SelectionDAGISel.cpp revision 2f42901dff5d0b4a9bb571a2f57157c296584557
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57static cl::opt<bool>
58ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
59          cl::desc("Pop up a window to show SUnit dags after they are processed"));
60#else
61static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
62#endif
63
64//===---------------------------------------------------------------------===//
65///
66/// RegisterScheduler class - Track the registration of instruction schedulers.
67///
68//===---------------------------------------------------------------------===//
69MachinePassRegistry RegisterScheduler::Registry;
70
71//===---------------------------------------------------------------------===//
72///
73/// ISHeuristic command line option for instruction schedulers.
74///
75//===---------------------------------------------------------------------===//
76namespace {
77  cl::opt<RegisterScheduler::FunctionPassCtor, false,
78          RegisterPassParser<RegisterScheduler> >
79  ISHeuristic("pre-RA-sched",
80              cl::init(&createDefaultScheduler),
81              cl::desc("Instruction schedulers available (before register allocation):"));
82
83  static RegisterScheduler
84  defaultListDAGScheduler("default", "  Best scheduler for the target",
85                          createDefaultScheduler);
86} // namespace
87
88namespace { struct AsmOperandInfo; }
89
90namespace {
91  /// RegsForValue - This struct represents the physical registers that a
92  /// particular value is assigned and the type information about the value.
93  /// This is needed because values can be promoted into larger registers and
94  /// expanded into multiple smaller registers than the value.
95  struct VISIBILITY_HIDDEN RegsForValue {
96    /// Regs - This list holds the register (for legal and promoted values)
97    /// or register set (for expanded values) that the value should be assigned
98    /// to.
99    std::vector<unsigned> Regs;
100
101    /// RegVT - The value type of each register.
102    ///
103    MVT::ValueType RegVT;
104
105    /// ValueVT - The value type of the LLVM value, which may be promoted from
106    /// RegVT or made from merging the two expanded parts.
107    MVT::ValueType ValueVT;
108
109    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
110
111    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
112      : RegVT(regvt), ValueVT(valuevt) {
113        Regs.push_back(Reg);
114    }
115    RegsForValue(const std::vector<unsigned> &regs,
116                 MVT::ValueType regvt, MVT::ValueType valuevt)
117      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
118    }
119
120    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
121    /// this value and returns the result as a ValueVT value.  This uses
122    /// Chain/Flag as the input and updates them for the output Chain/Flag.
123    /// If the Flag pointer is NULL, no flag is used.
124    SDOperand getCopyFromRegs(SelectionDAG &DAG,
125                              SDOperand &Chain, SDOperand *Flag) const;
126
127    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
128    /// specified value into the registers specified by this object.  This uses
129    /// Chain/Flag as the input and updates them for the output Chain/Flag.
130    /// If the Flag pointer is NULL, no flag is used.
131    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
132                       SDOperand &Chain, SDOperand *Flag) const;
133
134    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
135    /// operand list.  This adds the code marker and includes the number of
136    /// values added into it.
137    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
138                              std::vector<SDOperand> &Ops) const;
139  };
140}
141
142namespace llvm {
143  //===--------------------------------------------------------------------===//
144  /// createDefaultScheduler - This creates an instruction scheduler appropriate
145  /// for the target.
146  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
147                                      SelectionDAG *DAG,
148                                      MachineBasicBlock *BB) {
149    TargetLowering &TLI = IS->getTargetLowering();
150
151    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
152      return createTDListDAGScheduler(IS, DAG, BB);
153    } else {
154      assert(TLI.getSchedulingPreference() ==
155           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
156      return createBURRListDAGScheduler(IS, DAG, BB);
157    }
158  }
159
160
161  //===--------------------------------------------------------------------===//
162  /// FunctionLoweringInfo - This contains information that is global to a
163  /// function that is used when lowering a region of the function.
164  class FunctionLoweringInfo {
165  public:
166    TargetLowering &TLI;
167    Function &Fn;
168    MachineFunction &MF;
169    SSARegMap *RegMap;
170
171    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
172
173    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
174    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
175
176    /// ValueMap - Since we emit code for the function a basic block at a time,
177    /// we must remember which virtual registers hold the values for
178    /// cross-basic-block values.
179    DenseMap<const Value*, unsigned> ValueMap;
180
181    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
182    /// the entry block.  This allows the allocas to be efficiently referenced
183    /// anywhere in the function.
184    std::map<const AllocaInst*, int> StaticAllocaMap;
185
186#ifndef NDEBUG
187    SmallSet<Instruction*, 8> CatchInfoLost;
188    SmallSet<Instruction*, 8> CatchInfoFound;
189#endif
190
191    unsigned MakeReg(MVT::ValueType VT) {
192      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
193    }
194
195    /// isExportedInst - Return true if the specified value is an instruction
196    /// exported from its block.
197    bool isExportedInst(const Value *V) {
198      return ValueMap.count(V);
199    }
200
201    unsigned CreateRegForValue(const Value *V);
202
203    unsigned InitializeRegForValue(const Value *V) {
204      unsigned &R = ValueMap[V];
205      assert(R == 0 && "Already initialized this value register!");
206      return R = CreateRegForValue(V);
207    }
208  };
209}
210
211/// isSelector - Return true if this instruction is a call to the
212/// eh.selector intrinsic.
213static bool isSelector(Instruction *I) {
214  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
215    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
216            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
217  return false;
218}
219
220/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
221/// PHI nodes or outside of the basic block that defines it, or used by a
222/// switch instruction, which may expand to multiple basic blocks.
223static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
224  if (isa<PHINode>(I)) return true;
225  BasicBlock *BB = I->getParent();
226  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
227    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
228        // FIXME: Remove switchinst special case.
229        isa<SwitchInst>(*UI))
230      return true;
231  return false;
232}
233
234/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
235/// entry block, return true.  This includes arguments used by switches, since
236/// the switch may expand into multiple basic blocks.
237static bool isOnlyUsedInEntryBlock(Argument *A) {
238  BasicBlock *Entry = A->getParent()->begin();
239  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
240    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
241      return false;  // Use not in entry block.
242  return true;
243}
244
245FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
246                                           Function &fn, MachineFunction &mf)
247    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
248
249  // Create a vreg for each argument register that is not dead and is used
250  // outside of the entry block for the function.
251  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
252       AI != E; ++AI)
253    if (!isOnlyUsedInEntryBlock(AI))
254      InitializeRegForValue(AI);
255
256  // Initialize the mapping of values to registers.  This is only set up for
257  // instruction values that are used outside of the block that defines
258  // them.
259  Function::iterator BB = Fn.begin(), EB = Fn.end();
260  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
261    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
262      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
263        const Type *Ty = AI->getAllocatedType();
264        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
265        unsigned Align =
266          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
267                   AI->getAlignment());
268
269        TySize *= CUI->getZExtValue();   // Get total allocated size.
270        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
271        StaticAllocaMap[AI] =
272          MF.getFrameInfo()->CreateStackObject(TySize, Align);
273      }
274
275  for (; BB != EB; ++BB)
276    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
277      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
278        if (!isa<AllocaInst>(I) ||
279            !StaticAllocaMap.count(cast<AllocaInst>(I)))
280          InitializeRegForValue(I);
281
282  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
283  // also creates the initial PHI MachineInstrs, though none of the input
284  // operands are populated.
285  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
286    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
287    MBBMap[BB] = MBB;
288    MF.getBasicBlockList().push_back(MBB);
289
290    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
291    // appropriate.
292    PHINode *PN;
293    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
294      if (PN->use_empty()) continue;
295
296      MVT::ValueType VT = TLI.getValueType(PN->getType());
297      unsigned NumRegisters = TLI.getNumRegisters(VT);
298      unsigned PHIReg = ValueMap[PN];
299      assert(PHIReg && "PHI node does not have an assigned virtual register!");
300      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
301      for (unsigned i = 0; i != NumRegisters; ++i)
302        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
303    }
304  }
305}
306
307/// CreateRegForValue - Allocate the appropriate number of virtual registers of
308/// the correctly promoted or expanded types.  Assign these registers
309/// consecutive vreg numbers and return the first assigned number.
310unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
311  MVT::ValueType VT = TLI.getValueType(V->getType());
312
313  unsigned NumRegisters = TLI.getNumRegisters(VT);
314  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
315
316  unsigned R = MakeReg(RegisterVT);
317  for (unsigned i = 1; i != NumRegisters; ++i)
318    MakeReg(RegisterVT);
319
320  return R;
321}
322
323//===----------------------------------------------------------------------===//
324/// SelectionDAGLowering - This is the common target-independent lowering
325/// implementation that is parameterized by a TargetLowering object.
326/// Also, targets can overload any lowering method.
327///
328namespace llvm {
329class SelectionDAGLowering {
330  MachineBasicBlock *CurMBB;
331
332  DenseMap<const Value*, SDOperand> NodeMap;
333
334  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
335  /// them up and then emit token factor nodes when possible.  This allows us to
336  /// get simple disambiguation between loads without worrying about alias
337  /// analysis.
338  std::vector<SDOperand> PendingLoads;
339
340  /// Case - A struct to record the Value for a switch case, and the
341  /// case's target basic block.
342  struct Case {
343    Constant* Low;
344    Constant* High;
345    MachineBasicBlock* BB;
346
347    Case() : Low(0), High(0), BB(0) { }
348    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
349      Low(low), High(high), BB(bb) { }
350    uint64_t size() const {
351      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
352      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
353      return (rHigh - rLow + 1ULL);
354    }
355  };
356
357  struct CaseBits {
358    uint64_t Mask;
359    MachineBasicBlock* BB;
360    unsigned Bits;
361
362    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
363      Mask(mask), BB(bb), Bits(bits) { }
364  };
365
366  typedef std::vector<Case>           CaseVector;
367  typedef std::vector<CaseBits>       CaseBitsVector;
368  typedef CaseVector::iterator        CaseItr;
369  typedef std::pair<CaseItr, CaseItr> CaseRange;
370
371  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
372  /// of conditional branches.
373  struct CaseRec {
374    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
375    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
376
377    /// CaseBB - The MBB in which to emit the compare and branch
378    MachineBasicBlock *CaseBB;
379    /// LT, GE - If nonzero, we know the current case value must be less-than or
380    /// greater-than-or-equal-to these Constants.
381    Constant *LT;
382    Constant *GE;
383    /// Range - A pair of iterators representing the range of case values to be
384    /// processed at this point in the binary search tree.
385    CaseRange Range;
386  };
387
388  typedef std::vector<CaseRec> CaseRecVector;
389
390  /// The comparison function for sorting the switch case values in the vector.
391  /// WARNING: Case ranges should be disjoint!
392  struct CaseCmp {
393    bool operator () (const Case& C1, const Case& C2) {
394      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
395      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
396      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
397      return CI1->getValue().slt(CI2->getValue());
398    }
399  };
400
401  struct CaseBitsCmp {
402    bool operator () (const CaseBits& C1, const CaseBits& C2) {
403      return C1.Bits > C2.Bits;
404    }
405  };
406
407  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
408
409public:
410  // TLI - This is information that describes the available target features we
411  // need for lowering.  This indicates when operations are unavailable,
412  // implemented with a libcall, etc.
413  TargetLowering &TLI;
414  SelectionDAG &DAG;
415  const TargetData *TD;
416  AliasAnalysis &AA;
417
418  /// SwitchCases - Vector of CaseBlock structures used to communicate
419  /// SwitchInst code generation information.
420  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
421  /// JTCases - Vector of JumpTable structures used to communicate
422  /// SwitchInst code generation information.
423  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
424  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
425
426  /// FuncInfo - Information about the function as a whole.
427  ///
428  FunctionLoweringInfo &FuncInfo;
429
430  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
431                       AliasAnalysis &aa,
432                       FunctionLoweringInfo &funcinfo)
433    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
434      FuncInfo(funcinfo) {
435  }
436
437  /// getRoot - Return the current virtual root of the Selection DAG.
438  ///
439  SDOperand getRoot() {
440    if (PendingLoads.empty())
441      return DAG.getRoot();
442
443    if (PendingLoads.size() == 1) {
444      SDOperand Root = PendingLoads[0];
445      DAG.setRoot(Root);
446      PendingLoads.clear();
447      return Root;
448    }
449
450    // Otherwise, we have to make a token factor node.
451    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
452                                 &PendingLoads[0], PendingLoads.size());
453    PendingLoads.clear();
454    DAG.setRoot(Root);
455    return Root;
456  }
457
458  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
459
460  void visit(Instruction &I) { visit(I.getOpcode(), I); }
461
462  void visit(unsigned Opcode, User &I) {
463    // Note: this doesn't use InstVisitor, because it has to work with
464    // ConstantExpr's in addition to instructions.
465    switch (Opcode) {
466    default: assert(0 && "Unknown instruction type encountered!");
467             abort();
468      // Build the switch statement using the Instruction.def file.
469#define HANDLE_INST(NUM, OPCODE, CLASS) \
470    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
471#include "llvm/Instruction.def"
472    }
473  }
474
475  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
476
477  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
478                        const Value *SV, SDOperand Root,
479                        bool isVolatile, unsigned Alignment);
480
481  SDOperand getIntPtrConstant(uint64_t Val) {
482    return DAG.getConstant(Val, TLI.getPointerTy());
483  }
484
485  SDOperand getValue(const Value *V);
486
487  void setValue(const Value *V, SDOperand NewN) {
488    SDOperand &N = NodeMap[V];
489    assert(N.Val == 0 && "Already set a value for this node!");
490    N = NewN;
491  }
492
493  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
494                            std::set<unsigned> &OutputRegs,
495                            std::set<unsigned> &InputRegs);
496
497  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
498                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
499                            unsigned Opc);
500  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
501  void ExportFromCurrentBlock(Value *V);
502  void LowerCallTo(Instruction &I,
503                   const Type *CalledValueTy, unsigned CallingConv,
504                   bool IsTailCall, SDOperand Callee, unsigned OpIdx,
505                   MachineBasicBlock *LandingPad = NULL);
506
507  // Terminator instructions.
508  void visitRet(ReturnInst &I);
509  void visitBr(BranchInst &I);
510  void visitSwitch(SwitchInst &I);
511  void visitUnreachable(UnreachableInst &I) { /* noop */ }
512
513  // Helpers for visitSwitch
514  bool handleSmallSwitchRange(CaseRec& CR,
515                              CaseRecVector& WorkList,
516                              Value* SV,
517                              MachineBasicBlock* Default);
518  bool handleJTSwitchCase(CaseRec& CR,
519                          CaseRecVector& WorkList,
520                          Value* SV,
521                          MachineBasicBlock* Default);
522  bool handleBTSplitSwitchCase(CaseRec& CR,
523                               CaseRecVector& WorkList,
524                               Value* SV,
525                               MachineBasicBlock* Default);
526  bool handleBitTestsSwitchCase(CaseRec& CR,
527                                CaseRecVector& WorkList,
528                                Value* SV,
529                                MachineBasicBlock* Default);
530  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
531  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
532  void visitBitTestCase(MachineBasicBlock* NextMBB,
533                        unsigned Reg,
534                        SelectionDAGISel::BitTestCase &B);
535  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
536  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
537                            SelectionDAGISel::JumpTableHeader &JTH);
538
539  // These all get lowered before this pass.
540  void visitInvoke(InvokeInst &I);
541  void visitUnwind(UnwindInst &I);
542
543  void visitBinary(User &I, unsigned OpCode);
544  void visitShift(User &I, unsigned Opcode);
545  void visitAdd(User &I) {
546    if (I.getType()->isFPOrFPVector())
547      visitBinary(I, ISD::FADD);
548    else
549      visitBinary(I, ISD::ADD);
550  }
551  void visitSub(User &I);
552  void visitMul(User &I) {
553    if (I.getType()->isFPOrFPVector())
554      visitBinary(I, ISD::FMUL);
555    else
556      visitBinary(I, ISD::MUL);
557  }
558  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
559  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
560  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
561  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
562  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
563  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
564  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
565  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
566  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
567  void visitShl (User &I) { visitShift(I, ISD::SHL); }
568  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
569  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
570  void visitICmp(User &I);
571  void visitFCmp(User &I);
572  // Visit the conversion instructions
573  void visitTrunc(User &I);
574  void visitZExt(User &I);
575  void visitSExt(User &I);
576  void visitFPTrunc(User &I);
577  void visitFPExt(User &I);
578  void visitFPToUI(User &I);
579  void visitFPToSI(User &I);
580  void visitUIToFP(User &I);
581  void visitSIToFP(User &I);
582  void visitPtrToInt(User &I);
583  void visitIntToPtr(User &I);
584  void visitBitCast(User &I);
585
586  void visitExtractElement(User &I);
587  void visitInsertElement(User &I);
588  void visitShuffleVector(User &I);
589
590  void visitGetElementPtr(User &I);
591  void visitSelect(User &I);
592
593  void visitMalloc(MallocInst &I);
594  void visitFree(FreeInst &I);
595  void visitAlloca(AllocaInst &I);
596  void visitLoad(LoadInst &I);
597  void visitStore(StoreInst &I);
598  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
599  void visitCall(CallInst &I);
600  void visitInlineAsm(CallInst &I);
601  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
602  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
603
604  void visitVAStart(CallInst &I);
605  void visitVAArg(VAArgInst &I);
606  void visitVAEnd(CallInst &I);
607  void visitVACopy(CallInst &I);
608
609  void visitMemIntrinsic(CallInst &I, unsigned Op);
610
611  void visitUserOp1(Instruction &I) {
612    assert(0 && "UserOp1 should not exist at instruction selection time!");
613    abort();
614  }
615  void visitUserOp2(Instruction &I) {
616    assert(0 && "UserOp2 should not exist at instruction selection time!");
617    abort();
618  }
619};
620} // end namespace llvm
621
622
623/// getCopyFromParts - Create a value that contains the
624/// specified legal parts combined into the value they represent.
625static SDOperand getCopyFromParts(SelectionDAG &DAG,
626                                  const SDOperand *Parts,
627                                  unsigned NumParts,
628                                  MVT::ValueType PartVT,
629                                  MVT::ValueType ValueVT,
630                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
631  if (!MVT::isVector(ValueVT) || NumParts == 1) {
632    SDOperand Val = Parts[0];
633
634    // If the value was expanded, copy from the top part.
635    if (NumParts > 1) {
636      assert(NumParts == 2 &&
637             "Cannot expand to more than 2 elts yet!");
638      SDOperand Hi = Parts[1];
639      if (!DAG.getTargetLoweringInfo().isLittleEndian())
640        std::swap(Val, Hi);
641      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
642    }
643
644    // Otherwise, if the value was promoted or extended, truncate it to the
645    // appropriate type.
646    if (PartVT == ValueVT)
647      return Val;
648
649    if (MVT::isVector(PartVT)) {
650      assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
651      return DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
652    }
653
654    if (MVT::isInteger(PartVT) &&
655        MVT::isInteger(ValueVT)) {
656      if (ValueVT < PartVT) {
657        // For a truncate, see if we have any information to
658        // indicate whether the truncated bits will always be
659        // zero or sign-extension.
