SelectionDAGISel.cpp revision 30e6740f2e3d518ce1cfcd484ef728ac5764a645
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/DebugInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/Module.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/GCStrategy.h"
32#include "llvm/CodeGen/GCMetadata.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39#include "llvm/CodeGen/SchedulerRegistry.h"
40#include "llvm/CodeGen/SelectionDAG.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetIntrinsicInfo.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLowering.h"
45#include "llvm/Target/TargetMachine.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/Transforms/Utils/BasicBlockUtils.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/Timer.h"
52#include "llvm/Support/raw_ostream.h"
53#include "llvm/ADT/PostOrderIterator.h"
54#include "llvm/ADT/Statistic.h"
55#include <algorithm>
56using namespace llvm;
57
58STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
59STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
60STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
61STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
62STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
63
64static cl::opt<bool>
65EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
66          cl::desc("Enable verbose messages in the \"fast\" "
67                   "instruction selector"));
68static cl::opt<bool>
69EnableFastISelAbort("fast-isel-abort", cl::Hidden,
70          cl::desc("Enable abort calls when \"fast\" instruction fails"));
71
72static cl::opt<bool>
73UseMBPI("use-mbpi",
74        cl::desc("use Machine Branch Probability Info"),
75        cl::init(true), cl::Hidden);
76
77#ifndef NDEBUG
78static cl::opt<bool>
79ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
80          cl::desc("Pop up a window to show dags before the first "
81                   "dag combine pass"));
82static cl::opt<bool>
83ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize types"));
85static cl::opt<bool>
86ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before legalize"));
88static cl::opt<bool>
89ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
90          cl::desc("Pop up a window to show dags before the second "
91                   "dag combine pass"));
92static cl::opt<bool>
93ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
94          cl::desc("Pop up a window to show dags before the post legalize types"
95                   " dag combine pass"));
96static cl::opt<bool>
97ViewISelDAGs("view-isel-dags", cl::Hidden,
98          cl::desc("Pop up a window to show isel dags as they are selected"));
99static cl::opt<bool>
100ViewSchedDAGs("view-sched-dags", cl::Hidden,
101          cl::desc("Pop up a window to show sched dags as they are processed"));
102static cl::opt<bool>
103ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
104      cl::desc("Pop up a window to show SUnit dags after they are processed"));
105#else
106static const bool ViewDAGCombine1 = false,
107                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
108                  ViewDAGCombine2 = false,
109                  ViewDAGCombineLT = false,
110                  ViewISelDAGs = false, ViewSchedDAGs = false,
111                  ViewSUnitDAGs = false;
112#endif
113
114//===---------------------------------------------------------------------===//
115///
116/// RegisterScheduler class - Track the registration of instruction schedulers.
117///
118//===---------------------------------------------------------------------===//
119MachinePassRegistry RegisterScheduler::Registry;
120
121//===---------------------------------------------------------------------===//
122///
123/// ISHeuristic command line option for instruction schedulers.
124///
125//===---------------------------------------------------------------------===//
126static cl::opt<RegisterScheduler::FunctionPassCtor, false,
127               RegisterPassParser<RegisterScheduler> >
128ISHeuristic("pre-RA-sched",
129            cl::init(&createDefaultScheduler),
130            cl::desc("Instruction schedulers available (before register"
131                     " allocation):"));
132
133static RegisterScheduler
134defaultListDAGScheduler("default", "Best scheduler for the target",
135                        createDefaultScheduler);
136
137namespace llvm {
138  //===--------------------------------------------------------------------===//
139  /// createDefaultScheduler - This creates an instruction scheduler appropriate
140  /// for the target.
141  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
142                                             CodeGenOpt::Level OptLevel) {
143    const TargetLowering &TLI = IS->getTargetLowering();
144
145    if (OptLevel == CodeGenOpt::None)
146      return createSourceListDAGScheduler(IS, OptLevel);
147    if (TLI.getSchedulingPreference() == Sched::Latency)
148      return createTDListDAGScheduler(IS, OptLevel);
149    if (TLI.getSchedulingPreference() == Sched::RegPressure)
150      return createBURRListDAGScheduler(IS, OptLevel);
151    if (TLI.getSchedulingPreference() == Sched::Hybrid)
152      return createHybridListDAGScheduler(IS, OptLevel);
153    assert(TLI.getSchedulingPreference() == Sched::ILP &&
154           "Unknown sched type!");
155    return createILPListDAGScheduler(IS, OptLevel);
156  }
157}
158
159// EmitInstrWithCustomInserter - This method should be implemented by targets
160// that mark instructions with the 'usesCustomInserter' flag.  These
161// instructions are special in various ways, which require special support to
162// insert.  The specified MachineInstr is created but not inserted into any
163// basic blocks, and this method is called to expand it into a sequence of
164// instructions, potentially also creating new basic blocks and control flow.
165// When new basic blocks are inserted and the edges from MBB to its successors
166// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
167// DenseMap.
168MachineBasicBlock *
169TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
170                                            MachineBasicBlock *MBB) const {
171#ifndef NDEBUG
172  dbgs() << "If a target marks an instruction with "
173          "'usesCustomInserter', it must implement "
174          "TargetLowering::EmitInstrWithCustomInserter!";
175#endif
176  llvm_unreachable(0);
177  return 0;
178}
179
180void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
181                                                   SDNode *Node) const {
182  assert(!MI->getDesc().hasPostISelHook() &&
183         "If a target marks an instruction with 'hasPostISelHook', "
184         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
185}
186
187//===----------------------------------------------------------------------===//
188// SelectionDAGISel code
189//===----------------------------------------------------------------------===//
190
191SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
192                                   CodeGenOpt::Level OL) :
193  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
194  FuncInfo(new FunctionLoweringInfo(TLI)),
195  CurDAG(new SelectionDAG(tm)),
196  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
197  GFI(),
198  OptLevel(OL),
199  DAGSize(0) {
200    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
201    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
202    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
203  }
204
205SelectionDAGISel::~SelectionDAGISel() {
206  delete SDB;
207  delete CurDAG;
208  delete FuncInfo;
209}
210
211void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
212  AU.addRequired<AliasAnalysis>();
213  AU.addPreserved<AliasAnalysis>();
214  AU.addRequired<GCModuleInfo>();
215  AU.addPreserved<GCModuleInfo>();
216  if (UseMBPI && OptLevel != CodeGenOpt::None)
217    AU.addRequired<BranchProbabilityInfo>();
218  MachineFunctionPass::getAnalysisUsage(AU);
219}
220
221/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
222/// may trap on it.  In this case we have to split the edge so that the path
223/// through the predecessor block that doesn't go to the phi block doesn't
224/// execute the possibly trapping instruction.
225///
226/// This is required for correctness, so it must be done at -O0.
227///
228static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
229  // Loop for blocks with phi nodes.
230  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
231    PHINode *PN = dyn_cast<PHINode>(BB->begin());
232    if (PN == 0) continue;
233
234  ReprocessBlock:
235    // For each block with a PHI node, check to see if any of the input values
236    // are potentially trapping constant expressions.  Constant expressions are
237    // the only potentially trapping value that can occur as the argument to a
238    // PHI.
239    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
240      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
241        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
242        if (CE == 0 || !CE->canTrap()) continue;
243
244        // The only case we have to worry about is when the edge is critical.
245        // Since this block has a PHI Node, we assume it has multiple input
246        // edges: check to see if the pred has multiple successors.
247        BasicBlock *Pred = PN->getIncomingBlock(i);
248        if (Pred->getTerminator()->getNumSuccessors() == 1)
249          continue;
250
251        // Okay, we have to split this edge.
252        SplitCriticalEdge(Pred->getTerminator(),
253                          GetSuccessorNumber(Pred, BB), SDISel, true);
254        goto ReprocessBlock;
255      }
256  }
257}
258
259bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
260  // Do some sanity-checking on the command-line options.
261  assert((!EnableFastISelVerbose || EnableFastISel) &&
262         "-fast-isel-verbose requires -fast-isel");
263  assert((!EnableFastISelAbort || EnableFastISel) &&
264         "-fast-isel-abort requires -fast-isel");
265
266  const Function &Fn = *mf.getFunction();
267  const TargetInstrInfo &TII = *TM.getInstrInfo();
268  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
269
270  MF = &mf;
271  RegInfo = &MF->getRegInfo();
272  AA = &getAnalysis<AliasAnalysis>();
273  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
274
275  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
276
277  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
278
279  CurDAG->init(*MF);
280  FuncInfo->set(Fn, *MF);
281
282  if (UseMBPI && OptLevel != CodeGenOpt::None)
283    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
284  else
285    FuncInfo->BPI = 0;
286
287  SDB->init(GFI, *AA);
288
289  SelectAllBasicBlocks(Fn);
290
291  // If the first basic block in the function has live ins that need to be
292  // copied into vregs, emit the copies into the top of the block before
293  // emitting the code for the block.
294  MachineBasicBlock *EntryMBB = MF->begin();
295  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
296
297  DenseMap<unsigned, unsigned> LiveInMap;
298  if (!FuncInfo->ArgDbgValues.empty())
299    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
300           E = RegInfo->livein_end(); LI != E; ++LI)
301      if (LI->second)
302        LiveInMap.insert(std::make_pair(LI->first, LI->second));
303
304  // Insert DBG_VALUE instructions for function arguments to the entry block.
305  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
306    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
307    unsigned Reg = MI->getOperand(0).getReg();
308    if (TargetRegisterInfo::isPhysicalRegister(Reg))
309      EntryMBB->insert(EntryMBB->begin(), MI);
310    else {
311      MachineInstr *Def = RegInfo->getVRegDef(Reg);
312      MachineBasicBlock::iterator InsertPos = Def;
313      // FIXME: VR def may not be in entry block.
314      Def->getParent()->insert(llvm::next(InsertPos), MI);
315    }
316
317    // If Reg is live-in then update debug info to track its copy in a vreg.
318    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
319    if (LDI != LiveInMap.end()) {
320      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
321      MachineBasicBlock::iterator InsertPos = Def;
322      const MDNode *Variable =
323        MI->getOperand(MI->getNumOperands()-1).getMetadata();
324      unsigned Offset = MI->getOperand(1).getImm();
325      // Def is never a terminator here, so it is ok to increment InsertPos.
326      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
327              TII.get(TargetOpcode::DBG_VALUE))
328        .addReg(LDI->second, RegState::Debug)
329        .addImm(Offset).addMetadata(Variable);
330
331      // If this vreg is directly copied into an exported register then
332      // that COPY instructions also need DBG_VALUE, if it is the only
333      // user of LDI->second.
334      MachineInstr *CopyUseMI = NULL;
335      for (MachineRegisterInfo::use_iterator
336             UI = RegInfo->use_begin(LDI->second);
337           MachineInstr *UseMI = UI.skipInstruction();) {
338        if (UseMI->isDebugValue()) continue;
339        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
340          CopyUseMI = UseMI; continue;
341        }
342        // Otherwise this is another use or second copy use.
