SelectionDAGISel.cpp revision 31ddf4c7cd7e66064d2bac0de8d4aa4f883ef1a8
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/Timer.h"
49#include <algorithm>
50using namespace llvm;
51
52static cl::opt<bool>
53EnableValueProp("enable-value-prop", cl::Hidden);
54static cl::opt<bool>
55EnableLegalizeTypes("enable-legalize-types", cl::Hidden);
56
57
58#ifndef NDEBUG
59static cl::opt<bool>
60ViewISelDAGs("view-isel-dags", cl::Hidden,
61          cl::desc("Pop up a window to show isel dags as they are selected"));
62static cl::opt<bool>
63ViewSchedDAGs("view-sched-dags", cl::Hidden,
64          cl::desc("Pop up a window to show sched dags as they are processed"));
65static cl::opt<bool>
66ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
67      cl::desc("Pop up a window to show SUnit dags after they are processed"));
68#else
69static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
70#endif
71
72//===---------------------------------------------------------------------===//
73///
74/// RegisterScheduler class - Track the registration of instruction schedulers.
75///
76//===---------------------------------------------------------------------===//
77MachinePassRegistry RegisterScheduler::Registry;
78
79//===---------------------------------------------------------------------===//
80///
81/// ISHeuristic command line option for instruction schedulers.
82///
83//===---------------------------------------------------------------------===//
84static cl::opt<RegisterScheduler::FunctionPassCtor, false,
85               RegisterPassParser<RegisterScheduler> >
86ISHeuristic("pre-RA-sched",
87            cl::init(&createDefaultScheduler),
88            cl::desc("Instruction schedulers available (before register"
89                     " allocation):"));
90
91static RegisterScheduler
92defaultListDAGScheduler("default", "  Best scheduler for the target",
93                        createDefaultScheduler);
94
95namespace { struct SDISelAsmOperandInfo; }
96
97/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
98/// insertvalue or extractvalue indices that identify a member, return
99/// the linearized index of the start of the member.
100///
101static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
102                                   const unsigned *Indices,
103                                   const unsigned *IndicesEnd,
104                                   unsigned CurIndex = 0) {
105  // Base case: We're done.
106  if (Indices && Indices == IndicesEnd)
107    return CurIndex;
108
109  // Given a struct type, recursively traverse the elements.
110  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
111    for (StructType::element_iterator EB = STy->element_begin(),
112                                      EI = EB,
113                                      EE = STy->element_end();
114        EI != EE; ++EI) {
115      if (Indices && *Indices == unsigned(EI - EB))
116        return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
117      CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
118    }
119  }
120  // Given an array type, recursively traverse the elements.
121  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
122    const Type *EltTy = ATy->getElementType();
123    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
124      if (Indices && *Indices == i)
125        return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
126      CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
127    }
128  }
129  // We haven't found the type we're looking for, so keep searching.
130  return CurIndex + 1;
131}
132
133/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
134/// MVTs that represent all the individual underlying
135/// non-aggregate types that comprise it.
136///
137/// If Offsets is non-null, it points to a vector to be filled in
138/// with the in-memory offsets of each of the individual values.
139///
140static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
141                            SmallVectorImpl<MVT> &ValueVTs,
142                            SmallVectorImpl<uint64_t> *Offsets = 0,
143                            uint64_t StartingOffset = 0) {
144  // Given a struct type, recursively traverse the elements.
145  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
146    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
147    for (StructType::element_iterator EB = STy->element_begin(),
148                                      EI = EB,
149                                      EE = STy->element_end();
150         EI != EE; ++EI)
151      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
152                      StartingOffset + SL->getElementOffset(EI - EB));
153    return;
154  }
155  // Given an array type, recursively traverse the elements.
156  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
157    const Type *EltTy = ATy->getElementType();
158    uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
159    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
160      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
161                      StartingOffset + i * EltSize);
162    return;
163  }
164  // Base case: we can get an MVT for this LLVM IR type.
165  ValueVTs.push_back(TLI.getValueType(Ty));
166  if (Offsets)
167    Offsets->push_back(StartingOffset);
168}
169
170namespace {
171  /// RegsForValue - This struct represents the registers (physical or virtual)
172  /// that a particular set of values is assigned, and the type information about
173  /// the value. The most common situation is to represent one value at a time,
174  /// but struct or array values are handled element-wise as multiple values.
175  /// The splitting of aggregates is performed recursively, so that we never
176  /// have aggregate-typed registers. The values at this point do not necessarily
177  /// have legal types, so each value may require one or more registers of some
178  /// legal type.
179  ///
180  struct VISIBILITY_HIDDEN RegsForValue {
181    /// TLI - The TargetLowering object.
182    ///
183    const TargetLowering *TLI;
184
185    /// ValueVTs - The value types of the values, which may not be legal, and
186    /// may need be promoted or synthesized from one or more registers.
187    ///
188    SmallVector<MVT, 4> ValueVTs;
189
190    /// RegVTs - The value types of the registers. This is the same size as
191    /// ValueVTs and it records, for each value, what the type of the assigned
192    /// register or registers are. (Individual values are never synthesized
193    /// from more than one type of register.)
194    ///
195    /// With virtual registers, the contents of RegVTs is redundant with TLI's
196    /// getRegisterType member function, however when with physical registers
197    /// it is necessary to have a separate record of the types.
198    ///
199    SmallVector<MVT, 4> RegVTs;
200
201    /// Regs - This list holds the registers assigned to the values.
202    /// Each legal or promoted value requires one register, and each
203    /// expanded value requires multiple registers.
204    ///
205    SmallVector<unsigned, 4> Regs;
206
207    RegsForValue() : TLI(0) {}
208
209    RegsForValue(const TargetLowering &tli,
210                 const SmallVector<unsigned, 4> &regs,
211                 MVT regvt, MVT valuevt)
212      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
213    RegsForValue(const TargetLowering &tli,
214                 const SmallVector<unsigned, 4> &regs,
215                 const SmallVector<MVT, 4> &regvts,
216                 const SmallVector<MVT, 4> &valuevts)
217      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
218    RegsForValue(const TargetLowering &tli,
219                 unsigned Reg, const Type *Ty) : TLI(&tli) {
220      ComputeValueVTs(tli, Ty, ValueVTs);
221
222      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
223        MVT ValueVT = ValueVTs[Value];
224        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
225        MVT RegisterVT = TLI->getRegisterType(ValueVT);
226        for (unsigned i = 0; i != NumRegs; ++i)
227          Regs.push_back(Reg + i);
228        RegVTs.push_back(RegisterVT);
229        Reg += NumRegs;
230      }
231    }
232
233    /// append - Add the specified values to this one.
234    void append(const RegsForValue &RHS) {
235      TLI = RHS.TLI;
236      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
237      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
238      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
239    }
240
241
242    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
243    /// this value and returns the result as a ValueVTs value.  This uses
244    /// Chain/Flag as the input and updates them for the output Chain/Flag.
245    /// If the Flag pointer is NULL, no flag is used.
246    SDOperand getCopyFromRegs(SelectionDAG &DAG,
247                              SDOperand &Chain, SDOperand *Flag) const;
248
249    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
250    /// specified value into the registers specified by this object.  This uses
251    /// Chain/Flag as the input and updates them for the output Chain/Flag.
252    /// If the Flag pointer is NULL, no flag is used.
253    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
254                       SDOperand &Chain, SDOperand *Flag) const;
255
256    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
257    /// operand list.  This adds the code marker and includes the number of
258    /// values added into it.
259    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
260                              std::vector<SDOperand> &Ops) const;
261  };
262}
263
264namespace llvm {
265  //===--------------------------------------------------------------------===//
266  /// createDefaultScheduler - This creates an instruction scheduler appropriate
267  /// for the target.
268  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
269                                      SelectionDAG *DAG,
270                                      MachineBasicBlock *BB,
271                                      bool Fast) {
272    TargetLowering &TLI = IS->getTargetLowering();
273
274    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
275      return createTDListDAGScheduler(IS, DAG, BB, Fast);
276    } else {
277      assert(TLI.getSchedulingPreference() ==
278           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
279      return createBURRListDAGScheduler(IS, DAG, BB, Fast);
280    }
281  }
282
283
284  //===--------------------------------------------------------------------===//
285  /// FunctionLoweringInfo - This contains information that is global to a
286  /// function that is used when lowering a region of the function.
287  class FunctionLoweringInfo {
288  public:
289    TargetLowering &TLI;
290    Function &Fn;
291    MachineFunction &MF;
292    MachineRegisterInfo &RegInfo;
293
294    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
295
296    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
297    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
298
299    /// ValueMap - Since we emit code for the function a basic block at a time,
300    /// we must remember which virtual registers hold the values for
301    /// cross-basic-block values.
302    DenseMap<const Value*, unsigned> ValueMap;
303
304    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
305    /// the entry block.  This allows the allocas to be efficiently referenced
306    /// anywhere in the function.
307    std::map<const AllocaInst*, int> StaticAllocaMap;
308
309#ifndef NDEBUG
310    SmallSet<Instruction*, 8> CatchInfoLost;
311    SmallSet<Instruction*, 8> CatchInfoFound;
312#endif
313
314    unsigned MakeReg(MVT VT) {
315      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
316    }
317
318    /// isExportedInst - Return true if the specified value is an instruction
319    /// exported from its block.
320    bool isExportedInst(const Value *V) {
321      return ValueMap.count(V);
322    }
323
324    unsigned CreateRegForValue(const Value *V);
325
326    unsigned InitializeRegForValue(const Value *V) {
327      unsigned &R = ValueMap[V];
328      assert(R == 0 && "Already initialized this value register!");
329      return R = CreateRegForValue(V);
330    }
331
332    struct LiveOutInfo {
333      unsigned NumSignBits;
334      APInt KnownOne, KnownZero;
335      LiveOutInfo() : NumSignBits(0) {}
336    };
337
338    /// LiveOutRegInfo - Information about live out vregs, indexed by their
339    /// register number offset by 'FirstVirtualRegister'.
340    std::vector<LiveOutInfo> LiveOutRegInfo;
341  };
342}
343
344/// isSelector - Return true if this instruction is a call to the
345/// eh.selector intrinsic.
346static bool isSelector(Instruction *I) {
347  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
348    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
349            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
350  return false;
351}
352
353/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
354/// PHI nodes or outside of the basic block that defines it, or used by a
355/// switch or atomic instruction, which may expand to multiple basic blocks.
356static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
357  if (isa<PHINode>(I)) return true;
358  BasicBlock *BB = I->getParent();
359  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
360    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
361        // FIXME: Remove switchinst special case.
362        isa<SwitchInst>(*UI))
363      return true;
364  return false;
365}
366
367/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
368/// entry block, return true.  This includes arguments used by switches, since
369/// the switch may expand into multiple basic blocks.
370static bool isOnlyUsedInEntryBlock(Argument *A) {
371  BasicBlock *Entry = A->getParent()->begin();
372  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
373    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
374      return false;  // Use not in entry block.
375  return true;
376}
377
378FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
379                                           Function &fn, MachineFunction &mf)
380    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
381
382  // Create a vreg for each argument register that is not dead and is used
383  // outside of the entry block for the function.
384  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
385       AI != E; ++AI)
386    if (!isOnlyUsedInEntryBlock(AI))
387      InitializeRegForValue(AI);
388
389  // Initialize the mapping of values to registers.  This is only set up for
390  // instruction values that are used outside of the block that defines
391  // them.
392  Function::iterator BB = Fn.begin(), EB = Fn.end();
393  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
394    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
395      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
396        const Type *Ty = AI->getAllocatedType();
397        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
398        unsigned Align =
399          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
400                   AI->getAlignment());
401
402        TySize *= CUI->getZExtValue();   // Get total allocated size.
403        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
404        StaticAllocaMap[AI] =
405          MF.getFrameInfo()->CreateStackObject(TySize, Align);
406      }
407
408  for (; BB != EB; ++BB)
409    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
410      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
411        if (!isa<AllocaInst>(I) ||
412            !StaticAllocaMap.count(cast<AllocaInst>(I)))
413          InitializeRegForValue(I);
414
415  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
416  // also creates the initial PHI MachineInstrs, though none of the input
417  // operands are populated.
418  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
419    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
420    MBBMap[BB] = MBB;
421    MF.push_back(MBB);
422
423    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
424    // appropriate.
425    PHINode *PN;
426    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
427      if (PN->use_empty()) continue;
428
429      MVT VT = TLI.getValueType(PN->getType());
430      unsigned NumRegisters = TLI.getNumRegisters(VT);
431      unsigned PHIReg = ValueMap[PN];
432      assert(PHIReg && "PHI node does not have an assigned virtual register!");
433      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
434      for (unsigned i = 0; i != NumRegisters; ++i)
435        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
436    }
437  }
438}
439
440/// CreateRegForValue - Allocate the appropriate number of virtual registers of
441/// the correctly promoted or expanded types.  Assign these registers
442/// consecutive vreg numbers and return the first assigned number.
443///
444/// In the case that the given value has struct or array type, this function
445/// will assign registers for each member or element.
446///
447unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
448  SmallVector<MVT, 4> ValueVTs;
449  ComputeValueVTs(TLI, V->getType(), ValueVTs);
450
451  unsigned FirstReg = 0;
452  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
453    MVT ValueVT = ValueVTs[Value];
454    MVT RegisterVT = TLI.getRegisterType(ValueVT);
455
456    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
457    for (unsigned i = 0; i != NumRegs; ++i) {
458      unsigned R = MakeReg(RegisterVT);
459      if (!FirstReg) FirstReg = R;
460    }
461  }
462  return FirstReg;
463}
464
465//===----------------------------------------------------------------------===//
466/// SelectionDAGLowering - This is the common target-independent lowering
467/// implementation that is parameterized by a TargetLowering object.
468/// Also, targets can overload any lowering method.
469///
470namespace llvm {
471class SelectionDAGLowering {
472  MachineBasicBlock *CurMBB;
473
474  DenseMap<const Value*, SDOperand> NodeMap;
475
476  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
477  /// them up and then emit token factor nodes when possible.  This allows us to
478  /// get simple disambiguation between loads without worrying about alias
479  /// analysis.
480  SmallVector<SDOperand, 8> PendingLoads;
481
482  /// PendingExports - CopyToReg nodes that copy values to virtual registers
483  /// for export to other blocks need to be emitted before any terminator
484  /// instruction, but they have no other ordering requirements. We bunch them
485  /// up and the emit a single tokenfactor for them just before terminator
486  /// instructions.
487  std::vector<SDOperand> PendingExports;
488
489  /// Case - A struct to record the Value for a switch case, and the
490  /// case's target basic block.
491  struct Case {
492    Constant* Low;
493    Constant* High;
494    MachineBasicBlock* BB;
495
496    Case() : Low(0), High(0), BB(0) { }
497    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
498      Low(low), High(high), BB(bb) { }
499    uint64_t size() const {
500      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
501      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
502      return (rHigh - rLow + 1ULL);
503    }
504  };
505
506  struct CaseBits {
507    uint64_t Mask;
508    MachineBasicBlock* BB;
509    unsigned Bits;
510
511    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
512      Mask(mask), BB(bb), Bits(bits) { }
513  };
514
515  typedef std::vector<Case>           CaseVector;
516  typedef std::vector<CaseBits>       CaseBitsVector;
517  typedef CaseVector::iterator        CaseItr;
518  typedef std::pair<CaseItr, CaseItr> CaseRange;
519
520  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
521  /// of conditional branches.
522  struct CaseRec {
523    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
524    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
525
526    /// CaseBB - The MBB in which to emit the compare and branch
527    MachineBasicBlock *CaseBB;
528    /// LT, GE - If nonzero, we know the current case value must be less-than or
529    /// greater-than-or-equal-to these Constants.
530    Constant *LT;
531    Constant *GE;
532    /// Range - A pair of iterators representing the range of case values to be
533    /// processed at this point in the binary search tree.
534    CaseRange Range;
535  };
536
537  typedef std::vector<CaseRec> CaseRecVector;
538
539  /// The comparison function for sorting the switch case values in the vector.
540  /// WARNING: Case ranges should be disjoint!
541  struct CaseCmp {
542    bool operator () (const Case& C1, const Case& C2) {
543      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
544      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
545      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
546      return CI1->getValue().slt(CI2->getValue());
547    }
548  };
549
550  struct CaseBitsCmp {
551    bool operator () (const CaseBits& C1, const CaseBits& C2) {
552      return C1.Bits > C2.Bits;
553    }
554  };
555
556  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
557
558public:
559  // TLI - This is information that describes the available target features we
560  // need for lowering.  This indicates when operations are unavailable,
561  // implemented with a libcall, etc.
562  TargetLowering &TLI;
563  SelectionDAG &DAG;
564  const TargetData *TD;
565  AliasAnalysis &AA;
566
567  /// SwitchCases - Vector of CaseBlock structures used to communicate
568  /// SwitchInst code generation information.
569  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
570  /// JTCases - Vector of JumpTable structures used to communicate
571  /// SwitchInst code generation information.
572  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
573  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
574
575  /// FuncInfo - Information about the function as a whole.
576  ///
577  FunctionLoweringInfo &FuncInfo;
578
579  /// GCI - Garbage collection metadata for the function.
580  CollectorMetadata *GCI;
581
582  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
583                       AliasAnalysis &aa,
584                       FunctionLoweringInfo &funcinfo,
585                       CollectorMetadata *gci)
586    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
587      FuncInfo(funcinfo), GCI(gci) {
588  }
589
590  /// getRoot - Return the current virtual root of the Selection DAG,
591  /// flushing any PendingLoad items. This must be done before emitting
592  /// a store or any other node that may need to be ordered after any
593  /// prior load instructions.
594  ///
595  SDOperand getRoot() {
596    if (PendingLoads.empty())
597      return DAG.getRoot();
598
599    if (PendingLoads.size() == 1) {
600      SDOperand Root = PendingLoads[0];
601      DAG.setRoot(Root);
602      PendingLoads.clear();
603      return Root;
604    }
605
606    // Otherwise, we have to make a token factor node.
607    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
608                                 &PendingLoads[0], PendingLoads.size());
609    PendingLoads.clear();
610    DAG.setRoot(Root);
611    return Root;
612  }
613
614  /// getControlRoot - Similar to getRoot, but instead of flushing all the
615  /// PendingLoad items, flush all the PendingExports items. It is necessary
616  /// to do this before emitting a terminator instruction.
617  ///
618  SDOperand getControlRoot() {
619    SDOperand Root = DAG.getRoot();
620
621    if (PendingExports.empty())
622      return Root;
623
624    // Turn all of the CopyToReg chains into one factored node.
625    if (Root.getOpcode() != ISD::EntryToken) {
626      unsigned i = 0, e = PendingExports.size();
627      for (; i != e; ++i) {
628        assert(PendingExports[i].Val->getNumOperands() > 1);
629        if (PendingExports[i].Val->getOperand(0) == Root)
630          break;  // Don't add the root if we already indirectly depend on it.
631      }
632
633      if (i == e)
634        PendingExports.push_back(Root);
635    }
636
637    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
638                       &PendingExports[0],
639                       PendingExports.size());
640    PendingExports.clear();
641    DAG.setRoot(Root);
642    return Root;
643  }
644
645  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
646
647  void visit(Instruction &I) { visit(I.getOpcode(), I); }
648
649  void visit(unsigned Opcode, User &I) {
650    // Note: this doesn't use InstVisitor, because it has to work with
651    // ConstantExpr's in addition to instructions.
652    switch (Opcode) {
653    default: assert(0 && "Unknown instruction type encountered!");
654             abort();
655      // Build the switch statement using the Instruction.def file.
656#define HANDLE_INST(NUM, OPCODE, CLASS) \
657    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
658#include "llvm/Instruction.def"
659    }
660  }
661
662  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
663
664  SDOperand getValue(const Value *V);
665
666  void setValue(const Value *V, SDOperand NewN) {
667    SDOperand &N = NodeMap[V];
668    assert(N.Val == 0 && "Already set a value for this node!");
669    N = NewN;
670  }
671
672  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
673                            std::set<unsigned> &OutputRegs,
674                            std::set<unsigned> &InputRegs);
675
676  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
677                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
678                            unsigned Opc);
679  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
680  void ExportFromCurrentBlock(Value *V);
681  void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
682                   MachineBasicBlock *LandingPad = NULL);
683
684  // Terminator instructions.
685  void visitRet(ReturnInst &I);
686  void visitBr(BranchInst &I);
687  void visitSwitch(SwitchInst &I);
688  void visitUnreachable(UnreachableInst &I) { /* noop */ }
689
690  // Helpers for visitSwitch
691  bool handleSmallSwitchRange(CaseRec& CR,
692                              CaseRecVector& WorkList,
693                              Value* SV,
694                              MachineBasicBlock* Default);
695  bool handleJTSwitchCase(CaseRec& CR,
696                          CaseRecVector& WorkList,
697                          Value* SV,
698                          MachineBasicBlock* Default);
699  bool handleBTSplitSwitchCase(CaseRec& CR,
700                               CaseRecVector& WorkList,
701                               Value* SV,
702                               MachineBasicBlock* Default);
703  bool handleBitTestsSwitchCase(CaseRec& CR,
704                                CaseRecVector& WorkList,
705                                Value* SV,
706                                MachineBasicBlock* Default);
707  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
708  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
709  void visitBitTestCase(MachineBasicBlock* NextMBB,
710                        unsigned Reg,
711                        SelectionDAGISel::BitTestCase &B);
712  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
713  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
714                            SelectionDAGISel::JumpTableHeader &JTH);
715
716  // These all get lowered before this pass.
717  void visitInvoke(InvokeInst &I);
718  void visitUnwind(UnwindInst &I);
719
720  void visitBinary(User &I, unsigned OpCode);
721  void visitShift(User &I, unsigned Opcode);
722  void visitAdd(User &I) {
723    if (I.getType()->isFPOrFPVector())
724      visitBinary(I, ISD::FADD);
725    else
726      visitBinary(I, ISD::ADD);
727  }
728  void visitSub(User &I);
729  void visitMul(User &I) {
730    if (I.getType()->isFPOrFPVector())
731      visitBinary(I, ISD::FMUL);
732    else
733      visitBinary(I, ISD::MUL);
734  }
735  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
736  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
737  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
738  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
739  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
740  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
741  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
742  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
743  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
744  void visitShl (User &I) { visitShift(I, ISD::SHL); }
745  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
746  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
747  void visitICmp(User &I);
748  void visitFCmp(User &I);
749  void visitVICmp(User &I);
750  void visitVFCmp(User &I);
751  // Visit the conversion instructions
752  void visitTrunc(User &I);
753  void visitZExt(User &I);
754  void visitSExt(User &I);
755  void visitFPTrunc(User &I);
756  void visitFPExt(User &I);
757  void visitFPToUI(User &I);
758  void visitFPToSI(User &I);
759  void visitUIToFP(User &I);
760  void visitSIToFP(User &I);
761  void visitPtrToInt(User &I);
762  void visitIntToPtr(User &I);
763  void visitBitCast(User &I);
764
765  void visitExtractElement(User &I);
766  void visitInsertElement(User &I);
767  void visitShuffleVector(User &I);
768
769  void visitExtractValue(ExtractValueInst &I);
770  void visitInsertValue(InsertValueInst &I);
771
772  void visitGetElementPtr(User &I);
773  void visitSelect(User &I);
774
775  void visitMalloc(MallocInst &I);
776  void visitFree(FreeInst &I);
777  void visitAlloca(AllocaInst &I);
778  void visitLoad(LoadInst &I);
779  void visitStore(StoreInst &I);
780  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
781  void visitCall(CallInst &I);
782  void visitInlineAsm(CallSite CS);
783  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
784  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
785
786  void visitVAStart(CallInst &I);
787  void visitVAArg(VAArgInst &I);
788  void visitVAEnd(CallInst &I);
789  void visitVACopy(CallInst &I);
790
791  void visitGetResult(GetResultInst &I);
792
793  void visitUserOp1(Instruction &I) {
794    assert(0 && "UserOp1 should not exist at instruction selection time!");
795    abort();
796  }
797  void visitUserOp2(Instruction &I) {
798    assert(0 && "UserOp2 should not exist at instruction selection time!");
799    abort();
800  }
801
802private:
803  inline const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
804
805};
806} // end namespace llvm
807
808
809/// getCopyFromParts - Create a value that contains the specified legal parts
810/// combined into the value they represent.  If the parts combine to a type
811/// larger then ValueVT then AssertOp can be used to specify whether the extra
812/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
813/// (ISD::AssertSext).
