0) {
4262    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4263    while (VTSize > Size) {
4264      VT = (MVT::ValueType)((unsigned)VT - 1);
4265      VTSize >>= 1;
4266    }
4267    assert(MVT::isInteger(VT));
4268
4269    if (++NumMemOps > Limit)
4270      return false;
4271    MemOps.push_back(VT);
4272    Size -= VTSize;
4273  }
4274
4275  return true;
4276}
4277
4278void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4279  SDOperand Op1 = getValue(I.getOperand(1));
4280  SDOperand Op2 = getValue(I.getOperand(2));
4281  SDOperand Op3 = getValue(I.getOperand(3));
4282  SDOperand Op4 = getValue(I.getOperand(4));
4283  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4284  if (Align == 0) Align = 1;
4285
4286  // If the source and destination are known to not be aliases, we can
4287  // lower memmove as memcpy.
4288  if (Op == ISD::MEMMOVE) {
4289    uint64_t Size = -1ULL;
4290    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4291      Size = C->getValue();
4292    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4293        AliasAnalysis::NoAlias)
4294      Op = ISD::MEMCPY;
4295  }
4296
4297  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4298    std::vector<MVT::ValueType> MemOps;
4299
4300    // Expand memset / memcpy to a series of load / store ops
4301    // if the size operand falls below a certain threshold.
4302    SmallVector<SDOperand, 8> OutChains;
4303    switch (Op) {
4304    default: break;  // Do nothing for now.
4305    case ISD::MEMSET: {
4306      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4307                                   Size->getValue(), Align, TLI)) {
4308        unsigned NumMemOps = MemOps.size();
4309        unsigned Offset = 0;
4310        for (unsigned i = 0; i < NumMemOps; i++) {
4311          MVT::ValueType VT = MemOps[i];
4312          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4313          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4314          SDOperand Store = DAG.getStore(getRoot(), Value,
4315                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4316                                         I.getOperand(1), Offset);
4317          OutChains.push_back(Store);
4318          Offset += VTSize;
4319        }
4320      }
4321      break;
4322    }
4323    case ISD::MEMCPY: {
4324      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4325                                   Size->getValue(), Align, TLI)) {
4326        unsigned NumMemOps = MemOps.size();
4327        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4328        GlobalAddressSDNode *G = NULL;
4329        std::string Str;
4330        bool CopyFromStr = false;
4331
4332        if (Op2.getOpcode() == ISD::GlobalAddress)
4333          G = cast<GlobalAddressSDNode>(Op2);
4334        else if (Op2.getOpcode() == ISD::ADD &&
4335                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4336                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4337          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4338          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4339        }
4340        if (G) {
4341          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4342          if (GV && GV->isConstant()) {
4343            Str = GV->getStringValue(false);
4344            if (!Str.empty()) {
4345              CopyFromStr = true;
4346              SrcOff += SrcDelta;
4347            }
4348          }
4349        }
4350
4351        for (unsigned i = 0; i < NumMemOps; i++) {
4352          MVT::ValueType VT = MemOps[i];
4353          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4354          SDOperand Value, Chain, Store;
4355
4356          if (CopyFromStr) {
4357            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4358            Chain = getRoot();
4359            Store =
4360              DAG.getStore(Chain, Value,
4361                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4362                           I.getOperand(1), DstOff);
4363          } else {
4364            Value = DAG.getLoad(VT, getRoot(),
4365                                getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4366                                I.getOperand(2), SrcOff, false, Align);
4367            Chain = Value.getValue(1);
4368            Store =
4369              DAG.getStore(Chain, Value,
4370                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4371                           I.getOperand(1), DstOff, false, Align);
4372          }
4373          OutChains.push_back(Store);
4374          SrcOff += VTSize;
4375          DstOff += VTSize;
4376        }
4377      }
4378      break;
4379    }
4380    }
4381
4382    if (!OutChains.empty()) {
4383      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4384                  &OutChains[0], OutChains.size()));
4385      return;
4386    }
4387  }
4388
4389  SDOperand AlwaysInline = DAG.getConstant(0, MVT::i1);
4390  SDOperand Node;
4391  switch(Op) {
4392    default:
4393      assert(0 && "Unknown Op");
4394    case ISD::MEMCPY:
4395      Node = DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4396      break;
4397    case ISD::MEMMOVE:
4398      Node = DAG.getMemmove(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4399      break;
4400    case ISD::MEMSET:
4401      Node = DAG.getMemset(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4402      break;
4403  }
4404  DAG.setRoot(Node);
4405}
4406
4407//===----------------------------------------------------------------------===//
4408// SelectionDAGISel code
4409//===----------------------------------------------------------------------===//
4410
4411unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4412  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4413}
4414
4415void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4416  AU.addRequired<AliasAnalysis>();
4417  AU.addRequired<CollectorModuleMetadata>();
4418  AU.setPreservesAll();
4419}
4420
4421
4422
4423bool SelectionDAGISel::runOnFunction(Function &Fn) {
4424  // Get alias analysis for load/store combining.
