SelectionDAGISel.cpp revision 305635abeae1d20519b60856c89479e8b7b5d4dd
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineDebugInfoDesc.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/SchedulerRegistry.h"
38#include "llvm/CodeGen/SelectionDAG.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "llvm/Target/TargetData.h"
41#include "llvm/Target/TargetFrameInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Support/MathExtras.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Compiler.h"
49#include <algorithm>
50using namespace llvm;
51
52static cl::opt<bool>
53EnableValueProp("enable-value-prop", cl::Hidden, cl::init(false));
54
55
56#ifndef NDEBUG
57static cl::opt<bool>
58ViewISelDAGs("view-isel-dags", cl::Hidden,
59          cl::desc("Pop up a window to show isel dags as they are selected"));
60static cl::opt<bool>
61ViewSchedDAGs("view-sched-dags", cl::Hidden,
62          cl::desc("Pop up a window to show sched dags as they are processed"));
63static cl::opt<bool>
64ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
65      cl::desc("Pop up a window to show SUnit dags after they are processed"));
66#else
67static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
68#endif
69
70//===---------------------------------------------------------------------===//
71///
72/// RegisterScheduler class - Track the registration of instruction schedulers.
73///
74//===---------------------------------------------------------------------===//
75MachinePassRegistry RegisterScheduler::Registry;
76
77//===---------------------------------------------------------------------===//
78///
79/// ISHeuristic command line option for instruction schedulers.
80///
81//===---------------------------------------------------------------------===//
82static cl::opt<RegisterScheduler::FunctionPassCtor, false,
83               RegisterPassParser<RegisterScheduler> >
84ISHeuristic("pre-RA-sched",
85            cl::init(&createDefaultScheduler),
86            cl::desc("Instruction schedulers available (before register"
87                     " allocation):"));
88
89static RegisterScheduler
90defaultListDAGScheduler("default", "  Best scheduler for the target",
91                        createDefaultScheduler);
92
93namespace { struct SDISelAsmOperandInfo; }
94
95/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
96/// insertvalue or extractvalue indices that identify a member, return
97/// the linearized index of the start of the member.
98///
99static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
100                                   const unsigned *Indices,
101                                   const unsigned *IndicesEnd,
102                                   unsigned CurIndex = 0) {
103  // Base case: We're done.
104  if (Indices && Indices == IndicesEnd)
105    return CurIndex;
106
107  // Given a struct type, recursively traverse the elements.
108  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
109    for (StructType::element_iterator EB = STy->element_begin(),
110                                      EI = EB,
111                                      EE = STy->element_end();
112        EI != EE; ++EI) {
113      if (Indices && *Indices == unsigned(EI - EB))
114        return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
115      CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
116    }
117  }
118  // Given an array type, recursively traverse the elements.
119  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
120    const Type *EltTy = ATy->getElementType();
121    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
122      if (Indices && *Indices == i)
123        return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
124      CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
125    }
126  }
127  // We haven't found the type we're looking for, so keep searching.
128  return CurIndex + 1;
129}
130
131/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
132/// MVTs that represent all the individual underlying
133/// non-aggregate types that comprise it.
134///
135/// If Offsets is non-null, it points to a vector to be filled in
136/// with the in-memory offsets of each of the individual values.
137///
138static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
139                            SmallVectorImpl<MVT> &ValueVTs,
140                            SmallVectorImpl<uint64_t> *Offsets = 0,
141                            uint64_t StartingOffset = 0) {
142  // Given a struct type, recursively traverse the elements.
143  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
144    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
145    for (StructType::element_iterator EB = STy->element_begin(),
146                                      EI = EB,
147                                      EE = STy->element_end();
148         EI != EE; ++EI)
149      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
150                      StartingOffset + SL->getElementOffset(EI - EB));
151    return;
152  }
153  // Given an array type, recursively traverse the elements.
154  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
155    const Type *EltTy = ATy->getElementType();
156    uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
157    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
158      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
159                      StartingOffset + i * EltSize);
160    return;
161  }
162  // Base case: we can get an MVT for this LLVM IR type.
163  ValueVTs.push_back(TLI.getValueType(Ty));
164  if (Offsets)
165    Offsets->push_back(StartingOffset);
166}
167
168namespace {
169  /// RegsForValue - This struct represents the registers (physical or virtual)
170  /// that a particular set of values is assigned, and the type information about
171  /// the value. The most common situation is to represent one value at a time,
172  /// but struct or array values are handled element-wise as multiple values.
173  /// The splitting of aggregates is performed recursively, so that we never
174  /// have aggregate-typed registers. The values at this point do not necessarily
175  /// have legal types, so each value may require one or more registers of some
176  /// legal type.
177  ///
178  struct VISIBILITY_HIDDEN RegsForValue {
179    /// TLI - The TargetLowering object.
180    ///
181    const TargetLowering *TLI;
182
183    /// ValueVTs - The value types of the values, which may not be legal, and
184    /// may need be promoted or synthesized from one or more registers.
185    ///
186    SmallVector<MVT, 4> ValueVTs;
187
188    /// RegVTs - The value types of the registers. This is the same size as
189    /// ValueVTs and it records, for each value, what the type of the assigned
190    /// register or registers are. (Individual values are never synthesized
191    /// from more than one type of register.)
192    ///
193    /// With virtual registers, the contents of RegVTs is redundant with TLI's
194    /// getRegisterType member function, however when with physical registers
195    /// it is necessary to have a separate record of the types.
196    ///
197    SmallVector<MVT, 4> RegVTs;
198
199    /// Regs - This list holds the registers assigned to the values.
200    /// Each legal or promoted value requires one register, and each
201    /// expanded value requires multiple registers.
202    ///
203    SmallVector<unsigned, 4> Regs;
204
205    RegsForValue() : TLI(0) {}
206
207    RegsForValue(const TargetLowering &tli,
208                 const SmallVector<unsigned, 4> &regs,
209                 MVT regvt, MVT valuevt)
210      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
211    RegsForValue(const TargetLowering &tli,
212                 const SmallVector<unsigned, 4> &regs,
213                 const SmallVector<MVT, 4> &regvts,
214                 const SmallVector<MVT, 4> &valuevts)
215      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
216    RegsForValue(const TargetLowering &tli,
217                 unsigned Reg, const Type *Ty) : TLI(&tli) {
218      ComputeValueVTs(tli, Ty, ValueVTs);
219
220      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
221        MVT ValueVT = ValueVTs[Value];
222        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
223        MVT RegisterVT = TLI->getRegisterType(ValueVT);
224        for (unsigned i = 0; i != NumRegs; ++i)
225          Regs.push_back(Reg + i);
226        RegVTs.push_back(RegisterVT);
227        Reg += NumRegs;
228      }
229    }
230
231    /// append - Add the specified values to this one.
232    void append(const RegsForValue &RHS) {
233      TLI = RHS.TLI;
234      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
235      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
236      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
237    }
238
239
240    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
241    /// this value and returns the result as a ValueVTs value.  This uses
242    /// Chain/Flag as the input and updates them for the output Chain/Flag.
243    /// If the Flag pointer is NULL, no flag is used.
244    SDOperand getCopyFromRegs(SelectionDAG &DAG,
245                              SDOperand &Chain, SDOperand *Flag) const;
246
247    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
248    /// specified value into the registers specified by this object.  This uses
249    /// Chain/Flag as the input and updates them for the output Chain/Flag.
250    /// If the Flag pointer is NULL, no flag is used.
251    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
252                       SDOperand &Chain, SDOperand *Flag) const;
253
254    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
255    /// operand list.  This adds the code marker and includes the number of
256    /// values added into it.
257    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
258                              std::vector<SDOperand> &Ops) const;
259  };
260}
261
262namespace llvm {
263  //===--------------------------------------------------------------------===//
264  /// createDefaultScheduler - This creates an instruction scheduler appropriate
265  /// for the target.
266  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
267                                      SelectionDAG *DAG,
268                                      MachineBasicBlock *BB) {
269    TargetLowering &TLI = IS->getTargetLowering();
270
271    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
272      return createTDListDAGScheduler(IS, DAG, BB);
273    } else {
274      assert(TLI.getSchedulingPreference() ==
275           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
276      return createBURRListDAGScheduler(IS, DAG, BB);
277    }
278  }
279
280
281  //===--------------------------------------------------------------------===//
282  /// FunctionLoweringInfo - This contains information that is global to a
283  /// function that is used when lowering a region of the function.
284  class FunctionLoweringInfo {
285  public:
286    TargetLowering &TLI;
287    Function &Fn;
288    MachineFunction &MF;
289    MachineRegisterInfo &RegInfo;
290
291    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
292
293    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
294    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
295
296    /// ValueMap - Since we emit code for the function a basic block at a time,
297    /// we must remember which virtual registers hold the values for
298    /// cross-basic-block values.
299    DenseMap<const Value*, unsigned> ValueMap;
300
301    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
302    /// the entry block.  This allows the allocas to be efficiently referenced
303    /// anywhere in the function.
304    std::map<const AllocaInst*, int> StaticAllocaMap;
305
306#ifndef NDEBUG
307    SmallSet<Instruction*, 8> CatchInfoLost;
308    SmallSet<Instruction*, 8> CatchInfoFound;
309#endif
310
311    unsigned MakeReg(MVT VT) {
312      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
313    }
314
315    /// isExportedInst - Return true if the specified value is an instruction
316    /// exported from its block.
317    bool isExportedInst(const Value *V) {
318      return ValueMap.count(V);
319    }
320
321    unsigned CreateRegForValue(const Value *V);
322
323    unsigned InitializeRegForValue(const Value *V) {
324      unsigned &R = ValueMap[V];
325      assert(R == 0 && "Already initialized this value register!");
326      return R = CreateRegForValue(V);
327    }
328
329    struct LiveOutInfo {
330      unsigned NumSignBits;
331      APInt KnownOne, KnownZero;
332      LiveOutInfo() : NumSignBits(0) {}
333    };
334
335    /// LiveOutRegInfo - Information about live out vregs, indexed by their
336    /// register number offset by 'FirstVirtualRegister'.
337    std::vector<LiveOutInfo> LiveOutRegInfo;
338  };
339}
340
341/// isSelector - Return true if this instruction is a call to the
342/// eh.selector intrinsic.
343static bool isSelector(Instruction *I) {
344  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
345    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
346            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
347  return false;
348}
349
350/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
351/// PHI nodes or outside of the basic block that defines it, or used by a
352/// switch or atomic instruction, which may expand to multiple basic blocks.
353static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
354  if (isa<PHINode>(I)) return true;
355  BasicBlock *BB = I->getParent();
356  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
357    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
358        // FIXME: Remove switchinst special case.
359        isa<SwitchInst>(*UI))
360      return true;
361  return false;
362}
363
364/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
365/// entry block, return true.  This includes arguments used by switches, since
366/// the switch may expand into multiple basic blocks.
367static bool isOnlyUsedInEntryBlock(Argument *A) {
368  BasicBlock *Entry = A->getParent()->begin();
369  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
370    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
371      return false;  // Use not in entry block.
372  return true;
373}
374
375FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
376                                           Function &fn, MachineFunction &mf)
377    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
378
379  // Create a vreg for each argument register that is not dead and is used
380  // outside of the entry block for the function.
381  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
382       AI != E; ++AI)
383    if (!isOnlyUsedInEntryBlock(AI))
384      InitializeRegForValue(AI);
385
386  // Initialize the mapping of values to registers.  This is only set up for
387  // instruction values that are used outside of the block that defines
388  // them.
389  Function::iterator BB = Fn.begin(), EB = Fn.end();
390  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
391    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
392      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
393        const Type *Ty = AI->getAllocatedType();
394        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
395        unsigned Align =
396          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
397                   AI->getAlignment());
398
399        TySize *= CUI->getZExtValue();   // Get total allocated size.
400        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
401        StaticAllocaMap[AI] =
402          MF.getFrameInfo()->CreateStackObject(TySize, Align);
403      }
404
405  for (; BB != EB; ++BB)
406    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
407      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
408        if (!isa<AllocaInst>(I) ||
409            !StaticAllocaMap.count(cast<AllocaInst>(I)))
410          InitializeRegForValue(I);
411
412  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
413  // also creates the initial PHI MachineInstrs, though none of the input
414  // operands are populated.
415  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
416    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
417    MBBMap[BB] = MBB;
418    MF.getBasicBlockList().push_back(MBB);
419
420    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
421    // appropriate.
422    PHINode *PN;
423    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
424      if (PN->use_empty()) continue;
425
426      MVT VT = TLI.getValueType(PN->getType());
427      unsigned NumRegisters = TLI.getNumRegisters(VT);
428      unsigned PHIReg = ValueMap[PN];
429      assert(PHIReg && "PHI node does not have an assigned virtual register!");
430      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
431      for (unsigned i = 0; i != NumRegisters; ++i)
432        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
433    }
434  }
435}
436
437/// CreateRegForValue - Allocate the appropriate number of virtual registers of
438/// the correctly promoted or expanded types.  Assign these registers
439/// consecutive vreg numbers and return the first assigned number.
440///
441/// In the case that the given value has struct or array type, this function
442/// will assign registers for each member or element.
443///
444unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
445  SmallVector<MVT, 4> ValueVTs;
446  ComputeValueVTs(TLI, V->getType(), ValueVTs);
447
448  unsigned FirstReg = 0;
449  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
450    MVT ValueVT = ValueVTs[Value];
451    MVT RegisterVT = TLI.getRegisterType(ValueVT);
452
453    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
454    for (unsigned i = 0; i != NumRegs; ++i) {
455      unsigned R = MakeReg(RegisterVT);
456      if (!FirstReg) FirstReg = R;
457    }
458  }
459  return FirstReg;
460}
461
462//===----------------------------------------------------------------------===//
463/// SelectionDAGLowering - This is the common target-independent lowering
464/// implementation that is parameterized by a TargetLowering object.
465/// Also, targets can overload any lowering method.
466///
467namespace llvm {
468class SelectionDAGLowering {
469  MachineBasicBlock *CurMBB;
470
471  DenseMap<const Value*, SDOperand> NodeMap;
472
473  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
474  /// them up and then emit token factor nodes when possible.  This allows us to
475  /// get simple disambiguation between loads without worrying about alias
476  /// analysis.
477  std::vector<SDOperand> PendingLoads;
478
479  /// PendingExports - CopyToReg nodes that copy values to virtual registers
480  /// for export to other blocks need to be emitted before any terminator
481  /// instruction, but they have no other ordering requirements. We bunch them
482  /// up and the emit a single tokenfactor for them just before terminator
483  /// instructions.
484  std::vector<SDOperand> PendingExports;
485
486  /// Case - A struct to record the Value for a switch case, and the
487  /// case's target basic block.
488  struct Case {
489    Constant* Low;
490    Constant* High;
491    MachineBasicBlock* BB;
492
493    Case() : Low(0), High(0), BB(0) { }
494    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
495      Low(low), High(high), BB(bb) { }
496    uint64_t size() const {
497      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
498      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
499      return (rHigh - rLow + 1ULL);
500    }
501  };
502
503  struct CaseBits {
504    uint64_t Mask;
505    MachineBasicBlock* BB;
506    unsigned Bits;
507
508    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
509      Mask(mask), BB(bb), Bits(bits) { }
510  };
511
512  typedef std::vector<Case>           CaseVector;
513  typedef std::vector<CaseBits>       CaseBitsVector;
514  typedef CaseVector::iterator        CaseItr;
515  typedef std::pair<CaseItr, CaseItr> CaseRange;
516
517  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
518  /// of conditional branches.
519  struct CaseRec {
520    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
521    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
522
523    /// CaseBB - The MBB in which to emit the compare and branch
524    MachineBasicBlock *CaseBB;
525    /// LT, GE - If nonzero, we know the current case value must be less-than or
526    /// greater-than-or-equal-to these Constants.
527    Constant *LT;
528    Constant *GE;
529    /// Range - A pair of iterators representing the range of case values to be
530    /// processed at this point in the binary search tree.
531    CaseRange Range;
532  };
533
534  typedef std::vector<CaseRec> CaseRecVector;
535
536  /// The comparison function for sorting the switch case values in the vector.
537  /// WARNING: Case ranges should be disjoint!
538  struct CaseCmp {
539    bool operator () (const Case& C1, const Case& C2) {
540      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
541      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
542      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
543      return CI1->getValue().slt(CI2->getValue());
544    }
545  };
546
547  struct CaseBitsCmp {
548    bool operator () (const CaseBits& C1, const CaseBits& C2) {
549      return C1.Bits > C2.Bits;
550    }
551  };
552
553  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
554
555public:
556  // TLI - This is information that describes the available target features we
557  // need for lowering.  This indicates when operations are unavailable,
558  // implemented with a libcall, etc.
559  TargetLowering &TLI;
560  SelectionDAG &DAG;
561  const TargetData *TD;
562  AliasAnalysis &AA;
563
564  /// SwitchCases - Vector of CaseBlock structures used to communicate
565  /// SwitchInst code generation information.
566  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
567  /// JTCases - Vector of JumpTable structures used to communicate
568  /// SwitchInst code generation information.
569  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
570  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
571
572  /// FuncInfo - Information about the function as a whole.
573  ///
574  FunctionLoweringInfo &FuncInfo;
575
576  /// GCI - Garbage collection metadata for the function.
577  CollectorMetadata *GCI;
578
579  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
580                       AliasAnalysis &aa,
581                       FunctionLoweringInfo &funcinfo,
582                       CollectorMetadata *gci)
583    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
584      FuncInfo(funcinfo), GCI(gci) {
585  }
586
587  /// getRoot - Return the current virtual root of the Selection DAG,
588  /// flushing any PendingLoad items. This must be done before emitting
589  /// a store or any other node that may need to be ordered after any
590  /// prior load instructions.
591  ///
592  SDOperand getRoot() {
593    if (PendingLoads.empty())
594      return DAG.getRoot();
595
596    if (PendingLoads.size() == 1) {
597      SDOperand Root = PendingLoads[0];
598      DAG.setRoot(Root);
599      PendingLoads.clear();
600      return Root;
601    }
602
603    // Otherwise, we have to make a token factor node.
604    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
605                                 &PendingLoads[0], PendingLoads.size());
606    PendingLoads.clear();
607    DAG.setRoot(Root);
608    return Root;
609  }
610
611  /// getControlRoot - Similar to getRoot, but instead of flushing all the
612  /// PendingLoad items, flush all the PendingExports items. It is necessary
613  /// to do this before emitting a terminator instruction.
614  ///
615  SDOperand getControlRoot() {
616    SDOperand Root = DAG.getRoot();
617
618    if (PendingExports.empty())
619      return Root;
620
621    // Turn all of the CopyToReg chains into one factored node.
622    if (Root.getOpcode() != ISD::EntryToken) {
623      unsigned i = 0, e = PendingExports.size();
624      for (; i != e; ++i) {
625        assert(PendingExports[i].Val->getNumOperands() > 1);
626        if (PendingExports[i].Val->getOperand(0) == Root)
627          break;  // Don't add the root if we already indirectly depend on it.
628      }
629
630      if (i == e)
631        PendingExports.push_back(Root);
632    }
633
634    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
635                       &PendingExports[0],
636                       PendingExports.size());
637    PendingExports.clear();
638    DAG.setRoot(Root);
639    return Root;
640  }
641
642  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
643
644  void visit(Instruction &I) { visit(I.getOpcode(), I); }
645
646  void visit(unsigned Opcode, User &I) {
647    // Note: this doesn't use InstVisitor, because it has to work with
648    // ConstantExpr's in addition to instructions.
649    switch (Opcode) {
650    default: assert(0 && "Unknown instruction type encountered!");
651             abort();
652      // Build the switch statement using the Instruction.def file.
653#define HANDLE_INST(NUM, OPCODE, CLASS) \
654    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
655#include "llvm/Instruction.def"
656    }
657  }
658
659  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
660
661  SDOperand getValue(const Value *V);
662
663  void setValue(const Value *V, SDOperand NewN) {
664    SDOperand &N = NodeMap[V];
665    assert(N.Val == 0 && "Already set a value for this node!");
666    N = NewN;
667  }
668
669  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
670                            std::set<unsigned> &OutputRegs,
671                            std::set<unsigned> &InputRegs);
672
673  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
674                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
675                            unsigned Opc);
676  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
677  void ExportFromCurrentBlock(Value *V);
678  void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
679                   MachineBasicBlock *LandingPad = NULL);
680
681  // Terminator instructions.
682  void visitRet(ReturnInst &I);
683  void visitBr(BranchInst &I);
684  void visitSwitch(SwitchInst &I);
685  void visitUnreachable(UnreachableInst &I) { /* noop */ }
686
687  // Helpers for visitSwitch
688  bool handleSmallSwitchRange(CaseRec& CR,
689                              CaseRecVector& WorkList,
690                              Value* SV,
691                              MachineBasicBlock* Default);
692  bool handleJTSwitchCase(CaseRec& CR,
693                          CaseRecVector& WorkList,
694                          Value* SV,
695                          MachineBasicBlock* Default);
696  bool handleBTSplitSwitchCase(CaseRec& CR,
697                               CaseRecVector& WorkList,
698                               Value* SV,
699                               MachineBasicBlock* Default);
700  bool handleBitTestsSwitchCase(CaseRec& CR,
701                                CaseRecVector& WorkList,
702                                Value* SV,
703                                MachineBasicBlock* Default);
704  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
705  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
706  void visitBitTestCase(MachineBasicBlock* NextMBB,
707                        unsigned Reg,
708                        SelectionDAGISel::BitTestCase &B);
709  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
710  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
711                            SelectionDAGISel::JumpTableHeader &JTH);
712
713  // These all get lowered before this pass.
714  void visitInvoke(InvokeInst &I);
715  void visitUnwind(UnwindInst &I);
716
717  void visitBinary(User &I, unsigned OpCode);
718  void visitShift(User &I, unsigned Opcode);
719  void visitAdd(User &I) {
720    if (I.getType()->isFPOrFPVector())
721      visitBinary(I, ISD::FADD);
722    else
723      visitBinary(I, ISD::ADD);
724  }
725  void visitSub(User &I);
726  void visitMul(User &I) {
727    if (I.getType()->isFPOrFPVector())
728      visitBinary(I, ISD::FMUL);
729    else
730      visitBinary(I, ISD::MUL);
731  }
732  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
733  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
734  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
735  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
736  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
737  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
738  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
739  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
740  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
741  void visitShl (User &I) { visitShift(I, ISD::SHL); }
742  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
743  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
744  void visitICmp(User &I);
745  void visitFCmp(User &I);
746  void visitVICmp(User &I);
747  void visitVFCmp(User &I);
748  // Visit the conversion instructions
749  void visitTrunc(User &I);
750  void visitZExt(User &I);
751  void visitSExt(User &I);
752  void visitFPTrunc(User &I);
753  void visitFPExt(User &I);
754  void visitFPToUI(User &I);
755  void visitFPToSI(User &I);
756  void visitUIToFP(User &I);
757  void visitSIToFP(User &I);
758  void visitPtrToInt(User &I);
759  void visitIntToPtr(User &I);
760  void visitBitCast(User &I);
761
762  void visitExtractElement(User &I);
763  void visitInsertElement(User &I);
764  void visitShuffleVector(User &I);
765
766  void visitExtractValue(ExtractValueInst &I);
767  void visitInsertValue(InsertValueInst &I);
768
769  void visitGetElementPtr(User &I);
770  void visitSelect(User &I);
771
772  void visitMalloc(MallocInst &I);
773  void visitFree(FreeInst &I);
774  void visitAlloca(AllocaInst &I);
775  void visitLoad(LoadInst &I);
776  void visitStore(StoreInst &I);
777  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
778  void visitCall(CallInst &I);
779  void visitInlineAsm(CallSite CS);
780  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
781  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
782
783  void visitVAStart(CallInst &I);
784  void visitVAArg(VAArgInst &I);
785  void visitVAEnd(CallInst &I);
786  void visitVACopy(CallInst &I);
787
788  void visitGetResult(GetResultInst &I);
789
790  void visitUserOp1(Instruction &I) {
791    assert(0 && "UserOp1 should not exist at instruction selection time!");
792    abort();
793  }
794  void visitUserOp2(Instruction &I) {
795    assert(0 && "UserOp2 should not exist at instruction selection time!");
796    abort();
797  }
798
799private:
800  inline const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
801
802};
803} // end namespace llvm
804
805
806/// getCopyFromParts - Create a value that contains the specified legal parts
807/// combined into the value they represent.  If the parts combine to a type
808/// larger then ValueVT then AssertOp can be used to specify whether the extra
809/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
810/// (ISD::AssertSext).