343        CopyUseMI = NULL; break;
344      }
345      if (CopyUseMI) {
346        MachineInstr *NewMI =
347          BuildMI(*MF, CopyUseMI->getDebugLoc(),
348                  TII.get(TargetOpcode::DBG_VALUE))
349          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
350          .addImm(Offset).addMetadata(Variable);
351        EntryMBB->insertAfter(CopyUseMI, NewMI);
352      }
353    }
354  }
355
356  // Determine if there are any calls in this machine function.
357  MachineFrameInfo *MFI = MF->getFrameInfo();
358  if (!MFI->hasCalls()) {
359    for (MachineFunction::const_iterator
360           I = MF->begin(), E = MF->end(); I != E; ++I) {
361      const MachineBasicBlock *MBB = I;
362      for (MachineBasicBlock::const_iterator
363             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
364        const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
365
366        if ((MCID.isCall() && !MCID.isReturn()) ||
367            II->isStackAligningInlineAsm()) {
368          MFI->setHasCalls(true);
369          goto done;
370        }
371      }
372    }
373  done:;
374  }
375
376  // Determine if there is a call to setjmp in the machine function.
377  MF->setCallsSetJmp(Fn.callsFunctionThatReturnsTwice());
378
379  // Replace forward-declared registers with the registers containing
380  // the desired value.
381  MachineRegisterInfo &MRI = MF->getRegInfo();
382  for (DenseMap<unsigned, unsigned>::iterator
383       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
384       I != E; ++I) {
385    unsigned From = I->first;
386    unsigned To = I->second;
387    // If To is also scheduled to be replaced, find what its ultimate
388    // replacement is.
389    for (;;) {
390      DenseMap<unsigned, unsigned>::iterator J =
391        FuncInfo->RegFixups.find(To);
392      if (J == E) break;
393      To = J->second;
394    }
395    // Replace it.
396    MRI.replaceRegWith(From, To);
397  }
398
399  // Release function-specific state. SDB and CurDAG are already cleared
400  // at this point.
401  FuncInfo->clear();
402
403  return true;
404}
405
406void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
407                                        BasicBlock::const_iterator End,
408                                        bool &HadTailCall) {
409  // Lower all of the non-terminator instructions. If a call is emitted
410  // as a tail call, cease emitting nodes for this block. Terminators
411  // are handled below.
412  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
413    SDB->visit(*I);
414
415  // Make sure the root of the DAG is up-to-date.
416  CurDAG->setRoot(SDB->getControlRoot());
417  HadTailCall = SDB->HasTailCall;
418  SDB->clear();
419
420  // Final step, emit the lowered DAG as machine code.
421  CodeGenAndEmitDAG();
422}
423
424void SelectionDAGISel::ComputeLiveOutVRegInfo() {
425  SmallPtrSet<SDNode*, 128> VisitedNodes;
426  SmallVector<SDNode*, 128> Worklist;
427
428  Worklist.push_back(CurDAG->getRoot().getNode());
429
430  APInt Mask;
431  APInt KnownZero;
432  APInt KnownOne;
433
434  do {
435    SDNode *N = Worklist.pop_back_val();
436
437    // If we've already seen this node, ignore it.
438    if (!VisitedNodes.insert(N))
439      continue;
440
441    // Otherwise, add all chain operands to the worklist.
442    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
443      if (N->getOperand(i).getValueType() == MVT::Other)
444        Worklist.push_back(N->getOperand(i).getNode());
445
446    // If this is a CopyToReg with a vreg dest, process it.
447    if (N->getOpcode() != ISD::CopyToReg)
448      continue;
449
450    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
451    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
452      continue;
453
454    // Ignore non-scalar or non-integer values.
455    SDValue Src = N->getOperand(2);
456    EVT SrcVT = Src.getValueType();
457    if (!SrcVT.isInteger() || SrcVT.isVector())
458      continue;
459
460    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
461    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
462    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
463    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
464  } while (!Worklist.empty());
465}
466
467void SelectionDAGISel::CodeGenAndEmitDAG() {
468  std::string GroupName;
469  if (TimePassesIsEnabled)
470    GroupName = "Instruction Selection and Scheduling";
471  std::string BlockName;
472  int BlockNumber = -1;
473  (void)BlockNumber;
474#ifdef NDEBUG
475  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
476      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
477      ViewSUnitDAGs)
478#endif
479  {
480    BlockNumber = FuncInfo->MBB->getNumber();
481    BlockName = MF->getFunction()->getNameStr() + ":" +
482                FuncInfo->MBB->getBasicBlock()->getNameStr();
483  }
484  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
485        << " '" << BlockName << "'\n"; CurDAG->dump());
486
487  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
488
489  // Run the DAG combiner in pre-legalize mode.
490  {
491    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
492    CurDAG->Combine(Unrestricted, *AA, OptLevel);
493  }
494
495  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
496        << " '" << BlockName << "'\n"; CurDAG->dump());
497
498  // Second step, hack on the DAG until it only uses operations and types that
499  // the target supports.
500  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
501                                               BlockName);
502
503  bool Changed;
504  {
505    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
506    Changed = CurDAG->LegalizeTypes();
507  }
508
509  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
510        << " '" << BlockName << "'\n"; CurDAG->dump());
511
512  if (Changed) {
513    if (ViewDAGCombineLT)
514      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
515
516    // Run the DAG combiner in post-type-legalize mode.
517    {
518      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
519                         TimePassesIsEnabled);
520      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
521    }
522
523    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
524          << " '" << BlockName << "'\n"; CurDAG->dump());
525  }
526
527  {
528    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
529    Changed = CurDAG->LegalizeVectors();
530  }
531
532  if (Changed) {
533    {
534      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
535      CurDAG->LegalizeTypes();
536    }
537
538    if (ViewDAGCombineLT)
539      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
540
541    // Run the DAG combiner in post-type-legalize mode.
542    {
543      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
544                         TimePassesIsEnabled);
545      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
546    }
547
548    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
549          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
550  }
551
552  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
553
554  {
555    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
556    CurDAG->Legalize();
557  }
558
559  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
560        << " '" << BlockName << "'\n"; CurDAG->dump());
561
562  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
563
564  // Run the DAG combiner in post-legalize mode.
565  {
566    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
567    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
568  }
569
570  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
571        << " '" << BlockName << "'\n"; CurDAG->dump());
572
573  if (OptLevel != CodeGenOpt::None)
574    ComputeLiveOutVRegInfo();
575
576  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
577
578  // Third, instruction select all of the operations to machine code, adding the
579  // code to the MachineBasicBlock.
580  {
581    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
582    DoInstructionSelection();
583  }
584
585  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
586        << " '" << BlockName << "'\n"; CurDAG->dump());
587
588  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
589
590  // Schedule machine code.
591  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
592  {
593    NamedRegionTimer T("Instruction Scheduling", GroupName,
594                       TimePassesIsEnabled);
595    Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
596  }
597
598  if (ViewSUnitDAGs) Scheduler->viewGraph();
599
600  // Emit machine code to BB.  This can change 'BB' to the last block being
601  // inserted into.
602  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
603  {
604    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
605
606    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
607    FuncInfo->InsertPt = Scheduler->InsertPos;
608  }
609
610  // If the block was split, make sure we update any references that are used to
611  // update PHI nodes later on.
612  if (FirstMBB != LastMBB)
613    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
614
615  // Free the scheduler state.
616  {
617    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
618                       TimePassesIsEnabled);
619    delete Scheduler;
620  }
621
622  // Free the SelectionDAG state, now that we're finished with it.
623  CurDAG->clear();
624}
625
626void SelectionDAGISel::DoInstructionSelection() {
627  DEBUG(errs() << "===== Instruction selection begins: BB#"
628        << FuncInfo->MBB->getNumber()
629        << " '" << FuncInfo->MBB->getName() << "'\n");
630
631  PreprocessISelDAG();
632
633  // Select target instructions for the DAG.
634  {
635    // Number all nodes with a topological order and set DAGSize.
636    DAGSize = CurDAG->AssignTopologicalOrder();
637
638    // Create a dummy node (which is not added to allnodes), that adds
639    // a reference to the root node, preventing it from being deleted,
640    // and tracking any changes of the root.
641    HandleSDNode Dummy(CurDAG->getRoot());
642    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
643    ++ISelPosition;
644
645    // The AllNodes list is now topological-sorted. Visit the
646    // nodes by starting at the end of the list (the root of the
647    // graph) and preceding back toward the beginning (the entry
648    // node).
649    while (ISelPosition != CurDAG->allnodes_begin()) {
650      SDNode *Node = --ISelPosition;
651      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
652      // but there are currently some corner cases that it misses. Also, this
653      // makes it theoretically possible to disable the DAGCombiner.
654      if (Node->use_empty())
655        continue;
656
657      SDNode *ResNode = Select(Node);
658
659      // FIXME: This is pretty gross.  'Select' should be changed to not return
660      // anything at all and this code should be nuked with a tactical strike.
661
662      // If node should not be replaced, continue with the next one.
663      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
664        continue;
665      // Replace node.
666      if (ResNode)
667        ReplaceUses(Node, ResNode);
668
669      // If after the replacement this node is not used any more,
670      // remove this dead node.
671      if (Node->use_empty()) { // Don't delete EntryToken, etc.
672        ISelUpdater ISU(ISelPosition);
673        CurDAG->RemoveDeadNode(Node, &ISU);
674      }
675    }
676
677    CurDAG->setRoot(Dummy.getValue());
678  }
679
680  DEBUG(errs() << "===== Instruction selection ends:\n");
681
682  PostprocessISelDAG();
683}
684
685/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
686/// do other setup for EH landing-pad blocks.
687void SelectionDAGISel::PrepareEHLandingPad() {
688  MachineBasicBlock *MBB = FuncInfo->MBB;
689
690  // Add a label to mark the beginning of the landing pad.  Deletion of the
691  // landing pad can thus be detected via the MachineModuleInfo.
692  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
693
694  // Assign the call site to the landing pad's begin label.
695  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
696
697  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
698  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
699    .addSym(Label);
700
701  // Mark exception register as live in.
702  unsigned Reg = TLI.getExceptionAddressRegister();
703  if (Reg) MBB->addLiveIn(Reg);
704
705  // Mark exception selector register as live in.
706  Reg = TLI.getExceptionSelectorRegister();
707  if (Reg) MBB->addLiveIn(Reg);
708
709  // FIXME: Hack around an exception handling flaw (PR1508): the personality
710  // function and list of typeids logically belong to the invoke (or, if you
711  // like, the basic block containing the invoke), and need to be associated
712  // with it in the dwarf exception handling tables.  Currently however the
713  // information is provided by an intrinsic (eh.selector) that can be moved
714  // to unexpected places by the optimizers: if the unwind edge is critical,
715  // then breaking it can result in the intrinsics being in the successor of
716  // the landing pad, not the landing pad itself.  This results
717  // in exceptions not being caught because no typeids are associated with
718  // the invoke.  This may not be the only way things can go wrong, but it
719  // is the only way we try to work around for the moment.
720  const BasicBlock *LLVMBB = MBB->getBasicBlock();
721  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
722
723  if (Br && Br->isUnconditional()) { // Critical edge?
724    BasicBlock::const_iterator I, E;
725    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
726      if (isa<EHSelectorInst>(I))
727        break;
728
729    if (I == E)
730      // No catch info found - try to extract some from the successor.