814static SDOperand getCopyFromParts(SelectionDAG &DAG,
815                                  const SDOperand *Parts,
816                                  unsigned NumParts,
817                                  MVT PartVT,
818                                  MVT ValueVT,
819                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
820  assert(NumParts > 0 && "No parts to assemble!");
821  TargetLowering &TLI = DAG.getTargetLoweringInfo();
822  SDOperand Val = Parts[0];
823
824  if (NumParts > 1) {
825    // Assemble the value from multiple parts.
826    if (!ValueVT.isVector()) {
827      unsigned PartBits = PartVT.getSizeInBits();
828      unsigned ValueBits = ValueVT.getSizeInBits();
829
830      // Assemble the power of 2 part.
831      unsigned RoundParts = NumParts & (NumParts - 1) ?
832        1 << Log2_32(NumParts) : NumParts;
833      unsigned RoundBits = PartBits * RoundParts;
834      MVT RoundVT = RoundBits == ValueBits ?
835        ValueVT : MVT::getIntegerVT(RoundBits);
836      SDOperand Lo, Hi;
837
838      if (RoundParts > 2) {
839        MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
840        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
841        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
842                              PartVT, HalfVT);
843      } else {
844        Lo = Parts[0];
845        Hi = Parts[1];
846      }
847      if (TLI.isBigEndian())
848        std::swap(Lo, Hi);
849      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
850
851      if (RoundParts < NumParts) {
852        // Assemble the trailing non-power-of-2 part.
853        unsigned OddParts = NumParts - RoundParts;
854        MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
855        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
856
857        // Combine the round and odd parts.
858        Lo = Val;
859        if (TLI.isBigEndian())
860          std::swap(Lo, Hi);
861        MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
862        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
863        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
864                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
865                                         TLI.getShiftAmountTy()));
866        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
867        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
868      }
869    } else {
870      // Handle a multi-element vector.
871      MVT IntermediateVT, RegisterVT;
872      unsigned NumIntermediates;
873      unsigned NumRegs =
874        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
875                                   RegisterVT);
876      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
877      NumParts = NumRegs; // Silence a compiler warning.
878      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
879      assert(RegisterVT == Parts[0].getValueType() &&
880             "Part type doesn't match part!");
881
882      // Assemble the parts into intermediate operands.
883      SmallVector<SDOperand, 8> Ops(NumIntermediates);
884      if (NumIntermediates == NumParts) {
885        // If the register was not expanded, truncate or copy the value,
886        // as appropriate.
887        for (unsigned i = 0; i != NumParts; ++i)
888          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
889                                    PartVT, IntermediateVT);
890      } else if (NumParts > 0) {
891        // If the intermediate type was expanded, build the intermediate operands
892        // from the parts.
893        assert(NumParts % NumIntermediates == 0 &&
894               "Must expand into a divisible number of parts!");
895        unsigned Factor = NumParts / NumIntermediates;
896        for (unsigned i = 0; i != NumIntermediates; ++i)
897          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
898                                    PartVT, IntermediateVT);
899      }
900
901      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
902      // operands.
903      Val = DAG.getNode(IntermediateVT.isVector() ?
904                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
905                        ValueVT, &Ops[0], NumIntermediates);
906    }
907  }
908
909  // There is now one part, held in Val.  Correct it to match ValueVT.
910  PartVT = Val.getValueType();
911
912  if (PartVT == ValueVT)
913    return Val;
914
915  if (PartVT.isVector()) {
916    assert(ValueVT.isVector() && "Unknown vector conversion!");
917    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
918  }
919
920  if (ValueVT.isVector()) {
921    assert(ValueVT.getVectorElementType() == PartVT &&
922           ValueVT.getVectorNumElements() == 1 &&
923           "Only trivial scalar-to-vector conversions should get here!");
924    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
925  }
926
927  if (PartVT.isInteger() &&
928      ValueVT.isInteger()) {
929    if (ValueVT.bitsLT(PartVT)) {
930      // For a truncate, see if we have any information to
931      // indicate whether the truncated bits will always be
932      // zero or sign-extension.
933      if (AssertOp != ISD::DELETED_NODE)
934        Val = DAG.getNode(AssertOp, PartVT, Val,
935                          DAG.getValueType(ValueVT));
936      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
937    } else {
938      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
939    }
940  }
941
942  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
943    if (ValueVT.bitsLT(Val.getValueType()))
944      // FP_ROUND's are always exact here.
945      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
946                         DAG.getIntPtrConstant(1));
947    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
948  }
949
950  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
951    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
952
953  assert(0 && "Unknown mismatch!");
954  return SDOperand();
955}
956
957/// getCopyToParts - Create a series of nodes that contain the specified value
958/// split into legal parts.  If the parts contain more bits than Val, then, for
959/// integers, ExtendKind can be used to specify how to generate the extra bits.
960static void getCopyToParts(SelectionDAG &DAG,
961                           SDOperand Val,
962                           SDOperand *Parts,
963                           unsigned NumParts,
964                           MVT PartVT,
965                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
966  TargetLowering &TLI = DAG.getTargetLoweringInfo();
967  MVT PtrVT = TLI.getPointerTy();
968  MVT ValueVT = Val.getValueType();
969  unsigned PartBits = PartVT.getSizeInBits();
970  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
971
972  if (!NumParts)
973    return;
974
975  if (!ValueVT.isVector()) {
976    if (PartVT == ValueVT) {
977      assert(NumParts == 1 && "No-op copy with multiple parts!");
978      Parts[0] = Val;
979      return;
980    }
981
982    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
983      // If the parts cover more bits than the value has, promote the value.
984      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
985        assert(NumParts == 1 && "Do not know what to promote to!");
986        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
987      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
988        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
989        Val = DAG.getNode(ExtendKind, ValueVT, Val);
990      } else {
991        assert(0 && "Unknown mismatch!");
992      }
993    } else if (PartBits == ValueVT.getSizeInBits()) {
994      // Different types of the same size.
995      assert(NumParts == 1 && PartVT != ValueVT);
996      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
997    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
998      // If the parts cover less bits than value has, truncate the value.
999      if (PartVT.isInteger() && ValueVT.isInteger()) {
1000        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1001        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1002      } else {
1003        assert(0 && "Unknown mismatch!");
1004      }
1005    }
1006
1007    // The value may have changed - recompute ValueVT.
1008    ValueVT = Val.getValueType();
1009    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
1010           "Failed to tile the value with PartVT!");
1011
1012    if (NumParts == 1) {
1013      assert(PartVT == ValueVT && "Type conversion failed!");
1014      Parts[0] = Val;
1015      return;
1016    }
1017
1018    // Expand the value into multiple parts.
1019    if (NumParts & (NumParts - 1)) {
1020      // The number of parts is not a power of 2.  Split off and copy the tail.
1021      assert(PartVT.isInteger() && ValueVT.isInteger() &&
1022             "Do not know what to expand to!");
1023      unsigned RoundParts = 1 << Log2_32(NumParts);
1024      unsigned RoundBits = RoundParts * PartBits;
1025      unsigned OddParts = NumParts - RoundParts;
1026      SDOperand OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
1027                                     DAG.getConstant(RoundBits,
1028                                                     TLI.getShiftAmountTy()));
1029      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
1030      if (TLI.isBigEndian())
1031        // The odd parts were reversed by getCopyToParts - unreverse them.
1032        std::reverse(Parts + RoundParts, Parts + NumParts);
1033      NumParts = RoundParts;
1034      ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1035      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1036    }
1037
1038    // The number of parts is a power of 2.  Repeatedly bisect the value using
1039    // EXTRACT_ELEMENT.
1040    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
1041                           MVT::getIntegerVT(ValueVT.getSizeInBits()),
1042                           Val);
1043    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
1044      for (unsigned i = 0; i < NumParts; i += StepSize) {
1045        unsigned ThisBits = StepSize * PartBits / 2;
1046        MVT ThisVT = MVT::getIntegerVT (ThisBits);
1047        SDOperand &Part0 = Parts[i];
1048        SDOperand &Part1 = Parts[i+StepSize/2];
1049
1050        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1051                            DAG.getConstant(1, PtrVT));
1052        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1053                            DAG.getConstant(0, PtrVT));
1054
1055        if (ThisBits == PartBits && ThisVT != PartVT) {
1056          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
1057          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
1058        }
1059      }
1060    }
1061
1062    if (TLI.isBigEndian())
1063      std::reverse(Parts, Parts + NumParts);
1064
1065    return;
1066  }
1067
1068  // Vector ValueVT.
1069  if (NumParts == 1) {
1070    if (PartVT != ValueVT) {
1071      if (PartVT.isVector()) {
1072        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1073      } else {
1074        assert(ValueVT.getVectorElementType() == PartVT &&
1075               ValueVT.getVectorNumElements() == 1 &&
1076               "Only trivial vector-to-scalar conversions should get here!");
1077        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
1078                          DAG.getConstant(0, PtrVT));
1079      }
1080    }
1081
1082    Parts[0] = Val;
1083    return;
1084  }
1085
1086  // Handle a multi-element vector.
1087  MVT IntermediateVT, RegisterVT;
1088  unsigned NumIntermediates;
1089  unsigned NumRegs =
1090    DAG.getTargetLoweringInfo()
1091      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1092                              RegisterVT);
1093  unsigned NumElements = ValueVT.getVectorNumElements();
1094
1095  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1096  NumParts = NumRegs; // Silence a compiler warning.
1097  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1098
1099  // Split the vector into intermediate operands.
1100  SmallVector<SDOperand, 8> Ops(NumIntermediates);
1101  for (unsigned i = 0; i != NumIntermediates; ++i)
1102    if (IntermediateVT.isVector())
1103      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
1104                           IntermediateVT, Val,
1105                           DAG.getConstant(i * (NumElements / NumIntermediates),
1106                                           PtrVT));
1107    else
1108      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
1109                           IntermediateVT, Val,
1110                           DAG.getConstant(i, PtrVT));
1111
1112  // Split the intermediate operands into legal parts.
1113  if (NumParts == NumIntermediates) {
1114    // If the register was not expanded, promote or copy the value,
1115    // as appropriate.
1116    for (unsigned i = 0; i != NumParts; ++i)
1117      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
1118  } else if (NumParts > 0) {
1119    // If the intermediate type was expanded, split each the value into
1120    // legal parts.
1121    assert(NumParts % NumIntermediates == 0 &&
1122           "Must expand into a divisible number of parts!");
1123    unsigned Factor = NumParts / NumIntermediates;
1124    for (unsigned i = 0; i != NumIntermediates; ++i)
1125      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
1126  }
1127}
1128
1129
1130SDOperand SelectionDAGLowering::getValue(const Value *V) {
1131  SDOperand &N = NodeMap[V];
1132  if (N.Val) return N;
1133
1134  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
1135    MVT VT = TLI.getValueType(V->getType(), true);
1136
1137    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1138      return N = DAG.getConstant(CI->getValue(), VT);
1139
1140    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
1141      return N = DAG.getGlobalAddress(GV, VT);
1142
1143    if (isa<ConstantPointerNull>(C))
1144      return N = DAG.getConstant(0, TLI.getPointerTy());
1145
1146    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1147      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
1148
1149    if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
1150        !V->getType()->isAggregateType())
1151      return N = DAG.getNode(ISD::UNDEF, VT);
1152
1153    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1154      visit(CE->getOpcode(), *CE);
1155      SDOperand N1 = NodeMap[V];
1156      assert(N1.Val && "visit didn't populate the ValueMap!");
1157      return N1;
1158    }
1159
1160    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1161      SmallVector<SDOperand, 4> Constants;
1162      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1163           OI != OE; ++OI) {
1164        SDNode *Val = getValue(*OI).Val;
1165        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1166          Constants.push_back(SDOperand(Val, i));
1167      }
1168      return DAG.getMergeValues(&Constants[0], Constants.size());
1169    }
1170
1171    if (const ArrayType *ATy = dyn_cast<ArrayType>(C->getType())) {
1172      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1173             "Unknown array constant!");
1174      unsigned NumElts = ATy->getNumElements();
1175      if (NumElts == 0)
1176        return SDOperand(); // empty array
1177      MVT EltVT = TLI.getValueType(ATy->getElementType());
1178      SmallVector<SDOperand, 4> Constants(NumElts);
1179      for (unsigned i = 0, e = NumElts; i != e; ++i) {
1180        if (isa<UndefValue>(C))
1181          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1182        else if (EltVT.isFloatingPoint())
1183          Constants[i] = DAG.getConstantFP(0, EltVT);
1184        else
1185          Constants[i] = DAG.getConstant(0, EltVT);
1186      }
1187      return DAG.getMergeValues(&Constants[0], Constants.size());
1188    }
1189
1190    if (const StructType *STy = dyn_cast<StructType>(C->getType())) {
1191      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1192             "Unknown struct constant!");
1193      unsigned NumElts = STy->getNumElements();
1194      if (NumElts == 0)
1195        return SDOperand(); // empty struct
1196      SmallVector<SDOperand, 4> Constants(NumElts);
1197      for (unsigned i = 0, e = NumElts; i != e; ++i) {
1198        MVT EltVT = TLI.getValueType(STy->getElementType(i));
1199        if (isa<UndefValue>(C))
1200          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1201        else if (EltVT.isFloatingPoint())
1202          Constants[i] = DAG.getConstantFP(0, EltVT);
1203        else
1204          Constants[i] = DAG.getConstant(0, EltVT);
1205      }
1206      return DAG.getMergeValues(&Constants[0], Constants.size());
1207    }
1208
1209    const VectorType *VecTy = cast<VectorType>(V->getType());
1210    unsigned NumElements = VecTy->getNumElements();
1211
1212    // Now that we know the number and type of the elements, get that number of
1213    // elements into the Ops array based on what kind of constant it is.
1214    SmallVector<SDOperand, 16> Ops;
1215    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1216      for (unsigned i = 0; i != NumElements; ++i)
1217        Ops.push_back(getValue(CP->getOperand(i)));
1218    } else {
1219      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1220             "Unknown vector constant!");
1221      MVT EltVT = TLI.getValueType(VecTy->getElementType());
1222
1223      SDOperand Op;
1224      if (isa<UndefValue>(C))
1225        Op = DAG.getNode(ISD::UNDEF, EltVT);
1226      else if (EltVT.isFloatingPoint())
1227        Op = DAG.getConstantFP(0, EltVT);
1228      else
1229        Op = DAG.getConstant(0, EltVT);
1230      Ops.assign(NumElements, Op);
1231    }
1232
1233    // Create a BUILD_VECTOR node.
1234    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1235  }
1236
1237  // If this is a static alloca, generate it as the frameindex instead of
1238  // computation.
1239  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1240    std::map<const AllocaInst*, int>::iterator SI =
1241      FuncInfo.StaticAllocaMap.find(AI);
1242    if (SI != FuncInfo.StaticAllocaMap.end())
1243      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1244  }
1245
1246  unsigned InReg = FuncInfo.ValueMap[V];
1247  assert(InReg && "Value not in map!");
1248
1249  RegsForValue RFV(TLI, InReg, V->getType());
1250  SDOperand Chain = DAG.getEntryNode();
1251  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1252}
1253
1254
1255void SelectionDAGLowering::visitRet(ReturnInst &I) {
1256  if (I.getNumOperands() == 0) {
1257    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
1258    return;
1259  }
1260
1261  SmallVector<SDOperand, 8> NewValues;
1262  NewValues.push_back(getControlRoot());
1263  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1264    SDOperand RetOp = getValue(I.getOperand(i));
1265
1266    SmallVector<MVT, 4> ValueVTs;
1267    ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
1268    for (unsigned j = 0, f = ValueVTs.size(); j != f; ++j) {
1269      MVT VT = ValueVTs[j];
1270
1271      // FIXME: C calling convention requires the return type to be promoted to
1272      // at least 32-bit. But this is not necessary for non-C calling conventions.
1273      if (VT.isInteger()) {
1274        MVT MinVT = TLI.getRegisterType(MVT::i32);
1275        if (VT.bitsLT(MinVT))
1276          VT = MinVT;
1277      }
1278
1279      unsigned NumParts = TLI.getNumRegisters(VT);
1280      MVT PartVT = TLI.getRegisterType(VT);
1281      SmallVector<SDOperand, 4> Parts(NumParts);
1282      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1283
1284      const Function *F = I.getParent()->getParent();
1285      if (F->paramHasAttr(0, ParamAttr::SExt))
1286        ExtendKind = ISD::SIGN_EXTEND;
1287      else if (F->paramHasAttr(0, ParamAttr::ZExt))
1288        ExtendKind = ISD::ZERO_EXTEND;
1289
1290      getCopyToParts(DAG, SDOperand(RetOp.Val, RetOp.ResNo + j),
1291                     &Parts[0], NumParts, PartVT, ExtendKind);
1292
1293      for (unsigned i = 0; i < NumParts; ++i) {
1294        NewValues.push_back(Parts[i]);
1295        NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
1296      }
1297    }
1298  }
1299  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1300                          &NewValues[0], NewValues.size()));
1301}
1302
1303/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1304/// the current basic block, add it to ValueMap now so that we'll get a
1305/// CopyTo/FromReg.
1306void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1307  // No need to export constants.
1308  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1309
1310  // Already exported?
1311  if (FuncInfo.isExportedInst(V)) return;
1312
1313  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1314  CopyValueToVirtualRegister(V, Reg);
1315}
1316
1317bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1318                                                    const BasicBlock *FromBB) {
1319  // The operands of the setcc have to be in this block.  We don't know
1320  // how to export them from some other block.
1321  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1322    // Can export from current BB.
1323    if (VI->getParent() == FromBB)
1324      return true;
1325
1326    // Is already exported, noop.
1327    return FuncInfo.isExportedInst(V);
1328  }
1329
1330  // If this is an argument, we can export it if the BB is the entry block or
1331  // if it is already exported.
1332  if (isa<Argument>(V)) {
1333    if (FromBB == &FromBB->getParent()->getEntryBlock())
1334      return true;
1335
1336    // Otherwise, can only export this if it is already exported.
1337    return FuncInfo.isExportedInst(V);
1338  }
1339
1340  // Otherwise, constants can always be exported.
1341  return true;
1342}
1343
1344static bool InBlock(const Value *V, const BasicBlock *BB) {
1345  if (const Instruction *I = dyn_cast<Instruction>(V))
1346    return I->getParent() == BB;
1347  return true;
1348}
1349
1350/// FindMergedConditions - If Cond is an expression like
1351void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1352                                                MachineBasicBlock *TBB,
1353                                                MachineBasicBlock *FBB,
1354                                                MachineBasicBlock *CurBB,
1355                                                unsigned Opc) {
1356  // If this node is not part of the or/and tree, emit it as a branch.
1357  Instruction *BOp = dyn_cast<Instruction>(Cond);
1358
1359  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1360      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1361      BOp->getParent() != CurBB->getBasicBlock() ||
1362      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1363      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1364    const BasicBlock *BB = CurBB->getBasicBlock();
1365
1366    // If the leaf of the tree is a comparison, merge the condition into
1367    // the caseblock.
1368    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1369        // The operands of the cmp have to be in this block.  We don't know
1370        // how to export them from some other block.  If this is the first block
1371        // of the sequence, no exporting is needed.
1372        (CurBB == CurMBB ||
1373         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1374          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1375      BOp = cast<Instruction>(Cond);
1376      ISD::CondCode Condition;
1377      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1378        switch (IC->getPredicate()) {
1379        default: assert(0 && "Unknown icmp predicate opcode!");
1380        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1381        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1382        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1383        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1384        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1385        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1386        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1387        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1388        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1389        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1390        }
1391      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1392        ISD::CondCode FPC, FOC;
1393        switch (FC->getPredicate()) {
1394        default: assert(0 && "Unknown fcmp predicate opcode!");
1395        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1396        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1397        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1398        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1399        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1400        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1401        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1402        case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
1403        case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
1404        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1405        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1406        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1407        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1408        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1409        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1410        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1411        }
1412        if (FiniteOnlyFPMath())
1413          Condition = FOC;
1414        else
1415          Condition = FPC;
1416      } else {
1417        Condition = ISD::SETEQ; // silence warning.
1418        assert(0 && "Unknown compare instruction");
1419      }
1420
1421      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1422                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1423      SwitchCases.push_back(CB);
1424      return;
1425    }
1426
1427    // Create a CaseBlock record representing this branch.
1428    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1429                                   NULL, TBB, FBB, CurBB);
1430    SwitchCases.push_back(CB);
1431    return;
1432  }
1433
1434
1435  //  Create TmpBB after CurBB.
1436  MachineFunction::iterator BBI = CurBB;
1437  MachineFunction &MF = DAG.getMachineFunction();
1438  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1439  CurBB->getParent()->insert(++BBI, TmpBB);
1440
1441  if (Opc == Instruction::Or) {
1442    // Codegen X | Y as:
1443    //   jmp_if_X TBB
1444    //   jmp TmpBB
1445    // TmpBB:
1446    //   jmp_if_Y TBB
1447    //   jmp FBB
1448    //
1449
1450    // Emit the LHS condition.
1451    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1452
1453    // Emit the RHS condition into TmpBB.
1454    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1455  } else {
1456    assert(Opc == Instruction::And && "Unknown merge op!");
1457    // Codegen X & Y as:
1458    //   jmp_if_X TmpBB
1459    //   jmp FBB
1460    // TmpBB:
1461    //   jmp_if_Y TBB
1462    //   jmp FBB
1463    //
1464    //  This requires creation of TmpBB after CurBB.
1465
1466    // Emit the LHS condition.
1467    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1468
1469    // Emit the RHS condition into TmpBB.
1470    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1471  }
1472}
1473
1474/// If the set of cases should be emitted as a series of branches, return true.
1475/// If we should emit this as a bunch of and/or'd together conditions, return
1476/// false.
1477static bool
1478ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1479  if (Cases.size() != 2) return true;
1480
1481  // If this is two comparisons of the same values or'd or and'd together, they
1482  // will get folded into a single comparison, so don't emit two blocks.
1483  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1484       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1485      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1486       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1487    return false;
1488  }
1489
1490  return true;
1491}
1492
1493void SelectionDAGLowering::visitBr(BranchInst &I) {
1494  // Update machine-CFG edges.