811static SDOperand getCopyFromParts(SelectionDAG &DAG,
812                                  const SDOperand *Parts,
813                                  unsigned NumParts,
814                                  MVT PartVT,
815                                  MVT ValueVT,
816                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
817  assert(NumParts > 0 && "No parts to assemble!");
818  TargetLowering &TLI = DAG.getTargetLoweringInfo();
819  SDOperand Val = Parts[0];
820
821  if (NumParts > 1) {
822    // Assemble the value from multiple parts.
823    if (!ValueVT.isVector()) {
824      unsigned PartBits = PartVT.getSizeInBits();
825      unsigned ValueBits = ValueVT.getSizeInBits();
826
827      // Assemble the power of 2 part.
828      unsigned RoundParts = NumParts & (NumParts - 1) ?
829        1 << Log2_32(NumParts) : NumParts;
830      unsigned RoundBits = PartBits * RoundParts;
831      MVT RoundVT = RoundBits == ValueBits ?
832        ValueVT : MVT::getIntegerVT(RoundBits);
833      SDOperand Lo, Hi;
834
835      if (RoundParts > 2) {
836        MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
837        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
838        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
839                              PartVT, HalfVT);
840      } else {
841        Lo = Parts[0];
842        Hi = Parts[1];
843      }
844      if (TLI.isBigEndian())
845        std::swap(Lo, Hi);
846      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
847
848      if (RoundParts < NumParts) {
849        // Assemble the trailing non-power-of-2 part.
850        unsigned OddParts = NumParts - RoundParts;
851        MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
852        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
853
854        // Combine the round and odd parts.
855        Lo = Val;
856        if (TLI.isBigEndian())
857          std::swap(Lo, Hi);
858        MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
859        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
860        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
861                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
862                                         TLI.getShiftAmountTy()));
863        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
864        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
865      }
866    } else {
867      // Handle a multi-element vector.
868      MVT IntermediateVT, RegisterVT;
869      unsigned NumIntermediates;
870      unsigned NumRegs =
871        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
872                                   RegisterVT);
873      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
874      NumParts = NumRegs; // Silence a compiler warning.
875      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
876      assert(RegisterVT == Parts[0].getValueType() &&
877             "Part type doesn't match part!");
878
879      // Assemble the parts into intermediate operands.
880      SmallVector<SDOperand, 8> Ops(NumIntermediates);
881      if (NumIntermediates == NumParts) {
882        // If the register was not expanded, truncate or copy the value,
883        // as appropriate.
884        for (unsigned i = 0; i != NumParts; ++i)
885          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
886                                    PartVT, IntermediateVT);
887      } else if (NumParts > 0) {
888        // If the intermediate type was expanded, build the intermediate operands
889        // from the parts.
890        assert(NumParts % NumIntermediates == 0 &&
891               "Must expand into a divisible number of parts!");
892        unsigned Factor = NumParts / NumIntermediates;
893        for (unsigned i = 0; i != NumIntermediates; ++i)
894          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
895                                    PartVT, IntermediateVT);
896      }
897
898      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
899      // operands.
900      Val = DAG.getNode(IntermediateVT.isVector() ?
901                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
902                        ValueVT, &Ops[0], NumIntermediates);
903    }
904  }
905
906  // There is now one part, held in Val.  Correct it to match ValueVT.
907  PartVT = Val.getValueType();
908
909  if (PartVT == ValueVT)
910    return Val;
911
912  if (PartVT.isVector()) {
913    assert(ValueVT.isVector() && "Unknown vector conversion!");
914    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
915  }
916
917  if (ValueVT.isVector()) {
918    assert(ValueVT.getVectorElementType() == PartVT &&
919           ValueVT.getVectorNumElements() == 1 &&
920           "Only trivial scalar-to-vector conversions should get here!");
921    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
922  }
923
924  if (PartVT.isInteger() &&
925      ValueVT.isInteger()) {
926    if (ValueVT.bitsLT(PartVT)) {
927      // For a truncate, see if we have any information to
928      // indicate whether the truncated bits will always be
929      // zero or sign-extension.
930      if (AssertOp != ISD::DELETED_NODE)
931        Val = DAG.getNode(AssertOp, PartVT, Val,
932                          DAG.getValueType(ValueVT));
933      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
934    } else {
935      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
936    }
937  }
938
939  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
940    if (ValueVT.bitsLT(Val.getValueType()))
941      // FP_ROUND's are always exact here.
942      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
943                         DAG.getIntPtrConstant(1));
944    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
945  }
946
947  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
948    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
949
950  assert(0 && "Unknown mismatch!");
951  return SDOperand();
952}
953
954/// getCopyToParts - Create a series of nodes that contain the specified value
955/// split into legal parts.  If the parts contain more bits than Val, then, for
956/// integers, ExtendKind can be used to specify how to generate the extra bits.
957static void getCopyToParts(SelectionDAG &DAG,
958                           SDOperand Val,
959                           SDOperand *Parts,
960                           unsigned NumParts,
961                           MVT PartVT,
962                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
963  TargetLowering &TLI = DAG.getTargetLoweringInfo();
964  MVT PtrVT = TLI.getPointerTy();
965  MVT ValueVT = Val.getValueType();
966  unsigned PartBits = PartVT.getSizeInBits();
967  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
968
969  if (!NumParts)
970    return;
971
972  if (!ValueVT.isVector()) {
973    if (PartVT == ValueVT) {
974      assert(NumParts == 1 && "No-op copy with multiple parts!");
975      Parts[0] = Val;
976      return;
977    }
978
979    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
980      // If the parts cover more bits than the value has, promote the value.
981      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
982        assert(NumParts == 1 && "Do not know what to promote to!");
983        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
984      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
985        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
986        Val = DAG.getNode(ExtendKind, ValueVT, Val);
987      } else {
988        assert(0 && "Unknown mismatch!");
989      }
990    } else if (PartBits == ValueVT.getSizeInBits()) {
991      // Different types of the same size.
992      assert(NumParts == 1 && PartVT != ValueVT);
993      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
994    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
995      // If the parts cover less bits than value has, truncate the value.
996      if (PartVT.isInteger() && ValueVT.isInteger()) {
997        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
998        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
999      } else {
1000        assert(0 && "Unknown mismatch!");
1001      }
1002    }
1003
1004    // The value may have changed - recompute ValueVT.
1005    ValueVT = Val.getValueType();
1006    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
1007           "Failed to tile the value with PartVT!");
1008
1009    if (NumParts == 1) {
1010      assert(PartVT == ValueVT && "Type conversion failed!");
1011      Parts[0] = Val;
1012      return;
1013    }
1014
1015    // Expand the value into multiple parts.
1016    if (NumParts & (NumParts - 1)) {
1017      // The number of parts is not a power of 2.  Split off and copy the tail.
1018      assert(PartVT.isInteger() && ValueVT.isInteger() &&
1019             "Do not know what to expand to!");
1020      unsigned RoundParts = 1 << Log2_32(NumParts);
1021      unsigned RoundBits = RoundParts * PartBits;
1022      unsigned OddParts = NumParts - RoundParts;
1023      SDOperand OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
1024                                     DAG.getConstant(RoundBits,
1025                                                     TLI.getShiftAmountTy()));
1026      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
1027      if (TLI.isBigEndian())
1028        // The odd parts were reversed by getCopyToParts - unreverse them.
1029        std::reverse(Parts + RoundParts, Parts + NumParts);
1030      NumParts = RoundParts;
1031      ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1032      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1033    }
1034
1035    // The number of parts is a power of 2.  Repeatedly bisect the value using
1036    // EXTRACT_ELEMENT.
1037    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
1038                           MVT::getIntegerVT(ValueVT.getSizeInBits()),
1039                           Val);
1040    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
1041      for (unsigned i = 0; i < NumParts; i += StepSize) {
1042        unsigned ThisBits = StepSize * PartBits / 2;
1043        MVT ThisVT = MVT::getIntegerVT (ThisBits);
1044        SDOperand &Part0 = Parts[i];
1045        SDOperand &Part1 = Parts[i+StepSize/2];
1046
1047        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1048                            DAG.getConstant(1, PtrVT));
1049        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1050                            DAG.getConstant(0, PtrVT));
1051
1052        if (ThisBits == PartBits && ThisVT != PartVT) {
1053          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
1054          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
1055        }
1056      }
1057    }
1058
1059    if (TLI.isBigEndian())
1060      std::reverse(Parts, Parts + NumParts);
1061
1062    return;
1063  }
1064
1065  // Vector ValueVT.
1066  if (NumParts == 1) {
1067    if (PartVT != ValueVT) {
1068      if (PartVT.isVector()) {
1069        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1070      } else {
1071        assert(ValueVT.getVectorElementType() == PartVT &&
1072               ValueVT.getVectorNumElements() == 1 &&
1073               "Only trivial vector-to-scalar conversions should get here!");
1074        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
1075                          DAG.getConstant(0, PtrVT));
1076      }
1077    }
1078
1079    Parts[0] = Val;
1080    return;
1081  }
1082
1083  // Handle a multi-element vector.
1084  MVT IntermediateVT, RegisterVT;
1085  unsigned NumIntermediates;
1086  unsigned NumRegs =
1087    DAG.getTargetLoweringInfo()
1088      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1089                              RegisterVT);
1090  unsigned NumElements = ValueVT.getVectorNumElements();
1091
1092  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1093  NumParts = NumRegs; // Silence a compiler warning.
1094  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1095
1096  // Split the vector into intermediate operands.
1097  SmallVector<SDOperand, 8> Ops(NumIntermediates);
1098  for (unsigned i = 0; i != NumIntermediates; ++i)
1099    if (IntermediateVT.isVector())
1100      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
1101                           IntermediateVT, Val,
1102                           DAG.getConstant(i * (NumElements / NumIntermediates),
1103                                           PtrVT));
1104    else
1105      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
1106                           IntermediateVT, Val,
1107                           DAG.getConstant(i, PtrVT));
1108
1109  // Split the intermediate operands into legal parts.
1110  if (NumParts == NumIntermediates) {
1111    // If the register was not expanded, promote or copy the value,
1112    // as appropriate.
1113    for (unsigned i = 0; i != NumParts; ++i)
1114      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
1115  } else if (NumParts > 0) {
1116    // If the intermediate type was expanded, split each the value into
1117    // legal parts.
1118    assert(NumParts % NumIntermediates == 0 &&
1119           "Must expand into a divisible number of parts!");
1120    unsigned Factor = NumParts / NumIntermediates;
1121    for (unsigned i = 0; i != NumIntermediates; ++i)
1122      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
1123  }
1124}
1125
1126
1127SDOperand SelectionDAGLowering::getValue(const Value *V) {
1128  SDOperand &N = NodeMap[V];
1129  if (N.Val) return N;
1130
1131  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
1132    MVT VT = TLI.getValueType(V->getType(), true);
1133
1134    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1135      return N = DAG.getConstant(CI->getValue(), VT);
1136
1137    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
1138      return N = DAG.getGlobalAddress(GV, VT);
1139
1140    if (isa<ConstantPointerNull>(C))
1141      return N = DAG.getConstant(0, TLI.getPointerTy());
1142
1143    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1144      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
1145
1146    if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
1147        !V->getType()->isAggregateType())
1148      return N = DAG.getNode(ISD::UNDEF, VT);
1149
1150    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1151      visit(CE->getOpcode(), *CE);
1152      SDOperand N1 = NodeMap[V];
1153      assert(N1.Val && "visit didn't populate the ValueMap!");
1154      return N1;
1155    }
1156
1157    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1158      SmallVector<SDOperand, 4> Constants;
1159      SmallVector<MVT, 4> ValueVTs;
1160      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1161           OI != OE; ++OI) {
1162        SDNode *Val = getValue(*OI).Val;
1163        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) {
1164          Constants.push_back(SDOperand(Val, i));
1165          ValueVTs.push_back(Val->getValueType(i));
1166        }
1167      }
1168      return DAG.getNode(ISD::MERGE_VALUES,
1169                         DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1170                         &Constants[0], Constants.size());
1171    }
1172
1173    if (const ArrayType *ATy = dyn_cast<ArrayType>(C->getType())) {
1174      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1175             "Unknown array constant!");
1176      unsigned NumElts = ATy->getNumElements();
1177      if (NumElts == 0)
1178        return SDOperand(); // empty array
1179      MVT EltVT = TLI.getValueType(ATy->getElementType());
1180      SmallVector<SDOperand, 4> Constants(NumElts);
1181      SmallVector<MVT, 4> ValueVTs(NumElts, EltVT);
1182      for (unsigned i = 0, e = NumElts; i != e; ++i) {
1183        if (isa<UndefValue>(C))
1184          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1185        else if (EltVT.isFloatingPoint())
1186          Constants[i] = DAG.getConstantFP(0, EltVT);
1187        else
1188          Constants[i] = DAG.getConstant(0, EltVT);
1189      }
1190      return DAG.getNode(ISD::MERGE_VALUES,
1191                         DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1192                         &Constants[0], Constants.size());
1193    }
1194
1195    if (const StructType *STy = dyn_cast<StructType>(C->getType())) {
1196      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1197             "Unknown struct constant!");
1198      unsigned NumElts = STy->getNumElements();
1199      if (NumElts == 0)
1200        return SDOperand(); // empty struct
1201      SmallVector<SDOperand, 4> Constants(NumElts);
1202      SmallVector<MVT, 4> ValueVTs(NumElts);
1203      for (unsigned i = 0, e = NumElts; i != e; ++i) {
1204        MVT EltVT = TLI.getValueType(STy->getElementType(i));
1205        ValueVTs[i] = EltVT;
1206        if (isa<UndefValue>(C))
1207          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1208        else if (EltVT.isFloatingPoint())
1209          Constants[i] = DAG.getConstantFP(0, EltVT);
1210        else
1211          Constants[i] = DAG.getConstant(0, EltVT);
1212      }
1213      return DAG.getNode(ISD::MERGE_VALUES,
1214                         DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1215                         &Constants[0], Constants.size());
1216    }
1217
1218    const VectorType *VecTy = cast<VectorType>(V->getType());
1219    unsigned NumElements = VecTy->getNumElements();
1220
1221    // Now that we know the number and type of the elements, get that number of
1222    // elements into the Ops array based on what kind of constant it is.
1223    SmallVector<SDOperand, 16> Ops;
1224    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1225      for (unsigned i = 0; i != NumElements; ++i)
1226        Ops.push_back(getValue(CP->getOperand(i)));
1227    } else {
1228      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1229             "Unknown vector constant!");
1230      MVT EltVT = TLI.getValueType(VecTy->getElementType());
1231
1232      SDOperand Op;
1233      if (isa<UndefValue>(C))
1234        Op = DAG.getNode(ISD::UNDEF, EltVT);
1235      else if (EltVT.isFloatingPoint())
1236        Op = DAG.getConstantFP(0, EltVT);
1237      else
1238        Op = DAG.getConstant(0, EltVT);
1239      Ops.assign(NumElements, Op);
1240    }
1241
1242    // Create a BUILD_VECTOR node.
1243    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1244  }
1245
1246  // If this is a static alloca, generate it as the frameindex instead of
1247  // computation.
1248  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1249    std::map<const AllocaInst*, int>::iterator SI =
1250      FuncInfo.StaticAllocaMap.find(AI);
1251    if (SI != FuncInfo.StaticAllocaMap.end())
1252      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1253  }
1254
1255  unsigned InReg = FuncInfo.ValueMap[V];
1256  assert(InReg && "Value not in map!");
1257
1258  RegsForValue RFV(TLI, InReg, V->getType());
1259  SDOperand Chain = DAG.getEntryNode();
1260  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1261}
1262
1263
1264void SelectionDAGLowering::visitRet(ReturnInst &I) {
1265  if (I.getNumOperands() == 0) {
1266    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
1267    return;
1268  }
1269
1270  SmallVector<SDOperand, 8> NewValues;
1271  NewValues.push_back(getControlRoot());
1272  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1273    SDOperand RetOp = getValue(I.getOperand(i));
1274
1275    SmallVector<MVT, 4> ValueVTs;
1276    ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
1277    for (unsigned j = 0, f = ValueVTs.size(); j != f; ++j) {
1278      MVT VT = ValueVTs[j];
1279
1280      // FIXME: C calling convention requires the return type to be promoted to
1281      // at least 32-bit. But this is not necessary for non-C calling conventions.
1282      if (VT.isInteger()) {
1283        MVT MinVT = TLI.getRegisterType(MVT::i32);
1284        if (VT.bitsLT(MinVT))
1285          VT = MinVT;
1286      }
1287
1288      unsigned NumParts = TLI.getNumRegisters(VT);
1289      MVT PartVT = TLI.getRegisterType(VT);
1290      SmallVector<SDOperand, 4> Parts(NumParts);
1291      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1292
1293      const Function *F = I.getParent()->getParent();
1294      if (F->paramHasAttr(0, ParamAttr::SExt))
1295        ExtendKind = ISD::SIGN_EXTEND;
1296      else if (F->paramHasAttr(0, ParamAttr::ZExt))
1297        ExtendKind = ISD::ZERO_EXTEND;
1298
1299      getCopyToParts(DAG, SDOperand(RetOp.Val, RetOp.ResNo + j),
1300                     &Parts[0], NumParts, PartVT, ExtendKind);
1301
1302      for (unsigned i = 0; i < NumParts; ++i) {
1303        NewValues.push_back(Parts[i]);
1304        NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
1305      }
1306    }
1307  }
1308  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1309                          &NewValues[0], NewValues.size()));
1310}
1311
1312/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1313/// the current basic block, add it to ValueMap now so that we'll get a
1314/// CopyTo/FromReg.
1315void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1316  // No need to export constants.
1317  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1318
1319  // Already exported?
1320  if (FuncInfo.isExportedInst(V)) return;
1321
1322  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1323  CopyValueToVirtualRegister(V, Reg);
1324}
1325
1326bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1327                                                    const BasicBlock *FromBB) {
1328  // The operands of the setcc have to be in this block.  We don't know
1329  // how to export them from some other block.
1330  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1331    // Can export from current BB.
1332    if (VI->getParent() == FromBB)
1333      return true;
1334
1335    // Is already exported, noop.
1336    return FuncInfo.isExportedInst(V);
1337  }
1338
1339  // If this is an argument, we can export it if the BB is the entry block or
1340  // if it is already exported.
1341  if (isa<Argument>(V)) {
1342    if (FromBB == &FromBB->getParent()->getEntryBlock())
1343      return true;
1344
1345    // Otherwise, can only export this if it is already exported.
1346    return FuncInfo.isExportedInst(V);
1347  }
1348
1349  // Otherwise, constants can always be exported.
1350  return true;
1351}
1352
1353static bool InBlock(const Value *V, const BasicBlock *BB) {
1354  if (const Instruction *I = dyn_cast<Instruction>(V))
1355    return I->getParent() == BB;
1356  return true;
1357}
1358
1359/// FindMergedConditions - If Cond is an expression like
1360void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1361                                                MachineBasicBlock *TBB,
1362                                                MachineBasicBlock *FBB,
1363                                                MachineBasicBlock *CurBB,
1364                                                unsigned Opc) {
1365  // If this node is not part of the or/and tree, emit it as a branch.
1366  Instruction *BOp = dyn_cast<Instruction>(Cond);
1367
1368  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1369      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1370      BOp->getParent() != CurBB->getBasicBlock() ||
1371      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1372      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1373    const BasicBlock *BB = CurBB->getBasicBlock();
1374
1375    // If the leaf of the tree is a comparison, merge the condition into
1376    // the caseblock.
1377    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1378        // The operands of the cmp have to be in this block.  We don't know
1379        // how to export them from some other block.  If this is the first block
1380        // of the sequence, no exporting is needed.
1381        (CurBB == CurMBB ||
1382         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1383          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1384      BOp = cast<Instruction>(Cond);
1385      ISD::CondCode Condition;
1386      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1387        switch (IC->getPredicate()) {
1388        default: assert(0 && "Unknown icmp predicate opcode!");
1389        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1390        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1391        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1392        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1393        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1394        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1395        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1396        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1397        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1398        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1399        }
1400      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1401        ISD::CondCode FPC, FOC;
1402        switch (FC->getPredicate()) {
1403        default: assert(0 && "Unknown fcmp predicate opcode!");
1404        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1405        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1406        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1407        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1408        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1409        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1410        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1411        case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
1412        case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
1413        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1414        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1415        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1416        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1417        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1418        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1419        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1420        }
1421        if (FiniteOnlyFPMath())
1422          Condition = FOC;
1423        else
1424          Condition = FPC;
1425      } else {
1426        Condition = ISD::SETEQ; // silence warning.
1427        assert(0 && "Unknown compare instruction");
1428      }
1429
1430      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1431                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1432      SwitchCases.push_back(CB);
1433      return;
1434    }
1435
1436    // Create a CaseBlock record representing this branch.
1437    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1438                                   NULL, TBB, FBB, CurBB);
1439    SwitchCases.push_back(CB);
1440    return;
1441  }
1442
1443
1444  //  Create TmpBB after CurBB.
1445  MachineFunction::iterator BBI = CurBB;
1446  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1447  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1448
1449  if (Opc == Instruction::Or) {
1450    // Codegen X | Y as:
1451    //   jmp_if_X TBB
1452    //   jmp TmpBB
1453    // TmpBB:
1454    //   jmp_if_Y TBB
1455    //   jmp FBB
1456    //
1457
1458    // Emit the LHS condition.
1459    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1460
1461    // Emit the RHS condition into TmpBB.
1462    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1463  } else {
1464    assert(Opc == Instruction::And && "Unknown merge op!");
1465    // Codegen X & Y as:
1466    //   jmp_if_X TmpBB
1467    //   jmp FBB
1468    // TmpBB:
1469    //   jmp_if_Y TBB
1470    //   jmp FBB
1471    //
1472    //  This requires creation of TmpBB after CurBB.
1473
1474    // Emit the LHS condition.
