SelectionDAGISel.cpp revision 32ac9e77eb4519d019bf8a7c9c3be71dd21530c0
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionAnalysis.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/CodeGen/DwarfWriter.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/Timer.h"
58#include "llvm/Support/raw_ostream.h"
59#include "llvm/ADT/Statistic.h"
60#include <algorithm>
61using namespace llvm;
62
63STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
64
65static cl::opt<bool>
66EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
67          cl::desc("Enable verbose messages in the \"fast\" "
68                   "instruction selector"));
69static cl::opt<bool>
70EnableFastISelAbort("fast-isel-abort", cl::Hidden,
71          cl::desc("Enable abort calls when \"fast\" instruction fails"));
72static cl::opt<bool>
73SchedLiveInCopies("schedule-livein-copies", cl::Hidden,
74                  cl::desc("Schedule copies of livein registers"),
75                  cl::init(false));
76
77#ifndef NDEBUG
78static cl::opt<bool>
79ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
80          cl::desc("Pop up a window to show dags before the first "
81                   "dag combine pass"));
82static cl::opt<bool>
83ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize types"));
85static cl::opt<bool>
86ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before legalize"));
88static cl::opt<bool>
89ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
90          cl::desc("Pop up a window to show dags before the second "
91                   "dag combine pass"));
92static cl::opt<bool>
93ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
94          cl::desc("Pop up a window to show dags before the post legalize types"
95                   " dag combine pass"));
96static cl::opt<bool>
97ViewISelDAGs("view-isel-dags", cl::Hidden,
98          cl::desc("Pop up a window to show isel dags as they are selected"));
99static cl::opt<bool>
100ViewSchedDAGs("view-sched-dags", cl::Hidden,
101          cl::desc("Pop up a window to show sched dags as they are processed"));
102static cl::opt<bool>
103ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
104      cl::desc("Pop up a window to show SUnit dags after they are processed"));
105#else
106static const bool ViewDAGCombine1 = false,
107                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
108                  ViewDAGCombine2 = false,
109                  ViewDAGCombineLT = false,
110                  ViewISelDAGs = false, ViewSchedDAGs = false,
111                  ViewSUnitDAGs = false;
112#endif
113
114//===---------------------------------------------------------------------===//
115///
116/// RegisterScheduler class - Track the registration of instruction schedulers.
117///
118//===---------------------------------------------------------------------===//
119MachinePassRegistry RegisterScheduler::Registry;
120
121//===---------------------------------------------------------------------===//
122///
123/// ISHeuristic command line option for instruction schedulers.
124///
125//===---------------------------------------------------------------------===//
126static cl::opt<RegisterScheduler::FunctionPassCtor, false,
127               RegisterPassParser<RegisterScheduler> >
128ISHeuristic("pre-RA-sched",
129            cl::init(&createDefaultScheduler),
130            cl::desc("Instruction schedulers available (before register"
131                     " allocation):"));
132
133static RegisterScheduler
134defaultListDAGScheduler("default", "Best scheduler for the target",
135                        createDefaultScheduler);
136
137namespace llvm {
138  //===--------------------------------------------------------------------===//
139  /// createDefaultScheduler - This creates an instruction scheduler appropriate
140  /// for the target.
141  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
142                                             CodeGenOpt::Level OptLevel) {
143    const TargetLowering &TLI = IS->getTargetLowering();
144
145    if (OptLevel == CodeGenOpt::None)
146      return createFastDAGScheduler(IS, OptLevel);
147    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
148      return createTDListDAGScheduler(IS, OptLevel);
149    assert(TLI.getSchedulingPreference() ==
150           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
151    return createBURRListDAGScheduler(IS, OptLevel);
152  }
153}
154
155// EmitInstrWithCustomInserter - This method should be implemented by targets
156// that mark instructions with the 'usesCustomInserter' flag.  These
157// instructions are special in various ways, which require special support to
158// insert.  The specified MachineInstr is created but not inserted into any
159// basic blocks, and this method is called to expand it into a sequence of
160// instructions, potentially also creating new basic blocks and control flow.
161// When new basic blocks are inserted and the edges from MBB to its successors
162// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
163// DenseMap.
164MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
165                                                         MachineBasicBlock *MBB,
166                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
167#ifndef NDEBUG
168  dbgs() << "If a target marks an instruction with "
169          "'usesCustomInserter', it must implement "
170          "TargetLowering::EmitInstrWithCustomInserter!";
171#endif
172  llvm_unreachable(0);
173  return 0;
174}
175
176/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
177/// physical register has only a single copy use, then coalesced the copy
178/// if possible.
179static void EmitLiveInCopy(MachineBasicBlock *MBB,
180                           MachineBasicBlock::iterator &InsertPos,
181                           unsigned VirtReg, unsigned PhysReg,
182                           const TargetRegisterClass *RC,
183                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
184                           const MachineRegisterInfo &MRI,
185                           const TargetRegisterInfo &TRI,
186                           const TargetInstrInfo &TII) {
187  unsigned NumUses = 0;
188  MachineInstr *UseMI = NULL;
189  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
190         UE = MRI.use_end(); UI != UE; ++UI) {
191    UseMI = &*UI;
192    if (++NumUses > 1)
193      break;
194  }
195
196  // If the number of uses is not one, or the use is not a move instruction,
197  // don't coalesce. Also, only coalesce away a virtual register to virtual
198  // register copy.
199  bool Coalesced = false;
200  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
201  if (NumUses == 1 &&
202      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
203      TargetRegisterInfo::isVirtualRegister(DstReg)) {
204    VirtReg = DstReg;
205    Coalesced = true;
206  }
207
208  // Now find an ideal location to insert the copy.
209  MachineBasicBlock::iterator Pos = InsertPos;
210  while (Pos != MBB->begin()) {
211    MachineInstr *PrevMI = prior(Pos);
212    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
213    // copyRegToReg might emit multiple instructions to do a copy.
214    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
215    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
216      // This is what the BB looks like right now:
217      // r1024 = mov r0
218      // ...
219      // r1    = mov r1024
220      //
221      // We want to insert "r1025 = mov r1". Inserting this copy below the
222      // move to r1024 makes it impossible for that move to be coalesced.
223      //
224      // r1025 = mov r1
225      // r1024 = mov r0
226      // ...
227      // r1    = mov 1024
228      // r2    = mov 1025
229      break; // Woot! Found a good location.
230    --Pos;
231  }
232
233  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
234  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
235  (void) Emitted;
236
237  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
238  if (Coalesced) {
239    if (&*InsertPos == UseMI) ++InsertPos;
240    MBB->erase(UseMI);
241  }
242}
243
244/// EmitLiveInCopies - If this is the first basic block in the function,
245/// and if it has live ins that need to be copied into vregs, emit the
246/// copies into the block.
247static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
248                             const MachineRegisterInfo &MRI,
249                             const TargetRegisterInfo &TRI,
250                             const TargetInstrInfo &TII) {
251  if (SchedLiveInCopies) {
252    // Emit the copies at a heuristically-determined location in the block.
253    DenseMap<MachineInstr*, unsigned> CopyRegMap;
254    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
255    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
256           E = MRI.livein_end(); LI != E; ++LI)
257      if (LI->second) {
258        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
259        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
260                       RC, CopyRegMap, MRI, TRI, TII);
261      }
262  } else {
263    // Emit the copies into the top of the block.
264    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
265           E = MRI.livein_end(); LI != E; ++LI)
266      if (LI->second) {
267        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
268        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
269                                        LI->second, LI->first, RC, RC);
270        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
271        (void) Emitted;
272      }
273  }
274}
275
276//===----------------------------------------------------------------------===//
277// SelectionDAGISel code
278//===----------------------------------------------------------------------===//
279
280SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
281  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
282  FuncInfo(new FunctionLoweringInfo(TLI)),
283  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
284  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
285  GFI(),
286  OptLevel(OL),
287  DAGSize(0)
288{}
289
290SelectionDAGISel::~SelectionDAGISel() {
291  delete SDB;
292  delete CurDAG;
293  delete FuncInfo;
294}
295
296unsigned SelectionDAGISel::MakeReg(EVT VT) {
297  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
298}
299
300void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
301  AU.addRequired<AliasAnalysis>();
302  AU.addPreserved<AliasAnalysis>();
303  AU.addRequired<GCModuleInfo>();
304  AU.addPreserved<GCModuleInfo>();
305  AU.addRequired<DwarfWriter>();
306  AU.addPreserved<DwarfWriter>();
307  MachineFunctionPass::getAnalysisUsage(AU);
308}
309
310bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
311  Function &Fn = *mf.getFunction();
312
313  // Do some sanity-checking on the command-line options.
314  assert((!EnableFastISelVerbose || EnableFastISel) &&
315         "-fast-isel-verbose requires -fast-isel");
316  assert((!EnableFastISelAbort || EnableFastISel) &&
317         "-fast-isel-abort requires -fast-isel");
318
319  // Get alias analysis for load/store combining.
320  AA = &getAnalysis<AliasAnalysis>();
321
322  MF = &mf;
323  const TargetInstrInfo &TII = *TM.getInstrInfo();
324  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
325
326  if (Fn.hasGC())
327    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
328  else
329    GFI = 0;
330  RegInfo = &MF->getRegInfo();
331  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
332
333  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
334  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
335  CurDAG->init(*MF, MMI, DW);
336  FuncInfo->set(Fn, *MF, EnableFastISel);
337  SDB->init(GFI, *AA);
338
339  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
340    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
341      // Mark landing pad.
342      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
343
344  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
345
346  // If the first basic block in the function has live ins that need to be
347  // copied into vregs, emit the copies into the top of the block before
348  // emitting the code for the block.
349  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
350
351  // Add function live-ins to entry block live-in set.
352  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
353         E = RegInfo->livein_end(); I != E; ++I)
354    MF->begin()->addLiveIn(I->first);
355
356#ifndef NDEBUG
357  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
358         "Not all catch info was assigned to a landing pad!");
359#endif
360
361  FuncInfo->clear();
362
363  return true;
364}
365
366/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
367/// attached with this instruction.
368static void SetDebugLoc(unsigned MDDbgKind, Instruction *I,
369                        SelectionDAGBuilder *SDB,
370                        FastISel *FastIS, MachineFunction *MF) {
371  if (MDNode *Dbg = I->getMetadata(MDDbgKind)) {
372    DILocation DILoc(Dbg);
373    DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo());
374
375    SDB->setCurDebugLoc(Loc);
376
377    if (FastIS)
378      FastIS->setCurDebugLoc(Loc);
379
380    // If the function doesn't have a default debug location yet, set
381    // it. This is kind of a hack.
382    if (MF->getDefaultDebugLoc().isUnknown())
383      MF->setDefaultDebugLoc(Loc);
384  }
385}
386
387/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
388static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
389  SDB->setCurDebugLoc(DebugLoc::getUnknownLoc());
390  if (FastIS)
391    FastIS->setCurDebugLoc(DebugLoc::getUnknownLoc());
392}
393
394void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
395                                        BasicBlock::iterator Begin,
396                                        BasicBlock::iterator End,
397                                        bool &HadTailCall) {
398  SDB->setCurrentBasicBlock(BB);
399  unsigned MDDbgKind = LLVMBB->getContext().getMDKindID("dbg");
400
401  // Lower all of the non-terminator instructions. If a call is emitted
402  // as a tail call, cease emitting nodes for this block.