731      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
732  }
733}
734
735/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
736/// load into the specified FoldInst.  Note that we could have a sequence where
737/// multiple LLVM IR instructions are folded into the same machineinstr.  For
738/// example we could have:
739///   A: x = load i32 *P
740///   B: y = icmp A, 42
741///   C: br y, ...
742///
743/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
744/// any other folded instructions) because it is between A and C.
745///
746/// If we succeed in folding the load into the operation, return true.
747///
748bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
749                                             const Instruction *FoldInst,
750                                             FastISel *FastIS) {
751  // We know that the load has a single use, but don't know what it is.  If it
752  // isn't one of the folded instructions, then we can't succeed here.  Handle
753  // this by scanning the single-use users of the load until we get to FoldInst.
754  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
755
756  const Instruction *TheUser = LI->use_back();
757  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
758         // Stay in the right block.
759         TheUser->getParent() == FoldInst->getParent() &&
760         --MaxUsers) {  // Don't scan too far.
761    // If there are multiple or no uses of this instruction, then bail out.
762    if (!TheUser->hasOneUse())
763      return false;
764
765    TheUser = TheUser->use_back();
766  }
767
768  // If we didn't find the fold instruction, then we failed to collapse the
769  // sequence.
770  if (TheUser != FoldInst)
771    return false;
772
773  // Don't try to fold volatile loads.  Target has to deal with alignment
774  // constraints.
775  if (LI->isVolatile()) return false;
776
777  // Figure out which vreg this is going into.  If there is no assigned vreg yet
778  // then there actually was no reference to it.  Perhaps the load is referenced
779  // by a dead instruction.
780  unsigned LoadReg = FastIS->getRegForValue(LI);
781  if (LoadReg == 0)
782    return false;
783
784  // Check to see what the uses of this vreg are.  If it has no uses, or more
785  // than one use (at the machine instr level) then we can't fold it.
786  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
787  if (RI == RegInfo->reg_end())
788    return false;
789
790  // See if there is exactly one use of the vreg.  If there are multiple uses,
791  // then the instruction got lowered to multiple machine instructions or the
792  // use of the loaded value ended up being multiple operands of the result, in
793  // either case, we can't fold this.
794  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
795  if (PostRI != RegInfo->reg_end())
796    return false;
797
798  assert(RI.getOperand().isUse() &&
799         "The only use of the vreg must be a use, we haven't emitted the def!");
800
801  MachineInstr *User = &*RI;
802
803  // Set the insertion point properly.  Folding the load can cause generation of
804  // other random instructions (like sign extends) for addressing modes, make
805  // sure they get inserted in a logical place before the new instruction.
806  FuncInfo->InsertPt = User;
807  FuncInfo->MBB = User->getParent();
808
809  // Ask the target to try folding the load.
810  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
811}
812
813/// isFoldedOrDeadInstruction - Return true if the specified instruction is
814/// side-effect free and is either dead or folded into a generated instruction.
815/// Return false if it needs to be emitted.
816static bool isFoldedOrDeadInstruction(const Instruction *I,
817                                      FunctionLoweringInfo *FuncInfo) {
818  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
819         !isa<TerminatorInst>(I) && // Terminators aren't folded.
820         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
821         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
822         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
823}
824
825void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
826  // Initialize the Fast-ISel state, if needed.
827  FastISel *FastIS = 0;
828  if (EnableFastISel)
829    FastIS = TLI.createFastISel(*FuncInfo);
830
831  // Iterate over all basic blocks in the function.
832  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
833  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
834       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
835    const BasicBlock *LLVMBB = *I;
836
837    if (OptLevel != CodeGenOpt::None) {
838      bool AllPredsVisited = true;
839      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
840           PI != PE; ++PI) {
841        if (!FuncInfo->VisitedBBs.count(*PI)) {
842          AllPredsVisited = false;
843          break;
844        }
845      }
846
847      if (AllPredsVisited) {
848        for (BasicBlock::const_iterator I = LLVMBB->begin();
849             isa<PHINode>(I); ++I)
850          FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
851      } else {
852        for (BasicBlock::const_iterator I = LLVMBB->begin();
853             isa<PHINode>(I); ++I)
854          FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
855      }
856
857      FuncInfo->VisitedBBs.insert(LLVMBB);
858    }
859
860    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
861    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
862
863    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
864    BasicBlock::const_iterator const End = LLVMBB->end();
865    BasicBlock::const_iterator BI = End;
866
867    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
868
869    // Setup an EH landing-pad block.
870    if (FuncInfo->MBB->isLandingPad())
871      PrepareEHLandingPad();
872
873    // Lower any arguments needed in this block if this is the entry block.
874    if (LLVMBB == &Fn.getEntryBlock())
875      LowerArguments(LLVMBB);
876
877    // Before doing SelectionDAG ISel, see if FastISel has been requested.
878    if (FastIS) {
879      FastIS->startNewBlock();
880
881      // Emit code for any incoming arguments. This must happen before
882      // beginning FastISel on the entry block.
883      if (LLVMBB == &Fn.getEntryBlock()) {
884        CurDAG->setRoot(SDB->getControlRoot());
885        SDB->clear();
886        CodeGenAndEmitDAG();
887
888        // If we inserted any instructions at the beginning, make a note of
889        // where they are, so we can be sure to emit subsequent instructions
890        // after them.
891        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
892          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
893        else
894          FastIS->setLastLocalValue(0);
895      }
896
897      // Do FastISel on as many instructions as possible.
898      for (; BI != Begin; --BI) {
899        const Instruction *Inst = llvm::prior(BI);
900
901        // If we no longer require this instruction, skip it.
902        if (isFoldedOrDeadInstruction(Inst, FuncInfo))
903          continue;
904
905        // Bottom-up: reset the insert pos at the top, after any local-value
906        // instructions.
907        FastIS->recomputeInsertPt();
908
909        // Try to select the instruction with FastISel.
910        if (FastIS->SelectInstruction(Inst)) {
911          ++NumFastIselSuccess;
912          // If fast isel succeeded, skip over all the folded instructions, and
913          // then see if there is a load right before the selected instructions.
914          // Try to fold the load if so.
915          const Instruction *BeforeInst = Inst;
916          while (BeforeInst != Begin) {
917            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
918            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
919              break;
920          }
921          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
922              BeforeInst->hasOneUse() &&
923              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS))
924            // If we succeeded, don't re-select the load.
925            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
926          continue;
927        }
928
929        // Then handle certain instructions as single-LLVM-Instruction blocks.
930        if (isa<CallInst>(Inst)) {
931          ++NumFastIselFailures;
932          if (EnableFastISelVerbose || EnableFastISelAbort) {
933            dbgs() << "FastISel missed call: ";
934            Inst->dump();
935          }
936
937          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
938            unsigned &R = FuncInfo->ValueMap[Inst];
939            if (!R)
940              R = FuncInfo->CreateRegs(Inst->getType());
941          }
942
943          bool HadTailCall = false;
944          SelectBasicBlock(Inst, BI, HadTailCall);
945
946          // If the call was emitted as a tail call, we're done with the block.
947          if (HadTailCall) {
948            --BI;
949            break;
950          }
951
952          continue;
953        }
954
955        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
956          // Don't abort, and use a different message for terminator misses.
957          ++NumFastIselFailures;
958          if (EnableFastISelVerbose || EnableFastISelAbort) {
959            dbgs() << "FastISel missed terminator: ";
960            Inst->dump();
961          }
962        } else {
963          ++NumFastIselFailures;
964          if (EnableFastISelVerbose || EnableFastISelAbort) {
965            dbgs() << "FastISel miss: ";
966            Inst->dump();
967          }
968          if (EnableFastISelAbort)
969            // The "fast" selector couldn't handle something and bailed.
970            // For the purpose of debugging, just abort.
971            llvm_unreachable("FastISel didn't select the entire block");
972        }
973        break;
974      }
975
976      FastIS->recomputeInsertPt();
977    }
978
979    if (Begin != BI)
980      ++NumDAGBlocks;
981    else
982      ++NumFastIselBlocks;
983
984    if (Begin != BI) {
985      // Run SelectionDAG instruction selection on the remainder of the block
986      // not handled by FastISel. If FastISel is not run, this is the entire
987      // block.
988      bool HadTailCall;
989      SelectBasicBlock(Begin, BI, HadTailCall);
990    }
991
992    FinishBasicBlock();
993    FuncInfo->PHINodesToUpdate.clear();
994  }
995
996  delete FastIS;
997  SDB->clearDanglingDebugInfo();
998}
999
1000void
1001SelectionDAGISel::FinishBasicBlock() {
1002
1003  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1004               << FuncInfo->PHINodesToUpdate.size() << "\n";
1005        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1006          dbgs() << "Node " << i << " : ("
1007                 << FuncInfo->PHINodesToUpdate[i].first
1008                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1009
1010  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1011  // PHI nodes in successors.
1012  if (SDB->SwitchCases.empty() &&
1013      SDB->JTCases.empty() &&
1014      SDB->BitTestCases.empty()) {
1015    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1016      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1017      assert(PHI->isPHI() &&
1018             "This is not a machine PHI node that we are updating!");
1019      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1020        continue;
1021      PHI->addOperand(
1022        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1023      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1024    }
1025    return;
1026  }
1027
1028  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1029    // Lower header first, if it wasn't already lowered
1030    if (!SDB->BitTestCases[i].Emitted) {
1031      // Set the current basic block to the mbb we wish to insert the code into
1032      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1033      FuncInfo->InsertPt = FuncInfo->MBB->end();
1034      // Emit the code
1035      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1036      CurDAG->setRoot(SDB->getRoot());
1037      SDB->clear();
1038      CodeGenAndEmitDAG();
1039    }
1040
1041    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1042      // Set the current basic block to the mbb we wish to insert the code into
1043      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1044      FuncInfo->InsertPt = FuncInfo->MBB->end();
1045      // Emit the code
1046      if (j+1 != ej)
1047        SDB->visitBitTestCase(SDB->BitTestCases[i],
1048                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1049                              SDB->BitTestCases[i].Reg,
1050                              SDB->BitTestCases[i].Cases[j],
1051                              FuncInfo->MBB);
1052      else
1053        SDB->visitBitTestCase(SDB->BitTestCases[i],
1054                              SDB->BitTestCases[i].Default,
1055                              SDB->BitTestCases[i].Reg,
1056                              SDB->BitTestCases[i].Cases[j],
1057                              FuncInfo->MBB);
1058
1059
1060      CurDAG->setRoot(SDB->getRoot());
1061      SDB->clear();
1062      CodeGenAndEmitDAG();
1063    }
1064
1065    // Update PHI Nodes
1066    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1067         pi != pe; ++pi) {
1068      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1069      MachineBasicBlock *PHIBB = PHI->getParent();
1070      assert(PHI->isPHI() &&
1071             "This is not a machine PHI node that we are updating!");
1072      // This is "default" BB. We have two jumps to it. From "header" BB and
1073      // from last "case" BB.
