SelectionDAGISel.cpp revision 32e3150faba95187c76b211e27d6496a21bee360
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/CFG.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GCMetadata.h"
27#include "llvm/CodeGen/GCStrategy.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/DebugInfo.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/InlineAsm.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/IR/Intrinsics.h"
43#include "llvm/IR/LLVMContext.h"
44#include "llvm/IR/Module.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/Timer.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/Target/TargetInstrInfo.h"
51#include "llvm/Target/TargetIntrinsicInfo.h"
52#include "llvm/Target/TargetLibraryInfo.h"
53#include "llvm/Target/TargetLowering.h"
54#include "llvm/Target/TargetMachine.h"
55#include "llvm/Target/TargetOptions.h"
56#include "llvm/Target/TargetRegisterInfo.h"
57#include "llvm/Target/TargetSubtargetInfo.h"
58#include "llvm/Transforms/Utils/BasicBlockUtils.h"
59#include <algorithm>
60using namespace llvm;
61
62STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
63STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
64STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
65STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
66STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
67STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
68STATISTIC(NumFastIselFailLowerArguments,
69          "Number of entry blocks where fast isel failed to lower arguments");
70
71#ifndef NDEBUG
72static cl::opt<bool>
73EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
74          cl::desc("Enable extra verbose messages in the \"fast\" "
75                   "instruction selector"));
76
77  // Terminators
78STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
79STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
80STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
81STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
82STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
83STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
84STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
85
86  // Standard binary operators...
87STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
88STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
89STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
90STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
91STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
92STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
93STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
94STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
95STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
96STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
97STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
98STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
99
100  // Logical operators...
101STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
102STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
103STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
104
105  // Memory instructions...
106STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
107STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
108STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
109STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
110STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
111STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
112STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
113
114  // Convert instructions...
115STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
116STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
117STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
118STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
119STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
120STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
121STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
122STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
123STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
124STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
125STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
126STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
127
128  // Other instructions...
129STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
130STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
131STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
132STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
133STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
134STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
135STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
136STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
137STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
138STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
139STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
140STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
141STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
142STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
143STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
144#endif
145
146static cl::opt<bool>
147EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
148          cl::desc("Enable verbose messages in the \"fast\" "
149                   "instruction selector"));
150static cl::opt<bool>
151EnableFastISelAbort("fast-isel-abort", cl::Hidden,
152          cl::desc("Enable abort calls when \"fast\" instruction selection "
153                   "fails to lower an instruction"));
154static cl::opt<bool>
155EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
156          cl::desc("Enable abort calls when \"fast\" instruction selection "
157                   "fails to lower a formal argument"));
158
159static cl::opt<bool>
160UseMBPI("use-mbpi",
161        cl::desc("use Machine Branch Probability Info"),
162        cl::init(true), cl::Hidden);
163
164#ifndef NDEBUG
165static cl::opt<bool>
166ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
167          cl::desc("Pop up a window to show dags before the first "
168                   "dag combine pass"));
169static cl::opt<bool>
170ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
171          cl::desc("Pop up a window to show dags before legalize types"));
172static cl::opt<bool>
173ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
174          cl::desc("Pop up a window to show dags before legalize"));
175static cl::opt<bool>
176ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
177          cl::desc("Pop up a window to show dags before the second "
178                   "dag combine pass"));
179static cl::opt<bool>
180ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
181          cl::desc("Pop up a window to show dags before the post legalize types"
182                   " dag combine pass"));
183static cl::opt<bool>
184ViewISelDAGs("view-isel-dags", cl::Hidden,
185          cl::desc("Pop up a window to show isel dags as they are selected"));
186static cl::opt<bool>
187ViewSchedDAGs("view-sched-dags", cl::Hidden,
188          cl::desc("Pop up a window to show sched dags as they are processed"));
189static cl::opt<bool>
190ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
191      cl::desc("Pop up a window to show SUnit dags after they are processed"));
192#else
193static const bool ViewDAGCombine1 = false,
194                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
195                  ViewDAGCombine2 = false,
196                  ViewDAGCombineLT = false,
197                  ViewISelDAGs = false, ViewSchedDAGs = false,
198                  ViewSUnitDAGs = false;
199#endif
200
201//===---------------------------------------------------------------------===//
202///
203/// RegisterScheduler class - Track the registration of instruction schedulers.
204///
205//===---------------------------------------------------------------------===//
206MachinePassRegistry RegisterScheduler::Registry;
207
208//===---------------------------------------------------------------------===//
209///
210/// ISHeuristic command line option for instruction schedulers.