660        if (AssertOp != ISD::DELETED_NODE)
661          Val = DAG.getNode(AssertOp, PartVT, Val,
662                            DAG.getValueType(ValueVT));
663        return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
664      } else {
665        return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
666      }
667    }
668
669    if (MVT::isFloatingPoint(PartVT) &&
670        MVT::isFloatingPoint(ValueVT))
671      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
672
673    if (MVT::getSizeInBits(PartVT) ==
674        MVT::getSizeInBits(ValueVT))
675      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
676
677    assert(0 && "Unknown mismatch!");
678  }
679
680  // Handle a multi-element vector.
681  MVT::ValueType IntermediateVT, RegisterVT;
682  unsigned NumIntermediates;
683  unsigned NumRegs =
684    DAG.getTargetLoweringInfo()
685      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
686                              RegisterVT);
687
688  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
689  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
690  assert(RegisterVT == Parts[0].getValueType() &&
691         "Part type doesn't match part!");
692
693  // Assemble the parts into intermediate operands.
694  SmallVector<SDOperand, 8> Ops(NumIntermediates);
695  if (NumIntermediates == NumParts) {
696    // If the register was not expanded, truncate or copy the value,
697    // as appropriate.
698    for (unsigned i = 0; i != NumParts; ++i)
699      Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
700                                PartVT, IntermediateVT);
701  } else if (NumParts > 0) {
702    // If the intermediate type was expanded, build the intermediate operands
703    // from the parts.
704    assert(NumParts % NumIntermediates == 0 &&
705           "Must expand into a divisible number of parts!");
706    unsigned Factor = NumParts / NumIntermediates;
707    for (unsigned i = 0; i != NumIntermediates; ++i)
708      Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
709                                PartVT, IntermediateVT);
710  }
711
712  // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
713  // operands.
714  return DAG.getNode(MVT::isVector(IntermediateVT) ?
715                       ISD::CONCAT_VECTORS :
716                       ISD::BUILD_VECTOR,
717                     ValueVT, &Ops[0], NumIntermediates);
718}
719
720/// getCopyToParts - Create a series of nodes that contain the
721/// specified value split into legal parts.
722static void getCopyToParts(SelectionDAG &DAG,
723                           SDOperand Val,
724                           SDOperand *Parts,
725                           unsigned NumParts,
726                           MVT::ValueType PartVT) {
727  TargetLowering &TLI = DAG.getTargetLoweringInfo();
728  MVT::ValueType PtrVT = TLI.getPointerTy();
729  MVT::ValueType ValueVT = Val.getValueType();
730
731  if (!MVT::isVector(ValueVT) || NumParts == 1) {
732    // If the value was expanded, copy from the parts.
733    if (NumParts > 1) {
734      for (unsigned i = 0; i != NumParts; ++i)
735        Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
736                               DAG.getConstant(i, PtrVT));
737      if (!DAG.getTargetLoweringInfo().isLittleEndian())
738        std::reverse(Parts, Parts + NumParts);
739      return;
740    }
741
742    // If there is a single part and the types differ, this must be
743    // a promotion.
744    if (PartVT != ValueVT) {
745      if (MVT::isVector(PartVT)) {
746        assert(MVT::isVector(ValueVT) &&
747               "Not a vector-vector cast?");
748        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
749      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
750        if (PartVT < ValueVT)
751          Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
752        else
753          Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
754      } else if (MVT::isFloatingPoint(PartVT) &&
755                 MVT::isFloatingPoint(ValueVT)) {
756        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
757      } else if (MVT::getSizeInBits(PartVT) ==
758                 MVT::getSizeInBits(ValueVT)) {
759        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
760      } else {
761        assert(0 && "Unknown mismatch!");
762      }
763    }
764    Parts[0] = Val;
765    return;
766  }
767
768  // Handle a multi-element vector.
769  MVT::ValueType IntermediateVT, RegisterVT;
770  unsigned NumIntermediates;
771  unsigned NumRegs =
772    DAG.getTargetLoweringInfo()
773      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
774                              RegisterVT);
775  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
776
777  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
778  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
779
780  // Split the vector into intermediate operands.
781  SmallVector<SDOperand, 8> Ops(NumIntermediates);
782  for (unsigned i = 0; i != NumIntermediates; ++i)
783    if (MVT::isVector(IntermediateVT))
784      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
785                           IntermediateVT, Val,
786                           DAG.getConstant(i * (NumElements / NumIntermediates),
787                                           PtrVT));
788    else
789      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
790                           IntermediateVT, Val,
791                           DAG.getConstant(i, PtrVT));
792
793  // Split the intermediate operands into legal parts.
794  if (NumParts == NumIntermediates) {
795    // If the register was not expanded, promote or copy the value,
796    // as appropriate.
797    for (unsigned i = 0; i != NumParts; ++i)
798      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
799  } else if (NumParts > 0) {
800    // If the intermediate type was expanded, split each the value into
801    // legal parts.
802    assert(NumParts % NumIntermediates == 0 &&
803           "Must expand into a divisible number of parts!");
804    unsigned Factor = NumParts / NumIntermediates;
805    for (unsigned i = 0; i != NumIntermediates; ++i)
806      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
807  }
808}
809
810
811SDOperand SelectionDAGLowering::getValue(const Value *V) {
812  SDOperand &N = NodeMap[V];
813  if (N.Val) return N;
814
815  const Type *VTy = V->getType();
816  MVT::ValueType VT = TLI.getValueType(VTy);
817  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
818    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
819      visit(CE->getOpcode(), *CE);
820      SDOperand N1 = NodeMap[V];
821      assert(N1.Val && "visit didn't populate the ValueMap!");
822      return N1;
823    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
824      return N = DAG.getGlobalAddress(GV, VT);
825    } else if (isa<ConstantPointerNull>(C)) {
826      return N = DAG.getConstant(0, TLI.getPointerTy());
827    } else if (isa<UndefValue>(C)) {
828      if (!isa<VectorType>(VTy))
829        return N = DAG.getNode(ISD::UNDEF, VT);
830
831      // Create a BUILD_VECTOR of undef nodes.
832      const VectorType *PTy = cast<VectorType>(VTy);
833      unsigned NumElements = PTy->getNumElements();
834      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
835
836      SmallVector<SDOperand, 8> Ops;
837      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
838
839      // Create a VConstant node with generic Vector type.
840      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
841      return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
842                             &Ops[0], Ops.size());
843    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
844      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
845    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
846      unsigned NumElements = PTy->getNumElements();
847      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
848
849      // Now that we know the number and type of the elements, push a
850      // Constant or ConstantFP node onto the ops list for each element of
851      // the vector constant.
852      SmallVector<SDOperand, 8> Ops;
853      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
854        for (unsigned i = 0; i != NumElements; ++i)
855          Ops.push_back(getValue(CP->getOperand(i)));
856      } else {
857        assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
858        SDOperand Op;
859        if (MVT::isFloatingPoint(PVT))
860          Op = DAG.getConstantFP(0, PVT);
861        else
862          Op = DAG.getConstant(0, PVT);
863        Ops.assign(NumElements, Op);
864      }
865
866      // Create a BUILD_VECTOR node.
867      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
868      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
869                                      Ops.size());
870    } else {
871      // Canonicalize all constant ints to be unsigned.
872      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
873    }
874  }
875
876  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
877    std::map<const AllocaInst*, int>::iterator SI =
878    FuncInfo.StaticAllocaMap.find(AI);
879    if (SI != FuncInfo.StaticAllocaMap.end())
880      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
881  }
882
883  unsigned InReg = FuncInfo.ValueMap[V];
884  assert(InReg && "Value not in map!");
885
886  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
887  unsigned NumRegs = TLI.getNumRegisters(VT);
888
889  std::vector<unsigned> Regs(NumRegs);
890  for (unsigned i = 0; i != NumRegs; ++i)
891    Regs[i] = InReg + i;
892
893  RegsForValue RFV(Regs, RegisterVT, VT);
894  SDOperand Chain = DAG.getEntryNode();
895
896  return RFV.getCopyFromRegs(DAG, Chain, NULL);
897}
898
899
900void SelectionDAGLowering::visitRet(ReturnInst &I) {
901  if (I.getNumOperands() == 0) {
902    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
903    return;
904  }
905  SmallVector<SDOperand, 8> NewValues;
906  NewValues.push_back(getRoot());
907  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
908    SDOperand RetOp = getValue(I.getOperand(i));
909
910    // If this is an integer return value, we need to promote it ourselves to
911    // the full width of a register, since getCopyToParts and Legalize will use
912    // ANY_EXTEND rather than sign/zero.
913    // FIXME: C calling convention requires the return type to be promoted to
914    // at least 32-bit. But this is not necessary for non-C calling conventions.
915    if (MVT::isInteger(RetOp.getValueType()) &&
916        RetOp.getValueType() < MVT::i64) {
917      MVT::ValueType TmpVT;
918      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
919        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
920      else
921        TmpVT = MVT::i32;
922      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
923      const ParamAttrsList *Attrs = FTy->getParamAttrs();
924      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
925      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt))
926        ExtendKind = ISD::SIGN_EXTEND;
927      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt))
928        ExtendKind = ISD::ZERO_EXTEND;
929      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
930      NewValues.push_back(RetOp);
931      NewValues.push_back(DAG.getConstant(false, MVT::i32));
932    } else {
933      MVT::ValueType VT = RetOp.getValueType();
934      unsigned NumParts = TLI.getNumRegisters(VT);
935      MVT::ValueType PartVT = TLI.getRegisterType(VT);
936      SmallVector<SDOperand, 4> Parts(NumParts);
937      getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT);
938      for (unsigned i = 0; i < NumParts; ++i) {
939        NewValues.push_back(Parts[i]);
940        NewValues.push_back(DAG.getConstant(false, MVT::i32));
941      }
942    }
943  }
944  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
945                          &NewValues[0], NewValues.size()));
946}
947
948/// ExportFromCurrentBlock - If this condition isn't known to be exported from
949/// the current basic block, add it to ValueMap now so that we'll get a
950/// CopyTo/FromReg.
951void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
952  // No need to export constants.
953  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
954
955  // Already exported?
956  if (FuncInfo.isExportedInst(V)) return;
957
958  unsigned Reg = FuncInfo.InitializeRegForValue(V);
959  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
960}
961
962bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
963                                                    const BasicBlock *FromBB) {
964  // The operands of the setcc have to be in this block.  We don't know
965  // how to export them from some other block.
966  if (Instruction *VI = dyn_cast<Instruction>(V)) {
967    // Can export from current BB.
968    if (VI->getParent() == FromBB)
969      return true;
970
971    // Is already exported, noop.
972    return FuncInfo.isExportedInst(V);
973  }
974
975  // If this is an argument, we can export it if the BB is the entry block or
976  // if it is already exported.
977  if (isa<Argument>(V)) {
978    if (FromBB == &FromBB->getParent()->getEntryBlock())
979      return true;
980
981    // Otherwise, can only export this if it is already exported.
982    return FuncInfo.isExportedInst(V);
983  }
984
985  // Otherwise, constants can always be exported.
986  return true;
987}
988
989static bool InBlock(const Value *V, const BasicBlock *BB) {
990  if (const Instruction *I = dyn_cast<Instruction>(V))
991    return I->getParent() == BB;
992  return true;
993}
994
995/// FindMergedConditions - If Cond is an expression like
996void SelectionDAGLowering::FindMergedConditions(Value *Cond,
997                                                MachineBasicBlock *TBB,
998                                                MachineBasicBlock *FBB,
999                                                MachineBasicBlock *CurBB,
1000                                                unsigned Opc) {
1001  // If this node is not part of the or/and tree, emit it as a branch.
1002  Instruction *BOp = dyn_cast<Instruction>(Cond);
1003
1004  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1005      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1006      BOp->getParent() != CurBB->getBasicBlock() ||
1007      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1008      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1009    const BasicBlock *BB = CurBB->getBasicBlock();
1010
1011    // If the leaf of the tree is a comparison, merge the condition into
1012    // the caseblock.
1013    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1014        // The operands of the cmp have to be in this block.  We don't know
1015        // how to export them from some other block.  If this is the first block
1016        // of the sequence, no exporting is needed.
1017        (CurBB == CurMBB ||
1018         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1019          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1020      BOp = cast<Instruction>(Cond);
1021      ISD::CondCode Condition;
1022      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1023        switch (IC->getPredicate()) {
1024        default: assert(0 && "Unknown icmp predicate opcode!");
1025        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1026        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1027        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1028        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1029        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1030        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1031        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1032        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1033        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1034        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1035        }
1036      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1037        ISD::CondCode FPC, FOC;
1038        switch (FC->getPredicate()) {
1039        default: assert(0 && "Unknown fcmp predicate opcode!");
1040        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1041        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1042        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1043        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1044        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1045        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1046        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1047        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1048        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1049        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1050        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1051        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1052        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1053        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1054        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1055        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1056        }
1057        if (FiniteOnlyFPMath())
1058          Condition = FOC;
1059        else
1060          Condition = FPC;
1061      } else {
1062        Condition = ISD::SETEQ; // silence warning.
1063        assert(0 && "Unknown compare instruction");
1064      }
1065
1066      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1067                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1068      SwitchCases.push_back(CB);
1069      return;
1070    }
1071
1072    // Create a CaseBlock record representing this branch.
1073    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1074                                   NULL, TBB, FBB, CurBB);
1075    SwitchCases.push_back(CB);
1076    return;
1077  }
1078
1079
1080  //  Create TmpBB after CurBB.
1081  MachineFunction::iterator BBI = CurBB;
1082  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1083  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1084
1085  if (Opc == Instruction::Or) {
1086    // Codegen X | Y as:
1087    //   jmp_if_X TBB
1088    //   jmp TmpBB
1089    // TmpBB:
1090    //   jmp_if_Y TBB
1091    //   jmp FBB
1092    //
1093
1094    // Emit the LHS condition.
1095    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1096
1097    // Emit the RHS condition into TmpBB.
1098    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1099  } else {
1100    assert(Opc == Instruction::And && "Unknown merge op!");
1101    // Codegen X & Y as:
1102    //   jmp_if_X TmpBB
1103    //   jmp FBB
1104    // TmpBB:
1105    //   jmp_if_Y TBB
1106    //   jmp FBB
1107    //
1108    //  This requires creation of TmpBB after CurBB.
1109
1110    // Emit the LHS condition.
1111    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1112
1113    // Emit the RHS condition into TmpBB.
1114    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1115  }
1116}
1117
1118/// If the set of cases should be emitted as a series of branches, return true.
1119/// If we should emit this as a bunch of and/or'd together conditions, return
1120/// false.
1121static bool
1122ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1123  if (Cases.size() != 2) return true;
1124
1125  // If this is two comparisons of the same values or'd or and'd together, they
1126  // will get folded into a single comparison, so don't emit two blocks.
1127  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1128       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1129      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1130       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1131    return false;
1132  }
1133
1134  return true;
1135}
1136
1137void SelectionDAGLowering::visitBr(BranchInst &I) {
1138  // Update machine-CFG edges.
1139  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1140
1141  // Figure out which block is immediately after the current one.
1142  MachineBasicBlock *NextBlock = 0;
1143  MachineFunction::iterator BBI = CurMBB;
1144  if (++BBI != CurMBB->getParent()->end())
1145    NextBlock = BBI;
1146
1147  if (I.isUnconditional()) {
1148    // If this is not a fall-through branch, emit the branch.
1149    if (Succ0MBB != NextBlock)
1150      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1151                              DAG.getBasicBlock(Succ0MBB)));
1152
1153    // Update machine-CFG edges.
1154    CurMBB->addSuccessor(Succ0MBB);
1155
1156    return;
1157  }
1158
1159  // If this condition is one of the special cases we handle, do special stuff
1160  // now.
1161  Value *CondVal = I.getCondition();
1162  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1163
1164  // If this is a series of conditions that are or'd or and'd together, emit
1165  // this as a sequence of branches instead of setcc's with and/or operations.
1166  // For example, instead of something like:
1167  //     cmp A, B
1168  //     C = seteq
1169  //     cmp D, E
1170  //     F = setle
1171  //     or C, F
1172  //     jnz foo
1173  // Emit:
1174  //     cmp A, B
1175  //     je foo
1176  //     cmp D, E
1177  //     jle foo
1178  //
1179  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1180    if (BOp->hasOneUse() &&
1181        (BOp->getOpcode() == Instruction::And ||
1182         BOp->getOpcode() == Instruction::Or)) {
1183      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1184      // If the compares in later blocks need to use values not currently
1185      // exported from this block, export them now.  This block should always
1186      // be the first entry.
1187      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1188
1189      // Allow some cases to be rejected.
1190      if (ShouldEmitAsBranches(SwitchCases)) {
1191        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1192          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1193          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1194        }
1195
1196        // Emit the branch for this block.
1197        visitSwitchCase(SwitchCases[0]);
1198        SwitchCases.erase(SwitchCases.begin());
1199        return;
1200      }
1201
1202      // Okay, we decided not to do this, remove any inserted MBB's and clear
1203      // SwitchCases.
1204      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1205        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1206
1207      SwitchCases.clear();
1208    }
1209  }
1210
1211  // Create a CaseBlock record representing this branch.
1212  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1213                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1214  // Use visitSwitchCase to actually insert the fast branch sequence for this
1215  // cond branch.
1216  visitSwitchCase(CB);
1217}
1218
1219/// visitSwitchCase - Emits the necessary code to represent a single node in
1220/// the binary search tree resulting from lowering a switch instruction.
1221void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1222  SDOperand Cond;
1223  SDOperand CondLHS = getValue(CB.CmpLHS);
1224
1225  // Build the setcc now.
1226  if (CB.CmpMHS == NULL) {
1227    // Fold "(X == true)" to X and "(X == false)" to !X to
1228    // handle common cases produced by branch lowering.
1229    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1230      Cond = CondLHS;
1231    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1232      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1233      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1234    } else
1235      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1236  } else {
1237    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1238
1239    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1240    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1241
1242    SDOperand CmpOp = getValue(CB.CmpMHS);
1243    MVT::ValueType VT = CmpOp.getValueType();
1244
1245    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1246      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1247    } else {
1248      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1249      Cond = DAG.getSetCC(MVT::i1, SUB,
1250                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1251    }
1252
1253  }
1254
1255  // Set NextBlock to be the MBB immediately after the current one, if any.
1256  // This is used to avoid emitting unnecessary branches to the next block.
1257  MachineBasicBlock *NextBlock = 0;
1258  MachineFunction::iterator BBI = CurMBB;
1259  if (++BBI != CurMBB->getParent()->end())
1260    NextBlock = BBI;
1261
1262  // If the lhs block is the next block, invert the condition so that we can
1263  // fall through to the lhs instead of the rhs block.
1264  if (CB.TrueBB == NextBlock) {
1265    std::swap(CB.TrueBB, CB.FalseBB);
1266    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1267    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1268  }
1269  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1270                                 DAG.getBasicBlock(CB.TrueBB));
1271  if (CB.FalseBB == NextBlock)
1272    DAG.setRoot(BrCond);
1273  else
1274    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1275                            DAG.getBasicBlock(CB.FalseBB)));
1276  // Update successor info
1277  CurMBB->addSuccessor(CB.TrueBB);
1278  CurMBB->addSuccessor(CB.FalseBB);
1279}
1280
1281/// visitJumpTable - Emit JumpTable node in the current MBB
1282void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1283  // Emit the code for the jump table
1284  assert(JT.Reg != -1U && "Should lower JT Header first!");
1285  MVT::ValueType PTy = TLI.getPointerTy();
1286  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1287  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1288  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1289                          Table, Index));
1290  return;
1291}
1292
1293/// visitJumpTableHeader - This function emits necessary code to produce index
1294/// in the JumpTable from switch case.