1475    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1476
1477    // Emit the RHS condition into TmpBB.
1478    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1479  }
1480}
1481
1482/// If the set of cases should be emitted as a series of branches, return true.
1483/// If we should emit this as a bunch of and/or'd together conditions, return
1484/// false.
1485static bool
1486ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1487  if (Cases.size() != 2) return true;
1488
1489  // If this is two comparisons of the same values or'd or and'd together, they
1490  // will get folded into a single comparison, so don't emit two blocks.
1491  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1492       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1493      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1494       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1495    return false;
1496  }
1497
1498  return true;
1499}
1500
1501void SelectionDAGLowering::visitBr(BranchInst &I) {
1502  // Update machine-CFG edges.
1503  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1504
1505  // Figure out which block is immediately after the current one.
1506  MachineBasicBlock *NextBlock = 0;
1507  MachineFunction::iterator BBI = CurMBB;
1508  if (++BBI != CurMBB->getParent()->end())
1509    NextBlock = BBI;
1510
1511  if (I.isUnconditional()) {
1512    // Update machine-CFG edges.
1513    CurMBB->addSuccessor(Succ0MBB);
1514
1515    // If this is not a fall-through branch, emit the branch.
1516    if (Succ0MBB != NextBlock)
1517      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1518                              DAG.getBasicBlock(Succ0MBB)));
1519    return;
1520  }
1521
1522  // If this condition is one of the special cases we handle, do special stuff
1523  // now.
1524  Value *CondVal = I.getCondition();
1525  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1526
1527  // If this is a series of conditions that are or'd or and'd together, emit
1528  // this as a sequence of branches instead of setcc's with and/or operations.
1529  // For example, instead of something like:
1530  //     cmp A, B
1531  //     C = seteq
1532  //     cmp D, E
1533  //     F = setle
1534  //     or C, F
1535  //     jnz foo
1536  // Emit:
1537  //     cmp A, B
1538  //     je foo
1539  //     cmp D, E
1540  //     jle foo
1541  //
1542  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1543    if (BOp->hasOneUse() &&
1544        (BOp->getOpcode() == Instruction::And ||
1545         BOp->getOpcode() == Instruction::Or)) {
1546      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1547      // If the compares in later blocks need to use values not currently
1548      // exported from this block, export them now.  This block should always
1549      // be the first entry.
1550      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1551
1552      // Allow some cases to be rejected.
1553      if (ShouldEmitAsBranches(SwitchCases)) {
1554        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1555          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1556          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1557        }
1558
1559        // Emit the branch for this block.
1560        visitSwitchCase(SwitchCases[0]);
1561        SwitchCases.erase(SwitchCases.begin());
1562        return;
1563      }
1564
1565      // Okay, we decided not to do this, remove any inserted MBB's and clear
1566      // SwitchCases.
1567      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1568        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1569
1570      SwitchCases.clear();
1571    }
1572  }
1573
1574  // Create a CaseBlock record representing this branch.
1575  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1576                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1577  // Use visitSwitchCase to actually insert the fast branch sequence for this
1578  // cond branch.
1579  visitSwitchCase(CB);
1580}
1581
1582/// visitSwitchCase - Emits the necessary code to represent a single node in
1583/// the binary search tree resulting from lowering a switch instruction.
1584void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1585  SDOperand Cond;
1586  SDOperand CondLHS = getValue(CB.CmpLHS);
1587
1588  // Build the setcc now.
1589  if (CB.CmpMHS == NULL) {
1590    // Fold "(X == true)" to X and "(X == false)" to !X to
1591    // handle common cases produced by branch lowering.
1592    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1593      Cond = CondLHS;
1594    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1595      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1596      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1597    } else
1598      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1599  } else {
1600    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1601
1602    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1603    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1604
1605    SDOperand CmpOp = getValue(CB.CmpMHS);
1606    MVT VT = CmpOp.getValueType();
1607
1608    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1609      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1610    } else {
1611      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1612      Cond = DAG.getSetCC(MVT::i1, SUB,
1613                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1614    }
1615  }
1616
1617  // Update successor info
1618  CurMBB->addSuccessor(CB.TrueBB);
1619  CurMBB->addSuccessor(CB.FalseBB);
1620
1621  // Set NextBlock to be the MBB immediately after the current one, if any.
1622  // This is used to avoid emitting unnecessary branches to the next block.
1623  MachineBasicBlock *NextBlock = 0;
1624  MachineFunction::iterator BBI = CurMBB;
1625  if (++BBI != CurMBB->getParent()->end())
1626    NextBlock = BBI;
1627
1628  // If the lhs block is the next block, invert the condition so that we can
1629  // fall through to the lhs instead of the rhs block.
1630  if (CB.TrueBB == NextBlock) {
1631    std::swap(CB.TrueBB, CB.FalseBB);
1632    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1633    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1634  }
1635  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1636                                 DAG.getBasicBlock(CB.TrueBB));
1637  if (CB.FalseBB == NextBlock)
1638    DAG.setRoot(BrCond);
1639  else
1640    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1641                            DAG.getBasicBlock(CB.FalseBB)));
1642}
1643
1644/// visitJumpTable - Emit JumpTable node in the current MBB
1645void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1646  // Emit the code for the jump table
1647  assert(JT.Reg != -1U && "Should lower JT Header first!");
1648  MVT PTy = TLI.getPointerTy();
1649  SDOperand Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1650  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1651  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1652                          Table, Index));
1653  return;
1654}
1655
1656/// visitJumpTableHeader - This function emits necessary code to produce index
1657/// in the JumpTable from switch case.
1658void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1659                                         SelectionDAGISel::JumpTableHeader &JTH) {
1660  // Subtract the lowest switch case value from the value being switched on
1661  // and conditional branch to default mbb if the result is greater than the
1662  // difference between smallest and largest cases.
1663  SDOperand SwitchOp = getValue(JTH.SValue);
1664  MVT VT = SwitchOp.getValueType();
1665  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1666                              DAG.getConstant(JTH.First, VT));
1667
1668  // The SDNode we just created, which holds the value being switched on
1669  // minus the the smallest case value, needs to be copied to a virtual
1670  // register so it can be used as an index into the jump table in a
1671  // subsequent basic block.  This value may be smaller or larger than the
1672  // target's pointer type, and therefore require extension or truncating.
1673  if (VT.bitsGT(TLI.getPointerTy()))
1674    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1675  else
1676    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1677
1678  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1679  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1680  JT.Reg = JumpTableReg;
1681
1682  // Emit the range check for the jump table, and branch to the default
1683  // block for the switch statement if the value being switched on exceeds
1684  // the largest case in the switch.
1685  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1686                               DAG.getConstant(JTH.Last-JTH.First,VT),
1687                               ISD::SETUGT);
1688
1689  // Set NextBlock to be the MBB immediately after the current one, if any.
1690  // This is used to avoid emitting unnecessary branches to the next block.
1691  MachineBasicBlock *NextBlock = 0;
1692  MachineFunction::iterator BBI = CurMBB;
1693  if (++BBI != CurMBB->getParent()->end())
1694    NextBlock = BBI;
1695
1696  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1697                                 DAG.getBasicBlock(JT.Default));
1698
1699  if (JT.MBB == NextBlock)
1700    DAG.setRoot(BrCond);
1701  else
1702    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1703                            DAG.getBasicBlock(JT.MBB)));
1704
1705  return;
1706}
1707
1708/// visitBitTestHeader - This function emits necessary code to produce value
1709/// suitable for "bit tests"
1710void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1711  // Subtract the minimum value
1712  SDOperand SwitchOp = getValue(B.SValue);
1713  MVT VT = SwitchOp.getValueType();
1714  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1715                              DAG.getConstant(B.First, VT));
1716
1717  // Check range
1718  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1719                                    DAG.getConstant(B.Range, VT),
1720                                    ISD::SETUGT);
1721
1722  SDOperand ShiftOp;
1723  if (VT.bitsGT(TLI.getShiftAmountTy()))
1724    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1725  else
1726    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1727
1728  // Make desired shift
1729  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1730                                    DAG.getConstant(1, TLI.getPointerTy()),
1731                                    ShiftOp);
1732
1733  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1734  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1735  B.Reg = SwitchReg;
1736
1737  // Set NextBlock to be the MBB immediately after the current one, if any.
1738  // This is used to avoid emitting unnecessary branches to the next block.
1739  MachineBasicBlock *NextBlock = 0;
1740  MachineFunction::iterator BBI = CurMBB;
1741  if (++BBI != CurMBB->getParent()->end())
1742    NextBlock = BBI;
1743
1744  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1745
1746  CurMBB->addSuccessor(B.Default);
1747  CurMBB->addSuccessor(MBB);
1748
1749  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1750                                  DAG.getBasicBlock(B.Default));
1751
1752  if (MBB == NextBlock)
1753    DAG.setRoot(BrRange);
1754  else
1755    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1756                            DAG.getBasicBlock(MBB)));
1757
1758  return;
1759}
1760
1761/// visitBitTestCase - this function produces one "bit test"
1762void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1763                                            unsigned Reg,
1764                                            SelectionDAGISel::BitTestCase &B) {
1765  // Emit bit tests and jumps
1766  SDOperand SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
1767                                           TLI.getPointerTy());
1768
1769  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
1770                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1771  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1772                                  DAG.getConstant(0, TLI.getPointerTy()),
1773                                  ISD::SETNE);
1774
1775  CurMBB->addSuccessor(B.TargetBB);
1776  CurMBB->addSuccessor(NextMBB);
1777
1778  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1779                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1780
1781  // Set NextBlock to be the MBB immediately after the current one, if any.
1782  // This is used to avoid emitting unnecessary branches to the next block.
1783  MachineBasicBlock *NextBlock = 0;
1784  MachineFunction::iterator BBI = CurMBB;
1785  if (++BBI != CurMBB->getParent()->end())
1786    NextBlock = BBI;
1787
1788  if (NextMBB == NextBlock)
1789    DAG.setRoot(BrAnd);
1790  else
1791    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1792                            DAG.getBasicBlock(NextMBB)));
1793
1794  return;
1795}
1796
1797void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1798  // Retrieve successors.
1799  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1800  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1801
1802  if (isa<InlineAsm>(I.getCalledValue()))
1803    visitInlineAsm(&I);
1804  else
1805    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1806
1807  // If the value of the invoke is used outside of its defining block, make it
1808  // available as a virtual register.
1809  if (!I.use_empty()) {
1810    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1811    if (VMI != FuncInfo.ValueMap.end())
1812      CopyValueToVirtualRegister(&I, VMI->second);
1813  }
1814
1815  // Update successor info
1816  CurMBB->addSuccessor(Return);
1817  CurMBB->addSuccessor(LandingPad);
1818
1819  // Drop into normal successor.
1820  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1821                          DAG.getBasicBlock(Return)));
1822}
1823
1824void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1825}
1826
1827/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1828/// small case ranges).
1829bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1830                                                  CaseRecVector& WorkList,
1831                                                  Value* SV,
1832                                                  MachineBasicBlock* Default) {
1833  Case& BackCase  = *(CR.Range.second-1);
1834
1835  // Size is the number of Cases represented by this range.
1836  unsigned Size = CR.Range.second - CR.Range.first;
1837  if (Size > 3)
1838    return false;
1839
1840  // Get the MachineFunction which holds the current MBB.  This is used when
1841  // inserting any additional MBBs necessary to represent the switch.
1842  MachineFunction *CurMF = CurMBB->getParent();
1843
1844  // Figure out which block is immediately after the current one.
1845  MachineBasicBlock *NextBlock = 0;
1846  MachineFunction::iterator BBI = CR.CaseBB;
1847
1848  if (++BBI != CurMBB->getParent()->end())
1849    NextBlock = BBI;
1850
1851  // TODO: If any two of the cases has the same destination, and if one value
1852  // is the same as the other, but has one bit unset that the other has set,
1853  // use bit manipulation to do two compares at once.  For example:
1854  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1855
1856  // Rearrange the case blocks so that the last one falls through if possible.
1857  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1858    // The last case block won't fall through into 'NextBlock' if we emit the
1859    // branches in this order.  See if rearranging a case value would help.
1860    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1861      if (I->BB == NextBlock) {
1862        std::swap(*I, BackCase);
1863        break;
1864      }
1865    }
1866  }
1867
1868  // Create a CaseBlock record representing a conditional branch to
1869  // the Case's target mbb if the value being switched on SV is equal
1870  // to C.
1871  MachineBasicBlock *CurBlock = CR.CaseBB;
1872  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1873    MachineBasicBlock *FallThrough;
1874    if (I != E-1) {
1875      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1876      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1877    } else {
1878      // If the last case doesn't match, go to the default block.
1879      FallThrough = Default;
1880    }
1881
1882    Value *RHS, *LHS, *MHS;
1883    ISD::CondCode CC;
1884    if (I->High == I->Low) {
1885      // This is just small small case range :) containing exactly 1 case
1886      CC = ISD::SETEQ;
1887      LHS = SV; RHS = I->High; MHS = NULL;
1888    } else {
1889      CC = ISD::SETLE;
1890      LHS = I->Low; MHS = SV; RHS = I->High;
1891    }
1892    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1893                                   I->BB, FallThrough, CurBlock);
1894
1895    // If emitting the first comparison, just call visitSwitchCase to emit the
1896    // code into the current block.  Otherwise, push the CaseBlock onto the
1897    // vector to be later processed by SDISel, and insert the node's MBB
1898    // before the next MBB.
1899    if (CurBlock == CurMBB)
1900      visitSwitchCase(CB);
1901    else
1902      SwitchCases.push_back(CB);
1903
1904    CurBlock = FallThrough;
1905  }
1906
1907  return true;
1908}
1909
1910static inline bool areJTsAllowed(const TargetLowering &TLI) {
1911  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1912          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1913}
1914
1915/// handleJTSwitchCase - Emit jumptable for current switch case range
1916bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1917                                              CaseRecVector& WorkList,
1918                                              Value* SV,
1919                                              MachineBasicBlock* Default) {
1920  Case& FrontCase = *CR.Range.first;
1921  Case& BackCase  = *(CR.Range.second-1);
1922
1923  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1924  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1925
1926  uint64_t TSize = 0;
1927  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1928       I!=E; ++I)
1929    TSize += I->size();
1930
1931  if (!areJTsAllowed(TLI) || TSize <= 3)
1932    return false;
1933
1934  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1935  if (Density < 0.4)
1936    return false;
1937
1938  DOUT << "Lowering jump table\n"
1939       << "First entry: " << First << ". Last entry: " << Last << "\n"
1940       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1941
1942  // Get the MachineFunction which holds the current MBB.  This is used when
1943  // inserting any additional MBBs necessary to represent the switch.
1944  MachineFunction *CurMF = CurMBB->getParent();
1945
1946  // Figure out which block is immediately after the current one.
1947  MachineBasicBlock *NextBlock = 0;
1948  MachineFunction::iterator BBI = CR.CaseBB;
1949
1950  if (++BBI != CurMBB->getParent()->end())
1951    NextBlock = BBI;
1952
1953  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1954
1955  // Create a new basic block to hold the code for loading the address
1956  // of the jump table, and jumping to it.  Update successor information;
1957  // we will either branch to the default case for the switch, or the jump
1958  // table.
1959  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1960  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1961  CR.CaseBB->addSuccessor(Default);
1962  CR.CaseBB->addSuccessor(JumpTableBB);
1963
1964  // Build a vector of destination BBs, corresponding to each target
1965  // of the jump table. If the value of the jump table slot corresponds to
1966  // a case statement, push the case's BB onto the vector, otherwise, push
1967  // the default BB.
1968  std::vector<MachineBasicBlock*> DestBBs;
1969  int64_t TEI = First;
1970  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1971    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1972    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1973
1974    if ((Low <= TEI) && (TEI <= High)) {
1975      DestBBs.push_back(I->BB);
1976      if (TEI==High)
1977        ++I;
1978    } else {
1979      DestBBs.push_back(Default);
1980    }
1981  }
1982
1983  // Update successor info. Add one edge to each unique successor.
1984  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1985  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1986         E = DestBBs.end(); I != E; ++I) {
1987    if (!SuccsHandled[(*I)->getNumber()]) {
1988      SuccsHandled[(*I)->getNumber()] = true;
1989      JumpTableBB->addSuccessor(*I);
1990    }
1991  }
1992
1993  // Create a jump table index for this jump table, or return an existing
1994  // one.
1995  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1996
1997  // Set the jump table information so that we can codegen it as a second
1998  // MachineBasicBlock
1999  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
2000  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
2001                                        (CR.CaseBB == CurMBB));
2002  if (CR.CaseBB == CurMBB)
2003    visitJumpTableHeader(JT, JTH);
2004
2005  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
2006
2007  return true;
2008}
2009
2010/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2011/// 2 subtrees.
2012bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
2013                                                   CaseRecVector& WorkList,
2014                                                   Value* SV,
2015                                                   MachineBasicBlock* Default) {
2016  // Get the MachineFunction which holds the current MBB.  This is used when
2017  // inserting any additional MBBs necessary to represent the switch.
2018  MachineFunction *CurMF = CurMBB->getParent();
2019
2020  // Figure out which block is immediately after the current one.
2021  MachineBasicBlock *NextBlock = 0;
2022  MachineFunction::iterator BBI = CR.CaseBB;
2023
2024  if (++BBI != CurMBB->getParent()->end())
2025    NextBlock = BBI;
2026
2027  Case& FrontCase = *CR.Range.first;
2028  Case& BackCase  = *(CR.Range.second-1);
2029  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2030
2031  // Size is the number of Cases represented by this range.
2032  unsigned Size = CR.Range.second - CR.Range.first;
2033
2034  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
2035  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
2036  double FMetric = 0;
2037  CaseItr Pivot = CR.Range.first + Size/2;
2038
2039  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2040  // (heuristically) allow us to emit JumpTable's later.
2041  uint64_t TSize = 0;
2042  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2043       I!=E; ++I)
2044    TSize += I->size();
2045
2046  uint64_t LSize = FrontCase.size();
2047  uint64_t RSize = TSize-LSize;
2048  DOUT << "Selecting best pivot: \n"
2049       << "First: " << First << ", Last: " << Last <<"\n"
2050       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
2051  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2052       J!=E; ++I, ++J) {
2053    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
2054    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
2055    assert((RBegin-LEnd>=1) && "Invalid case distance");
2056    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
2057    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
2058    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
2059    // Should always split in some non-trivial place
2060    DOUT <<"=>Step\n"
2061         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
2062         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
2063         << "Metric: " << Metric << "\n";
2064    if (FMetric < Metric) {
2065      Pivot = J;
2066      FMetric = Metric;
2067      DOUT << "Current metric set to: " << FMetric << "\n";
2068    }
2069
2070    LSize += J->size();
2071    RSize -= J->size();
2072  }
2073  if (areJTsAllowed(TLI)) {
2074    // If our case is dense we *really* should handle it earlier!
2075    assert((FMetric > 0) && "Should handle dense range earlier!");
2076  } else {
2077    Pivot = CR.Range.first + Size/2;
2078  }
2079
2080  CaseRange LHSR(CR.Range.first, Pivot);
2081  CaseRange RHSR(Pivot, CR.Range.second);
2082  Constant *C = Pivot->Low;
2083  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2084
2085  // We know that we branch to the LHS if the Value being switched on is
2086  // less than the Pivot value, C.  We use this to optimize our binary
2087  // tree a bit, by recognizing that if SV is greater than or equal to the
2088  // LHS's Case Value, and that Case Value is exactly one less than the
2089  // Pivot's Value, then we can branch directly to the LHS's Target,
2090  // rather than creating a leaf node for it.
2091  if ((LHSR.second - LHSR.first) == 1 &&
2092      LHSR.first->High == CR.GE &&
2093      cast<ConstantInt>(C)->getSExtValue() ==
2094      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
2095    TrueBB = LHSR.first->BB;
2096  } else {
2097    TrueBB = new MachineBasicBlock(LLVMBB);
2098    CurMF->getBasicBlockList().insert(BBI, TrueBB);
2099    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2100  }
2101
2102  // Similar to the optimization above, if the Value being switched on is
2103  // known to be less than the Constant CR.LT, and the current Case Value
2104  // is CR.LT - 1, then we can branch directly to the target block for
2105  // the current Case Value, rather than emitting a RHS leaf node for it.
2106  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2107      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
2108      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
2109    FalseBB = RHSR.first->BB;
2110  } else {
2111    FalseBB = new MachineBasicBlock(LLVMBB);
2112    CurMF->getBasicBlockList().insert(BBI, FalseBB);
2113    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2114  }
2115
2116  // Create a CaseBlock record representing a conditional branch to
2117  // the LHS node if the value being switched on SV is less than C.
2118  // Otherwise, branch to LHS.
2119  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
2120                                 TrueBB, FalseBB, CR.CaseBB);
2121
2122  if (CR.CaseBB == CurMBB)
2123    visitSwitchCase(CB);
2124  else
2125    SwitchCases.push_back(CB);
2126
2127  return true;
2128}
2129
2130/// handleBitTestsSwitchCase - if current case range has few destination and
2131/// range span less, than machine word bitwidth, encode case range into series
2132/// of masks and emit bit tests with these masks.
2133bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
2134                                                    CaseRecVector& WorkList,
2135                                                    Value* SV,
2136                                                    MachineBasicBlock* Default){
2137  unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
2138
2139  Case& FrontCase = *CR.Range.first;
2140  Case& BackCase  = *(CR.Range.second-1);
2141
2142  // Get the MachineFunction which holds the current MBB.  This is used when
2143  // inserting any additional MBBs necessary to represent the switch.
2144  MachineFunction *CurMF = CurMBB->getParent();
2145
2146  unsigned numCmps = 0;
2147  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2148       I!=E; ++I) {
2149    // Single case counts one, case range - two.
2150    if (I->Low == I->High)
2151      numCmps +=1;
2152    else
2153      numCmps +=2;
2154  }
2155
2156  // Count unique destinations
2157  SmallSet<MachineBasicBlock*, 4> Dests;
2158  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2159    Dests.insert(I->BB);
2160    if (Dests.size() > 3)
2161      // Don't bother the code below, if there are too much unique destinations
2162      return false;
2163  }
2164  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
2165       << "Total number of comparisons: " << numCmps << "\n";
2166
2167  // Compute span of values.
2168  Constant* minValue = FrontCase.Low;
2169  Constant* maxValue = BackCase.High;
2170  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
2171                   cast<ConstantInt>(minValue)->getSExtValue();
2172  DOUT << "Compare range: " << range << "\n"
2173       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
2174       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
2175
2176  if (range>=IntPtrBits ||
2177      (!(Dests.size() == 1 && numCmps >= 3) &&
2178       !(Dests.size() == 2 && numCmps >= 5) &&
2179       !(Dests.size() >= 3 && numCmps >= 6)))
2180    return false;
2181
2182  DOUT << "Emitting bit tests\n";
2183  int64_t lowBound = 0;
2184
2185  // Optimize the case where all the case values fit in a
2186  // word without having to subtract minValue. In this case,
2187  // we can optimize away the subtraction.