1074      if (PHIBB == SDB->BitTestCases[i].Default) {
1075        PHI->addOperand(MachineOperand::
1076                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1077                                  false));
1078        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1079        PHI->addOperand(MachineOperand::
1080                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1081                                  false));
1082        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1083                                                  back().ThisBB));
1084      }
1085      // One of "cases" BB.
1086      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1087           j != ej; ++j) {
1088        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1089        if (cBB->isSuccessor(PHIBB)) {
1090          PHI->addOperand(MachineOperand::
1091                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1092                                    false));
1093          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1094        }
1095      }
1096    }
1097  }
1098  SDB->BitTestCases.clear();
1099
1100  // If the JumpTable record is filled in, then we need to emit a jump table.
1101  // Updating the PHI nodes is tricky in this case, since we need to determine
1102  // whether the PHI is a successor of the range check MBB or the jump table MBB
1103  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1104    // Lower header first, if it wasn't already lowered
1105    if (!SDB->JTCases[i].first.Emitted) {
1106      // Set the current basic block to the mbb we wish to insert the code into
1107      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1108      FuncInfo->InsertPt = FuncInfo->MBB->end();
1109      // Emit the code
1110      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1111                                FuncInfo->MBB);
1112      CurDAG->setRoot(SDB->getRoot());
1113      SDB->clear();
1114      CodeGenAndEmitDAG();
1115    }
1116
1117    // Set the current basic block to the mbb we wish to insert the code into
1118    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1119    FuncInfo->InsertPt = FuncInfo->MBB->end();
1120    // Emit the code
1121    SDB->visitJumpTable(SDB->JTCases[i].second);
1122    CurDAG->setRoot(SDB->getRoot());
1123    SDB->clear();
1124    CodeGenAndEmitDAG();
1125
1126    // Update PHI Nodes
1127    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1128         pi != pe; ++pi) {
1129      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1130      MachineBasicBlock *PHIBB = PHI->getParent();
1131      assert(PHI->isPHI() &&
1132             "This is not a machine PHI node that we are updating!");
1133      // "default" BB. We can go there only from header BB.
1134      if (PHIBB == SDB->JTCases[i].second.Default) {
1135        PHI->addOperand
1136          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1137                                     false));
1138        PHI->addOperand
1139          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1140      }
1141      // JT BB. Just iterate over successors here
1142      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1143        PHI->addOperand
1144          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1145                                     false));
1146        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1147      }
1148    }
1149  }
1150  SDB->JTCases.clear();
1151
1152  // If the switch block involved a branch to one of the actual successors, we
1153  // need to update PHI nodes in that block.
1154  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1155    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1156    assert(PHI->isPHI() &&
1157           "This is not a machine PHI node that we are updating!");
1158    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1159      PHI->addOperand(
1160        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1161      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1162    }
1163  }
1164
1165  // If we generated any switch lowering information, build and codegen any
1166  // additional DAGs necessary.
1167  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1168    // Set the current basic block to the mbb we wish to insert the code into
1169    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1170    FuncInfo->InsertPt = FuncInfo->MBB->end();
1171
1172    // Determine the unique successors.
1173    SmallVector<MachineBasicBlock *, 2> Succs;
1174    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1175    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1176      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1177
1178    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1179    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1180    CurDAG->setRoot(SDB->getRoot());
1181    SDB->clear();
1182    CodeGenAndEmitDAG();
1183
1184    // Remember the last block, now that any splitting is done, for use in
1185    // populating PHI nodes in successors.
1186    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1187
1188    // Handle any PHI nodes in successors of this chunk, as if we were coming
1189    // from the original BB before switch expansion.  Note that PHI nodes can
1190    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1191    // handle them the right number of times.
1192    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1193      FuncInfo->MBB = Succs[i];
1194      FuncInfo->InsertPt = FuncInfo->MBB->end();
1195      // FuncInfo->MBB may have been removed from the CFG if a branch was
1196      // constant folded.
1197      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1198        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1199             Phi != FuncInfo->MBB->end() && Phi->isPHI();
1200             ++Phi) {
1201          // This value for this PHI node is recorded in PHINodesToUpdate.
1202          for (unsigned pn = 0; ; ++pn) {
1203            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1204                   "Didn't find PHI entry!");
1205            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1206              Phi->addOperand(MachineOperand::
1207                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1208                                        false));
1209              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1210              break;
1211            }
1212          }
1213        }
1214      }
1215    }
1216  }
1217  SDB->SwitchCases.clear();
1218}
1219
1220
1221/// Create the scheduler. If a specific scheduler was specified
1222/// via the SchedulerRegistry, use it, otherwise select the
1223/// one preferred by the target.
1224///
1225ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1226  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1227
1228  if (!Ctor) {
1229    Ctor = ISHeuristic;
1230    RegisterScheduler::setDefault(Ctor);
1231  }
1232
1233  return Ctor(this, OptLevel);
1234}
1235
1236//===----------------------------------------------------------------------===//
1237// Helper functions used by the generated instruction selector.
1238//===----------------------------------------------------------------------===//
1239// Calls to these methods are generated by tblgen.
1240
1241/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1242/// the dag combiner simplified the 255, we still want to match.  RHS is the
1243/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1244/// specified in the .td file (e.g. 255).
1245bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1246                                    int64_t DesiredMaskS) const {
1247  const APInt &ActualMask = RHS->getAPIntValue();
1248  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1249
1250  // If the actual mask exactly matches, success!
1251  if (ActualMask == DesiredMask)
1252    return true;
1253
1254  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1255  if (ActualMask.intersects(~DesiredMask))
1256    return false;
1257
1258  // Otherwise, the DAG Combiner may have proven that the value coming in is
1259  // either already zero or is not demanded.  Check for known zero input bits.
1260  APInt NeededMask = DesiredMask & ~ActualMask;
1261  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1262    return true;
1263
1264  // TODO: check to see if missing bits are just not demanded.
1265
1266  // Otherwise, this pattern doesn't match.
1267  return false;
1268}
1269
1270/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1271/// the dag combiner simplified the 255, we still want to match.  RHS is the
1272/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1273/// specified in the .td file (e.g. 255).
1274bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1275                                   int64_t DesiredMaskS) const {
1276  const APInt &ActualMask = RHS->getAPIntValue();
1277  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1278
1279  // If the actual mask exactly matches, success!
1280  if (ActualMask == DesiredMask)
1281    return true;
1282
1283  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1284  if (ActualMask.intersects(~DesiredMask))
1285    return false;
1286
1287  // Otherwise, the DAG Combiner may have proven that the value coming in is
1288  // either already zero or is not demanded.  Check for known zero input bits.
1289  APInt NeededMask = DesiredMask & ~ActualMask;
1290
1291  APInt KnownZero, KnownOne;
1292  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1293
1294  // If all the missing bits in the or are already known to be set, match!
1295  if ((NeededMask & KnownOne) == NeededMask)
1296    return true;
1297
1298  // TODO: check to see if missing bits are just not demanded.
1299
1300  // Otherwise, this pattern doesn't match.
1301  return false;
1302}
1303
1304
1305/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1306/// by tblgen.  Others should not call it.
1307void SelectionDAGISel::
1308SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1309  std::vector<SDValue> InOps;
1310  std::swap(InOps, Ops);
1311
1312  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1313  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1314  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1315  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1316
1317  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1318  if (InOps[e-1].getValueType() == MVT::Glue)
1319    --e;  // Don't process a glue operand if it is here.
1320
1321  while (i != e) {
1322    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1323    if (!InlineAsm::isMemKind(Flags)) {
1324      // Just skip over this operand, copying the operands verbatim.
1325      Ops.insert(Ops.end(), InOps.begin()+i,
1326                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1327      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1328    } else {
1329      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1330             "Memory operand with multiple values?");
1331      // Otherwise, this is a memory operand.  Ask the target to select it.
1332      std::vector<SDValue> SelOps;
1333      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1334        report_fatal_error("Could not match memory address.  Inline asm"
1335                           " failure!");
1336
1337      // Add this to the output node.
1338      unsigned NewFlags =
1339        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1340      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1341      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1342      i += 2;
1343    }
1344  }
1345
1346  // Add the glue input back if present.
1347  if (e != InOps.size())
1348    Ops.push_back(InOps.back());
1349}
1350
1351/// findGlueUse - Return use of MVT::Glue value produced by the specified
1352/// SDNode.
1353///
1354static SDNode *findGlueUse(SDNode *N) {
1355  unsigned FlagResNo = N->getNumValues()-1;
1356  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1357    SDUse &Use = I.getUse();
1358    if (Use.getResNo() == FlagResNo)
1359      return Use.getUser();
1360  }
1361  return NULL;
1362}
1363
1364/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1365/// This function recursively traverses up the operand chain, ignoring
1366/// certain nodes.
1367static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1368                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1369                          bool IgnoreChains) {
1370  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1371  // greater than all of its (recursive) operands.  If we scan to a point where
1372  // 'use' is smaller than the node we're scanning for, then we know we will
1373  // never find it.
1374  //
1375  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1376  // happen because we scan down to newly selected nodes in the case of glue
1377  // uses.
1378  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1379    return false;
1380
1381  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1382  // won't fail if we scan it again.
1383  if (!Visited.insert(Use))
1384    return false;
1385
1386  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1387    // Ignore chain uses, they are validated by HandleMergeInputChains.
1388    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1389      continue;
1390
1391    SDNode *N = Use->getOperand(i).getNode();
1392    if (N == Def) {
1393      if (Use == ImmedUse || Use == Root)
1394        continue;  // We are not looking for immediate use.
1395      assert(N != Root);
1396      return true;
1397    }
1398
1399    // Traverse up the operand chain.
1400    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1401      return true;
1402  }
1403  return false;
1404}
1405
1406/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1407/// operand node N of U during instruction selection that starts at Root.
1408bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1409                                          SDNode *Root) const {
1410  if (OptLevel == CodeGenOpt::None) return false;
1411  return N.hasOneUse();
1412}
1413
1414/// IsLegalToFold - Returns true if the specific operand node N of
1415/// U can be folded during instruction selection that starts at Root.
1416bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1417                                     CodeGenOpt::Level OptLevel,
1418                                     bool IgnoreChains) {
1419  if (OptLevel == CodeGenOpt::None) return false;
1420
1421  // If Root use can somehow reach N through a path that that doesn't contain
1422  // U then folding N would create a cycle. e.g. In the following
1423  // diagram, Root can reach N through X. If N is folded into into Root, then
1424  // X is both a predecessor and a successor of U.
1425  //
1426  //          [N*]           //
1427  //         ^   ^           //
1428  //        /     \          //
1429  //      [U*]    [X]?       //
1430  //        ^     ^          //
1431  //         \   /           //
1432  //          \ /            //
1433  //         [Root*]         //
1434  //
1435  // * indicates nodes to be folded together.
1436  //
1437  // If Root produces glue, then it gets (even more) interesting. Since it
1438  // will be "glued" together with its glue use in the scheduler, we need to
1439  // check if it might reach N.