1495  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1496
1497  // Figure out which block is immediately after the current one.
1498  MachineBasicBlock *NextBlock = 0;
1499  MachineFunction::iterator BBI = CurMBB;
1500  if (++BBI != CurMBB->getParent()->end())
1501    NextBlock = BBI;
1502
1503  if (I.isUnconditional()) {
1504    // Update machine-CFG edges.
1505    CurMBB->addSuccessor(Succ0MBB);
1506
1507    // If this is not a fall-through branch, emit the branch.
1508    if (Succ0MBB != NextBlock)
1509      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1510                              DAG.getBasicBlock(Succ0MBB)));
1511    return;
1512  }
1513
1514  // If this condition is one of the special cases we handle, do special stuff
1515  // now.
1516  Value *CondVal = I.getCondition();
1517  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1518
1519  // If this is a series of conditions that are or'd or and'd together, emit
1520  // this as a sequence of branches instead of setcc's with and/or operations.
1521  // For example, instead of something like:
1522  //     cmp A, B
1523  //     C = seteq
1524  //     cmp D, E
1525  //     F = setle
1526  //     or C, F
1527  //     jnz foo
1528  // Emit:
1529  //     cmp A, B
1530  //     je foo
1531  //     cmp D, E
1532  //     jle foo
1533  //
1534  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1535    if (BOp->hasOneUse() &&
1536        (BOp->getOpcode() == Instruction::And ||
1537         BOp->getOpcode() == Instruction::Or)) {
1538      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1539      // If the compares in later blocks need to use values not currently
1540      // exported from this block, export them now.  This block should always
1541      // be the first entry.
1542      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1543
1544      // Allow some cases to be rejected.
1545      if (ShouldEmitAsBranches(SwitchCases)) {
1546        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1547          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1548          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1549        }
1550
1551        // Emit the branch for this block.
1552        visitSwitchCase(SwitchCases[0]);
1553        SwitchCases.erase(SwitchCases.begin());
1554        return;
1555      }
1556
1557      // Okay, we decided not to do this, remove any inserted MBB's and clear
1558      // SwitchCases.
1559      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1560        CurMBB->getParent()->erase(SwitchCases[i].ThisBB);
1561
1562      SwitchCases.clear();
1563    }
1564  }
1565
1566  // Create a CaseBlock record representing this branch.
1567  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1568                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1569  // Use visitSwitchCase to actually insert the fast branch sequence for this
1570  // cond branch.
1571  visitSwitchCase(CB);
1572}
1573
1574/// visitSwitchCase - Emits the necessary code to represent a single node in
1575/// the binary search tree resulting from lowering a switch instruction.
1576void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1577  SDOperand Cond;
1578  SDOperand CondLHS = getValue(CB.CmpLHS);
1579
1580  // Build the setcc now.
1581  if (CB.CmpMHS == NULL) {
1582    // Fold "(X == true)" to X and "(X == false)" to !X to
1583    // handle common cases produced by branch lowering.
1584    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1585      Cond = CondLHS;
1586    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1587      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1588      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1589    } else
1590      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1591  } else {
1592    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1593
1594    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1595    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1596
1597    SDOperand CmpOp = getValue(CB.CmpMHS);
1598    MVT VT = CmpOp.getValueType();
1599
1600    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1601      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1602    } else {
1603      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1604      Cond = DAG.getSetCC(MVT::i1, SUB,
1605                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1606    }
1607  }
1608
1609  // Update successor info
1610  CurMBB->addSuccessor(CB.TrueBB);
1611  CurMBB->addSuccessor(CB.FalseBB);
1612
1613  // Set NextBlock to be the MBB immediately after the current one, if any.
1614  // This is used to avoid emitting unnecessary branches to the next block.
1615  MachineBasicBlock *NextBlock = 0;
1616  MachineFunction::iterator BBI = CurMBB;
1617  if (++BBI != CurMBB->getParent()->end())
1618    NextBlock = BBI;
1619
1620  // If the lhs block is the next block, invert the condition so that we can
1621  // fall through to the lhs instead of the rhs block.
1622  if (CB.TrueBB == NextBlock) {
1623    std::swap(CB.TrueBB, CB.FalseBB);
1624    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1625    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1626  }
1627  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1628                                 DAG.getBasicBlock(CB.TrueBB));
1629  if (CB.FalseBB == NextBlock)
1630    DAG.setRoot(BrCond);
1631  else
1632    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1633                            DAG.getBasicBlock(CB.FalseBB)));
1634}
1635
1636/// visitJumpTable - Emit JumpTable node in the current MBB
1637void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1638  // Emit the code for the jump table
1639  assert(JT.Reg != -1U && "Should lower JT Header first!");
1640  MVT PTy = TLI.getPointerTy();
1641  SDOperand Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1642  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1643  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1644                          Table, Index));
1645  return;
1646}
1647
1648/// visitJumpTableHeader - This function emits necessary code to produce index
1649/// in the JumpTable from switch case.
1650void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1651                                         SelectionDAGISel::JumpTableHeader &JTH) {
1652  // Subtract the lowest switch case value from the value being switched on
1653  // and conditional branch to default mbb if the result is greater than the
1654  // difference between smallest and largest cases.
1655  SDOperand SwitchOp = getValue(JTH.SValue);
1656  MVT VT = SwitchOp.getValueType();
1657  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1658                              DAG.getConstant(JTH.First, VT));
1659
1660  // The SDNode we just created, which holds the value being switched on
1661  // minus the the smallest case value, needs to be copied to a virtual
1662  // register so it can be used as an index into the jump table in a
1663  // subsequent basic block.  This value may be smaller or larger than the
1664  // target's pointer type, and therefore require extension or truncating.
1665  if (VT.bitsGT(TLI.getPointerTy()))
1666    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1667  else
1668    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1669
1670  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1671  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1672  JT.Reg = JumpTableReg;
1673
1674  // Emit the range check for the jump table, and branch to the default
1675  // block for the switch statement if the value being switched on exceeds
1676  // the largest case in the switch.
1677  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1678                               DAG.getConstant(JTH.Last-JTH.First,VT),
1679                               ISD::SETUGT);
1680
1681  // Set NextBlock to be the MBB immediately after the current one, if any.
1682  // This is used to avoid emitting unnecessary branches to the next block.
1683  MachineBasicBlock *NextBlock = 0;
1684  MachineFunction::iterator BBI = CurMBB;
1685  if (++BBI != CurMBB->getParent()->end())
1686    NextBlock = BBI;
1687
1688  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1689                                 DAG.getBasicBlock(JT.Default));
1690
1691  if (JT.MBB == NextBlock)
1692    DAG.setRoot(BrCond);
1693  else
1694    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1695                            DAG.getBasicBlock(JT.MBB)));
1696
1697  return;
1698}
1699
1700/// visitBitTestHeader - This function emits necessary code to produce value
1701/// suitable for "bit tests"
1702void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1703  // Subtract the minimum value
1704  SDOperand SwitchOp = getValue(B.SValue);
1705  MVT VT = SwitchOp.getValueType();
1706  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1707                              DAG.getConstant(B.First, VT));
1708
1709  // Check range
1710  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1711                                    DAG.getConstant(B.Range, VT),
1712                                    ISD::SETUGT);
1713
1714  SDOperand ShiftOp;
1715  if (VT.bitsGT(TLI.getShiftAmountTy()))
1716    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1717  else
1718    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1719
1720  // Make desired shift
1721  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1722                                    DAG.getConstant(1, TLI.getPointerTy()),
1723                                    ShiftOp);
1724
1725  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1726  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1727  B.Reg = SwitchReg;
1728
1729  // Set NextBlock to be the MBB immediately after the current one, if any.
1730  // This is used to avoid emitting unnecessary branches to the next block.
1731  MachineBasicBlock *NextBlock = 0;
1732  MachineFunction::iterator BBI = CurMBB;
1733  if (++BBI != CurMBB->getParent()->end())
1734    NextBlock = BBI;
1735
1736  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1737
1738  CurMBB->addSuccessor(B.Default);
1739  CurMBB->addSuccessor(MBB);
1740
1741  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1742                                  DAG.getBasicBlock(B.Default));
1743
1744  if (MBB == NextBlock)
1745    DAG.setRoot(BrRange);
1746  else
1747    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1748                            DAG.getBasicBlock(MBB)));
1749
1750  return;
1751}
1752
1753/// visitBitTestCase - this function produces one "bit test"
1754void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1755                                            unsigned Reg,
1756                                            SelectionDAGISel::BitTestCase &B) {
1757  // Emit bit tests and jumps
1758  SDOperand SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
1759                                           TLI.getPointerTy());
1760
1761  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
1762                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1763  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1764                                  DAG.getConstant(0, TLI.getPointerTy()),
1765                                  ISD::SETNE);
1766
1767  CurMBB->addSuccessor(B.TargetBB);
1768  CurMBB->addSuccessor(NextMBB);
1769
1770  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1771                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1772
1773  // Set NextBlock to be the MBB immediately after the current one, if any.
1774  // This is used to avoid emitting unnecessary branches to the next block.
1775  MachineBasicBlock *NextBlock = 0;
1776  MachineFunction::iterator BBI = CurMBB;
1777  if (++BBI != CurMBB->getParent()->end())
1778    NextBlock = BBI;
1779
1780  if (NextMBB == NextBlock)
1781    DAG.setRoot(BrAnd);
1782  else
1783    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1784                            DAG.getBasicBlock(NextMBB)));
1785
1786  return;
1787}
1788
1789void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1790  // Retrieve successors.
1791  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1792  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1793
1794  if (isa<InlineAsm>(I.getCalledValue()))
1795    visitInlineAsm(&I);
1796  else
1797    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1798
1799  // If the value of the invoke is used outside of its defining block, make it
1800  // available as a virtual register.
1801  if (!I.use_empty()) {
1802    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1803    if (VMI != FuncInfo.ValueMap.end())
1804      CopyValueToVirtualRegister(&I, VMI->second);
1805  }
1806
1807  // Update successor info
1808  CurMBB->addSuccessor(Return);
1809  CurMBB->addSuccessor(LandingPad);
1810
1811  // Drop into normal successor.
1812  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1813                          DAG.getBasicBlock(Return)));
1814}
1815
1816void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1817}
1818
1819/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1820/// small case ranges).
1821bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1822                                                  CaseRecVector& WorkList,
1823                                                  Value* SV,
1824                                                  MachineBasicBlock* Default) {
1825  Case& BackCase  = *(CR.Range.second-1);
1826
1827  // Size is the number of Cases represented by this range.
1828  unsigned Size = CR.Range.second - CR.Range.first;
1829  if (Size > 3)
1830    return false;
1831
1832  // Get the MachineFunction which holds the current MBB.  This is used when
1833  // inserting any additional MBBs necessary to represent the switch.
1834  MachineFunction *CurMF = CurMBB->getParent();
1835
1836  // Figure out which block is immediately after the current one.
1837  MachineBasicBlock *NextBlock = 0;
1838  MachineFunction::iterator BBI = CR.CaseBB;
1839
1840  if (++BBI != CurMBB->getParent()->end())
1841    NextBlock = BBI;
1842
1843  // TODO: If any two of the cases has the same destination, and if one value
1844  // is the same as the other, but has one bit unset that the other has set,
1845  // use bit manipulation to do two compares at once.  For example:
1846  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1847
1848  // Rearrange the case blocks so that the last one falls through if possible.
1849  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1850    // The last case block won't fall through into 'NextBlock' if we emit the
1851    // branches in this order.  See if rearranging a case value would help.
1852    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1853      if (I->BB == NextBlock) {
1854        std::swap(*I, BackCase);
1855        break;
1856      }
1857    }
1858  }
1859
1860  // Create a CaseBlock record representing a conditional branch to
1861  // the Case's target mbb if the value being switched on SV is equal
1862  // to C.
1863  MachineBasicBlock *CurBlock = CR.CaseBB;
1864  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1865    MachineBasicBlock *FallThrough;
1866    if (I != E-1) {
1867      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1868      CurMF->insert(BBI, FallThrough);
1869    } else {
1870      // If the last case doesn't match, go to the default block.
1871      FallThrough = Default;
1872    }
1873
1874    Value *RHS, *LHS, *MHS;
1875    ISD::CondCode CC;
1876    if (I->High == I->Low) {
1877      // This is just small small case range :) containing exactly 1 case
1878      CC = ISD::SETEQ;
1879      LHS = SV; RHS = I->High; MHS = NULL;
1880    } else {
1881      CC = ISD::SETLE;
1882      LHS = I->Low; MHS = SV; RHS = I->High;
1883    }
1884    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1885                                   I->BB, FallThrough, CurBlock);
1886
1887    // If emitting the first comparison, just call visitSwitchCase to emit the
1888    // code into the current block.  Otherwise, push the CaseBlock onto the
1889    // vector to be later processed by SDISel, and insert the node's MBB
1890    // before the next MBB.
1891    if (CurBlock == CurMBB)
1892      visitSwitchCase(CB);
1893    else
1894      SwitchCases.push_back(CB);
1895
1896    CurBlock = FallThrough;
1897  }
1898
1899  return true;
1900}
1901
1902static inline bool areJTsAllowed(const TargetLowering &TLI) {
1903  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1904          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1905}
1906
1907/// handleJTSwitchCase - Emit jumptable for current switch case range
1908bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1909                                              CaseRecVector& WorkList,
1910                                              Value* SV,
1911                                              MachineBasicBlock* Default) {
1912  Case& FrontCase = *CR.Range.first;
1913  Case& BackCase  = *(CR.Range.second-1);
1914
1915  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1916  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1917
1918  uint64_t TSize = 0;
1919  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1920       I!=E; ++I)
1921    TSize += I->size();
1922
1923  if (!areJTsAllowed(TLI) || TSize <= 3)
1924    return false;
1925
1926  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1927  if (Density < 0.4)
1928    return false;
1929
1930  DOUT << "Lowering jump table\n"
1931       << "First entry: " << First << ". Last entry: " << Last << "\n"
1932       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1933
1934  // Get the MachineFunction which holds the current MBB.  This is used when
1935  // inserting any additional MBBs necessary to represent the switch.
1936  MachineFunction *CurMF = CurMBB->getParent();
1937
1938  // Figure out which block is immediately after the current one.
1939  MachineBasicBlock *NextBlock = 0;
1940  MachineFunction::iterator BBI = CR.CaseBB;
1941
1942  if (++BBI != CurMBB->getParent()->end())
1943    NextBlock = BBI;
1944
1945  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1946
1947  // Create a new basic block to hold the code for loading the address
1948  // of the jump table, and jumping to it.  Update successor information;
1949  // we will either branch to the default case for the switch, or the jump
1950  // table.
1951  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1952  CurMF->insert(BBI, JumpTableBB);
1953  CR.CaseBB->addSuccessor(Default);
1954  CR.CaseBB->addSuccessor(JumpTableBB);
1955
1956  // Build a vector of destination BBs, corresponding to each target
1957  // of the jump table. If the value of the jump table slot corresponds to
1958  // a case statement, push the case's BB onto the vector, otherwise, push
1959  // the default BB.
1960  std::vector<MachineBasicBlock*> DestBBs;
1961  int64_t TEI = First;
1962  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1963    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1964    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1965
1966    if ((Low <= TEI) && (TEI <= High)) {
1967      DestBBs.push_back(I->BB);
1968      if (TEI==High)
1969        ++I;
1970    } else {
1971      DestBBs.push_back(Default);
1972    }
1973  }
1974
1975  // Update successor info. Add one edge to each unique successor.
1976  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1977  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1978         E = DestBBs.end(); I != E; ++I) {
1979    if (!SuccsHandled[(*I)->getNumber()]) {
1980      SuccsHandled[(*I)->getNumber()] = true;
1981      JumpTableBB->addSuccessor(*I);
1982    }
1983  }
1984
1985  // Create a jump table index for this jump table, or return an existing
1986  // one.
1987  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1988
1989  // Set the jump table information so that we can codegen it as a second
1990  // MachineBasicBlock
1991  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1992  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1993                                        (CR.CaseBB == CurMBB));
1994  if (CR.CaseBB == CurMBB)
1995    visitJumpTableHeader(JT, JTH);
1996
1997  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1998
1999  return true;
2000}
2001
2002/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2003/// 2 subtrees.
2004bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
2005                                                   CaseRecVector& WorkList,
2006                                                   Value* SV,
2007                                                   MachineBasicBlock* Default) {
2008  // Get the MachineFunction which holds the current MBB.  This is used when
2009  // inserting any additional MBBs necessary to represent the switch.
2010  MachineFunction *CurMF = CurMBB->getParent();
2011
2012  // Figure out which block is immediately after the current one.
2013  MachineBasicBlock *NextBlock = 0;
2014  MachineFunction::iterator BBI = CR.CaseBB;
2015
2016  if (++BBI != CurMBB->getParent()->end())
2017    NextBlock = BBI;
2018
2019  Case& FrontCase = *CR.Range.first;
2020  Case& BackCase  = *(CR.Range.second-1);
2021  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2022
2023  // Size is the number of Cases represented by this range.
2024  unsigned Size = CR.Range.second - CR.Range.first;
2025
2026  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
2027  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
2028  double FMetric = 0;
2029  CaseItr Pivot = CR.Range.first + Size/2;
2030
2031  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2032  // (heuristically) allow us to emit JumpTable's later.
2033  uint64_t TSize = 0;
2034  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2035       I!=E; ++I)
2036    TSize += I->size();
2037
2038  uint64_t LSize = FrontCase.size();
2039  uint64_t RSize = TSize-LSize;
2040  DOUT << "Selecting best pivot: \n"
2041       << "First: " << First << ", Last: " << Last <<"\n"
2042       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
2043  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2044       J!=E; ++I, ++J) {
2045    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
2046    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
2047    assert((RBegin-LEnd>=1) && "Invalid case distance");
2048    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
2049    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
2050    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
2051    // Should always split in some non-trivial place
2052    DOUT <<"=>Step\n"
2053         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
2054         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
2055         << "Metric: " << Metric << "\n";
2056    if (FMetric < Metric) {
2057      Pivot = J;
2058      FMetric = Metric;
2059      DOUT << "Current metric set to: " << FMetric << "\n";
2060    }
2061
2062    LSize += J->size();
2063    RSize -= J->size();
2064  }
2065  if (areJTsAllowed(TLI)) {
2066    // If our case is dense we *really* should handle it earlier!
2067    assert((FMetric > 0) && "Should handle dense range earlier!");
2068  } else {
2069    Pivot = CR.Range.first + Size/2;
2070  }
2071
2072  CaseRange LHSR(CR.Range.first, Pivot);
2073  CaseRange RHSR(Pivot, CR.Range.second);
2074  Constant *C = Pivot->Low;
2075  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2076
2077  // We know that we branch to the LHS if the Value being switched on is
2078  // less than the Pivot value, C.  We use this to optimize our binary
2079  // tree a bit, by recognizing that if SV is greater than or equal to the
2080  // LHS's Case Value, and that Case Value is exactly one less than the
2081  // Pivot's Value, then we can branch directly to the LHS's Target,
2082  // rather than creating a leaf node for it.
2083  if ((LHSR.second - LHSR.first) == 1 &&
2084      LHSR.first->High == CR.GE &&
2085      cast<ConstantInt>(C)->getSExtValue() ==
2086      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
2087    TrueBB = LHSR.first->BB;
2088  } else {
2089    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2090    CurMF->insert(BBI, TrueBB);
2091    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2092  }
2093
2094  // Similar to the optimization above, if the Value being switched on is
2095  // known to be less than the Constant CR.LT, and the current Case Value
2096  // is CR.LT - 1, then we can branch directly to the target block for
2097  // the current Case Value, rather than emitting a RHS leaf node for it.
2098  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2099      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
2100      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
2101    FalseBB = RHSR.first->BB;
2102  } else {
2103    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2104    CurMF->insert(BBI, FalseBB);
2105    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2106  }
2107
2108  // Create a CaseBlock record representing a conditional branch to
2109  // the LHS node if the value being switched on SV is less than C.
2110  // Otherwise, branch to LHS.
2111  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
2112                                 TrueBB, FalseBB, CR.CaseBB);
2113
2114  if (CR.CaseBB == CurMBB)
2115    visitSwitchCase(CB);
2116  else
2117    SwitchCases.push_back(CB);
2118
2119  return true;
2120}
2121
2122/// handleBitTestsSwitchCase - if current case range has few destination and
2123/// range span less, than machine word bitwidth, encode case range into series
2124/// of masks and emit bit tests with these masks.
2125bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
2126                                                    CaseRecVector& WorkList,
2127                                                    Value* SV,
2128                                                    MachineBasicBlock* Default){
2129  unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
2130
2131  Case& FrontCase = *CR.Range.first;
2132  Case& BackCase  = *(CR.Range.second-1);
2133
2134  // Get the MachineFunction which holds the current MBB.  This is used when
2135  // inserting any additional MBBs necessary to represent the switch.
2136  MachineFunction *CurMF = CurMBB->getParent();
2137
2138  unsigned numCmps = 0;
2139  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2140       I!=E; ++I) {
2141    // Single case counts one, case range - two.
2142    if (I->Low == I->High)
2143      numCmps +=1;
2144    else
2145      numCmps +=2;
2146  }
2147
2148  // Count unique destinations
2149  SmallSet<MachineBasicBlock*, 4> Dests;
2150  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2151    Dests.insert(I->BB);
2152    if (Dests.size() > 3)
2153      // Don't bother the code below, if there are too much unique destinations
2154      return false;
2155  }
2156  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
2157       << "Total number of comparisons: " << numCmps << "\n";
2158
2159  // Compute span of values.
2160  Constant* minValue = FrontCase.Low;
2161  Constant* maxValue = BackCase.High;
2162  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
2163                   cast<ConstantInt>(minValue)->getSExtValue();
2164  DOUT << "Compare range: " << range << "\n"
2165       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
2166       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
2167
2168  if (range>=IntPtrBits ||
2169      (!(Dests.size() == 1 && numCmps >= 3) &&
2170       !(Dests.size() == 2 && numCmps >= 5) &&
2171       !(Dests.size() >= 3 && numCmps >= 6)))
2172    return false;
2173
2174  DOUT << "Emitting bit tests\n";
2175  int64_t lowBound = 0;
2176
2177  // Optimize the case where all the case values fit in a
2178  // word without having to subtract minValue. In this case,
2179  // we can optimize away the subtraction.
2180  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
2181      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
2182    range = cast<ConstantInt>(maxValue)->getSExtValue();
2183  } else {
2184    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
2185  }
2186
2187  CaseBitsVector CasesBits;
2188  unsigned i, count = 0;
2189
2190  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2191    MachineBasicBlock* Dest = I->BB;
2192    for (i = 0; i < count; ++i)
2193      if (Dest == CasesBits[i].BB)
2194        break;
2195
2196    if (i == count) {
2197      assert((count < 3) && "Too much destinations to test!");
2198      CasesBits.push_back(CaseBits(0, Dest, 0));
2199      count++;
2200    }
2201
2202    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2203    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2204
2205    for (uint64_t j = lo; j <= hi; j++) {
2206      CasesBits[i].Mask |=  1ULL << j;
2207      CasesBits[i].Bits++;
2208    }
2209
2210  }
2211  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2212
2213  SelectionDAGISel::BitTestInfo BTC;
2214
2215  // Figure out which block is immediately after the current one.