4425  AA = &getAnalysis<AliasAnalysis>();
4426
4427  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4428  if (MF.getFunction()->hasCollector())
4429    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4430  else
4431    GCI = 0;
4432  RegInfo = &MF.getRegInfo();
4433  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4434
4435  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4436
4437  if (ExceptionHandling)
4438    for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4439      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4440        // Mark landing pad.
4441        FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4442
4443  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4444    SelectBasicBlock(I, MF, FuncInfo);
4445
4446  // Add function live-ins to entry block live-in set.
4447  BasicBlock *EntryBB = &Fn.getEntryBlock();
4448  BB = FuncInfo.MBBMap[EntryBB];
4449  if (!RegInfo->livein_empty())
4450    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4451           E = RegInfo->livein_end(); I != E; ++I)
4452      BB->addLiveIn(I->first);
4453
4454#ifndef NDEBUG
4455  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4456         "Not all catch info was assigned to a landing pad!");
4457#endif
4458
4459  return true;
4460}
4461
4462SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4463                                                           unsigned Reg) {
4464  SDOperand Op = getValue(V);
4465  assert((Op.getOpcode() != ISD::CopyFromReg ||
4466          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4467         "Copy from a reg to the same reg!");
4468
4469  MVT::ValueType SrcVT = Op.getValueType();
4470  MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4471  unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4472  SmallVector<SDOperand, 8> Regs(NumRegs);
4473  SmallVector<SDOperand, 8> Chains(NumRegs);
4474
4475  // Copy the value by legal parts into sequential virtual registers.
4476  getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4477  for (unsigned i = 0; i != NumRegs; ++i)
4478    Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4479  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4480}
4481
4482void SelectionDAGISel::
4483LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4484               std::vector<SDOperand> &UnorderedChains) {
4485  // If this is the entry block, emit arguments.
4486  Function &F = *LLVMBB->getParent();
4487  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4488  SDOperand OldRoot = SDL.DAG.getRoot();
4489  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4490
4491  unsigned a = 0;
4492  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4493       AI != E; ++AI, ++a)
4494    if (!AI->use_empty()) {
4495      SDL.setValue(AI, Args[a]);
4496
4497      // If this argument is live outside of the entry block, insert a copy from
4498      // whereever we got it to the vreg that other BB's will reference it as.
4499      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4500      if (VMI != FuncInfo.ValueMap.end()) {
4501        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4502        UnorderedChains.push_back(Copy);
4503      }
4504    }
4505
4506  // Finally, if the target has anything special to do, allow it to do so.
4507  // FIXME: this should insert code into the DAG!
4508  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4509}
4510
4511static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4512                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4513  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4514    if (isSelector(I)) {
4515      // Apply the catch info to DestBB.
4516      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4517#ifndef NDEBUG
4518      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4519        FLI.CatchInfoFound.insert(I);
4520#endif
4521    }
4522}
4523
4524/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
4525/// DAG and fixes their tailcall attribute operand.
4526static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4527                                           TargetLowering& TLI) {
4528  SDNode * Ret = NULL;
4529  SDOperand Terminator = DAG.getRoot();
4530
4531  // Find RET node.