1295void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1296                                         SelectionDAGISel::JumpTableHeader &JTH) {
1297  // Subtract the lowest switch case value from the value being switched on
1298  // and conditional branch to default mbb if the result is greater than the
1299  // difference between smallest and largest cases.
1300  SDOperand SwitchOp = getValue(JTH.SValue);
1301  MVT::ValueType VT = SwitchOp.getValueType();
1302  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1303                              DAG.getConstant(JTH.First, VT));
1304
1305  // The SDNode we just created, which holds the value being switched on
1306  // minus the the smallest case value, needs to be copied to a virtual
1307  // register so it can be used as an index into the jump table in a
1308  // subsequent basic block.  This value may be smaller or larger than the
1309  // target's pointer type, and therefore require extension or truncating.
1310  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1311    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1312  else
1313    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1314
1315  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1316  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1317  JT.Reg = JumpTableReg;
1318
1319  // Emit the range check for the jump table, and branch to the default
1320  // block for the switch statement if the value being switched on exceeds
1321  // the largest case in the switch.
1322  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1323                               DAG.getConstant(JTH.Last-JTH.First,VT),
1324                               ISD::SETUGT);
1325
1326  // Set NextBlock to be the MBB immediately after the current one, if any.
1327  // This is used to avoid emitting unnecessary branches to the next block.
1328  MachineBasicBlock *NextBlock = 0;
1329  MachineFunction::iterator BBI = CurMBB;
1330  if (++BBI != CurMBB->getParent()->end())
1331    NextBlock = BBI;
1332
1333  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1334                                 DAG.getBasicBlock(JT.Default));
1335
1336  if (JT.MBB == NextBlock)
1337    DAG.setRoot(BrCond);
1338  else
1339    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1340                            DAG.getBasicBlock(JT.MBB)));
1341
1342  return;
1343}
1344
1345/// visitBitTestHeader - This function emits necessary code to produce value
1346/// suitable for "bit tests"
1347void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1348  // Subtract the minimum value
1349  SDOperand SwitchOp = getValue(B.SValue);
1350  MVT::ValueType VT = SwitchOp.getValueType();
1351  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1352                              DAG.getConstant(B.First, VT));
1353
1354  // Check range
1355  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1356                                    DAG.getConstant(B.Range, VT),
1357                                    ISD::SETUGT);
1358
1359  SDOperand ShiftOp;
1360  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1361    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1362  else
1363    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1364
1365  // Make desired shift
1366  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1367                                    DAG.getConstant(1, TLI.getPointerTy()),
1368                                    ShiftOp);
1369
1370  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1371  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1372  B.Reg = SwitchReg;
1373
1374  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1375                                  DAG.getBasicBlock(B.Default));
1376
1377  // Set NextBlock to be the MBB immediately after the current one, if any.
1378  // This is used to avoid emitting unnecessary branches to the next block.
1379  MachineBasicBlock *NextBlock = 0;
1380  MachineFunction::iterator BBI = CurMBB;
1381  if (++BBI != CurMBB->getParent()->end())
1382    NextBlock = BBI;
1383
1384  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1385  if (MBB == NextBlock)
1386    DAG.setRoot(BrRange);
1387  else
1388    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1389                            DAG.getBasicBlock(MBB)));
1390
1391  CurMBB->addSuccessor(B.Default);
1392  CurMBB->addSuccessor(MBB);
1393
1394  return;
1395}
1396
1397/// visitBitTestCase - this function produces one "bit test"
1398void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1399                                            unsigned Reg,
1400                                            SelectionDAGISel::BitTestCase &B) {
1401  // Emit bit tests and jumps
1402  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1403
1404  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1405                                SwitchVal,
1406                                DAG.getConstant(B.Mask,
1407                                                TLI.getPointerTy()));
1408  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1409                                  DAG.getConstant(0, TLI.getPointerTy()),
1410                                  ISD::SETNE);
1411  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1412                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1413
1414  // Set NextBlock to be the MBB immediately after the current one, if any.
1415  // This is used to avoid emitting unnecessary branches to the next block.
1416  MachineBasicBlock *NextBlock = 0;
1417  MachineFunction::iterator BBI = CurMBB;
1418  if (++BBI != CurMBB->getParent()->end())
1419    NextBlock = BBI;
1420
1421  if (NextMBB == NextBlock)
1422    DAG.setRoot(BrAnd);
1423  else
1424    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1425                            DAG.getBasicBlock(NextMBB)));
1426
1427  CurMBB->addSuccessor(B.TargetBB);
1428  CurMBB->addSuccessor(NextMBB);
1429
1430  return;
1431}
1432
1433void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1434  // Retrieve successors.
1435  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1436  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1437
1438  LowerCallTo(I, I.getCalledValue()->getType(),
1439              I.getCallingConv(),
1440              false,
1441              getValue(I.getOperand(0)),
1442              3, LandingPad);
1443
1444  // If the value of the invoke is used outside of its defining block, make it
1445  // available as a virtual register.
1446  if (!I.use_empty()) {
1447    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1448    if (VMI != FuncInfo.ValueMap.end())
1449      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1450  }
1451
1452  // Drop into normal successor.
1453  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1454                          DAG.getBasicBlock(Return)));
1455
1456  // Update successor info
1457  CurMBB->addSuccessor(Return);
1458  CurMBB->addSuccessor(LandingPad);
1459}
1460
1461void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1462}
1463
1464/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1465/// small case ranges).
1466bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1467                                                  CaseRecVector& WorkList,
1468                                                  Value* SV,
1469                                                  MachineBasicBlock* Default) {
1470  Case& BackCase  = *(CR.Range.second-1);
1471
1472  // Size is the number of Cases represented by this range.
1473  unsigned Size = CR.Range.second - CR.Range.first;
1474  if (Size > 3)
1475    return false;
1476
1477  // Get the MachineFunction which holds the current MBB.  This is used when
1478  // inserting any additional MBBs necessary to represent the switch.
1479  MachineFunction *CurMF = CurMBB->getParent();
1480
1481  // Figure out which block is immediately after the current one.
1482  MachineBasicBlock *NextBlock = 0;
1483  MachineFunction::iterator BBI = CR.CaseBB;
1484
1485  if (++BBI != CurMBB->getParent()->end())
1486    NextBlock = BBI;
1487
1488  // TODO: If any two of the cases has the same destination, and if one value
1489  // is the same as the other, but has one bit unset that the other has set,
1490  // use bit manipulation to do two compares at once.  For example:
1491  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1492
1493  // Rearrange the case blocks so that the last one falls through if possible.
1494  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1495    // The last case block won't fall through into 'NextBlock' if we emit the
1496    // branches in this order.  See if rearranging a case value would help.
1497    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1498      if (I->BB == NextBlock) {
1499        std::swap(*I, BackCase);
1500        break;
1501      }
1502    }
1503  }
1504
1505  // Create a CaseBlock record representing a conditional branch to
1506  // the Case's target mbb if the value being switched on SV is equal
1507  // to C.
1508  MachineBasicBlock *CurBlock = CR.CaseBB;
1509  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1510    MachineBasicBlock *FallThrough;
1511    if (I != E-1) {
1512      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1513      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1514    } else {
1515      // If the last case doesn't match, go to the default block.
1516      FallThrough = Default;
1517    }
1518
1519    Value *RHS, *LHS, *MHS;
1520    ISD::CondCode CC;
1521    if (I->High == I->Low) {
1522      // This is just small small case range :) containing exactly 1 case
1523      CC = ISD::SETEQ;
1524      LHS = SV; RHS = I->High; MHS = NULL;
1525    } else {
1526      CC = ISD::SETLE;
1527      LHS = I->Low; MHS = SV; RHS = I->High;
1528    }
1529    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1530                                   I->BB, FallThrough, CurBlock);
1531
1532    // If emitting the first comparison, just call visitSwitchCase to emit the
1533    // code into the current block.  Otherwise, push the CaseBlock onto the
1534    // vector to be later processed by SDISel, and insert the node's MBB
1535    // before the next MBB.
1536    if (CurBlock == CurMBB)
1537      visitSwitchCase(CB);
1538    else
1539      SwitchCases.push_back(CB);
1540
1541    CurBlock = FallThrough;
1542  }
1543
1544  return true;
1545}
1546
1547static inline bool areJTsAllowed(const TargetLowering &TLI) {
1548  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1549          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1550}
1551
1552/// handleJTSwitchCase - Emit jumptable for current switch case range
1553bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1554                                              CaseRecVector& WorkList,
1555                                              Value* SV,
1556                                              MachineBasicBlock* Default) {
1557  Case& FrontCase = *CR.Range.first;
1558  Case& BackCase  = *(CR.Range.second-1);
1559
1560  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1561  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1562
1563  uint64_t TSize = 0;
1564  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1565       I!=E; ++I)
1566    TSize += I->size();
1567
1568  if (!areJTsAllowed(TLI) || TSize <= 3)
1569    return false;
1570
1571  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1572  if (Density < 0.4)
1573    return false;
1574
1575  DOUT << "Lowering jump table\n"
1576       << "First entry: " << First << ". Last entry: " << Last << "\n"
1577       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1578
1579  // Get the MachineFunction which holds the current MBB.  This is used when
1580  // inserting any additional MBBs necessary to represent the switch.
1581  MachineFunction *CurMF = CurMBB->getParent();
1582
1583  // Figure out which block is immediately after the current one.
1584  MachineBasicBlock *NextBlock = 0;
1585  MachineFunction::iterator BBI = CR.CaseBB;
1586
1587  if (++BBI != CurMBB->getParent()->end())
1588    NextBlock = BBI;
1589
1590  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1591
1592  // Create a new basic block to hold the code for loading the address
1593  // of the jump table, and jumping to it.  Update successor information;
1594  // we will either branch to the default case for the switch, or the jump
1595  // table.
1596  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1597  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1598  CR.CaseBB->addSuccessor(Default);
1599  CR.CaseBB->addSuccessor(JumpTableBB);
1600
1601  // Build a vector of destination BBs, corresponding to each target
1602  // of the jump table. If the value of the jump table slot corresponds to
1603  // a case statement, push the case's BB onto the vector, otherwise, push
1604  // the default BB.
1605  std::vector<MachineBasicBlock*> DestBBs;
1606  int64_t TEI = First;
1607  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1608    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1609    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1610
1611    if ((Low <= TEI) && (TEI <= High)) {
1612      DestBBs.push_back(I->BB);
1613      if (TEI==High)
1614        ++I;
1615    } else {
1616      DestBBs.push_back(Default);
1617    }
1618  }
1619
1620  // Update successor info. Add one edge to each unique successor.
1621  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1622  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1623         E = DestBBs.end(); I != E; ++I) {
1624    if (!SuccsHandled[(*I)->getNumber()]) {
1625      SuccsHandled[(*I)->getNumber()] = true;
1626      JumpTableBB->addSuccessor(*I);
1627    }
1628  }
1629
1630  // Create a jump table index for this jump table, or return an existing
1631  // one.
1632  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1633
1634  // Set the jump table information so that we can codegen it as a second
1635  // MachineBasicBlock
1636  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1637  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1638                                        (CR.CaseBB == CurMBB));
1639  if (CR.CaseBB == CurMBB)
1640    visitJumpTableHeader(JT, JTH);
1641
1642  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1643
1644  return true;
1645}
1646
1647/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1648/// 2 subtrees.
1649bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1650                                                   CaseRecVector& WorkList,
1651                                                   Value* SV,
1652                                                   MachineBasicBlock* Default) {
1653  // Get the MachineFunction which holds the current MBB.  This is used when
1654  // inserting any additional MBBs necessary to represent the switch.
1655  MachineFunction *CurMF = CurMBB->getParent();
1656
1657  // Figure out which block is immediately after the current one.
1658  MachineBasicBlock *NextBlock = 0;
1659  MachineFunction::iterator BBI = CR.CaseBB;
1660
1661  if (++BBI != CurMBB->getParent()->end())
1662    NextBlock = BBI;
1663
1664  Case& FrontCase = *CR.Range.first;
1665  Case& BackCase  = *(CR.Range.second-1);
1666  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1667
1668  // Size is the number of Cases represented by this range.
1669  unsigned Size = CR.Range.second - CR.Range.first;
1670
1671  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1672  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1673  double FMetric = 0;
1674  CaseItr Pivot = CR.Range.first + Size/2;
1675
1676  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1677  // (heuristically) allow us to emit JumpTable's later.
1678  uint64_t TSize = 0;
1679  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1680       I!=E; ++I)
1681    TSize += I->size();
1682
1683  uint64_t LSize = FrontCase.size();
1684  uint64_t RSize = TSize-LSize;
1685  DOUT << "Selecting best pivot: \n"
1686       << "First: " << First << ", Last: " << Last <<"\n"
1687       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1688  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1689       J!=E; ++I, ++J) {
1690    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1691    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1692    assert((RBegin-LEnd>=1) && "Invalid case distance");
1693    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1694    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1695    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1696    // Should always split in some non-trivial place
1697    DOUT <<"=>Step\n"
1698         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1699         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1700         << "Metric: " << Metric << "\n";
1701    if (FMetric < Metric) {
1702      Pivot = J;
1703      FMetric = Metric;
1704      DOUT << "Current metric set to: " << FMetric << "\n";
1705    }
1706
1707    LSize += J->size();
1708    RSize -= J->size();
1709  }
1710  if (areJTsAllowed(TLI)) {
1711    // If our case is dense we *really* should handle it earlier!
1712    assert((FMetric > 0) && "Should handle dense range earlier!");
1713  } else {
1714    Pivot = CR.Range.first + Size/2;
1715  }
1716
1717  CaseRange LHSR(CR.Range.first, Pivot);
1718  CaseRange RHSR(Pivot, CR.Range.second);
1719  Constant *C = Pivot->Low;
1720  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1721
1722  // We know that we branch to the LHS if the Value being switched on is
1723  // less than the Pivot value, C.  We use this to optimize our binary
1724  // tree a bit, by recognizing that if SV is greater than or equal to the
1725  // LHS's Case Value, and that Case Value is exactly one less than the
1726  // Pivot's Value, then we can branch directly to the LHS's Target,
1727  // rather than creating a leaf node for it.
1728  if ((LHSR.second - LHSR.first) == 1 &&
1729      LHSR.first->High == CR.GE &&
1730      cast<ConstantInt>(C)->getSExtValue() ==
1731      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1732    TrueBB = LHSR.first->BB;
1733  } else {
1734    TrueBB = new MachineBasicBlock(LLVMBB);
1735    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1736    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1737  }
1738
1739  // Similar to the optimization above, if the Value being switched on is
1740  // known to be less than the Constant CR.LT, and the current Case Value
1741  // is CR.LT - 1, then we can branch directly to the target block for
1742  // the current Case Value, rather than emitting a RHS leaf node for it.
1743  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1744      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1745      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1746    FalseBB = RHSR.first->BB;
1747  } else {
1748    FalseBB = new MachineBasicBlock(LLVMBB);
1749    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1750    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1751  }
1752
1753  // Create a CaseBlock record representing a conditional branch to
1754  // the LHS node if the value being switched on SV is less than C.
1755  // Otherwise, branch to LHS.
1756  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1757                                 TrueBB, FalseBB, CR.CaseBB);
1758
1759  if (CR.CaseBB == CurMBB)
1760    visitSwitchCase(CB);
1761  else
1762    SwitchCases.push_back(CB);
1763
1764  return true;
1765}
1766
1767/// handleBitTestsSwitchCase - if current case range has few destination and
1768/// range span less, than machine word bitwidth, encode case range into series
1769/// of masks and emit bit tests with these masks.
1770bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1771                                                    CaseRecVector& WorkList,
1772                                                    Value* SV,
1773                                                    MachineBasicBlock* Default){
1774  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1775
1776  Case& FrontCase = *CR.Range.first;
1777  Case& BackCase  = *(CR.Range.second-1);
1778
1779  // Get the MachineFunction which holds the current MBB.  This is used when
1780  // inserting any additional MBBs necessary to represent the switch.
1781  MachineFunction *CurMF = CurMBB->getParent();
1782
1783  unsigned numCmps = 0;
1784  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1785       I!=E; ++I) {
1786    // Single case counts one, case range - two.
1787    if (I->Low == I->High)
1788      numCmps +=1;
1789    else
1790      numCmps +=2;
1791  }
1792
1793  // Count unique destinations
1794  SmallSet<MachineBasicBlock*, 4> Dests;
1795  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1796    Dests.insert(I->BB);
1797    if (Dests.size() > 3)
1798      // Don't bother the code below, if there are too much unique destinations
1799      return false;
1800  }
1801  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1802       << "Total number of comparisons: " << numCmps << "\n";
1803
1804  // Compute span of values.
1805  Constant* minValue = FrontCase.Low;
1806  Constant* maxValue = BackCase.High;
1807  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1808                   cast<ConstantInt>(minValue)->getSExtValue();
1809  DOUT << "Compare range: " << range << "\n"
1810       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1811       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1812
1813  if (range>=IntPtrBits ||
1814      (!(Dests.size() == 1 && numCmps >= 3) &&
1815       !(Dests.size() == 2 && numCmps >= 5) &&
1816       !(Dests.size() >= 3 && numCmps >= 6)))
1817    return false;
1818
1819  DOUT << "Emitting bit tests\n";
1820  int64_t lowBound = 0;
1821
1822  // Optimize the case where all the case values fit in a
1823  // word without having to subtract minValue. In this case,
1824  // we can optimize away the subtraction.
1825  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1826      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1827    range = cast<ConstantInt>(maxValue)->getSExtValue();
1828  } else {
1829    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1830  }
1831
1832  CaseBitsVector CasesBits;
1833  unsigned i, count = 0;
1834
1835  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1836    MachineBasicBlock* Dest = I->BB;
1837    for (i = 0; i < count; ++i)
1838      if (Dest == CasesBits[i].BB)
1839        break;
1840
1841    if (i == count) {
1842      assert((count < 3) && "Too much destinations to test!");
1843      CasesBits.push_back(CaseBits(0, Dest, 0));
1844      count++;
1845    }
1846
1847    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1848    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1849
1850    for (uint64_t j = lo; j <= hi; j++) {
1851      CasesBits[i].Mask |=  1ULL << j;
1852      CasesBits[i].Bits++;
1853    }
1854
1855  }
1856  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1857
1858  SelectionDAGISel::BitTestInfo BTC;
1859
1860  // Figure out which block is immediately after the current one.
1861  MachineFunction::iterator BBI = CR.CaseBB;
1862  ++BBI;
1863
1864  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1865
1866  DOUT << "Cases:\n";
1867  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1868    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1869         << ", BB: " << CasesBits[i].BB << "\n";
1870
1871    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1872    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1873    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1874                                                CaseBB,
1875                                                CasesBits[i].BB));
1876  }
1877
1878  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1879                                     -1U, (CR.CaseBB == CurMBB),
1880                                     CR.CaseBB, Default, BTC);
1881
1882  if (CR.CaseBB == CurMBB)
1883    visitBitTestHeader(BTB);
1884
1885  BitTestCases.push_back(BTB);
1886
1887  return true;
1888}
1889
1890
1891// Clusterify - Transform simple list of Cases into list of CaseRange's
1892unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1893                                          const SwitchInst& SI) {
1894  unsigned numCmps = 0;
1895
1896  // Start with "simple" cases
1897  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1898    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1899    Cases.push_back(Case(SI.getSuccessorValue(i),
1900                         SI.getSuccessorValue(i),
1901                         SMBB));
1902  }
1903  sort(Cases.begin(), Cases.end(), CaseCmp());
1904
1905  // Merge case into clusters
1906  if (Cases.size()>=2)
1907    // Must recompute end() each iteration because it may be
1908    // invalidated by erase if we hold on to it
1909    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
1910      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1911      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1912      MachineBasicBlock* nextBB = J->BB;
1913      MachineBasicBlock* currentBB = I->BB;
1914
1915      // If the two neighboring cases go to the same destination, merge them
1916      // into a single case.