403  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
404    SetDebugLoc(MDDbgKind, I, SDB, 0, MF);
405
406    if (!isa<TerminatorInst>(I)) {
407      SDB->visit(*I);
408
409      // Set the current debug location back to "unknown" so that it doesn't
410      // spuriously apply to subsequent instructions.
411      ResetDebugLoc(SDB, 0);
412    }
413  }
414
415  if (!SDB->HasTailCall) {
416    // Ensure that all instructions which are used outside of their defining
417    // blocks are available as virtual registers.  Invoke is handled elsewhere.
418    for (BasicBlock::iterator I = Begin; I != End; ++I)
419      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
420        SDB->CopyToExportRegsIfNeeded(I);
421
422    // Handle PHI nodes in successor blocks.
423    if (End == LLVMBB->end()) {
424      HandlePHINodesInSuccessorBlocks(LLVMBB);
425
426      // Lower the terminator after the copies are emitted.
427      SetDebugLoc(MDDbgKind, LLVMBB->getTerminator(), SDB, 0, MF);
428      SDB->visit(*LLVMBB->getTerminator());
429      ResetDebugLoc(SDB, 0);
430    }
431  }
432
433  // Make sure the root of the DAG is up-to-date.
434  CurDAG->setRoot(SDB->getControlRoot());
435
436  // Final step, emit the lowered DAG as machine code.
437  CodeGenAndEmitDAG();
438  HadTailCall = SDB->HasTailCall;
439  SDB->clear();
440}
441
442namespace {
443/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
444/// nodes from the worklist.
445class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
446  SmallVector<SDNode*, 128> &Worklist;
447  SmallPtrSet<SDNode*, 128> &InWorklist;
448public:
449  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
450                       SmallPtrSet<SDNode*, 128> &inwl)
451    : Worklist(wl), InWorklist(inwl) {}
452
453  void RemoveFromWorklist(SDNode *N) {
454    if (!InWorklist.erase(N)) return;
455
456    SmallVector<SDNode*, 128>::iterator I =
457    std::find(Worklist.begin(), Worklist.end(), N);
458    assert(I != Worklist.end() && "Not in worklist");
459
460    *I = Worklist.back();
461    Worklist.pop_back();
462  }
463
464  virtual void NodeDeleted(SDNode *N, SDNode *E) {
465    RemoveFromWorklist(N);
466  }
467
468  virtual void NodeUpdated(SDNode *N) {
469    // Ignore updates.
470  }
471};
472}
473
474/// TrivialTruncElim - Eliminate some trivial nops that can result from
475/// ShrinkDemandedOps: (trunc (ext n)) -> n.
476static bool TrivialTruncElim(SDValue Op,
477                             TargetLowering::TargetLoweringOpt &TLO) {
478  SDValue N0 = Op.getOperand(0);
479  EVT VT = Op.getValueType();
480  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
481       N0.getOpcode() == ISD::SIGN_EXTEND ||
482       N0.getOpcode() == ISD::ANY_EXTEND) &&
483      N0.getOperand(0).getValueType() == VT) {
484    return TLO.CombineTo(Op, N0.getOperand(0));
485  }
486  return false;
487}
488
489/// ShrinkDemandedOps - A late transformation pass that shrink expressions
490/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
491/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
492void SelectionDAGISel::ShrinkDemandedOps() {
493  SmallVector<SDNode*, 128> Worklist;
494  SmallPtrSet<SDNode*, 128> InWorklist;
495
496  // Add all the dag nodes to the worklist.
497  Worklist.reserve(CurDAG->allnodes_size());
498  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
499       E = CurDAG->allnodes_end(); I != E; ++I) {
500    Worklist.push_back(I);
501    InWorklist.insert(I);
502  }
503
504  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
505  while (!Worklist.empty()) {
506    SDNode *N = Worklist.pop_back_val();
507    InWorklist.erase(N);
508
509    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
510      // Deleting this node may make its operands dead, add them to the worklist
511      // if they aren't already there.
512      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
513        if (InWorklist.insert(N->getOperand(i).getNode()))
514          Worklist.push_back(N->getOperand(i).getNode());
515
516      CurDAG->DeleteNode(N);
517      continue;
518    }
519
520    // Run ShrinkDemandedOp on scalar binary operations.
521    if (N->getNumValues() != 1 ||
522        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
523      continue;
524
525    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
526    APInt Demanded = APInt::getAllOnesValue(BitWidth);
527    APInt KnownZero, KnownOne;
528    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
529                                  KnownZero, KnownOne, TLO) &&
530        (N->getOpcode() != ISD::TRUNCATE ||
531         !TrivialTruncElim(SDValue(N, 0), TLO)))
532      continue;
533
534    // Revisit the node.
535    assert(!InWorklist.count(N) && "Already in worklist");
536    Worklist.push_back(N);
537    InWorklist.insert(N);
538
539    // Replace the old value with the new one.
540    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
541          TLO.Old.getNode()->dump(CurDAG);
542          errs() << "\nWith: ";
543          TLO.New.getNode()->dump(CurDAG);
544          errs() << '\n');
545
546    if (InWorklist.insert(TLO.New.getNode()))
547      Worklist.push_back(TLO.New.getNode());
548
549    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
550    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
551
552    if (!TLO.Old.getNode()->use_empty()) continue;
553
554    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
555         i != e; ++i) {
556      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
557      if (OpNode->hasOneUse()) {
558        // Add OpNode to the end of the list to revisit.
559        DeadNodes.RemoveFromWorklist(OpNode);
560        Worklist.push_back(OpNode);
561        InWorklist.insert(OpNode);
562      }
563    }
564
565    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
566    CurDAG->DeleteNode(TLO.Old.getNode());
567  }
568}
569
570void SelectionDAGISel::ComputeLiveOutVRegInfo() {
571  SmallPtrSet<SDNode*, 128> VisitedNodes;
572  SmallVector<SDNode*, 128> Worklist;
573
574  Worklist.push_back(CurDAG->getRoot().getNode());
575
576  APInt Mask;
577  APInt KnownZero;
578  APInt KnownOne;
579
580  do {
581    SDNode *N = Worklist.pop_back_val();
582
583    // If we've already seen this node, ignore it.
584    if (!VisitedNodes.insert(N))
585      continue;
586
587    // Otherwise, add all chain operands to the worklist.
588    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
589      if (N->getOperand(i).getValueType() == MVT::Other)
590        Worklist.push_back(N->getOperand(i).getNode());
591
592    // If this is a CopyToReg with a vreg dest, process it.
593    if (N->getOpcode() != ISD::CopyToReg)
594      continue;
595
596    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
597    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
598      continue;
599
600    // Ignore non-scalar or non-integer values.
601    SDValue Src = N->getOperand(2);
602    EVT SrcVT = Src.getValueType();
603    if (!SrcVT.isInteger() || SrcVT.isVector())
604      continue;
605
606    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
607    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
608    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
609
610    // Only install this information if it tells us something.
611    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
612      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
613      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
614        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
615      FunctionLoweringInfo::LiveOutInfo &LOI =
616        FuncInfo->LiveOutRegInfo[DestReg];
617      LOI.NumSignBits = NumSignBits;
618      LOI.KnownOne = KnownOne;
619      LOI.KnownZero = KnownZero;
620    }
621  } while (!Worklist.empty());
622}
623
624void SelectionDAGISel::CodeGenAndEmitDAG() {
625  std::string GroupName;
626  if (TimePassesIsEnabled)
627    GroupName = "Instruction Selection and Scheduling";
628  std::string BlockName;
629  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
630      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
631      ViewSUnitDAGs)
632    BlockName = MF->getFunction()->getNameStr() + ":" +
633                BB->getBasicBlock()->getNameStr();
634
635  DEBUG(dbgs() << "Initial selection DAG:\n");
636  DEBUG(CurDAG->dump());
637
638  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
639
640  // Run the DAG combiner in pre-legalize mode.
641  if (TimePassesIsEnabled) {
642    NamedRegionTimer T("DAG Combining 1", GroupName);
643    CurDAG->Combine(Unrestricted, *AA, OptLevel);
644  } else {
645    CurDAG->Combine(Unrestricted, *AA, OptLevel);
646  }
647
648  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
649  DEBUG(CurDAG->dump());
650
651  // Second step, hack on the DAG until it only uses operations and types that
652  // the target supports.
653  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
654                                               BlockName);
655
656  bool Changed;
657  if (TimePassesIsEnabled) {
658    NamedRegionTimer T("Type Legalization", GroupName);
659    Changed = CurDAG->LegalizeTypes();
660  } else {
661    Changed = CurDAG->LegalizeTypes();
662  }
663
664  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
665  DEBUG(CurDAG->dump());
666
667  if (Changed) {
668    if (ViewDAGCombineLT)
669      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
670
671    // Run the DAG combiner in post-type-legalize mode.
672    if (TimePassesIsEnabled) {
673      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
674      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
675    } else {
676      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
677    }
678
679    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
680    DEBUG(CurDAG->dump());
681  }
682
683  if (TimePassesIsEnabled) {
684    NamedRegionTimer T("Vector Legalization", GroupName);
685    Changed = CurDAG->LegalizeVectors();
686  } else {
687    Changed = CurDAG->LegalizeVectors();
688  }
689
690  if (Changed) {
691    if (TimePassesIsEnabled) {
692      NamedRegionTimer T("Type Legalization 2", GroupName);
693      CurDAG->LegalizeTypes();
694    } else {
695      CurDAG->LegalizeTypes();
696    }
697
698    if (ViewDAGCombineLT)
699      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
700
701    // Run the DAG combiner in post-type-legalize mode.
702    if (TimePassesIsEnabled) {
703      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
704      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
705    } else {
706      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
707    }
708
709    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
710    DEBUG(CurDAG->dump());
711  }
712
713  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
714
715  if (TimePassesIsEnabled) {
716    NamedRegionTimer T("DAG Legalization", GroupName);
717    CurDAG->Legalize(OptLevel);
718  } else {
719    CurDAG->Legalize(OptLevel);
720  }
721
722  DEBUG(dbgs() << "Legalized selection DAG:\n");
723  DEBUG(CurDAG->dump());
724
725  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
726
727  // Run the DAG combiner in post-legalize mode.
728  if (TimePassesIsEnabled) {
729    NamedRegionTimer T("DAG Combining 2", GroupName);
730    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
731  } else {
732    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
733  }
734
735  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
736  DEBUG(CurDAG->dump());
737
738  if (OptLevel != CodeGenOpt::None) {
739    ShrinkDemandedOps();
740    ComputeLiveOutVRegInfo();
741  }
742
743  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
744
745  // Third, instruction select all of the operations to machine code, adding the
746  // code to the MachineBasicBlock.
747  if (TimePassesIsEnabled) {
748    NamedRegionTimer T("Instruction Selection", GroupName);
749    DoInstructionSelection();
750  } else {
751    DoInstructionSelection();
752  }
753
754  DEBUG(dbgs() << "Selected selection DAG:\n");
755  DEBUG(CurDAG->dump());
756
757  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
758
759  // Schedule machine code.