2188  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
2189      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
2190    range = cast<ConstantInt>(maxValue)->getSExtValue();
2191  } else {
2192    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
2193  }
2194
2195  CaseBitsVector CasesBits;
2196  unsigned i, count = 0;
2197
2198  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2199    MachineBasicBlock* Dest = I->BB;
2200    for (i = 0; i < count; ++i)
2201      if (Dest == CasesBits[i].BB)
2202        break;
2203
2204    if (i == count) {
2205      assert((count < 3) && "Too much destinations to test!");
2206      CasesBits.push_back(CaseBits(0, Dest, 0));
2207      count++;
2208    }
2209
2210    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2211    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2212
2213    for (uint64_t j = lo; j <= hi; j++) {
2214      CasesBits[i].Mask |=  1ULL << j;
2215      CasesBits[i].Bits++;
2216    }
2217
2218  }
2219  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2220
2221  SelectionDAGISel::BitTestInfo BTC;
2222
2223  // Figure out which block is immediately after the current one.
2224  MachineFunction::iterator BBI = CR.CaseBB;
2225  ++BBI;
2226
2227  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2228
2229  DOUT << "Cases:\n";
2230  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2231    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2232         << ", BB: " << CasesBits[i].BB << "\n";
2233
2234    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
2235    CurMF->getBasicBlockList().insert(BBI, CaseBB);
2236    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
2237                                                CaseBB,
2238                                                CasesBits[i].BB));
2239  }
2240
2241  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
2242                                     -1U, (CR.CaseBB == CurMBB),
2243                                     CR.CaseBB, Default, BTC);
2244
2245  if (CR.CaseBB == CurMBB)
2246    visitBitTestHeader(BTB);
2247
2248  BitTestCases.push_back(BTB);
2249
2250  return true;
2251}
2252
2253
2254/// Clusterify - Transform simple list of Cases into list of CaseRange's
2255unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2256                                          const SwitchInst& SI) {
2257  unsigned numCmps = 0;
2258
2259  // Start with "simple" cases
2260  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2261    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2262    Cases.push_back(Case(SI.getSuccessorValue(i),
2263                         SI.getSuccessorValue(i),
2264                         SMBB));
2265  }
2266  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2267
2268  // Merge case into clusters
2269  if (Cases.size()>=2)
2270    // Must recompute end() each iteration because it may be
2271    // invalidated by erase if we hold on to it
2272    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2273      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2274      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2275      MachineBasicBlock* nextBB = J->BB;
2276      MachineBasicBlock* currentBB = I->BB;
2277
2278      // If the two neighboring cases go to the same destination, merge them
2279      // into a single case.
2280      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2281        I->High = J->High;
2282        J = Cases.erase(J);
2283      } else {
2284        I = J++;
2285      }
2286    }
2287
2288  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2289    if (I->Low != I->High)
2290      // A range counts double, since it requires two compares.
2291      ++numCmps;
2292  }
2293
2294  return numCmps;
2295}
2296
2297void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2298  // Figure out which block is immediately after the current one.
2299  MachineBasicBlock *NextBlock = 0;
2300  MachineFunction::iterator BBI = CurMBB;
2301
2302  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2303
2304  // If there is only the default destination, branch to it if it is not the
2305  // next basic block.  Otherwise, just fall through.
2306  if (SI.getNumOperands() == 2) {
2307    // Update machine-CFG edges.
2308
2309    // If this is not a fall-through branch, emit the branch.
2310    CurMBB->addSuccessor(Default);
2311    if (Default != NextBlock)
2312      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2313                              DAG.getBasicBlock(Default)));
2314
2315    return;
2316  }
2317
2318  // If there are any non-default case statements, create a vector of Cases
2319  // representing each one, and sort the vector so that we can efficiently
2320  // create a binary search tree from them.
2321  CaseVector Cases;
2322  unsigned numCmps = Clusterify(Cases, SI);
2323  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2324       << ". Total compares: " << numCmps << "\n";
2325
2326  // Get the Value to be switched on and default basic blocks, which will be
2327  // inserted into CaseBlock records, representing basic blocks in the binary
2328  // search tree.
2329  Value *SV = SI.getOperand(0);
2330
2331  // Push the initial CaseRec onto the worklist
2332  CaseRecVector WorkList;
2333  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2334
2335  while (!WorkList.empty()) {
2336    // Grab a record representing a case range to process off the worklist
2337    CaseRec CR = WorkList.back();
2338    WorkList.pop_back();
2339
2340    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2341      continue;
2342
2343    // If the range has few cases (two or less) emit a series of specific
2344    // tests.
2345    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2346      continue;
2347
2348    // If the switch has more than 5 blocks, and at least 40% dense, and the
2349    // target supports indirect branches, then emit a jump table rather than
2350    // lowering the switch to a binary tree of conditional branches.
2351    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2352      continue;
2353
2354    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2355    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2356    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2357  }
2358}
2359
2360
2361void SelectionDAGLowering::visitSub(User &I) {
2362  // -0.0 - X --> fneg
2363  const Type *Ty = I.getType();
2364  if (isa<VectorType>(Ty)) {
2365    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2366      const VectorType *DestTy = cast<VectorType>(I.getType());
2367      const Type *ElTy = DestTy->getElementType();
2368      if (ElTy->isFloatingPoint()) {
2369        unsigned VL = DestTy->getNumElements();
2370        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2371        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2372        if (CV == CNZ) {
2373          SDOperand Op2 = getValue(I.getOperand(1));
2374          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2375          return;
2376        }
2377      }
2378    }
2379  }
2380  if (Ty->isFloatingPoint()) {
2381    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2382      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2383        SDOperand Op2 = getValue(I.getOperand(1));
2384        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2385        return;
2386      }
2387  }
2388
2389  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2390}
2391
2392void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2393  SDOperand Op1 = getValue(I.getOperand(0));
2394  SDOperand Op2 = getValue(I.getOperand(1));
2395
2396  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2397}
2398
2399void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2400  SDOperand Op1 = getValue(I.getOperand(0));
2401  SDOperand Op2 = getValue(I.getOperand(1));
2402
2403  if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
2404    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2405  else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
2406    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2407
2408  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2409}
2410
2411void SelectionDAGLowering::visitICmp(User &I) {
2412  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2413  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2414    predicate = IC->getPredicate();
2415  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2416    predicate = ICmpInst::Predicate(IC->getPredicate());
2417  SDOperand Op1 = getValue(I.getOperand(0));
2418  SDOperand Op2 = getValue(I.getOperand(1));
2419  ISD::CondCode Opcode;
2420  switch (predicate) {
2421    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2422    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2423    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2424    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2425    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2426    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2427    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2428    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2429    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2430    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2431    default:
2432      assert(!"Invalid ICmp predicate value");
2433      Opcode = ISD::SETEQ;
2434      break;
2435  }
2436  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2437}
2438
2439void SelectionDAGLowering::visitFCmp(User &I) {
2440  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2441  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2442    predicate = FC->getPredicate();
2443  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2444    predicate = FCmpInst::Predicate(FC->getPredicate());
2445  SDOperand Op1 = getValue(I.getOperand(0));
2446  SDOperand Op2 = getValue(I.getOperand(1));
2447  ISD::CondCode Condition, FOC, FPC;
2448  switch (predicate) {
2449    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2450    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2451    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2452    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2453    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2454    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2455    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2456    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2457    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2458    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2459    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2460    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2461    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2462    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2463    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2464    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2465    default:
2466      assert(!"Invalid FCmp predicate value");
2467      FOC = FPC = ISD::SETFALSE;
2468      break;
2469  }
2470  if (FiniteOnlyFPMath())
2471    Condition = FOC;
2472  else
2473    Condition = FPC;
2474  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2475}
2476
2477void SelectionDAGLowering::visitVICmp(User &I) {
2478  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2479  if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2480    predicate = IC->getPredicate();
2481  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2482    predicate = ICmpInst::Predicate(IC->getPredicate());
2483  SDOperand Op1 = getValue(I.getOperand(0));
2484  SDOperand Op2 = getValue(I.getOperand(1));
2485  ISD::CondCode Opcode;
2486  switch (predicate) {
2487    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2488    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2489    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2490    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2491    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2492    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2493    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2494    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2495    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2496    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2497    default:
2498      assert(!"Invalid ICmp predicate value");
2499      Opcode = ISD::SETEQ;
2500      break;
2501  }
2502  setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2503}
2504
2505void SelectionDAGLowering::visitVFCmp(User &I) {
2506  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2507  if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2508    predicate = FC->getPredicate();
2509  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2510    predicate = FCmpInst::Predicate(FC->getPredicate());
2511  SDOperand Op1 = getValue(I.getOperand(0));
2512  SDOperand Op2 = getValue(I.getOperand(1));
2513  ISD::CondCode Condition, FOC, FPC;
2514  switch (predicate) {
2515    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2516    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2517    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2518    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2519    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2520    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2521    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2522    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2523    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2524    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2525    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2526    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2527    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2528    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2529    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2530    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2531    default:
2532      assert(!"Invalid VFCmp predicate value");
2533      FOC = FPC = ISD::SETFALSE;
2534      break;
2535  }
2536  if (FiniteOnlyFPMath())
2537    Condition = FOC;
2538  else
2539    Condition = FPC;
2540
2541  MVT DestVT = TLI.getValueType(I.getType());
2542
2543  setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2544}
2545
2546void SelectionDAGLowering::visitSelect(User &I) {
2547  SDOperand Cond     = getValue(I.getOperand(0));
2548  SDOperand TrueVal  = getValue(I.getOperand(1));
2549  SDOperand FalseVal = getValue(I.getOperand(2));
2550  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2551                           TrueVal, FalseVal));
2552}
2553
2554
2555void SelectionDAGLowering::visitTrunc(User &I) {
2556  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2557  SDOperand N = getValue(I.getOperand(0));
2558  MVT DestVT = TLI.getValueType(I.getType());
2559  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2560}
2561
2562void SelectionDAGLowering::visitZExt(User &I) {
2563  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2564  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2565  SDOperand N = getValue(I.getOperand(0));
2566  MVT DestVT = TLI.getValueType(I.getType());
2567  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2568}
2569
2570void SelectionDAGLowering::visitSExt(User &I) {
2571  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2572  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2573  SDOperand N = getValue(I.getOperand(0));
2574  MVT DestVT = TLI.getValueType(I.getType());
2575  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2576}
2577
2578void SelectionDAGLowering::visitFPTrunc(User &I) {
2579  // FPTrunc is never a no-op cast, no need to check
2580  SDOperand N = getValue(I.getOperand(0));
2581  MVT DestVT = TLI.getValueType(I.getType());
2582  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2583}
2584
2585void SelectionDAGLowering::visitFPExt(User &I){
2586  // FPTrunc is never a no-op cast, no need to check
2587  SDOperand N = getValue(I.getOperand(0));
2588  MVT DestVT = TLI.getValueType(I.getType());
2589  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2590}
2591
2592void SelectionDAGLowering::visitFPToUI(User &I) {
2593  // FPToUI is never a no-op cast, no need to check
2594  SDOperand N = getValue(I.getOperand(0));
2595  MVT DestVT = TLI.getValueType(I.getType());
2596  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2597}
2598
2599void SelectionDAGLowering::visitFPToSI(User &I) {
2600  // FPToSI is never a no-op cast, no need to check
2601  SDOperand N = getValue(I.getOperand(0));
2602  MVT DestVT = TLI.getValueType(I.getType());
2603  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2604}
2605
2606void SelectionDAGLowering::visitUIToFP(User &I) {
2607  // UIToFP is never a no-op cast, no need to check
2608  SDOperand N = getValue(I.getOperand(0));
2609  MVT DestVT = TLI.getValueType(I.getType());
2610  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2611}
2612
2613void SelectionDAGLowering::visitSIToFP(User &I){
2614  // UIToFP is never a no-op cast, no need to check
2615  SDOperand N = getValue(I.getOperand(0));
2616  MVT DestVT = TLI.getValueType(I.getType());
2617  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2618}
2619
2620void SelectionDAGLowering::visitPtrToInt(User &I) {
2621  // What to do depends on the size of the integer and the size of the pointer.
2622  // We can either truncate, zero extend, or no-op, accordingly.
2623  SDOperand N = getValue(I.getOperand(0));
2624  MVT SrcVT = N.getValueType();
2625  MVT DestVT = TLI.getValueType(I.getType());
2626  SDOperand Result;
2627  if (DestVT.bitsLT(SrcVT))
2628    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2629  else
2630    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2631    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2632  setValue(&I, Result);
2633}
2634
2635void SelectionDAGLowering::visitIntToPtr(User &I) {
2636  // What to do depends on the size of the integer and the size of the pointer.
2637  // We can either truncate, zero extend, or no-op, accordingly.
2638  SDOperand N = getValue(I.getOperand(0));
2639  MVT SrcVT = N.getValueType();
2640  MVT DestVT = TLI.getValueType(I.getType());
2641  if (DestVT.bitsLT(SrcVT))
2642    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2643  else
2644    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2645    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2646}
2647
2648void SelectionDAGLowering::visitBitCast(User &I) {
2649  SDOperand N = getValue(I.getOperand(0));
2650  MVT DestVT = TLI.getValueType(I.getType());
2651
2652  // BitCast assures us that source and destination are the same size so this
2653  // is either a BIT_CONVERT or a no-op.
2654  if (DestVT != N.getValueType())
2655    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2656  else
2657    setValue(&I, N); // noop cast.
2658}
2659
2660void SelectionDAGLowering::visitInsertElement(User &I) {
2661  SDOperand InVec = getValue(I.getOperand(0));
2662  SDOperand InVal = getValue(I.getOperand(1));
2663  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2664                                getValue(I.getOperand(2)));
2665
2666  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2667                           TLI.getValueType(I.getType()),
2668                           InVec, InVal, InIdx));
2669}
2670
2671void SelectionDAGLowering::visitExtractElement(User &I) {
2672  SDOperand InVec = getValue(I.getOperand(0));
2673  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2674                                getValue(I.getOperand(1)));
2675  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2676                           TLI.getValueType(I.getType()), InVec, InIdx));
2677}
2678
2679void SelectionDAGLowering::visitShuffleVector(User &I) {
2680  SDOperand V1   = getValue(I.getOperand(0));
2681  SDOperand V2   = getValue(I.getOperand(1));
2682  SDOperand Mask = getValue(I.getOperand(2));
2683
2684  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2685                           TLI.getValueType(I.getType()),
2686                           V1, V2, Mask));
2687}
2688
2689void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
2690  const Value *Op0 = I.getOperand(0);
2691  const Value *Op1 = I.getOperand(1);
2692  const Type *AggTy = I.getType();
2693  const Type *ValTy = Op1->getType();
2694  bool IntoUndef = isa<UndefValue>(Op0);
2695  bool FromUndef = isa<UndefValue>(Op1);
2696
2697  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2698                                            I.idx_begin(), I.idx_end());
2699
2700  SmallVector<MVT, 4> AggValueVTs;
2701  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2702  SmallVector<MVT, 4> ValValueVTs;
2703  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2704
2705  unsigned NumAggValues = AggValueVTs.size();
2706  unsigned NumValValues = ValValueVTs.size();
2707  SmallVector<SDOperand, 4> Values(NumAggValues);
2708
2709  SDOperand Agg = getValue(Op0);
2710  SDOperand Val = getValue(Op1);
2711  unsigned i = 0;
2712  // Copy the beginning value(s) from the original aggregate.
2713  for (; i != LinearIndex; ++i)
2714    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2715                SDOperand(Agg.Val, Agg.ResNo + i);
2716  // Copy values from the inserted value(s).
2717  for (; i != LinearIndex + NumValValues; ++i)
2718    Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2719                SDOperand(Val.Val, Val.ResNo + i - LinearIndex);
2720  // Copy remaining value(s) from the original aggregate.
2721  for (; i != NumAggValues; ++i)
2722    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2723                SDOperand(Agg.Val, Agg.ResNo + i);
2724
2725  setValue(&I, DAG.getNode(ISD::MERGE_VALUES,
2726                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2727                           &Values[0], NumAggValues));
2728}
2729
2730void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
2731  const Value *Op0 = I.getOperand(0);
2732  const Type *AggTy = Op0->getType();
2733  const Type *ValTy = I.getType();
2734  bool OutOfUndef = isa<UndefValue>(Op0);
2735
2736  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2737                                            I.idx_begin(), I.idx_end());
2738
2739  SmallVector<MVT, 4> ValValueVTs;
2740  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2741
2742  unsigned NumValValues = ValValueVTs.size();
2743  SmallVector<SDOperand, 4> Values(NumValValues);
2744
2745  SDOperand Agg = getValue(Op0);
2746  // Copy out the selected value(s).
2747  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2748    Values[i - LinearIndex] =
2749      OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.Val->getValueType(Agg.ResNo + i)) :
2750                   SDOperand(Agg.Val, Agg.ResNo + i);
2751
2752  setValue(&I, DAG.getNode(ISD::MERGE_VALUES,
2753                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2754                           &Values[0], NumValValues));
2755}
2756
2757
2758void SelectionDAGLowering::visitGetElementPtr(User &I) {
2759  SDOperand N = getValue(I.getOperand(0));
2760  const Type *Ty = I.getOperand(0)->getType();
2761
2762  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2763       OI != E; ++OI) {
2764    Value *Idx = *OI;
2765    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2766      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2767      if (Field) {
2768        // N = N + Offset
2769        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2770        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2771                        DAG.getIntPtrConstant(Offset));
2772      }
2773      Ty = StTy->getElementType(Field);
2774    } else {
2775      Ty = cast<SequentialType>(Ty)->getElementType();
2776
2777      // If this is a constant subscript, handle it quickly.
2778      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2779        if (CI->getZExtValue() == 0) continue;
2780        uint64_t Offs =
2781            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2782        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2783                        DAG.getIntPtrConstant(Offs));
2784        continue;
2785      }
2786
2787      // N = N + Idx * ElementSize;
2788      uint64_t ElementSize = TD->getABITypeSize(Ty);
2789      SDOperand IdxN = getValue(Idx);
2790
2791      // If the index is smaller or larger than intptr_t, truncate or extend
2792      // it.
2793      if (IdxN.getValueType().bitsLT(N.getValueType())) {
2794        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2795      } else if (IdxN.getValueType().bitsGT(N.getValueType()))
2796        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2797
2798      // If this is a multiply by a power of two, turn it into a shl
2799      // immediately.  This is a very common case.
2800      if (isPowerOf2_64(ElementSize)) {
2801        unsigned Amt = Log2_64(ElementSize);
2802        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2803                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2804        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2805        continue;
2806      }
2807
2808      SDOperand Scale = DAG.getIntPtrConstant(ElementSize);
2809      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2810      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2811    }
2812  }
2813  setValue(&I, N);
2814}
2815
2816void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2817  // If this is a fixed sized alloca in the entry block of the function,
2818  // allocate it statically on the stack.
2819  if (FuncInfo.StaticAllocaMap.count(&I))
2820    return;   // getValue will auto-populate this.
2821
2822  const Type *Ty = I.getAllocatedType();
2823  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2824  unsigned Align =
2825    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2826             I.getAlignment());
2827
2828  SDOperand AllocSize = getValue(I.getArraySize());
2829  MVT IntPtr = TLI.getPointerTy();
2830  if (IntPtr.bitsLT(AllocSize.getValueType()))
2831    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2832  else if (IntPtr.bitsGT(AllocSize.getValueType()))
2833    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2834
2835  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2836                          DAG.getIntPtrConstant(TySize));
2837
2838  // Handle alignment.  If the requested alignment is less than or equal to
2839  // the stack alignment, ignore it.  If the size is greater than or equal to
2840  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2841  unsigned StackAlign =
2842    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2843  if (Align <= StackAlign)
2844    Align = 0;
2845
2846  // Round the size of the allocation up to the stack alignment size
2847  // by add SA-1 to the size.
2848  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2849                          DAG.getIntPtrConstant(StackAlign-1));
2850  // Mask out the low bits for alignment purposes.
2851  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2852                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2853
2854  SDOperand Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2855  const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2856                                                    MVT::Other);
2857  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2858  setValue(&I, DSA);
2859  DAG.setRoot(DSA.getValue(1));
2860
2861  // Inform the Frame Information that we have just allocated a variable-sized
2862  // object.
2863  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2864}
2865
2866void SelectionDAGLowering::visitLoad(LoadInst &I) {
2867  const Value *SV = I.getOperand(0);
2868  SDOperand Ptr = getValue(SV);
2869
2870  const Type *Ty = I.getType();
2871  bool isVolatile = I.isVolatile();
2872  unsigned Alignment = I.getAlignment();
2873
2874  SmallVector<MVT, 4> ValueVTs;
2875  SmallVector<uint64_t, 4> Offsets;
2876  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2877  unsigned NumValues = ValueVTs.size();
2878  if (NumValues == 0)
2879    return;
2880
2881  SDOperand Root;
2882  if (I.isVolatile())
2883    Root = getRoot();
2884  else {
2885    // Do not serialize non-volatile loads against each other.
2886    Root = DAG.getRoot();
2887  }
2888
2889  SmallVector<SDOperand, 4> Values(NumValues);
2890  SmallVector<SDOperand, 4> Chains(NumValues);
2891  MVT PtrVT = Ptr.getValueType();
2892  for (unsigned i = 0; i != NumValues; ++i) {
2893    SDOperand L = DAG.getLoad(ValueVTs[i], Root,
2894                              DAG.getNode(ISD::ADD, PtrVT, Ptr,
2895                                          DAG.getConstant(Offsets[i], PtrVT)),
2896                              SV, Offsets[i],
2897                              isVolatile, Alignment);
2898    Values[i] = L;
2899    Chains[i] = L.getValue(1);
2900  }
2901
2902  SDOperand Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2903                                &Chains[0], NumValues);
2904  if (isVolatile)
2905    DAG.setRoot(Chain);
2906  else
2907    PendingLoads.push_back(Chain);
2908
2909  setValue(&I, DAG.getNode(ISD::MERGE_VALUES,
2910                           DAG.getVTList(&ValueVTs[0], NumValues),
2911                           &Values[0], NumValues));
2912}
2913
2914
2915void SelectionDAGLowering::visitStore(StoreInst &I) {
2916  Value *SrcV = I.getOperand(0);
2917  SDOperand Src = getValue(SrcV);
2918  Value *PtrV = I.getOperand(1);
2919  SDOperand Ptr = getValue(PtrV);
2920
2921  SmallVector<MVT, 4> ValueVTs;
2922  SmallVector<uint64_t, 4> Offsets;
2923  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2924  unsigned NumValues = ValueVTs.size();
2925  if (NumValues == 0)
2926    return;
2927
2928  SDOperand Root = getRoot();
2929  SmallVector<SDOperand, 4> Chains(NumValues);
2930  MVT PtrVT = Ptr.getValueType();
2931  bool isVolatile = I.isVolatile();
2932  unsigned Alignment = I.getAlignment();
2933  for (unsigned i = 0; i != NumValues; ++i)
2934    Chains[i] = DAG.getStore(Root, SDOperand(Src.Val, Src.ResNo + i),
2935                             DAG.getNode(ISD::ADD, PtrVT, Ptr,
2936                                         DAG.getConstant(Offsets[i], PtrVT)),
2937                             PtrV, Offsets[i],
2938                             isVolatile, Alignment);
2939
2940  DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
2941}
2942
2943/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2944/// node.