1917      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1918        I->High = J->High;
1919        J = Cases.erase(J);
1920      } else {
1921        I = J++;
1922      }
1923    }
1924
1925  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1926    if (I->Low != I->High)
1927      // A range counts double, since it requires two compares.
1928      ++numCmps;
1929  }
1930
1931  return numCmps;
1932}
1933
1934void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1935  // Figure out which block is immediately after the current one.
1936  MachineBasicBlock *NextBlock = 0;
1937  MachineFunction::iterator BBI = CurMBB;
1938
1939  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1940
1941  // If there is only the default destination, branch to it if it is not the
1942  // next basic block.  Otherwise, just fall through.
1943  if (SI.getNumOperands() == 2) {
1944    // Update machine-CFG edges.
1945
1946    // If this is not a fall-through branch, emit the branch.
1947    if (Default != NextBlock)
1948      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1949                              DAG.getBasicBlock(Default)));
1950
1951    CurMBB->addSuccessor(Default);
1952    return;
1953  }
1954
1955  // If there are any non-default case statements, create a vector of Cases
1956  // representing each one, and sort the vector so that we can efficiently
1957  // create a binary search tree from them.
1958  CaseVector Cases;
1959  unsigned numCmps = Clusterify(Cases, SI);
1960  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1961       << ". Total compares: " << numCmps << "\n";
1962
1963  // Get the Value to be switched on and default basic blocks, which will be
1964  // inserted into CaseBlock records, representing basic blocks in the binary
1965  // search tree.
1966  Value *SV = SI.getOperand(0);
1967
1968  // Push the initial CaseRec onto the worklist
1969  CaseRecVector WorkList;
1970  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1971
1972  while (!WorkList.empty()) {
1973    // Grab a record representing a case range to process off the worklist
1974    CaseRec CR = WorkList.back();
1975    WorkList.pop_back();
1976
1977    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1978      continue;
1979
1980    // If the range has few cases (two or less) emit a series of specific
1981    // tests.
1982    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1983      continue;
1984
1985    // If the switch has more than 5 blocks, and at least 40% dense, and the
1986    // target supports indirect branches, then emit a jump table rather than
1987    // lowering the switch to a binary tree of conditional branches.
1988    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1989      continue;
1990
1991    // Emit binary tree. We need to pick a pivot, and push left and right ranges
1992    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
1993    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
1994  }
1995}
1996
1997
1998void SelectionDAGLowering::visitSub(User &I) {
1999  // -0.0 - X --> fneg
2000  const Type *Ty = I.getType();
2001  if (isa<VectorType>(Ty)) {
2002    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2003      const VectorType *DestTy = cast<VectorType>(I.getType());
2004      const Type *ElTy = DestTy->getElementType();
2005      if (ElTy->isFloatingPoint()) {
2006        unsigned VL = DestTy->getNumElements();
2007        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2008        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2009        if (CV == CNZ) {
2010          SDOperand Op2 = getValue(I.getOperand(1));
2011          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2012          return;
2013        }
2014      }
2015    }
2016  }
2017  if (Ty->isFloatingPoint()) {
2018    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2019      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2020        SDOperand Op2 = getValue(I.getOperand(1));
2021        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2022        return;
2023      }
2024  }
2025
2026  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2027}
2028
2029void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2030  SDOperand Op1 = getValue(I.getOperand(0));
2031  SDOperand Op2 = getValue(I.getOperand(1));
2032
2033  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2034}
2035
2036void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2037  SDOperand Op1 = getValue(I.getOperand(0));
2038  SDOperand Op2 = getValue(I.getOperand(1));
2039
2040  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2041      MVT::getSizeInBits(Op2.getValueType()))
2042    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2043  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2044    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2045
2046  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2047}
2048
2049void SelectionDAGLowering::visitICmp(User &I) {
2050  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2051  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2052    predicate = IC->getPredicate();
2053  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2054    predicate = ICmpInst::Predicate(IC->getPredicate());
2055  SDOperand Op1 = getValue(I.getOperand(0));
2056  SDOperand Op2 = getValue(I.getOperand(1));
2057  ISD::CondCode Opcode;
2058  switch (predicate) {
2059    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2060    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2061    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2062    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2063    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2064    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2065    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2066    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2067    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2068    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2069    default:
2070      assert(!"Invalid ICmp predicate value");
2071      Opcode = ISD::SETEQ;
2072      break;
2073  }
2074  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2075}
2076
2077void SelectionDAGLowering::visitFCmp(User &I) {
2078  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2079  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2080    predicate = FC->getPredicate();
2081  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2082    predicate = FCmpInst::Predicate(FC->getPredicate());
2083  SDOperand Op1 = getValue(I.getOperand(0));
2084  SDOperand Op2 = getValue(I.getOperand(1));
2085  ISD::CondCode Condition, FOC, FPC;
2086  switch (predicate) {
2087    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2088    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2089    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2090    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2091    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2092    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2093    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2094    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2095    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2096    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2097    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2098    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2099    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2100    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2101    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2102    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2103    default:
2104      assert(!"Invalid FCmp predicate value");
2105      FOC = FPC = ISD::SETFALSE;
2106      break;
2107  }
2108  if (FiniteOnlyFPMath())
2109    Condition = FOC;
2110  else
2111    Condition = FPC;
2112  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2113}
2114
2115void SelectionDAGLowering::visitSelect(User &I) {
2116  SDOperand Cond     = getValue(I.getOperand(0));
2117  SDOperand TrueVal  = getValue(I.getOperand(1));
2118  SDOperand FalseVal = getValue(I.getOperand(2));
2119  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2120                           TrueVal, FalseVal));
2121}
2122
2123
2124void SelectionDAGLowering::visitTrunc(User &I) {
2125  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2126  SDOperand N = getValue(I.getOperand(0));
2127  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2128  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2129}
2130
2131void SelectionDAGLowering::visitZExt(User &I) {
2132  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2133  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2134  SDOperand N = getValue(I.getOperand(0));
2135  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2136  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2137}
2138
2139void SelectionDAGLowering::visitSExt(User &I) {
2140  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2141  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2142  SDOperand N = getValue(I.getOperand(0));
2143  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2144  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2145}
2146
2147void SelectionDAGLowering::visitFPTrunc(User &I) {
2148  // FPTrunc is never a no-op cast, no need to check
2149  SDOperand N = getValue(I.getOperand(0));
2150  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2151  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2152}
2153
2154void SelectionDAGLowering::visitFPExt(User &I){
2155  // FPTrunc is never a no-op cast, no need to check
2156  SDOperand N = getValue(I.getOperand(0));
2157  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2158  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2159}
2160
2161void SelectionDAGLowering::visitFPToUI(User &I) {
2162  // FPToUI is never a no-op cast, no need to check
2163  SDOperand N = getValue(I.getOperand(0));
2164  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2165  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2166}
2167
2168void SelectionDAGLowering::visitFPToSI(User &I) {
2169  // FPToSI is never a no-op cast, no need to check
2170  SDOperand N = getValue(I.getOperand(0));
2171  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2172  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2173}
2174
2175void SelectionDAGLowering::visitUIToFP(User &I) {
2176  // UIToFP is never a no-op cast, no need to check
2177  SDOperand N = getValue(I.getOperand(0));
2178  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2179  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2180}
2181
2182void SelectionDAGLowering::visitSIToFP(User &I){
2183  // UIToFP is never a no-op cast, no need to check
2184  SDOperand N = getValue(I.getOperand(0));
2185  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2186  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2187}
2188
2189void SelectionDAGLowering::visitPtrToInt(User &I) {
2190  // What to do depends on the size of the integer and the size of the pointer.
2191  // We can either truncate, zero extend, or no-op, accordingly.
2192  SDOperand N = getValue(I.getOperand(0));
2193  MVT::ValueType SrcVT = N.getValueType();
2194  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2195  SDOperand Result;
2196  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2197    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2198  else
2199    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2200    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2201  setValue(&I, Result);
2202}
2203
2204void SelectionDAGLowering::visitIntToPtr(User &I) {
2205  // What to do depends on the size of the integer and the size of the pointer.
2206  // We can either truncate, zero extend, or no-op, accordingly.
2207  SDOperand N = getValue(I.getOperand(0));
2208  MVT::ValueType SrcVT = N.getValueType();
2209  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2210  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2211    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2212  else
2213    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2214    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2215}
2216
2217void SelectionDAGLowering::visitBitCast(User &I) {
2218  SDOperand N = getValue(I.getOperand(0));
2219  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2220
2221  // BitCast assures us that source and destination are the same size so this
2222  // is either a BIT_CONVERT or a no-op.
2223  if (DestVT != N.getValueType())
2224    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2225  else
2226    setValue(&I, N); // noop cast.
2227}
2228
2229void SelectionDAGLowering::visitInsertElement(User &I) {
2230  SDOperand InVec = getValue(I.getOperand(0));
2231  SDOperand InVal = getValue(I.getOperand(1));
2232  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2233                                getValue(I.getOperand(2)));
2234
2235  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2236                           TLI.getValueType(I.getType()),
2237                           InVec, InVal, InIdx));
2238}
2239
2240void SelectionDAGLowering::visitExtractElement(User &I) {
2241  SDOperand InVec = getValue(I.getOperand(0));
2242  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2243                                getValue(I.getOperand(1)));
2244  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2245                           TLI.getValueType(I.getType()), InVec, InIdx));
2246}
2247
2248void SelectionDAGLowering::visitShuffleVector(User &I) {
2249  SDOperand V1   = getValue(I.getOperand(0));
2250  SDOperand V2   = getValue(I.getOperand(1));
2251  SDOperand Mask = getValue(I.getOperand(2));
2252
2253  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2254                           TLI.getValueType(I.getType()),
2255                           V1, V2, Mask));
2256}
2257
2258
2259void SelectionDAGLowering::visitGetElementPtr(User &I) {
2260  SDOperand N = getValue(I.getOperand(0));
2261  const Type *Ty = I.getOperand(0)->getType();
2262
2263  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2264       OI != E; ++OI) {
2265    Value *Idx = *OI;
2266    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2267      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2268      if (Field) {
2269        // N = N + Offset
2270        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2271        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2272                        getIntPtrConstant(Offset));
2273      }
2274      Ty = StTy->getElementType(Field);
2275    } else {
2276      Ty = cast<SequentialType>(Ty)->getElementType();
2277
2278      // If this is a constant subscript, handle it quickly.
2279      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2280        if (CI->getZExtValue() == 0) continue;
2281        uint64_t Offs =
2282            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2283        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2284        continue;
2285      }
2286
2287      // N = N + Idx * ElementSize;
2288      uint64_t ElementSize = TD->getTypeSize(Ty);
2289      SDOperand IdxN = getValue(Idx);
2290
2291      // If the index is smaller or larger than intptr_t, truncate or extend
2292      // it.
2293      if (IdxN.getValueType() < N.getValueType()) {
2294        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2295      } else if (IdxN.getValueType() > N.getValueType())
2296        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2297
2298      // If this is a multiply by a power of two, turn it into a shl
2299      // immediately.  This is a very common case.
2300      if (isPowerOf2_64(ElementSize)) {
2301        unsigned Amt = Log2_64(ElementSize);
2302        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2303                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2304        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2305        continue;
2306      }
2307
2308      SDOperand Scale = getIntPtrConstant(ElementSize);
2309      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2310      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2311    }
2312  }
2313  setValue(&I, N);
2314}
2315
2316void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2317  // If this is a fixed sized alloca in the entry block of the function,
2318  // allocate it statically on the stack.
2319  if (FuncInfo.StaticAllocaMap.count(&I))
2320    return;   // getValue will auto-populate this.
2321
2322  const Type *Ty = I.getAllocatedType();
2323  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
2324  unsigned Align =
2325    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2326             I.getAlignment());
2327
2328  SDOperand AllocSize = getValue(I.getArraySize());
2329  MVT::ValueType IntPtr = TLI.getPointerTy();
2330  if (IntPtr < AllocSize.getValueType())
2331    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2332  else if (IntPtr > AllocSize.getValueType())
2333    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2334
2335  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2336                          getIntPtrConstant(TySize));
2337
2338  // Handle alignment.  If the requested alignment is less than or equal to
2339  // the stack alignment, ignore it.  If the size is greater than or equal to
2340  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2341  unsigned StackAlign =
2342    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2343  if (Align <= StackAlign)
2344    Align = 0;
2345
2346  // Round the size of the allocation up to the stack alignment size
2347  // by add SA-1 to the size.
2348  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2349                          getIntPtrConstant(StackAlign-1));
2350  // Mask out the low bits for alignment purposes.
2351  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2352                          getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2353
2354  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2355  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2356                                                    MVT::Other);
2357  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2358  setValue(&I, DSA);
2359  DAG.setRoot(DSA.getValue(1));
2360
2361  // Inform the Frame Information that we have just allocated a variable-sized
2362  // object.
2363  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2364}
2365
2366void SelectionDAGLowering::visitLoad(LoadInst &I) {
2367  SDOperand Ptr = getValue(I.getOperand(0));
2368
2369  SDOperand Root;
2370  if (I.isVolatile())
2371    Root = getRoot();
2372  else {
2373    // Do not serialize non-volatile loads against each other.
2374    Root = DAG.getRoot();
2375  }
2376
2377  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2378                           Root, I.isVolatile(), I.getAlignment()));
2379}
2380
2381SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2382                                            const Value *SV, SDOperand Root,
2383                                            bool isVolatile,
2384                                            unsigned Alignment) {
2385  SDOperand L =
2386    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2387                isVolatile, Alignment);
2388
2389  if (isVolatile)
2390    DAG.setRoot(L.getValue(1));
2391  else
2392    PendingLoads.push_back(L.getValue(1));
2393
2394  return L;
2395}
2396
2397
2398void SelectionDAGLowering::visitStore(StoreInst &I) {
2399  Value *SrcV = I.getOperand(0);
2400  SDOperand Src = getValue(SrcV);
2401  SDOperand Ptr = getValue(I.getOperand(1));
2402  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2403                           I.isVolatile(), I.getAlignment()));
2404}
2405
2406/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2407/// access memory and has no other side effects at all.
2408static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2409#define GET_NO_MEMORY_INTRINSICS
2410#include "llvm/Intrinsics.gen"
2411#undef GET_NO_MEMORY_INTRINSICS
2412  return false;
2413}
2414
2415// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2416// have any side-effects or if it only reads memory.
2417static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2418#define GET_SIDE_EFFECT_INFO
2419#include "llvm/Intrinsics.gen"
2420#undef GET_SIDE_EFFECT_INFO
2421  return false;
2422}
2423
2424/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2425/// node.
2426void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2427                                                unsigned Intrinsic) {
2428  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2429  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2430
2431  // Build the operand list.
2432  SmallVector<SDOperand, 8> Ops;
2433  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2434    if (OnlyLoad) {
2435      // We don't need to serialize loads against other loads.
2436      Ops.push_back(DAG.getRoot());
2437    } else {
2438      Ops.push_back(getRoot());
2439    }
2440  }
2441
2442  // Add the intrinsic ID as an integer operand.
2443  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2444
2445  // Add all operands of the call to the operand list.
2446  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2447    SDOperand Op = getValue(I.getOperand(i));
2448    assert(TLI.isTypeLegal(Op.getValueType()) &&
2449           "Intrinsic uses a non-legal type?");
2450    Ops.push_back(Op);
2451  }
2452
2453  std::vector<MVT::ValueType> VTs;
2454  if (I.getType() != Type::VoidTy) {
2455    MVT::ValueType VT = TLI.getValueType(I.getType());
2456    if (MVT::isVector(VT)) {
2457      const VectorType *DestTy = cast<VectorType>(I.getType());
2458      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2459
2460      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2461      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2462    }
2463
2464    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2465    VTs.push_back(VT);
2466  }
2467  if (HasChain)
2468    VTs.push_back(MVT::Other);
2469
2470  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2471
2472  // Create the node.
2473  SDOperand Result;
2474  if (!HasChain)
2475    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2476                         &Ops[0], Ops.size());
2477  else if (I.getType() != Type::VoidTy)
2478    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2479                         &Ops[0], Ops.size());
2480  else
2481    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2482                         &Ops[0], Ops.size());
2483
2484  if (HasChain) {
2485    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2486    if (OnlyLoad)
2487      PendingLoads.push_back(Chain);
2488    else
2489      DAG.setRoot(Chain);
2490  }
2491  if (I.getType() != Type::VoidTy) {
2492    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2493      MVT::ValueType VT = TLI.getValueType(PTy);
2494      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2495    }
2496    setValue(&I, Result);
2497  }
2498}
2499
2500/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2501static GlobalVariable *ExtractTypeInfo (Value *V) {
2502  V = IntrinsicInst::StripPointerCasts(V);
2503  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2504  assert (GV || isa<ConstantPointerNull>(V) &&
2505          "TypeInfo must be a global variable or NULL");
2506  return GV;
2507}
2508
2509/// addCatchInfo - Extract the personality and type infos from an eh.selector
2510/// call, and add them to the specified machine basic block.
2511static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2512                         MachineBasicBlock *MBB) {
2513  // Inform the MachineModuleInfo of the personality for this landing pad.
2514  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2515  assert(CE->getOpcode() == Instruction::BitCast &&
2516         isa<Function>(CE->getOperand(0)) &&
2517         "Personality should be a function");
2518  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2519
2520  // Gather all the type infos for this landing pad and pass them along to
2521  // MachineModuleInfo.
2522  std::vector<GlobalVariable *> TyInfo;
2523  unsigned N = I.getNumOperands();
2524
2525  for (unsigned i = N - 1; i > 2; --i) {
2526    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2527      unsigned FilterLength = CI->getZExtValue();
2528      unsigned FirstCatch = i + FilterLength + !FilterLength;
2529      assert (FirstCatch <= N && "Invalid filter length");
2530
2531      if (FirstCatch < N) {
2532        TyInfo.reserve(N - FirstCatch);
2533        for (unsigned j = FirstCatch; j < N; ++j)
2534          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2535        MMI->addCatchTypeInfo(MBB, TyInfo);
2536        TyInfo.clear();
2537      }
2538
2539      if (!FilterLength) {
2540        // Cleanup.
2541        MMI->addCleanup(MBB);
2542      } else {
2543        // Filter.
2544        TyInfo.reserve(FilterLength - 1);
2545        for (unsigned j = i + 1; j < FirstCatch; ++j)
2546          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2547        MMI->addFilterTypeInfo(MBB, TyInfo);
2548        TyInfo.clear();
2549      }
2550
2551      N = i;
2552    }
2553  }
2554
2555  if (N > 3) {
2556    TyInfo.reserve(N - 3);
2557    for (unsigned j = 3; j < N; ++j)
2558      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2559    MMI->addCatchTypeInfo(MBB, TyInfo);
2560  }
2561}
2562
2563/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2564/// we want to emit this as a call to a named external function, return the name
2565/// otherwise lower it and return null.