760  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
761  if (TimePassesIsEnabled) {
762    NamedRegionTimer T("Instruction Scheduling", GroupName);
763    Scheduler->Run(CurDAG, BB, BB->end());
764  } else {
765    Scheduler->Run(CurDAG, BB, BB->end());
766  }
767
768  if (ViewSUnitDAGs) Scheduler->viewGraph();
769
770  // Emit machine code to BB.  This can change 'BB' to the last block being
771  // inserted into.
772  if (TimePassesIsEnabled) {
773    NamedRegionTimer T("Instruction Creation", GroupName);
774    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
775  } else {
776    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
777  }
778
779  // Free the scheduler state.
780  if (TimePassesIsEnabled) {
781    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
782    delete Scheduler;
783  } else {
784    delete Scheduler;
785  }
786
787  DEBUG(dbgs() << "Selected machine code:\n");
788  DEBUG(BB->dump());
789}
790
791void SelectionDAGISel::DoInstructionSelection() {
792  DEBUG(errs() << "===== Instruction selection begins:\n");
793
794  PreprocessISelDAG();
795
796  // Select target instructions for the DAG.
797  {
798    // Number all nodes with a topological order and set DAGSize.
799    DAGSize = CurDAG->AssignTopologicalOrder();
800
801    // Create a dummy node (which is not added to allnodes), that adds
802    // a reference to the root node, preventing it from being deleted,
803    // and tracking any changes of the root.
804    HandleSDNode Dummy(CurDAG->getRoot());
805    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
806    ++ISelPosition;
807
808    // The AllNodes list is now topological-sorted. Visit the
809    // nodes by starting at the end of the list (the root of the
810    // graph) and preceding back toward the beginning (the entry
811    // node).
812    while (ISelPosition != CurDAG->allnodes_begin()) {
813      SDNode *Node = --ISelPosition;
814      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
815      // but there are currently some corner cases that it misses. Also, this
816      // makes it theoretically possible to disable the DAGCombiner.
817      if (Node->use_empty())
818        continue;
819
820      SDNode *ResNode = Select(Node);
821
822      // FIXME: This is pretty gross.  'Select' should be changed to not return
823      // anything at all and this code should be nuked with a tactical strike.
824
825      // If node should not be replaced, continue with the next one.
826      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
827        continue;
828      // Replace node.
829      if (ResNode)
830        ReplaceUses(Node, ResNode);
831
832      // If after the replacement this node is not used any more,
833      // remove this dead node.
834      if (Node->use_empty()) { // Don't delete EntryToken, etc.
835        ISelUpdater ISU(ISelPosition);
836        CurDAG->RemoveDeadNode(Node, &ISU);
837      }
838    }
839
840    CurDAG->setRoot(Dummy.getValue());
841  }
842  DEBUG(errs() << "===== Instruction selection ends:\n");
843
844  PostprocessISelDAG();
845
846  // FIXME: This shouldn't be needed, remove it.
847  CurDAG->RemoveDeadNodes();
848}
849
850
851void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
852                                            MachineFunction &MF,
853                                            MachineModuleInfo *MMI,
854                                            DwarfWriter *DW,
855                                            const TargetInstrInfo &TII) {
856  // Initialize the Fast-ISel state, if needed.
857  FastISel *FastIS = 0;
858  if (EnableFastISel)
859    FastIS = TLI.createFastISel(MF, MMI, DW,
860                                FuncInfo->ValueMap,
861                                FuncInfo->MBBMap,
862                                FuncInfo->StaticAllocaMap
863#ifndef NDEBUG
864                                , FuncInfo->CatchInfoLost
865#endif
866                                );
867
868  unsigned MDDbgKind = Fn.getContext().getMDKindID("dbg");
869
870  // Iterate over all basic blocks in the function.
871  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
872    BasicBlock *LLVMBB = &*I;
873    BB = FuncInfo->MBBMap[LLVMBB];
874
875    BasicBlock::iterator const Begin = LLVMBB->begin();
876    BasicBlock::iterator const End = LLVMBB->end();
877    BasicBlock::iterator BI = Begin;
878
879    // Lower any arguments needed in this block if this is the entry block.
880    bool SuppressFastISel = false;
881    if (LLVMBB == &Fn.getEntryBlock()) {
882      LowerArguments(LLVMBB);
883
884      // If any of the arguments has the byval attribute, forgo
885      // fast-isel in the entry block.
886      if (FastIS) {
887        unsigned j = 1;
888        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
889             I != E; ++I, ++j)
890          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
891            if (EnableFastISelVerbose || EnableFastISelAbort)
892              dbgs() << "FastISel skips entry block due to byval argument\n";
893            SuppressFastISel = true;
894            break;
895          }
896      }
897    }
898
899    if (MMI && BB->isLandingPad()) {
900      // Add a label to mark the beginning of the landing pad.  Deletion of the
901      // landing pad can thus be detected via the MachineModuleInfo.
902      MCSymbol *Label = MMI->addLandingPad(BB);
903
904      const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL);
905      BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
906
907      // Mark exception register as live in.
908      unsigned Reg = TLI.getExceptionAddressRegister();
909      if (Reg) BB->addLiveIn(Reg);
910
911      // Mark exception selector register as live in.
912      Reg = TLI.getExceptionSelectorRegister();
913      if (Reg) BB->addLiveIn(Reg);
914
915      // FIXME: Hack around an exception handling flaw (PR1508): the personality
916      // function and list of typeids logically belong to the invoke (or, if you
917      // like, the basic block containing the invoke), and need to be associated
918      // with it in the dwarf exception handling tables.  Currently however the
919      // information is provided by an intrinsic (eh.selector) that can be moved
920      // to unexpected places by the optimizers: if the unwind edge is critical,
921      // then breaking it can result in the intrinsics being in the successor of
922      // the landing pad, not the landing pad itself.  This results
923      // in exceptions not being caught because no typeids are associated with
924      // the invoke.  This may not be the only way things can go wrong, but it
925      // is the only way we try to work around for the moment.
926      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
927
928      if (Br && Br->isUnconditional()) { // Critical edge?
929        BasicBlock::iterator I, E;
930        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
931          if (isa<EHSelectorInst>(I))
932            break;
933
934        if (I == E)
935          // No catch info found - try to extract some from the successor.
936          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
937      }
938    }
939
940    // Before doing SelectionDAG ISel, see if FastISel has been requested.
941    if (FastIS && !SuppressFastISel) {
942      // Emit code for any incoming arguments. This must happen before
943      // beginning FastISel on the entry block.
944      if (LLVMBB == &Fn.getEntryBlock()) {
945        CurDAG->setRoot(SDB->getControlRoot());
946        CodeGenAndEmitDAG();
947        SDB->clear();
948      }
949      FastIS->startNewBlock(BB);
950      // Do FastISel on as many instructions as possible.
951      for (; BI != End; ++BI) {
952        // Just before the terminator instruction, insert instructions to
953        // feed PHI nodes in successor blocks.
954        if (isa<TerminatorInst>(BI))
955          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
956            ++NumFastIselFailures;
957            ResetDebugLoc(SDB, FastIS);
958            if (EnableFastISelVerbose || EnableFastISelAbort) {
959              dbgs() << "FastISel miss: ";
960              BI->dump();
961            }
962            assert(!EnableFastISelAbort &&
963                   "FastISel didn't handle a PHI in a successor");
964            break;
965          }
966
967        SetDebugLoc(MDDbgKind, BI, SDB, FastIS, &MF);
968
969        // Try to select the instruction with FastISel.
970        if (FastIS->SelectInstruction(BI)) {
971          ResetDebugLoc(SDB, FastIS);
972          continue;
973        }
974
975        // Clear out the debug location so that it doesn't carry over to
976        // unrelated instructions.
977        ResetDebugLoc(SDB, FastIS);
978
979        // Then handle certain instructions as single-LLVM-Instruction blocks.
980        if (isa<CallInst>(BI)) {
981          ++NumFastIselFailures;
982          if (EnableFastISelVerbose || EnableFastISelAbort) {
983            dbgs() << "FastISel missed call: ";
984            BI->dump();
985          }
986
987          if (!BI->getType()->isVoidTy()) {
988            unsigned &R = FuncInfo->ValueMap[BI];
989            if (!R)
990              R = FuncInfo->CreateRegForValue(BI);
991          }
992
993          bool HadTailCall = false;
994          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
995
996          // If the call was emitted as a tail call, we're done with the block.
997          if (HadTailCall) {
998            BI = End;
999            break;
1000          }
1001
1002          // If the instruction was codegen'd with multiple blocks,
1003          // inform the FastISel object where to resume inserting.
1004          FastIS->setCurrentBlock(BB);
1005          continue;
1006        }
1007
1008        // Otherwise, give up on FastISel for the rest of the block.
1009        // For now, be a little lenient about non-branch terminators.
1010        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
1011          ++NumFastIselFailures;
1012          if (EnableFastISelVerbose || EnableFastISelAbort) {
1013            dbgs() << "FastISel miss: ";
1014            BI->dump();
1015          }
1016          if (EnableFastISelAbort)
1017            // The "fast" selector couldn't handle something and bailed.
1018            // For the purpose of debugging, just abort.
1019            llvm_unreachable("FastISel didn't select the entire block");
1020        }
1021        break;
1022      }
1023    }
1024
1025    // Run SelectionDAG instruction selection on the remainder of the block
1026    // not handled by FastISel. If FastISel is not run, this is the entire
1027    // block.
1028    if (BI != End) {
1029      bool HadTailCall;
1030      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
1031    }
1032
1033    FinishBasicBlock();
1034  }
1035
1036  delete FastIS;
1037}
1038
1039void
1040SelectionDAGISel::FinishBasicBlock() {
1041
1042  DEBUG(dbgs() << "Target-post-processed machine code:\n");
1043  DEBUG(BB->dump());
1044
1045  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1046               << SDB->PHINodesToUpdate.size() << "\n");
1047  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
1048          dbgs() << "Node " << i << " : ("
1049                 << SDB->PHINodesToUpdate[i].first
1050                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
1051
1052  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1053  // PHI nodes in successors.