4532  if (Terminator.getOpcode() == ISD::RET) {
4533    Ret = Terminator.Val;
4534  }
4535
4536  // Fix tail call attribute of CALL nodes.
4537  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4538         BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4539    if (BI->getOpcode() == ISD::CALL) {
4540      SDOperand OpRet(Ret, 0);
4541      SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4542      bool isMarkedTailCall =
4543        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4544      // If CALL node has tail call attribute set to true and the call is not
4545      // eligible (no RET or the target rejects) the attribute is fixed to
4546      // false. The TargetLowering::IsEligibleForTailCallOptimization function
4547      // must correctly identify tail call optimizable calls.
4548      if (isMarkedTailCall &&
4549          (Ret==NULL ||
4550           !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
4551        SmallVector<SDOperand, 32> Ops;
4552        unsigned idx=0;
4553        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4554              E=OpCall.Val->op_end(); I!=E; I++, idx++) {
4555          if (idx!=3)
4556            Ops.push_back(*I);
4557          else
4558            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4559        }
4560        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4561      }
4562    }
4563  }
4564}
4565
4566void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4567       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4568                                         FunctionLoweringInfo &FuncInfo) {
4569  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
4570
4571  std::vector<SDOperand> UnorderedChains;
4572
4573  // Lower any arguments needed in this block if this is the entry block.
4574  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4575    LowerArguments(LLVMBB, SDL, UnorderedChains);
4576
4577  BB = FuncInfo.MBBMap[LLVMBB];
4578  SDL.setCurrentBasicBlock(BB);
4579
4580  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4581
4582  if (ExceptionHandling && MMI && BB->isLandingPad()) {
4583    // Add a label to mark the beginning of the landing pad.  Deletion of the
4584    // landing pad can thus be detected via the MachineModuleInfo.
4585    unsigned LabelID = MMI->addLandingPad(BB);
4586    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4587                            DAG.getConstant(LabelID, MVT::i32),
4588                            DAG.getConstant(1, MVT::i32)));
4589
4590    // Mark exception register as live in.
4591    unsigned Reg = TLI.getExceptionAddressRegister();
4592    if (Reg) BB->addLiveIn(Reg);
4593
4594    // Mark exception selector register as live in.
4595    Reg = TLI.getExceptionSelectorRegister();
4596    if (Reg) BB->addLiveIn(Reg);
4597
4598    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4599    // function and list of typeids logically belong to the invoke (or, if you
4600    // like, the basic block containing the invoke), and need to be associated
4601    // with it in the dwarf exception handling tables.  Currently however the
4602    // information is provided by an intrinsic (eh.selector) that can be moved
4603    // to unexpected places by the optimizers: if the unwind edge is critical,
4604    // then breaking it can result in the intrinsics being in the successor of
4605    // the landing pad, not the landing pad itself.  This results in exceptions
4606    // not being caught because no typeids are associated with the invoke.
4607    // This may not be the only way things can go wrong, but it is the only way
4608    // we try to work around for the moment.
4609    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4610
4611    if (Br && Br->isUnconditional()) { // Critical edge?
4612      BasicBlock::iterator I, E;
4613      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4614        if (isSelector(I))
4615          break;
4616
4617      if (I == E)
4618        // No catch info found - try to extract some from the successor.
4619        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4620    }
4621  }
4622
4623  // Lower all of the non-terminator instructions.
4624  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4625       I != E; ++I)
4626    SDL.visit(*I);
4627
4628  // Ensure that all instructions which are used outside of their defining
4629  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4630  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4631    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4632      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4633      if (VMI != FuncInfo.ValueMap.end())
4634        UnorderedChains.push_back(
4635                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4636    }
4637
4638  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4639  // ensure constants are generated when needed.  Remember the virtual registers
4640  // that need to be added to the Machine PHI nodes as input.  We cannot just
4641  // directly add them, because expansion might result in multiple MBB's for one
4642  // BB.  As such, the start of the BB might correspond to a different MBB than
4643  // the end.
4644  //
4645  TerminatorInst *TI = LLVMBB->getTerminator();
4646
4647  // Emit constants only once even if used by multiple PHI nodes.