2216  MachineFunction::iterator BBI = CR.CaseBB;
2217  ++BBI;
2218
2219  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2220
2221  DOUT << "Cases:\n";
2222  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2223    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2224         << ", BB: " << CasesBits[i].BB << "\n";
2225
2226    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2227    CurMF->insert(BBI, CaseBB);
2228    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
2229                                                CaseBB,
2230                                                CasesBits[i].BB));
2231  }
2232
2233  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
2234                                     -1U, (CR.CaseBB == CurMBB),
2235                                     CR.CaseBB, Default, BTC);
2236
2237  if (CR.CaseBB == CurMBB)
2238    visitBitTestHeader(BTB);
2239
2240  BitTestCases.push_back(BTB);
2241
2242  return true;
2243}
2244
2245
2246/// Clusterify - Transform simple list of Cases into list of CaseRange's
2247unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2248                                          const SwitchInst& SI) {
2249  unsigned numCmps = 0;
2250
2251  // Start with "simple" cases
2252  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2253    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2254    Cases.push_back(Case(SI.getSuccessorValue(i),
2255                         SI.getSuccessorValue(i),
2256                         SMBB));
2257  }
2258  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2259
2260  // Merge case into clusters
2261  if (Cases.size()>=2)
2262    // Must recompute end() each iteration because it may be
2263    // invalidated by erase if we hold on to it
2264    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2265      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2266      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2267      MachineBasicBlock* nextBB = J->BB;
2268      MachineBasicBlock* currentBB = I->BB;
2269
2270      // If the two neighboring cases go to the same destination, merge them
2271      // into a single case.
2272      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2273        I->High = J->High;
2274        J = Cases.erase(J);
2275      } else {
2276        I = J++;
2277      }
2278    }
2279
2280  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2281    if (I->Low != I->High)
2282      // A range counts double, since it requires two compares.
2283      ++numCmps;
2284  }
2285
2286  return numCmps;
2287}
2288
2289void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2290  // Figure out which block is immediately after the current one.
2291  MachineBasicBlock *NextBlock = 0;
2292  MachineFunction::iterator BBI = CurMBB;
2293
2294  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2295
2296  // If there is only the default destination, branch to it if it is not the
2297  // next basic block.  Otherwise, just fall through.
2298  if (SI.getNumOperands() == 2) {
2299    // Update machine-CFG edges.
2300
2301    // If this is not a fall-through branch, emit the branch.
2302    CurMBB->addSuccessor(Default);
2303    if (Default != NextBlock)
2304      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2305                              DAG.getBasicBlock(Default)));
2306
2307    return;
2308  }
2309
2310  // If there are any non-default case statements, create a vector of Cases
2311  // representing each one, and sort the vector so that we can efficiently
2312  // create a binary search tree from them.
2313  CaseVector Cases;
2314  unsigned numCmps = Clusterify(Cases, SI);
2315  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2316       << ". Total compares: " << numCmps << "\n";
2317
2318  // Get the Value to be switched on and default basic blocks, which will be
2319  // inserted into CaseBlock records, representing basic blocks in the binary
2320  // search tree.
2321  Value *SV = SI.getOperand(0);
2322
2323  // Push the initial CaseRec onto the worklist
2324  CaseRecVector WorkList;
2325  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2326
2327  while (!WorkList.empty()) {
2328    // Grab a record representing a case range to process off the worklist
2329    CaseRec CR = WorkList.back();
2330    WorkList.pop_back();
2331
2332    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2333      continue;
2334
2335    // If the range has few cases (two or less) emit a series of specific
2336    // tests.
2337    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2338      continue;
2339
2340    // If the switch has more than 5 blocks, and at least 40% dense, and the
2341    // target supports indirect branches, then emit a jump table rather than
2342    // lowering the switch to a binary tree of conditional branches.
2343    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2344      continue;
2345
2346    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2347    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2348    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2349  }
2350}
2351
2352
2353void SelectionDAGLowering::visitSub(User &I) {
2354  // -0.0 - X --> fneg
2355  const Type *Ty = I.getType();
2356  if (isa<VectorType>(Ty)) {
2357    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2358      const VectorType *DestTy = cast<VectorType>(I.getType());
2359      const Type *ElTy = DestTy->getElementType();
2360      if (ElTy->isFloatingPoint()) {
2361        unsigned VL = DestTy->getNumElements();
2362        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2363        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2364        if (CV == CNZ) {
2365          SDOperand Op2 = getValue(I.getOperand(1));
2366          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2367          return;
2368        }
2369      }
2370    }
2371  }
2372  if (Ty->isFloatingPoint()) {
2373    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2374      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2375        SDOperand Op2 = getValue(I.getOperand(1));
2376        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2377        return;
2378      }
2379  }
2380
2381  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2382}
2383
2384void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2385  SDOperand Op1 = getValue(I.getOperand(0));
2386  SDOperand Op2 = getValue(I.getOperand(1));
2387
2388  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2389}
2390
2391void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2392  SDOperand Op1 = getValue(I.getOperand(0));
2393  SDOperand Op2 = getValue(I.getOperand(1));
2394
2395  if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
2396    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2397  else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
2398    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2399
2400  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2401}
2402
2403void SelectionDAGLowering::visitICmp(User &I) {
2404  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2405  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2406    predicate = IC->getPredicate();
2407  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2408    predicate = ICmpInst::Predicate(IC->getPredicate());
2409  SDOperand Op1 = getValue(I.getOperand(0));
2410  SDOperand Op2 = getValue(I.getOperand(1));
2411  ISD::CondCode Opcode;
2412  switch (predicate) {
2413    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2414    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2415    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2416    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2417    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2418    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2419    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2420    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2421    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2422    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2423    default:
2424      assert(!"Invalid ICmp predicate value");
2425      Opcode = ISD::SETEQ;
2426      break;
2427  }
2428  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2429}
2430
2431void SelectionDAGLowering::visitFCmp(User &I) {
2432  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2433  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2434    predicate = FC->getPredicate();
2435  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2436    predicate = FCmpInst::Predicate(FC->getPredicate());
2437  SDOperand Op1 = getValue(I.getOperand(0));
2438  SDOperand Op2 = getValue(I.getOperand(1));
2439  ISD::CondCode Condition, FOC, FPC;
2440  switch (predicate) {
2441    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2442    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2443    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2444    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2445    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2446    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2447    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2448    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2449    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2450    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2451    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2452    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2453    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2454    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2455    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2456    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2457    default:
2458      assert(!"Invalid FCmp predicate value");
2459      FOC = FPC = ISD::SETFALSE;
2460      break;
2461  }
2462  if (FiniteOnlyFPMath())
2463    Condition = FOC;
2464  else
2465    Condition = FPC;
2466  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2467}
2468
2469void SelectionDAGLowering::visitVICmp(User &I) {
2470  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2471  if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2472    predicate = IC->getPredicate();
2473  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2474    predicate = ICmpInst::Predicate(IC->getPredicate());
2475  SDOperand Op1 = getValue(I.getOperand(0));
2476  SDOperand Op2 = getValue(I.getOperand(1));
2477  ISD::CondCode Opcode;
2478  switch (predicate) {
2479    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2480    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2481    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2482    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2483    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2484    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2485    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2486    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2487    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2488    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2489    default:
2490      assert(!"Invalid ICmp predicate value");
2491      Opcode = ISD::SETEQ;
2492      break;
2493  }
2494  setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2495}
2496
2497void SelectionDAGLowering::visitVFCmp(User &I) {
2498  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2499  if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2500    predicate = FC->getPredicate();
2501  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2502    predicate = FCmpInst::Predicate(FC->getPredicate());
2503  SDOperand Op1 = getValue(I.getOperand(0));
2504  SDOperand Op2 = getValue(I.getOperand(1));
2505  ISD::CondCode Condition, FOC, FPC;
2506  switch (predicate) {
2507    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2508    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2509    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2510    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2511    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2512    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2513    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2514    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2515    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2516    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2517    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2518    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2519    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2520    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2521    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2522    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2523    default:
2524      assert(!"Invalid VFCmp predicate value");
2525      FOC = FPC = ISD::SETFALSE;
2526      break;
2527  }
2528  if (FiniteOnlyFPMath())
2529    Condition = FOC;
2530  else
2531    Condition = FPC;
2532
2533  MVT DestVT = TLI.getValueType(I.getType());
2534
2535  setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2536}
2537
2538void SelectionDAGLowering::visitSelect(User &I) {
2539  SDOperand Cond     = getValue(I.getOperand(0));
2540  SDOperand TrueVal  = getValue(I.getOperand(1));
2541  SDOperand FalseVal = getValue(I.getOperand(2));
2542  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2543                           TrueVal, FalseVal));
2544}
2545
2546
2547void SelectionDAGLowering::visitTrunc(User &I) {
2548  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2549  SDOperand N = getValue(I.getOperand(0));
2550  MVT DestVT = TLI.getValueType(I.getType());
2551  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2552}
2553
2554void SelectionDAGLowering::visitZExt(User &I) {
2555  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2556  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2557  SDOperand N = getValue(I.getOperand(0));
2558  MVT DestVT = TLI.getValueType(I.getType());
2559  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2560}
2561
2562void SelectionDAGLowering::visitSExt(User &I) {
2563  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2564  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2565  SDOperand N = getValue(I.getOperand(0));
2566  MVT DestVT = TLI.getValueType(I.getType());
2567  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2568}
2569
2570void SelectionDAGLowering::visitFPTrunc(User &I) {
2571  // FPTrunc is never a no-op cast, no need to check
2572  SDOperand N = getValue(I.getOperand(0));
2573  MVT DestVT = TLI.getValueType(I.getType());
2574  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2575}
2576
2577void SelectionDAGLowering::visitFPExt(User &I){
2578  // FPTrunc is never a no-op cast, no need to check
2579  SDOperand N = getValue(I.getOperand(0));
2580  MVT DestVT = TLI.getValueType(I.getType());
2581  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2582}
2583
2584void SelectionDAGLowering::visitFPToUI(User &I) {
2585  // FPToUI is never a no-op cast, no need to check
2586  SDOperand N = getValue(I.getOperand(0));
2587  MVT DestVT = TLI.getValueType(I.getType());
2588  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2589}
2590
2591void SelectionDAGLowering::visitFPToSI(User &I) {
2592  // FPToSI is never a no-op cast, no need to check
2593  SDOperand N = getValue(I.getOperand(0));
2594  MVT DestVT = TLI.getValueType(I.getType());
2595  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2596}
2597
2598void SelectionDAGLowering::visitUIToFP(User &I) {
2599  // UIToFP is never a no-op cast, no need to check
2600  SDOperand N = getValue(I.getOperand(0));
2601  MVT DestVT = TLI.getValueType(I.getType());
2602  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2603}
2604
2605void SelectionDAGLowering::visitSIToFP(User &I){
2606  // UIToFP is never a no-op cast, no need to check
2607  SDOperand N = getValue(I.getOperand(0));
2608  MVT DestVT = TLI.getValueType(I.getType());
2609  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2610}
2611
2612void SelectionDAGLowering::visitPtrToInt(User &I) {
2613  // What to do depends on the size of the integer and the size of the pointer.
2614  // We can either truncate, zero extend, or no-op, accordingly.
2615  SDOperand N = getValue(I.getOperand(0));
2616  MVT SrcVT = N.getValueType();
2617  MVT DestVT = TLI.getValueType(I.getType());
2618  SDOperand Result;
2619  if (DestVT.bitsLT(SrcVT))
2620    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2621  else
2622    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2623    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2624  setValue(&I, Result);
2625}
2626
2627void SelectionDAGLowering::visitIntToPtr(User &I) {
2628  // What to do depends on the size of the integer and the size of the pointer.
2629  // We can either truncate, zero extend, or no-op, accordingly.
2630  SDOperand N = getValue(I.getOperand(0));
2631  MVT SrcVT = N.getValueType();
2632  MVT DestVT = TLI.getValueType(I.getType());
2633  if (DestVT.bitsLT(SrcVT))
2634    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2635  else
2636    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2637    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2638}
2639
2640void SelectionDAGLowering::visitBitCast(User &I) {
2641  SDOperand N = getValue(I.getOperand(0));
2642  MVT DestVT = TLI.getValueType(I.getType());
2643
2644  // BitCast assures us that source and destination are the same size so this
2645  // is either a BIT_CONVERT or a no-op.
2646  if (DestVT != N.getValueType())
2647    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2648  else
2649    setValue(&I, N); // noop cast.
2650}
2651
2652void SelectionDAGLowering::visitInsertElement(User &I) {
2653  SDOperand InVec = getValue(I.getOperand(0));
2654  SDOperand InVal = getValue(I.getOperand(1));
2655  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2656                                getValue(I.getOperand(2)));
2657
2658  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2659                           TLI.getValueType(I.getType()),
2660                           InVec, InVal, InIdx));
2661}
2662
2663void SelectionDAGLowering::visitExtractElement(User &I) {
2664  SDOperand InVec = getValue(I.getOperand(0));
2665  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2666                                getValue(I.getOperand(1)));
2667  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2668                           TLI.getValueType(I.getType()), InVec, InIdx));
2669}
2670
2671void SelectionDAGLowering::visitShuffleVector(User &I) {
2672  SDOperand V1   = getValue(I.getOperand(0));
2673  SDOperand V2   = getValue(I.getOperand(1));
2674  SDOperand Mask = getValue(I.getOperand(2));
2675
2676  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2677                           TLI.getValueType(I.getType()),
2678                           V1, V2, Mask));
2679}
2680
2681void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
2682  const Value *Op0 = I.getOperand(0);
2683  const Value *Op1 = I.getOperand(1);
2684  const Type *AggTy = I.getType();
2685  const Type *ValTy = Op1->getType();
2686  bool IntoUndef = isa<UndefValue>(Op0);
2687  bool FromUndef = isa<UndefValue>(Op1);
2688
2689  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2690                                            I.idx_begin(), I.idx_end());
2691
2692  SmallVector<MVT, 4> AggValueVTs;
2693  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2694  SmallVector<MVT, 4> ValValueVTs;
2695  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2696
2697  unsigned NumAggValues = AggValueVTs.size();
2698  unsigned NumValValues = ValValueVTs.size();
2699  SmallVector<SDOperand, 4> Values(NumAggValues);
2700
2701  SDOperand Agg = getValue(Op0);
2702  SDOperand Val = getValue(Op1);
2703  unsigned i = 0;
2704  // Copy the beginning value(s) from the original aggregate.
2705  for (; i != LinearIndex; ++i)
2706    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2707                SDOperand(Agg.Val, Agg.ResNo + i);
2708  // Copy values from the inserted value(s).
2709  for (; i != LinearIndex + NumValValues; ++i)
2710    Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2711                SDOperand(Val.Val, Val.ResNo + i - LinearIndex);
2712  // Copy remaining value(s) from the original aggregate.
2713  for (; i != NumAggValues; ++i)
2714    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2715                SDOperand(Agg.Val, Agg.ResNo + i);
2716
2717  setValue(&I, DAG.getMergeValues(DAG.getVTList(&AggValueVTs[0], NumAggValues),
2718                                  &Values[0], NumAggValues));
2719}
2720
2721void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
2722  const Value *Op0 = I.getOperand(0);
2723  const Type *AggTy = Op0->getType();
2724  const Type *ValTy = I.getType();
2725  bool OutOfUndef = isa<UndefValue>(Op0);
2726
2727  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2728                                            I.idx_begin(), I.idx_end());
2729
2730  SmallVector<MVT, 4> ValValueVTs;
2731  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2732
2733  unsigned NumValValues = ValValueVTs.size();
2734  SmallVector<SDOperand, 4> Values(NumValValues);
2735
2736  SDOperand Agg = getValue(Op0);
2737  // Copy out the selected value(s).
2738  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2739    Values[i - LinearIndex] =
2740      OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.Val->getValueType(Agg.ResNo + i)) :
2741                   SDOperand(Agg.Val, Agg.ResNo + i);
2742
2743  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValValueVTs[0], NumValValues),
2744                                  &Values[0], NumValValues));
2745}
2746
2747
2748void SelectionDAGLowering::visitGetElementPtr(User &I) {
2749  SDOperand N = getValue(I.getOperand(0));
2750  const Type *Ty = I.getOperand(0)->getType();
2751
2752  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2753       OI != E; ++OI) {
2754    Value *Idx = *OI;
2755    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2756      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2757      if (Field) {
2758        // N = N + Offset
2759        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2760        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2761                        DAG.getIntPtrConstant(Offset));
2762      }
2763      Ty = StTy->getElementType(Field);
2764    } else {
2765      Ty = cast<SequentialType>(Ty)->getElementType();
2766
2767      // If this is a constant subscript, handle it quickly.
2768      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2769        if (CI->getZExtValue() == 0) continue;
2770        uint64_t Offs =
2771            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2772        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2773                        DAG.getIntPtrConstant(Offs));
2774        continue;
2775      }
2776
2777      // N = N + Idx * ElementSize;
2778      uint64_t ElementSize = TD->getABITypeSize(Ty);
2779      SDOperand IdxN = getValue(Idx);
2780
2781      // If the index is smaller or larger than intptr_t, truncate or extend
2782      // it.
2783      if (IdxN.getValueType().bitsLT(N.getValueType())) {
2784        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2785      } else if (IdxN.getValueType().bitsGT(N.getValueType()))
2786        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2787
2788      // If this is a multiply by a power of two, turn it into a shl
2789      // immediately.  This is a very common case.
2790      if (isPowerOf2_64(ElementSize)) {
2791        unsigned Amt = Log2_64(ElementSize);
2792        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2793                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2794        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2795        continue;
2796      }
2797
2798      SDOperand Scale = DAG.getIntPtrConstant(ElementSize);
2799      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2800      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2801    }
2802  }
2803  setValue(&I, N);
2804}
2805
2806void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2807  // If this is a fixed sized alloca in the entry block of the function,
2808  // allocate it statically on the stack.
2809  if (FuncInfo.StaticAllocaMap.count(&I))
2810    return;   // getValue will auto-populate this.
2811
2812  const Type *Ty = I.getAllocatedType();
2813  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2814  unsigned Align =
2815    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2816             I.getAlignment());
2817
2818  SDOperand AllocSize = getValue(I.getArraySize());
2819  MVT IntPtr = TLI.getPointerTy();
2820  if (IntPtr.bitsLT(AllocSize.getValueType()))
2821    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2822  else if (IntPtr.bitsGT(AllocSize.getValueType()))
2823    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2824
2825  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2826                          DAG.getIntPtrConstant(TySize));
2827
2828  // Handle alignment.  If the requested alignment is less than or equal to
2829  // the stack alignment, ignore it.  If the size is greater than or equal to
2830  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2831  unsigned StackAlign =
2832    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2833  if (Align <= StackAlign)
2834    Align = 0;
2835
2836  // Round the size of the allocation up to the stack alignment size
2837  // by add SA-1 to the size.
2838  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2839                          DAG.getIntPtrConstant(StackAlign-1));
2840  // Mask out the low bits for alignment purposes.
2841  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2842                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2843
2844  SDOperand Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2845  const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2846                                                    MVT::Other);
2847  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2848  setValue(&I, DSA);
2849  DAG.setRoot(DSA.getValue(1));
2850
2851  // Inform the Frame Information that we have just allocated a variable-sized
2852  // object.
2853  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2854}
2855
2856void SelectionDAGLowering::visitLoad(LoadInst &I) {
2857  const Value *SV = I.getOperand(0);
2858  SDOperand Ptr = getValue(SV);
2859
2860  const Type *Ty = I.getType();
2861  bool isVolatile = I.isVolatile();
2862  unsigned Alignment = I.getAlignment();
2863
2864  SmallVector<MVT, 4> ValueVTs;
2865  SmallVector<uint64_t, 4> Offsets;
2866  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2867  unsigned NumValues = ValueVTs.size();
2868  if (NumValues == 0)
2869    return;
2870
2871  SDOperand Root;
2872  if (I.isVolatile())
2873    Root = getRoot();
2874  else {
2875    // Do not serialize non-volatile loads against each other.
2876    Root = DAG.getRoot();
2877  }
2878
2879  SmallVector<SDOperand, 4> Values(NumValues);
2880  SmallVector<SDOperand, 4> Chains(NumValues);
2881  MVT PtrVT = Ptr.getValueType();
2882  for (unsigned i = 0; i != NumValues; ++i) {
2883    SDOperand L = DAG.getLoad(ValueVTs[i], Root,
2884                              DAG.getNode(ISD::ADD, PtrVT, Ptr,
2885                                          DAG.getConstant(Offsets[i], PtrVT)),
2886                              SV, Offsets[i],
2887                              isVolatile, Alignment);
2888    Values[i] = L;
2889    Chains[i] = L.getValue(1);
2890  }
2891
2892  SDOperand Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2893                                &Chains[0], NumValues);
2894  if (isVolatile)
2895    DAG.setRoot(Chain);
2896  else
2897    PendingLoads.push_back(Chain);
2898
2899  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues),
2900                                  &Values[0], NumValues));
2901}
2902
2903
2904void SelectionDAGLowering::visitStore(StoreInst &I) {
2905  Value *SrcV = I.getOperand(0);
2906  SDOperand Src = getValue(SrcV);
2907  Value *PtrV = I.getOperand(1);
2908  SDOperand Ptr = getValue(PtrV);
2909
2910  SmallVector<MVT, 4> ValueVTs;
2911  SmallVector<uint64_t, 4> Offsets;
2912  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2913  unsigned NumValues = ValueVTs.size();
2914  if (NumValues == 0)
2915    return;
2916
2917  SDOperand Root = getRoot();
2918  SmallVector<SDOperand, 4> Chains(NumValues);
2919  MVT PtrVT = Ptr.getValueType();
2920  bool isVolatile = I.isVolatile();
2921  unsigned Alignment = I.getAlignment();
2922  for (unsigned i = 0; i != NumValues; ++i)
2923    Chains[i] = DAG.getStore(Root, SDOperand(Src.Val, Src.ResNo + i),
2924                             DAG.getNode(ISD::ADD, PtrVT, Ptr,
2925                                         DAG.getConstant(Offsets[i], PtrVT)),
2926                             PtrV, Offsets[i],
2927                             isVolatile, Alignment);
2928
2929  DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
2930}
2931
2932/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2933/// node.
2934void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2935                                                unsigned Intrinsic) {
2936  bool HasChain = !I.doesNotAccessMemory();
2937  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2938
2939  // Build the operand list.
2940  SmallVector<SDOperand, 8> Ops;
2941  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2942    if (OnlyLoad) {
2943      // We don't need to serialize loads against other loads.
2944      Ops.push_back(DAG.getRoot());
2945    } else {
2946      Ops.push_back(getRoot());
2947    }
2948  }
2949
2950  // Add the intrinsic ID as an integer operand.
2951  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2952
2953  // Add all operands of the call to the operand list.