1054  if (SDB->SwitchCases.empty() &&
1055      SDB->JTCases.empty() &&
1056      SDB->BitTestCases.empty()) {
1057    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1058      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1059      assert(PHI->isPHI() &&
1060             "This is not a machine PHI node that we are updating!");
1061      if (!BB->isSuccessor(PHI->getParent()))
1062        continue;
1063      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1064                                                false));
1065      PHI->addOperand(MachineOperand::CreateMBB(BB));
1066    }
1067    SDB->PHINodesToUpdate.clear();
1068    return;
1069  }
1070
1071  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1072    // Lower header first, if it wasn't already lowered
1073    if (!SDB->BitTestCases[i].Emitted) {
1074      // Set the current basic block to the mbb we wish to insert the code into
1075      BB = SDB->BitTestCases[i].Parent;
1076      SDB->setCurrentBasicBlock(BB);
1077      // Emit the code
1078      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
1079      CurDAG->setRoot(SDB->getRoot());
1080      CodeGenAndEmitDAG();
1081      SDB->clear();
1082    }
1083
1084    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1085      // Set the current basic block to the mbb we wish to insert the code into
1086      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
1087      SDB->setCurrentBasicBlock(BB);
1088      // Emit the code
1089      if (j+1 != ej)
1090        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
1091                              SDB->BitTestCases[i].Reg,
1092                              SDB->BitTestCases[i].Cases[j]);
1093      else
1094        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
1095                              SDB->BitTestCases[i].Reg,
1096                              SDB->BitTestCases[i].Cases[j]);
1097
1098
1099      CurDAG->setRoot(SDB->getRoot());
1100      CodeGenAndEmitDAG();
1101      SDB->clear();
1102    }
1103
1104    // Update PHI Nodes
1105    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1106      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1107      MachineBasicBlock *PHIBB = PHI->getParent();
1108      assert(PHI->isPHI() &&
1109             "This is not a machine PHI node that we are updating!");
1110      // This is "default" BB. We have two jumps to it. From "header" BB and
1111      // from last "case" BB.
1112      if (PHIBB == SDB->BitTestCases[i].Default) {
1113        PHI->addOperand(MachineOperand::
1114                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1115        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1116        PHI->addOperand(MachineOperand::
1117                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1118        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1119                                                  back().ThisBB));
1120      }
1121      // One of "cases" BB.
1122      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1123           j != ej; ++j) {
1124        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1125        if (cBB->isSuccessor(PHIBB)) {
1126          PHI->addOperand(MachineOperand::
1127                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1128          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1129        }
1130      }
1131    }
1132  }
1133  SDB->BitTestCases.clear();
1134
1135  // If the JumpTable record is filled in, then we need to emit a jump table.
1136  // Updating the PHI nodes is tricky in this case, since we need to determine
1137  // whether the PHI is a successor of the range check MBB or the jump table MBB
1138  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1139    // Lower header first, if it wasn't already lowered
1140    if (!SDB->JTCases[i].first.Emitted) {
1141      // Set the current basic block to the mbb we wish to insert the code into
1142      BB = SDB->JTCases[i].first.HeaderBB;
1143      SDB->setCurrentBasicBlock(BB);
1144      // Emit the code
1145      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
1146      CurDAG->setRoot(SDB->getRoot());
1147      CodeGenAndEmitDAG();
1148      SDB->clear();
1149    }
1150
1151    // Set the current basic block to the mbb we wish to insert the code into
1152    BB = SDB->JTCases[i].second.MBB;
1153    SDB->setCurrentBasicBlock(BB);
1154    // Emit the code
1155    SDB->visitJumpTable(SDB->JTCases[i].second);
1156    CurDAG->setRoot(SDB->getRoot());
1157    CodeGenAndEmitDAG();
1158    SDB->clear();
1159
1160    // Update PHI Nodes
1161    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1162      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1163      MachineBasicBlock *PHIBB = PHI->getParent();
1164      assert(PHI->isPHI() &&
1165             "This is not a machine PHI node that we are updating!");
1166      // "default" BB. We can go there only from header BB.
1167      if (PHIBB == SDB->JTCases[i].second.Default) {
1168        PHI->addOperand
1169          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1170        PHI->addOperand
1171          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1172      }
1173      // JT BB. Just iterate over successors here
1174      if (BB->isSuccessor(PHIBB)) {
1175        PHI->addOperand
1176          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1177        PHI->addOperand(MachineOperand::CreateMBB(BB));
1178      }
1179    }
1180  }
1181  SDB->JTCases.clear();
1182
1183  // If the switch block involved a branch to one of the actual successors, we
1184  // need to update PHI nodes in that block.
1185  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1186    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1187    assert(PHI->isPHI() &&
1188           "This is not a machine PHI node that we are updating!");
1189    if (BB->isSuccessor(PHI->getParent())) {
1190      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1191                                                false));
1192      PHI->addOperand(MachineOperand::CreateMBB(BB));
1193    }
1194  }
1195
1196  // If we generated any switch lowering information, build and codegen any
1197  // additional DAGs necessary.
1198  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1199    // Set the current basic block to the mbb we wish to insert the code into
1200    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1201    SDB->setCurrentBasicBlock(BB);
1202
1203    // Emit the code
1204    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1205    CurDAG->setRoot(SDB->getRoot());
1206    CodeGenAndEmitDAG();
1207
1208    // Handle any PHI nodes in successors of this chunk, as if we were coming
1209    // from the original BB before switch expansion.  Note that PHI nodes can
1210    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1211    // handle them the right number of times.
1212    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1213      // If new BB's are created during scheduling, the edges may have been
1214      // updated. That is, the edge from ThisBB to BB may have been split and
1215      // BB's predecessor is now another block.
1216      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1217        SDB->EdgeMapping.find(BB);
1218      if (EI != SDB->EdgeMapping.end())
1219        ThisBB = EI->second;
1220
1221      // BB may have been removed from the CFG if a branch was constant folded.
1222      if (ThisBB->isSuccessor(BB)) {
1223        for (MachineBasicBlock::iterator Phi = BB->begin();
1224             Phi != BB->end() && Phi->isPHI();
1225             ++Phi) {
1226          // This value for this PHI node is recorded in PHINodesToUpdate.
1227          for (unsigned pn = 0; ; ++pn) {
1228            assert(pn != SDB->PHINodesToUpdate.size() &&
1229                   "Didn't find PHI entry!");
1230            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1231              Phi->addOperand(MachineOperand::
1232                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1233                                        false));
1234              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1235              break;
1236            }
1237          }
1238        }
1239      }
1240
1241      // Don't process RHS if same block as LHS.
1242      if (BB == SDB->SwitchCases[i].FalseBB)
1243        SDB->SwitchCases[i].FalseBB = 0;
1244
1245      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1246      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1247      SDB->SwitchCases[i].FalseBB = 0;
1248    }
1249    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1250    SDB->clear();
1251  }
1252  SDB->SwitchCases.clear();
1253
1254  SDB->PHINodesToUpdate.clear();
1255}
1256
1257
1258/// Create the scheduler. If a specific scheduler was specified
1259/// via the SchedulerRegistry, use it, otherwise select the
1260/// one preferred by the target.
1261///
1262ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1263  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1264
1265  if (!Ctor) {
1266    Ctor = ISHeuristic;
1267    RegisterScheduler::setDefault(Ctor);
1268  }
1269
1270  return Ctor(this, OptLevel);
1271}
1272
1273ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1274  return new ScheduleHazardRecognizer();
1275}
1276
1277//===----------------------------------------------------------------------===//
1278// Helper functions used by the generated instruction selector.
1279//===----------------------------------------------------------------------===//
1280// Calls to these methods are generated by tblgen.
1281
1282/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1283/// the dag combiner simplified the 255, we still want to match.  RHS is the
1284/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1285/// specified in the .td file (e.g. 255).
1286bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1287                                    int64_t DesiredMaskS) const {
1288  const APInt &ActualMask = RHS->getAPIntValue();
1289  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1290
1291  // If the actual mask exactly matches, success!
1292  if (ActualMask == DesiredMask)
1293    return true;
1294
1295  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1296  if (ActualMask.intersects(~DesiredMask))
1297    return false;
1298
1299  // Otherwise, the DAG Combiner may have proven that the value coming in is
1300  // either already zero or is not demanded.  Check for known zero input bits.
1301  APInt NeededMask = DesiredMask & ~ActualMask;
1302  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1303    return true;
1304
1305  // TODO: check to see if missing bits are just not demanded.
1306
1307  // Otherwise, this pattern doesn't match.
1308  return false;
1309}
1310
1311/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1312/// the dag combiner simplified the 255, we still want to match.  RHS is the
1313/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1314/// specified in the .td file (e.g. 255).
1315bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1316                                   int64_t DesiredMaskS) const {
1317  const APInt &ActualMask = RHS->getAPIntValue();
1318  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1319
1320  // If the actual mask exactly matches, success!
1321  if (ActualMask == DesiredMask)
1322    return true;
1323
1324  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1325  if (ActualMask.intersects(~DesiredMask))
1326    return false;
1327
1328  // Otherwise, the DAG Combiner may have proven that the value coming in is
1329  // either already zero or is not demanded.  Check for known zero input bits.
1330  APInt NeededMask = DesiredMask & ~ActualMask;
1331
1332  APInt KnownZero, KnownOne;
1333  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1334
1335  // If all the missing bits in the or are already known to be set, match!
1336  if ((NeededMask & KnownOne) == NeededMask)
1337    return true;
1338
1339  // TODO: check to see if missing bits are just not demanded.
1340
1341  // Otherwise, this pattern doesn't match.
1342  return false;
1343}
1344
1345
1346/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1347/// by tblgen.  Others should not call it.
1348void SelectionDAGISel::
1349SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1350  std::vector<SDValue> InOps;
1351  std::swap(InOps, Ops);
1352
1353  Ops.push_back(InOps[0]);  // input chain.
1354  Ops.push_back(InOps[1]);  // input asm string.
1355
1356  unsigned i = 2, e = InOps.size();
1357  if (InOps[e-1].getValueType() == MVT::Flag)
1358    --e;  // Don't process a flag operand if it is here.
1359
1360  while (i != e) {
1361    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1362    if ((Flags & 7) != 4 /*MEM*/) {
1363      // Just skip over this operand, copying the operands verbatim.
1364      Ops.insert(Ops.end(), InOps.begin()+i,
1365                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1366      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1367    } else {
1368      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1369             "Memory operand with multiple values?");
1370      // Otherwise, this is a memory operand.  Ask the target to select it.
1371      std::vector<SDValue> SelOps;
1372      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1373        llvm_report_error("Could not match memory address.  Inline asm"
1374                          " failure!");
1375      }
1376
1377      // Add this to the output node.
1378      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1379                                              MVT::i32));
1380      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1381      i += 2;
1382    }
1383  }
1384
1385  // Add the flag input back if present.
1386  if (e != InOps.size())
1387    Ops.push_back(InOps.back());
1388}
1389
1390/// findFlagUse - Return use of EVT::Flag value produced by the specified
1391/// SDNode.
1392///
1393static SDNode *findFlagUse(SDNode *N) {
1394  unsigned FlagResNo = N->getNumValues()-1;
1395  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1396    SDUse &Use = I.getUse();
1397    if (Use.getResNo() == FlagResNo)
1398      return Use.getUser();
1399  }
1400  return NULL;
1401}
1402
1403/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1404/// This function recursively traverses up the operand chain, ignoring
1405/// certain nodes.
1406static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1407                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1408                          bool IgnoreChains) {
1409  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1410  // greater than all of its (recursive) operands.  If we scan to a point where
1411  // 'use' is smaller than the node we're scanning for, then we know we will
1412  // never find it.
1413  //
1414  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1415  // happen because we scan down to newly selected nodes in the case of flag
1416  // uses.
1417  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1418    return false;
1419
1420  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1421  // won't fail if we scan it again.
1422  if (!Visited.insert(Use))
1423    return false;
1424
1425  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1426    // Ignore chain uses, they are validated by HandleMergeInputChains.