1440  //
1441  //          [N*]           //
1442  //         ^   ^           //
1443  //        /     \          //
1444  //      [U*]    [X]?       //
1445  //        ^       ^        //
1446  //         \       \       //
1447  //          \      |       //
1448  //         [Root*] |       //
1449  //          ^      |       //
1450  //          f      |       //
1451  //          |      /       //
1452  //         [Y]    /        //
1453  //           ^   /         //
1454  //           f  /          //
1455  //           | /           //
1456  //          [GU]           //
1457  //
1458  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1459  // (call it Fold), then X is a predecessor of GU and a successor of
1460  // Fold. But since Fold and GU are glued together, this will create
1461  // a cycle in the scheduling graph.
1462
1463  // If the node has glue, walk down the graph to the "lowest" node in the
1464  // glueged set.
1465  EVT VT = Root->getValueType(Root->getNumValues()-1);
1466  while (VT == MVT::Glue) {
1467    SDNode *GU = findGlueUse(Root);
1468    if (GU == NULL)
1469      break;
1470    Root = GU;
1471    VT = Root->getValueType(Root->getNumValues()-1);
1472
1473    // If our query node has a glue result with a use, we've walked up it.  If
1474    // the user (which has already been selected) has a chain or indirectly uses
1475    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1476    // this, we cannot ignore chains in this predicate.
1477    IgnoreChains = false;
1478  }
1479
1480
1481  SmallPtrSet<SDNode*, 16> Visited;
1482  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1483}
1484
1485SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1486  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1487  SelectInlineAsmMemoryOperands(Ops);
1488
1489  std::vector<EVT> VTs;
1490  VTs.push_back(MVT::Other);
1491  VTs.push_back(MVT::Glue);
1492  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1493                                VTs, &Ops[0], Ops.size());
1494  New->setNodeId(-1);
1495  return New.getNode();
1496}
1497
1498SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1499  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1500}
1501
1502/// GetVBR - decode a vbr encoding whose top bit is set.
1503LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1504GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1505  assert(Val >= 128 && "Not a VBR");
1506  Val &= 127;  // Remove first vbr bit.
1507
1508  unsigned Shift = 7;
1509  uint64_t NextBits;
1510  do {
1511    NextBits = MatcherTable[Idx++];
1512    Val |= (NextBits&127) << Shift;
1513    Shift += 7;
1514  } while (NextBits & 128);
1515
1516  return Val;
1517}
1518
1519
1520/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1521/// interior glue and chain results to use the new glue and chain results.
1522void SelectionDAGISel::
1523UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1524                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1525                    SDValue InputGlue,
1526                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1527                    bool isMorphNodeTo) {
1528  SmallVector<SDNode*, 4> NowDeadNodes;
1529
1530  ISelUpdater ISU(ISelPosition);
1531
1532  // Now that all the normal results are replaced, we replace the chain and
1533  // glue results if present.
1534  if (!ChainNodesMatched.empty()) {
1535    assert(InputChain.getNode() != 0 &&
1536           "Matched input chains but didn't produce a chain");
1537    // Loop over all of the nodes we matched that produced a chain result.
1538    // Replace all the chain results with the final chain we ended up with.
1539    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1540      SDNode *ChainNode = ChainNodesMatched[i];
1541
1542      // If this node was already deleted, don't look at it.
1543      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1544        continue;
1545
1546      // Don't replace the results of the root node if we're doing a
1547      // MorphNodeTo.
1548      if (ChainNode == NodeToMatch && isMorphNodeTo)
1549        continue;
1550
1551      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1552      if (ChainVal.getValueType() == MVT::Glue)
1553        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1554      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1555      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1556
1557      // If the node became dead and we haven't already seen it, delete it.
1558      if (ChainNode->use_empty() &&
1559          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1560        NowDeadNodes.push_back(ChainNode);
1561    }
1562  }
1563
1564  // If the result produces glue, update any glue results in the matched
1565  // pattern with the glue result.
1566  if (InputGlue.getNode() != 0) {
1567    // Handle any interior nodes explicitly marked.
1568    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1569      SDNode *FRN = GlueResultNodesMatched[i];
1570
1571      // If this node was already deleted, don't look at it.
1572      if (FRN->getOpcode() == ISD::DELETED_NODE)
1573        continue;
1574
1575      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1576             "Doesn't have a glue result");
1577      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1578                                        InputGlue, &ISU);
1579
1580      // If the node became dead and we haven't already seen it, delete it.
1581      if (FRN->use_empty() &&
1582          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1583        NowDeadNodes.push_back(FRN);
1584    }
1585  }
1586
1587  if (!NowDeadNodes.empty())
1588    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1589
1590  DEBUG(errs() << "ISEL: Match complete!\n");
1591}
1592
1593enum ChainResult {
1594  CR_Simple,
1595  CR_InducesCycle,
1596  CR_LeadsToInteriorNode
1597};
1598
1599/// WalkChainUsers - Walk down the users of the specified chained node that is
1600/// part of the pattern we're matching, looking at all of the users we find.
1601/// This determines whether something is an interior node, whether we have a
1602/// non-pattern node in between two pattern nodes (which prevent folding because
1603/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1604/// between pattern nodes (in which case the TF becomes part of the pattern).
1605///
1606/// The walk we do here is guaranteed to be small because we quickly get down to
1607/// already selected nodes "below" us.
1608static ChainResult
1609WalkChainUsers(SDNode *ChainedNode,
1610               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1611               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1612  ChainResult Result = CR_Simple;
1613
1614  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1615         E = ChainedNode->use_end(); UI != E; ++UI) {
1616    // Make sure the use is of the chain, not some other value we produce.
1617    if (UI.getUse().getValueType() != MVT::Other) continue;
1618
1619    SDNode *User = *UI;
1620
1621    // If we see an already-selected machine node, then we've gone beyond the
1622    // pattern that we're selecting down into the already selected chunk of the
1623    // DAG.
1624    if (User->isMachineOpcode() ||
1625        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1626      continue;
1627
1628    if (User->getOpcode() == ISD::CopyToReg ||
1629        User->getOpcode() == ISD::CopyFromReg ||
1630        User->getOpcode() == ISD::INLINEASM ||
1631        User->getOpcode() == ISD::EH_LABEL) {
1632      // If their node ID got reset to -1 then they've already been selected.
1633      // Treat them like a MachineOpcode.
1634      if (User->getNodeId() == -1)
1635        continue;
1636    }
1637
1638    // If we have a TokenFactor, we handle it specially.
1639    if (User->getOpcode() != ISD::TokenFactor) {
1640      // If the node isn't a token factor and isn't part of our pattern, then it
1641      // must be a random chained node in between two nodes we're selecting.
1642      // This happens when we have something like:
1643      //   x = load ptr
1644      //   call
1645      //   y = x+4
1646      //   store y -> ptr
1647      // Because we structurally match the load/store as a read/modify/write,
1648      // but the call is chained between them.  We cannot fold in this case
1649      // because it would induce a cycle in the graph.
1650      if (!std::count(ChainedNodesInPattern.begin(),
1651                      ChainedNodesInPattern.end(), User))
1652        return CR_InducesCycle;
1653
1654      // Otherwise we found a node that is part of our pattern.  For example in:
1655      //   x = load ptr
1656      //   y = x+4
1657      //   store y -> ptr
1658      // This would happen when we're scanning down from the load and see the
1659      // store as a user.  Record that there is a use of ChainedNode that is
1660      // part of the pattern and keep scanning uses.
1661      Result = CR_LeadsToInteriorNode;
1662      InteriorChainedNodes.push_back(User);
1663      continue;
1664    }
1665
1666    // If we found a TokenFactor, there are two cases to consider: first if the
1667    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1668    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1669    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1670    //     [Load chain]
1671    //         ^
1672    //         |
1673    //       [Load]
1674    //       ^    ^
1675    //       |    \                    DAG's like cheese
1676    //      /       \                       do you?
1677    //     /         |
1678    // [TokenFactor] [Op]
1679    //     ^          ^
1680    //     |          |
1681    //      \        /
1682    //       \      /
1683    //       [Store]
1684    //
1685    // In this case, the TokenFactor becomes part of our match and we rewrite it
1686    // as a new TokenFactor.
1687    //
1688    // To distinguish these two cases, do a recursive walk down the uses.
1689    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1690    case CR_Simple:
1691      // If the uses of the TokenFactor are just already-selected nodes, ignore
1692      // it, it is "below" our pattern.
1693      continue;
1694    case CR_InducesCycle:
1695      // If the uses of the TokenFactor lead to nodes that are not part of our
1696      // pattern that are not selected, folding would turn this into a cycle,
1697      // bail out now.
1698      return CR_InducesCycle;
1699    case CR_LeadsToInteriorNode:
1700      break;  // Otherwise, keep processing.
1701    }
1702
1703    // Okay, we know we're in the interesting interior case.  The TokenFactor
1704    // is now going to be considered part of the pattern so that we rewrite its
1705    // uses (it may have uses that are not part of the pattern) with the
1706    // ultimate chain result of the generated code.  We will also add its chain
1707    // inputs as inputs to the ultimate TokenFactor we create.
1708    Result = CR_LeadsToInteriorNode;
1709    ChainedNodesInPattern.push_back(User);
1710    InteriorChainedNodes.push_back(User);
1711    continue;
1712  }
1713
1714  return Result;
1715}
1716
1717/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1718/// operation for when the pattern matched at least one node with a chains.  The
1719/// input vector contains a list of all of the chained nodes that we match.  We
1720/// must determine if this is a valid thing to cover (i.e. matching it won't
1721/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1722/// be used as the input node chain for the generated nodes.
1723static SDValue
1724HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1725                       SelectionDAG *CurDAG) {
1726  // Walk all of the chained nodes we've matched, recursively scanning down the
1727  // users of the chain result. This adds any TokenFactor nodes that are caught
1728  // in between chained nodes to the chained and interior nodes list.
1729  SmallVector<SDNode*, 3> InteriorChainedNodes;
1730  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1731    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1732                       InteriorChainedNodes) == CR_InducesCycle)
1733      return SDValue(); // Would induce a cycle.
1734  }
1735
1736  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1737  // that we are interested in.  Form our input TokenFactor node.
1738  SmallVector<SDValue, 3> InputChains;
1739  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1740    // Add the input chain of this node to the InputChains list (which will be
1741    // the operands of the generated TokenFactor) if it's not an interior node.
1742    SDNode *N = ChainNodesMatched[i];
1743    if (N->getOpcode() != ISD::TokenFactor) {
1744      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1745        continue;
1746
1747      // Otherwise, add the input chain.
1748      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1749      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1750      InputChains.push_back(InChain);
1751      continue;
1752    }
1753
1754    // If we have a token factor, we want to add all inputs of the token factor
1755    // that are not part of the pattern we're matching.
1756    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1757      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1758                      N->getOperand(op).getNode()))
1759        InputChains.push_back(N->getOperand(op));
1760    }
1761  }
1762
1763  SDValue Res;
1764  if (InputChains.size() == 1)
1765    return InputChains[0];
1766  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1767                         MVT::Other, &InputChains[0], InputChains.size());
1768}
1769
1770/// MorphNode - Handle morphing a node in place for the selector.
1771SDNode *SelectionDAGISel::
1772MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1773          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1774  // It is possible we're using MorphNodeTo to replace a node with no
1775  // normal results with one that has a normal result (or we could be
1776  // adding a chain) and the input could have glue and chains as well.