2945void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2946                                                unsigned Intrinsic) {
2947  bool HasChain = !I.doesNotAccessMemory();
2948  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2949
2950  // Build the operand list.
2951  SmallVector<SDOperand, 8> Ops;
2952  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2953    if (OnlyLoad) {
2954      // We don't need to serialize loads against other loads.
2955      Ops.push_back(DAG.getRoot());
2956    } else {
2957      Ops.push_back(getRoot());
2958    }
2959  }
2960
2961  // Add the intrinsic ID as an integer operand.
2962  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2963
2964  // Add all operands of the call to the operand list.
2965  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2966    SDOperand Op = getValue(I.getOperand(i));
2967    assert(TLI.isTypeLegal(Op.getValueType()) &&
2968           "Intrinsic uses a non-legal type?");
2969    Ops.push_back(Op);
2970  }
2971
2972  std::vector<MVT> VTs;
2973  if (I.getType() != Type::VoidTy) {
2974    MVT VT = TLI.getValueType(I.getType());
2975    if (VT.isVector()) {
2976      const VectorType *DestTy = cast<VectorType>(I.getType());
2977      MVT EltVT = TLI.getValueType(DestTy->getElementType());
2978
2979      VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
2980      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2981    }
2982
2983    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2984    VTs.push_back(VT);
2985  }
2986  if (HasChain)
2987    VTs.push_back(MVT::Other);
2988
2989  const MVT *VTList = DAG.getNodeValueTypes(VTs);
2990
2991  // Create the node.
2992  SDOperand Result;
2993  if (!HasChain)
2994    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2995                         &Ops[0], Ops.size());
2996  else if (I.getType() != Type::VoidTy)
2997    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2998                         &Ops[0], Ops.size());
2999  else
3000    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
3001                         &Ops[0], Ops.size());
3002
3003  if (HasChain) {
3004    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
3005    if (OnlyLoad)
3006      PendingLoads.push_back(Chain);
3007    else
3008      DAG.setRoot(Chain);
3009  }
3010  if (I.getType() != Type::VoidTy) {
3011    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3012      MVT VT = TLI.getValueType(PTy);
3013      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
3014    }
3015    setValue(&I, Result);
3016  }
3017}
3018
3019/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
3020static GlobalVariable *ExtractTypeInfo (Value *V) {
3021  V = V->stripPointerCasts();
3022  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3023  assert ((GV || isa<ConstantPointerNull>(V)) &&
3024          "TypeInfo must be a global variable or NULL");
3025  return GV;
3026}
3027
3028/// addCatchInfo - Extract the personality and type infos from an eh.selector
3029/// call, and add them to the specified machine basic block.
3030static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
3031                         MachineBasicBlock *MBB) {
3032  // Inform the MachineModuleInfo of the personality for this landing pad.
3033  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
3034  assert(CE->getOpcode() == Instruction::BitCast &&
3035         isa<Function>(CE->getOperand(0)) &&
3036         "Personality should be a function");
3037  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
3038
3039  // Gather all the type infos for this landing pad and pass them along to
3040  // MachineModuleInfo.
3041  std::vector<GlobalVariable *> TyInfo;
3042  unsigned N = I.getNumOperands();
3043
3044  for (unsigned i = N - 1; i > 2; --i) {
3045    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
3046      unsigned FilterLength = CI->getZExtValue();
3047      unsigned FirstCatch = i + FilterLength + !FilterLength;
3048      assert (FirstCatch <= N && "Invalid filter length");
3049
3050      if (FirstCatch < N) {
3051        TyInfo.reserve(N - FirstCatch);
3052        for (unsigned j = FirstCatch; j < N; ++j)
3053          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3054        MMI->addCatchTypeInfo(MBB, TyInfo);
3055        TyInfo.clear();
3056      }
3057
3058      if (!FilterLength) {
3059        // Cleanup.
3060        MMI->addCleanup(MBB);
3061      } else {
3062        // Filter.
3063        TyInfo.reserve(FilterLength - 1);
3064        for (unsigned j = i + 1; j < FirstCatch; ++j)
3065          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3066        MMI->addFilterTypeInfo(MBB, TyInfo);
3067        TyInfo.clear();
3068      }
3069
3070      N = i;
3071    }
3072  }
3073
3074  if (N > 3) {
3075    TyInfo.reserve(N - 3);
3076    for (unsigned j = 3; j < N; ++j)
3077      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3078    MMI->addCatchTypeInfo(MBB, TyInfo);
3079  }
3080}
3081
3082
3083/// Inlined utility function to implement binary input atomic intrinsics for
3084// visitIntrinsicCall: I is a call instruction
3085//                     Op is the associated NodeType for I
3086const char *
3087SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3088  SDOperand Root = getRoot();
3089  SDOperand L = DAG.getAtomic(Op, Root,
3090                              getValue(I.getOperand(1)),
3091                              getValue(I.getOperand(2)),
3092                              I.getOperand(1));
3093  setValue(&I, L);
3094  DAG.setRoot(L.getValue(1));
3095  return 0;
3096}
3097
3098/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3099/// we want to emit this as a call to a named external function, return the name
3100/// otherwise lower it and return null.
3101const char *
3102SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3103  switch (Intrinsic) {
3104  default:
3105    // By default, turn this into a target intrinsic node.
3106    visitTargetIntrinsic(I, Intrinsic);
3107    return 0;
3108  case Intrinsic::vastart:  visitVAStart(I); return 0;
3109  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3110  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3111  case Intrinsic::returnaddress:
3112    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
3113                             getValue(I.getOperand(1))));
3114    return 0;
3115  case Intrinsic::frameaddress:
3116    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
3117                             getValue(I.getOperand(1))));
3118    return 0;
3119  case Intrinsic::setjmp:
3120    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3121    break;
3122  case Intrinsic::longjmp:
3123    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3124    break;
3125  case Intrinsic::memcpy_i32:
3126  case Intrinsic::memcpy_i64: {
3127    SDOperand Op1 = getValue(I.getOperand(1));
3128    SDOperand Op2 = getValue(I.getOperand(2));
3129    SDOperand Op3 = getValue(I.getOperand(3));
3130    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3131    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3132                              I.getOperand(1), 0, I.getOperand(2), 0));
3133    return 0;
3134  }
3135  case Intrinsic::memset_i32:
3136  case Intrinsic::memset_i64: {
3137    SDOperand Op1 = getValue(I.getOperand(1));
3138    SDOperand Op2 = getValue(I.getOperand(2));
3139    SDOperand Op3 = getValue(I.getOperand(3));
3140    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3141    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
3142                              I.getOperand(1), 0));
3143    return 0;
3144  }
3145  case Intrinsic::memmove_i32:
3146  case Intrinsic::memmove_i64: {
3147    SDOperand Op1 = getValue(I.getOperand(1));
3148    SDOperand Op2 = getValue(I.getOperand(2));
3149    SDOperand Op3 = getValue(I.getOperand(3));
3150    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3151
3152    // If the source and destination are known to not be aliases, we can
3153    // lower memmove as memcpy.
3154    uint64_t Size = -1ULL;
3155    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3156      Size = C->getValue();
3157    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3158        AliasAnalysis::NoAlias) {
3159      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3160                                I.getOperand(1), 0, I.getOperand(2), 0));
3161      return 0;
3162    }
3163
3164    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
3165                               I.getOperand(1), 0, I.getOperand(2), 0));
3166    return 0;
3167  }
3168  case Intrinsic::dbg_stoppoint: {
3169    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3170    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3171    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
3172      SDOperand Ops[5];
3173
3174      Ops[0] = getRoot();
3175      Ops[1] = getValue(SPI.getLineValue());
3176      Ops[2] = getValue(SPI.getColumnValue());
3177
3178      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
3179      assert(DD && "Not a debug information descriptor");
3180      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
3181
3182      Ops[3] = DAG.getString(CompileUnit->getFileName());
3183      Ops[4] = DAG.getString(CompileUnit->getDirectory());
3184
3185      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
3186    }
3187
3188    return 0;
3189  }
3190  case Intrinsic::dbg_region_start: {
3191    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3192    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
3193    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
3194      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
3195      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3196                              DAG.getConstant(LabelID, MVT::i32),
3197                              DAG.getConstant(0, MVT::i32)));
3198    }
3199
3200    return 0;
3201  }
3202  case Intrinsic::dbg_region_end: {
3203    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3204    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
3205    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
3206      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
3207      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3208                              DAG.getConstant(LabelID, MVT::i32),
3209                              DAG.getConstant(0, MVT::i32)));
3210    }
3211
3212    return 0;
3213  }
3214  case Intrinsic::dbg_func_start: {
3215    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3216    if (!MMI) return 0;
3217    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
3218    Value *SP = FSI.getSubprogram();
3219    if (SP && MMI->Verify(SP)) {
3220      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3221      // what (most?) gdb expects.
3222      DebugInfoDesc *DD = MMI->getDescFor(SP);
3223      assert(DD && "Not a debug information descriptor");
3224      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
3225      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
3226      unsigned SrcFile = MMI->RecordSource(CompileUnit->getDirectory(),
3227                                           CompileUnit->getFileName());
3228      // Record the source line but does create a label. It will be emitted
3229      // at asm emission time.
3230      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
3231    }
3232
3233    return 0;
3234  }
3235  case Intrinsic::dbg_declare: {
3236    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3237    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3238    Value *Variable = DI.getVariable();
3239    if (MMI && Variable && MMI->Verify(Variable))
3240      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3241                              getValue(DI.getAddress()), getValue(Variable)));
3242    return 0;
3243  }
3244
3245  case Intrinsic::eh_exception: {
3246    if (!CurMBB->isLandingPad()) {
3247      // FIXME: Mark exception register as live in.  Hack for PR1508.
3248      unsigned Reg = TLI.getExceptionAddressRegister();
3249      if (Reg) CurMBB->addLiveIn(Reg);
3250    }
3251    // Insert the EXCEPTIONADDR instruction.
3252    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3253    SDOperand Ops[1];
3254    Ops[0] = DAG.getRoot();
3255    SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3256    setValue(&I, Op);
3257    DAG.setRoot(Op.getValue(1));
3258    return 0;
3259  }
3260
3261  case Intrinsic::eh_selector_i32:
3262  case Intrinsic::eh_selector_i64: {
3263    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3264    MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3265                         MVT::i32 : MVT::i64);
3266
3267    if (MMI) {
3268      if (CurMBB->isLandingPad())
3269        addCatchInfo(I, MMI, CurMBB);
3270      else {
3271#ifndef NDEBUG
3272        FuncInfo.CatchInfoLost.insert(&I);
3273#endif
3274        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3275        unsigned Reg = TLI.getExceptionSelectorRegister();
3276        if (Reg) CurMBB->addLiveIn(Reg);
3277      }
3278
3279      // Insert the EHSELECTION instruction.
3280      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3281      SDOperand Ops[2];
3282      Ops[0] = getValue(I.getOperand(1));
3283      Ops[1] = getRoot();
3284      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3285      setValue(&I, Op);
3286      DAG.setRoot(Op.getValue(1));
3287    } else {
3288      setValue(&I, DAG.getConstant(0, VT));
3289    }
3290
3291    return 0;
3292  }
3293
3294  case Intrinsic::eh_typeid_for_i32:
3295  case Intrinsic::eh_typeid_for_i64: {
3296    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3297    MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3298                         MVT::i32 : MVT::i64);
3299
3300    if (MMI) {
3301      // Find the type id for the given typeinfo.
3302      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3303
3304      unsigned TypeID = MMI->getTypeIDFor(GV);
3305      setValue(&I, DAG.getConstant(TypeID, VT));
3306    } else {
3307      // Return something different to eh_selector.
3308      setValue(&I, DAG.getConstant(1, VT));
3309    }
3310
3311    return 0;
3312  }
3313
3314  case Intrinsic::eh_return: {
3315    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3316
3317    if (MMI) {
3318      MMI->setCallsEHReturn(true);
3319      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3320                              MVT::Other,
3321                              getControlRoot(),
3322                              getValue(I.getOperand(1)),
3323                              getValue(I.getOperand(2))));
3324    } else {
3325      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3326    }
3327
3328    return 0;
3329  }
3330
3331   case Intrinsic::eh_unwind_init: {
3332     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3333       MMI->setCallsUnwindInit(true);
3334     }
3335
3336     return 0;
3337   }
3338
3339   case Intrinsic::eh_dwarf_cfa: {
3340     MVT VT = getValue(I.getOperand(1)).getValueType();
3341     SDOperand CfaArg;
3342     if (VT.bitsGT(TLI.getPointerTy()))
3343       CfaArg = DAG.getNode(ISD::TRUNCATE,
3344                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3345     else
3346       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3347                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3348
3349     SDOperand Offset = DAG.getNode(ISD::ADD,
3350                                    TLI.getPointerTy(),
3351                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3352                                                TLI.getPointerTy()),
3353                                    CfaArg);
3354     setValue(&I, DAG.getNode(ISD::ADD,
3355                              TLI.getPointerTy(),
3356                              DAG.getNode(ISD::FRAMEADDR,
3357                                          TLI.getPointerTy(),
3358                                          DAG.getConstant(0,
3359                                                          TLI.getPointerTy())),
3360                              Offset));
3361     return 0;
3362  }
3363
3364  case Intrinsic::sqrt:
3365    setValue(&I, DAG.getNode(ISD::FSQRT,
3366                             getValue(I.getOperand(1)).getValueType(),
3367                             getValue(I.getOperand(1))));
3368    return 0;
3369  case Intrinsic::powi:
3370    setValue(&I, DAG.getNode(ISD::FPOWI,
3371                             getValue(I.getOperand(1)).getValueType(),
3372                             getValue(I.getOperand(1)),
3373                             getValue(I.getOperand(2))));
3374    return 0;
3375  case Intrinsic::sin:
3376    setValue(&I, DAG.getNode(ISD::FSIN,
3377                             getValue(I.getOperand(1)).getValueType(),
3378                             getValue(I.getOperand(1))));
3379    return 0;
3380  case Intrinsic::cos:
3381    setValue(&I, DAG.getNode(ISD::FCOS,
3382                             getValue(I.getOperand(1)).getValueType(),
3383                             getValue(I.getOperand(1))));
3384    return 0;
3385  case Intrinsic::pow:
3386    setValue(&I, DAG.getNode(ISD::FPOW,
3387                             getValue(I.getOperand(1)).getValueType(),
3388                             getValue(I.getOperand(1)),
3389                             getValue(I.getOperand(2))));
3390    return 0;
3391  case Intrinsic::pcmarker: {
3392    SDOperand Tmp = getValue(I.getOperand(1));
3393    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3394    return 0;
3395  }
3396  case Intrinsic::readcyclecounter: {
3397    SDOperand Op = getRoot();
3398    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3399                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3400                                &Op, 1);
3401    setValue(&I, Tmp);
3402    DAG.setRoot(Tmp.getValue(1));
3403    return 0;
3404  }
3405  case Intrinsic::part_select: {
3406    // Currently not implemented: just abort
3407    assert(0 && "part_select intrinsic not implemented");
3408    abort();
3409  }
3410  case Intrinsic::part_set: {
3411    // Currently not implemented: just abort
3412    assert(0 && "part_set intrinsic not implemented");
3413    abort();
3414  }
3415  case Intrinsic::bswap:
3416    setValue(&I, DAG.getNode(ISD::BSWAP,
3417                             getValue(I.getOperand(1)).getValueType(),
3418                             getValue(I.getOperand(1))));
3419    return 0;
3420  case Intrinsic::cttz: {
3421    SDOperand Arg = getValue(I.getOperand(1));
3422    MVT Ty = Arg.getValueType();
3423    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3424    setValue(&I, result);
3425    return 0;
3426  }
3427  case Intrinsic::ctlz: {
3428    SDOperand Arg = getValue(I.getOperand(1));
3429    MVT Ty = Arg.getValueType();
3430    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3431    setValue(&I, result);
3432    return 0;
3433  }
3434  case Intrinsic::ctpop: {
3435    SDOperand Arg = getValue(I.getOperand(1));
3436    MVT Ty = Arg.getValueType();
3437    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3438    setValue(&I, result);
3439    return 0;
3440  }
3441  case Intrinsic::stacksave: {
3442    SDOperand Op = getRoot();
3443    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
3444              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3445    setValue(&I, Tmp);
3446    DAG.setRoot(Tmp.getValue(1));
3447    return 0;
3448  }
3449  case Intrinsic::stackrestore: {
3450    SDOperand Tmp = getValue(I.getOperand(1));
3451    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3452    return 0;
3453  }
3454  case Intrinsic::var_annotation:
3455    // Discard annotate attributes
3456    return 0;
3457
3458  case Intrinsic::init_trampoline: {
3459    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
3460
3461    SDOperand Ops[6];
3462    Ops[0] = getRoot();
3463    Ops[1] = getValue(I.getOperand(1));
3464    Ops[2] = getValue(I.getOperand(2));
3465    Ops[3] = getValue(I.getOperand(3));
3466    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3467    Ops[5] = DAG.getSrcValue(F);
3468
3469    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
3470                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3471                                                      MVT::Other), 2,
3472                                Ops, 6);
3473
3474    setValue(&I, Tmp);
3475    DAG.setRoot(Tmp.getValue(1));
3476    return 0;
3477  }
3478
3479  case Intrinsic::gcroot:
3480    if (GCI) {
3481      Value *Alloca = I.getOperand(1);
3482      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3483
3484      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3485      GCI->addStackRoot(FI->getIndex(), TypeMap);
3486    }
3487    return 0;
3488
3489  case Intrinsic::gcread:
3490  case Intrinsic::gcwrite:
3491    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3492    return 0;
3493
3494  case Intrinsic::flt_rounds: {
3495    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3496    return 0;
3497  }
3498
3499  case Intrinsic::trap: {
3500    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3501    return 0;
3502  }
3503  case Intrinsic::prefetch: {
3504    SDOperand Ops[4];
3505    Ops[0] = getRoot();
3506    Ops[1] = getValue(I.getOperand(1));
3507    Ops[2] = getValue(I.getOperand(2));
3508    Ops[3] = getValue(I.getOperand(3));
3509    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3510    return 0;
3511  }
3512
3513  case Intrinsic::memory_barrier: {
3514    SDOperand Ops[6];
3515    Ops[0] = getRoot();
3516    for (int x = 1; x < 6; ++x)
3517      Ops[x] = getValue(I.getOperand(x));
3518
3519    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3520    return 0;
3521  }
3522  case Intrinsic::atomic_cmp_swap: {
3523    SDOperand Root = getRoot();
3524    SDOperand L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, Root,
3525                                getValue(I.getOperand(1)),
3526                                getValue(I.getOperand(2)),
3527                                getValue(I.getOperand(3)),
3528                                I.getOperand(1));
3529    setValue(&I, L);
3530    DAG.setRoot(L.getValue(1));
3531    return 0;
3532  }
3533  case Intrinsic::atomic_load_add:
3534    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
3535  case Intrinsic::atomic_load_sub:
3536    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
3537  case Intrinsic::atomic_load_and:
3538    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
3539  case Intrinsic::atomic_load_or:
3540    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
3541  case Intrinsic::atomic_load_xor:
3542    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
3543  case Intrinsic::atomic_load_nand:
3544    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
3545  case Intrinsic::atomic_load_min:
3546    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
3547  case Intrinsic::atomic_load_max:
3548    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
3549  case Intrinsic::atomic_load_umin:
3550    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
3551  case Intrinsic::atomic_load_umax:
3552      return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
3553  case Intrinsic::atomic_swap:
3554    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
3555  }
3556}
3557
3558
3559void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
3560                                       bool IsTailCall,
3561                                       MachineBasicBlock *LandingPad) {
3562  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3563  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3564  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3565  unsigned BeginLabel = 0, EndLabel = 0;
3566
3567  TargetLowering::ArgListTy Args;
3568  TargetLowering::ArgListEntry Entry;
3569  Args.reserve(CS.arg_size());
3570  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3571       i != e; ++i) {
3572    SDOperand ArgNode = getValue(*i);
3573    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3574
3575    unsigned attrInd = i - CS.arg_begin() + 1;
3576    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3577    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3578    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3579    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3580    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3581    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3582    Entry.Alignment = CS.getParamAlignment(attrInd);
3583    Args.push_back(Entry);
3584  }
3585
3586  if (LandingPad && MMI) {
3587    // Insert a label before the invoke call to mark the try range.  This can be
3588    // used to detect deletion of the invoke via the MachineModuleInfo.
3589    BeginLabel = MMI->NextLabelID();
3590    // Both PendingLoads and PendingExports must be flushed here;
3591    // this call might not return.
3592    (void)getRoot();
3593    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getControlRoot(),
3594                            DAG.getConstant(BeginLabel, MVT::i32),
3595                            DAG.getConstant(1, MVT::i32)));
3596  }
3597
3598  std::pair<SDOperand,SDOperand> Result =
3599    TLI.LowerCallTo(getRoot(), CS.getType(),
3600                    CS.paramHasAttr(0, ParamAttr::SExt),
3601                    CS.paramHasAttr(0, ParamAttr::ZExt),
3602                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3603                    Callee, Args, DAG);
3604  if (CS.getType() != Type::VoidTy)
3605    setValue(CS.getInstruction(), Result.first);
3606  DAG.setRoot(Result.second);
3607
3608  if (LandingPad && MMI) {
3609    // Insert a label at the end of the invoke call to mark the try range.  This
3610    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3611    EndLabel = MMI->NextLabelID();
3612    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3613                            DAG.getConstant(EndLabel, MVT::i32),
3614                            DAG.getConstant(1, MVT::i32)));
3615
3616    // Inform MachineModuleInfo of range.
3617    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3618  }
3619}
3620
3621
3622void SelectionDAGLowering::visitCall(CallInst &I) {
3623  const char *RenameFn = 0;
3624  if (Function *F = I.getCalledFunction()) {
3625    if (F->isDeclaration()) {
3626      if (unsigned IID = F->getIntrinsicID()) {
3627        RenameFn = visitIntrinsicCall(I, IID);
3628        if (!RenameFn)
3629          return;
3630      }
3631    }
3632
3633    // Check for well-known libc/libm calls.  If the function is internal, it
3634    // can't be a library call.