4648  std::map<Constant*, unsigned> ConstantsOut;
4649
4650  // Vector bool would be better, but vector<bool> is really slow.
4651  std::vector<unsigned char> SuccsHandled;
4652  if (TI->getNumSuccessors())
4653    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4654
4655  // Check successor nodes' PHI nodes that expect a constant to be available
4656  // from this block.
4657  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4658    BasicBlock *SuccBB = TI->getSuccessor(succ);
4659    if (!isa<PHINode>(SuccBB->begin())) continue;
4660    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4661
4662    // If this terminator has multiple identical successors (common for
4663    // switches), only handle each succ once.
4664    unsigned SuccMBBNo = SuccMBB->getNumber();
4665    if (SuccsHandled[SuccMBBNo]) continue;
4666    SuccsHandled[SuccMBBNo] = true;
4667
4668    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4669    PHINode *PN;
4670
4671    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4672    // nodes and Machine PHI nodes, but the incoming operands have not been
4673    // emitted yet.
4674    for (BasicBlock::iterator I = SuccBB->begin();
4675         (PN = dyn_cast<PHINode>(I)); ++I) {
4676      // Ignore dead phi's.
4677      if (PN->use_empty()) continue;
4678
4679      unsigned Reg;
4680      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4681
4682      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4683        unsigned &RegOut = ConstantsOut[C];
4684        if (RegOut == 0) {
4685          RegOut = FuncInfo.CreateRegForValue(C);
4686          UnorderedChains.push_back(
4687                           SDL.CopyValueToVirtualRegister(C, RegOut));
4688        }
4689        Reg = RegOut;
4690      } else {
4691        Reg = FuncInfo.ValueMap[PHIOp];
4692        if (Reg == 0) {
4693          assert(isa<AllocaInst>(PHIOp) &&
4694                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4695                 "Didn't codegen value into a register!??");
4696          Reg = FuncInfo.CreateRegForValue(PHIOp);
4697          UnorderedChains.push_back(
4698                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4699        }
4700      }
4701
4702      // Remember that this register needs to added to the machine PHI node as
4703      // the input for this MBB.
4704      MVT::ValueType VT = TLI.getValueType(PN->getType());
4705      unsigned NumRegisters = TLI.getNumRegisters(VT);
4706      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4707        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4708    }
4709  }
4710  ConstantsOut.clear();
4711
4712  // Turn all of the unordered chains into one factored node.
4713  if (!UnorderedChains.empty()) {
4714    SDOperand Root = SDL.getRoot();
4715    if (Root.getOpcode() != ISD::EntryToken) {
4716      unsigned i = 0, e = UnorderedChains.size();
4717      for (; i != e; ++i) {
4718        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4719        if (UnorderedChains[i].Val->getOperand(0) == Root)
4720          break;  // Don't add the root if we already indirectly depend on it.
4721      }
4722
4723      if (i == e)
4724        UnorderedChains.push_back(Root);
4725    }
4726    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4727                            &UnorderedChains[0], UnorderedChains.size()));
4728  }
4729
4730  // Lower the terminator after the copies are emitted.
4731  SDL.visit(*LLVMBB->getTerminator());
4732
4733  // Copy over any CaseBlock records that may now exist due to SwitchInst
4734  // lowering, as well as any jump table information.
4735  SwitchCases.clear();
4736  SwitchCases = SDL.SwitchCases;
4737  JTCases.clear();
4738  JTCases = SDL.JTCases;
4739  BitTestCases.clear();
4740  BitTestCases = SDL.BitTestCases;
4741
4742  // Make sure the root of the DAG is up-to-date.
4743  DAG.setRoot(SDL.getRoot());
4744
4745  // Check whether calls in this block are real tail calls. Fix up CALL nodes
4746  // with correct tailcall attribute so that the target can rely on the tailcall
4747  // attribute indicating whether the call is really eligible for tail call
4748  // optimization.
4749  CheckDAGForTailCallsAndFixThem(DAG, TLI);
4750}
4751
4752void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4753  DOUT << "Lowered selection DAG:\n";
4754  DEBUG(DAG.dump());
4755
4756  // Run the DAG combiner in pre-legalize mode.