1777  // In this case we need to shift the operands down.
1778  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1779  // than the old isel though.
1780  int OldGlueResultNo = -1, OldChainResultNo = -1;
1781
1782  unsigned NTMNumResults = Node->getNumValues();
1783  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1784    OldGlueResultNo = NTMNumResults-1;
1785    if (NTMNumResults != 1 &&
1786        Node->getValueType(NTMNumResults-2) == MVT::Other)
1787      OldChainResultNo = NTMNumResults-2;
1788  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1789    OldChainResultNo = NTMNumResults-1;
1790
1791  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1792  // that this deletes operands of the old node that become dead.
1793  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1794
1795  // MorphNodeTo can operate in two ways: if an existing node with the
1796  // specified operands exists, it can just return it.  Otherwise, it
1797  // updates the node in place to have the requested operands.
1798  if (Res == Node) {
1799    // If we updated the node in place, reset the node ID.  To the isel,
1800    // this should be just like a newly allocated machine node.
1801    Res->setNodeId(-1);
1802  }
1803
1804  unsigned ResNumResults = Res->getNumValues();
1805  // Move the glue if needed.
1806  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1807      (unsigned)OldGlueResultNo != ResNumResults-1)
1808    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1809                                      SDValue(Res, ResNumResults-1));
1810
1811  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1812    --ResNumResults;
1813
1814  // Move the chain reference if needed.
1815  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1816      (unsigned)OldChainResultNo != ResNumResults-1)
1817    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1818                                      SDValue(Res, ResNumResults-1));
1819
1820  // Otherwise, no replacement happened because the node already exists. Replace
1821  // Uses of the old node with the new one.
1822  if (Res != Node)
1823    CurDAG->ReplaceAllUsesWith(Node, Res);
1824
1825  return Res;
1826}
1827
1828/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1829LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1830CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1831          SDValue N,
1832          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1833  // Accept if it is exactly the same as a previously recorded node.
1834  unsigned RecNo = MatcherTable[MatcherIndex++];
1835  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1836  return N == RecordedNodes[RecNo].first;
1837}
1838
1839/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1840LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1841CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1842                      SelectionDAGISel &SDISel) {
1843  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1844}
1845
1846/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1847LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1848CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1849                   SelectionDAGISel &SDISel, SDNode *N) {
1850  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1851}
1852
1853LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1854CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1855            SDNode *N) {
1856  uint16_t Opc = MatcherTable[MatcherIndex++];
1857  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1858  return N->getOpcode() == Opc;
1859}
1860
1861LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1862CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1863          SDValue N, const TargetLowering &TLI) {
1864  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1865  if (N.getValueType() == VT) return true;
1866
1867  // Handle the case when VT is iPTR.
1868  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1869}
1870
1871LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1872CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1873               SDValue N, const TargetLowering &TLI,
1874               unsigned ChildNo) {
1875  if (ChildNo >= N.getNumOperands())
1876    return false;  // Match fails if out of range child #.
1877  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1878}
1879
1880
1881LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1882CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1883              SDValue N) {
1884  return cast<CondCodeSDNode>(N)->get() ==
1885      (ISD::CondCode)MatcherTable[MatcherIndex++];
1886}
1887
1888LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1889CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1890               SDValue N, const TargetLowering &TLI) {
1891  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1892  if (cast<VTSDNode>(N)->getVT() == VT)
1893    return true;
1894
1895  // Handle the case when VT is iPTR.
1896  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1897}
1898
1899LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1900CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1901             SDValue N) {
1902  int64_t Val = MatcherTable[MatcherIndex++];
1903  if (Val & 128)
1904    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1905
1906  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1907  return C != 0 && C->getSExtValue() == Val;
1908}
1909
1910LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1911CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1912            SDValue N, SelectionDAGISel &SDISel) {
1913  int64_t Val = MatcherTable[MatcherIndex++];
1914  if (Val & 128)
1915    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1916
1917  if (N->getOpcode() != ISD::AND) return false;
1918
1919  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1920  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1921}
1922
1923LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1924CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1925           SDValue N, SelectionDAGISel &SDISel) {
1926  int64_t Val = MatcherTable[MatcherIndex++];
1927  if (Val & 128)
1928    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1929
1930  if (N->getOpcode() != ISD::OR) return false;
1931
1932  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1933  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1934}
1935
1936/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1937/// scope, evaluate the current node.  If the current predicate is known to
1938/// fail, set Result=true and return anything.  If the current predicate is
1939/// known to pass, set Result=false and return the MatcherIndex to continue
1940/// with.  If the current predicate is unknown, set Result=false and return the
1941/// MatcherIndex to continue with.
1942static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1943                                       unsigned Index, SDValue N,
1944                                       bool &Result, SelectionDAGISel &SDISel,
1945                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1946  switch (Table[Index++]) {
1947  default:
1948    Result = false;
1949    return Index-1;  // Could not evaluate this predicate.
1950  case SelectionDAGISel::OPC_CheckSame:
1951    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1952    return Index;
1953  case SelectionDAGISel::OPC_CheckPatternPredicate:
1954    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1955    return Index;
1956  case SelectionDAGISel::OPC_CheckPredicate:
1957    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1958    return Index;
1959  case SelectionDAGISel::OPC_CheckOpcode:
1960    Result = !::CheckOpcode(Table, Index, N.getNode());
1961    return Index;
1962  case SelectionDAGISel::OPC_CheckType:
1963    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1964    return Index;
1965  case SelectionDAGISel::OPC_CheckChild0Type:
1966  case SelectionDAGISel::OPC_CheckChild1Type:
1967  case SelectionDAGISel::OPC_CheckChild2Type:
1968  case SelectionDAGISel::OPC_CheckChild3Type:
1969  case SelectionDAGISel::OPC_CheckChild4Type:
1970  case SelectionDAGISel::OPC_CheckChild5Type:
1971  case SelectionDAGISel::OPC_CheckChild6Type:
1972  case SelectionDAGISel::OPC_CheckChild7Type:
1973    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1974                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1975    return Index;
1976  case SelectionDAGISel::OPC_CheckCondCode:
1977    Result = !::CheckCondCode(Table, Index, N);
1978    return Index;
1979  case SelectionDAGISel::OPC_CheckValueType:
1980    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1981    return Index;
1982  case SelectionDAGISel::OPC_CheckInteger:
1983    Result = !::CheckInteger(Table, Index, N);
1984    return Index;
1985  case SelectionDAGISel::OPC_CheckAndImm:
1986    Result = !::CheckAndImm(Table, Index, N, SDISel);
1987    return Index;
1988  case SelectionDAGISel::OPC_CheckOrImm:
1989    Result = !::CheckOrImm(Table, Index, N, SDISel);
1990    return Index;
1991  }
1992}
1993
1994namespace {
1995
1996struct MatchScope {
1997  /// FailIndex - If this match fails, this is the index to continue with.
1998  unsigned FailIndex;
1999
2000  /// NodeStack - The node stack when the scope was formed.
2001  SmallVector<SDValue, 4> NodeStack;
2002
2003  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2004  unsigned NumRecordedNodes;
2005
2006  /// NumMatchedMemRefs - The number of matched memref entries.
2007  unsigned NumMatchedMemRefs;
2008
2009  /// InputChain/InputGlue - The current chain/glue
2010  SDValue InputChain, InputGlue;
2011
2012  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2013  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2014};
2015
2016}
2017
2018SDNode *SelectionDAGISel::
2019SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2020                 unsigned TableSize) {
2021  // FIXME: Should these even be selected?  Handle these cases in the caller?
2022  switch (NodeToMatch->getOpcode()) {
2023  default:
2024    break;
2025  case ISD::EntryToken:       // These nodes remain the same.
2026  case ISD::BasicBlock:
2027  case ISD::Register:
2028  //case ISD::VALUETYPE:
2029  //case ISD::CONDCODE:
2030  case ISD::HANDLENODE:
2031  case ISD::MDNODE_SDNODE:
2032  case ISD::TargetConstant:
2033  case ISD::TargetConstantFP:
2034  case ISD::TargetConstantPool:
2035  case ISD::TargetFrameIndex:
2036  case ISD::TargetExternalSymbol:
2037  case ISD::TargetBlockAddress:
2038  case ISD::TargetJumpTable:
2039  case ISD::TargetGlobalTLSAddress:
2040  case ISD::TargetGlobalAddress:
2041  case ISD::TokenFactor:
2042  case ISD::CopyFromReg:
2043  case ISD::CopyToReg:
2044  case ISD::EH_LABEL:
2045    NodeToMatch->setNodeId(-1); // Mark selected.
2046    return 0;
2047  case ISD::AssertSext:
2048  case ISD::AssertZext:
2049    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2050                                      NodeToMatch->getOperand(0));
2051    return 0;
2052  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2053  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2054  }
2055
2056  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2057
2058  // Set up the node stack with NodeToMatch as the only node on the stack.
2059  SmallVector<SDValue, 8> NodeStack;
2060  SDValue N = SDValue(NodeToMatch, 0);
2061  NodeStack.push_back(N);
2062
2063  // MatchScopes - Scopes used when matching, if a match failure happens, this
2064  // indicates where to continue checking.
2065  SmallVector<MatchScope, 8> MatchScopes;
2066
2067  // RecordedNodes - This is the set of nodes that have been recorded by the
2068  // state machine.  The second value is the parent of the node, or null if the
2069  // root is recorded.
2070  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2071
2072  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2073  // pattern.
2074  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2075
2076  // These are the current input chain and glue for use when generating nodes.
2077  // Various Emit operations change these.  For example, emitting a copytoreg
2078  // uses and updates these.
2079  SDValue InputChain, InputGlue;
2080
2081  // ChainNodesMatched - If a pattern matches nodes that have input/output
2082  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2083  // which ones they are.  The result is captured into this list so that we can
2084  // update the chain results when the pattern is complete.
2085  SmallVector<SDNode*, 3> ChainNodesMatched;
2086  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2087
2088  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2089        NodeToMatch->dump(CurDAG);
2090        errs() << '\n');
2091
2092  // Determine where to start the interpreter.  Normally we start at opcode #0,
2093  // but if the state machine starts with an OPC_SwitchOpcode, then we
2094  // accelerate the first lookup (which is guaranteed to be hot) with the
2095  // OpcodeOffset table.
2096  unsigned MatcherIndex = 0;
2097
2098  if (!OpcodeOffset.empty()) {
2099    // Already computed the OpcodeOffset table, just index into it.
2100    if (N.getOpcode() < OpcodeOffset.size())
2101      MatcherIndex = OpcodeOffset[N.getOpcode()];
2102    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2103
2104  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2105    // Otherwise, the table isn't computed, but the state machine does start
2106    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2107    // is the first time we're selecting an instruction.
2108    unsigned Idx = 1;
2109    while (1) {
2110      // Get the size of this case.
2111      unsigned CaseSize = MatcherTable[Idx++];
2112      if (CaseSize & 128)
2113        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2114      if (CaseSize == 0) break;
2115
2116      // Get the opcode, add the index to the table.