3635    unsigned NameLen = F->getNameLen();
3636    if (!F->hasInternalLinkage() && NameLen) {
3637      const char *NameStr = F->getNameStart();
3638      if (NameStr[0] == 'c' &&
3639          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3640           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3641        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3642            I.getOperand(1)->getType()->isFloatingPoint() &&
3643            I.getType() == I.getOperand(1)->getType() &&
3644            I.getType() == I.getOperand(2)->getType()) {
3645          SDOperand LHS = getValue(I.getOperand(1));
3646          SDOperand RHS = getValue(I.getOperand(2));
3647          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3648                                   LHS, RHS));
3649          return;
3650        }
3651      } else if (NameStr[0] == 'f' &&
3652                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3653                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3654                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3655        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3656            I.getOperand(1)->getType()->isFloatingPoint() &&
3657            I.getType() == I.getOperand(1)->getType()) {
3658          SDOperand Tmp = getValue(I.getOperand(1));
3659          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3660          return;
3661        }
3662      } else if (NameStr[0] == 's' &&
3663                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3664                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3665                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3666        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3667            I.getOperand(1)->getType()->isFloatingPoint() &&
3668            I.getType() == I.getOperand(1)->getType()) {
3669          SDOperand Tmp = getValue(I.getOperand(1));
3670          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3671          return;
3672        }
3673      } else if (NameStr[0] == 'c' &&
3674                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3675                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3676                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3677        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3678            I.getOperand(1)->getType()->isFloatingPoint() &&
3679            I.getType() == I.getOperand(1)->getType()) {
3680          SDOperand Tmp = getValue(I.getOperand(1));
3681          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3682          return;
3683        }
3684      }
3685    }
3686  } else if (isa<InlineAsm>(I.getOperand(0))) {
3687    visitInlineAsm(&I);
3688    return;
3689  }
3690
3691  SDOperand Callee;
3692  if (!RenameFn)
3693    Callee = getValue(I.getOperand(0));
3694  else
3695    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3696
3697  LowerCallTo(&I, Callee, I.isTailCall());
3698}
3699
3700
3701void SelectionDAGLowering::visitGetResult(GetResultInst &I) {
3702  if (isa<UndefValue>(I.getOperand(0))) {
3703    SDOperand Undef = DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()));
3704    setValue(&I, Undef);
3705    return;
3706  }
3707
3708  // To add support for individual return values with aggregate types,
3709  // we'd need a way to take a getresult index and determine which
3710  // values of the Call SDNode are associated with it.
3711  assert(TLI.getValueType(I.getType(), true) != MVT::Other &&
3712         "Individual return values must not be aggregates!");
3713
3714  SDOperand Call = getValue(I.getOperand(0));
3715  setValue(&I, SDOperand(Call.Val, I.getIndex()));
3716}
3717
3718
3719/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3720/// this value and returns the result as a ValueVT value.  This uses
3721/// Chain/Flag as the input and updates them for the output Chain/Flag.
3722/// If the Flag pointer is NULL, no flag is used.
3723SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3724                                        SDOperand &Chain,
3725                                        SDOperand *Flag) const {
3726  // Assemble the legal parts into the final values.
3727  SmallVector<SDOperand, 4> Values(ValueVTs.size());
3728  SmallVector<SDOperand, 8> Parts;
3729  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3730    // Copy the legal parts from the registers.
3731    MVT ValueVT = ValueVTs[Value];
3732    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
3733    MVT RegisterVT = RegVTs[Value];
3734
3735    Parts.resize(NumRegs);
3736    for (unsigned i = 0; i != NumRegs; ++i) {
3737      SDOperand P;
3738      if (Flag == 0)
3739        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
3740      else {
3741        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
3742        *Flag = P.getValue(2);
3743      }
3744      Chain = P.getValue(1);
3745
3746      // If the source register was virtual and if we know something about it,
3747      // add an assert node.
3748      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
3749          RegisterVT.isInteger() && !RegisterVT.isVector()) {
3750        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
3751        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
3752        if (FLI.LiveOutRegInfo.size() > SlotNo) {
3753          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
3754
3755          unsigned RegSize = RegisterVT.getSizeInBits();
3756          unsigned NumSignBits = LOI.NumSignBits;
3757          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
3758
3759          // FIXME: We capture more information than the dag can represent.  For
3760          // now, just use the tightest assertzext/assertsext possible.
3761          bool isSExt = true;
3762          MVT FromVT(MVT::Other);
3763          if (NumSignBits == RegSize)
3764            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
3765          else if (NumZeroBits >= RegSize-1)
3766            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
3767          else if (NumSignBits > RegSize-8)
3768            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
3769          else if (NumZeroBits >= RegSize-9)
3770            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
3771          else if (NumSignBits > RegSize-16)
3772            isSExt = true, FromVT = MVT::i16;   // ASSERT SEXT 16
3773          else if (NumZeroBits >= RegSize-17)
3774            isSExt = false, FromVT = MVT::i16;  // ASSERT ZEXT 16
3775          else if (NumSignBits > RegSize-32)
3776            isSExt = true, FromVT = MVT::i32;   // ASSERT SEXT 32
3777          else if (NumZeroBits >= RegSize-33)
3778            isSExt = false, FromVT = MVT::i32;  // ASSERT ZEXT 32
3779
3780          if (FromVT != MVT::Other) {
3781            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
3782                            RegisterVT, P, DAG.getValueType(FromVT));
3783
3784          }
3785        }
3786      }
3787
3788      Parts[Part+i] = P;
3789    }
3790
3791    Values[Value] = getCopyFromParts(DAG, &Parts[Part], NumRegs, RegisterVT,
3792                                     ValueVT);
3793    Part += NumRegs;
3794  }
3795
3796  if (ValueVTs.size() == 1)
3797    return Values[0];
3798
3799  return DAG.getNode(ISD::MERGE_VALUES,
3800                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
3801                     &Values[0], ValueVTs.size());
3802}
3803
3804/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3805/// specified value into the registers specified by this object.  This uses
3806/// Chain/Flag as the input and updates them for the output Chain/Flag.
3807/// If the Flag pointer is NULL, no flag is used.
3808void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3809                                 SDOperand &Chain, SDOperand *Flag) const {
3810  // Get the list of the values's legal parts.
3811  unsigned NumRegs = Regs.size();
3812  SmallVector<SDOperand, 8> Parts(NumRegs);
3813  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3814    MVT ValueVT = ValueVTs[Value];
3815    unsigned NumParts = TLI->getNumRegisters(ValueVT);
3816    MVT RegisterVT = RegVTs[Value];
3817
3818    getCopyToParts(DAG, Val.getValue(Val.ResNo + Value),
3819                   &Parts[Part], NumParts, RegisterVT);
3820    Part += NumParts;
3821  }
3822
3823  // Copy the parts into the registers.
3824  SmallVector<SDOperand, 8> Chains(NumRegs);
3825  for (unsigned i = 0; i != NumRegs; ++i) {
3826    SDOperand Part;
3827    if (Flag == 0)
3828      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3829    else {
3830      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
3831      *Flag = Part.getValue(1);
3832    }
3833    Chains[i] = Part.getValue(0);
3834  }
3835
3836  if (NumRegs == 1 || Flag)
3837    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
3838    // flagged to it. That is the CopyToReg nodes and the user are considered
3839    // a single scheduling unit. If we create a TokenFactor and return it as
3840    // chain, then the TokenFactor is both a predecessor (operand) of the
3841    // user as well as a successor (the TF operands are flagged to the user).
3842    // c1, f1 = CopyToReg
3843    // c2, f2 = CopyToReg
3844    // c3     = TokenFactor c1, c2
3845    // ...
3846    //        = op c3, ..., f2
3847    Chain = Chains[NumRegs-1];
3848  else
3849    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
3850}
3851
3852/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3853/// operand list.  This adds the code marker and includes the number of
3854/// values added into it.
3855void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3856                                        std::vector<SDOperand> &Ops) const {
3857  MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3858  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3859  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
3860    unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
3861    MVT RegisterVT = RegVTs[Value];
3862    for (unsigned i = 0; i != NumRegs; ++i)
3863      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
3864  }
3865}
3866
3867/// isAllocatableRegister - If the specified register is safe to allocate,
3868/// i.e. it isn't a stack pointer or some other special register, return the
3869/// register class for the register.  Otherwise, return null.
3870static const TargetRegisterClass *
3871isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3872                      const TargetLowering &TLI,
3873                      const TargetRegisterInfo *TRI) {
3874  MVT FoundVT = MVT::Other;
3875  const TargetRegisterClass *FoundRC = 0;
3876  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3877       E = TRI->regclass_end(); RCI != E; ++RCI) {
3878    MVT ThisVT = MVT::Other;
3879
3880    const TargetRegisterClass *RC = *RCI;
3881    // If none of the the value types for this register class are valid, we
3882    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3883    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3884         I != E; ++I) {
3885      if (TLI.isTypeLegal(*I)) {
3886        // If we have already found this register in a different register class,
3887        // choose the one with the largest VT specified.  For example, on
3888        // PowerPC, we favor f64 register classes over f32.
3889        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
3890          ThisVT = *I;
3891          break;
3892        }
3893      }
3894    }
3895
3896    if (ThisVT == MVT::Other) continue;
3897
3898    // NOTE: This isn't ideal.  In particular, this might allocate the
3899    // frame pointer in functions that need it (due to them not being taken
3900    // out of allocation, because a variable sized allocation hasn't been seen
3901    // yet).  This is a slight code pessimization, but should still work.
3902    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3903         E = RC->allocation_order_end(MF); I != E; ++I)
3904      if (*I == Reg) {
3905        // We found a matching register class.  Keep looking at others in case
3906        // we find one with larger registers that this physreg is also in.
3907        FoundRC = RC;
3908        FoundVT = ThisVT;
3909        break;
3910      }
3911  }
3912  return FoundRC;
3913}
3914
3915
3916namespace {
3917/// AsmOperandInfo - This contains information for each constraint that we are
3918/// lowering.
3919struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
3920  /// CallOperand - If this is the result output operand or a clobber
3921  /// this is null, otherwise it is the incoming operand to the CallInst.
3922  /// This gets modified as the asm is processed.
3923  SDOperand CallOperand;
3924
3925  /// AssignedRegs - If this is a register or register class operand, this
3926  /// contains the set of register corresponding to the operand.
3927  RegsForValue AssignedRegs;
3928
3929  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3930    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
3931  }
3932
3933  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3934  /// busy in OutputRegs/InputRegs.
3935  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3936                         std::set<unsigned> &OutputRegs,
3937                         std::set<unsigned> &InputRegs,
3938                         const TargetRegisterInfo &TRI) const {
3939    if (isOutReg) {
3940      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3941        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3942    }
3943    if (isInReg) {
3944      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3945        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3946    }
3947  }
3948
3949private:
3950  /// MarkRegAndAliases - Mark the specified register and all aliases in the
3951  /// specified set.
3952  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3953                                const TargetRegisterInfo &TRI) {
3954    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3955    Regs.insert(Reg);
3956    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3957      for (; *Aliases; ++Aliases)
3958        Regs.insert(*Aliases);
3959  }
3960};
3961} // end anon namespace.
3962
3963
3964/// GetRegistersForValue - Assign registers (virtual or physical) for the
3965/// specified operand.  We prefer to assign virtual registers, to allow the
3966/// register allocator handle the assignment process.  However, if the asm uses
3967/// features that we can't model on machineinstrs, we have SDISel do the
3968/// allocation.  This produces generally horrible, but correct, code.
3969///
3970///   OpInfo describes the operand.
3971///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
3972///     or any explicitly clobbered registers.
3973///   Input and OutputRegs are the set of already allocated physical registers.
3974///
3975void SelectionDAGLowering::
3976GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
3977                     std::set<unsigned> &OutputRegs,
3978                     std::set<unsigned> &InputRegs) {
3979  // Compute whether this value requires an input register, an output register,
3980  // or both.
3981  bool isOutReg = false;
3982  bool isInReg = false;
3983  switch (OpInfo.Type) {
3984  case InlineAsm::isOutput:
3985    isOutReg = true;
3986
3987    // If this is an early-clobber output, or if there is an input
3988    // constraint that matches this, we need to reserve the input register
3989    // so no other inputs allocate to it.
3990    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3991    break;
3992  case InlineAsm::isInput:
3993    isInReg = true;
3994    isOutReg = false;
3995    break;
3996  case InlineAsm::isClobber:
3997    isOutReg = true;
3998    isInReg = true;
3999    break;
4000  }
4001
4002
4003  MachineFunction &MF = DAG.getMachineFunction();
4004  SmallVector<unsigned, 4> Regs;
4005
4006  // If this is a constraint for a single physreg, or a constraint for a
4007  // register class, find it.
4008  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4009    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4010                                     OpInfo.ConstraintVT);
4011
4012  unsigned NumRegs = 1;
4013  if (OpInfo.ConstraintVT != MVT::Other)
4014    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
4015  MVT RegVT;
4016  MVT ValueVT = OpInfo.ConstraintVT;
4017
4018
4019  // If this is a constraint for a specific physical register, like {r17},
4020  // assign it now.
4021  if (PhysReg.first) {
4022    if (OpInfo.ConstraintVT == MVT::Other)
4023      ValueVT = *PhysReg.second->vt_begin();
4024
4025    // Get the actual register value type.  This is important, because the user
4026    // may have asked for (e.g.) the AX register in i32 type.  We need to
4027    // remember that AX is actually i16 to get the right extension.
4028    RegVT = *PhysReg.second->vt_begin();
4029
4030    // This is a explicit reference to a physical register.
4031    Regs.push_back(PhysReg.first);
4032
4033    // If this is an expanded reference, add the rest of the regs to Regs.
4034    if (NumRegs != 1) {
4035      TargetRegisterClass::iterator I = PhysReg.second->begin();
4036      for (; *I != PhysReg.first; ++I)
4037        assert(I != PhysReg.second->end() && "Didn't find reg!");
4038
4039      // Already added the first reg.
4040      --NumRegs; ++I;
4041      for (; NumRegs; --NumRegs, ++I) {
4042        assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
4043        Regs.push_back(*I);
4044      }
4045    }
4046    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4047    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4048    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4049    return;
4050  }
4051
4052  // Otherwise, if this was a reference to an LLVM register class, create vregs
4053  // for this reference.
4054  std::vector<unsigned> RegClassRegs;
4055  const TargetRegisterClass *RC = PhysReg.second;
4056  if (RC) {
4057    // If this is an early clobber or tied register, our regalloc doesn't know
4058    // how to maintain the constraint.  If it isn't, go ahead and create vreg
4059    // and let the regalloc do the right thing.
4060    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
4061        // If there is some other early clobber and this is an input register,
4062        // then we are forced to pre-allocate the input reg so it doesn't
4063        // conflict with the earlyclobber.
4064        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
4065      RegVT = *PhysReg.second->vt_begin();
4066
4067      if (OpInfo.ConstraintVT == MVT::Other)
4068        ValueVT = RegVT;
4069
4070      // Create the appropriate number of virtual registers.
4071      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4072      for (; NumRegs; --NumRegs)
4073        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
4074
4075      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4076      return;
4077    }
4078
4079    // Otherwise, we can't allocate it.  Let the code below figure out how to
4080    // maintain these constraints.
4081    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
4082
4083  } else {
4084    // This is a reference to a register class that doesn't directly correspond
4085    // to an LLVM register class.  Allocate NumRegs consecutive, available,
4086    // registers from the class.
4087    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
4088                                                         OpInfo.ConstraintVT);
4089  }
4090
4091  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4092  unsigned NumAllocated = 0;
4093  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
4094    unsigned Reg = RegClassRegs[i];
4095    // See if this register is available.
4096    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
4097        (isInReg  && InputRegs.count(Reg))) {    // Already used.
4098      // Make sure we find consecutive registers.
4099      NumAllocated = 0;
4100      continue;
4101    }
4102
4103    // Check to see if this register is allocatable (i.e. don't give out the
4104    // stack pointer).
4105    if (RC == 0) {
4106      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
4107      if (!RC) {        // Couldn't allocate this register.
4108        // Reset NumAllocated to make sure we return consecutive registers.
4109        NumAllocated = 0;
4110        continue;
4111      }
4112    }
4113
4114    // Okay, this register is good, we can use it.
4115    ++NumAllocated;
4116
4117    // If we allocated enough consecutive registers, succeed.
4118    if (NumAllocated == NumRegs) {
4119      unsigned RegStart = (i-NumAllocated)+1;
4120      unsigned RegEnd   = i+1;
4121      // Mark all of the allocated registers used.
4122      for (unsigned i = RegStart; i != RegEnd; ++i)
4123        Regs.push_back(RegClassRegs[i]);
4124
4125      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
4126                                         OpInfo.ConstraintVT);
4127      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4128      return;
4129    }
4130  }
4131
4132  // Otherwise, we couldn't allocate enough registers for this.
4133}
4134
4135
4136/// visitInlineAsm - Handle a call to an InlineAsm object.
4137///
4138void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
4139  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4140
4141  /// ConstraintOperands - Information about all of the constraints.
4142  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
4143
4144  SDOperand Chain = getRoot();
4145  SDOperand Flag;
4146
4147  std::set<unsigned> OutputRegs, InputRegs;
4148
4149  // Do a prepass over the constraints, canonicalizing them, and building up the
4150  // ConstraintOperands list.
4151  std::vector<InlineAsm::ConstraintInfo>
4152    ConstraintInfos = IA->ParseConstraints();
4153
4154  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
4155  // constraint.  If so, we can't let the register allocator allocate any input
4156  // registers, because it will not know to avoid the earlyclobbered output reg.
4157  bool SawEarlyClobber = false;
4158
4159  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
4160  unsigned ResNo = 0;   // ResNo - The result number of the next output.
4161  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4162    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
4163    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
4164
4165    MVT OpVT = MVT::Other;
4166
4167    // Compute the value type for each operand.
4168    switch (OpInfo.Type) {
4169    case InlineAsm::isOutput:
4170      // Indirect outputs just consume an argument.
4171      if (OpInfo.isIndirect) {
4172        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4173        break;
4174      }
4175      // The return value of the call is this value.  As such, there is no
4176      // corresponding argument.
4177      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4178      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
4179        OpVT = TLI.getValueType(STy->getElementType(ResNo));
4180      } else {
4181        assert(ResNo == 0 && "Asm only has one result!");
4182        OpVT = TLI.getValueType(CS.getType());
4183      }
4184      ++ResNo;
4185      break;
4186    case InlineAsm::isInput:
4187      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4188      break;
4189    case InlineAsm::isClobber:
4190      // Nothing to do.
4191      break;
4192    }
4193
4194    // If this is an input or an indirect output, process the call argument.
4195    // BasicBlocks are labels, currently appearing only in asm's.
4196    if (OpInfo.CallOperandVal) {
4197      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
4198        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
4199      else {
4200        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
4201        const Type *OpTy = OpInfo.CallOperandVal->getType();
4202        // If this is an indirect operand, the operand is a pointer to the
4203        // accessed type.
4204        if (OpInfo.isIndirect)
4205          OpTy = cast<PointerType>(OpTy)->getElementType();
4206
4207        // If OpTy is not a single value, it may be a struct/union that we
4208        // can tile with integers.
4209        if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4210          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4211          switch (BitSize) {
4212          default: break;
4213          case 1:
4214          case 8:
4215          case 16:
4216          case 32:
4217          case 64:
4218            OpTy = IntegerType::get(BitSize);
4219            break;
4220          }
4221        }
4222
4223        OpVT = TLI.getValueType(OpTy, true);
4224      }
4225    }
4226
4227    OpInfo.ConstraintVT = OpVT;
4228
4229    // Compute the constraint code and ConstraintType to use.
4230    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
4231
4232    // Keep track of whether we see an earlyclobber.
4233    SawEarlyClobber |= OpInfo.isEarlyClobber;
4234
4235    // If we see a clobber of a register, it is an early clobber.
4236    if (!SawEarlyClobber &&
4237        OpInfo.Type == InlineAsm::isClobber &&
4238        OpInfo.ConstraintType == TargetLowering::C_Register) {
4239      // Note that we want to ignore things that we don't trick here, like
4240      // dirflag, fpsr, flags, etc.
4241      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4242        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4243                                         OpInfo.ConstraintVT);
4244      if (PhysReg.first || PhysReg.second) {
4245        // This is a register we know of.
4246        SawEarlyClobber = true;
4247      }
4248    }
4249
4250    // If this is a memory input, and if the operand is not indirect, do what we
4251    // need to to provide an address for the memory input.
4252    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4253        !OpInfo.isIndirect) {
4254      assert(OpInfo.Type == InlineAsm::isInput &&
4255             "Can only indirectify direct input operands!");
4256
4257      // Memory operands really want the address of the value.  If we don't have
4258      // an indirect input, put it in the constpool if we can, otherwise spill
4259      // it to a stack slot.
4260
4261      // If the operand is a float, integer, or vector constant, spill to a
4262      // constant pool entry to get its address.
4263      Value *OpVal = OpInfo.CallOperandVal;
4264      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
4265          isa<ConstantVector>(OpVal)) {
4266        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
4267                                                 TLI.getPointerTy());
4268      } else {
4269        // Otherwise, create a stack slot and emit a store to it before the
4270        // asm.
4271        const Type *Ty = OpVal->getType();
4272        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
4273        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
4274        MachineFunction &MF = DAG.getMachineFunction();
4275        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
4276        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4277        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
4278        OpInfo.CallOperand = StackSlot;
4279      }
4280
4281      // There is no longer a Value* corresponding to this operand.
4282      OpInfo.CallOperandVal = 0;
4283      // It is now an indirect operand.
4284      OpInfo.isIndirect = true;
4285    }
4286
4287    // If this constraint is for a specific register, allocate it before
4288    // anything else.
4289    if (OpInfo.ConstraintType == TargetLowering::C_Register)
4290      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4291  }
4292  ConstraintInfos.clear();
4293
4294
4295  // Second pass - Loop over all of the operands, assigning virtual or physregs
4296  // to registerclass operands.
4297  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4298    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4299
4300    // C_Register operands have already been allocated, Other/Memory don't need
4301    // to be.
4302    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
4303      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4304  }
4305
4306  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
4307  std::vector<SDOperand> AsmNodeOperands;
4308  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
4309  AsmNodeOperands.push_back(
4310          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
4311
4312
4313  // Loop over all of the inputs, copying the operand values into the
4314  // appropriate registers and processing the output regs.
4315  RegsForValue RetValRegs;
4316
4317  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
4318  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
4319
4320  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4321    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4322
4323    switch (OpInfo.Type) {
4324    case InlineAsm::isOutput: {
4325      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
4326          OpInfo.ConstraintType != TargetLowering::C_Register) {
4327        // Memory output, or 'other' output (e.g. 'X' constraint).
4328        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
4329
4330        // Add information to the INLINEASM node to know about this output.
4331        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4332        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4333                                                        TLI.getPointerTy()));
4334        AsmNodeOperands.push_back(OpInfo.CallOperand);
4335        break;
4336      }
4337
4338      // Otherwise, this is a register or register class output.
4339
4340      // Copy the output from the appropriate register.  Find a register that
4341      // we can use.
4342      if (OpInfo.AssignedRegs.Regs.empty()) {
4343        cerr << "Couldn't allocate output reg for constraint '"
4344             << OpInfo.ConstraintCode << "'!\n";
4345        exit(1);
4346      }
4347
4348      // If this is an indirect operand, store through the pointer after the
4349      // asm.
4350      if (OpInfo.isIndirect) {
4351        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
4352                                                      OpInfo.CallOperandVal));
4353      } else {
4354        // This is the result value of the call.
4355        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4356        // Concatenate this output onto the outputs list.
4357        RetValRegs.append(OpInfo.AssignedRegs);
4358      }
4359
4360      // Add information to the INLINEASM node to know that this register is
4361      // set.
4362      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
4363                                               AsmNodeOperands);
4364      break;
4365    }
4366    case InlineAsm::isInput: {
4367      SDOperand InOperandVal = OpInfo.CallOperand;
4368
4369      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
4370        // If this is required to match an output register we have already set,
4371        // just use its register.
4372        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
4373
4374        // Scan until we find the definition we already emitted of this operand.
4375        // When we find it, create a RegsForValue operand.
4376        unsigned CurOp = 2;  // The first operand.
4377        for (; OperandNo; --OperandNo) {
4378          // Advance to the next operand.