1427    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1428      continue;
1429
1430    SDNode *N = Use->getOperand(i).getNode();
1431    if (N == Def) {
1432      if (Use == ImmedUse || Use == Root)
1433        continue;  // We are not looking for immediate use.
1434      assert(N != Root);
1435      return true;
1436    }
1437
1438    // Traverse up the operand chain.
1439    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1440      return true;
1441  }
1442  return false;
1443}
1444
1445/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1446/// operand node N of U during instruction selection that starts at Root.
1447bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1448                                          SDNode *Root) const {
1449  if (OptLevel == CodeGenOpt::None) return false;
1450  return N.hasOneUse();
1451}
1452
1453/// IsLegalToFold - Returns true if the specific operand node N of
1454/// U can be folded during instruction selection that starts at Root.
1455bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1456                                     bool IgnoreChains) const {
1457  if (OptLevel == CodeGenOpt::None) return false;
1458
1459  // If Root use can somehow reach N through a path that that doesn't contain
1460  // U then folding N would create a cycle. e.g. In the following
1461  // diagram, Root can reach N through X. If N is folded into into Root, then
1462  // X is both a predecessor and a successor of U.
1463  //
1464  //          [N*]           //
1465  //         ^   ^           //
1466  //        /     \          //
1467  //      [U*]    [X]?       //
1468  //        ^     ^          //
1469  //         \   /           //
1470  //          \ /            //
1471  //         [Root*]         //
1472  //
1473  // * indicates nodes to be folded together.
1474  //
1475  // If Root produces a flag, then it gets (even more) interesting. Since it
1476  // will be "glued" together with its flag use in the scheduler, we need to
1477  // check if it might reach N.
1478  //
1479  //          [N*]           //
1480  //         ^   ^           //
1481  //        /     \          //
1482  //      [U*]    [X]?       //
1483  //        ^       ^        //
1484  //         \       \       //
1485  //          \      |       //
1486  //         [Root*] |       //
1487  //          ^      |       //
1488  //          f      |       //
1489  //          |      /       //
1490  //         [Y]    /        //
1491  //           ^   /         //
1492  //           f  /          //
1493  //           | /           //
1494  //          [FU]           //
1495  //
1496  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1497  // (call it Fold), then X is a predecessor of FU and a successor of
1498  // Fold. But since Fold and FU are flagged together, this will create
1499  // a cycle in the scheduling graph.
1500
1501  // If the node has flags, walk down the graph to the "lowest" node in the
1502  // flagged set.
1503  EVT VT = Root->getValueType(Root->getNumValues()-1);
1504  while (VT == MVT::Flag) {
1505    SDNode *FU = findFlagUse(Root);
1506    if (FU == NULL)
1507      break;
1508    Root = FU;
1509    VT = Root->getValueType(Root->getNumValues()-1);
1510
1511    // If our query node has a flag result with a use, we've walked up it.  If
1512    // the user (which has already been selected) has a chain or indirectly uses
1513    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1514    // this, we cannot ignore chains in this predicate.
1515    IgnoreChains = false;
1516  }
1517
1518
1519  SmallPtrSet<SDNode*, 16> Visited;
1520  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1521}
1522
1523SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1524  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1525  SelectInlineAsmMemoryOperands(Ops);
1526
1527  std::vector<EVT> VTs;
1528  VTs.push_back(MVT::Other);
1529  VTs.push_back(MVT::Flag);
1530  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1531                                VTs, &Ops[0], Ops.size());
1532  New->setNodeId(-1);
1533  return New.getNode();
1534}
1535
1536SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1537  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1538}
1539
1540/// GetVBR - decode a vbr encoding whose top bit is set.
1541ALWAYS_INLINE static uint64_t
1542GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1543  assert(Val >= 128 && "Not a VBR");
1544  Val &= 127;  // Remove first vbr bit.
1545
1546  unsigned Shift = 7;
1547  uint64_t NextBits;
1548  do {
1549    NextBits = MatcherTable[Idx++];
1550    Val |= (NextBits&127) << Shift;
1551    Shift += 7;
1552  } while (NextBits & 128);
1553
1554  return Val;
1555}
1556
1557
1558/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1559/// interior flag and chain results to use the new flag and chain results.
1560void SelectionDAGISel::
1561UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1562                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1563                     SDValue InputFlag,
1564                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1565                     bool isMorphNodeTo) {
1566  SmallVector<SDNode*, 4> NowDeadNodes;
1567
1568  ISelUpdater ISU(ISelPosition);
1569
1570  // Now that all the normal results are replaced, we replace the chain and
1571  // flag results if present.
1572  if (!ChainNodesMatched.empty()) {
1573    assert(InputChain.getNode() != 0 &&
1574           "Matched input chains but didn't produce a chain");
1575    // Loop over all of the nodes we matched that produced a chain result.
1576    // Replace all the chain results with the final chain we ended up with.
1577    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1578      SDNode *ChainNode = ChainNodesMatched[i];
1579
1580      // If this node was already deleted, don't look at it.
1581      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1582        continue;
1583
1584      // Don't replace the results of the root node if we're doing a
1585      // MorphNodeTo.
1586      if (ChainNode == NodeToMatch && isMorphNodeTo)
1587        continue;
1588
1589      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1590      if (ChainVal.getValueType() == MVT::Flag)
1591        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1592      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1593      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1594
1595      // If the node became dead and we haven't already seen it, delete it.
1596      if (ChainNode->use_empty() &&
1597          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1598        NowDeadNodes.push_back(ChainNode);
1599    }
1600  }
1601
1602  // If the result produces a flag, update any flag results in the matched
1603  // pattern with the flag result.
1604  if (InputFlag.getNode() != 0) {
1605    // Handle any interior nodes explicitly marked.
1606    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1607      SDNode *FRN = FlagResultNodesMatched[i];
1608
1609      // If this node was already deleted, don't look at it.
1610      if (FRN->getOpcode() == ISD::DELETED_NODE)
1611        continue;
1612
1613      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1614             "Doesn't have a flag result");
1615      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1616                                        InputFlag, &ISU);
1617
1618      // If the node became dead and we haven't already seen it, delete it.
1619      if (FRN->use_empty() &&
1620          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1621        NowDeadNodes.push_back(FRN);
1622    }
1623  }
1624
1625  if (!NowDeadNodes.empty())
1626    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1627
1628  DEBUG(errs() << "ISEL: Match complete!\n");
1629}
1630
1631enum ChainResult {
1632  CR_Simple,
1633  CR_InducesCycle,
1634  CR_LeadsToInteriorNode
1635};
1636
1637/// WalkChainUsers - Walk down the users of the specified chained node that is
1638/// part of the pattern we're matching, looking at all of the users we find.
1639/// This determines whether something is an interior node, whether we have a
1640/// non-pattern node in between two pattern nodes (which prevent folding because
1641/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1642/// between pattern nodes (in which case the TF becomes part of the pattern).
1643///
1644/// The walk we do here is guaranteed to be small because we quickly get down to
1645/// already selected nodes "below" us.
1646static ChainResult
1647WalkChainUsers(SDNode *ChainedNode,
1648               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1649               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1650  ChainResult Result = CR_Simple;
1651
1652  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1653         E = ChainedNode->use_end(); UI != E; ++UI) {
1654    // Make sure the use is of the chain, not some other value we produce.
1655    if (UI.getUse().getValueType() != MVT::Other) continue;
1656
1657    SDNode *User = *UI;
1658
1659    // If we see an already-selected machine node, then we've gone beyond the
1660    // pattern that we're selecting down into the already selected chunk of the
1661    // DAG.
1662    if (User->isMachineOpcode() ||
1663        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1664      continue;
1665
1666    if (User->getOpcode() == ISD::CopyToReg ||
1667        User->getOpcode() == ISD::CopyFromReg ||
1668        User->getOpcode() == ISD::INLINEASM ||
1669        User->getOpcode() == ISD::EH_LABEL) {
1670      // If their node ID got reset to -1 then they've already been selected.
1671      // Treat them like a MachineOpcode.
1672      if (User->getNodeId() == -1)
1673        continue;
1674    }
1675
1676    // If we have a TokenFactor, we handle it specially.
1677    if (User->getOpcode() != ISD::TokenFactor) {
1678      // If the node isn't a token factor and isn't part of our pattern, then it
1679      // must be a random chained node in between two nodes we're selecting.
1680      // This happens when we have something like:
1681      //   x = load ptr
1682      //   call
1683      //   y = x+4
1684      //   store y -> ptr
1685      // Because we structurally match the load/store as a read/modify/write,
1686      // but the call is chained between them.  We cannot fold in this case
1687      // because it would induce a cycle in the graph.
1688      if (!std::count(ChainedNodesInPattern.begin(),
1689                      ChainedNodesInPattern.end(), User))
1690        return CR_InducesCycle;
1691
1692      // Otherwise we found a node that is part of our pattern.  For example in:
1693      //   x = load ptr
1694      //   y = x+4
1695      //   store y -> ptr
1696      // This would happen when we're scanning down from the load and see the
1697      // store as a user.  Record that there is a use of ChainedNode that is
1698      // part of the pattern and keep scanning uses.
1699      Result = CR_LeadsToInteriorNode;
1700      InteriorChainedNodes.push_back(User);
1701      continue;
1702    }
1703
1704    // If we found a TokenFactor, there are two cases to consider: first if the
1705    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1706    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1707    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1708    //     [Load chain]
1709    //         ^
1710    //         |
1711    //       [Load]
1712    //       ^    ^
1713    //       |    \                    DAG's like cheese
1714    //      /       \                       do you?
1715    //     /         |
1716    // [TokenFactor] [Op]
1717    //     ^          ^
1718    //     |          |
1719    //      \        /
1720    //       \      /
1721    //       [Store]
1722    //
1723    // In this case, the TokenFactor becomes part of our match and we rewrite it
1724    // as a new TokenFactor.
1725    //
1726    // To distinguish these two cases, do a recursive walk down the uses.
1727    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1728    case CR_Simple:
1729      // If the uses of the TokenFactor are just already-selected nodes, ignore
1730      // it, it is "below" our pattern.
1731      continue;
1732    case CR_InducesCycle:
1733      // If the uses of the TokenFactor lead to nodes that are not part of our
1734      // pattern that are not selected, folding would turn this into a cycle,
1735      // bail out now.
1736      return CR_InducesCycle;
1737    case CR_LeadsToInteriorNode:
1738      break;  // Otherwise, keep processing.
1739    }
1740
1741    // Okay, we know we're in the interesting interior case.  The TokenFactor
1742    // is now going to be considered part of the pattern so that we rewrite its
1743    // uses (it may have uses that are not part of the pattern) with the
1744    // ultimate chain result of the generated code.  We will also add its chain
1745    // inputs as inputs to the ultimate TokenFactor we create.
1746    Result = CR_LeadsToInteriorNode;
1747    ChainedNodesInPattern.push_back(User);
1748    InteriorChainedNodes.push_back(User);
1749    continue;
1750  }
1751
1752  return Result;
1753}
1754
1755/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1756/// operation for when the pattern matched at least one node with a chains.  The
1757/// input vector contains a list of all of the chained nodes that we match.  We
1758/// must determine if this is a valid thing to cover (i.e. matching it won't
1759/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1760/// be used as the input node chain for the generated nodes.