4757  DAG.Combine(false, *AA);
4758
4759  DOUT << "Optimized lowered selection DAG:\n";
4760  DEBUG(DAG.dump());
4761
4762  // Second step, hack on the DAG until it only uses operations and types that
4763  // the target supports.
4764#if 0  // Enable this some day.
4765  DAG.LegalizeTypes();
4766  // Someday even later, enable a dag combine pass here.
4767#endif
4768  DAG.Legalize();
4769
4770  DOUT << "Legalized selection DAG:\n";
4771  DEBUG(DAG.dump());
4772
4773  // Run the DAG combiner in post-legalize mode.
4774  DAG.Combine(true, *AA);
4775
4776  DOUT << "Optimized legalized selection DAG:\n";
4777  DEBUG(DAG.dump());
4778
4779  if (ViewISelDAGs) DAG.viewGraph();
4780
4781  // Third, instruction select all of the operations to machine code, adding the
4782  // code to the MachineBasicBlock.
4783  InstructionSelectBasicBlock(DAG);
4784
4785  DOUT << "Selected machine code:\n";
4786  DEBUG(BB->dump());
4787}
4788
4789void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4790                                        FunctionLoweringInfo &FuncInfo) {
4791  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4792  {
4793    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4794    CurDAG = &DAG;
4795
4796    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4797    // types that are not supported by the target.
4798    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4799
4800    // Second step, emit the lowered DAG as machine code.
4801    CodeGenAndEmitDAG(DAG);
4802  }
4803
4804  DOUT << "Total amount of phi nodes to update: "
4805       << PHINodesToUpdate.size() << "\n";
4806  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4807          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4808               << ", " << PHINodesToUpdate[i].second << ")\n";);
4809
4810  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4811  // PHI nodes in successors.
4812  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4813    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4814      MachineInstr *PHI = PHINodesToUpdate[i].first;
4815      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4816             "This is not a machine PHI node that we are updating!");
4817      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4818                                                false));
4819      PHI->addOperand(MachineOperand::CreateMBB(BB));
4820    }
4821    return;
4822  }
4823
4824  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4825    // Lower header first, if it wasn't already lowered
4826    if (!BitTestCases[i].Emitted) {
4827      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4828      CurDAG = &HSDAG;
4829      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
4830      // Set the current basic block to the mbb we wish to insert the code into
4831      BB = BitTestCases[i].Parent;
4832      HSDL.setCurrentBasicBlock(BB);
4833      // Emit the code
4834      HSDL.visitBitTestHeader(BitTestCases[i]);
4835      HSDAG.setRoot(HSDL.getRoot());
4836      CodeGenAndEmitDAG(HSDAG);
4837    }
4838
4839    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4840      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4841      CurDAG = &BSDAG;
4842      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
4843      // Set the current basic block to the mbb we wish to insert the code into
4844      BB = BitTestCases[i].Cases[j].ThisBB;
4845      BSDL.setCurrentBasicBlock(BB);
4846      // Emit the code
4847      if (j+1 != ej)
4848        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4849                              BitTestCases[i].Reg,
4850                              BitTestCases[i].Cases[j]);
4851      else
4852        BSDL.visitBitTestCase(BitTestCases[i].Default,
4853                              BitTestCases[i].Reg,
4854                              BitTestCases[i].Cases[j]);
4855
4856
4857      BSDAG.setRoot(BSDL.getRoot());
4858      CodeGenAndEmitDAG(BSDAG);
4859    }
4860
4861    // Update PHI Nodes
4862    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4863      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4864      MachineBasicBlock *PHIBB = PHI->getParent();
4865      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4866             "This is not a machine PHI node that we are updating!");
4867      // This is "default" BB. We have two jumps to it. From "header" BB and
4868      // from last "case" BB.
4869      if (PHIBB == BitTestCases[i].Default) {
4870        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4871                                                  false));
4872        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
4873        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4874                                                  false));
4875        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
4876                                                  back().ThisBB));
4877      }
4878      // One of "cases" BB.