2117      uint16_t Opc = MatcherTable[Idx++];
2118      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2119      if (Opc >= OpcodeOffset.size())
2120        OpcodeOffset.resize((Opc+1)*2);
2121      OpcodeOffset[Opc] = Idx;
2122      Idx += CaseSize;
2123    }
2124
2125    // Okay, do the lookup for the first opcode.
2126    if (N.getOpcode() < OpcodeOffset.size())
2127      MatcherIndex = OpcodeOffset[N.getOpcode()];
2128  }
2129
2130  while (1) {
2131    assert(MatcherIndex < TableSize && "Invalid index");
2132#ifndef NDEBUG
2133    unsigned CurrentOpcodeIndex = MatcherIndex;
2134#endif
2135    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2136    switch (Opcode) {
2137    case OPC_Scope: {
2138      // Okay, the semantics of this operation are that we should push a scope
2139      // then evaluate the first child.  However, pushing a scope only to have
2140      // the first check fail (which then pops it) is inefficient.  If we can
2141      // determine immediately that the first check (or first several) will
2142      // immediately fail, don't even bother pushing a scope for them.
2143      unsigned FailIndex;
2144
2145      while (1) {
2146        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2147        if (NumToSkip & 128)
2148          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2149        // Found the end of the scope with no match.
2150        if (NumToSkip == 0) {
2151          FailIndex = 0;
2152          break;
2153        }
2154
2155        FailIndex = MatcherIndex+NumToSkip;
2156
2157        unsigned MatcherIndexOfPredicate = MatcherIndex;
2158        (void)MatcherIndexOfPredicate; // silence warning.
2159
2160        // If we can't evaluate this predicate without pushing a scope (e.g. if
2161        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2162        // push the scope and evaluate the full predicate chain.
2163        bool Result;
2164        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2165                                              Result, *this, RecordedNodes);
2166        if (!Result)
2167          break;
2168
2169        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2170                     << "index " << MatcherIndexOfPredicate
2171                     << ", continuing at " << FailIndex << "\n");
2172        ++NumDAGIselRetries;
2173
2174        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2175        // move to the next case.
2176        MatcherIndex = FailIndex;
2177      }
2178
2179      // If the whole scope failed to match, bail.
2180      if (FailIndex == 0) break;
2181
2182      // Push a MatchScope which indicates where to go if the first child fails
2183      // to match.
2184      MatchScope NewEntry;
2185      NewEntry.FailIndex = FailIndex;
2186      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2187      NewEntry.NumRecordedNodes = RecordedNodes.size();
2188      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2189      NewEntry.InputChain = InputChain;
2190      NewEntry.InputGlue = InputGlue;
2191      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2192      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2193      MatchScopes.push_back(NewEntry);
2194      continue;
2195    }
2196    case OPC_RecordNode: {
2197      // Remember this node, it may end up being an operand in the pattern.
2198      SDNode *Parent = 0;
2199      if (NodeStack.size() > 1)
2200        Parent = NodeStack[NodeStack.size()-2].getNode();
2201      RecordedNodes.push_back(std::make_pair(N, Parent));
2202      continue;
2203    }
2204
2205    case OPC_RecordChild0: case OPC_RecordChild1:
2206    case OPC_RecordChild2: case OPC_RecordChild3:
2207    case OPC_RecordChild4: case OPC_RecordChild5:
2208    case OPC_RecordChild6: case OPC_RecordChild7: {
2209      unsigned ChildNo = Opcode-OPC_RecordChild0;
2210      if (ChildNo >= N.getNumOperands())
2211        break;  // Match fails if out of range child #.
2212
2213      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2214                                             N.getNode()));
2215      continue;
2216    }
2217    case OPC_RecordMemRef:
2218      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2219      continue;
2220
2221    case OPC_CaptureGlueInput:
2222      // If the current node has an input glue, capture it in InputGlue.
2223      if (N->getNumOperands() != 0 &&
2224          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2225        InputGlue = N->getOperand(N->getNumOperands()-1);
2226      continue;
2227
2228    case OPC_MoveChild: {
2229      unsigned ChildNo = MatcherTable[MatcherIndex++];
2230      if (ChildNo >= N.getNumOperands())
2231        break;  // Match fails if out of range child #.
2232      N = N.getOperand(ChildNo);
2233      NodeStack.push_back(N);
2234      continue;
2235    }
2236
2237    case OPC_MoveParent:
2238      // Pop the current node off the NodeStack.
2239      NodeStack.pop_back();
2240      assert(!NodeStack.empty() && "Node stack imbalance!");
2241      N = NodeStack.back();
2242      continue;
2243
2244    case OPC_CheckSame:
2245      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2246      continue;
2247    case OPC_CheckPatternPredicate:
2248      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2249      continue;
2250    case OPC_CheckPredicate:
2251      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2252                                N.getNode()))
2253        break;
2254      continue;
2255    case OPC_CheckComplexPat: {
2256      unsigned CPNum = MatcherTable[MatcherIndex++];
2257      unsigned RecNo = MatcherTable[MatcherIndex++];
2258      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2259      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2260                               RecordedNodes[RecNo].first, CPNum,
2261                               RecordedNodes))
2262        break;
2263      continue;
2264    }
2265    case OPC_CheckOpcode:
2266      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2267      continue;
2268
2269    case OPC_CheckType:
2270      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2271      continue;
2272
2273    case OPC_SwitchOpcode: {
2274      unsigned CurNodeOpcode = N.getOpcode();
2275      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2276      unsigned CaseSize;
2277      while (1) {
2278        // Get the size of this case.
2279        CaseSize = MatcherTable[MatcherIndex++];
2280        if (CaseSize & 128)
2281          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2282        if (CaseSize == 0) break;
2283
2284        uint16_t Opc = MatcherTable[MatcherIndex++];
2285        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2286
2287        // If the opcode matches, then we will execute this case.
2288        if (CurNodeOpcode == Opc)
2289          break;
2290
2291        // Otherwise, skip over this case.
2292        MatcherIndex += CaseSize;
2293      }
2294
2295      // If no cases matched, bail out.
2296      if (CaseSize == 0) break;
2297
2298      // Otherwise, execute the case we found.
2299      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2300                   << " to " << MatcherIndex << "\n");
2301      continue;
2302    }
2303
2304    case OPC_SwitchType: {
2305      MVT CurNodeVT = N.getValueType().getSimpleVT();
2306      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2307      unsigned CaseSize;
2308      while (1) {
2309        // Get the size of this case.
2310        CaseSize = MatcherTable[MatcherIndex++];
2311        if (CaseSize & 128)
2312          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2313        if (CaseSize == 0) break;
2314
2315        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2316        if (CaseVT == MVT::iPTR)
2317          CaseVT = TLI.getPointerTy();
2318
2319        // If the VT matches, then we will execute this case.
2320        if (CurNodeVT == CaseVT)
2321          break;
2322
2323        // Otherwise, skip over this case.
2324        MatcherIndex += CaseSize;
2325      }
2326
2327      // If no cases matched, bail out.
2328      if (CaseSize == 0) break;
2329
2330      // Otherwise, execute the case we found.
2331      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2332                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2333      continue;
2334    }
2335    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2336    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2337    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2338    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2339      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2340                            Opcode-OPC_CheckChild0Type))
2341        break;
2342      continue;
2343    case OPC_CheckCondCode:
2344      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2345      continue;
2346    case OPC_CheckValueType:
2347      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2348      continue;
2349    case OPC_CheckInteger:
2350      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2351      continue;
2352    case OPC_CheckAndImm:
2353      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2354      continue;
2355    case OPC_CheckOrImm:
2356      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2357      continue;
2358
2359    case OPC_CheckFoldableChainNode: {
2360      assert(NodeStack.size() != 1 && "No parent node");
2361      // Verify that all intermediate nodes between the root and this one have
2362      // a single use.
2363      bool HasMultipleUses = false;
2364      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2365        if (!NodeStack[i].hasOneUse()) {
2366          HasMultipleUses = true;
2367          break;
2368        }
2369      if (HasMultipleUses) break;
2370
2371      // Check to see that the target thinks this is profitable to fold and that
2372      // we can fold it without inducing cycles in the graph.
2373      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2374                              NodeToMatch) ||
2375          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2376                         NodeToMatch, OptLevel,
2377                         true/*We validate our own chains*/))
2378        break;
2379
2380      continue;
2381    }
2382    case OPC_EmitInteger: {
2383      MVT::SimpleValueType VT =
2384        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2385      int64_t Val = MatcherTable[MatcherIndex++];
2386      if (Val & 128)
2387        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2388      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2389                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2390      continue;
2391    }
2392    case OPC_EmitRegister: {
2393      MVT::SimpleValueType VT =
2394        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2395      unsigned RegNo = MatcherTable[MatcherIndex++];
2396      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2397                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2398      continue;
2399    }
2400    case OPC_EmitRegister2: {
2401      // For targets w/ more than 256 register names, the register enum
2402      // values are stored in two bytes in the matcher table (just like
2403      // opcodes).
2404      MVT::SimpleValueType VT =
2405        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2406      unsigned RegNo = MatcherTable[MatcherIndex++];
2407      RegNo |= MatcherTable[MatcherIndex++] << 8;
2408      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2409                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2410      continue;
2411    }
2412
2413    case OPC_EmitConvertToTarget:  {
2414      // Convert from IMM/FPIMM to target version.
2415      unsigned RecNo = MatcherTable[MatcherIndex++];
2416      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2417      SDValue Imm = RecordedNodes[RecNo].first;
2418
2419      if (Imm->getOpcode() == ISD::Constant) {
2420        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2421        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2422      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2423        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2424        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2425      }
2426
2427      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2428      continue;
2429    }
2430
2431    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2432    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2433      // These are space-optimized forms of OPC_EmitMergeInputChains.
2434      assert(InputChain.getNode() == 0 &&
2435             "EmitMergeInputChains should be the first chain producing node");
2436      assert(ChainNodesMatched.empty() &&
2437             "Should only have one EmitMergeInputChains per match");
2438
2439      // Read all of the chained nodes.
2440      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2441      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2442      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2443
2444      // FIXME: What if other value results of the node have uses not matched
2445      // by this pattern?
2446      if (ChainNodesMatched.back() != NodeToMatch &&
2447          !RecordedNodes[RecNo].first.hasOneUse()) {
2448        ChainNodesMatched.clear();
2449        break;
2450      }
2451
2452      // Merge the input chains if they are not intra-pattern references.
2453      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2454
2455      if (InputChain.getNode() == 0)
2456        break;  // Failed to merge.
2457      continue;
2458    }
2459
2460    case OPC_EmitMergeInputChains: {
2461      assert(InputChain.getNode() == 0 &&
2462             "EmitMergeInputChains should be the first chain producing node");
2463      // This node gets a list of nodes we matched in the input that have
2464      // chains.  We want to token factor all of the input chains to these nodes
2465      // together.  However, if any of the input chains is actually one of the
2466      // nodes matched in this pattern, then we have an intra-match reference.
2467      // Ignore these because the newly token factored chain should not refer to
2468      // the old nodes.
2469      unsigned NumChains = MatcherTable[MatcherIndex++];
2470      assert(NumChains != 0 && "Can't TF zero chains");
2471
2472      assert(ChainNodesMatched.empty() &&
2473             "Should only have one EmitMergeInputChains per match");
2474
2475      // Read all of the chained nodes.