4379          unsigned NumOps =
4380            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4381          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
4382                  (NumOps & 7) == 4 /*MEM*/) &&
4383                 "Skipped past definitions?");
4384          CurOp += (NumOps>>3)+1;
4385        }
4386
4387        unsigned NumOps =
4388          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4389        if ((NumOps & 7) == 2 /*REGDEF*/) {
4390          // Add NumOps>>3 registers to MatchedRegs.
4391          RegsForValue MatchedRegs;
4392          MatchedRegs.TLI = &TLI;
4393          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
4394          MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
4395          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
4396            unsigned Reg =
4397              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4398            MatchedRegs.Regs.push_back(Reg);
4399          }
4400
4401          // Use the produced MatchedRegs object to
4402          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4403          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
4404          break;
4405        } else {
4406          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
4407          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4408          // Add information to the INLINEASM node to know about this input.
4409          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4410          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4411                                                          TLI.getPointerTy()));
4412          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4413          break;
4414        }
4415      }
4416
4417      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4418        assert(!OpInfo.isIndirect &&
4419               "Don't know how to handle indirect other inputs yet!");
4420
4421        std::vector<SDOperand> Ops;
4422        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
4423                                         Ops, DAG);
4424        if (Ops.empty()) {
4425          cerr << "Invalid operand for inline asm constraint '"
4426               << OpInfo.ConstraintCode << "'!\n";
4427          exit(1);
4428        }
4429
4430        // Add information to the INLINEASM node to know about this input.
4431        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4432        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4433                                                        TLI.getPointerTy()));
4434        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4435        break;
4436      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4437        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4438        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4439               "Memory operands expect pointer values");
4440
4441        // Add information to the INLINEASM node to know about this input.
4442        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4443        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4444                                                        TLI.getPointerTy()));
4445        AsmNodeOperands.push_back(InOperandVal);
4446        break;
4447      }
4448
4449      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4450              OpInfo.ConstraintType == TargetLowering::C_Register) &&
4451             "Unknown constraint type!");
4452      assert(!OpInfo.isIndirect &&
4453             "Don't know how to handle indirect register inputs yet!");
4454
4455      // Copy the input into the appropriate registers.
4456      assert(!OpInfo.AssignedRegs.Regs.empty() &&
4457             "Couldn't allocate input reg!");
4458
4459      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4460
4461      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
4462                                               AsmNodeOperands);
4463      break;
4464    }
4465    case InlineAsm::isClobber: {
4466      // Add the clobbered value to the operand list, so that the register
4467      // allocator is aware that the physreg got clobbered.
4468      if (!OpInfo.AssignedRegs.Regs.empty())
4469        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
4470                                                 AsmNodeOperands);
4471      break;
4472    }
4473    }
4474  }
4475
4476  // Finish up input operands.
4477  AsmNodeOperands[0] = Chain;
4478  if (Flag.Val) AsmNodeOperands.push_back(Flag);
4479
4480  Chain = DAG.getNode(ISD::INLINEASM,
4481                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4482                      &AsmNodeOperands[0], AsmNodeOperands.size());
4483  Flag = Chain.getValue(1);
4484
4485  // If this asm returns a register value, copy the result from that register
4486  // and set it as the value of the call.
4487  if (!RetValRegs.Regs.empty()) {
4488    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4489
4490    // If any of the results of the inline asm is a vector, it may have the
4491    // wrong width/num elts.  This can happen for register classes that can
4492    // contain multiple different value types.  The preg or vreg allocated may
4493    // not have the same VT as was expected.  Convert it to the right type with
4494    // bit_convert.
4495    if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
4496      for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
4497        if (Val.Val->getValueType(i).isVector())
4498          Val = DAG.getNode(ISD::BIT_CONVERT,
4499                            TLI.getValueType(ResSTy->getElementType(i)), Val);
4500      }
4501    } else {
4502      if (Val.getValueType().isVector())
4503        Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
4504                          Val);
4505    }
4506
4507    setValue(CS.getInstruction(), Val);
4508  }
4509
4510  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
4511
4512  // Process indirect outputs, first output all of the flagged copies out of
4513  // physregs.
4514  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4515    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4516    Value *Ptr = IndirectStoresToEmit[i].second;
4517    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4518    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4519  }
4520
4521  // Emit the non-flagged stores from the physregs.
4522  SmallVector<SDOperand, 8> OutChains;
4523  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4524    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4525                                    getValue(StoresToEmit[i].second),
4526                                    StoresToEmit[i].second, 0));
4527  if (!OutChains.empty())
4528    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4529                        &OutChains[0], OutChains.size());
4530  DAG.setRoot(Chain);
4531}
4532
4533
4534void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4535  SDOperand Src = getValue(I.getOperand(0));
4536
4537  MVT IntPtr = TLI.getPointerTy();
4538
4539  if (IntPtr.bitsLT(Src.getValueType()))
4540    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4541  else if (IntPtr.bitsGT(Src.getValueType()))
4542    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4543
4544  // Scale the source by the type size.
4545  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4546  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4547                    Src, DAG.getIntPtrConstant(ElementSize));
4548
4549  TargetLowering::ArgListTy Args;
4550  TargetLowering::ArgListEntry Entry;
4551  Entry.Node = Src;
4552  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4553  Args.push_back(Entry);
4554
4555  std::pair<SDOperand,SDOperand> Result =
4556    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4557                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4558  setValue(&I, Result.first);  // Pointers always fit in registers
4559  DAG.setRoot(Result.second);
4560}
4561
4562void SelectionDAGLowering::visitFree(FreeInst &I) {
4563  TargetLowering::ArgListTy Args;
4564  TargetLowering::ArgListEntry Entry;
4565  Entry.Node = getValue(I.getOperand(0));
4566  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4567  Args.push_back(Entry);
4568  MVT IntPtr = TLI.getPointerTy();
4569  std::pair<SDOperand,SDOperand> Result =
4570    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4571                    CallingConv::C, true,
4572                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4573  DAG.setRoot(Result.second);
4574}
4575
4576// EmitInstrWithCustomInserter - This method should be implemented by targets
4577// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4578// instructions are special in various ways, which require special support to
4579// insert.  The specified MachineInstr is created but not inserted into any
4580// basic blocks, and the scheduler passes ownership of it to this method.
4581MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4582                                                       MachineBasicBlock *MBB) {
4583  cerr << "If a target marks an instruction with "
4584       << "'usesCustomDAGSchedInserter', it must implement "
4585       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4586  abort();
4587  return 0;
4588}
4589
4590void SelectionDAGLowering::visitVAStart(CallInst &I) {
4591  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4592                          getValue(I.getOperand(1)),
4593                          DAG.getSrcValue(I.getOperand(1))));
4594}
4595
4596void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4597  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4598                             getValue(I.getOperand(0)),
4599                             DAG.getSrcValue(I.getOperand(0)));
4600  setValue(&I, V);
4601  DAG.setRoot(V.getValue(1));
4602}
4603
4604void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4605  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4606                          getValue(I.getOperand(1)),
4607                          DAG.getSrcValue(I.getOperand(1))));
4608}
4609
4610void SelectionDAGLowering::visitVACopy(CallInst &I) {
4611  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4612                          getValue(I.getOperand(1)),
4613                          getValue(I.getOperand(2)),
4614                          DAG.getSrcValue(I.getOperand(1)),
4615                          DAG.getSrcValue(I.getOperand(2))));
4616}
4617
4618/// TargetLowering::LowerArguments - This is the default LowerArguments
4619/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4620/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4621/// integrated into SDISel.
4622std::vector<SDOperand>
4623TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
4624  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4625  std::vector<SDOperand> Ops;
4626  Ops.push_back(DAG.getRoot());
4627  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4628  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4629
4630  // Add one result value for each formal argument.
4631  std::vector<MVT> RetVals;
4632  unsigned j = 1;
4633  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4634       I != E; ++I, ++j) {
4635    SmallVector<MVT, 4> ValueVTs;
4636    ComputeValueVTs(*this, I->getType(), ValueVTs);
4637    for (unsigned Value = 0, NumValues = ValueVTs.size();
4638         Value != NumValues; ++Value) {
4639      MVT VT = ValueVTs[Value];
4640      const Type *ArgTy = VT.getTypeForMVT();
4641      ISD::ArgFlagsTy Flags;
4642      unsigned OriginalAlignment =
4643        getTargetData()->getABITypeAlignment(ArgTy);
4644
4645      if (F.paramHasAttr(j, ParamAttr::ZExt))
4646        Flags.setZExt();
4647      if (F.paramHasAttr(j, ParamAttr::SExt))
4648        Flags.setSExt();
4649      if (F.paramHasAttr(j, ParamAttr::InReg))
4650        Flags.setInReg();
4651      if (F.paramHasAttr(j, ParamAttr::StructRet))
4652        Flags.setSRet();
4653      if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4654        Flags.setByVal();
4655        const PointerType *Ty = cast<PointerType>(I->getType());
4656        const Type *ElementTy = Ty->getElementType();
4657        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4658        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4659        // For ByVal, alignment should be passed from FE.  BE will guess if
4660        // this info is not there but there are cases it cannot get right.
4661        if (F.getParamAlignment(j))
4662          FrameAlign = F.getParamAlignment(j);
4663        Flags.setByValAlign(FrameAlign);
4664        Flags.setByValSize(FrameSize);
4665      }
4666      if (F.paramHasAttr(j, ParamAttr::Nest))
4667        Flags.setNest();
4668      Flags.setOrigAlign(OriginalAlignment);
4669
4670      MVT RegisterVT = getRegisterType(VT);
4671      unsigned NumRegs = getNumRegisters(VT);
4672      for (unsigned i = 0; i != NumRegs; ++i) {
4673        RetVals.push_back(RegisterVT);
4674        ISD::ArgFlagsTy MyFlags = Flags;
4675        if (NumRegs > 1 && i == 0)
4676          MyFlags.setSplit();
4677        // if it isn't first piece, alignment must be 1
4678        else if (i > 0)
4679          MyFlags.setOrigAlign(1);
4680        Ops.push_back(DAG.getArgFlags(MyFlags));
4681      }
4682    }
4683  }
4684
4685  RetVals.push_back(MVT::Other);
4686
4687  // Create the node.
4688  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4689                               DAG.getVTList(&RetVals[0], RetVals.size()),
4690                               &Ops[0], Ops.size()).Val;
4691
4692  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4693  // allows exposing the loads that may be part of the argument access to the
4694  // first DAGCombiner pass.
4695  SDOperand TmpRes = LowerOperation(SDOperand(Result, 0), DAG);
4696
4697  // The number of results should match up, except that the lowered one may have
4698  // an extra flag result.
4699  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4700          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4701           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4702         && "Lowering produced unexpected number of results!");
4703  Result = TmpRes.Val;
4704
4705  unsigned NumArgRegs = Result->getNumValues() - 1;
4706  DAG.setRoot(SDOperand(Result, NumArgRegs));
4707
4708  // Set up the return result vector.
4709  Ops.clear();
4710  unsigned i = 0;
4711  unsigned Idx = 1;
4712  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4713      ++I, ++Idx) {
4714    SmallVector<MVT, 4> ValueVTs;
4715    ComputeValueVTs(*this, I->getType(), ValueVTs);
4716    for (unsigned Value = 0, NumValues = ValueVTs.size();
4717         Value != NumValues; ++Value) {
4718      MVT VT = ValueVTs[Value];
4719      MVT PartVT = getRegisterType(VT);
4720
4721      unsigned NumParts = getNumRegisters(VT);
4722      SmallVector<SDOperand, 4> Parts(NumParts);
4723      for (unsigned j = 0; j != NumParts; ++j)
4724        Parts[j] = SDOperand(Result, i++);
4725
4726      ISD::NodeType AssertOp = ISD::DELETED_NODE;
4727      if (F.paramHasAttr(Idx, ParamAttr::SExt))
4728        AssertOp = ISD::AssertSext;
4729      else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4730        AssertOp = ISD::AssertZext;
4731
4732      Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4733                                     AssertOp));
4734    }
4735  }
4736  assert(i == NumArgRegs && "Argument register count mismatch!");
4737  return Ops;
4738}
4739
4740
4741/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4742/// implementation, which just inserts an ISD::CALL node, which is later custom
4743/// lowered by the target to something concrete.  FIXME: When all targets are
4744/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4745std::pair<SDOperand, SDOperand>
4746TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4747                            bool RetSExt, bool RetZExt, bool isVarArg,
4748                            unsigned CallingConv, bool isTailCall,
4749                            SDOperand Callee,
4750                            ArgListTy &Args, SelectionDAG &DAG) {
4751  SmallVector<SDOperand, 32> Ops;
4752  Ops.push_back(Chain);   // Op#0 - Chain
4753  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4754  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4755  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4756  Ops.push_back(Callee);
4757
4758  // Handle all of the outgoing arguments.
4759  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4760    SmallVector<MVT, 4> ValueVTs;
4761    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
4762    for (unsigned Value = 0, NumValues = ValueVTs.size();
4763         Value != NumValues; ++Value) {
4764      MVT VT = ValueVTs[Value];
4765      const Type *ArgTy = VT.getTypeForMVT();
4766      SDOperand Op = SDOperand(Args[i].Node.Val, Args[i].Node.ResNo + Value);
4767      ISD::ArgFlagsTy Flags;
4768      unsigned OriginalAlignment =
4769        getTargetData()->getABITypeAlignment(ArgTy);
4770
4771      if (Args[i].isZExt)
4772        Flags.setZExt();
4773      if (Args[i].isSExt)
4774        Flags.setSExt();
4775      if (Args[i].isInReg)
4776        Flags.setInReg();
4777      if (Args[i].isSRet)
4778        Flags.setSRet();
4779      if (Args[i].isByVal) {
4780        Flags.setByVal();
4781        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4782        const Type *ElementTy = Ty->getElementType();
4783        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4784        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4785        // For ByVal, alignment should come from FE.  BE will guess if this
4786        // info is not there but there are cases it cannot get right.
4787        if (Args[i].Alignment)
4788          FrameAlign = Args[i].Alignment;
4789        Flags.setByValAlign(FrameAlign);
4790        Flags.setByValSize(FrameSize);
4791      }
4792      if (Args[i].isNest)
4793        Flags.setNest();
4794      Flags.setOrigAlign(OriginalAlignment);
4795
4796      MVT PartVT = getRegisterType(VT);
4797      unsigned NumParts = getNumRegisters(VT);
4798      SmallVector<SDOperand, 4> Parts(NumParts);
4799      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4800
4801      if (Args[i].isSExt)
4802        ExtendKind = ISD::SIGN_EXTEND;
4803      else if (Args[i].isZExt)
4804        ExtendKind = ISD::ZERO_EXTEND;
4805
4806      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4807
4808      for (unsigned i = 0; i != NumParts; ++i) {
4809        // if it isn't first piece, alignment must be 1
4810        ISD::ArgFlagsTy MyFlags = Flags;
4811        if (NumParts > 1 && i == 0)
4812          MyFlags.setSplit();
4813        else if (i != 0)
4814          MyFlags.setOrigAlign(1);
4815
4816        Ops.push_back(Parts[i]);
4817        Ops.push_back(DAG.getArgFlags(MyFlags));
4818      }
4819    }
4820  }
4821
4822  // Figure out the result value types. We start by making a list of
4823  // the potentially illegal return value types.
4824  SmallVector<MVT, 4> LoweredRetTys;
4825  SmallVector<MVT, 4> RetTys;
4826  ComputeValueVTs(*this, RetTy, RetTys);
4827
4828  // Then we translate that to a list of legal types.
4829  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4830    MVT VT = RetTys[I];
4831    MVT RegisterVT = getRegisterType(VT);
4832    unsigned NumRegs = getNumRegisters(VT);
4833    for (unsigned i = 0; i != NumRegs; ++i)
4834      LoweredRetTys.push_back(RegisterVT);
4835  }
4836
4837  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
4838
4839  // Create the CALL node.
4840  SDOperand Res = DAG.getNode(ISD::CALL,
4841                              DAG.getVTList(&LoweredRetTys[0],
4842                                            LoweredRetTys.size()),
4843                              &Ops[0], Ops.size());
4844  Chain = Res.getValue(LoweredRetTys.size() - 1);
4845
4846  // Gather up the call result into a single value.
4847  if (RetTy != Type::VoidTy) {
4848    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4849
4850    if (RetSExt)
4851      AssertOp = ISD::AssertSext;
4852    else if (RetZExt)
4853      AssertOp = ISD::AssertZext;
4854
4855    SmallVector<SDOperand, 4> ReturnValues;
4856    unsigned RegNo = 0;
4857    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4858      MVT VT = RetTys[I];
4859      MVT RegisterVT = getRegisterType(VT);
4860      unsigned NumRegs = getNumRegisters(VT);
4861      unsigned RegNoEnd = NumRegs + RegNo;
4862      SmallVector<SDOperand, 4> Results;
4863      for (; RegNo != RegNoEnd; ++RegNo)
4864        Results.push_back(Res.getValue(RegNo));
4865      SDOperand ReturnValue =
4866        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4867                         AssertOp);
4868      ReturnValues.push_back(ReturnValue);
4869    }
4870    Res = ReturnValues.size() == 1 ? ReturnValues.front() :
4871          DAG.getNode(ISD::MERGE_VALUES,
4872                      DAG.getVTList(&RetTys[0], RetTys.size()),
4873                      &ReturnValues[0], ReturnValues.size());
4874  }
4875
4876  return std::make_pair(Res, Chain);
4877}
4878
4879SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4880  assert(0 && "LowerOperation not implemented for this target!");
4881  abort();
4882  return SDOperand();
4883}
4884
4885SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4886                                                 SelectionDAG &DAG) {
4887  assert(0 && "CustomPromoteOperation not implemented for this target!");
4888  abort();
4889  return SDOperand();
4890}
4891
4892//===----------------------------------------------------------------------===//
4893// SelectionDAGISel code
4894//===----------------------------------------------------------------------===//
4895
4896unsigned SelectionDAGISel::MakeReg(MVT VT) {
4897  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4898}
4899
4900void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4901  AU.addRequired<AliasAnalysis>();
4902  AU.addRequired<CollectorModuleMetadata>();
4903  AU.setPreservesAll();
4904}
4905
4906bool SelectionDAGISel::runOnFunction(Function &Fn) {
4907  // Get alias analysis for load/store combining.
4908  AA = &getAnalysis<AliasAnalysis>();
4909
4910  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4911  if (MF.getFunction()->hasCollector())
4912    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4913  else
4914    GCI = 0;
4915  RegInfo = &MF.getRegInfo();
4916  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4917
4918  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4919
4920  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4921    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4922      // Mark landing pad.
4923      FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4924
4925  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4926    SelectBasicBlock(I, MF, FuncInfo);
4927
4928  // Add function live-ins to entry block live-in set.
4929  BasicBlock *EntryBB = &Fn.getEntryBlock();
4930  BB = FuncInfo.MBBMap[EntryBB];
4931  if (!RegInfo->livein_empty())
4932    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4933           E = RegInfo->livein_end(); I != E; ++I)
4934      BB->addLiveIn(I->first);
4935
4936#ifndef NDEBUG
4937  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4938         "Not all catch info was assigned to a landing pad!");
4939#endif
4940
4941  return true;
4942}
4943
4944void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
4945  SDOperand Op = getValue(V);
4946  assert((Op.getOpcode() != ISD::CopyFromReg ||
4947          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4948         "Copy from a reg to the same reg!");
4949  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
4950
4951  RegsForValue RFV(TLI, Reg, V->getType());
4952  SDOperand Chain = DAG.getEntryNode();
4953  RFV.getCopyToRegs(Op, DAG, Chain, 0);
4954  PendingExports.push_back(Chain);
4955}
4956
4957void SelectionDAGISel::
4958LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) {
4959  // If this is the entry block, emit arguments.
4960  Function &F = *LLVMBB->getParent();
4961  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4962  SDOperand OldRoot = SDL.DAG.getRoot();
4963  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4964
4965  unsigned a = 0;
4966  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4967       AI != E; ++AI) {
4968    SmallVector<MVT, 4> ValueVTs;
4969    ComputeValueVTs(TLI, AI->getType(), ValueVTs);
4970    unsigned NumValues = ValueVTs.size();
4971    if (!AI->use_empty()) {
4972      SmallVector<MVT, 4> LegalValueVTs(NumValues);
4973      for (unsigned VI = 0; VI != NumValues; ++VI)
4974        LegalValueVTs[VI] = Args[a + VI].getValueType();
4975      SDL.setValue(AI, SDL.DAG.getNode(ISD::MERGE_VALUES,
4976                                       SDL.DAG.getVTList(&LegalValueVTs[0],
4977                                                         NumValues),
4978                                       &Args[a], NumValues));
4979      // If this argument is live outside of the entry block, insert a copy from
4980      // whereever we got it to the vreg that other BB's will reference it as.
4981      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4982      if (VMI != FuncInfo.ValueMap.end()) {
4983        SDL.CopyValueToVirtualRegister(AI, VMI->second);
4984      }
4985    }
4986    a += NumValues;
4987  }
4988
4989  // Finally, if the target has anything special to do, allow it to do so.
4990  // FIXME: this should insert code into the DAG!
4991  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4992}
4993
4994static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4995                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4996  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4997    if (isSelector(I)) {
4998      // Apply the catch info to DestBB.
4999      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
5000#ifndef NDEBUG
5001      if (!FLI.MBBMap[SrcBB]->isLandingPad())
5002        FLI.CatchInfoFound.insert(I);
5003#endif
5004    }
5005}
5006
5007/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
5008/// whether object offset >= 0.
5009static bool
5010IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDOperand Op) {
5011  if (!isa<FrameIndexSDNode>(Op)) return false;
5012
5013  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
5014  int FrameIdx =  FrameIdxNode->getIndex();
5015  return MFI->isFixedObjectIndex(FrameIdx) &&
5016    MFI->getObjectOffset(FrameIdx) >= 0;
5017}
5018
5019/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
5020/// possibly be overwritten when lowering the outgoing arguments in a tail
5021/// call. Currently the implementation of this call is very conservative and
5022/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
5023/// virtual registers would be overwritten by direct lowering.
5024static bool IsPossiblyOverwrittenArgumentOfTailCall(SDOperand Op,
5025                                                    MachineFrameInfo * MFI) {
5026  RegisterSDNode * OpReg = NULL;
5027  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
5028      (Op.getOpcode()== ISD::CopyFromReg &&
5029       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
5030       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
5031      (Op.getOpcode() == ISD::LOAD &&
5032       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
5033      (Op.getOpcode() == ISD::MERGE_VALUES &&
5034       Op.getOperand(Op.ResNo).getOpcode() == ISD::LOAD &&
5035       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.ResNo).
5036                                       getOperand(1))))
5037    return true;
5038  return false;
5039}
5040
5041/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
5042/// DAG and fixes their tailcall attribute operand.
5043static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
5044                                           TargetLowering& TLI) {
5045  SDNode * Ret = NULL;
5046  SDOperand Terminator = DAG.getRoot();
5047
5048  // Find RET node.
5049  if (Terminator.getOpcode() == ISD::RET) {
5050    Ret = Terminator.Val;
5051  }
5052
5053  // Fix tail call attribute of CALL nodes.