2566const char *
2567SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2568  switch (Intrinsic) {
2569  default:
2570    // By default, turn this into a target intrinsic node.
2571    visitTargetIntrinsic(I, Intrinsic);
2572    return 0;
2573  case Intrinsic::vastart:  visitVAStart(I); return 0;
2574  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2575  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2576  case Intrinsic::returnaddress:
2577    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2578                             getValue(I.getOperand(1))));
2579    return 0;
2580  case Intrinsic::frameaddress:
2581    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2582                             getValue(I.getOperand(1))));
2583    return 0;
2584  case Intrinsic::setjmp:
2585    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2586    break;
2587  case Intrinsic::longjmp:
2588    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2589    break;
2590  case Intrinsic::memcpy_i32:
2591  case Intrinsic::memcpy_i64:
2592    visitMemIntrinsic(I, ISD::MEMCPY);
2593    return 0;
2594  case Intrinsic::memset_i32:
2595  case Intrinsic::memset_i64:
2596    visitMemIntrinsic(I, ISD::MEMSET);
2597    return 0;
2598  case Intrinsic::memmove_i32:
2599  case Intrinsic::memmove_i64:
2600    visitMemIntrinsic(I, ISD::MEMMOVE);
2601    return 0;
2602
2603  case Intrinsic::dbg_stoppoint: {
2604    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2605    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2606    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2607      SDOperand Ops[5];
2608
2609      Ops[0] = getRoot();
2610      Ops[1] = getValue(SPI.getLineValue());
2611      Ops[2] = getValue(SPI.getColumnValue());
2612
2613      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2614      assert(DD && "Not a debug information descriptor");
2615      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2616
2617      Ops[3] = DAG.getString(CompileUnit->getFileName());
2618      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2619
2620      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2621    }
2622
2623    return 0;
2624  }
2625  case Intrinsic::dbg_region_start: {
2626    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2627    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2628    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2629      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2630      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2631                              DAG.getConstant(LabelID, MVT::i32)));
2632    }
2633
2634    return 0;
2635  }
2636  case Intrinsic::dbg_region_end: {
2637    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2638    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2639    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2640      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2641      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2642                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2643    }
2644
2645    return 0;
2646  }
2647  case Intrinsic::dbg_func_start: {
2648    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2649    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2650    if (MMI && FSI.getSubprogram() &&
2651        MMI->Verify(FSI.getSubprogram())) {
2652      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2653      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2654                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2655    }
2656
2657    return 0;
2658  }
2659  case Intrinsic::dbg_declare: {
2660    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2661    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2662    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2663      SDOperand AddressOp  = getValue(DI.getAddress());
2664      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2665        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2666    }
2667
2668    return 0;
2669  }
2670
2671  case Intrinsic::eh_exception: {
2672    if (ExceptionHandling) {
2673      if (!CurMBB->isLandingPad()) {
2674        // FIXME: Mark exception register as live in.  Hack for PR1508.
2675        unsigned Reg = TLI.getExceptionAddressRegister();
2676        if (Reg) CurMBB->addLiveIn(Reg);
2677      }
2678      // Insert the EXCEPTIONADDR instruction.
2679      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2680      SDOperand Ops[1];
2681      Ops[0] = DAG.getRoot();
2682      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2683      setValue(&I, Op);
2684      DAG.setRoot(Op.getValue(1));
2685    } else {
2686      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2687    }
2688    return 0;
2689  }
2690
2691  case Intrinsic::eh_selector_i32:
2692  case Intrinsic::eh_selector_i64: {
2693    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2694    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2695                         MVT::i32 : MVT::i64);
2696
2697    if (ExceptionHandling && MMI) {
2698      if (CurMBB->isLandingPad())
2699        addCatchInfo(I, MMI, CurMBB);
2700      else {
2701#ifndef NDEBUG
2702        FuncInfo.CatchInfoLost.insert(&I);
2703#endif
2704        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
2705        unsigned Reg = TLI.getExceptionSelectorRegister();
2706        if (Reg) CurMBB->addLiveIn(Reg);
2707      }
2708
2709      // Insert the EHSELECTION instruction.
2710      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2711      SDOperand Ops[2];
2712      Ops[0] = getValue(I.getOperand(1));
2713      Ops[1] = getRoot();
2714      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2715      setValue(&I, Op);
2716      DAG.setRoot(Op.getValue(1));
2717    } else {
2718      setValue(&I, DAG.getConstant(0, VT));
2719    }
2720
2721    return 0;
2722  }
2723
2724  case Intrinsic::eh_typeid_for_i32:
2725  case Intrinsic::eh_typeid_for_i64: {
2726    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2727    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2728                         MVT::i32 : MVT::i64);
2729
2730    if (MMI) {
2731      // Find the type id for the given typeinfo.
2732      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2733
2734      unsigned TypeID = MMI->getTypeIDFor(GV);
2735      setValue(&I, DAG.getConstant(TypeID, VT));
2736    } else {
2737      // Return something different to eh_selector.
2738      setValue(&I, DAG.getConstant(1, VT));
2739    }
2740
2741    return 0;
2742  }
2743
2744  case Intrinsic::eh_return: {
2745    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2746
2747    if (MMI && ExceptionHandling) {
2748      MMI->setCallsEHReturn(true);
2749      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2750                              MVT::Other,
2751                              getRoot(),
2752                              getValue(I.getOperand(1)),
2753                              getValue(I.getOperand(2))));
2754    } else {
2755      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2756    }
2757
2758    return 0;
2759  }
2760
2761   case Intrinsic::eh_unwind_init: {
2762     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2763       MMI->setCallsUnwindInit(true);
2764     }
2765
2766     return 0;
2767   }
2768
2769   case Intrinsic::eh_dwarf_cfa: {
2770     if (ExceptionHandling) {
2771       MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
2772       SDOperand CfaArg;
2773       if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2774         CfaArg = DAG.getNode(ISD::TRUNCATE,
2775                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2776       else
2777         CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2778                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2779
2780       SDOperand Offset = DAG.getNode(ISD::ADD,
2781                                      TLI.getPointerTy(),
2782                                      DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
2783                                                  TLI.getPointerTy()),
2784                                      CfaArg);
2785       setValue(&I, DAG.getNode(ISD::ADD,
2786                                TLI.getPointerTy(),
2787                                DAG.getNode(ISD::FRAMEADDR,
2788                                            TLI.getPointerTy(),
2789                                            DAG.getConstant(0,
2790                                                            TLI.getPointerTy())),
2791                                Offset));
2792     } else {
2793       setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2794     }
2795
2796     return 0;
2797  }
2798
2799  case Intrinsic::sqrt_f32:
2800  case Intrinsic::sqrt_f64:
2801    setValue(&I, DAG.getNode(ISD::FSQRT,
2802                             getValue(I.getOperand(1)).getValueType(),
2803                             getValue(I.getOperand(1))));
2804    return 0;
2805  case Intrinsic::powi_f32:
2806  case Intrinsic::powi_f64:
2807    setValue(&I, DAG.getNode(ISD::FPOWI,
2808                             getValue(I.getOperand(1)).getValueType(),
2809                             getValue(I.getOperand(1)),
2810                             getValue(I.getOperand(2))));
2811    return 0;
2812  case Intrinsic::pcmarker: {
2813    SDOperand Tmp = getValue(I.getOperand(1));
2814    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2815    return 0;
2816  }
2817  case Intrinsic::readcyclecounter: {
2818    SDOperand Op = getRoot();
2819    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2820                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2821                                &Op, 1);
2822    setValue(&I, Tmp);
2823    DAG.setRoot(Tmp.getValue(1));
2824    return 0;
2825  }
2826  case Intrinsic::part_select: {
2827    // Currently not implemented: just abort
2828    assert(0 && "part_select intrinsic not implemented");
2829    abort();
2830  }
2831  case Intrinsic::part_set: {
2832    // Currently not implemented: just abort
2833    assert(0 && "part_set intrinsic not implemented");
2834    abort();
2835  }
2836  case Intrinsic::bswap:
2837    setValue(&I, DAG.getNode(ISD::BSWAP,
2838                             getValue(I.getOperand(1)).getValueType(),
2839                             getValue(I.getOperand(1))));
2840    return 0;
2841  case Intrinsic::cttz: {
2842    SDOperand Arg = getValue(I.getOperand(1));
2843    MVT::ValueType Ty = Arg.getValueType();
2844    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2845    setValue(&I, result);
2846    return 0;
2847  }
2848  case Intrinsic::ctlz: {
2849    SDOperand Arg = getValue(I.getOperand(1));
2850    MVT::ValueType Ty = Arg.getValueType();
2851    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2852    setValue(&I, result);
2853    return 0;
2854  }
2855  case Intrinsic::ctpop: {
2856    SDOperand Arg = getValue(I.getOperand(1));
2857    MVT::ValueType Ty = Arg.getValueType();
2858    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2859    setValue(&I, result);
2860    return 0;
2861  }
2862  case Intrinsic::stacksave: {
2863    SDOperand Op = getRoot();
2864    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2865              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2866    setValue(&I, Tmp);
2867    DAG.setRoot(Tmp.getValue(1));
2868    return 0;
2869  }
2870  case Intrinsic::stackrestore: {
2871    SDOperand Tmp = getValue(I.getOperand(1));
2872    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2873    return 0;
2874  }
2875  case Intrinsic::prefetch:
2876    // FIXME: Currently discarding prefetches.
2877    return 0;
2878
2879  case Intrinsic::var_annotation:
2880    // Discard annotate attributes
2881    return 0;
2882
2883  case Intrinsic::init_trampoline: {
2884    const Function *F =
2885      cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
2886
2887    SDOperand Ops[6];
2888    Ops[0] = getRoot();
2889    Ops[1] = getValue(I.getOperand(1));
2890    Ops[2] = getValue(I.getOperand(2));
2891    Ops[3] = getValue(I.getOperand(3));
2892    Ops[4] = DAG.getSrcValue(I.getOperand(1));
2893    Ops[5] = DAG.getSrcValue(F);
2894
2895    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
2896                                DAG.getNodeValueTypes(TLI.getPointerTy(),
2897                                                      MVT::Other), 2,
2898                                Ops, 6);
2899
2900    setValue(&I, Tmp);
2901    DAG.setRoot(Tmp.getValue(1));
2902    return 0;
2903  }
2904  }
2905}
2906
2907
2908void SelectionDAGLowering::LowerCallTo(Instruction &I,
2909                                       const Type *CalledValueTy,
2910                                       unsigned CallingConv,
2911                                       bool IsTailCall,
2912                                       SDOperand Callee, unsigned OpIdx,
2913                                       MachineBasicBlock *LandingPad) {
2914  const PointerType *PT = cast<PointerType>(CalledValueTy);
2915  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2916  const ParamAttrsList *Attrs = FTy->getParamAttrs();
2917  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2918  unsigned BeginLabel = 0, EndLabel = 0;
2919
2920  TargetLowering::ArgListTy Args;
2921  TargetLowering::ArgListEntry Entry;
2922  Args.reserve(I.getNumOperands());
2923  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2924    Value *Arg = I.getOperand(i);
2925    SDOperand ArgNode = getValue(Arg);
2926    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2927
2928    unsigned attrInd = i - OpIdx + 1;
2929    Entry.isSExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
2930    Entry.isZExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
2931    Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
2932    Entry.isSRet  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
2933    Entry.isNest  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::Nest);
2934    Entry.isByVal = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ByVal);
2935    Args.push_back(Entry);
2936  }
2937
2938  if (ExceptionHandling && MMI && LandingPad) {
2939    // Insert a label before the invoke call to mark the try range.  This can be
2940    // used to detect deletion of the invoke via the MachineModuleInfo.
2941    BeginLabel = MMI->NextLabelID();
2942    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2943                            DAG.getConstant(BeginLabel, MVT::i32)));
2944  }
2945
2946  std::pair<SDOperand,SDOperand> Result =
2947    TLI.LowerCallTo(getRoot(), I.getType(),
2948                    Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2949                    FTy->isVarArg(), CallingConv, IsTailCall,
2950                    Callee, Args, DAG);
2951  if (I.getType() != Type::VoidTy)
2952    setValue(&I, Result.first);
2953  DAG.setRoot(Result.second);
2954
2955  if (ExceptionHandling && MMI && LandingPad) {
2956    // Insert a label at the end of the invoke call to mark the try range.  This
2957    // can be used to detect deletion of the invoke via the MachineModuleInfo.
2958    EndLabel = MMI->NextLabelID();
2959    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2960                            DAG.getConstant(EndLabel, MVT::i32)));
2961
2962    // Inform MachineModuleInfo of range.
2963    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2964  }
2965}
2966
2967
2968void SelectionDAGLowering::visitCall(CallInst &I) {
2969  const char *RenameFn = 0;
2970  if (Function *F = I.getCalledFunction()) {
2971    if (F->isDeclaration()) {
2972      if (unsigned IID = F->getIntrinsicID()) {
2973        RenameFn = visitIntrinsicCall(I, IID);
2974        if (!RenameFn)
2975          return;
2976      }
2977    }
2978
2979    // Check for well-known libc/libm calls.  If the function is internal, it
2980    // can't be a library call.
2981    unsigned NameLen = F->getNameLen();
2982    if (!F->hasInternalLinkage() && NameLen) {
2983      const char *NameStr = F->getNameStart();
2984      if (NameStr[0] == 'c' &&
2985          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
2986           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
2987        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2988            I.getOperand(1)->getType()->isFloatingPoint() &&
2989            I.getType() == I.getOperand(1)->getType() &&
2990            I.getType() == I.getOperand(2)->getType()) {
2991          SDOperand LHS = getValue(I.getOperand(1));
2992          SDOperand RHS = getValue(I.getOperand(2));
2993          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2994                                   LHS, RHS));
2995          return;
2996        }
2997      } else if (NameStr[0] == 'f' &&
2998                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
2999                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3000                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3001        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3002            I.getOperand(1)->getType()->isFloatingPoint() &&
3003            I.getType() == I.getOperand(1)->getType()) {
3004          SDOperand Tmp = getValue(I.getOperand(1));
3005          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3006          return;
3007        }
3008      } else if (NameStr[0] == 's' &&
3009                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3010                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3011                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3012        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3013            I.getOperand(1)->getType()->isFloatingPoint() &&
3014            I.getType() == I.getOperand(1)->getType()) {
3015          SDOperand Tmp = getValue(I.getOperand(1));
3016          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3017          return;
3018        }
3019      } else if (NameStr[0] == 'c' &&
3020                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3021                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3022                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3023        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3024            I.getOperand(1)->getType()->isFloatingPoint() &&
3025            I.getType() == I.getOperand(1)->getType()) {
3026          SDOperand Tmp = getValue(I.getOperand(1));
3027          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3028          return;
3029        }
3030      }
3031    }
3032  } else if (isa<InlineAsm>(I.getOperand(0))) {
3033    visitInlineAsm(I);
3034    return;
3035  }
3036
3037  SDOperand Callee;
3038  if (!RenameFn)
3039    Callee = getValue(I.getOperand(0));
3040  else
3041    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3042
3043  LowerCallTo(I, I.getCalledValue()->getType(),
3044              I.getCallingConv(),
3045              I.isTailCall(),
3046              Callee,
3047              1);
3048}
3049
3050
3051/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3052/// this value and returns the result as a ValueVT value.  This uses
3053/// Chain/Flag as the input and updates them for the output Chain/Flag.
3054/// If the Flag pointer is NULL, no flag is used.
3055SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3056                                        SDOperand &Chain, SDOperand *Flag)const{
3057  // Copy the legal parts from the registers.
3058  unsigned NumParts = Regs.size();
3059  SmallVector<SDOperand, 8> Parts(NumParts);
3060  for (unsigned i = 0; i != NumParts; ++i) {
3061    SDOperand Part = Flag ?
3062                     DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3063                     DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3064    Chain = Part.getValue(1);
3065    if (Flag)
3066      *Flag = Part.getValue(2);
3067    Parts[i] = Part;
3068  }
3069
3070  // Assemble the legal parts into the final value.
3071  return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3072}
3073
3074/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3075/// specified value into the registers specified by this object.  This uses
3076/// Chain/Flag as the input and updates them for the output Chain/Flag.
3077/// If the Flag pointer is NULL, no flag is used.
3078void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3079                                 SDOperand &Chain, SDOperand *Flag) const {
3080  // Get the list of the values's legal parts.
3081  unsigned NumParts = Regs.size();
3082  SmallVector<SDOperand, 8> Parts(NumParts);
3083  getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3084
3085  // Copy the parts into the registers.
3086  for (unsigned i = 0; i != NumParts; ++i) {
3087    SDOperand Part = Flag ?
3088                     DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3089                     DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3090    Chain = Part.getValue(0);
3091    if (Flag)
3092      *Flag = Part.getValue(1);
3093  }
3094}
3095
3096/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3097/// operand list.  This adds the code marker and includes the number of
3098/// values added into it.
3099void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3100                                        std::vector<SDOperand> &Ops) const {
3101  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3102  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3103  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3104    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3105}
3106
3107/// isAllocatableRegister - If the specified register is safe to allocate,
3108/// i.e. it isn't a stack pointer or some other special register, return the
3109/// register class for the register.  Otherwise, return null.
3110static const TargetRegisterClass *
3111isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3112                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
3113  MVT::ValueType FoundVT = MVT::Other;
3114  const TargetRegisterClass *FoundRC = 0;
3115  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3116       E = MRI->regclass_end(); RCI != E; ++RCI) {
3117    MVT::ValueType ThisVT = MVT::Other;
3118
3119    const TargetRegisterClass *RC = *RCI;
3120    // If none of the the value types for this register class are valid, we
3121    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3122    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3123         I != E; ++I) {
3124      if (TLI.isTypeLegal(*I)) {
3125        // If we have already found this register in a different register class,
3126        // choose the one with the largest VT specified.  For example, on
3127        // PowerPC, we favor f64 register classes over f32.
3128        if (FoundVT == MVT::Other ||
3129            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3130          ThisVT = *I;
3131          break;
3132        }
3133      }
3134    }
3135
3136    if (ThisVT == MVT::Other) continue;
3137
3138    // NOTE: This isn't ideal.  In particular, this might allocate the
3139    // frame pointer in functions that need it (due to them not being taken
3140    // out of allocation, because a variable sized allocation hasn't been seen
3141    // yet).  This is a slight code pessimization, but should still work.
3142    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3143         E = RC->allocation_order_end(MF); I != E; ++I)
3144      if (*I == Reg) {
3145        // We found a matching register class.  Keep looking at others in case
3146        // we find one with larger registers that this physreg is also in.
3147        FoundRC = RC;
3148        FoundVT = ThisVT;
3149        break;
3150      }
3151  }
3152  return FoundRC;
3153}
3154
3155
3156namespace {
3157/// AsmOperandInfo - This contains information for each constraint that we are
3158/// lowering.
3159struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3160  /// ConstraintCode - This contains the actual string for the code, like "m".
3161  std::string ConstraintCode;
3162
3163  /// ConstraintType - Information about the constraint code, e.g. Register,
3164  /// RegisterClass, Memory, Other, Unknown.