2476      for (unsigned i = 0; i != NumChains; ++i) {
2477        unsigned RecNo = MatcherTable[MatcherIndex++];
2478        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2479        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2480
2481        // FIXME: What if other value results of the node have uses not matched
2482        // by this pattern?
2483        if (ChainNodesMatched.back() != NodeToMatch &&
2484            !RecordedNodes[RecNo].first.hasOneUse()) {
2485          ChainNodesMatched.clear();
2486          break;
2487        }
2488      }
2489
2490      // If the inner loop broke out, the match fails.
2491      if (ChainNodesMatched.empty())
2492        break;
2493
2494      // Merge the input chains if they are not intra-pattern references.
2495      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2496
2497      if (InputChain.getNode() == 0)
2498        break;  // Failed to merge.
2499
2500      continue;
2501    }
2502
2503    case OPC_EmitCopyToReg: {
2504      unsigned RecNo = MatcherTable[MatcherIndex++];
2505      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2506      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2507
2508      if (InputChain.getNode() == 0)
2509        InputChain = CurDAG->getEntryNode();
2510
2511      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2512                                        DestPhysReg, RecordedNodes[RecNo].first,
2513                                        InputGlue);
2514
2515      InputGlue = InputChain.getValue(1);
2516      continue;
2517    }
2518
2519    case OPC_EmitNodeXForm: {
2520      unsigned XFormNo = MatcherTable[MatcherIndex++];
2521      unsigned RecNo = MatcherTable[MatcherIndex++];
2522      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2523      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2524      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2525      continue;
2526    }
2527
2528    case OPC_EmitNode:
2529    case OPC_MorphNodeTo: {
2530      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2531      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2532      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2533      // Get the result VT list.
2534      unsigned NumVTs = MatcherTable[MatcherIndex++];
2535      SmallVector<EVT, 4> VTs;
2536      for (unsigned i = 0; i != NumVTs; ++i) {
2537        MVT::SimpleValueType VT =
2538          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2539        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2540        VTs.push_back(VT);
2541      }
2542
2543      if (EmitNodeInfo & OPFL_Chain)
2544        VTs.push_back(MVT::Other);
2545      if (EmitNodeInfo & OPFL_GlueOutput)
2546        VTs.push_back(MVT::Glue);
2547
2548      // This is hot code, so optimize the two most common cases of 1 and 2
2549      // results.
2550      SDVTList VTList;
2551      if (VTs.size() == 1)
2552        VTList = CurDAG->getVTList(VTs[0]);
2553      else if (VTs.size() == 2)
2554        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2555      else
2556        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2557
2558      // Get the operand list.
2559      unsigned NumOps = MatcherTable[MatcherIndex++];
2560      SmallVector<SDValue, 8> Ops;
2561      for (unsigned i = 0; i != NumOps; ++i) {
2562        unsigned RecNo = MatcherTable[MatcherIndex++];
2563        if (RecNo & 128)
2564          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2565
2566        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2567        Ops.push_back(RecordedNodes[RecNo].first);
2568      }
2569
2570      // If there are variadic operands to add, handle them now.
2571      if (EmitNodeInfo & OPFL_VariadicInfo) {
2572        // Determine the start index to copy from.
2573        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2574        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2575        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2576               "Invalid variadic node");
2577        // Copy all of the variadic operands, not including a potential glue
2578        // input.
2579        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2580             i != e; ++i) {
2581          SDValue V = NodeToMatch->getOperand(i);
2582          if (V.getValueType() == MVT::Glue) break;
2583          Ops.push_back(V);
2584        }
2585      }
2586
2587      // If this has chain/glue inputs, add them.
2588      if (EmitNodeInfo & OPFL_Chain)
2589        Ops.push_back(InputChain);
2590      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2591        Ops.push_back(InputGlue);
2592
2593      // Create the node.
2594      SDNode *Res = 0;
2595      if (Opcode != OPC_MorphNodeTo) {
2596        // If this is a normal EmitNode command, just create the new node and
2597        // add the results to the RecordedNodes list.
2598        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2599                                     VTList, Ops.data(), Ops.size());
2600
2601        // Add all the non-glue/non-chain results to the RecordedNodes list.
2602        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2603          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2604          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2605                                                             (SDNode*) 0));
2606        }
2607
2608      } else {
2609        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2610                        EmitNodeInfo);
2611      }
2612
2613      // If the node had chain/glue results, update our notion of the current
2614      // chain and glue.
2615      if (EmitNodeInfo & OPFL_GlueOutput) {
2616        InputGlue = SDValue(Res, VTs.size()-1);
2617        if (EmitNodeInfo & OPFL_Chain)
2618          InputChain = SDValue(Res, VTs.size()-2);
2619      } else if (EmitNodeInfo & OPFL_Chain)
2620        InputChain = SDValue(Res, VTs.size()-1);
2621
2622      // If the OPFL_MemRefs glue is set on this node, slap all of the
2623      // accumulated memrefs onto it.
2624      //
2625      // FIXME: This is vastly incorrect for patterns with multiple outputs
2626      // instructions that access memory and for ComplexPatterns that match
2627      // loads.
2628      if (EmitNodeInfo & OPFL_MemRefs) {
2629        // Only attach load or store memory operands if the generated
2630        // instruction may load or store.
2631        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2632        bool mayLoad = MCID.mayLoad();
2633        bool mayStore = MCID.mayStore();
2634
2635        unsigned NumMemRefs = 0;
2636        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2637             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2638          if ((*I)->isLoad()) {
2639            if (mayLoad)
2640              ++NumMemRefs;
2641          } else if ((*I)->isStore()) {
2642            if (mayStore)
2643              ++NumMemRefs;
2644          } else {
2645            ++NumMemRefs;
2646          }
2647        }
2648
2649        MachineSDNode::mmo_iterator MemRefs =
2650          MF->allocateMemRefsArray(NumMemRefs);
2651
2652        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2653        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2654             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2655          if ((*I)->isLoad()) {
2656            if (mayLoad)
2657              *MemRefsPos++ = *I;
2658          } else if ((*I)->isStore()) {
2659            if (mayStore)
2660              *MemRefsPos++ = *I;
2661          } else {
2662            *MemRefsPos++ = *I;
2663          }
2664        }
2665
2666        cast<MachineSDNode>(Res)
2667          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2668      }
2669
2670      DEBUG(errs() << "  "
2671                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2672                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2673
2674      // If this was a MorphNodeTo then we're completely done!
2675      if (Opcode == OPC_MorphNodeTo) {
2676        // Update chain and glue uses.
2677        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2678                            InputGlue, GlueResultNodesMatched, true);
2679        return Res;
2680      }
2681
2682      continue;
2683    }
2684
2685    case OPC_MarkGlueResults: {
2686      unsigned NumNodes = MatcherTable[MatcherIndex++];
2687
2688      // Read and remember all the glue-result nodes.
2689      for (unsigned i = 0; i != NumNodes; ++i) {
2690        unsigned RecNo = MatcherTable[MatcherIndex++];
2691        if (RecNo & 128)
2692          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2693
2694        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2695        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2696      }
2697      continue;
2698    }
2699
2700    case OPC_CompleteMatch: {
2701      // The match has been completed, and any new nodes (if any) have been
2702      // created.  Patch up references to the matched dag to use the newly
2703      // created nodes.
2704      unsigned NumResults = MatcherTable[MatcherIndex++];
2705
2706      for (unsigned i = 0; i != NumResults; ++i) {
2707        unsigned ResSlot = MatcherTable[MatcherIndex++];
2708        if (ResSlot & 128)
2709          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2710
2711        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2712        SDValue Res = RecordedNodes[ResSlot].first;
2713
2714        assert(i < NodeToMatch->getNumValues() &&
2715               NodeToMatch->getValueType(i) != MVT::Other &&
2716               NodeToMatch->getValueType(i) != MVT::Glue &&
2717               "Invalid number of results to complete!");
2718        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2719                NodeToMatch->getValueType(i) == MVT::iPTR ||
2720                Res.getValueType() == MVT::iPTR ||
2721                NodeToMatch->getValueType(i).getSizeInBits() ==
2722                    Res.getValueType().getSizeInBits()) &&
2723               "invalid replacement");
2724        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2725      }
2726
2727      // If the root node defines glue, add it to the glue nodes to update list.
2728      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2729        GlueResultNodesMatched.push_back(NodeToMatch);
2730
2731      // Update chain and glue uses.
2732      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2733                          InputGlue, GlueResultNodesMatched, false);
2734
2735      assert(NodeToMatch->use_empty() &&
2736             "Didn't replace all uses of the node?");
2737
2738      // FIXME: We just return here, which interacts correctly with SelectRoot
2739      // above.  We should fix this to not return an SDNode* anymore.
2740      return 0;
2741    }
2742    }
2743
2744    // If the code reached this point, then the match failed.  See if there is
2745    // another child to try in the current 'Scope', otherwise pop it until we
2746    // find a case to check.
2747    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2748    ++NumDAGIselRetries;
2749    while (1) {
2750      if (MatchScopes.empty()) {
2751        CannotYetSelect(NodeToMatch);
2752        return 0;
2753      }
2754
2755      // Restore the interpreter state back to the point where the scope was
2756      // formed.
2757      MatchScope &LastScope = MatchScopes.back();
2758      RecordedNodes.resize(LastScope.NumRecordedNodes);
2759      NodeStack.clear();
2760      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2761      N = NodeStack.back();
2762
2763      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2764        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2765      MatcherIndex = LastScope.FailIndex;
2766
2767      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2768
2769      InputChain = LastScope.InputChain;
2770      InputGlue = LastScope.InputGlue;
2771      if (!LastScope.HasChainNodesMatched)
2772        ChainNodesMatched.clear();
2773      if (!LastScope.HasGlueResultNodesMatched)
2774        GlueResultNodesMatched.clear();
2775
2776      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2777      // we have reached the end of this scope, otherwise we have another child
2778      // in the current scope to try.
2779      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2780      if (NumToSkip & 128)
2781        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2782
2783      // If we have another child in this scope to match, update FailIndex and
2784      // try it.
2785      if (NumToSkip != 0) {
2786        LastScope.FailIndex = MatcherIndex+NumToSkip;
2787        break;
2788      }
2789
2790      // End of this scope, pop it and try the next child in the containing
2791      // scope.
2792      MatchScopes.pop_back();
2793    }
2794  }
2795}
2796
2797
2798
2799void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2800  std::string msg;
2801  raw_string_ostream Msg(msg);
2802  Msg << "Cannot select: ";
2803
2804  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2805      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2806      N->getOpcode() != ISD::INTRINSIC_VOID) {
2807    N->printrFull(Msg, CurDAG);
2808  } else {
2809    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2810    unsigned iid =
2811      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2812    if (iid < Intrinsic::num_intrinsics)
2813      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2814    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2815      Msg << "target intrinsic %" << TII->getName(iid);
2816    else
2817      Msg << "unknown intrinsic #" << iid;
2818  }
2819  report_fatal_error(Msg.str());
2820}
2821
2822char SelectionDAGISel::ID = 0;
2823