2954  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2955    SDOperand Op = getValue(I.getOperand(i));
2956    assert(TLI.isTypeLegal(Op.getValueType()) &&
2957           "Intrinsic uses a non-legal type?");
2958    Ops.push_back(Op);
2959  }
2960
2961  std::vector<MVT> VTs;
2962  if (I.getType() != Type::VoidTy) {
2963    MVT VT = TLI.getValueType(I.getType());
2964    if (VT.isVector()) {
2965      const VectorType *DestTy = cast<VectorType>(I.getType());
2966      MVT EltVT = TLI.getValueType(DestTy->getElementType());
2967
2968      VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
2969      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2970    }
2971
2972    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2973    VTs.push_back(VT);
2974  }
2975  if (HasChain)
2976    VTs.push_back(MVT::Other);
2977
2978  const MVT *VTList = DAG.getNodeValueTypes(VTs);
2979
2980  // Create the node.
2981  SDOperand Result;
2982  if (!HasChain)
2983    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2984                         &Ops[0], Ops.size());
2985  else if (I.getType() != Type::VoidTy)
2986    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2987                         &Ops[0], Ops.size());
2988  else
2989    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2990                         &Ops[0], Ops.size());
2991
2992  if (HasChain) {
2993    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2994    if (OnlyLoad)
2995      PendingLoads.push_back(Chain);
2996    else
2997      DAG.setRoot(Chain);
2998  }
2999  if (I.getType() != Type::VoidTy) {
3000    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3001      MVT VT = TLI.getValueType(PTy);
3002      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
3003    }
3004    setValue(&I, Result);
3005  }
3006}
3007
3008/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
3009static GlobalVariable *ExtractTypeInfo (Value *V) {
3010  V = V->stripPointerCasts();
3011  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3012  assert ((GV || isa<ConstantPointerNull>(V)) &&
3013          "TypeInfo must be a global variable or NULL");
3014  return GV;
3015}
3016
3017/// addCatchInfo - Extract the personality and type infos from an eh.selector
3018/// call, and add them to the specified machine basic block.
3019static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
3020                         MachineBasicBlock *MBB) {
3021  // Inform the MachineModuleInfo of the personality for this landing pad.
3022  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
3023  assert(CE->getOpcode() == Instruction::BitCast &&
3024         isa<Function>(CE->getOperand(0)) &&
3025         "Personality should be a function");
3026  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
3027
3028  // Gather all the type infos for this landing pad and pass them along to
3029  // MachineModuleInfo.
3030  std::vector<GlobalVariable *> TyInfo;
3031  unsigned N = I.getNumOperands();
3032
3033  for (unsigned i = N - 1; i > 2; --i) {
3034    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
3035      unsigned FilterLength = CI->getZExtValue();
3036      unsigned FirstCatch = i + FilterLength + !FilterLength;
3037      assert (FirstCatch <= N && "Invalid filter length");
3038
3039      if (FirstCatch < N) {
3040        TyInfo.reserve(N - FirstCatch);
3041        for (unsigned j = FirstCatch; j < N; ++j)
3042          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3043        MMI->addCatchTypeInfo(MBB, TyInfo);
3044        TyInfo.clear();
3045      }
3046
3047      if (!FilterLength) {
3048        // Cleanup.
3049        MMI->addCleanup(MBB);
3050      } else {
3051        // Filter.
3052        TyInfo.reserve(FilterLength - 1);
3053        for (unsigned j = i + 1; j < FirstCatch; ++j)
3054          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3055        MMI->addFilterTypeInfo(MBB, TyInfo);
3056        TyInfo.clear();
3057      }
3058
3059      N = i;
3060    }
3061  }
3062
3063  if (N > 3) {
3064    TyInfo.reserve(N - 3);
3065    for (unsigned j = 3; j < N; ++j)
3066      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3067    MMI->addCatchTypeInfo(MBB, TyInfo);
3068  }
3069}
3070
3071
3072/// Inlined utility function to implement binary input atomic intrinsics for
3073// visitIntrinsicCall: I is a call instruction
3074//                     Op is the associated NodeType for I
3075const char *
3076SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3077  SDOperand Root = getRoot();
3078  SDOperand L = DAG.getAtomic(Op, Root,
3079                              getValue(I.getOperand(1)),
3080                              getValue(I.getOperand(2)),
3081                              I.getOperand(1));
3082  setValue(&I, L);
3083  DAG.setRoot(L.getValue(1));
3084  return 0;
3085}
3086
3087/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3088/// we want to emit this as a call to a named external function, return the name
3089/// otherwise lower it and return null.
3090const char *
3091SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3092  switch (Intrinsic) {
3093  default:
3094    // By default, turn this into a target intrinsic node.
3095    visitTargetIntrinsic(I, Intrinsic);
3096    return 0;
3097  case Intrinsic::vastart:  visitVAStart(I); return 0;
3098  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3099  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3100  case Intrinsic::returnaddress:
3101    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
3102                             getValue(I.getOperand(1))));
3103    return 0;
3104  case Intrinsic::frameaddress:
3105    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
3106                             getValue(I.getOperand(1))));
3107    return 0;
3108  case Intrinsic::setjmp:
3109    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3110    break;
3111  case Intrinsic::longjmp:
3112    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3113    break;
3114  case Intrinsic::memcpy_i32:
3115  case Intrinsic::memcpy_i64: {
3116    SDOperand Op1 = getValue(I.getOperand(1));
3117    SDOperand Op2 = getValue(I.getOperand(2));
3118    SDOperand Op3 = getValue(I.getOperand(3));
3119    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3120    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3121                              I.getOperand(1), 0, I.getOperand(2), 0));
3122    return 0;
3123  }
3124  case Intrinsic::memset_i32:
3125  case Intrinsic::memset_i64: {
3126    SDOperand Op1 = getValue(I.getOperand(1));
3127    SDOperand Op2 = getValue(I.getOperand(2));
3128    SDOperand Op3 = getValue(I.getOperand(3));
3129    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3130    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
3131                              I.getOperand(1), 0));
3132    return 0;
3133  }
3134  case Intrinsic::memmove_i32:
3135  case Intrinsic::memmove_i64: {
3136    SDOperand Op1 = getValue(I.getOperand(1));
3137    SDOperand Op2 = getValue(I.getOperand(2));
3138    SDOperand Op3 = getValue(I.getOperand(3));
3139    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3140
3141    // If the source and destination are known to not be aliases, we can
3142    // lower memmove as memcpy.
3143    uint64_t Size = -1ULL;
3144    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3145      Size = C->getValue();
3146    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3147        AliasAnalysis::NoAlias) {
3148      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3149                                I.getOperand(1), 0, I.getOperand(2), 0));
3150      return 0;
3151    }
3152
3153    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
3154                               I.getOperand(1), 0, I.getOperand(2), 0));
3155    return 0;
3156  }
3157  case Intrinsic::dbg_stoppoint: {
3158    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3159    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3160    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
3161      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
3162      assert(DD && "Not a debug information descriptor");
3163      DAG.setRoot(DAG.getDbgStopPoint(getRoot(),
3164                                      SPI.getLine(),
3165                                      SPI.getColumn(),
3166                                      cast<CompileUnitDesc>(DD)));
3167    }
3168
3169    return 0;
3170  }
3171  case Intrinsic::dbg_region_start: {
3172    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3173    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
3174    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
3175      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
3176      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3177    }
3178
3179    return 0;
3180  }
3181  case Intrinsic::dbg_region_end: {
3182    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3183    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
3184    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
3185      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
3186      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3187    }
3188
3189    return 0;
3190  }
3191  case Intrinsic::dbg_func_start: {
3192    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3193    if (!MMI) return 0;
3194    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
3195    Value *SP = FSI.getSubprogram();
3196    if (SP && MMI->Verify(SP)) {
3197      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3198      // what (most?) gdb expects.
3199      DebugInfoDesc *DD = MMI->getDescFor(SP);
3200      assert(DD && "Not a debug information descriptor");
3201      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
3202      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
3203      unsigned SrcFile = MMI->RecordSource(CompileUnit);
3204      // Record the source line but does create a label. It will be emitted
3205      // at asm emission time.
3206      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
3207    }
3208
3209    return 0;
3210  }
3211  case Intrinsic::dbg_declare: {
3212    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3213    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3214    Value *Variable = DI.getVariable();
3215    if (MMI && Variable && MMI->Verify(Variable))
3216      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3217                              getValue(DI.getAddress()), getValue(Variable)));
3218    return 0;
3219  }
3220
3221  case Intrinsic::eh_exception: {
3222    if (!CurMBB->isLandingPad()) {
3223      // FIXME: Mark exception register as live in.  Hack for PR1508.
3224      unsigned Reg = TLI.getExceptionAddressRegister();
3225      if (Reg) CurMBB->addLiveIn(Reg);
3226    }
3227    // Insert the EXCEPTIONADDR instruction.
3228    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3229    SDOperand Ops[1];
3230    Ops[0] = DAG.getRoot();
3231    SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3232    setValue(&I, Op);
3233    DAG.setRoot(Op.getValue(1));
3234    return 0;
3235  }
3236
3237  case Intrinsic::eh_selector_i32:
3238  case Intrinsic::eh_selector_i64: {
3239    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3240    MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3241                         MVT::i32 : MVT::i64);
3242
3243    if (MMI) {
3244      if (CurMBB->isLandingPad())
3245        addCatchInfo(I, MMI, CurMBB);
3246      else {
3247#ifndef NDEBUG
3248        FuncInfo.CatchInfoLost.insert(&I);
3249#endif
3250        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3251        unsigned Reg = TLI.getExceptionSelectorRegister();
3252        if (Reg) CurMBB->addLiveIn(Reg);
3253      }
3254
3255      // Insert the EHSELECTION instruction.
3256      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3257      SDOperand Ops[2];
3258      Ops[0] = getValue(I.getOperand(1));
3259      Ops[1] = getRoot();
3260      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3261      setValue(&I, Op);
3262      DAG.setRoot(Op.getValue(1));
3263    } else {
3264      setValue(&I, DAG.getConstant(0, VT));
3265    }
3266
3267    return 0;
3268  }
3269
3270  case Intrinsic::eh_typeid_for_i32:
3271  case Intrinsic::eh_typeid_for_i64: {
3272    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3273    MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3274                         MVT::i32 : MVT::i64);
3275
3276    if (MMI) {
3277      // Find the type id for the given typeinfo.
3278      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3279
3280      unsigned TypeID = MMI->getTypeIDFor(GV);
3281      setValue(&I, DAG.getConstant(TypeID, VT));
3282    } else {
3283      // Return something different to eh_selector.
3284      setValue(&I, DAG.getConstant(1, VT));
3285    }
3286
3287    return 0;
3288  }
3289
3290  case Intrinsic::eh_return: {
3291    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3292
3293    if (MMI) {
3294      MMI->setCallsEHReturn(true);
3295      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3296                              MVT::Other,
3297                              getControlRoot(),
3298                              getValue(I.getOperand(1)),
3299                              getValue(I.getOperand(2))));
3300    } else {
3301      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3302    }
3303
3304    return 0;
3305  }
3306
3307   case Intrinsic::eh_unwind_init: {
3308     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3309       MMI->setCallsUnwindInit(true);
3310     }
3311
3312     return 0;
3313   }
3314
3315   case Intrinsic::eh_dwarf_cfa: {
3316     MVT VT = getValue(I.getOperand(1)).getValueType();
3317     SDOperand CfaArg;
3318     if (VT.bitsGT(TLI.getPointerTy()))
3319       CfaArg = DAG.getNode(ISD::TRUNCATE,
3320                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3321     else
3322       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3323                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3324
3325     SDOperand Offset = DAG.getNode(ISD::ADD,
3326                                    TLI.getPointerTy(),
3327                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3328                                                TLI.getPointerTy()),
3329                                    CfaArg);
3330     setValue(&I, DAG.getNode(ISD::ADD,
3331                              TLI.getPointerTy(),
3332                              DAG.getNode(ISD::FRAMEADDR,
3333                                          TLI.getPointerTy(),
3334                                          DAG.getConstant(0,
3335                                                          TLI.getPointerTy())),
3336                              Offset));
3337     return 0;
3338  }
3339
3340  case Intrinsic::sqrt:
3341    setValue(&I, DAG.getNode(ISD::FSQRT,
3342                             getValue(I.getOperand(1)).getValueType(),
3343                             getValue(I.getOperand(1))));
3344    return 0;
3345  case Intrinsic::powi:
3346    setValue(&I, DAG.getNode(ISD::FPOWI,
3347                             getValue(I.getOperand(1)).getValueType(),
3348                             getValue(I.getOperand(1)),
3349                             getValue(I.getOperand(2))));
3350    return 0;
3351  case Intrinsic::sin:
3352    setValue(&I, DAG.getNode(ISD::FSIN,
3353                             getValue(I.getOperand(1)).getValueType(),
3354                             getValue(I.getOperand(1))));
3355    return 0;
3356  case Intrinsic::cos:
3357    setValue(&I, DAG.getNode(ISD::FCOS,
3358                             getValue(I.getOperand(1)).getValueType(),
3359                             getValue(I.getOperand(1))));
3360    return 0;
3361  case Intrinsic::pow:
3362    setValue(&I, DAG.getNode(ISD::FPOW,
3363                             getValue(I.getOperand(1)).getValueType(),
3364                             getValue(I.getOperand(1)),
3365                             getValue(I.getOperand(2))));
3366    return 0;
3367  case Intrinsic::pcmarker: {
3368    SDOperand Tmp = getValue(I.getOperand(1));
3369    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3370    return 0;
3371  }
3372  case Intrinsic::readcyclecounter: {
3373    SDOperand Op = getRoot();
3374    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3375                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3376                                &Op, 1);
3377    setValue(&I, Tmp);
3378    DAG.setRoot(Tmp.getValue(1));
3379    return 0;
3380  }
3381  case Intrinsic::part_select: {
3382    // Currently not implemented: just abort
3383    assert(0 && "part_select intrinsic not implemented");
3384    abort();
3385  }
3386  case Intrinsic::part_set: {
3387    // Currently not implemented: just abort
3388    assert(0 && "part_set intrinsic not implemented");
3389    abort();
3390  }
3391  case Intrinsic::bswap:
3392    setValue(&I, DAG.getNode(ISD::BSWAP,
3393                             getValue(I.getOperand(1)).getValueType(),
3394                             getValue(I.getOperand(1))));
3395    return 0;
3396  case Intrinsic::cttz: {
3397    SDOperand Arg = getValue(I.getOperand(1));
3398    MVT Ty = Arg.getValueType();
3399    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3400    setValue(&I, result);
3401    return 0;
3402  }
3403  case Intrinsic::ctlz: {
3404    SDOperand Arg = getValue(I.getOperand(1));
3405    MVT Ty = Arg.getValueType();
3406    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3407    setValue(&I, result);
3408    return 0;
3409  }
3410  case Intrinsic::ctpop: {
3411    SDOperand Arg = getValue(I.getOperand(1));
3412    MVT Ty = Arg.getValueType();
3413    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3414    setValue(&I, result);
3415    return 0;
3416  }
3417  case Intrinsic::stacksave: {
3418    SDOperand Op = getRoot();
3419    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
3420              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3421    setValue(&I, Tmp);
3422    DAG.setRoot(Tmp.getValue(1));
3423    return 0;
3424  }
3425  case Intrinsic::stackrestore: {
3426    SDOperand Tmp = getValue(I.getOperand(1));
3427    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3428    return 0;
3429  }
3430  case Intrinsic::var_annotation:
3431    // Discard annotate attributes
3432    return 0;
3433
3434  case Intrinsic::init_trampoline: {
3435    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
3436
3437    SDOperand Ops[6];
3438    Ops[0] = getRoot();
3439    Ops[1] = getValue(I.getOperand(1));
3440    Ops[2] = getValue(I.getOperand(2));
3441    Ops[3] = getValue(I.getOperand(3));
3442    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3443    Ops[5] = DAG.getSrcValue(F);
3444
3445    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
3446                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3447                                                      MVT::Other), 2,
3448                                Ops, 6);
3449
3450    setValue(&I, Tmp);
3451    DAG.setRoot(Tmp.getValue(1));
3452    return 0;
3453  }
3454
3455  case Intrinsic::gcroot:
3456    if (GCI) {
3457      Value *Alloca = I.getOperand(1);
3458      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3459
3460      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3461      GCI->addStackRoot(FI->getIndex(), TypeMap);
3462    }
3463    return 0;
3464
3465  case Intrinsic::gcread:
3466  case Intrinsic::gcwrite:
3467    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3468    return 0;
3469
3470  case Intrinsic::flt_rounds: {
3471    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3472    return 0;
3473  }
3474
3475  case Intrinsic::trap: {
3476    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3477    return 0;
3478  }
3479  case Intrinsic::prefetch: {
3480    SDOperand Ops[4];
3481    Ops[0] = getRoot();
3482    Ops[1] = getValue(I.getOperand(1));
3483    Ops[2] = getValue(I.getOperand(2));
3484    Ops[3] = getValue(I.getOperand(3));
3485    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3486    return 0;
3487  }
3488
3489  case Intrinsic::memory_barrier: {
3490    SDOperand Ops[6];
3491    Ops[0] = getRoot();
3492    for (int x = 1; x < 6; ++x)
3493      Ops[x] = getValue(I.getOperand(x));
3494
3495    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3496    return 0;
3497  }
3498  case Intrinsic::atomic_cmp_swap: {
3499    SDOperand Root = getRoot();
3500    SDOperand L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, Root,
3501                                getValue(I.getOperand(1)),
3502                                getValue(I.getOperand(2)),
3503                                getValue(I.getOperand(3)),
3504                                I.getOperand(1));
3505    setValue(&I, L);
3506    DAG.setRoot(L.getValue(1));
3507    return 0;
3508  }
3509  case Intrinsic::atomic_load_add:
3510    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
3511  case Intrinsic::atomic_load_sub:
3512    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
3513  case Intrinsic::atomic_load_and:
3514    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
3515  case Intrinsic::atomic_load_or:
3516    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
3517  case Intrinsic::atomic_load_xor:
3518    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
3519  case Intrinsic::atomic_load_nand:
3520    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
3521  case Intrinsic::atomic_load_min:
3522    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
3523  case Intrinsic::atomic_load_max:
3524    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
3525  case Intrinsic::atomic_load_umin:
3526    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
3527  case Intrinsic::atomic_load_umax:
3528      return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
3529  case Intrinsic::atomic_swap:
3530    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
3531  }
3532}
3533
3534
3535void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
3536                                       bool IsTailCall,
3537                                       MachineBasicBlock *LandingPad) {
3538  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3539  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3540  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3541  unsigned BeginLabel = 0, EndLabel = 0;
3542
3543  TargetLowering::ArgListTy Args;
3544  TargetLowering::ArgListEntry Entry;
3545  Args.reserve(CS.arg_size());
3546  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3547       i != e; ++i) {
3548    SDOperand ArgNode = getValue(*i);
3549    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3550
3551    unsigned attrInd = i - CS.arg_begin() + 1;
3552    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3553    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3554    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3555    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3556    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3557    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3558    Entry.Alignment = CS.getParamAlignment(attrInd);
3559    Args.push_back(Entry);
3560  }
3561
3562  if (LandingPad && MMI) {
3563    // Insert a label before the invoke call to mark the try range.  This can be
3564    // used to detect deletion of the invoke via the MachineModuleInfo.
3565    BeginLabel = MMI->NextLabelID();
3566    // Both PendingLoads and PendingExports must be flushed here;
3567    // this call might not return.
3568    (void)getRoot();
3569    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel));
3570  }
3571
3572  std::pair<SDOperand,SDOperand> Result =
3573    TLI.LowerCallTo(getRoot(), CS.getType(),
3574                    CS.paramHasAttr(0, ParamAttr::SExt),
3575                    CS.paramHasAttr(0, ParamAttr::ZExt),
3576                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3577                    Callee, Args, DAG);
3578  if (CS.getType() != Type::VoidTy)
3579    setValue(CS.getInstruction(), Result.first);
3580  DAG.setRoot(Result.second);
3581
3582  if (LandingPad && MMI) {
3583    // Insert a label at the end of the invoke call to mark the try range.  This
3584    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3585    EndLabel = MMI->NextLabelID();
3586    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel));
3587
3588    // Inform MachineModuleInfo of range.
3589    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3590  }
3591}
3592
3593
3594void SelectionDAGLowering::visitCall(CallInst &I) {
3595  const char *RenameFn = 0;
3596  if (Function *F = I.getCalledFunction()) {
3597    if (F->isDeclaration()) {
3598      if (unsigned IID = F->getIntrinsicID()) {
3599        RenameFn = visitIntrinsicCall(I, IID);
3600        if (!RenameFn)
3601          return;
3602      }
3603    }
3604
3605    // Check for well-known libc/libm calls.  If the function is internal, it
3606    // can't be a library call.
3607    unsigned NameLen = F->getNameLen();
3608    if (!F->hasInternalLinkage() && NameLen) {
3609      const char *NameStr = F->getNameStart();
3610      if (NameStr[0] == 'c' &&
3611          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3612           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3613        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3614            I.getOperand(1)->getType()->isFloatingPoint() &&
3615            I.getType() == I.getOperand(1)->getType() &&
3616            I.getType() == I.getOperand(2)->getType()) {
3617          SDOperand LHS = getValue(I.getOperand(1));
3618          SDOperand RHS = getValue(I.getOperand(2));
3619          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3620                                   LHS, RHS));
3621          return;
3622        }
3623      } else if (NameStr[0] == 'f' &&
3624                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3625                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3626                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3627        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3628            I.getOperand(1)->getType()->isFloatingPoint() &&
3629            I.getType() == I.getOperand(1)->getType()) {
3630          SDOperand Tmp = getValue(I.getOperand(1));
3631          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3632          return;
3633        }
3634      } else if (NameStr[0] == 's' &&
3635                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3636                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3637                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3638        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3639            I.getOperand(1)->getType()->isFloatingPoint() &&
3640            I.getType() == I.getOperand(1)->getType()) {
3641          SDOperand Tmp = getValue(I.getOperand(1));
3642          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3643          return;
3644        }
3645      } else if (NameStr[0] == 'c' &&
3646                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3647                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3648                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3649        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3650            I.getOperand(1)->getType()->isFloatingPoint() &&
3651            I.getType() == I.getOperand(1)->getType()) {
3652          SDOperand Tmp = getValue(I.getOperand(1));
3653          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3654          return;
3655        }
3656      }
3657    }
3658  } else if (isa<InlineAsm>(I.getOperand(0))) {
3659    visitInlineAsm(&I);
3660    return;
3661  }
3662
3663  SDOperand Callee;
3664  if (!RenameFn)
3665    Callee = getValue(I.getOperand(0));
3666  else
3667    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3668
3669  LowerCallTo(&I, Callee, I.isTailCall());
3670}
3671
3672
3673void SelectionDAGLowering::visitGetResult(GetResultInst &I) {
3674  if (isa<UndefValue>(I.getOperand(0))) {
3675    SDOperand Undef = DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()));
3676    setValue(&I, Undef);
3677    return;
3678  }
3679
3680  // To add support for individual return values with aggregate types,
3681  // we'd need a way to take a getresult index and determine which
3682  // values of the Call SDNode are associated with it.
3683  assert(TLI.getValueType(I.getType(), true) != MVT::Other &&
3684         "Individual return values must not be aggregates!");
3685
3686  SDOperand Call = getValue(I.getOperand(0));
3687  setValue(&I, SDOperand(Call.Val, I.getIndex()));
3688}
3689
3690
3691/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3692/// this value and returns the result as a ValueVT value.  This uses
3693/// Chain/Flag as the input and updates them for the output Chain/Flag.