4879      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4880        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4881        if (cBB->succ_end() !=
4882            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4883          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4884                                                    false));
4885          PHI->addOperand(MachineOperand::CreateMBB(cBB));
4886        }
4887      }
4888    }
4889  }
4890
4891  // If the JumpTable record is filled in, then we need to emit a jump table.
4892  // Updating the PHI nodes is tricky in this case, since we need to determine
4893  // whether the PHI is a successor of the range check MBB or the jump table MBB
4894  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4895    // Lower header first, if it wasn't already lowered
4896    if (!JTCases[i].first.Emitted) {
4897      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4898      CurDAG = &HSDAG;
4899      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
4900      // Set the current basic block to the mbb we wish to insert the code into
4901      BB = JTCases[i].first.HeaderBB;
4902      HSDL.setCurrentBasicBlock(BB);
4903      // Emit the code
4904      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4905      HSDAG.setRoot(HSDL.getRoot());
4906      CodeGenAndEmitDAG(HSDAG);
4907    }
4908
4909    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4910    CurDAG = &JSDAG;
4911    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
4912    // Set the current basic block to the mbb we wish to insert the code into
4913    BB = JTCases[i].second.MBB;
4914    JSDL.setCurrentBasicBlock(BB);
4915    // Emit the code
4916    JSDL.visitJumpTable(JTCases[i].second);
4917    JSDAG.setRoot(JSDL.getRoot());
4918    CodeGenAndEmitDAG(JSDAG);
4919
4920    // Update PHI Nodes
4921    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4922      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4923      MachineBasicBlock *PHIBB = PHI->getParent();
4924      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4925             "This is not a machine PHI node that we are updating!");
4926      // "default" BB. We can go there only from header BB.
4927      if (PHIBB == JTCases[i].second.Default) {
4928        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4929                                                  false));
4930        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
4931      }
4932      // JT BB. Just iterate over successors here
4933      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4934        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4935                                                  false));
4936        PHI->addOperand(MachineOperand::CreateMBB(BB));
4937      }
4938    }
4939  }
4940
4941  // If the switch block involved a branch to one of the actual successors, we
4942  // need to update PHI nodes in that block.
4943  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4944    MachineInstr *PHI = PHINodesToUpdate[i].first;
4945    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4946           "This is not a machine PHI node that we are updating!");
4947    if (BB->isSuccessor(PHI->getParent())) {
4948      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4949                                                false));
4950      PHI->addOperand(MachineOperand::CreateMBB(BB));
4951    }
4952  }
4953
4954  // If we generated any switch lowering information, build and codegen any
4955  // additional DAGs necessary.
4956  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4957    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4958    CurDAG = &SDAG;
4959    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
4960
4961    // Set the current basic block to the mbb we wish to insert the code into
4962    BB = SwitchCases[i].ThisBB;
4963    SDL.setCurrentBasicBlock(BB);
4964
4965    // Emit the code
4966    SDL.visitSwitchCase(SwitchCases[i]);
4967    SDAG.setRoot(SDL.getRoot());
4968    CodeGenAndEmitDAG(SDAG);
4969
4970    // Handle any PHI nodes in successors of this chunk, as if we were coming
4971    // from the original BB before switch expansion.  Note that PHI nodes can
4972    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4973    // handle them the right number of times.
4974    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4975      for (MachineBasicBlock::iterator Phi = BB->begin();
4976           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4977        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4978        for (unsigned pn = 0; ; ++pn) {
4979          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4980          if (PHINodesToUpdate[pn].first == Phi) {
4981            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
4982                                                      second, false));
4983            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
4984            break;
4985          }
4986        }
4987      }
4988
4989      // Don't process RHS if same block as LHS.
4990      if (BB == SwitchCases[i].FalseBB)
4991        SwitchCases[i].FalseBB = 0;
4992
4993      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4994      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4995      SwitchCases[i].FalseBB = 0;
4996    }
4997    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4998  }
4999}
5000
5001
5002//===----------------------------------------------------------------------===//
5003/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
5004/// target node in the graph.