5054  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
5055         BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
5056    if (BI->getOpcode() == ISD::CALL) {
5057      SDOperand OpRet(Ret, 0);
5058      SDOperand OpCall(static_cast<SDNode*>(BI), 0);
5059      bool isMarkedTailCall =
5060        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
5061      // If CALL node has tail call attribute set to true and the call is not
5062      // eligible (no RET or the target rejects) the attribute is fixed to
5063      // false. The TargetLowering::IsEligibleForTailCallOptimization function
5064      // must correctly identify tail call optimizable calls.
5065      if (!isMarkedTailCall) continue;
5066      if (Ret==NULL ||
5067          !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
5068        // Not eligible. Mark CALL node as non tail call.
5069        SmallVector<SDOperand, 32> Ops;
5070        unsigned idx=0;
5071        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
5072              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5073          if (idx!=3)
5074            Ops.push_back(*I);
5075          else
5076            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
5077        }
5078        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5079      } else {
5080        // Look for tail call clobbered arguments. Emit a series of
5081        // copyto/copyfrom virtual register nodes to protect them.
5082        SmallVector<SDOperand, 32> Ops;
5083        SDOperand Chain = OpCall.getOperand(0), InFlag;
5084        unsigned idx=0;
5085        for(SDNode::op_iterator I = OpCall.Val->op_begin(),
5086              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5087          SDOperand Arg = *I;
5088          if (idx > 4 && (idx % 2)) {
5089            bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
5090              getArgFlags().isByVal();
5091            MachineFunction &MF = DAG.getMachineFunction();
5092            MachineFrameInfo *MFI = MF.getFrameInfo();
5093            if (!isByVal &&
5094                IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
5095              MVT VT = Arg.getValueType();
5096              unsigned VReg = MF.getRegInfo().
5097                createVirtualRegister(TLI.getRegClassFor(VT));
5098              Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
5099              InFlag = Chain.getValue(1);
5100              Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
5101              Chain = Arg.getValue(1);
5102              InFlag = Arg.getValue(2);
5103            }
5104          }
5105          Ops.push_back(Arg);
5106        }
5107        // Link in chain of CopyTo/CopyFromReg.
5108        Ops[0] = Chain;
5109        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5110      }
5111    }
5112  }
5113}
5114
5115void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
5116       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
5117                                         FunctionLoweringInfo &FuncInfo) {
5118  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
5119
5120  // Lower any arguments needed in this block if this is the entry block.
5121  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
5122    LowerArguments(LLVMBB, SDL);
5123
5124  BB = FuncInfo.MBBMap[LLVMBB];
5125  SDL.setCurrentBasicBlock(BB);
5126
5127  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
5128
5129  if (MMI && BB->isLandingPad()) {
5130    // Add a label to mark the beginning of the landing pad.  Deletion of the
5131    // landing pad can thus be detected via the MachineModuleInfo.
5132    unsigned LabelID = MMI->addLandingPad(BB);
5133    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
5134                            DAG.getConstant(LabelID, MVT::i32),
5135                            DAG.getConstant(1, MVT::i32)));
5136
5137    // Mark exception register as live in.
5138    unsigned Reg = TLI.getExceptionAddressRegister();
5139    if (Reg) BB->addLiveIn(Reg);
5140
5141    // Mark exception selector register as live in.
5142    Reg = TLI.getExceptionSelectorRegister();
5143    if (Reg) BB->addLiveIn(Reg);
5144
5145    // FIXME: Hack around an exception handling flaw (PR1508): the personality
5146    // function and list of typeids logically belong to the invoke (or, if you
5147    // like, the basic block containing the invoke), and need to be associated
5148    // with it in the dwarf exception handling tables.  Currently however the
5149    // information is provided by an intrinsic (eh.selector) that can be moved
5150    // to unexpected places by the optimizers: if the unwind edge is critical,
5151    // then breaking it can result in the intrinsics being in the successor of
5152    // the landing pad, not the landing pad itself.  This results in exceptions
5153    // not being caught because no typeids are associated with the invoke.
5154    // This may not be the only way things can go wrong, but it is the only way
5155    // we try to work around for the moment.
5156    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
5157
5158    if (Br && Br->isUnconditional()) { // Critical edge?
5159      BasicBlock::iterator I, E;
5160      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
5161        if (isSelector(I))
5162          break;
5163
5164      if (I == E)
5165        // No catch info found - try to extract some from the successor.
5166        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
5167    }
5168  }
5169
5170  // Lower all of the non-terminator instructions.
5171  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
5172       I != E; ++I)
5173    SDL.visit(*I);
5174
5175  // Ensure that all instructions which are used outside of their defining
5176  // blocks are available as virtual registers.  Invoke is handled elsewhere.
5177  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
5178    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
5179      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
5180      if (VMI != FuncInfo.ValueMap.end())
5181        SDL.CopyValueToVirtualRegister(I, VMI->second);
5182    }
5183
5184  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
5185  // ensure constants are generated when needed.  Remember the virtual registers
5186  // that need to be added to the Machine PHI nodes as input.  We cannot just
5187  // directly add them, because expansion might result in multiple MBB's for one
5188  // BB.  As such, the start of the BB might correspond to a different MBB than
5189  // the end.
5190  //
5191  TerminatorInst *TI = LLVMBB->getTerminator();
5192
5193  // Emit constants only once even if used by multiple PHI nodes.
5194  std::map<Constant*, unsigned> ConstantsOut;
5195
5196  // Vector bool would be better, but vector<bool> is really slow.
5197  std::vector<unsigned char> SuccsHandled;
5198  if (TI->getNumSuccessors())
5199    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
5200
5201  // Check successor nodes' PHI nodes that expect a constant to be available
5202  // from this block.
5203  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5204    BasicBlock *SuccBB = TI->getSuccessor(succ);
5205    if (!isa<PHINode>(SuccBB->begin())) continue;
5206    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
5207
5208    // If this terminator has multiple identical successors (common for
5209    // switches), only handle each succ once.
5210    unsigned SuccMBBNo = SuccMBB->getNumber();
5211    if (SuccsHandled[SuccMBBNo]) continue;
5212    SuccsHandled[SuccMBBNo] = true;
5213
5214    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5215    PHINode *PN;
5216
5217    // At this point we know that there is a 1-1 correspondence between LLVM PHI
5218    // nodes and Machine PHI nodes, but the incoming operands have not been
5219    // emitted yet.
5220    for (BasicBlock::iterator I = SuccBB->begin();
5221         (PN = dyn_cast<PHINode>(I)); ++I) {
5222      // Ignore dead phi's.
5223      if (PN->use_empty()) continue;
5224
5225      unsigned Reg;
5226      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5227
5228      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5229        unsigned &RegOut = ConstantsOut[C];
5230        if (RegOut == 0) {
5231          RegOut = FuncInfo.CreateRegForValue(C);
5232          SDL.CopyValueToVirtualRegister(C, RegOut);
5233        }
5234        Reg = RegOut;
5235      } else {
5236        Reg = FuncInfo.ValueMap[PHIOp];
5237        if (Reg == 0) {
5238          assert(isa<AllocaInst>(PHIOp) &&
5239                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5240                 "Didn't codegen value into a register!??");
5241          Reg = FuncInfo.CreateRegForValue(PHIOp);
5242          SDL.CopyValueToVirtualRegister(PHIOp, Reg);
5243        }
5244      }
5245
5246      // Remember that this register needs to added to the machine PHI node as
5247      // the input for this MBB.
5248      MVT VT = TLI.getValueType(PN->getType());
5249      unsigned NumRegisters = TLI.getNumRegisters(VT);
5250      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5251        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5252    }
5253  }
5254  ConstantsOut.clear();
5255
5256  // Lower the terminator after the copies are emitted.
5257  SDL.visit(*LLVMBB->getTerminator());
5258
5259  // Copy over any CaseBlock records that may now exist due to SwitchInst
5260  // lowering, as well as any jump table information.
5261  SwitchCases.clear();
5262  SwitchCases = SDL.SwitchCases;
5263  JTCases.clear();
5264  JTCases = SDL.JTCases;
5265  BitTestCases.clear();
5266  BitTestCases = SDL.BitTestCases;
5267
5268  // Make sure the root of the DAG is up-to-date.
5269  DAG.setRoot(SDL.getControlRoot());
5270
5271  // Check whether calls in this block are real tail calls. Fix up CALL nodes
5272  // with correct tailcall attribute so that the target can rely on the tailcall
5273  // attribute indicating whether the call is really eligible for tail call
5274  // optimization.
5275  CheckDAGForTailCallsAndFixThem(DAG, TLI);
5276}
5277
5278void SelectionDAGISel::ComputeLiveOutVRegInfo(SelectionDAG &DAG) {
5279  SmallPtrSet<SDNode*, 128> VisitedNodes;
5280  SmallVector<SDNode*, 128> Worklist;
5281
5282  Worklist.push_back(DAG.getRoot().Val);
5283
5284  APInt Mask;
5285  APInt KnownZero;
5286  APInt KnownOne;
5287
5288  while (!Worklist.empty()) {
5289    SDNode *N = Worklist.back();
5290    Worklist.pop_back();
5291
5292    // If we've already seen this node, ignore it.
5293    if (!VisitedNodes.insert(N))
5294      continue;
5295
5296    // Otherwise, add all chain operands to the worklist.
5297    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5298      if (N->getOperand(i).getValueType() == MVT::Other)
5299        Worklist.push_back(N->getOperand(i).Val);
5300
5301    // If this is a CopyToReg with a vreg dest, process it.
5302    if (N->getOpcode() != ISD::CopyToReg)
5303      continue;
5304
5305    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
5306    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
5307      continue;
5308
5309    // Ignore non-scalar or non-integer values.
5310    SDOperand Src = N->getOperand(2);
5311    MVT SrcVT = Src.getValueType();
5312    if (!SrcVT.isInteger() || SrcVT.isVector())
5313      continue;
5314
5315    unsigned NumSignBits = DAG.ComputeNumSignBits(Src);
5316    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
5317    DAG.ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
5318
5319    // Only install this information if it tells us something.
5320    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
5321      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
5322      FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5323      if (DestReg >= FLI.LiveOutRegInfo.size())
5324        FLI.LiveOutRegInfo.resize(DestReg+1);
5325      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
5326      LOI.NumSignBits = NumSignBits;
5327      LOI.KnownOne = NumSignBits;
5328      LOI.KnownZero = NumSignBits;
5329    }
5330  }
5331}
5332
5333void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
5334  DOUT << "Lowered selection DAG:\n";
5335  DEBUG(DAG.dump());
5336
5337  // Run the DAG combiner in pre-legalize mode.
5338  DAG.Combine(false, *AA);
5339
5340  DOUT << "Optimized lowered selection DAG:\n";
5341  DEBUG(DAG.dump());
5342
5343  // Second step, hack on the DAG until it only uses operations and types that
5344  // the target supports.
5345#if 0  // Enable this some day.
5346  DAG.LegalizeTypes();
5347  // Someday even later, enable a dag combine pass here.
5348#endif
5349  DAG.Legalize();
5350
5351  DOUT << "Legalized selection DAG:\n";
5352  DEBUG(DAG.dump());
5353
5354  // Run the DAG combiner in post-legalize mode.
5355  DAG.Combine(true, *AA);
5356
5357  DOUT << "Optimized legalized selection DAG:\n";
5358  DEBUG(DAG.dump());
5359
5360  if (ViewISelDAGs) DAG.viewGraph();
5361
5362  if (EnableValueProp)  // FIXME: Only do this if !fast.
5363    ComputeLiveOutVRegInfo(DAG);
5364
5365  // Third, instruction select all of the operations to machine code, adding the
5366  // code to the MachineBasicBlock.
5367  InstructionSelectBasicBlock(DAG);
5368
5369  DOUT << "Selected machine code:\n";
5370  DEBUG(BB->dump());
5371}
5372
5373void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
5374                                        FunctionLoweringInfo &FuncInfo) {
5375  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
5376  {
5377    SelectionDAG DAG(TLI, MF, FuncInfo,
5378                     getAnalysisToUpdate<MachineModuleInfo>());
5379    CurDAG = &DAG;
5380
5381    // First step, lower LLVM code to some DAG.  This DAG may use operations and
5382    // types that are not supported by the target.
5383    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
5384
5385    // Second step, emit the lowered DAG as machine code.
5386    CodeGenAndEmitDAG(DAG);
5387  }
5388
5389  DOUT << "Total amount of phi nodes to update: "
5390       << PHINodesToUpdate.size() << "\n";
5391  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
5392          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
5393               << ", " << PHINodesToUpdate[i].second << ")\n";);
5394
5395  // Next, now that we know what the last MBB the LLVM BB expanded is, update
5396  // PHI nodes in successors.
5397  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
5398    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5399      MachineInstr *PHI = PHINodesToUpdate[i].first;
5400      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5401             "This is not a machine PHI node that we are updating!");
5402      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5403                                                false));
5404      PHI->addOperand(MachineOperand::CreateMBB(BB));
5405    }
5406    return;
5407  }
5408
5409  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
5410    // Lower header first, if it wasn't already lowered
5411    if (!BitTestCases[i].Emitted) {
5412      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5413                         getAnalysisToUpdate<MachineModuleInfo>());
5414      CurDAG = &HSDAG;
5415      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5416      // Set the current basic block to the mbb we wish to insert the code into
5417      BB = BitTestCases[i].Parent;
5418      HSDL.setCurrentBasicBlock(BB);
5419      // Emit the code
5420      HSDL.visitBitTestHeader(BitTestCases[i]);
5421      HSDAG.setRoot(HSDL.getRoot());
5422      CodeGenAndEmitDAG(HSDAG);
5423    }
5424
5425    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5426      SelectionDAG BSDAG(TLI, MF, FuncInfo,
5427                         getAnalysisToUpdate<MachineModuleInfo>());
5428      CurDAG = &BSDAG;
5429      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
5430      // Set the current basic block to the mbb we wish to insert the code into
5431      BB = BitTestCases[i].Cases[j].ThisBB;
5432      BSDL.setCurrentBasicBlock(BB);
5433      // Emit the code
5434      if (j+1 != ej)
5435        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
5436                              BitTestCases[i].Reg,
5437                              BitTestCases[i].Cases[j]);
5438      else
5439        BSDL.visitBitTestCase(BitTestCases[i].Default,
5440                              BitTestCases[i].Reg,
5441                              BitTestCases[i].Cases[j]);
5442
5443
5444      BSDAG.setRoot(BSDL.getRoot());
5445      CodeGenAndEmitDAG(BSDAG);
5446    }
5447
5448    // Update PHI Nodes
5449    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5450      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5451      MachineBasicBlock *PHIBB = PHI->getParent();
5452      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5453             "This is not a machine PHI node that we are updating!");
5454      // This is "default" BB. We have two jumps to it. From "header" BB and
5455      // from last "case" BB.
5456      if (PHIBB == BitTestCases[i].Default) {
5457        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5458                                                  false));
5459        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
5460        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5461                                                  false));
5462        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
5463                                                  back().ThisBB));
5464      }
5465      // One of "cases" BB.
5466      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5467        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
5468        if (cBB->succ_end() !=
5469            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
5470          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5471                                                    false));
5472          PHI->addOperand(MachineOperand::CreateMBB(cBB));
5473        }
5474      }
5475    }
5476  }
5477
5478  // If the JumpTable record is filled in, then we need to emit a jump table.
5479  // Updating the PHI nodes is tricky in this case, since we need to determine
5480  // whether the PHI is a successor of the range check MBB or the jump table MBB
5481  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
5482    // Lower header first, if it wasn't already lowered
5483    if (!JTCases[i].first.Emitted) {
5484      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5485                         getAnalysisToUpdate<MachineModuleInfo>());
5486      CurDAG = &HSDAG;
5487      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5488      // Set the current basic block to the mbb we wish to insert the code into
5489      BB = JTCases[i].first.HeaderBB;
5490      HSDL.setCurrentBasicBlock(BB);
5491      // Emit the code
5492      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
5493      HSDAG.setRoot(HSDL.getRoot());
5494      CodeGenAndEmitDAG(HSDAG);
5495    }
5496
5497    SelectionDAG JSDAG(TLI, MF, FuncInfo,
5498                       getAnalysisToUpdate<MachineModuleInfo>());
5499    CurDAG = &JSDAG;
5500    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
5501    // Set the current basic block to the mbb we wish to insert the code into
5502    BB = JTCases[i].second.MBB;
5503    JSDL.setCurrentBasicBlock(BB);
5504    // Emit the code
5505    JSDL.visitJumpTable(JTCases[i].second);
5506    JSDAG.setRoot(JSDL.getRoot());
5507    CodeGenAndEmitDAG(JSDAG);
5508
5509    // Update PHI Nodes
5510    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5511      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5512      MachineBasicBlock *PHIBB = PHI->getParent();
5513      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5514             "This is not a machine PHI node that we are updating!");
5515      // "default" BB. We can go there only from header BB.
5516      if (PHIBB == JTCases[i].second.Default) {
5517        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5518                                                  false));
5519        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
5520      }
5521      // JT BB. Just iterate over successors here
5522      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
5523        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5524                                                  false));
5525        PHI->addOperand(MachineOperand::CreateMBB(BB));
5526      }
5527    }
5528  }
5529
5530  // If the switch block involved a branch to one of the actual successors, we
5531  // need to update PHI nodes in that block.
5532  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5533    MachineInstr *PHI = PHINodesToUpdate[i].first;
5534    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5535           "This is not a machine PHI node that we are updating!");
5536    if (BB->isSuccessor(PHI->getParent())) {
5537      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5538                                                false));
5539      PHI->addOperand(MachineOperand::CreateMBB(BB));
5540    }
5541  }
5542
5543  // If we generated any switch lowering information, build and codegen any
5544  // additional DAGs necessary.
5545  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
5546    SelectionDAG SDAG(TLI, MF, FuncInfo,
5547                      getAnalysisToUpdate<MachineModuleInfo>());
5548    CurDAG = &SDAG;
5549    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
5550
5551    // Set the current basic block to the mbb we wish to insert the code into
5552    BB = SwitchCases[i].ThisBB;
5553    SDL.setCurrentBasicBlock(BB);
5554
5555    // Emit the code
5556    SDL.visitSwitchCase(SwitchCases[i]);
5557    SDAG.setRoot(SDL.getRoot());
5558    CodeGenAndEmitDAG(SDAG);
5559
5560    // Handle any PHI nodes in successors of this chunk, as if we were coming
5561    // from the original BB before switch expansion.  Note that PHI nodes can
5562    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5563    // handle them the right number of times.
5564    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5565      for (MachineBasicBlock::iterator Phi = BB->begin();
5566           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5567        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5568        for (unsigned pn = 0; ; ++pn) {
5569          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5570          if (PHINodesToUpdate[pn].first == Phi) {
5571            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5572                                                      second, false));
5573            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5574            break;
5575          }
5576        }
5577      }
5578
5579      // Don't process RHS if same block as LHS.
5580      if (BB == SwitchCases[i].FalseBB)
5581        SwitchCases[i].FalseBB = 0;
5582
5583      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5584      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5585      SwitchCases[i].FalseBB = 0;
5586    }
5587    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5588  }
5589}
5590
5591
5592//===----------------------------------------------------------------------===//
5593/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
5594/// target node in the graph.
5595void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
5596  if (ViewSchedDAGs) DAG.viewGraph();
5597
5598  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5599
5600  if (!Ctor) {
5601    Ctor = ISHeuristic;
5602    RegisterScheduler::setDefault(Ctor);
5603  }
5604
5605  ScheduleDAG *SL = Ctor(this, &DAG, BB);
5606  BB = SL->Run();
5607
5608  if (ViewSUnitDAGs) SL->viewGraph();
5609
5610  delete SL;
5611}
5612
5613
5614HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5615  return new HazardRecognizer();
5616}
5617
5618//===----------------------------------------------------------------------===//
5619// Helper functions used by the generated instruction selector.
5620//===----------------------------------------------------------------------===//
5621// Calls to these methods are generated by tblgen.
5622
5623/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5624/// the dag combiner simplified the 255, we still want to match.  RHS is the
5625/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5626/// specified in the .td file (e.g. 255).
5627bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
5628                                    int64_t DesiredMaskS) const {
5629  const APInt &ActualMask = RHS->getAPIntValue();
5630  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5631
5632  // If the actual mask exactly matches, success!
5633  if (ActualMask == DesiredMask)
5634    return true;
5635
5636  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5637  if (ActualMask.intersects(~DesiredMask))
5638    return false;
5639
5640  // Otherwise, the DAG Combiner may have proven that the value coming in is
5641  // either already zero or is not demanded.  Check for known zero input bits.
5642  APInt NeededMask = DesiredMask & ~ActualMask;
5643  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5644    return true;
5645
5646  // TODO: check to see if missing bits are just not demanded.
5647
5648  // Otherwise, this pattern doesn't match.
5649  return false;
5650}
5651
5652/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5653/// the dag combiner simplified the 255, we still want to match.  RHS is the
5654/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5655/// specified in the .td file (e.g. 255).
5656bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5657                                   int64_t DesiredMaskS) const {
5658  const APInt &ActualMask = RHS->getAPIntValue();
5659  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5660
5661  // If the actual mask exactly matches, success!
5662  if (ActualMask == DesiredMask)
5663    return true;
5664
5665  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5666  if (ActualMask.intersects(~DesiredMask))
5667    return false;
5668
5669  // Otherwise, the DAG Combiner may have proven that the value coming in is
5670  // either already zero or is not demanded.  Check for known zero input bits.
5671  APInt NeededMask = DesiredMask & ~ActualMask;
5672
5673  APInt KnownZero, KnownOne;
5674  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5675
5676  // If all the missing bits in the or are already known to be set, match!
5677  if ((NeededMask & KnownOne) == NeededMask)
5678    return true;
5679
5680  // TODO: check to see if missing bits are just not demanded.
5681
5682  // Otherwise, this pattern doesn't match.
5683  return false;
5684}
5685
5686
5687/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5688/// by tblgen.  Others should not call it.
5689void SelectionDAGISel::
5690SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5691  std::vector<SDOperand> InOps;
5692  std::swap(InOps, Ops);
5693
5694  Ops.push_back(InOps[0]);  // input chain.
5695  Ops.push_back(InOps[1]);  // input asm string.
5696
5697  unsigned i = 2, e = InOps.size();
5698  if (InOps[e-1].getValueType() == MVT::Flag)
5699    --e;  // Don't process a flag operand if it is here.
5700
5701  while (i != e) {
5702    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5703    if ((Flags & 7) != 4 /*MEM*/) {
5704      // Just skip over this operand, copying the operands verbatim.
5705      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5706      i += (Flags >> 3) + 1;
5707    } else {
5708      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5709      // Otherwise, this is a memory operand.  Ask the target to select it.
5710      std::vector<SDOperand> SelOps;
5711      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5712        cerr << "Could not match memory address.  Inline asm failure!\n";
5713        exit(1);
5714      }
5715
5716      // Add this to the output node.
5717      MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5718      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5719                                          IntPtrTy));
5720      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5721      i += 2;
5722    }
5723  }
5724
5725  // Add the flag input back if present.
5726  if (e != InOps.size())
5727    Ops.push_back(InOps.back());
5728}
5729
5730char SelectionDAGISel::ID = 0;
5731