1761static SDValue
1762HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1763                       SelectionDAG *CurDAG) {
1764  // Walk all of the chained nodes we've matched, recursively scanning down the
1765  // users of the chain result. This adds any TokenFactor nodes that are caught
1766  // in between chained nodes to the chained and interior nodes list.
1767  SmallVector<SDNode*, 3> InteriorChainedNodes;
1768  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1769    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1770                       InteriorChainedNodes) == CR_InducesCycle)
1771      return SDValue(); // Would induce a cycle.
1772  }
1773
1774  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1775  // that we are interested in.  Form our input TokenFactor node.
1776  SmallVector<SDValue, 3> InputChains;
1777  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1778    // Add the input chain of this node to the InputChains list (which will be
1779    // the operands of the generated TokenFactor) if it's not an interior node.
1780    SDNode *N = ChainNodesMatched[i];
1781    if (N->getOpcode() != ISD::TokenFactor) {
1782      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1783        continue;
1784
1785      // Otherwise, add the input chain.
1786      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1787      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1788      InputChains.push_back(InChain);
1789      continue;
1790    }
1791
1792    // If we have a token factor, we want to add all inputs of the token factor
1793    // that are not part of the pattern we're matching.
1794    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1795      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1796                      N->getOperand(op).getNode()))
1797        InputChains.push_back(N->getOperand(op));
1798    }
1799  }
1800
1801  SDValue Res;
1802  if (InputChains.size() == 1)
1803    return InputChains[0];
1804  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1805                         MVT::Other, &InputChains[0], InputChains.size());
1806}
1807
1808/// MorphNode - Handle morphing a node in place for the selector.
1809SDNode *SelectionDAGISel::
1810MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1811          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1812  // It is possible we're using MorphNodeTo to replace a node with no
1813  // normal results with one that has a normal result (or we could be
1814  // adding a chain) and the input could have flags and chains as well.
1815  // In this case we need to shifting the operands down.
1816  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1817  // than the old isel though.
1818  int OldFlagResultNo = -1, OldChainResultNo = -1;
1819
1820  unsigned NTMNumResults = Node->getNumValues();
1821  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1822    OldFlagResultNo = NTMNumResults-1;
1823    if (NTMNumResults != 1 &&
1824        Node->getValueType(NTMNumResults-2) == MVT::Other)
1825      OldChainResultNo = NTMNumResults-2;
1826  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1827    OldChainResultNo = NTMNumResults-1;
1828
1829  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1830  // that this deletes operands of the old node that become dead.
1831  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1832
1833  // MorphNodeTo can operate in two ways: if an existing node with the
1834  // specified operands exists, it can just return it.  Otherwise, it
1835  // updates the node in place to have the requested operands.
1836  if (Res == Node) {
1837    // If we updated the node in place, reset the node ID.  To the isel,
1838    // this should be just like a newly allocated machine node.
1839    Res->setNodeId(-1);
1840  }
1841
1842  unsigned ResNumResults = Res->getNumValues();
1843  // Move the flag if needed.
1844  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1845      (unsigned)OldFlagResultNo != ResNumResults-1)
1846    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1847                                      SDValue(Res, ResNumResults-1));
1848
1849  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1850  --ResNumResults;
1851
1852  // Move the chain reference if needed.
1853  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1854      (unsigned)OldChainResultNo != ResNumResults-1)
1855    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1856                                      SDValue(Res, ResNumResults-1));
1857
1858  // Otherwise, no replacement happened because the node already exists. Replace
1859  // Uses of the old node with the new one.
1860  if (Res != Node)
1861    CurDAG->ReplaceAllUsesWith(Node, Res);
1862
1863  return Res;
1864}
1865
1866/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1867ALWAYS_INLINE static bool
1868CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1869          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1870  // Accept if it is exactly the same as a previously recorded node.
1871  unsigned RecNo = MatcherTable[MatcherIndex++];
1872  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1873  return N == RecordedNodes[RecNo];
1874}
1875
1876/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1877ALWAYS_INLINE static bool
1878CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1879                      SelectionDAGISel &SDISel) {
1880  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1881}
1882
1883/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1884ALWAYS_INLINE static bool
1885CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1886                   SelectionDAGISel &SDISel, SDNode *N) {
1887  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1888}
1889
1890ALWAYS_INLINE static bool
1891CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1892            SDNode *N) {
1893  uint16_t Opc = MatcherTable[MatcherIndex++];
1894  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1895  return N->getOpcode() == Opc;
1896}
1897
1898ALWAYS_INLINE static bool
1899CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1900          SDValue N, const TargetLowering &TLI) {
1901  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1902  if (N.getValueType() == VT) return true;
1903
1904  // Handle the case when VT is iPTR.
1905  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1906}
1907
1908ALWAYS_INLINE static bool
1909CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1910               SDValue N, const TargetLowering &TLI,
1911               unsigned ChildNo) {
1912  if (ChildNo >= N.getNumOperands())
1913    return false;  // Match fails if out of range child #.
1914  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1915}
1916
1917
1918ALWAYS_INLINE static bool
1919CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1920              SDValue N) {
1921  return cast<CondCodeSDNode>(N)->get() ==
1922      (ISD::CondCode)MatcherTable[MatcherIndex++];
1923}
1924
1925ALWAYS_INLINE static bool
1926CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1927               SDValue N, const TargetLowering &TLI) {
1928  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1929  if (cast<VTSDNode>(N)->getVT() == VT)
1930    return true;
1931
1932  // Handle the case when VT is iPTR.
1933  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1934}
1935
1936ALWAYS_INLINE static bool
1937CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1938             SDValue N) {
1939  int64_t Val = MatcherTable[MatcherIndex++];
1940  if (Val & 128)
1941    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1942
1943  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1944  return C != 0 && C->getSExtValue() == Val;
1945}
1946
1947ALWAYS_INLINE static bool
1948CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1949            SDValue N, SelectionDAGISel &SDISel) {
1950  int64_t Val = MatcherTable[MatcherIndex++];
1951  if (Val & 128)
1952    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1953
1954  if (N->getOpcode() != ISD::AND) return false;
1955
1956  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1957  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1958}
1959
1960ALWAYS_INLINE static bool
1961CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1962           SDValue N, SelectionDAGISel &SDISel) {
1963  int64_t Val = MatcherTable[MatcherIndex++];
1964  if (Val & 128)
1965    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1966
1967  if (N->getOpcode() != ISD::OR) return false;
1968
1969  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1970  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1971}
1972
1973/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1974/// scope, evaluate the current node.  If the current predicate is known to
1975/// fail, set Result=true and return anything.  If the current predicate is
1976/// known to pass, set Result=false and return the MatcherIndex to continue
1977/// with.  If the current predicate is unknown, set Result=false and return the
1978/// MatcherIndex to continue with.
1979static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1980                                       unsigned Index, SDValue N,
1981                                       bool &Result, SelectionDAGISel &SDISel,
1982                                       SmallVectorImpl<SDValue> &RecordedNodes){
1983  switch (Table[Index++]) {
1984  default:
1985    Result = false;
1986    return Index-1;  // Could not evaluate this predicate.
1987  case SelectionDAGISel::OPC_CheckSame:
1988    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1989    return Index;
1990  case SelectionDAGISel::OPC_CheckPatternPredicate:
1991    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1992    return Index;
1993  case SelectionDAGISel::OPC_CheckPredicate:
1994    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1995    return Index;
1996  case SelectionDAGISel::OPC_CheckOpcode:
1997    Result = !::CheckOpcode(Table, Index, N.getNode());
1998    return Index;
1999  case SelectionDAGISel::OPC_CheckType:
2000    Result = !::CheckType(Table, Index, N, SDISel.TLI);
2001    return Index;
2002  case SelectionDAGISel::OPC_CheckChild0Type:
2003  case SelectionDAGISel::OPC_CheckChild1Type:
2004  case SelectionDAGISel::OPC_CheckChild2Type:
2005  case SelectionDAGISel::OPC_CheckChild3Type:
2006  case SelectionDAGISel::OPC_CheckChild4Type:
2007  case SelectionDAGISel::OPC_CheckChild5Type:
2008  case SelectionDAGISel::OPC_CheckChild6Type:
2009  case SelectionDAGISel::OPC_CheckChild7Type:
2010    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2011                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2012    return Index;
2013  case SelectionDAGISel::OPC_CheckCondCode:
2014    Result = !::CheckCondCode(Table, Index, N);
2015    return Index;
2016  case SelectionDAGISel::OPC_CheckValueType:
2017    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2018    return Index;
2019  case SelectionDAGISel::OPC_CheckInteger:
2020    Result = !::CheckInteger(Table, Index, N);
2021    return Index;
2022  case SelectionDAGISel::OPC_CheckAndImm:
2023    Result = !::CheckAndImm(Table, Index, N, SDISel);
2024    return Index;
2025  case SelectionDAGISel::OPC_CheckOrImm:
2026    Result = !::CheckOrImm(Table, Index, N, SDISel);
2027    return Index;
2028  }
2029}
2030
2031
2032struct MatchScope {
2033  /// FailIndex - If this match fails, this is the index to continue with.
2034  unsigned FailIndex;
2035
2036  /// NodeStack - The node stack when the scope was formed.
2037  SmallVector<SDValue, 4> NodeStack;
2038
2039  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2040  unsigned NumRecordedNodes;
2041
2042  /// NumMatchedMemRefs - The number of matched memref entries.
2043  unsigned NumMatchedMemRefs;
2044
2045  /// InputChain/InputFlag - The current chain/flag
2046  SDValue InputChain, InputFlag;
2047
2048  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2049  bool HasChainNodesMatched, HasFlagResultNodesMatched;
2050};
2051
2052SDNode *SelectionDAGISel::
2053SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2054                 unsigned TableSize) {
2055  // FIXME: Should these even be selected?  Handle these cases in the caller?
2056  switch (NodeToMatch->getOpcode()) {
2057  default:
2058    break;
2059  case ISD::EntryToken:       // These nodes remain the same.
2060  case ISD::BasicBlock:
2061  case ISD::Register:
2062  //case ISD::VALUETYPE:
2063  //case ISD::CONDCODE:
2064  case ISD::HANDLENODE:
2065  case ISD::TargetConstant:
2066  case ISD::TargetConstantFP:
2067  case ISD::TargetConstantPool:
2068  case ISD::TargetFrameIndex:
2069  case ISD::TargetExternalSymbol:
2070  case ISD::TargetBlockAddress:
2071  case ISD::TargetJumpTable:
2072  case ISD::TargetGlobalTLSAddress:
2073  case ISD::TargetGlobalAddress:
2074  case ISD::TokenFactor:
2075  case ISD::CopyFromReg:
2076  case ISD::CopyToReg:
2077  case ISD::EH_LABEL:
2078    NodeToMatch->setNodeId(-1); // Mark selected.
2079    return 0;
2080  case ISD::AssertSext:
2081  case ISD::AssertZext:
2082    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2083                                      NodeToMatch->getOperand(0));
2084    return 0;
2085  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2086  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2087  }
2088
2089  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2090
2091  // Set up the node stack with NodeToMatch as the only node on the stack.