3694/// If the Flag pointer is NULL, no flag is used.
3695SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3696                                        SDOperand &Chain,
3697                                        SDOperand *Flag) const {
3698  // Assemble the legal parts into the final values.
3699  SmallVector<SDOperand, 4> Values(ValueVTs.size());
3700  SmallVector<SDOperand, 8> Parts;
3701  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3702    // Copy the legal parts from the registers.
3703    MVT ValueVT = ValueVTs[Value];
3704    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
3705    MVT RegisterVT = RegVTs[Value];
3706
3707    Parts.resize(NumRegs);
3708    for (unsigned i = 0; i != NumRegs; ++i) {
3709      SDOperand P;
3710      if (Flag == 0)
3711        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
3712      else {
3713        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
3714        *Flag = P.getValue(2);
3715      }
3716      Chain = P.getValue(1);
3717
3718      // If the source register was virtual and if we know something about it,
3719      // add an assert node.
3720      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
3721          RegisterVT.isInteger() && !RegisterVT.isVector()) {
3722        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
3723        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
3724        if (FLI.LiveOutRegInfo.size() > SlotNo) {
3725          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
3726
3727          unsigned RegSize = RegisterVT.getSizeInBits();
3728          unsigned NumSignBits = LOI.NumSignBits;
3729          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
3730
3731          // FIXME: We capture more information than the dag can represent.  For
3732          // now, just use the tightest assertzext/assertsext possible.
3733          bool isSExt = true;
3734          MVT FromVT(MVT::Other);
3735          if (NumSignBits == RegSize)
3736            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
3737          else if (NumZeroBits >= RegSize-1)
3738            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
3739          else if (NumSignBits > RegSize-8)
3740            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
3741          else if (NumZeroBits >= RegSize-9)
3742            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
3743          else if (NumSignBits > RegSize-16)
3744            isSExt = true, FromVT = MVT::i16;   // ASSERT SEXT 16
3745          else if (NumZeroBits >= RegSize-17)
3746            isSExt = false, FromVT = MVT::i16;  // ASSERT ZEXT 16
3747          else if (NumSignBits > RegSize-32)
3748            isSExt = true, FromVT = MVT::i32;   // ASSERT SEXT 32
3749          else if (NumZeroBits >= RegSize-33)
3750            isSExt = false, FromVT = MVT::i32;  // ASSERT ZEXT 32
3751
3752          if (FromVT != MVT::Other) {
3753            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
3754                            RegisterVT, P, DAG.getValueType(FromVT));
3755
3756          }
3757        }
3758      }
3759
3760      Parts[Part+i] = P;
3761    }
3762
3763    Values[Value] = getCopyFromParts(DAG, &Parts[Part], NumRegs, RegisterVT,
3764                                     ValueVT);
3765    Part += NumRegs;
3766  }
3767
3768  return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
3769                            &Values[0], ValueVTs.size());
3770}
3771
3772/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3773/// specified value into the registers specified by this object.  This uses
3774/// Chain/Flag as the input and updates them for the output Chain/Flag.
3775/// If the Flag pointer is NULL, no flag is used.
3776void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3777                                 SDOperand &Chain, SDOperand *Flag) const {
3778  // Get the list of the values's legal parts.
3779  unsigned NumRegs = Regs.size();
3780  SmallVector<SDOperand, 8> Parts(NumRegs);
3781  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3782    MVT ValueVT = ValueVTs[Value];
3783    unsigned NumParts = TLI->getNumRegisters(ValueVT);
3784    MVT RegisterVT = RegVTs[Value];
3785
3786    getCopyToParts(DAG, Val.getValue(Val.ResNo + Value),
3787                   &Parts[Part], NumParts, RegisterVT);
3788    Part += NumParts;
3789  }
3790
3791  // Copy the parts into the registers.
3792  SmallVector<SDOperand, 8> Chains(NumRegs);
3793  for (unsigned i = 0; i != NumRegs; ++i) {
3794    SDOperand Part;
3795    if (Flag == 0)
3796      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3797    else {
3798      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
3799      *Flag = Part.getValue(1);
3800    }
3801    Chains[i] = Part.getValue(0);
3802  }
3803
3804  if (NumRegs == 1 || Flag)
3805    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
3806    // flagged to it. That is the CopyToReg nodes and the user are considered
3807    // a single scheduling unit. If we create a TokenFactor and return it as
3808    // chain, then the TokenFactor is both a predecessor (operand) of the
3809    // user as well as a successor (the TF operands are flagged to the user).
3810    // c1, f1 = CopyToReg
3811    // c2, f2 = CopyToReg
3812    // c3     = TokenFactor c1, c2
3813    // ...
3814    //        = op c3, ..., f2
3815    Chain = Chains[NumRegs-1];
3816  else
3817    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
3818}
3819
3820/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3821/// operand list.  This adds the code marker and includes the number of
3822/// values added into it.
3823void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3824                                        std::vector<SDOperand> &Ops) const {
3825  MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3826  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3827  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
3828    unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
3829    MVT RegisterVT = RegVTs[Value];
3830    for (unsigned i = 0; i != NumRegs; ++i)
3831      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
3832  }
3833}
3834
3835/// isAllocatableRegister - If the specified register is safe to allocate,
3836/// i.e. it isn't a stack pointer or some other special register, return the
3837/// register class for the register.  Otherwise, return null.
3838static const TargetRegisterClass *
3839isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3840                      const TargetLowering &TLI,
3841                      const TargetRegisterInfo *TRI) {
3842  MVT FoundVT = MVT::Other;
3843  const TargetRegisterClass *FoundRC = 0;
3844  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3845       E = TRI->regclass_end(); RCI != E; ++RCI) {
3846    MVT ThisVT = MVT::Other;
3847
3848    const TargetRegisterClass *RC = *RCI;
3849    // If none of the the value types for this register class are valid, we
3850    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3851    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3852         I != E; ++I) {
3853      if (TLI.isTypeLegal(*I)) {
3854        // If we have already found this register in a different register class,
3855        // choose the one with the largest VT specified.  For example, on
3856        // PowerPC, we favor f64 register classes over f32.
3857        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
3858          ThisVT = *I;
3859          break;
3860        }
3861      }
3862    }
3863
3864    if (ThisVT == MVT::Other) continue;
3865
3866    // NOTE: This isn't ideal.  In particular, this might allocate the
3867    // frame pointer in functions that need it (due to them not being taken
3868    // out of allocation, because a variable sized allocation hasn't been seen
3869    // yet).  This is a slight code pessimization, but should still work.
3870    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3871         E = RC->allocation_order_end(MF); I != E; ++I)
3872      if (*I == Reg) {
3873        // We found a matching register class.  Keep looking at others in case
3874        // we find one with larger registers that this physreg is also in.
3875        FoundRC = RC;
3876        FoundVT = ThisVT;
3877        break;
3878      }
3879  }
3880  return FoundRC;
3881}
3882
3883
3884namespace {
3885/// AsmOperandInfo - This contains information for each constraint that we are
3886/// lowering.
3887struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
3888  /// CallOperand - If this is the result output operand or a clobber
3889  /// this is null, otherwise it is the incoming operand to the CallInst.
3890  /// This gets modified as the asm is processed.
3891  SDOperand CallOperand;
3892
3893  /// AssignedRegs - If this is a register or register class operand, this
3894  /// contains the set of register corresponding to the operand.
3895  RegsForValue AssignedRegs;
3896
3897  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3898    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
3899  }
3900
3901  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3902  /// busy in OutputRegs/InputRegs.
3903  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3904                         std::set<unsigned> &OutputRegs,
3905                         std::set<unsigned> &InputRegs,
3906                         const TargetRegisterInfo &TRI) const {
3907    if (isOutReg) {
3908      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3909        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3910    }
3911    if (isInReg) {
3912      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3913        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3914    }
3915  }
3916
3917private:
3918  /// MarkRegAndAliases - Mark the specified register and all aliases in the
3919  /// specified set.
3920  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3921                                const TargetRegisterInfo &TRI) {
3922    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3923    Regs.insert(Reg);
3924    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3925      for (; *Aliases; ++Aliases)
3926        Regs.insert(*Aliases);
3927  }
3928};
3929} // end anon namespace.
3930
3931
3932/// GetRegistersForValue - Assign registers (virtual or physical) for the
3933/// specified operand.  We prefer to assign virtual registers, to allow the
3934/// register allocator handle the assignment process.  However, if the asm uses
3935/// features that we can't model on machineinstrs, we have SDISel do the
3936/// allocation.  This produces generally horrible, but correct, code.
3937///
3938///   OpInfo describes the operand.
3939///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
3940///     or any explicitly clobbered registers.
3941///   Input and OutputRegs are the set of already allocated physical registers.
3942///
3943void SelectionDAGLowering::
3944GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
3945                     std::set<unsigned> &OutputRegs,
3946                     std::set<unsigned> &InputRegs) {
3947  // Compute whether this value requires an input register, an output register,
3948  // or both.
3949  bool isOutReg = false;
3950  bool isInReg = false;
3951  switch (OpInfo.Type) {
3952  case InlineAsm::isOutput:
3953    isOutReg = true;
3954
3955    // If this is an early-clobber output, or if there is an input
3956    // constraint that matches this, we need to reserve the input register
3957    // so no other inputs allocate to it.
3958    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3959    break;
3960  case InlineAsm::isInput:
3961    isInReg = true;
3962    isOutReg = false;
3963    break;
3964  case InlineAsm::isClobber:
3965    isOutReg = true;
3966    isInReg = true;
3967    break;
3968  }
3969
3970
3971  MachineFunction &MF = DAG.getMachineFunction();
3972  SmallVector<unsigned, 4> Regs;
3973
3974  // If this is a constraint for a single physreg, or a constraint for a
3975  // register class, find it.
3976  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3977    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3978                                     OpInfo.ConstraintVT);
3979
3980  unsigned NumRegs = 1;
3981  if (OpInfo.ConstraintVT != MVT::Other)
3982    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3983  MVT RegVT;
3984  MVT ValueVT = OpInfo.ConstraintVT;
3985
3986
3987  // If this is a constraint for a specific physical register, like {r17},
3988  // assign it now.
3989  if (PhysReg.first) {
3990    if (OpInfo.ConstraintVT == MVT::Other)
3991      ValueVT = *PhysReg.second->vt_begin();
3992
3993    // Get the actual register value type.  This is important, because the user
3994    // may have asked for (e.g.) the AX register in i32 type.  We need to
3995    // remember that AX is actually i16 to get the right extension.
3996    RegVT = *PhysReg.second->vt_begin();
3997
3998    // This is a explicit reference to a physical register.
3999    Regs.push_back(PhysReg.first);
4000
4001    // If this is an expanded reference, add the rest of the regs to Regs.
4002    if (NumRegs != 1) {
4003      TargetRegisterClass::iterator I = PhysReg.second->begin();
4004      for (; *I != PhysReg.first; ++I)
4005        assert(I != PhysReg.second->end() && "Didn't find reg!");
4006
4007      // Already added the first reg.
4008      --NumRegs; ++I;
4009      for (; NumRegs; --NumRegs, ++I) {
4010        assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
4011        Regs.push_back(*I);
4012      }
4013    }
4014    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4015    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4016    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4017    return;
4018  }
4019
4020  // Otherwise, if this was a reference to an LLVM register class, create vregs
4021  // for this reference.
4022  std::vector<unsigned> RegClassRegs;
4023  const TargetRegisterClass *RC = PhysReg.second;
4024  if (RC) {
4025    // If this is an early clobber or tied register, our regalloc doesn't know
4026    // how to maintain the constraint.  If it isn't, go ahead and create vreg
4027    // and let the regalloc do the right thing.
4028    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
4029        // If there is some other early clobber and this is an input register,
4030        // then we are forced to pre-allocate the input reg so it doesn't
4031        // conflict with the earlyclobber.
4032        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
4033      RegVT = *PhysReg.second->vt_begin();
4034
4035      if (OpInfo.ConstraintVT == MVT::Other)
4036        ValueVT = RegVT;
4037
4038      // Create the appropriate number of virtual registers.
4039      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4040      for (; NumRegs; --NumRegs)
4041        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
4042
4043      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4044      return;
4045    }
4046
4047    // Otherwise, we can't allocate it.  Let the code below figure out how to
4048    // maintain these constraints.
4049    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
4050
4051  } else {
4052    // This is a reference to a register class that doesn't directly correspond
4053    // to an LLVM register class.  Allocate NumRegs consecutive, available,
4054    // registers from the class.
4055    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
4056                                                         OpInfo.ConstraintVT);
4057  }
4058
4059  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4060  unsigned NumAllocated = 0;
4061  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
4062    unsigned Reg = RegClassRegs[i];
4063    // See if this register is available.
4064    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
4065        (isInReg  && InputRegs.count(Reg))) {    // Already used.
4066      // Make sure we find consecutive registers.
4067      NumAllocated = 0;
4068      continue;
4069    }
4070
4071    // Check to see if this register is allocatable (i.e. don't give out the
4072    // stack pointer).
4073    if (RC == 0) {
4074      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
4075      if (!RC) {        // Couldn't allocate this register.
4076        // Reset NumAllocated to make sure we return consecutive registers.
4077        NumAllocated = 0;
4078        continue;
4079      }
4080    }
4081
4082    // Okay, this register is good, we can use it.
4083    ++NumAllocated;
4084
4085    // If we allocated enough consecutive registers, succeed.
4086    if (NumAllocated == NumRegs) {
4087      unsigned RegStart = (i-NumAllocated)+1;
4088      unsigned RegEnd   = i+1;
4089      // Mark all of the allocated registers used.
4090      for (unsigned i = RegStart; i != RegEnd; ++i)
4091        Regs.push_back(RegClassRegs[i]);
4092
4093      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
4094                                         OpInfo.ConstraintVT);
4095      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4096      return;
4097    }
4098  }
4099
4100  // Otherwise, we couldn't allocate enough registers for this.
4101}
4102
4103
4104/// visitInlineAsm - Handle a call to an InlineAsm object.
4105///
4106void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
4107  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4108
4109  /// ConstraintOperands - Information about all of the constraints.
4110  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
4111
4112  SDOperand Chain = getRoot();
4113  SDOperand Flag;
4114
4115  std::set<unsigned> OutputRegs, InputRegs;
4116
4117  // Do a prepass over the constraints, canonicalizing them, and building up the
4118  // ConstraintOperands list.
4119  std::vector<InlineAsm::ConstraintInfo>
4120    ConstraintInfos = IA->ParseConstraints();
4121
4122  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
4123  // constraint.  If so, we can't let the register allocator allocate any input
4124  // registers, because it will not know to avoid the earlyclobbered output reg.
4125  bool SawEarlyClobber = false;
4126
4127  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
4128  unsigned ResNo = 0;   // ResNo - The result number of the next output.
4129  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4130    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
4131    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
4132
4133    MVT OpVT = MVT::Other;
4134
4135    // Compute the value type for each operand.
4136    switch (OpInfo.Type) {
4137    case InlineAsm::isOutput:
4138      // Indirect outputs just consume an argument.
4139      if (OpInfo.isIndirect) {
4140        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4141        break;
4142      }
4143      // The return value of the call is this value.  As such, there is no
4144      // corresponding argument.
4145      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4146      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
4147        OpVT = TLI.getValueType(STy->getElementType(ResNo));
4148      } else {
4149        assert(ResNo == 0 && "Asm only has one result!");
4150        OpVT = TLI.getValueType(CS.getType());
4151      }
4152      ++ResNo;
4153      break;
4154    case InlineAsm::isInput:
4155      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4156      break;
4157    case InlineAsm::isClobber:
4158      // Nothing to do.
4159      break;
4160    }
4161
4162    // If this is an input or an indirect output, process the call argument.
4163    // BasicBlocks are labels, currently appearing only in asm's.
4164    if (OpInfo.CallOperandVal) {
4165      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
4166        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
4167      else {
4168        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
4169        const Type *OpTy = OpInfo.CallOperandVal->getType();
4170        // If this is an indirect operand, the operand is a pointer to the
4171        // accessed type.
4172        if (OpInfo.isIndirect)
4173          OpTy = cast<PointerType>(OpTy)->getElementType();
4174
4175        // If OpTy is not a single value, it may be a struct/union that we
4176        // can tile with integers.
4177        if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4178          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4179          switch (BitSize) {
4180          default: break;
4181          case 1:
4182          case 8:
4183          case 16:
4184          case 32:
4185          case 64:
4186            OpTy = IntegerType::get(BitSize);
4187            break;
4188          }
4189        }
4190
4191        OpVT = TLI.getValueType(OpTy, true);
4192      }
4193    }
4194
4195    OpInfo.ConstraintVT = OpVT;
4196
4197    // Compute the constraint code and ConstraintType to use.
4198    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
4199
4200    // Keep track of whether we see an earlyclobber.
4201    SawEarlyClobber |= OpInfo.isEarlyClobber;
4202
4203    // If we see a clobber of a register, it is an early clobber.
4204    if (!SawEarlyClobber &&
4205        OpInfo.Type == InlineAsm::isClobber &&
4206        OpInfo.ConstraintType == TargetLowering::C_Register) {
4207      // Note that we want to ignore things that we don't trick here, like
4208      // dirflag, fpsr, flags, etc.
4209      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4210        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4211                                         OpInfo.ConstraintVT);
4212      if (PhysReg.first || PhysReg.second) {
4213        // This is a register we know of.
4214        SawEarlyClobber = true;
4215      }
4216    }
4217
4218    // If this is a memory input, and if the operand is not indirect, do what we
4219    // need to to provide an address for the memory input.
4220    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4221        !OpInfo.isIndirect) {
4222      assert(OpInfo.Type == InlineAsm::isInput &&
4223             "Can only indirectify direct input operands!");
4224
4225      // Memory operands really want the address of the value.  If we don't have
4226      // an indirect input, put it in the constpool if we can, otherwise spill
4227      // it to a stack slot.
4228
4229      // If the operand is a float, integer, or vector constant, spill to a
4230      // constant pool entry to get its address.
4231      Value *OpVal = OpInfo.CallOperandVal;
4232      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
4233          isa<ConstantVector>(OpVal)) {
4234        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
4235                                                 TLI.getPointerTy());
4236      } else {
4237        // Otherwise, create a stack slot and emit a store to it before the
4238        // asm.
4239        const Type *Ty = OpVal->getType();
4240        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
4241        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
4242        MachineFunction &MF = DAG.getMachineFunction();
4243        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
4244        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4245        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
4246        OpInfo.CallOperand = StackSlot;
4247      }
4248
4249      // There is no longer a Value* corresponding to this operand.
4250      OpInfo.CallOperandVal = 0;
4251      // It is now an indirect operand.
4252      OpInfo.isIndirect = true;
4253    }
4254
4255    // If this constraint is for a specific register, allocate it before
4256    // anything else.
4257    if (OpInfo.ConstraintType == TargetLowering::C_Register)
4258      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4259  }
4260  ConstraintInfos.clear();
4261
4262
4263  // Second pass - Loop over all of the operands, assigning virtual or physregs
4264  // to registerclass operands.
4265  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4266    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4267
4268    // C_Register operands have already been allocated, Other/Memory don't need
4269    // to be.
4270    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
4271      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4272  }
4273
4274  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
4275  std::vector<SDOperand> AsmNodeOperands;
4276  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
4277  AsmNodeOperands.push_back(
4278          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
4279
4280
4281  // Loop over all of the inputs, copying the operand values into the
4282  // appropriate registers and processing the output regs.
4283  RegsForValue RetValRegs;
4284
4285  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
4286  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
4287
4288  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4289    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4290
4291    switch (OpInfo.Type) {
4292    case InlineAsm::isOutput: {
4293      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
4294          OpInfo.ConstraintType != TargetLowering::C_Register) {
4295        // Memory output, or 'other' output (e.g. 'X' constraint).
4296        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
4297
4298        // Add information to the INLINEASM node to know about this output.
4299        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4300        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4301                                                        TLI.getPointerTy()));
4302        AsmNodeOperands.push_back(OpInfo.CallOperand);
4303        break;
4304      }
4305
4306      // Otherwise, this is a register or register class output.
4307
4308      // Copy the output from the appropriate register.  Find a register that
4309      // we can use.
4310      if (OpInfo.AssignedRegs.Regs.empty()) {
4311        cerr << "Couldn't allocate output reg for constraint '"
4312             << OpInfo.ConstraintCode << "'!\n";
4313        exit(1);
4314      }
4315
4316      // If this is an indirect operand, store through the pointer after the
4317      // asm.
4318      if (OpInfo.isIndirect) {
4319        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
4320                                                      OpInfo.CallOperandVal));
4321      } else {
4322        // This is the result value of the call.
4323        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4324        // Concatenate this output onto the outputs list.
4325        RetValRegs.append(OpInfo.AssignedRegs);
4326      }
4327
4328      // Add information to the INLINEASM node to know that this register is
4329      // set.
4330      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
4331                                               AsmNodeOperands);
4332      break;
4333    }
4334    case InlineAsm::isInput: {
4335      SDOperand InOperandVal = OpInfo.CallOperand;
4336
4337      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
4338        // If this is required to match an output register we have already set,
4339        // just use its register.
4340        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
4341
4342        // Scan until we find the definition we already emitted of this operand.
4343        // When we find it, create a RegsForValue operand.
4344        unsigned CurOp = 2;  // The first operand.
4345        for (; OperandNo; --OperandNo) {
4346          // Advance to the next operand.
4347          unsigned NumOps =
4348            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4349          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
4350                  (NumOps & 7) == 4 /*MEM*/) &&
4351                 "Skipped past definitions?");
4352          CurOp += (NumOps>>3)+1;
4353        }
4354
4355        unsigned NumOps =
4356          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4357        if ((NumOps & 7) == 2 /*REGDEF*/) {
4358          // Add NumOps>>3 registers to MatchedRegs.
4359          RegsForValue MatchedRegs;
4360          MatchedRegs.TLI = &TLI;
4361          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
4362          MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
4363          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
4364            unsigned Reg =
4365              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4366            MatchedRegs.Regs.push_back(Reg);
4367          }
4368
4369          // Use the produced MatchedRegs object to
4370          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4371          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
4372          break;
4373        } else {
4374          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
4375          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4376          // Add information to the INLINEASM node to know about this input.
4377          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4378          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4379                                                          TLI.getPointerTy()));
4380          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4381          break;
4382        }
4383      }
4384
4385      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4386        assert(!OpInfo.isIndirect &&
4387               "Don't know how to handle indirect other inputs yet!");
4388
4389        std::vector<SDOperand> Ops;
4390        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
4391                                         Ops, DAG);
4392        if (Ops.empty()) {
4393          cerr << "Invalid operand for inline asm constraint '"
4394               << OpInfo.ConstraintCode << "'!\n";
4395          exit(1);
4396        }
4397
4398        // Add information to the INLINEASM node to know about this input.
4399        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4400        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4401                                                        TLI.getPointerTy()));
4402        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4403        break;
4404      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4405        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4406        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4407               "Memory operands expect pointer values");
4408
4409        // Add information to the INLINEASM node to know about this input.
4410        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4411        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4412                                                        TLI.getPointerTy()));
4413        AsmNodeOperands.push_back(InOperandVal);
4414        break;
4415      }
4416
4417      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4418              OpInfo.ConstraintType == TargetLowering::C_Register) &&
4419             "Unknown constraint type!");
4420      assert(!OpInfo.isIndirect &&
4421             "Don't know how to handle indirect register inputs yet!");
4422
4423      // Copy the input into the appropriate registers.