3165  TargetLowering::ConstraintType ConstraintType;
3166
3167  /// CallOperand/CallOperandval - If this is the result output operand or a
3168  /// clobber, this is null, otherwise it is the incoming operand to the
3169  /// CallInst.  This gets modified as the asm is processed.
3170  SDOperand CallOperand;
3171  Value *CallOperandVal;
3172
3173  /// ConstraintVT - The ValueType for the operand value.
3174  MVT::ValueType ConstraintVT;
3175
3176  /// AssignedRegs - If this is a register or register class operand, this
3177  /// contains the set of register corresponding to the operand.
3178  RegsForValue AssignedRegs;
3179
3180  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3181    : InlineAsm::ConstraintInfo(info),
3182      ConstraintType(TargetLowering::C_Unknown),
3183      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3184  }
3185
3186  void ComputeConstraintToUse(const TargetLowering &TLI);
3187
3188  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3189  /// busy in OutputRegs/InputRegs.
3190  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3191                         std::set<unsigned> &OutputRegs,
3192                         std::set<unsigned> &InputRegs) const {
3193     if (isOutReg)
3194       OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3195     if (isInReg)
3196       InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3197   }
3198};
3199} // end anon namespace.
3200
3201/// getConstraintGenerality - Return an integer indicating how general CT is.
3202static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3203  switch (CT) {
3204    default: assert(0 && "Unknown constraint type!");
3205    case TargetLowering::C_Other:
3206    case TargetLowering::C_Unknown:
3207      return 0;
3208    case TargetLowering::C_Register:
3209      return 1;
3210    case TargetLowering::C_RegisterClass:
3211      return 2;
3212    case TargetLowering::C_Memory:
3213      return 3;
3214  }
3215}
3216
3217void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3218  assert(!Codes.empty() && "Must have at least one constraint");
3219
3220  std::string *Current = &Codes[0];
3221  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3222  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3223    ConstraintCode = *Current;
3224    ConstraintType = CurType;
3225    return;
3226  }
3227
3228  unsigned CurGenerality = getConstraintGenerality(CurType);
3229
3230  // If we have multiple constraints, try to pick the most general one ahead
3231  // of time.  This isn't a wonderful solution, but handles common cases.
3232  for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3233    TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3234    unsigned ThisGenerality = getConstraintGenerality(ThisType);
3235    if (ThisGenerality > CurGenerality) {
3236      // This constraint letter is more general than the previous one,
3237      // use it.
3238      CurType = ThisType;
3239      Current = &Codes[j];
3240      CurGenerality = ThisGenerality;
3241    }
3242  }
3243
3244  ConstraintCode = *Current;
3245  ConstraintType = CurType;
3246}
3247
3248
3249void SelectionDAGLowering::
3250GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3251                     std::set<unsigned> &OutputRegs,
3252                     std::set<unsigned> &InputRegs) {
3253  // Compute whether this value requires an input register, an output register,
3254  // or both.
3255  bool isOutReg = false;
3256  bool isInReg = false;
3257  switch (OpInfo.Type) {
3258  case InlineAsm::isOutput:
3259    isOutReg = true;
3260
3261    // If this is an early-clobber output, or if there is an input
3262    // constraint that matches this, we need to reserve the input register
3263    // so no other inputs allocate to it.
3264    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3265    break;
3266  case InlineAsm::isInput:
3267    isInReg = true;
3268    isOutReg = false;
3269    break;
3270  case InlineAsm::isClobber:
3271    isOutReg = true;
3272    isInReg = true;
3273    break;
3274  }
3275
3276
3277  MachineFunction &MF = DAG.getMachineFunction();
3278  std::vector<unsigned> Regs;
3279
3280  // If this is a constraint for a single physreg, or a constraint for a
3281  // register class, find it.
3282  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3283    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3284                                     OpInfo.ConstraintVT);
3285
3286  unsigned NumRegs = 1;
3287  if (OpInfo.ConstraintVT != MVT::Other)
3288    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3289  MVT::ValueType RegVT;
3290  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3291
3292
3293  // If this is a constraint for a specific physical register, like {r17},
3294  // assign it now.
3295  if (PhysReg.first) {
3296    if (OpInfo.ConstraintVT == MVT::Other)
3297      ValueVT = *PhysReg.second->vt_begin();
3298
3299    // Get the actual register value type.  This is important, because the user
3300    // may have asked for (e.g.) the AX register in i32 type.  We need to
3301    // remember that AX is actually i16 to get the right extension.
3302    RegVT = *PhysReg.second->vt_begin();
3303
3304    // This is a explicit reference to a physical register.
3305    Regs.push_back(PhysReg.first);
3306
3307    // If this is an expanded reference, add the rest of the regs to Regs.
3308    if (NumRegs != 1) {
3309      TargetRegisterClass::iterator I = PhysReg.second->begin();
3310      TargetRegisterClass::iterator E = PhysReg.second->end();
3311      for (; *I != PhysReg.first; ++I)
3312        assert(I != E && "Didn't find reg!");
3313
3314      // Already added the first reg.
3315      --NumRegs; ++I;
3316      for (; NumRegs; --NumRegs, ++I) {
3317        assert(I != E && "Ran out of registers to allocate!");
3318        Regs.push_back(*I);
3319      }
3320    }
3321    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3322    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3323    return;
3324  }
3325
3326  // Otherwise, if this was a reference to an LLVM register class, create vregs
3327  // for this reference.
3328  std::vector<unsigned> RegClassRegs;
3329  const TargetRegisterClass *RC = PhysReg.second;
3330  if (RC) {
3331    // If this is an early clobber or tied register, our regalloc doesn't know
3332    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3333    // and let the regalloc do the right thing.
3334    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3335        // If there is some other early clobber and this is an input register,
3336        // then we are forced to pre-allocate the input reg so it doesn't
3337        // conflict with the earlyclobber.
3338        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3339      RegVT = *PhysReg.second->vt_begin();
3340
3341      if (OpInfo.ConstraintVT == MVT::Other)
3342        ValueVT = RegVT;
3343
3344      // Create the appropriate number of virtual registers.
3345      SSARegMap *RegMap = MF.getSSARegMap();
3346      for (; NumRegs; --NumRegs)
3347        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3348
3349      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3350      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3351      return;
3352    }
3353
3354    // Otherwise, we can't allocate it.  Let the code below figure out how to
3355    // maintain these constraints.
3356    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3357
3358  } else {
3359    // This is a reference to a register class that doesn't directly correspond
3360    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3361    // registers from the class.
3362    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3363                                                         OpInfo.ConstraintVT);
3364  }
3365
3366  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3367  unsigned NumAllocated = 0;
3368  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3369    unsigned Reg = RegClassRegs[i];
3370    // See if this register is available.
3371    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3372        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3373      // Make sure we find consecutive registers.
3374      NumAllocated = 0;
3375      continue;
3376    }
3377
3378    // Check to see if this register is allocatable (i.e. don't give out the
3379    // stack pointer).
3380    if (RC == 0) {
3381      RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3382      if (!RC) {        // Couldn't allocate this register.
3383        // Reset NumAllocated to make sure we return consecutive registers.
3384        NumAllocated = 0;
3385        continue;
3386      }
3387    }
3388
3389    // Okay, this register is good, we can use it.
3390    ++NumAllocated;
3391
3392    // If we allocated enough consecutive registers, succeed.
3393    if (NumAllocated == NumRegs) {
3394      unsigned RegStart = (i-NumAllocated)+1;
3395      unsigned RegEnd   = i+1;
3396      // Mark all of the allocated registers used.
3397      for (unsigned i = RegStart; i != RegEnd; ++i)
3398        Regs.push_back(RegClassRegs[i]);
3399
3400      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3401                                         OpInfo.ConstraintVT);
3402      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3403      return;
3404    }
3405  }
3406
3407  // Otherwise, we couldn't allocate enough registers for this.
3408  return;
3409}
3410
3411
3412/// visitInlineAsm - Handle a call to an InlineAsm object.
3413///
3414void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
3415  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
3416
3417  /// ConstraintOperands - Information about all of the constraints.
3418  std::vector<AsmOperandInfo> ConstraintOperands;
3419
3420  SDOperand Chain = getRoot();
3421  SDOperand Flag;
3422
3423  std::set<unsigned> OutputRegs, InputRegs;
3424
3425  // Do a prepass over the constraints, canonicalizing them, and building up the
3426  // ConstraintOperands list.
3427  std::vector<InlineAsm::ConstraintInfo>
3428    ConstraintInfos = IA->ParseConstraints();
3429
3430  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3431  // constraint.  If so, we can't let the register allocator allocate any input
3432  // registers, because it will not know to avoid the earlyclobbered output reg.
3433  bool SawEarlyClobber = false;
3434
3435  unsigned OpNo = 1;   // OpNo - The operand of the CallInst.
3436  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3437    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3438    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3439
3440    MVT::ValueType OpVT = MVT::Other;
3441
3442    // Compute the value type for each operand.
3443    switch (OpInfo.Type) {
3444    case InlineAsm::isOutput:
3445      if (!OpInfo.isIndirect) {
3446        // The return value of the call is this value.  As such, there is no
3447        // corresponding argument.
3448        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3449        OpVT = TLI.getValueType(I.getType());
3450      } else {
3451        OpInfo.CallOperandVal = I.getOperand(OpNo++);
3452      }
3453      break;
3454    case InlineAsm::isInput:
3455      OpInfo.CallOperandVal = I.getOperand(OpNo++);
3456      break;
3457    case InlineAsm::isClobber:
3458      // Nothing to do.
3459      break;
3460    }
3461
3462    // If this is an input or an indirect output, process the call argument.
3463    if (OpInfo.CallOperandVal) {
3464      OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3465      const Type *OpTy = OpInfo.CallOperandVal->getType();
3466      // If this is an indirect operand, the operand is a pointer to the
3467      // accessed type.
3468      if (OpInfo.isIndirect)
3469        OpTy = cast<PointerType>(OpTy)->getElementType();
3470
3471      // If OpTy is not a first-class value, it may be a struct/union that we
3472      // can tile with integers.
3473      if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3474        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3475        switch (BitSize) {
3476        default: break;
3477        case 1:
3478        case 8:
3479        case 16:
3480        case 32:
3481        case 64:
3482          OpTy = IntegerType::get(BitSize);
3483          break;
3484        }
3485      }
3486
3487      OpVT = TLI.getValueType(OpTy, true);
3488    }
3489
3490    OpInfo.ConstraintVT = OpVT;
3491
3492    // Compute the constraint code and ConstraintType to use.
3493    OpInfo.ComputeConstraintToUse(TLI);
3494
3495    // Keep track of whether we see an earlyclobber.
3496    SawEarlyClobber |= OpInfo.isEarlyClobber;
3497
3498    // If this is a memory input, and if the operand is not indirect, do what we
3499    // need to to provide an address for the memory input.
3500    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3501        !OpInfo.isIndirect) {
3502      assert(OpInfo.Type == InlineAsm::isInput &&
3503             "Can only indirectify direct input operands!");
3504
3505      // Memory operands really want the address of the value.  If we don't have
3506      // an indirect input, put it in the constpool if we can, otherwise spill
3507      // it to a stack slot.
3508
3509      // If the operand is a float, integer, or vector constant, spill to a
3510      // constant pool entry to get its address.
3511      Value *OpVal = OpInfo.CallOperandVal;
3512      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3513          isa<ConstantVector>(OpVal)) {
3514        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3515                                                 TLI.getPointerTy());
3516      } else {
3517        // Otherwise, create a stack slot and emit a store to it before the
3518        // asm.
3519        const Type *Ty = OpVal->getType();
3520        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
3521        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3522        MachineFunction &MF = DAG.getMachineFunction();
3523        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3524        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3525        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3526        OpInfo.CallOperand = StackSlot;
3527      }
3528
3529      // There is no longer a Value* corresponding to this operand.
3530      OpInfo.CallOperandVal = 0;
3531      // It is now an indirect operand.
3532      OpInfo.isIndirect = true;
3533    }
3534
3535    // If this constraint is for a specific register, allocate it before
3536    // anything else.
3537    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3538      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3539  }
3540  ConstraintInfos.clear();
3541
3542
3543  // Second pass - Loop over all of the operands, assigning virtual or physregs
3544  // to registerclass operands.
3545  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3546    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3547
3548    // C_Register operands have already been allocated, Other/Memory don't need
3549    // to be.
3550    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3551      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3552  }
3553
3554  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3555  std::vector<SDOperand> AsmNodeOperands;
3556  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3557  AsmNodeOperands.push_back(
3558          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3559
3560
3561  // Loop over all of the inputs, copying the operand values into the
3562  // appropriate registers and processing the output regs.
3563  RegsForValue RetValRegs;
3564
3565  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3566  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3567
3568  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3569    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3570
3571    switch (OpInfo.Type) {
3572    case InlineAsm::isOutput: {
3573      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3574          OpInfo.ConstraintType != TargetLowering::C_Register) {
3575        // Memory output, or 'other' output (e.g. 'X' constraint).
3576        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3577
3578        // Add information to the INLINEASM node to know about this output.
3579        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3580        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3581                                                        TLI.getPointerTy()));
3582        AsmNodeOperands.push_back(OpInfo.CallOperand);
3583        break;
3584      }
3585
3586      // Otherwise, this is a register or register class output.
3587
3588      // Copy the output from the appropriate register.  Find a register that
3589      // we can use.
3590      if (OpInfo.AssignedRegs.Regs.empty()) {
3591        cerr << "Couldn't allocate output reg for contraint '"
3592             << OpInfo.ConstraintCode << "'!\n";
3593        exit(1);
3594      }
3595
3596      if (!OpInfo.isIndirect) {
3597        // This is the result value of the call.
3598        assert(RetValRegs.Regs.empty() &&
3599               "Cannot have multiple output constraints yet!");
3600        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3601        RetValRegs = OpInfo.AssignedRegs;
3602      } else {
3603        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3604                                                      OpInfo.CallOperandVal));
3605      }
3606
3607      // Add information to the INLINEASM node to know that this register is
3608      // set.
3609      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3610                                               AsmNodeOperands);
3611      break;
3612    }
3613    case InlineAsm::isInput: {
3614      SDOperand InOperandVal = OpInfo.CallOperand;
3615
3616      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3617        // If this is required to match an output register we have already set,
3618        // just use its register.
3619        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3620
3621        // Scan until we find the definition we already emitted of this operand.
3622        // When we find it, create a RegsForValue operand.
3623        unsigned CurOp = 2;  // The first operand.
3624        for (; OperandNo; --OperandNo) {
3625          // Advance to the next operand.
3626          unsigned NumOps =
3627            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3628          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3629                  (NumOps & 7) == 4 /*MEM*/) &&
3630                 "Skipped past definitions?");
3631          CurOp += (NumOps>>3)+1;
3632        }
3633
3634        unsigned NumOps =
3635          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3636        if ((NumOps & 7) == 2 /*REGDEF*/) {
3637          // Add NumOps>>3 registers to MatchedRegs.
3638          RegsForValue MatchedRegs;
3639          MatchedRegs.ValueVT = InOperandVal.getValueType();
3640          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3641          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3642            unsigned Reg =
3643              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3644            MatchedRegs.Regs.push_back(Reg);
3645          }
3646
3647          // Use the produced MatchedRegs object to
3648          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3649          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3650          break;
3651        } else {
3652          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3653          assert(0 && "matching constraints for memory operands unimp");
3654        }
3655      }
3656
3657      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3658        assert(!OpInfo.isIndirect &&
3659               "Don't know how to handle indirect other inputs yet!");
3660
3661        std::vector<SDOperand> Ops;
3662        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3663                                         Ops, DAG);
3664        if (Ops.empty()) {
3665          cerr << "Invalid operand for inline asm constraint '"
3666               << OpInfo.ConstraintCode << "'!\n";
3667          exit(1);
3668        }
3669
3670        // Add information to the INLINEASM node to know about this input.
3671        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
3672        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3673                                                        TLI.getPointerTy()));
3674        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
3675        break;
3676      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3677        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3678        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3679               "Memory operands expect pointer values");
3680
3681        // Add information to the INLINEASM node to know about this input.
3682        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3683        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3684                                                        TLI.getPointerTy()));
3685        AsmNodeOperands.push_back(InOperandVal);
3686        break;
3687      }
3688
3689      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3690              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3691             "Unknown constraint type!");
3692      assert(!OpInfo.isIndirect &&
3693             "Don't know how to handle indirect register inputs yet!");
3694
3695      // Copy the input into the appropriate registers.
3696      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3697             "Couldn't allocate input reg!");
3698
3699      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3700
3701      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3702                                               AsmNodeOperands);
3703      break;
3704    }
3705    case InlineAsm::isClobber: {
3706      // Add the clobbered value to the operand list, so that the register
3707      // allocator is aware that the physreg got clobbered.
3708      if (!OpInfo.AssignedRegs.Regs.empty())
3709        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3710                                                 AsmNodeOperands);
3711      break;
3712    }
3713    }
3714  }
3715
3716  // Finish up input operands.
3717  AsmNodeOperands[0] = Chain;
3718  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3719
3720  Chain = DAG.getNode(ISD::INLINEASM,
3721                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3722                      &AsmNodeOperands[0], AsmNodeOperands.size());
3723  Flag = Chain.getValue(1);
3724
3725  // If this asm returns a register value, copy the result from that register
3726  // and set it as the value of the call.
3727  if (!RetValRegs.Regs.empty()) {
3728    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3729
3730    // If the result of the inline asm is a vector, it may have the wrong
3731    // width/num elts.  Make sure to convert it to the right type with
3732    // bit_convert.
3733    if (MVT::isVector(Val.getValueType())) {
3734      const VectorType *VTy = cast<VectorType>(I.getType());
3735      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3736
3737      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3738    }
3739
3740    setValue(&I, Val);
3741  }
3742
3743  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3744
3745  // Process indirect outputs, first output all of the flagged copies out of
3746  // physregs.
3747  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3748    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3749    Value *Ptr = IndirectStoresToEmit[i].second;
3750    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3751    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3752  }
3753
3754  // Emit the non-flagged stores from the physregs.
3755  SmallVector<SDOperand, 8> OutChains;
3756  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3757    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3758                                    getValue(StoresToEmit[i].second),
3759                                    StoresToEmit[i].second, 0));
3760  if (!OutChains.empty())
3761    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3762                        &OutChains[0], OutChains.size());
3763  DAG.setRoot(Chain);
3764}
3765
3766
3767void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3768  SDOperand Src = getValue(I.getOperand(0));
3769
3770  MVT::ValueType IntPtr = TLI.getPointerTy();
3771
3772  if (IntPtr < Src.getValueType())
3773    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3774  else if (IntPtr > Src.getValueType())
3775    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3776
3777  // Scale the source by the type size.