2092  SmallVector<SDValue, 8> NodeStack;
2093  SDValue N = SDValue(NodeToMatch, 0);
2094  NodeStack.push_back(N);
2095
2096  // MatchScopes - Scopes used when matching, if a match failure happens, this
2097  // indicates where to continue checking.
2098  SmallVector<MatchScope, 8> MatchScopes;
2099
2100  // RecordedNodes - This is the set of nodes that have been recorded by the
2101  // state machine.
2102  SmallVector<SDValue, 8> RecordedNodes;
2103
2104  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2105  // pattern.
2106  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2107
2108  // These are the current input chain and flag for use when generating nodes.
2109  // Various Emit operations change these.  For example, emitting a copytoreg
2110  // uses and updates these.
2111  SDValue InputChain, InputFlag;
2112
2113  // ChainNodesMatched - If a pattern matches nodes that have input/output
2114  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2115  // which ones they are.  The result is captured into this list so that we can
2116  // update the chain results when the pattern is complete.
2117  SmallVector<SDNode*, 3> ChainNodesMatched;
2118  SmallVector<SDNode*, 3> FlagResultNodesMatched;
2119
2120  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2121        NodeToMatch->dump(CurDAG);
2122        errs() << '\n');
2123
2124  // Determine where to start the interpreter.  Normally we start at opcode #0,
2125  // but if the state machine starts with an OPC_SwitchOpcode, then we
2126  // accelerate the first lookup (which is guaranteed to be hot) with the
2127  // OpcodeOffset table.
2128  unsigned MatcherIndex = 0;
2129
2130  if (!OpcodeOffset.empty()) {
2131    // Already computed the OpcodeOffset table, just index into it.
2132    if (N.getOpcode() < OpcodeOffset.size())
2133      MatcherIndex = OpcodeOffset[N.getOpcode()];
2134    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2135
2136  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2137    // Otherwise, the table isn't computed, but the state machine does start
2138    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2139    // is the first time we're selecting an instruction.
2140    unsigned Idx = 1;
2141    while (1) {
2142      // Get the size of this case.
2143      unsigned CaseSize = MatcherTable[Idx++];
2144      if (CaseSize & 128)
2145        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2146      if (CaseSize == 0) break;
2147
2148      // Get the opcode, add the index to the table.
2149      uint16_t Opc = MatcherTable[Idx++];
2150      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2151      if (Opc >= OpcodeOffset.size())
2152        OpcodeOffset.resize((Opc+1)*2);
2153      OpcodeOffset[Opc] = Idx;
2154      Idx += CaseSize;
2155    }
2156
2157    // Okay, do the lookup for the first opcode.
2158    if (N.getOpcode() < OpcodeOffset.size())
2159      MatcherIndex = OpcodeOffset[N.getOpcode()];
2160  }
2161
2162  while (1) {
2163    assert(MatcherIndex < TableSize && "Invalid index");
2164#ifndef NDEBUG
2165    unsigned CurrentOpcodeIndex = MatcherIndex;
2166#endif
2167    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2168    switch (Opcode) {
2169    case OPC_Scope: {
2170      // Okay, the semantics of this operation are that we should push a scope
2171      // then evaluate the first child.  However, pushing a scope only to have
2172      // the first check fail (which then pops it) is inefficient.  If we can
2173      // determine immediately that the first check (or first several) will
2174      // immediately fail, don't even bother pushing a scope for them.
2175      unsigned FailIndex;
2176
2177      while (1) {
2178        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2179        if (NumToSkip & 128)
2180          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2181        // Found the end of the scope with no match.
2182        if (NumToSkip == 0) {
2183          FailIndex = 0;
2184          break;
2185        }
2186
2187        FailIndex = MatcherIndex+NumToSkip;
2188
2189        unsigned MatcherIndexOfPredicate = MatcherIndex;
2190        (void)MatcherIndexOfPredicate; // silence warning.
2191
2192        // If we can't evaluate this predicate without pushing a scope (e.g. if
2193        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2194        // push the scope and evaluate the full predicate chain.
2195        bool Result;
2196        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2197                                              Result, *this, RecordedNodes);
2198        if (!Result)
2199          break;
2200
2201        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2202                     << "index " << MatcherIndexOfPredicate
2203                     << ", continuing at " << FailIndex << "\n");
2204
2205
2206        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2207        // move to the next case.
2208        MatcherIndex = FailIndex;
2209      }
2210
2211      // If the whole scope failed to match, bail.
2212      if (FailIndex == 0) break;
2213
2214      // Push a MatchScope which indicates where to go if the first child fails
2215      // to match.
2216      MatchScope NewEntry;
2217      NewEntry.FailIndex = FailIndex;
2218      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2219      NewEntry.NumRecordedNodes = RecordedNodes.size();
2220      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2221      NewEntry.InputChain = InputChain;
2222      NewEntry.InputFlag = InputFlag;
2223      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2224      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2225      MatchScopes.push_back(NewEntry);
2226      continue;
2227    }
2228    case OPC_RecordNode:
2229      // Remember this node, it may end up being an operand in the pattern.
2230      RecordedNodes.push_back(N);
2231      continue;
2232
2233    case OPC_RecordChild0: case OPC_RecordChild1:
2234    case OPC_RecordChild2: case OPC_RecordChild3:
2235    case OPC_RecordChild4: case OPC_RecordChild5:
2236    case OPC_RecordChild6: case OPC_RecordChild7: {
2237      unsigned ChildNo = Opcode-OPC_RecordChild0;
2238      if (ChildNo >= N.getNumOperands())
2239        break;  // Match fails if out of range child #.
2240
2241      RecordedNodes.push_back(N->getOperand(ChildNo));
2242      continue;
2243    }
2244    case OPC_RecordMemRef:
2245      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2246      continue;
2247
2248    case OPC_CaptureFlagInput:
2249      // If the current node has an input flag, capture it in InputFlag.
2250      if (N->getNumOperands() != 0 &&
2251          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2252        InputFlag = N->getOperand(N->getNumOperands()-1);
2253      continue;
2254
2255    case OPC_MoveChild: {
2256      unsigned ChildNo = MatcherTable[MatcherIndex++];
2257      if (ChildNo >= N.getNumOperands())
2258        break;  // Match fails if out of range child #.
2259      N = N.getOperand(ChildNo);
2260      NodeStack.push_back(N);
2261      continue;
2262    }
2263
2264    case OPC_MoveParent:
2265      // Pop the current node off the NodeStack.
2266      NodeStack.pop_back();
2267      assert(!NodeStack.empty() && "Node stack imbalance!");
2268      N = NodeStack.back();
2269      continue;
2270
2271    case OPC_CheckSame:
2272      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2273      continue;
2274    case OPC_CheckPatternPredicate:
2275      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2276      continue;
2277    case OPC_CheckPredicate:
2278      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2279                                N.getNode()))
2280        break;
2281      continue;
2282    case OPC_CheckComplexPat: {
2283      unsigned CPNum = MatcherTable[MatcherIndex++];
2284      unsigned RecNo = MatcherTable[MatcherIndex++];
2285      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2286      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2287                               RecordedNodes))
2288        break;
2289      continue;
2290    }
2291    case OPC_CheckOpcode:
2292      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2293      continue;
2294
2295    case OPC_CheckType:
2296      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2297      continue;
2298
2299    case OPC_SwitchOpcode: {
2300      unsigned CurNodeOpcode = N.getOpcode();
2301      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2302      unsigned CaseSize;
2303      while (1) {
2304        // Get the size of this case.
2305        CaseSize = MatcherTable[MatcherIndex++];
2306        if (CaseSize & 128)
2307          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2308        if (CaseSize == 0) break;
2309
2310        uint16_t Opc = MatcherTable[MatcherIndex++];
2311        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2312
2313        // If the opcode matches, then we will execute this case.
2314        if (CurNodeOpcode == Opc)
2315          break;
2316
2317        // Otherwise, skip over this case.
2318        MatcherIndex += CaseSize;
2319      }
2320
2321      // If no cases matched, bail out.
2322      if (CaseSize == 0) break;
2323
2324      // Otherwise, execute the case we found.
2325      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2326                   << " to " << MatcherIndex << "\n");
2327      continue;
2328    }
2329
2330    case OPC_SwitchType: {
2331      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2332      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2333      unsigned CaseSize;
2334      while (1) {
2335        // Get the size of this case.
2336        CaseSize = MatcherTable[MatcherIndex++];
2337        if (CaseSize & 128)
2338          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2339        if (CaseSize == 0) break;
2340
2341        MVT::SimpleValueType CaseVT =
2342          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2343        if (CaseVT == MVT::iPTR)
2344          CaseVT = TLI.getPointerTy().SimpleTy;
2345
2346        // If the VT matches, then we will execute this case.
2347        if (CurNodeVT == CaseVT)
2348          break;
2349
2350        // Otherwise, skip over this case.
2351        MatcherIndex += CaseSize;
2352      }
2353
2354      // If no cases matched, bail out.
2355      if (CaseSize == 0) break;
2356
2357      // Otherwise, execute the case we found.
2358      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2359                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2360      continue;
2361    }
2362    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2363    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2364    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2365    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2366      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2367                            Opcode-OPC_CheckChild0Type))
2368        break;
2369      continue;
2370    case OPC_CheckCondCode:
2371      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2372      continue;
2373    case OPC_CheckValueType:
2374      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2375      continue;
2376    case OPC_CheckInteger:
2377      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2378      continue;
2379    case OPC_CheckAndImm:
2380      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2381      continue;
2382    case OPC_CheckOrImm:
2383      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2384      continue;
2385
2386    case OPC_CheckFoldableChainNode: {
2387      assert(NodeStack.size() != 1 && "No parent node");
2388      // Verify that all intermediate nodes between the root and this one have
2389      // a single use.
2390      bool HasMultipleUses = false;
2391      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2392        if (!NodeStack[i].hasOneUse()) {
2393          HasMultipleUses = true;
2394          break;
2395        }
2396      if (HasMultipleUses) break;
2397
2398      // Check to see that the target thinks this is profitable to fold and that
2399      // we can fold it without inducing cycles in the graph.
2400      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2401                              NodeToMatch) ||
2402          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2403                         NodeToMatch, true/*We validate our own chains*/))
2404        break;
2405
2406      continue;
2407    }
2408    case OPC_EmitInteger: {
2409      MVT::SimpleValueType VT =
2410        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2411      int64_t Val = MatcherTable[MatcherIndex++];
2412      if (Val & 128)
2413        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2414      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2415      continue;
2416    }
2417    case OPC_EmitRegister: {
2418      MVT::SimpleValueType VT =
2419        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2420      unsigned RegNo = MatcherTable[MatcherIndex++];
2421      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2422      continue;
2423    }
2424
2425    case OPC_EmitConvertToTarget:  {
2426      // Convert from IMM/FPIMM to target version.