4424      assert(!OpInfo.AssignedRegs.Regs.empty() &&
4425             "Couldn't allocate input reg!");
4426
4427      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4428
4429      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
4430                                               AsmNodeOperands);
4431      break;
4432    }
4433    case InlineAsm::isClobber: {
4434      // Add the clobbered value to the operand list, so that the register
4435      // allocator is aware that the physreg got clobbered.
4436      if (!OpInfo.AssignedRegs.Regs.empty())
4437        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
4438                                                 AsmNodeOperands);
4439      break;
4440    }
4441    }
4442  }
4443
4444  // Finish up input operands.
4445  AsmNodeOperands[0] = Chain;
4446  if (Flag.Val) AsmNodeOperands.push_back(Flag);
4447
4448  Chain = DAG.getNode(ISD::INLINEASM,
4449                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4450                      &AsmNodeOperands[0], AsmNodeOperands.size());
4451  Flag = Chain.getValue(1);
4452
4453  // If this asm returns a register value, copy the result from that register
4454  // and set it as the value of the call.
4455  if (!RetValRegs.Regs.empty()) {
4456    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4457
4458    // If any of the results of the inline asm is a vector, it may have the
4459    // wrong width/num elts.  This can happen for register classes that can
4460    // contain multiple different value types.  The preg or vreg allocated may
4461    // not have the same VT as was expected.  Convert it to the right type with
4462    // bit_convert.
4463    if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
4464      for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
4465        if (Val.Val->getValueType(i).isVector())
4466          Val = DAG.getNode(ISD::BIT_CONVERT,
4467                            TLI.getValueType(ResSTy->getElementType(i)), Val);
4468      }
4469    } else {
4470      if (Val.getValueType().isVector())
4471        Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
4472                          Val);
4473    }
4474
4475    setValue(CS.getInstruction(), Val);
4476  }
4477
4478  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
4479
4480  // Process indirect outputs, first output all of the flagged copies out of
4481  // physregs.
4482  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4483    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4484    Value *Ptr = IndirectStoresToEmit[i].second;
4485    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4486    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4487  }
4488
4489  // Emit the non-flagged stores from the physregs.
4490  SmallVector<SDOperand, 8> OutChains;
4491  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4492    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4493                                    getValue(StoresToEmit[i].second),
4494                                    StoresToEmit[i].second, 0));
4495  if (!OutChains.empty())
4496    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4497                        &OutChains[0], OutChains.size());
4498  DAG.setRoot(Chain);
4499}
4500
4501
4502void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4503  SDOperand Src = getValue(I.getOperand(0));
4504
4505  MVT IntPtr = TLI.getPointerTy();
4506
4507  if (IntPtr.bitsLT(Src.getValueType()))
4508    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4509  else if (IntPtr.bitsGT(Src.getValueType()))
4510    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4511
4512  // Scale the source by the type size.
4513  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4514  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4515                    Src, DAG.getIntPtrConstant(ElementSize));
4516
4517  TargetLowering::ArgListTy Args;
4518  TargetLowering::ArgListEntry Entry;
4519  Entry.Node = Src;
4520  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4521  Args.push_back(Entry);
4522
4523  std::pair<SDOperand,SDOperand> Result =
4524    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4525                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4526  setValue(&I, Result.first);  // Pointers always fit in registers
4527  DAG.setRoot(Result.second);
4528}
4529
4530void SelectionDAGLowering::visitFree(FreeInst &I) {
4531  TargetLowering::ArgListTy Args;
4532  TargetLowering::ArgListEntry Entry;
4533  Entry.Node = getValue(I.getOperand(0));
4534  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4535  Args.push_back(Entry);
4536  MVT IntPtr = TLI.getPointerTy();
4537  std::pair<SDOperand,SDOperand> Result =
4538    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4539                    CallingConv::C, true,
4540                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4541  DAG.setRoot(Result.second);
4542}
4543
4544// EmitInstrWithCustomInserter - This method should be implemented by targets
4545// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4546// instructions are special in various ways, which require special support to
4547// insert.  The specified MachineInstr is created but not inserted into any
4548// basic blocks, and the scheduler passes ownership of it to this method.
4549MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4550                                                       MachineBasicBlock *MBB) {
4551  cerr << "If a target marks an instruction with "
4552       << "'usesCustomDAGSchedInserter', it must implement "
4553       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4554  abort();
4555  return 0;
4556}
4557
4558void SelectionDAGLowering::visitVAStart(CallInst &I) {
4559  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4560                          getValue(I.getOperand(1)),
4561                          DAG.getSrcValue(I.getOperand(1))));
4562}
4563
4564void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4565  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4566                             getValue(I.getOperand(0)),
4567                             DAG.getSrcValue(I.getOperand(0)));
4568  setValue(&I, V);
4569  DAG.setRoot(V.getValue(1));
4570}
4571
4572void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4573  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4574                          getValue(I.getOperand(1)),
4575                          DAG.getSrcValue(I.getOperand(1))));
4576}
4577
4578void SelectionDAGLowering::visitVACopy(CallInst &I) {
4579  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4580                          getValue(I.getOperand(1)),
4581                          getValue(I.getOperand(2)),
4582                          DAG.getSrcValue(I.getOperand(1)),
4583                          DAG.getSrcValue(I.getOperand(2))));
4584}
4585
4586/// TargetLowering::LowerArguments - This is the default LowerArguments
4587/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4588/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4589/// integrated into SDISel.
4590void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
4591                                    SmallVectorImpl<SDOperand> &ArgValues) {
4592  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4593  SmallVector<SDOperand, 3+16> Ops;
4594  Ops.push_back(DAG.getRoot());
4595  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4596  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4597
4598  // Add one result value for each formal argument.
4599  SmallVector<MVT, 16> RetVals;
4600  unsigned j = 1;
4601  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4602       I != E; ++I, ++j) {
4603    SmallVector<MVT, 4> ValueVTs;
4604    ComputeValueVTs(*this, I->getType(), ValueVTs);
4605    for (unsigned Value = 0, NumValues = ValueVTs.size();
4606         Value != NumValues; ++Value) {
4607      MVT VT = ValueVTs[Value];
4608      const Type *ArgTy = VT.getTypeForMVT();
4609      ISD::ArgFlagsTy Flags;
4610      unsigned OriginalAlignment =
4611        getTargetData()->getABITypeAlignment(ArgTy);
4612
4613      if (F.paramHasAttr(j, ParamAttr::ZExt))
4614        Flags.setZExt();
4615      if (F.paramHasAttr(j, ParamAttr::SExt))
4616        Flags.setSExt();
4617      if (F.paramHasAttr(j, ParamAttr::InReg))
4618        Flags.setInReg();
4619      if (F.paramHasAttr(j, ParamAttr::StructRet))
4620        Flags.setSRet();
4621      if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4622        Flags.setByVal();
4623        const PointerType *Ty = cast<PointerType>(I->getType());
4624        const Type *ElementTy = Ty->getElementType();
4625        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4626        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4627        // For ByVal, alignment should be passed from FE.  BE will guess if
4628        // this info is not there but there are cases it cannot get right.
4629        if (F.getParamAlignment(j))
4630          FrameAlign = F.getParamAlignment(j);
4631        Flags.setByValAlign(FrameAlign);
4632        Flags.setByValSize(FrameSize);
4633      }
4634      if (F.paramHasAttr(j, ParamAttr::Nest))
4635        Flags.setNest();
4636      Flags.setOrigAlign(OriginalAlignment);
4637
4638      MVT RegisterVT = getRegisterType(VT);
4639      unsigned NumRegs = getNumRegisters(VT);
4640      for (unsigned i = 0; i != NumRegs; ++i) {
4641        RetVals.push_back(RegisterVT);
4642        ISD::ArgFlagsTy MyFlags = Flags;
4643        if (NumRegs > 1 && i == 0)
4644          MyFlags.setSplit();
4645        // if it isn't first piece, alignment must be 1
4646        else if (i > 0)
4647          MyFlags.setOrigAlign(1);
4648        Ops.push_back(DAG.getArgFlags(MyFlags));
4649      }
4650    }
4651  }
4652
4653  RetVals.push_back(MVT::Other);
4654
4655  // Create the node.
4656  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4657                               DAG.getVTList(&RetVals[0], RetVals.size()),
4658                               &Ops[0], Ops.size()).Val;
4659
4660  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4661  // allows exposing the loads that may be part of the argument access to the
4662  // first DAGCombiner pass.
4663  SDOperand TmpRes = LowerOperation(SDOperand(Result, 0), DAG);
4664
4665  // The number of results should match up, except that the lowered one may have
4666  // an extra flag result.
4667  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4668          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4669           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4670         && "Lowering produced unexpected number of results!");
4671  Result = TmpRes.Val;
4672
4673  unsigned NumArgRegs = Result->getNumValues() - 1;
4674  DAG.setRoot(SDOperand(Result, NumArgRegs));
4675
4676  // Set up the return result vector.
4677  unsigned i = 0;
4678  unsigned Idx = 1;
4679  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4680      ++I, ++Idx) {
4681    SmallVector<MVT, 4> ValueVTs;
4682    ComputeValueVTs(*this, I->getType(), ValueVTs);
4683    for (unsigned Value = 0, NumValues = ValueVTs.size();
4684         Value != NumValues; ++Value) {
4685      MVT VT = ValueVTs[Value];
4686      MVT PartVT = getRegisterType(VT);
4687
4688      unsigned NumParts = getNumRegisters(VT);
4689      SmallVector<SDOperand, 4> Parts(NumParts);
4690      for (unsigned j = 0; j != NumParts; ++j)
4691        Parts[j] = SDOperand(Result, i++);
4692
4693      ISD::NodeType AssertOp = ISD::DELETED_NODE;
4694      if (F.paramHasAttr(Idx, ParamAttr::SExt))
4695        AssertOp = ISD::AssertSext;
4696      else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4697        AssertOp = ISD::AssertZext;
4698
4699      ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4700                                           AssertOp));
4701    }
4702  }
4703  assert(i == NumArgRegs && "Argument register count mismatch!");
4704}
4705
4706
4707/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4708/// implementation, which just inserts an ISD::CALL node, which is later custom
4709/// lowered by the target to something concrete.  FIXME: When all targets are
4710/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4711std::pair<SDOperand, SDOperand>
4712TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4713                            bool RetSExt, bool RetZExt, bool isVarArg,
4714                            unsigned CallingConv, bool isTailCall,
4715                            SDOperand Callee,
4716                            ArgListTy &Args, SelectionDAG &DAG) {
4717  SmallVector<SDOperand, 32> Ops;
4718  Ops.push_back(Chain);   // Op#0 - Chain
4719  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4720  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4721  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4722  Ops.push_back(Callee);
4723
4724  // Handle all of the outgoing arguments.
4725  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4726    SmallVector<MVT, 4> ValueVTs;
4727    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
4728    for (unsigned Value = 0, NumValues = ValueVTs.size();
4729         Value != NumValues; ++Value) {
4730      MVT VT = ValueVTs[Value];
4731      const Type *ArgTy = VT.getTypeForMVT();
4732      SDOperand Op = SDOperand(Args[i].Node.Val, Args[i].Node.ResNo + Value);
4733      ISD::ArgFlagsTy Flags;
4734      unsigned OriginalAlignment =
4735        getTargetData()->getABITypeAlignment(ArgTy);
4736
4737      if (Args[i].isZExt)
4738        Flags.setZExt();
4739      if (Args[i].isSExt)
4740        Flags.setSExt();
4741      if (Args[i].isInReg)
4742        Flags.setInReg();
4743      if (Args[i].isSRet)
4744        Flags.setSRet();
4745      if (Args[i].isByVal) {
4746        Flags.setByVal();
4747        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4748        const Type *ElementTy = Ty->getElementType();
4749        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4750        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4751        // For ByVal, alignment should come from FE.  BE will guess if this
4752        // info is not there but there are cases it cannot get right.
4753        if (Args[i].Alignment)
4754          FrameAlign = Args[i].Alignment;
4755        Flags.setByValAlign(FrameAlign);
4756        Flags.setByValSize(FrameSize);
4757      }
4758      if (Args[i].isNest)
4759        Flags.setNest();
4760      Flags.setOrigAlign(OriginalAlignment);
4761
4762      MVT PartVT = getRegisterType(VT);
4763      unsigned NumParts = getNumRegisters(VT);
4764      SmallVector<SDOperand, 4> Parts(NumParts);
4765      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4766
4767      if (Args[i].isSExt)
4768        ExtendKind = ISD::SIGN_EXTEND;
4769      else if (Args[i].isZExt)
4770        ExtendKind = ISD::ZERO_EXTEND;
4771
4772      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4773
4774      for (unsigned i = 0; i != NumParts; ++i) {
4775        // if it isn't first piece, alignment must be 1
4776        ISD::ArgFlagsTy MyFlags = Flags;
4777        if (NumParts > 1 && i == 0)
4778          MyFlags.setSplit();
4779        else if (i != 0)
4780          MyFlags.setOrigAlign(1);
4781
4782        Ops.push_back(Parts[i]);
4783        Ops.push_back(DAG.getArgFlags(MyFlags));
4784      }
4785    }
4786  }
4787
4788  // Figure out the result value types. We start by making a list of
4789  // the potentially illegal return value types.
4790  SmallVector<MVT, 4> LoweredRetTys;
4791  SmallVector<MVT, 4> RetTys;
4792  ComputeValueVTs(*this, RetTy, RetTys);
4793
4794  // Then we translate that to a list of legal types.
4795  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4796    MVT VT = RetTys[I];
4797    MVT RegisterVT = getRegisterType(VT);
4798    unsigned NumRegs = getNumRegisters(VT);
4799    for (unsigned i = 0; i != NumRegs; ++i)
4800      LoweredRetTys.push_back(RegisterVT);
4801  }
4802
4803  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
4804
4805  // Create the CALL node.
4806  SDOperand Res = DAG.getNode(ISD::CALL,
4807                              DAG.getVTList(&LoweredRetTys[0],
4808                                            LoweredRetTys.size()),
4809                              &Ops[0], Ops.size());
4810  Chain = Res.getValue(LoweredRetTys.size() - 1);
4811
4812  // Gather up the call result into a single value.
4813  if (RetTy != Type::VoidTy) {
4814    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4815
4816    if (RetSExt)
4817      AssertOp = ISD::AssertSext;
4818    else if (RetZExt)
4819      AssertOp = ISD::AssertZext;
4820
4821    SmallVector<SDOperand, 4> ReturnValues;
4822    unsigned RegNo = 0;
4823    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4824      MVT VT = RetTys[I];
4825      MVT RegisterVT = getRegisterType(VT);
4826      unsigned NumRegs = getNumRegisters(VT);
4827      unsigned RegNoEnd = NumRegs + RegNo;
4828      SmallVector<SDOperand, 4> Results;
4829      for (; RegNo != RegNoEnd; ++RegNo)
4830        Results.push_back(Res.getValue(RegNo));
4831      SDOperand ReturnValue =
4832        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4833                         AssertOp);
4834      ReturnValues.push_back(ReturnValue);
4835    }
4836    Res = DAG.getMergeValues(DAG.getVTList(&RetTys[0], RetTys.size()),
4837                             &ReturnValues[0], ReturnValues.size());
4838  }
4839
4840  return std::make_pair(Res, Chain);
4841}
4842
4843SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4844  assert(0 && "LowerOperation not implemented for this target!");
4845  abort();
4846  return SDOperand();
4847}
4848
4849
4850//===----------------------------------------------------------------------===//
4851// SelectionDAGISel code
4852//===----------------------------------------------------------------------===//
4853
4854unsigned SelectionDAGISel::MakeReg(MVT VT) {
4855  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4856}
4857
4858void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4859  AU.addRequired<AliasAnalysis>();
4860  AU.addRequired<CollectorModuleMetadata>();
4861  AU.setPreservesAll();
4862}
4863
4864bool SelectionDAGISel::runOnFunction(Function &Fn) {
4865  // Get alias analysis for load/store combining.
4866  AA = &getAnalysis<AliasAnalysis>();
4867
4868  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4869  if (MF.getFunction()->hasCollector())
4870    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4871  else
4872    GCI = 0;
4873  RegInfo = &MF.getRegInfo();
4874  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4875
4876  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4877
4878  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4879    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4880      // Mark landing pad.
4881      FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4882
4883  SelectAllBasicBlocks(Fn, MF, FuncInfo);
4884
4885  // Add function live-ins to entry block live-in set.
4886  BasicBlock *EntryBB = &Fn.getEntryBlock();
4887  BB = FuncInfo.MBBMap[EntryBB];
4888  if (!RegInfo->livein_empty())
4889    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4890           E = RegInfo->livein_end(); I != E; ++I)
4891      BB->addLiveIn(I->first);
4892
4893#ifndef NDEBUG
4894  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4895         "Not all catch info was assigned to a landing pad!");
4896#endif
4897
4898  return true;
4899}
4900
4901void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
4902  SDOperand Op = getValue(V);
4903  assert((Op.getOpcode() != ISD::CopyFromReg ||
4904          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4905         "Copy from a reg to the same reg!");
4906  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
4907
4908  RegsForValue RFV(TLI, Reg, V->getType());
4909  SDOperand Chain = DAG.getEntryNode();
4910  RFV.getCopyToRegs(Op, DAG, Chain, 0);
4911  PendingExports.push_back(Chain);
4912}
4913
4914void SelectionDAGISel::
4915LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) {
4916  // If this is the entry block, emit arguments.
4917  Function &F = *LLVMBB->getParent();
4918  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4919  SDOperand OldRoot = SDL.DAG.getRoot();
4920  SmallVector<SDOperand, 16> Args;
4921  TLI.LowerArguments(F, SDL.DAG, Args);
4922
4923  unsigned a = 0;
4924  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4925       AI != E; ++AI) {
4926    SmallVector<MVT, 4> ValueVTs;
4927    ComputeValueVTs(TLI, AI->getType(), ValueVTs);
4928    unsigned NumValues = ValueVTs.size();
4929    if (!AI->use_empty()) {
4930      SDL.setValue(AI, SDL.DAG.getMergeValues(&Args[a], NumValues));
4931      // If this argument is live outside of the entry block, insert a copy from
4932      // whereever we got it to the vreg that other BB's will reference it as.
4933      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4934      if (VMI != FuncInfo.ValueMap.end()) {
4935        SDL.CopyValueToVirtualRegister(AI, VMI->second);
4936      }
4937    }
4938    a += NumValues;
4939  }
4940
4941  // Finally, if the target has anything special to do, allow it to do so.
4942  // FIXME: this should insert code into the DAG!
4943  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4944}
4945
4946static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4947                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4948  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4949    if (isSelector(I)) {
4950      // Apply the catch info to DestBB.
4951      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4952#ifndef NDEBUG
4953      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4954        FLI.CatchInfoFound.insert(I);
4955#endif
4956    }
4957}
4958
4959/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
4960/// whether object offset >= 0.
4961static bool
4962IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDOperand Op) {
4963  if (!isa<FrameIndexSDNode>(Op)) return false;
4964
4965  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
4966  int FrameIdx =  FrameIdxNode->getIndex();
4967  return MFI->isFixedObjectIndex(FrameIdx) &&
4968    MFI->getObjectOffset(FrameIdx) >= 0;
4969}
4970
4971/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
4972/// possibly be overwritten when lowering the outgoing arguments in a tail
4973/// call. Currently the implementation of this call is very conservative and
4974/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
4975/// virtual registers would be overwritten by direct lowering.
4976static bool IsPossiblyOverwrittenArgumentOfTailCall(SDOperand Op,
4977                                                    MachineFrameInfo * MFI) {
4978  RegisterSDNode * OpReg = NULL;
4979  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
4980      (Op.getOpcode()== ISD::CopyFromReg &&
4981       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
4982       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
4983      (Op.getOpcode() == ISD::LOAD &&
4984       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
4985      (Op.getOpcode() == ISD::MERGE_VALUES &&
4986       Op.getOperand(Op.ResNo).getOpcode() == ISD::LOAD &&
4987       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.ResNo).
4988                                       getOperand(1))))
4989    return true;
4990  return false;
4991}
4992
4993/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
4994/// DAG and fixes their tailcall attribute operand.
4995static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4996                                           TargetLowering& TLI) {
4997  SDNode * Ret = NULL;
4998  SDOperand Terminator = DAG.getRoot();
4999
5000  // Find RET node.
5001  if (Terminator.getOpcode() == ISD::RET) {
5002    Ret = Terminator.Val;
5003  }
5004
5005  // Fix tail call attribute of CALL nodes.
5006  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
5007         BI = DAG.allnodes_end(); BI != BE; ) {
5008    --BI;
5009    if (BI->getOpcode() == ISD::CALL) {
5010      SDOperand OpRet(Ret, 0);
5011      SDOperand OpCall(BI, 0);
5012      bool isMarkedTailCall =
5013        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
5014      // If CALL node has tail call attribute set to true and the call is not
5015      // eligible (no RET or the target rejects) the attribute is fixed to
5016      // false. The TargetLowering::IsEligibleForTailCallOptimization function
5017      // must correctly identify tail call optimizable calls.
5018      if (!isMarkedTailCall) continue;
5019      if (Ret==NULL ||
5020          !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
5021        // Not eligible. Mark CALL node as non tail call.
5022        SmallVector<SDOperand, 32> Ops;
5023        unsigned idx=0;
5024        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
5025              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5026          if (idx!=3)
5027            Ops.push_back(*I);
5028          else
5029            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
5030        }
5031        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5032      } else {
5033        // Look for tail call clobbered arguments. Emit a series of
5034        // copyto/copyfrom virtual register nodes to protect them.
5035        SmallVector<SDOperand, 32> Ops;
5036        SDOperand Chain = OpCall.getOperand(0), InFlag;
5037        unsigned idx=0;
5038        for(SDNode::op_iterator I = OpCall.Val->op_begin(),
5039              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5040          SDOperand Arg = *I;
5041          if (idx > 4 && (idx % 2)) {
5042            bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
5043              getArgFlags().isByVal();
5044            MachineFunction &MF = DAG.getMachineFunction();
5045            MachineFrameInfo *MFI = MF.getFrameInfo();
5046            if (!isByVal &&
5047                IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
5048              MVT VT = Arg.getValueType();
5049              unsigned VReg = MF.getRegInfo().
5050                createVirtualRegister(TLI.getRegClassFor(VT));
5051              Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
5052              InFlag = Chain.getValue(1);
5053              Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
5054              Chain = Arg.getValue(1);
5055              InFlag = Arg.getValue(2);
5056            }
5057          }
5058          Ops.push_back(Arg);
5059        }
5060        // Link in chain of CopyTo/CopyFromReg.
5061        Ops[0] = Chain;
5062        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5063      }
5064    }
5065  }
5066}
5067
5068void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
5069       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
5070                                         FunctionLoweringInfo &FuncInfo) {
5071  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
5072
5073  // Lower any arguments needed in this block if this is the entry block.
5074  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
5075    LowerArguments(LLVMBB, SDL);
5076
5077  BB = FuncInfo.MBBMap[LLVMBB];
5078  SDL.setCurrentBasicBlock(BB);
5079
5080  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
5081
5082  if (MMI && BB->isLandingPad()) {
5083    // Add a label to mark the beginning of the landing pad.  Deletion of the
5084    // landing pad can thus be detected via the MachineModuleInfo.