3778  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
3779  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3780                    Src, getIntPtrConstant(ElementSize));
3781
3782  TargetLowering::ArgListTy Args;
3783  TargetLowering::ArgListEntry Entry;
3784  Entry.Node = Src;
3785  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3786  Args.push_back(Entry);
3787
3788  std::pair<SDOperand,SDOperand> Result =
3789    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3790                    DAG.getExternalSymbol("malloc", IntPtr),
3791                    Args, DAG);
3792  setValue(&I, Result.first);  // Pointers always fit in registers
3793  DAG.setRoot(Result.second);
3794}
3795
3796void SelectionDAGLowering::visitFree(FreeInst &I) {
3797  TargetLowering::ArgListTy Args;
3798  TargetLowering::ArgListEntry Entry;
3799  Entry.Node = getValue(I.getOperand(0));
3800  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3801  Args.push_back(Entry);
3802  MVT::ValueType IntPtr = TLI.getPointerTy();
3803  std::pair<SDOperand,SDOperand> Result =
3804    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3805                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3806  DAG.setRoot(Result.second);
3807}
3808
3809// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3810// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3811// instructions are special in various ways, which require special support to
3812// insert.  The specified MachineInstr is created but not inserted into any
3813// basic blocks, and the scheduler passes ownership of it to this method.
3814MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3815                                                       MachineBasicBlock *MBB) {
3816  cerr << "If a target marks an instruction with "
3817       << "'usesCustomDAGSchedInserter', it must implement "
3818       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3819  abort();
3820  return 0;
3821}
3822
3823void SelectionDAGLowering::visitVAStart(CallInst &I) {
3824  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3825                          getValue(I.getOperand(1)),
3826                          DAG.getSrcValue(I.getOperand(1))));
3827}
3828
3829void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3830  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3831                             getValue(I.getOperand(0)),
3832                             DAG.getSrcValue(I.getOperand(0)));
3833  setValue(&I, V);
3834  DAG.setRoot(V.getValue(1));
3835}
3836
3837void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3838  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3839                          getValue(I.getOperand(1)),
3840                          DAG.getSrcValue(I.getOperand(1))));
3841}
3842
3843void SelectionDAGLowering::visitVACopy(CallInst &I) {
3844  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3845                          getValue(I.getOperand(1)),
3846                          getValue(I.getOperand(2)),
3847                          DAG.getSrcValue(I.getOperand(1)),
3848                          DAG.getSrcValue(I.getOperand(2))));
3849}
3850
3851/// TargetLowering::LowerArguments - This is the default LowerArguments
3852/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3853/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3854/// integrated into SDISel.
3855std::vector<SDOperand>
3856TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3857  const FunctionType *FTy = F.getFunctionType();
3858  const ParamAttrsList *Attrs = FTy->getParamAttrs();
3859  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3860  std::vector<SDOperand> Ops;
3861  Ops.push_back(DAG.getRoot());
3862  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3863  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3864
3865  // Add one result value for each formal argument.
3866  std::vector<MVT::ValueType> RetVals;
3867  unsigned j = 1;
3868  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3869       I != E; ++I, ++j) {
3870    MVT::ValueType VT = getValueType(I->getType());
3871    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3872    unsigned OriginalAlignment =
3873      getTargetData()->getABITypeAlignment(I->getType());
3874
3875    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3876    // that is zero extended!
3877    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt))
3878      Flags &= ~(ISD::ParamFlags::SExt);
3879    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt))
3880      Flags |= ISD::ParamFlags::SExt;
3881    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg))
3882      Flags |= ISD::ParamFlags::InReg;
3883    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet))
3884      Flags |= ISD::ParamFlags::StructReturn;
3885    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ByVal)) {
3886      Flags |= ISD::ParamFlags::ByVal;
3887      const PointerType *Ty = cast<PointerType>(I->getType());
3888      const StructType *STy = cast<StructType>(Ty->getElementType());
3889      unsigned StructAlign =
3890          Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
3891      unsigned StructSize  = getTargetData()->getTypeSize(STy);
3892      Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
3893      Flags |= (StructSize  << ISD::ParamFlags::ByValSizeOffs);
3894    }
3895    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::Nest))
3896      Flags |= ISD::ParamFlags::Nest;
3897    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3898
3899    switch (getTypeAction(VT)) {
3900    default: assert(0 && "Unknown type action!");
3901    case Legal:
3902      RetVals.push_back(VT);
3903      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3904      break;
3905    case Promote:
3906      RetVals.push_back(getTypeToTransformTo(VT));
3907      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3908      break;
3909    case Expand: {
3910      // If this is an illegal type, it needs to be broken up to fit into
3911      // registers.
3912      MVT::ValueType RegisterVT = getRegisterType(VT);
3913      unsigned NumRegs = getNumRegisters(VT);
3914      for (unsigned i = 0; i != NumRegs; ++i) {
3915        RetVals.push_back(RegisterVT);
3916        // if it isn't first piece, alignment must be 1
3917        if (i > 0)
3918          Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3919            (1 << ISD::ParamFlags::OrigAlignmentOffs);
3920        Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3921      }
3922      break;
3923    }
3924    }
3925  }
3926
3927  RetVals.push_back(MVT::Other);
3928
3929  // Create the node.
3930  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3931                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3932                               &Ops[0], Ops.size()).Val;
3933  unsigned NumArgRegs = Result->getNumValues() - 1;
3934  DAG.setRoot(SDOperand(Result, NumArgRegs));
3935
3936  // Set up the return result vector.
3937  Ops.clear();
3938  unsigned i = 0;
3939  unsigned Idx = 1;
3940  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3941      ++I, ++Idx) {
3942    MVT::ValueType VT = getValueType(I->getType());
3943
3944    switch (getTypeAction(VT)) {
3945    default: assert(0 && "Unknown type action!");
3946    case Legal:
3947      Ops.push_back(SDOperand(Result, i++));
3948      break;
3949    case Promote: {
3950      SDOperand Op(Result, i++);
3951      if (MVT::isInteger(VT)) {
3952        if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt))
3953          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3954                           DAG.getValueType(VT));
3955        else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt))
3956          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3957                           DAG.getValueType(VT));
3958        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3959      } else {
3960        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3961        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3962      }
3963      Ops.push_back(Op);
3964      break;
3965    }
3966    case Expand: {
3967      MVT::ValueType PartVT = getRegisterType(VT);
3968      unsigned NumParts = getNumRegisters(VT);
3969      SmallVector<SDOperand, 4> Parts(NumParts);
3970      for (unsigned j = 0; j != NumParts; ++j)
3971        Parts[j] = SDOperand(Result, i++);
3972      Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
3973      break;
3974    }
3975    }
3976  }
3977  assert(i == NumArgRegs && "Argument register count mismatch!");
3978  return Ops;
3979}
3980
3981
3982/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3983/// implementation, which just inserts an ISD::CALL node, which is later custom
3984/// lowered by the target to something concrete.  FIXME: When all targets are
3985/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3986std::pair<SDOperand, SDOperand>
3987TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3988                            bool RetTyIsSigned, bool isVarArg,
3989                            unsigned CallingConv, bool isTailCall,
3990                            SDOperand Callee,
3991                            ArgListTy &Args, SelectionDAG &DAG) {
3992  SmallVector<SDOperand, 32> Ops;
3993  Ops.push_back(Chain);   // Op#0 - Chain
3994  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3995  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3996  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3997  Ops.push_back(Callee);
3998
3999  // Handle all of the outgoing arguments.
4000  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4001    MVT::ValueType VT = getValueType(Args[i].Ty);
4002    SDOperand Op = Args[i].Node;
4003    unsigned Flags = ISD::ParamFlags::NoFlagSet;
4004    unsigned OriginalAlignment =
4005      getTargetData()->getABITypeAlignment(Args[i].Ty);
4006
4007    if (Args[i].isSExt)
4008      Flags |= ISD::ParamFlags::SExt;
4009    if (Args[i].isZExt)
4010      Flags |= ISD::ParamFlags::ZExt;
4011    if (Args[i].isInReg)
4012      Flags |= ISD::ParamFlags::InReg;
4013    if (Args[i].isSRet)
4014      Flags |= ISD::ParamFlags::StructReturn;
4015    if (Args[i].isByVal) {
4016      Flags |= ISD::ParamFlags::ByVal;
4017      const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4018      const StructType *STy = cast<StructType>(Ty->getElementType());
4019      unsigned StructAlign =
4020          Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
4021      unsigned StructSize  = getTargetData()->getTypeSize(STy);
4022      Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
4023      Flags |= (StructSize  << ISD::ParamFlags::ByValSizeOffs);
4024    }
4025    if (Args[i].isNest)
4026      Flags |= ISD::ParamFlags::Nest;
4027    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
4028
4029    switch (getTypeAction(VT)) {
4030    default: assert(0 && "Unknown type action!");
4031    case Legal:
4032      Ops.push_back(Op);
4033      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4034      break;
4035    case Promote:
4036      if (MVT::isInteger(VT)) {
4037        unsigned ExtOp;
4038        if (Args[i].isSExt)
4039          ExtOp = ISD::SIGN_EXTEND;
4040        else if (Args[i].isZExt)
4041          ExtOp = ISD::ZERO_EXTEND;
4042        else
4043          ExtOp = ISD::ANY_EXTEND;
4044        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
4045      } else {
4046        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
4047        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
4048      }
4049      Ops.push_back(Op);
4050      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4051      break;
4052    case Expand: {
4053      MVT::ValueType PartVT = getRegisterType(VT);
4054      unsigned NumParts = getNumRegisters(VT);
4055      SmallVector<SDOperand, 4> Parts(NumParts);
4056      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
4057      for (unsigned i = 0; i != NumParts; ++i) {
4058        // if it isn't first piece, alignment must be 1
4059        unsigned MyFlags = Flags;
4060        if (i != 0)
4061          MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4062            (1 << ISD::ParamFlags::OrigAlignmentOffs);
4063
4064        Ops.push_back(Parts[i]);
4065        Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
4066      }
4067      break;
4068    }
4069    }
4070  }
4071
4072  // Figure out the result value types.
4073  MVT::ValueType VT = getValueType(RetTy);
4074  MVT::ValueType RegisterVT = getRegisterType(VT);
4075  unsigned NumRegs = getNumRegisters(VT);
4076  SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
4077  for (unsigned i = 0; i != NumRegs; ++i)
4078    RetTys[i] = RegisterVT;
4079
4080  RetTys.push_back(MVT::Other);  // Always has a chain.
4081
4082  // Create the CALL node.
4083  SDOperand Res = DAG.getNode(ISD::CALL,
4084                              DAG.getVTList(&RetTys[0], NumRegs + 1),
4085                              &Ops[0], Ops.size());
4086  Chain = Res.getValue(NumRegs);
4087
4088  // Gather up the call result into a single value.
4089  if (RetTy != Type::VoidTy) {
4090    ISD::NodeType AssertOp = ISD::AssertSext;
4091    if (!RetTyIsSigned)
4092      AssertOp = ISD::AssertZext;
4093    SmallVector<SDOperand, 4> Results(NumRegs);
4094    for (unsigned i = 0; i != NumRegs; ++i)
4095      Results[i] = Res.getValue(i);
4096    Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
4097  }
4098
4099  return std::make_pair(Res, Chain);
4100}
4101
4102SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4103  assert(0 && "LowerOperation not implemented for this target!");
4104  abort();
4105  return SDOperand();
4106}
4107
4108SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4109                                                 SelectionDAG &DAG) {
4110  assert(0 && "CustomPromoteOperation not implemented for this target!");
4111  abort();
4112  return SDOperand();
4113}
4114
4115/// getMemsetValue - Vectorized representation of the memset value
4116/// operand.
4117static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4118                                SelectionDAG &DAG) {
4119  MVT::ValueType CurVT = VT;
4120  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4121    uint64_t Val   = C->getValue() & 255;
4122    unsigned Shift = 8;
4123    while (CurVT != MVT::i8) {
4124      Val = (Val << Shift) | Val;
4125      Shift <<= 1;
4126      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4127    }
4128    return DAG.getConstant(Val, VT);
4129  } else {
4130    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4131    unsigned Shift = 8;
4132    while (CurVT != MVT::i8) {
4133      Value =
4134        DAG.getNode(ISD::OR, VT,
4135                    DAG.getNode(ISD::SHL, VT, Value,
4136                                DAG.getConstant(Shift, MVT::i8)), Value);
4137      Shift <<= 1;
4138      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4139    }
4140
4141    return Value;
4142  }
4143}
4144
4145/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4146/// used when a memcpy is turned into a memset when the source is a constant
4147/// string ptr.
4148static SDOperand getMemsetStringVal(MVT::ValueType VT,
4149                                    SelectionDAG &DAG, TargetLowering &TLI,
4150                                    std::string &Str, unsigned Offset) {
4151  uint64_t Val = 0;
4152  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4153  if (TLI.isLittleEndian())
4154    Offset = Offset + MSB - 1;
4155  for (unsigned i = 0; i != MSB; ++i) {
4156    Val = (Val << 8) | (unsigned char)Str[Offset];
4157    Offset += TLI.isLittleEndian() ? -1 : 1;
4158  }
4159  return DAG.getConstant(Val, VT);
4160}
4161
4162/// getMemBasePlusOffset - Returns base and offset node for the
4163static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4164                                      SelectionDAG &DAG, TargetLowering &TLI) {
4165  MVT::ValueType VT = Base.getValueType();
4166  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4167}
4168
4169/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4170/// to replace the memset / memcpy is below the threshold. It also returns the
4171/// types of the sequence of  memory ops to perform memset / memcpy.
4172static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4173                                     unsigned Limit, uint64_t Size,
4174                                     unsigned Align, TargetLowering &TLI) {
4175  MVT::ValueType VT;
4176
4177  if (TLI.allowsUnalignedMemoryAccesses()) {
4178    VT = MVT::i64;
4179  } else {
4180    switch (Align & 7) {
4181    case 0:
4182      VT = MVT::i64;
4183      break;
4184    case 4:
4185      VT = MVT::i32;
4186      break;
4187    case 2:
4188      VT = MVT::i16;
4189      break;
4190    default:
4191      VT = MVT::i8;
4192      break;
4193    }
4194  }
4195
4196  MVT::ValueType LVT = MVT::i64;
4197  while (!TLI.isTypeLegal(LVT))
4198    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4199  assert(MVT::isInteger(LVT));
4200
4201  if (VT > LVT)
4202    VT = LVT;
4203
4204  unsigned NumMemOps = 0;
4205  while (Size != 0) {
4206    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4207    while (VTSize > Size) {
4208      VT = (MVT::ValueType)((unsigned)VT - 1);
4209      VTSize >>= 1;
4210    }
4211    assert(MVT::isInteger(VT));
4212
4213    if (++NumMemOps > Limit)
4214      return false;
4215    MemOps.push_back(VT);
4216    Size -= VTSize;
4217  }
4218
4219  return true;
4220}
4221
4222void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4223  SDOperand Op1 = getValue(I.getOperand(1));
4224  SDOperand Op2 = getValue(I.getOperand(2));
4225  SDOperand Op3 = getValue(I.getOperand(3));
4226  SDOperand Op4 = getValue(I.getOperand(4));
4227  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4228  if (Align == 0) Align = 1;
4229
4230  // If the source and destination are known to not be aliases, we can
4231  // lower memmove as memcpy.
4232  if (Op == ISD::MEMMOVE) {
4233    uint64_t Size = -1ULL;
4234    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4235      Size = C->getValue();
4236    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4237        AliasAnalysis::NoAlias)
4238      Op = ISD::MEMCPY;
4239  }
4240
4241  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4242    std::vector<MVT::ValueType> MemOps;
4243
4244    // Expand memset / memcpy to a series of load / store ops
4245    // if the size operand falls below a certain threshold.
4246    SmallVector<SDOperand, 8> OutChains;
4247    switch (Op) {
4248    default: break;  // Do nothing for now.
4249    case ISD::MEMSET: {
4250      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4251                                   Size->getValue(), Align, TLI)) {
4252        unsigned NumMemOps = MemOps.size();
4253        unsigned Offset = 0;
4254        for (unsigned i = 0; i < NumMemOps; i++) {
4255          MVT::ValueType VT = MemOps[i];
4256          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4257          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4258          SDOperand Store = DAG.getStore(getRoot(), Value,
4259                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4260                                         I.getOperand(1), Offset);
4261          OutChains.push_back(Store);
4262          Offset += VTSize;
4263        }
4264      }
4265      break;
4266    }
4267    case ISD::MEMCPY: {
4268      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4269                                   Size->getValue(), Align, TLI)) {
4270        unsigned NumMemOps = MemOps.size();
4271        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4272        GlobalAddressSDNode *G = NULL;
4273        std::string Str;
4274        bool CopyFromStr = false;
4275
4276        if (Op2.getOpcode() == ISD::GlobalAddress)
4277          G = cast<GlobalAddressSDNode>(Op2);
4278        else if (Op2.getOpcode() == ISD::ADD &&
4279                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4280                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4281          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4282          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4283        }
4284        if (G) {
4285          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4286          if (GV && GV->isConstant()) {
4287            Str = GV->getStringValue(false);
4288            if (!Str.empty()) {
4289              CopyFromStr = true;
4290              SrcOff += SrcDelta;
4291            }
4292          }
4293        }
4294
4295        for (unsigned i = 0; i < NumMemOps; i++) {
4296          MVT::ValueType VT = MemOps[i];
4297          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4298          SDOperand Value, Chain, Store;
4299
4300          if (CopyFromStr) {
4301            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4302            Chain = getRoot();
4303            Store =
4304              DAG.getStore(Chain, Value,
4305                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4306                           I.getOperand(1), DstOff);
4307          } else {
4308            Value = DAG.getLoad(VT, getRoot(),
4309                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4310                        I.getOperand(2), SrcOff);
4311            Chain = Value.getValue(1);
4312            Store =
4313              DAG.getStore(Chain, Value,
4314                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4315                           I.getOperand(1), DstOff);
4316          }
4317          OutChains.push_back(Store);
4318          SrcOff += VTSize;
4319          DstOff += VTSize;
4320        }
4321      }
4322      break;
4323    }
4324    }
4325
4326    if (!OutChains.empty()) {
4327      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4328                  &OutChains[0], OutChains.size()));
4329      return;
4330    }
4331  }
4332
4333  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
4334}
4335
4336//===----------------------------------------------------------------------===//
4337// SelectionDAGISel code
4338//===----------------------------------------------------------------------===//
4339
4340unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4341  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4342}
4343
4344void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4345  AU.addRequired<AliasAnalysis>();
4346  AU.setPreservesAll();
4347}
4348
4349
4350
4351bool SelectionDAGISel::runOnFunction(Function &Fn) {
4352  // Get alias analysis for load/store combining.
4353  AA = &getAnalysis<AliasAnalysis>();
4354
4355  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4356  RegMap = MF.getSSARegMap();
4357  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4358
4359  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4360
4361  if (ExceptionHandling)
4362    for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4363      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4364        // Mark landing pad.
4365        FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4366
4367  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4368    SelectBasicBlock(I, MF, FuncInfo);
4369
4370  // Add function live-ins to entry block live-in set.
4371  BasicBlock *EntryBB = &Fn.getEntryBlock();
4372  BB = FuncInfo.MBBMap[EntryBB];
4373  if (!MF.livein_empty())
4374    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4375           E = MF.livein_end(); I != E; ++I)
4376      BB->addLiveIn(I->first);
4377
4378#ifndef NDEBUG
4379  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4380         "Not all catch info was assigned to a landing pad!");
4381#endif
4382
4383  return true;
4384}
4385
4386SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4387                                                           unsigned Reg) {
4388  SDOperand Op = getValue(V);
4389  assert((Op.getOpcode() != ISD::CopyFromReg ||
4390          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4391         "Copy from a reg to the same reg!");
4392
4393  MVT::ValueType SrcVT = Op.getValueType();
4394  MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4395  unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4396  SmallVector<SDOperand, 8> Regs(NumRegs);
4397  SmallVector<SDOperand, 8> Chains(NumRegs);
4398
4399  // Copy the value by legal parts into sequential virtual registers.