5005void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
5006  if (ViewSchedDAGs) DAG.viewGraph();
5007
5008  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5009
5010  if (!Ctor) {
5011    Ctor = ISHeuristic;
5012    RegisterScheduler::setDefault(Ctor);
5013  }
5014
5015  ScheduleDAG *SL = Ctor(this, &DAG, BB);
5016  BB = SL->Run();
5017
5018  if (ViewSUnitDAGs) SL->viewGraph();
5019
5020  delete SL;
5021}
5022
5023
5024HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5025  return new HazardRecognizer();
5026}
5027
5028//===----------------------------------------------------------------------===//
5029// Helper functions used by the generated instruction selector.
5030//===----------------------------------------------------------------------===//
5031// Calls to these methods are generated by tblgen.
5032
5033/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5034/// the dag combiner simplified the 255, we still want to match.  RHS is the
5035/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5036/// specified in the .td file (e.g. 255).
5037bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
5038                                    int64_t DesiredMaskS) const {
5039  uint64_t ActualMask = RHS->getValue();
5040  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5041
5042  // If the actual mask exactly matches, success!
5043  if (ActualMask == DesiredMask)
5044    return true;
5045
5046  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5047  if (ActualMask & ~DesiredMask)
5048    return false;
5049
5050  // Otherwise, the DAG Combiner may have proven that the value coming in is
5051  // either already zero or is not demanded.  Check for known zero input bits.
5052  uint64_t NeededMask = DesiredMask & ~ActualMask;
5053  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5054    return true;
5055
5056  // TODO: check to see if missing bits are just not demanded.
5057
5058  // Otherwise, this pattern doesn't match.
5059  return false;
5060}
5061
5062/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5063/// the dag combiner simplified the 255, we still want to match.  RHS is the
5064/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5065/// specified in the .td file (e.g. 255).
5066bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5067                                    int64_t DesiredMaskS) const {
5068  uint64_t ActualMask = RHS->getValue();
5069  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5070
5071  // If the actual mask exactly matches, success!
5072  if (ActualMask == DesiredMask)
5073    return true;
5074
5075  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5076  if (ActualMask & ~DesiredMask)
5077    return false;
5078
5079  // Otherwise, the DAG Combiner may have proven that the value coming in is
5080  // either already zero or is not demanded.  Check for known zero input bits.
5081  uint64_t NeededMask = DesiredMask & ~ActualMask;
5082
5083  uint64_t KnownZero, KnownOne;
5084  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5085
5086  // If all the missing bits in the or are already known to be set, match!
5087  if ((NeededMask & KnownOne) == NeededMask)
5088    return true;
5089
5090  // TODO: check to see if missing bits are just not demanded.
5091
5092  // Otherwise, this pattern doesn't match.
5093  return false;
5094}
5095
5096
5097/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5098/// by tblgen.  Others should not call it.
5099void SelectionDAGISel::
5100SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5101  std::vector<SDOperand> InOps;
5102  std::swap(InOps, Ops);
5103
5104  Ops.push_back(InOps[0]);  // input chain.
5105  Ops.push_back(InOps[1]);  // input asm string.
5106
5107  unsigned i = 2, e = InOps.size();
5108  if (InOps[e-1].getValueType() == MVT::Flag)
5109    --e;  // Don't process a flag operand if it is here.
5110
5111  while (i != e) {
5112    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5113    if ((Flags & 7) != 4 /*MEM*/) {
5114      // Just skip over this operand, copying the operands verbatim.
5115      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5116      i += (Flags >> 3) + 1;
5117    } else {
5118      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5119      // Otherwise, this is a memory operand.  Ask the target to select it.
5120      std::vector<SDOperand> SelOps;
5121      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5122        cerr << "Could not match memory address.  Inline asm failure!\n";
5123        exit(1);
5124      }
5125
5126      // Add this to the output node.
5127      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5128      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5129                                          IntPtrTy));
5130      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5131      i += 2;
5132    }
5133  }
5134
5135  // Add the flag input back if present.
5136  if (e != InOps.size())
5137    Ops.push_back(InOps.back());
5138}
5139
5140char SelectionDAGISel::ID = 0;
5141