5085    unsigned LabelID = MMI->addLandingPad(BB);
5086    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, DAG.getEntryNode(), LabelID));
5087
5088    // Mark exception register as live in.
5089    unsigned Reg = TLI.getExceptionAddressRegister();
5090    if (Reg) BB->addLiveIn(Reg);
5091
5092    // Mark exception selector register as live in.
5093    Reg = TLI.getExceptionSelectorRegister();
5094    if (Reg) BB->addLiveIn(Reg);
5095
5096    // FIXME: Hack around an exception handling flaw (PR1508): the personality
5097    // function and list of typeids logically belong to the invoke (or, if you
5098    // like, the basic block containing the invoke), and need to be associated
5099    // with it in the dwarf exception handling tables.  Currently however the
5100    // information is provided by an intrinsic (eh.selector) that can be moved
5101    // to unexpected places by the optimizers: if the unwind edge is critical,
5102    // then breaking it can result in the intrinsics being in the successor of
5103    // the landing pad, not the landing pad itself.  This results in exceptions
5104    // not being caught because no typeids are associated with the invoke.
5105    // This may not be the only way things can go wrong, but it is the only way
5106    // we try to work around for the moment.
5107    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
5108
5109    if (Br && Br->isUnconditional()) { // Critical edge?
5110      BasicBlock::iterator I, E;
5111      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
5112        if (isSelector(I))
5113          break;
5114
5115      if (I == E)
5116        // No catch info found - try to extract some from the successor.
5117        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
5118    }
5119  }
5120
5121  // Lower all of the non-terminator instructions.
5122  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
5123       I != E; ++I)
5124    SDL.visit(*I);
5125
5126  // Ensure that all instructions which are used outside of their defining
5127  // blocks are available as virtual registers.  Invoke is handled elsewhere.
5128  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
5129    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
5130      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
5131      if (VMI != FuncInfo.ValueMap.end())
5132        SDL.CopyValueToVirtualRegister(I, VMI->second);
5133    }
5134
5135  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
5136  // ensure constants are generated when needed.  Remember the virtual registers
5137  // that need to be added to the Machine PHI nodes as input.  We cannot just
5138  // directly add them, because expansion might result in multiple MBB's for one
5139  // BB.  As such, the start of the BB might correspond to a different MBB than
5140  // the end.
5141  //
5142  TerminatorInst *TI = LLVMBB->getTerminator();
5143
5144  // Emit constants only once even if used by multiple PHI nodes.
5145  std::map<Constant*, unsigned> ConstantsOut;
5146
5147  // Vector bool would be better, but vector<bool> is really slow.
5148  std::vector<unsigned char> SuccsHandled;
5149  if (TI->getNumSuccessors())
5150    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
5151
5152  // Check successor nodes' PHI nodes that expect a constant to be available
5153  // from this block.
5154  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5155    BasicBlock *SuccBB = TI->getSuccessor(succ);
5156    if (!isa<PHINode>(SuccBB->begin())) continue;
5157    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
5158
5159    // If this terminator has multiple identical successors (common for
5160    // switches), only handle each succ once.
5161    unsigned SuccMBBNo = SuccMBB->getNumber();
5162    if (SuccsHandled[SuccMBBNo]) continue;
5163    SuccsHandled[SuccMBBNo] = true;
5164
5165    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5166    PHINode *PN;
5167
5168    // At this point we know that there is a 1-1 correspondence between LLVM PHI
5169    // nodes and Machine PHI nodes, but the incoming operands have not been
5170    // emitted yet.
5171    for (BasicBlock::iterator I = SuccBB->begin();
5172         (PN = dyn_cast<PHINode>(I)); ++I) {
5173      // Ignore dead phi's.
5174      if (PN->use_empty()) continue;
5175
5176      unsigned Reg;
5177      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5178
5179      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5180        unsigned &RegOut = ConstantsOut[C];
5181        if (RegOut == 0) {
5182          RegOut = FuncInfo.CreateRegForValue(C);
5183          SDL.CopyValueToVirtualRegister(C, RegOut);
5184        }
5185        Reg = RegOut;
5186      } else {
5187        Reg = FuncInfo.ValueMap[PHIOp];
5188        if (Reg == 0) {
5189          assert(isa<AllocaInst>(PHIOp) &&
5190                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5191                 "Didn't codegen value into a register!??");
5192          Reg = FuncInfo.CreateRegForValue(PHIOp);
5193          SDL.CopyValueToVirtualRegister(PHIOp, Reg);
5194        }
5195      }
5196
5197      // Remember that this register needs to added to the machine PHI node as
5198      // the input for this MBB.
5199      MVT VT = TLI.getValueType(PN->getType());
5200      unsigned NumRegisters = TLI.getNumRegisters(VT);
5201      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5202        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5203    }
5204  }
5205  ConstantsOut.clear();
5206
5207  // Lower the terminator after the copies are emitted.
5208  SDL.visit(*LLVMBB->getTerminator());
5209
5210  // Copy over any CaseBlock records that may now exist due to SwitchInst
5211  // lowering, as well as any jump table information.
5212  SwitchCases.clear();
5213  SwitchCases = SDL.SwitchCases;
5214  JTCases.clear();
5215  JTCases = SDL.JTCases;
5216  BitTestCases.clear();
5217  BitTestCases = SDL.BitTestCases;
5218
5219  // Make sure the root of the DAG is up-to-date.
5220  DAG.setRoot(SDL.getControlRoot());
5221
5222  // Check whether calls in this block are real tail calls. Fix up CALL nodes
5223  // with correct tailcall attribute so that the target can rely on the tailcall
5224  // attribute indicating whether the call is really eligible for tail call
5225  // optimization.
5226  CheckDAGForTailCallsAndFixThem(DAG, TLI);
5227}
5228
5229void SelectionDAGISel::ComputeLiveOutVRegInfo(SelectionDAG &DAG) {
5230  SmallPtrSet<SDNode*, 128> VisitedNodes;
5231  SmallVector<SDNode*, 128> Worklist;
5232
5233  Worklist.push_back(DAG.getRoot().Val);
5234
5235  APInt Mask;
5236  APInt KnownZero;
5237  APInt KnownOne;
5238
5239  while (!Worklist.empty()) {
5240    SDNode *N = Worklist.back();
5241    Worklist.pop_back();
5242
5243    // If we've already seen this node, ignore it.
5244    if (!VisitedNodes.insert(N))
5245      continue;
5246
5247    // Otherwise, add all chain operands to the worklist.
5248    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5249      if (N->getOperand(i).getValueType() == MVT::Other)
5250        Worklist.push_back(N->getOperand(i).Val);
5251
5252    // If this is a CopyToReg with a vreg dest, process it.
5253    if (N->getOpcode() != ISD::CopyToReg)
5254      continue;
5255
5256    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
5257    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
5258      continue;
5259
5260    // Ignore non-scalar or non-integer values.
5261    SDOperand Src = N->getOperand(2);
5262    MVT SrcVT = Src.getValueType();
5263    if (!SrcVT.isInteger() || SrcVT.isVector())
5264      continue;
5265
5266    unsigned NumSignBits = DAG.ComputeNumSignBits(Src);
5267    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
5268    DAG.ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
5269
5270    // Only install this information if it tells us something.
5271    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
5272      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
5273      FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5274      if (DestReg >= FLI.LiveOutRegInfo.size())
5275        FLI.LiveOutRegInfo.resize(DestReg+1);
5276      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
5277      LOI.NumSignBits = NumSignBits;
5278      LOI.KnownOne = NumSignBits;
5279      LOI.KnownZero = NumSignBits;
5280    }
5281  }
5282}
5283
5284void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
5285  DOUT << "Lowered selection DAG:\n";
5286  DEBUG(DAG.dump());
5287  std::string GroupName = "Instruction Selection and Scheduling";
5288
5289  // Run the DAG combiner in pre-legalize mode.
5290  if (TimePassesIsEnabled) {
5291    NamedRegionTimer T("DAG Combining 1", GroupName);
5292    DAG.Combine(false, *AA);
5293  } else {
5294    DAG.Combine(false, *AA);
5295  }
5296
5297  DOUT << "Optimized lowered selection DAG:\n";
5298  DEBUG(DAG.dump());
5299
5300  // Second step, hack on the DAG until it only uses operations and types that
5301  // the target supports.
5302  if (EnableLegalizeTypes) {// Enable this some day.
5303    DAG.LegalizeTypes();
5304    // TODO: enable a dag combine pass here.
5305  }
5306
5307  if (TimePassesIsEnabled) {
5308    NamedRegionTimer T("DAG Legalization", GroupName);
5309    DAG.Legalize();
5310  } else {
5311    DAG.Legalize();
5312  }
5313
5314  DOUT << "Legalized selection DAG:\n";
5315  DEBUG(DAG.dump());
5316
5317  // Run the DAG combiner in post-legalize mode.
5318  if (TimePassesIsEnabled) {
5319    NamedRegionTimer T("DAG Combining 2", GroupName);
5320    DAG.Combine(true, *AA);
5321  } else {
5322    DAG.Combine(true, *AA);
5323  }
5324
5325  DOUT << "Optimized legalized selection DAG:\n";
5326  DEBUG(DAG.dump());
5327
5328  if (ViewISelDAGs) DAG.viewGraph();
5329
5330  if (!FastISel && EnableValueProp)
5331    ComputeLiveOutVRegInfo(DAG);
5332
5333  // Third, instruction select all of the operations to machine code, adding the
5334  // code to the MachineBasicBlock.
5335  if (TimePassesIsEnabled) {
5336    NamedRegionTimer T("Instruction Selection", GroupName);
5337    InstructionSelect(DAG);
5338  } else {
5339    InstructionSelect(DAG);
5340  }
5341
5342  // Schedule machine code.
5343  ScheduleDAG *Scheduler;
5344  if (TimePassesIsEnabled) {
5345    NamedRegionTimer T("Instruction Scheduling", GroupName);
5346    Scheduler = Schedule(DAG);
5347  } else {
5348    Scheduler = Schedule(DAG);
5349  }
5350
5351  // Emit machine code to BB.  This can change 'BB' to the last block being
5352  // inserted into.
5353  if (TimePassesIsEnabled) {
5354    NamedRegionTimer T("Instruction Creation", GroupName);
5355    BB = Scheduler->EmitSchedule();
5356  } else {
5357    BB = Scheduler->EmitSchedule();
5358  }
5359
5360  // Free the scheduler state.
5361  if (TimePassesIsEnabled) {
5362    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
5363    delete Scheduler;
5364  } else {
5365    delete Scheduler;
5366  }
5367
5368  // Perform target specific isel post processing.
5369  if (TimePassesIsEnabled) {
5370    NamedRegionTimer T("Instruction Selection Post Processing", GroupName);
5371    InstructionSelectPostProcessing(DAG);
5372  } else {
5373    InstructionSelectPostProcessing(DAG);
5374  }
5375
5376  DOUT << "Selected machine code:\n";
5377  DEBUG(BB->dump());
5378}
5379
5380void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF,
5381                                            FunctionLoweringInfo &FuncInfo) {
5382  // Define AllNodes here so that memory allocation is reused for
5383  // each basic block.
5384  alist<SDNode, LargestSDNode> AllNodes;
5385
5386  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
5387    SelectBasicBlock(I, MF, FuncInfo, AllNodes);
5388    AllNodes.clear();
5389  }
5390}
5391
5392void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
5393                                        FunctionLoweringInfo &FuncInfo,
5394                                        alist<SDNode, LargestSDNode> &AllNodes) {
5395  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
5396  {
5397    SelectionDAG DAG(TLI, MF, FuncInfo,
5398                     getAnalysisToUpdate<MachineModuleInfo>(),
5399                     AllNodes);
5400    CurDAG = &DAG;
5401
5402    // First step, lower LLVM code to some DAG.  This DAG may use operations and
5403    // types that are not supported by the target.
5404    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
5405
5406    // Second step, emit the lowered DAG as machine code.
5407    CodeGenAndEmitDAG(DAG);
5408  }
5409
5410  DOUT << "Total amount of phi nodes to update: "
5411       << PHINodesToUpdate.size() << "\n";
5412  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
5413          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
5414               << ", " << PHINodesToUpdate[i].second << ")\n";);
5415
5416  // Next, now that we know what the last MBB the LLVM BB expanded is, update
5417  // PHI nodes in successors.
5418  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
5419    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5420      MachineInstr *PHI = PHINodesToUpdate[i].first;
5421      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5422             "This is not a machine PHI node that we are updating!");
5423      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5424                                                false));
5425      PHI->addOperand(MachineOperand::CreateMBB(BB));
5426    }
5427    return;
5428  }
5429
5430  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
5431    // Lower header first, if it wasn't already lowered
5432    if (!BitTestCases[i].Emitted) {
5433      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5434                         getAnalysisToUpdate<MachineModuleInfo>(),
5435                         AllNodes);
5436      CurDAG = &HSDAG;
5437      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5438      // Set the current basic block to the mbb we wish to insert the code into
5439      BB = BitTestCases[i].Parent;
5440      HSDL.setCurrentBasicBlock(BB);
5441      // Emit the code
5442      HSDL.visitBitTestHeader(BitTestCases[i]);
5443      HSDAG.setRoot(HSDL.getRoot());
5444      CodeGenAndEmitDAG(HSDAG);
5445    }
5446
5447    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5448      SelectionDAG BSDAG(TLI, MF, FuncInfo,
5449                         getAnalysisToUpdate<MachineModuleInfo>(),
5450                         AllNodes);
5451      CurDAG = &BSDAG;
5452      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
5453      // Set the current basic block to the mbb we wish to insert the code into
5454      BB = BitTestCases[i].Cases[j].ThisBB;
5455      BSDL.setCurrentBasicBlock(BB);
5456      // Emit the code
5457      if (j+1 != ej)
5458        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
5459                              BitTestCases[i].Reg,
5460                              BitTestCases[i].Cases[j]);
5461      else
5462        BSDL.visitBitTestCase(BitTestCases[i].Default,
5463                              BitTestCases[i].Reg,
5464                              BitTestCases[i].Cases[j]);
5465
5466
5467      BSDAG.setRoot(BSDL.getRoot());
5468      CodeGenAndEmitDAG(BSDAG);
5469    }
5470
5471    // Update PHI Nodes
5472    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5473      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5474      MachineBasicBlock *PHIBB = PHI->getParent();
5475      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5476             "This is not a machine PHI node that we are updating!");
5477      // This is "default" BB. We have two jumps to it. From "header" BB and
5478      // from last "case" BB.
5479      if (PHIBB == BitTestCases[i].Default) {
5480        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5481                                                  false));
5482        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
5483        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5484                                                  false));
5485        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
5486                                                  back().ThisBB));
5487      }
5488      // One of "cases" BB.
5489      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5490        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
5491        if (cBB->succ_end() !=
5492            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
5493          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5494                                                    false));
5495          PHI->addOperand(MachineOperand::CreateMBB(cBB));
5496        }
5497      }
5498    }
5499  }
5500
5501  // If the JumpTable record is filled in, then we need to emit a jump table.
5502  // Updating the PHI nodes is tricky in this case, since we need to determine
5503  // whether the PHI is a successor of the range check MBB or the jump table MBB
5504  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
5505    // Lower header first, if it wasn't already lowered
5506    if (!JTCases[i].first.Emitted) {
5507      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5508                         getAnalysisToUpdate<MachineModuleInfo>(),
5509                         AllNodes);
5510      CurDAG = &HSDAG;
5511      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5512      // Set the current basic block to the mbb we wish to insert the code into
5513      BB = JTCases[i].first.HeaderBB;
5514      HSDL.setCurrentBasicBlock(BB);
5515      // Emit the code
5516      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
5517      HSDAG.setRoot(HSDL.getRoot());
5518      CodeGenAndEmitDAG(HSDAG);
5519    }
5520
5521    SelectionDAG JSDAG(TLI, MF, FuncInfo,
5522                       getAnalysisToUpdate<MachineModuleInfo>(),
5523                       AllNodes);
5524    CurDAG = &JSDAG;
5525    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
5526    // Set the current basic block to the mbb we wish to insert the code into
5527    BB = JTCases[i].second.MBB;
5528    JSDL.setCurrentBasicBlock(BB);
5529    // Emit the code
5530    JSDL.visitJumpTable(JTCases[i].second);
5531    JSDAG.setRoot(JSDL.getRoot());
5532    CodeGenAndEmitDAG(JSDAG);
5533
5534    // Update PHI Nodes
5535    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5536      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5537      MachineBasicBlock *PHIBB = PHI->getParent();
5538      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5539             "This is not a machine PHI node that we are updating!");
5540      // "default" BB. We can go there only from header BB.
5541      if (PHIBB == JTCases[i].second.Default) {
5542        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5543                                                  false));
5544        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
5545      }
5546      // JT BB. Just iterate over successors here
5547      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
5548        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5549                                                  false));
5550        PHI->addOperand(MachineOperand::CreateMBB(BB));
5551      }
5552    }
5553  }
5554
5555  // If the switch block involved a branch to one of the actual successors, we
5556  // need to update PHI nodes in that block.
5557  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5558    MachineInstr *PHI = PHINodesToUpdate[i].first;
5559    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5560           "This is not a machine PHI node that we are updating!");
5561    if (BB->isSuccessor(PHI->getParent())) {
5562      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5563                                                false));
5564      PHI->addOperand(MachineOperand::CreateMBB(BB));
5565    }
5566  }
5567
5568  // If we generated any switch lowering information, build and codegen any
5569  // additional DAGs necessary.
5570  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
5571    SelectionDAG SDAG(TLI, MF, FuncInfo,
5572                      getAnalysisToUpdate<MachineModuleInfo>(),
5573                      AllNodes);
5574    CurDAG = &SDAG;
5575    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
5576
5577    // Set the current basic block to the mbb we wish to insert the code into
5578    BB = SwitchCases[i].ThisBB;
5579    SDL.setCurrentBasicBlock(BB);
5580
5581    // Emit the code
5582    SDL.visitSwitchCase(SwitchCases[i]);
5583    SDAG.setRoot(SDL.getRoot());
5584    CodeGenAndEmitDAG(SDAG);
5585
5586    // Handle any PHI nodes in successors of this chunk, as if we were coming
5587    // from the original BB before switch expansion.  Note that PHI nodes can
5588    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5589    // handle them the right number of times.
5590    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5591      for (MachineBasicBlock::iterator Phi = BB->begin();
5592           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5593        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5594        for (unsigned pn = 0; ; ++pn) {
5595          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5596          if (PHINodesToUpdate[pn].first == Phi) {
5597            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5598                                                      second, false));
5599            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5600            break;
5601          }
5602        }
5603      }
5604
5605      // Don't process RHS if same block as LHS.
5606      if (BB == SwitchCases[i].FalseBB)
5607        SwitchCases[i].FalseBB = 0;
5608
5609      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5610      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5611      SwitchCases[i].FalseBB = 0;
5612    }
5613    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5614  }
5615}
5616
5617
5618/// Schedule - Pick a safe ordering for instructions for each
5619/// target node in the graph.
5620///
5621ScheduleDAG *SelectionDAGISel::Schedule(SelectionDAG &DAG) {
5622  if (ViewSchedDAGs) DAG.viewGraph();
5623
5624  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5625
5626  if (!Ctor) {
5627    Ctor = ISHeuristic;
5628    RegisterScheduler::setDefault(Ctor);
5629  }
5630
5631  ScheduleDAG *Scheduler = Ctor(this, &DAG, BB, FastISel);
5632  Scheduler->Run();
5633
5634  if (ViewSUnitDAGs) Scheduler->viewGraph();
5635  return Scheduler;
5636}
5637
5638
5639HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5640  return new HazardRecognizer();
5641}
5642
5643//===----------------------------------------------------------------------===//
5644// Helper functions used by the generated instruction selector.
5645//===----------------------------------------------------------------------===//
5646// Calls to these methods are generated by tblgen.
5647
5648/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5649/// the dag combiner simplified the 255, we still want to match.  RHS is the
5650/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5651/// specified in the .td file (e.g. 255).
5652bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
5653                                    int64_t DesiredMaskS) const {
5654  const APInt &ActualMask = RHS->getAPIntValue();
5655  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5656
5657  // If the actual mask exactly matches, success!
5658  if (ActualMask == DesiredMask)
5659    return true;
5660
5661  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5662  if (ActualMask.intersects(~DesiredMask))
5663    return false;
5664
5665  // Otherwise, the DAG Combiner may have proven that the value coming in is
5666  // either already zero or is not demanded.  Check for known zero input bits.
5667  APInt NeededMask = DesiredMask & ~ActualMask;
5668  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5669    return true;
5670
5671  // TODO: check to see if missing bits are just not demanded.
5672
5673  // Otherwise, this pattern doesn't match.
5674  return false;
5675}
5676
5677/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5678/// the dag combiner simplified the 255, we still want to match.  RHS is the
5679/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5680/// specified in the .td file (e.g. 255).
5681bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5682                                   int64_t DesiredMaskS) const {
5683  const APInt &ActualMask = RHS->getAPIntValue();
5684  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5685
5686  // If the actual mask exactly matches, success!
5687  if (ActualMask == DesiredMask)
5688    return true;
5689
5690  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5691  if (ActualMask.intersects(~DesiredMask))
5692    return false;
5693
5694  // Otherwise, the DAG Combiner may have proven that the value coming in is
5695  // either already zero or is not demanded.  Check for known zero input bits.
5696  APInt NeededMask = DesiredMask & ~ActualMask;
5697
5698  APInt KnownZero, KnownOne;
5699  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5700
5701  // If all the missing bits in the or are already known to be set, match!
5702  if ((NeededMask & KnownOne) == NeededMask)
5703    return true;
5704
5705  // TODO: check to see if missing bits are just not demanded.
5706
5707  // Otherwise, this pattern doesn't match.
5708  return false;
5709}
5710
5711
5712/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5713/// by tblgen.  Others should not call it.
5714void SelectionDAGISel::
5715SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5716  std::vector<SDOperand> InOps;
5717  std::swap(InOps, Ops);
5718
5719  Ops.push_back(InOps[0]);  // input chain.
5720  Ops.push_back(InOps[1]);  // input asm string.
5721
5722  unsigned i = 2, e = InOps.size();
5723  if (InOps[e-1].getValueType() == MVT::Flag)
5724    --e;  // Don't process a flag operand if it is here.
5725
5726  while (i != e) {
5727    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5728    if ((Flags & 7) != 4 /*MEM*/) {
5729      // Just skip over this operand, copying the operands verbatim.
5730      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5731      i += (Flags >> 3) + 1;
5732    } else {
5733      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5734      // Otherwise, this is a memory operand.  Ask the target to select it.
5735      std::vector<SDOperand> SelOps;
5736      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5737        cerr << "Could not match memory address.  Inline asm failure!\n";
5738        exit(1);
5739      }
5740
5741      // Add this to the output node.
5742      MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5743      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5744                                          IntPtrTy));
5745      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5746      i += 2;
5747    }
5748  }
5749
5750  // Add the flag input back if present.
5751  if (e != InOps.size())
5752    Ops.push_back(InOps.back());
5753}
5754
5755char SelectionDAGISel::ID = 0;
5756