4400  getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4401  for (unsigned i = 0; i != NumRegs; ++i)
4402    Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4403  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4404}
4405
4406void SelectionDAGISel::
4407LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4408               std::vector<SDOperand> &UnorderedChains) {
4409  // If this is the entry block, emit arguments.
4410  Function &F = *LLVMBB->getParent();
4411  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4412  SDOperand OldRoot = SDL.DAG.getRoot();
4413  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4414
4415  unsigned a = 0;
4416  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4417       AI != E; ++AI, ++a)
4418    if (!AI->use_empty()) {
4419      SDL.setValue(AI, Args[a]);
4420
4421      // If this argument is live outside of the entry block, insert a copy from
4422      // whereever we got it to the vreg that other BB's will reference it as.
4423      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4424      if (VMI != FuncInfo.ValueMap.end()) {
4425        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4426        UnorderedChains.push_back(Copy);
4427      }
4428    }
4429
4430  // Finally, if the target has anything special to do, allow it to do so.
4431  // FIXME: this should insert code into the DAG!
4432  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4433}
4434
4435static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4436                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4437  assert(!FLI.MBBMap[SrcBB]->isLandingPad() &&
4438         "Copying catch info out of a landing pad!");
4439  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4440    if (isSelector(I)) {
4441      // Apply the catch info to DestBB.
4442      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4443#ifndef NDEBUG
4444      FLI.CatchInfoFound.insert(I);
4445#endif
4446    }
4447}
4448
4449void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4450       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4451                                         FunctionLoweringInfo &FuncInfo) {
4452  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo);
4453
4454  std::vector<SDOperand> UnorderedChains;
4455
4456  // Lower any arguments needed in this block if this is the entry block.
4457  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4458    LowerArguments(LLVMBB, SDL, UnorderedChains);
4459
4460  BB = FuncInfo.MBBMap[LLVMBB];
4461  SDL.setCurrentBasicBlock(BB);
4462
4463  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4464
4465  if (ExceptionHandling && MMI && BB->isLandingPad()) {
4466    // Add a label to mark the beginning of the landing pad.  Deletion of the
4467    // landing pad can thus be detected via the MachineModuleInfo.
4468    unsigned LabelID = MMI->addLandingPad(BB);
4469    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4470                            DAG.getConstant(LabelID, MVT::i32)));
4471
4472    // Mark exception register as live in.
4473    unsigned Reg = TLI.getExceptionAddressRegister();
4474    if (Reg) BB->addLiveIn(Reg);
4475
4476    // Mark exception selector register as live in.
4477    Reg = TLI.getExceptionSelectorRegister();
4478    if (Reg) BB->addLiveIn(Reg);
4479
4480    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4481    // function and list of typeids logically belong to the invoke (or, if you
4482    // like, the basic block containing the invoke), and need to be associated
4483    // with it in the dwarf exception handling tables.  Currently however the
4484    // information is provided by an intrinsic (eh.selector) that can be moved
4485    // to unexpected places by the optimizers: if the unwind edge is critical,
4486    // then breaking it can result in the intrinsics being in the successor of
4487    // the landing pad, not the landing pad itself.  This results in exceptions
4488    // not being caught because no typeids are associated with the invoke.
4489    // This may not be the only way things can go wrong, but it is the only way
4490    // we try to work around for the moment.
4491    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4492
4493    if (Br && Br->isUnconditional()) { // Critical edge?
4494      BasicBlock::iterator I, E;
4495      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4496        if (isSelector(I))
4497          break;
4498
4499      if (I == E)
4500        // No catch info found - try to extract some from the successor.
4501        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4502    }
4503  }
4504
4505  // Lower all of the non-terminator instructions.
4506  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4507       I != E; ++I)
4508    SDL.visit(*I);
4509
4510  // Ensure that all instructions which are used outside of their defining
4511  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4512  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4513    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4514      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4515      if (VMI != FuncInfo.ValueMap.end())
4516        UnorderedChains.push_back(
4517                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4518    }
4519
4520  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4521  // ensure constants are generated when needed.  Remember the virtual registers
4522  // that need to be added to the Machine PHI nodes as input.  We cannot just
4523  // directly add them, because expansion might result in multiple MBB's for one
4524  // BB.  As such, the start of the BB might correspond to a different MBB than
4525  // the end.
4526  //
4527  TerminatorInst *TI = LLVMBB->getTerminator();
4528
4529  // Emit constants only once even if used by multiple PHI nodes.
4530  std::map<Constant*, unsigned> ConstantsOut;
4531
4532  // Vector bool would be better, but vector<bool> is really slow.
4533  std::vector<unsigned char> SuccsHandled;
4534  if (TI->getNumSuccessors())
4535    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4536
4537  // Check successor nodes' PHI nodes that expect a constant to be available
4538  // from this block.
4539  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4540    BasicBlock *SuccBB = TI->getSuccessor(succ);
4541    if (!isa<PHINode>(SuccBB->begin())) continue;
4542    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4543
4544    // If this terminator has multiple identical successors (common for
4545    // switches), only handle each succ once.
4546    unsigned SuccMBBNo = SuccMBB->getNumber();
4547    if (SuccsHandled[SuccMBBNo]) continue;
4548    SuccsHandled[SuccMBBNo] = true;
4549
4550    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4551    PHINode *PN;
4552
4553    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4554    // nodes and Machine PHI nodes, but the incoming operands have not been
4555    // emitted yet.
4556    for (BasicBlock::iterator I = SuccBB->begin();
4557         (PN = dyn_cast<PHINode>(I)); ++I) {
4558      // Ignore dead phi's.
4559      if (PN->use_empty()) continue;
4560
4561      unsigned Reg;
4562      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4563
4564      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4565        unsigned &RegOut = ConstantsOut[C];
4566        if (RegOut == 0) {
4567          RegOut = FuncInfo.CreateRegForValue(C);
4568          UnorderedChains.push_back(
4569                           SDL.CopyValueToVirtualRegister(C, RegOut));
4570        }
4571        Reg = RegOut;
4572      } else {
4573        Reg = FuncInfo.ValueMap[PHIOp];
4574        if (Reg == 0) {
4575          assert(isa<AllocaInst>(PHIOp) &&
4576                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4577                 "Didn't codegen value into a register!??");
4578          Reg = FuncInfo.CreateRegForValue(PHIOp);
4579          UnorderedChains.push_back(
4580                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4581        }
4582      }
4583
4584      // Remember that this register needs to added to the machine PHI node as
4585      // the input for this MBB.
4586      MVT::ValueType VT = TLI.getValueType(PN->getType());
4587      unsigned NumRegisters = TLI.getNumRegisters(VT);
4588      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4589        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4590    }
4591  }
4592  ConstantsOut.clear();
4593
4594  // Turn all of the unordered chains into one factored node.
4595  if (!UnorderedChains.empty()) {
4596    SDOperand Root = SDL.getRoot();
4597    if (Root.getOpcode() != ISD::EntryToken) {
4598      unsigned i = 0, e = UnorderedChains.size();
4599      for (; i != e; ++i) {
4600        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4601        if (UnorderedChains[i].Val->getOperand(0) == Root)
4602          break;  // Don't add the root if we already indirectly depend on it.
4603      }
4604
4605      if (i == e)
4606        UnorderedChains.push_back(Root);
4607    }
4608    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4609                            &UnorderedChains[0], UnorderedChains.size()));
4610  }
4611
4612  // Lower the terminator after the copies are emitted.
4613  SDL.visit(*LLVMBB->getTerminator());
4614
4615  // Copy over any CaseBlock records that may now exist due to SwitchInst
4616  // lowering, as well as any jump table information.
4617  SwitchCases.clear();
4618  SwitchCases = SDL.SwitchCases;
4619  JTCases.clear();
4620  JTCases = SDL.JTCases;
4621  BitTestCases.clear();
4622  BitTestCases = SDL.BitTestCases;
4623
4624  // Make sure the root of the DAG is up-to-date.
4625  DAG.setRoot(SDL.getRoot());
4626}
4627
4628void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4629  // Run the DAG combiner in pre-legalize mode.
4630  DAG.Combine(false, *AA);
4631
4632  DOUT << "Lowered selection DAG:\n";
4633  DEBUG(DAG.dump());
4634
4635  // Second step, hack on the DAG until it only uses operations and types that
4636  // the target supports.
4637  DAG.Legalize();
4638
4639  DOUT << "Legalized selection DAG:\n";
4640  DEBUG(DAG.dump());
4641
4642  // Run the DAG combiner in post-legalize mode.
4643  DAG.Combine(true, *AA);
4644
4645  if (ViewISelDAGs) DAG.viewGraph();
4646
4647  // Third, instruction select all of the operations to machine code, adding the
4648  // code to the MachineBasicBlock.
4649  InstructionSelectBasicBlock(DAG);
4650
4651  DOUT << "Selected machine code:\n";
4652  DEBUG(BB->dump());
4653}
4654
4655void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4656                                        FunctionLoweringInfo &FuncInfo) {
4657  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4658  {
4659    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4660    CurDAG = &DAG;
4661
4662    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4663    // types that are not supported by the target.
4664    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4665
4666    // Second step, emit the lowered DAG as machine code.
4667    CodeGenAndEmitDAG(DAG);
4668  }
4669
4670  DOUT << "Total amount of phi nodes to update: "
4671       << PHINodesToUpdate.size() << "\n";
4672  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4673          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4674               << ", " << PHINodesToUpdate[i].second << ")\n";);
4675
4676  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4677  // PHI nodes in successors.
4678  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4679    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4680      MachineInstr *PHI = PHINodesToUpdate[i].first;
4681      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4682             "This is not a machine PHI node that we are updating!");
4683      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4684      PHI->addMachineBasicBlockOperand(BB);
4685    }
4686    return;
4687  }
4688
4689  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4690    // Lower header first, if it wasn't already lowered
4691    if (!BitTestCases[i].Emitted) {
4692      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4693      CurDAG = &HSDAG;
4694      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
4695      // Set the current basic block to the mbb we wish to insert the code into
4696      BB = BitTestCases[i].Parent;
4697      HSDL.setCurrentBasicBlock(BB);
4698      // Emit the code
4699      HSDL.visitBitTestHeader(BitTestCases[i]);
4700      HSDAG.setRoot(HSDL.getRoot());
4701      CodeGenAndEmitDAG(HSDAG);
4702    }
4703
4704    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4705      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4706      CurDAG = &BSDAG;
4707      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo);
4708      // Set the current basic block to the mbb we wish to insert the code into
4709      BB = BitTestCases[i].Cases[j].ThisBB;
4710      BSDL.setCurrentBasicBlock(BB);
4711      // Emit the code
4712      if (j+1 != ej)
4713        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4714                              BitTestCases[i].Reg,
4715                              BitTestCases[i].Cases[j]);
4716      else
4717        BSDL.visitBitTestCase(BitTestCases[i].Default,
4718                              BitTestCases[i].Reg,
4719                              BitTestCases[i].Cases[j]);
4720
4721
4722      BSDAG.setRoot(BSDL.getRoot());
4723      CodeGenAndEmitDAG(BSDAG);
4724    }
4725
4726    // Update PHI Nodes
4727    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4728      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4729      MachineBasicBlock *PHIBB = PHI->getParent();
4730      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4731             "This is not a machine PHI node that we are updating!");
4732      // This is "default" BB. We have two jumps to it. From "header" BB and
4733      // from last "case" BB.
4734      if (PHIBB == BitTestCases[i].Default) {
4735        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4736        PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4737        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4738        PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4739      }
4740      // One of "cases" BB.
4741      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4742        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4743        if (cBB->succ_end() !=
4744            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4745          PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4746          PHI->addMachineBasicBlockOperand(cBB);
4747        }
4748      }
4749    }
4750  }
4751
4752  // If the JumpTable record is filled in, then we need to emit a jump table.
4753  // Updating the PHI nodes is tricky in this case, since we need to determine
4754  // whether the PHI is a successor of the range check MBB or the jump table MBB
4755  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4756    // Lower header first, if it wasn't already lowered
4757    if (!JTCases[i].first.Emitted) {
4758      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4759      CurDAG = &HSDAG;
4760      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
4761      // Set the current basic block to the mbb we wish to insert the code into
4762      BB = JTCases[i].first.HeaderBB;
4763      HSDL.setCurrentBasicBlock(BB);
4764      // Emit the code
4765      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4766      HSDAG.setRoot(HSDL.getRoot());
4767      CodeGenAndEmitDAG(HSDAG);
4768    }
4769
4770    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4771    CurDAG = &JSDAG;
4772    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo);
4773    // Set the current basic block to the mbb we wish to insert the code into
4774    BB = JTCases[i].second.MBB;
4775    JSDL.setCurrentBasicBlock(BB);
4776    // Emit the code
4777    JSDL.visitJumpTable(JTCases[i].second);
4778    JSDAG.setRoot(JSDL.getRoot());
4779    CodeGenAndEmitDAG(JSDAG);
4780
4781    // Update PHI Nodes
4782    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4783      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4784      MachineBasicBlock *PHIBB = PHI->getParent();
4785      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4786             "This is not a machine PHI node that we are updating!");
4787      // "default" BB. We can go there only from header BB.
4788      if (PHIBB == JTCases[i].second.Default) {
4789        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4790        PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4791      }
4792      // JT BB. Just iterate over successors here
4793      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4794        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4795        PHI->addMachineBasicBlockOperand(BB);
4796      }
4797    }
4798  }
4799
4800  // If the switch block involved a branch to one of the actual successors, we
4801  // need to update PHI nodes in that block.
4802  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4803    MachineInstr *PHI = PHINodesToUpdate[i].first;
4804    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4805           "This is not a machine PHI node that we are updating!");
4806    if (BB->isSuccessor(PHI->getParent())) {
4807      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4808      PHI->addMachineBasicBlockOperand(BB);
4809    }
4810  }
4811
4812  // If we generated any switch lowering information, build and codegen any
4813  // additional DAGs necessary.
4814  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4815    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4816    CurDAG = &SDAG;
4817    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo);
4818
4819    // Set the current basic block to the mbb we wish to insert the code into
4820    BB = SwitchCases[i].ThisBB;
4821    SDL.setCurrentBasicBlock(BB);
4822
4823    // Emit the code
4824    SDL.visitSwitchCase(SwitchCases[i]);
4825    SDAG.setRoot(SDL.getRoot());
4826    CodeGenAndEmitDAG(SDAG);
4827
4828    // Handle any PHI nodes in successors of this chunk, as if we were coming
4829    // from the original BB before switch expansion.  Note that PHI nodes can
4830    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4831    // handle them the right number of times.
4832    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4833      for (MachineBasicBlock::iterator Phi = BB->begin();
4834           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4835        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4836        for (unsigned pn = 0; ; ++pn) {
4837          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4838          if (PHINodesToUpdate[pn].first == Phi) {
4839            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4840            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4841            break;
4842          }
4843        }
4844      }
4845
4846      // Don't process RHS if same block as LHS.
4847      if (BB == SwitchCases[i].FalseBB)
4848        SwitchCases[i].FalseBB = 0;
4849
4850      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4851      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4852      SwitchCases[i].FalseBB = 0;
4853    }
4854    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4855  }
4856}
4857
4858
4859//===----------------------------------------------------------------------===//
4860/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4861/// target node in the graph.
4862void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4863  if (ViewSchedDAGs) DAG.viewGraph();
4864
4865  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4866
4867  if (!Ctor) {
4868    Ctor = ISHeuristic;
4869    RegisterScheduler::setDefault(Ctor);
4870  }
4871
4872  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4873  BB = SL->Run();
4874
4875  if (ViewSUnitDAGs) SL->viewGraph();
4876
4877  delete SL;
4878}
4879
4880
4881HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4882  return new HazardRecognizer();
4883}
4884
4885//===----------------------------------------------------------------------===//
4886// Helper functions used by the generated instruction selector.
4887//===----------------------------------------------------------------------===//
4888// Calls to these methods are generated by tblgen.
4889
4890/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4891/// the dag combiner simplified the 255, we still want to match.  RHS is the
4892/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4893/// specified in the .td file (e.g. 255).
4894bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4895                                    int64_t DesiredMaskS) const {
4896  uint64_t ActualMask = RHS->getValue();
4897  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4898
4899  // If the actual mask exactly matches, success!
4900  if (ActualMask == DesiredMask)
4901    return true;
4902
4903  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4904  if (ActualMask & ~DesiredMask)
4905    return false;
4906
4907  // Otherwise, the DAG Combiner may have proven that the value coming in is
4908  // either already zero or is not demanded.  Check for known zero input bits.
4909  uint64_t NeededMask = DesiredMask & ~ActualMask;
4910  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
4911    return true;
4912
4913  // TODO: check to see if missing bits are just not demanded.
4914
4915  // Otherwise, this pattern doesn't match.
4916  return false;
4917}
4918
4919/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4920/// the dag combiner simplified the 255, we still want to match.  RHS is the
4921/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4922/// specified in the .td file (e.g. 255).
4923bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4924                                    int64_t DesiredMaskS) const {
4925  uint64_t ActualMask = RHS->getValue();
4926  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4927
4928  // If the actual mask exactly matches, success!
4929  if (ActualMask == DesiredMask)
4930    return true;
4931
4932  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4933  if (ActualMask & ~DesiredMask)
4934    return false;
4935
4936  // Otherwise, the DAG Combiner may have proven that the value coming in is
4937  // either already zero or is not demanded.  Check for known zero input bits.
4938  uint64_t NeededMask = DesiredMask & ~ActualMask;
4939
4940  uint64_t KnownZero, KnownOne;
4941  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4942
4943  // If all the missing bits in the or are already known to be set, match!
4944  if ((NeededMask & KnownOne) == NeededMask)
4945    return true;
4946
4947  // TODO: check to see if missing bits are just not demanded.
4948
4949  // Otherwise, this pattern doesn't match.
4950  return false;
4951}
4952
4953
4954/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4955/// by tblgen.  Others should not call it.
4956void SelectionDAGISel::
4957SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4958  std::vector<SDOperand> InOps;
4959  std::swap(InOps, Ops);
4960
4961  Ops.push_back(InOps[0]);  // input chain.
4962  Ops.push_back(InOps[1]);  // input asm string.
4963
4964  unsigned i = 2, e = InOps.size();
4965  if (InOps[e-1].getValueType() == MVT::Flag)
4966    --e;  // Don't process a flag operand if it is here.
4967
4968  while (i != e) {
4969    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4970    if ((Flags & 7) != 4 /*MEM*/) {
4971      // Just skip over this operand, copying the operands verbatim.
4972      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4973      i += (Flags >> 3) + 1;
4974    } else {
4975      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4976      // Otherwise, this is a memory operand.  Ask the target to select it.
4977      std::vector<SDOperand> SelOps;
4978      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4979        cerr << "Could not match memory address.  Inline asm failure!\n";
4980        exit(1);
4981      }
4982
4983      // Add this to the output node.
4984      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4985      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4986                                          IntPtrTy));
4987      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4988      i += 2;
4989    }
4990  }
4991
4992  // Add the flag input back if present.
4993  if (e != InOps.size())
4994    Ops.push_back(InOps.back());
4995}
4996
4997char SelectionDAGISel::ID = 0;
4998