2427      unsigned RecNo = MatcherTable[MatcherIndex++];
2428      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2429      SDValue Imm = RecordedNodes[RecNo];
2430
2431      if (Imm->getOpcode() == ISD::Constant) {
2432        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2433        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2434      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2435        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2436        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2437      }
2438
2439      RecordedNodes.push_back(Imm);
2440      continue;
2441    }
2442
2443    case OPC_EmitMergeInputChains: {
2444      assert(InputChain.getNode() == 0 &&
2445             "EmitMergeInputChains should be the first chain producing node");
2446      // This node gets a list of nodes we matched in the input that have
2447      // chains.  We want to token factor all of the input chains to these nodes
2448      // together.  However, if any of the input chains is actually one of the
2449      // nodes matched in this pattern, then we have an intra-match reference.
2450      // Ignore these because the newly token factored chain should not refer to
2451      // the old nodes.
2452      unsigned NumChains = MatcherTable[MatcherIndex++];
2453      assert(NumChains != 0 && "Can't TF zero chains");
2454
2455      assert(ChainNodesMatched.empty() &&
2456             "Should only have one EmitMergeInputChains per match");
2457
2458      // Read all of the chained nodes.
2459      for (unsigned i = 0; i != NumChains; ++i) {
2460        unsigned RecNo = MatcherTable[MatcherIndex++];
2461        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2462        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2463
2464        // FIXME: What if other value results of the node have uses not matched
2465        // by this pattern?
2466        if (ChainNodesMatched.back() != NodeToMatch &&
2467            !RecordedNodes[RecNo].hasOneUse()) {
2468          ChainNodesMatched.clear();
2469          break;
2470        }
2471      }
2472
2473      // If the inner loop broke out, the match fails.
2474      if (ChainNodesMatched.empty())
2475        break;
2476
2477      // Merge the input chains if they are not intra-pattern references.
2478      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2479
2480      if (InputChain.getNode() == 0)
2481        break;  // Failed to merge.
2482
2483      continue;
2484    }
2485
2486    case OPC_EmitCopyToReg: {
2487      unsigned RecNo = MatcherTable[MatcherIndex++];
2488      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2489      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2490
2491      if (InputChain.getNode() == 0)
2492        InputChain = CurDAG->getEntryNode();
2493
2494      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2495                                        DestPhysReg, RecordedNodes[RecNo],
2496                                        InputFlag);
2497
2498      InputFlag = InputChain.getValue(1);
2499      continue;
2500    }
2501
2502    case OPC_EmitNodeXForm: {
2503      unsigned XFormNo = MatcherTable[MatcherIndex++];
2504      unsigned RecNo = MatcherTable[MatcherIndex++];
2505      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2506      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2507      continue;
2508    }
2509
2510    case OPC_EmitNode:
2511    case OPC_MorphNodeTo: {
2512      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2513      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2514      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2515      // Get the result VT list.
2516      unsigned NumVTs = MatcherTable[MatcherIndex++];
2517      SmallVector<EVT, 4> VTs;
2518      for (unsigned i = 0; i != NumVTs; ++i) {
2519        MVT::SimpleValueType VT =
2520          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2521        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2522        VTs.push_back(VT);
2523      }
2524
2525      if (EmitNodeInfo & OPFL_Chain)
2526        VTs.push_back(MVT::Other);
2527      if (EmitNodeInfo & OPFL_FlagOutput)
2528        VTs.push_back(MVT::Flag);
2529
2530      // This is hot code, so optimize the two most common cases of 1 and 2
2531      // results.
2532      SDVTList VTList;
2533      if (VTs.size() == 1)
2534        VTList = CurDAG->getVTList(VTs[0]);
2535      else if (VTs.size() == 2)
2536        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2537      else
2538        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2539
2540      // Get the operand list.
2541      unsigned NumOps = MatcherTable[MatcherIndex++];
2542      SmallVector<SDValue, 8> Ops;
2543      for (unsigned i = 0; i != NumOps; ++i) {
2544        unsigned RecNo = MatcherTable[MatcherIndex++];
2545        if (RecNo & 128)
2546          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2547
2548        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2549        Ops.push_back(RecordedNodes[RecNo]);
2550      }
2551
2552      // If there are variadic operands to add, handle them now.
2553      if (EmitNodeInfo & OPFL_VariadicInfo) {
2554        // Determine the start index to copy from.
2555        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2556        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2557        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2558               "Invalid variadic node");
2559        // Copy all of the variadic operands, not including a potential flag
2560        // input.
2561        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2562             i != e; ++i) {
2563          SDValue V = NodeToMatch->getOperand(i);
2564          if (V.getValueType() == MVT::Flag) break;
2565          Ops.push_back(V);
2566        }
2567      }
2568
2569      // If this has chain/flag inputs, add them.
2570      if (EmitNodeInfo & OPFL_Chain)
2571        Ops.push_back(InputChain);
2572      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2573        Ops.push_back(InputFlag);
2574
2575      // Create the node.
2576      SDNode *Res = 0;
2577      if (Opcode != OPC_MorphNodeTo) {
2578        // If this is a normal EmitNode command, just create the new node and
2579        // add the results to the RecordedNodes list.
2580        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2581                                     VTList, Ops.data(), Ops.size());
2582
2583        // Add all the non-flag/non-chain results to the RecordedNodes list.
2584        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2585          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2586          RecordedNodes.push_back(SDValue(Res, i));
2587        }
2588
2589      } else {
2590        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2591                        EmitNodeInfo);
2592      }
2593
2594      // If the node had chain/flag results, update our notion of the current
2595      // chain and flag.
2596      if (EmitNodeInfo & OPFL_FlagOutput) {
2597        InputFlag = SDValue(Res, VTs.size()-1);
2598        if (EmitNodeInfo & OPFL_Chain)
2599          InputChain = SDValue(Res, VTs.size()-2);
2600      } else if (EmitNodeInfo & OPFL_Chain)
2601        InputChain = SDValue(Res, VTs.size()-1);
2602
2603      // If the OPFL_MemRefs flag is set on this node, slap all of the
2604      // accumulated memrefs onto it.
2605      //
2606      // FIXME: This is vastly incorrect for patterns with multiple outputs
2607      // instructions that access memory and for ComplexPatterns that match
2608      // loads.
2609      if (EmitNodeInfo & OPFL_MemRefs) {
2610        MachineSDNode::mmo_iterator MemRefs =
2611          MF->allocateMemRefsArray(MatchedMemRefs.size());
2612        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2613        cast<MachineSDNode>(Res)
2614          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2615      }
2616
2617      DEBUG(errs() << "  "
2618                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2619                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2620
2621      // If this was a MorphNodeTo then we're completely done!
2622      if (Opcode == OPC_MorphNodeTo) {
2623        // Update chain and flag uses.
2624        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2625                             InputFlag, FlagResultNodesMatched, true);
2626        return Res;
2627      }
2628
2629      continue;
2630    }
2631
2632    case OPC_MarkFlagResults: {
2633      unsigned NumNodes = MatcherTable[MatcherIndex++];
2634
2635      // Read and remember all the flag-result nodes.
2636      for (unsigned i = 0; i != NumNodes; ++i) {
2637        unsigned RecNo = MatcherTable[MatcherIndex++];
2638        if (RecNo & 128)
2639          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2640
2641        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2642        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2643      }
2644      continue;
2645    }
2646
2647    case OPC_CompleteMatch: {
2648      // The match has been completed, and any new nodes (if any) have been
2649      // created.  Patch up references to the matched dag to use the newly
2650      // created nodes.
2651      unsigned NumResults = MatcherTable[MatcherIndex++];
2652
2653      for (unsigned i = 0; i != NumResults; ++i) {
2654        unsigned ResSlot = MatcherTable[MatcherIndex++];
2655        if (ResSlot & 128)
2656          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2657
2658        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2659        SDValue Res = RecordedNodes[ResSlot];
2660
2661        // FIXME2: Eliminate this horrible hack by fixing the 'Gen' program
2662        // after (parallel) on input patterns are removed.  This would also
2663        // allow us to stop encoding #results in OPC_CompleteMatch's table
2664        // entry.
2665        if (i >= NodeToMatch->getNumValues() ||
2666            NodeToMatch->getValueType(i) == MVT::Other ||
2667            NodeToMatch->getValueType(i) == MVT::Flag)
2668          break;
2669        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2670                NodeToMatch->getValueType(i) == MVT::iPTR ||
2671                Res.getValueType() == MVT::iPTR ||
2672                NodeToMatch->getValueType(i).getSizeInBits() ==
2673                    Res.getValueType().getSizeInBits()) &&
2674               "invalid replacement");
2675        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2676      }
2677
2678      // If the root node defines a flag, add it to the flag nodes to update
2679      // list.
2680      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2681        FlagResultNodesMatched.push_back(NodeToMatch);
2682
2683      // Update chain and flag uses.
2684      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2685                           InputFlag, FlagResultNodesMatched, false);
2686
2687      assert(NodeToMatch->use_empty() &&
2688             "Didn't replace all uses of the node?");
2689
2690      // FIXME: We just return here, which interacts correctly with SelectRoot
2691      // above.  We should fix this to not return an SDNode* anymore.
2692      return 0;
2693    }
2694    }
2695
2696    // If the code reached this point, then the match failed.  See if there is
2697    // another child to try in the current 'Scope', otherwise pop it until we
2698    // find a case to check.
2699    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2700    while (1) {
2701      if (MatchScopes.empty()) {
2702        CannotYetSelect(NodeToMatch);
2703        return 0;
2704      }
2705
2706      // Restore the interpreter state back to the point where the scope was
2707      // formed.
2708      MatchScope &LastScope = MatchScopes.back();
2709      RecordedNodes.resize(LastScope.NumRecordedNodes);
2710      NodeStack.clear();
2711      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2712      N = NodeStack.back();
2713
2714      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2715        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2716      MatcherIndex = LastScope.FailIndex;
2717
2718      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2719
2720      InputChain = LastScope.InputChain;
2721      InputFlag = LastScope.InputFlag;
2722      if (!LastScope.HasChainNodesMatched)
2723        ChainNodesMatched.clear();
2724      if (!LastScope.HasFlagResultNodesMatched)
2725        FlagResultNodesMatched.clear();
2726
2727      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2728      // we have reached the end of this scope, otherwise we have another child
2729      // in the current scope to try.
2730      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2731      if (NumToSkip & 128)
2732        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2733
2734      // If we have another child in this scope to match, update FailIndex and
2735      // try it.
2736      if (NumToSkip != 0) {
2737        LastScope.FailIndex = MatcherIndex+NumToSkip;
2738        break;
2739      }
2740
2741      // End of this scope, pop it and try the next child in the containing
2742      // scope.
2743      MatchScopes.pop_back();
2744    }
2745  }
2746}
2747
2748
2749
2750void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2751  std::string msg;
2752  raw_string_ostream Msg(msg);
2753  Msg << "Cannot yet select: ";
2754
2755  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2756      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2757      N->getOpcode() != ISD::INTRINSIC_VOID) {
2758    N->printrFull(Msg, CurDAG);
2759  } else {
2760    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2761    unsigned iid =
2762      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2763    if (iid < Intrinsic::num_intrinsics)
2764      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2765    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2766      Msg << "target intrinsic %" << TII->getName(iid);
2767    else
2768      Msg << "unknown intrinsic #" << iid;
2769  }
2770  llvm_report_error(Msg.str());
2771}
2772
2773char SelectionDAGISel::ID = 0;
2774