211///
212//===---------------------------------------------------------------------===//
213static cl::opt<RegisterScheduler::FunctionPassCtor, false,
214               RegisterPassParser<RegisterScheduler> >
215ISHeuristic("pre-RA-sched",
216            cl::init(&createDefaultScheduler),
217            cl::desc("Instruction schedulers available (before register"
218                     " allocation):"));
219
220static RegisterScheduler
221defaultListDAGScheduler("default", "Best scheduler for the target",
222                        createDefaultScheduler);
223
224namespace llvm {
225  //===--------------------------------------------------------------------===//
226  /// createDefaultScheduler - This creates an instruction scheduler appropriate
227  /// for the target.
228  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
229                                             CodeGenOpt::Level OptLevel) {
230    const TargetLowering *TLI = IS->getTargetLowering();
231    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
232
233    if (OptLevel == CodeGenOpt::None || ST.useMachineScheduler() ||
234        TLI->getSchedulingPreference() == Sched::Source)
235      return createSourceListDAGScheduler(IS, OptLevel);
236    if (TLI->getSchedulingPreference() == Sched::RegPressure)
237      return createBURRListDAGScheduler(IS, OptLevel);
238    if (TLI->getSchedulingPreference() == Sched::Hybrid)
239      return createHybridListDAGScheduler(IS, OptLevel);
240    if (TLI->getSchedulingPreference() == Sched::VLIW)
241      return createVLIWDAGScheduler(IS, OptLevel);
242    assert(TLI->getSchedulingPreference() == Sched::ILP &&
243           "Unknown sched type!");
244    return createILPListDAGScheduler(IS, OptLevel);
245  }
246}
247
248// EmitInstrWithCustomInserter - This method should be implemented by targets
249// that mark instructions with the 'usesCustomInserter' flag.  These
250// instructions are special in various ways, which require special support to
251// insert.  The specified MachineInstr is created but not inserted into any
252// basic blocks, and this method is called to expand it into a sequence of
253// instructions, potentially also creating new basic blocks and control flow.
254// When new basic blocks are inserted and the edges from MBB to its successors
255// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
256// DenseMap.
257MachineBasicBlock *
258TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
259                                            MachineBasicBlock *MBB) const {
260#ifndef NDEBUG
261  dbgs() << "If a target marks an instruction with "
262          "'usesCustomInserter', it must implement "
263          "TargetLowering::EmitInstrWithCustomInserter!";
264#endif
265  llvm_unreachable(0);
266}
267
268void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
269                                                   SDNode *Node) const {
270  assert(!MI->hasPostISelHook() &&
271         "If a target marks an instruction with 'hasPostISelHook', "
272         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
273}
274
275//===----------------------------------------------------------------------===//
276// SelectionDAGISel code
277//===----------------------------------------------------------------------===//
278
279SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
280                                   CodeGenOpt::Level OL) :
281  MachineFunctionPass(ID), TM(tm),
282  FuncInfo(new FunctionLoweringInfo(TM)),
283  CurDAG(new SelectionDAG(tm, OL)),
284  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
285  GFI(),
286  OptLevel(OL),
287  DAGSize(0) {
288    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
289    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
290    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
291    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
292  }
293
294SelectionDAGISel::~SelectionDAGISel() {
295  delete SDB;
296  delete CurDAG;
297  delete FuncInfo;
298}
299
300void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
301  AU.addRequired<AliasAnalysis>();
302  AU.addPreserved<AliasAnalysis>();
303  AU.addRequired<GCModuleInfo>();
304  AU.addPreserved<GCModuleInfo>();
305  AU.addRequired<TargetLibraryInfo>();
306  if (UseMBPI && OptLevel != CodeGenOpt::None)
307    AU.addRequired<BranchProbabilityInfo>();
308  MachineFunctionPass::getAnalysisUsage(AU);
309}
310
311/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
312/// may trap on it.  In this case we have to split the edge so that the path
313/// through the predecessor block that doesn't go to the phi block doesn't
314/// execute the possibly trapping instruction.
315///
316/// This is required for correctness, so it must be done at -O0.
317///
318static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
319  // Loop for blocks with phi nodes.
320  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
321    PHINode *PN = dyn_cast<PHINode>(BB->begin());
322    if (PN == 0) continue;
323
324  ReprocessBlock:
325    // For each block with a PHI node, check to see if any of the input values
326    // are potentially trapping constant expressions.  Constant expressions are
327    // the only potentially trapping value that can occur as the argument to a
328    // PHI.
329    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
330      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
331        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
332        if (CE == 0 || !CE->canTrap()) continue;
333
334        // The only case we have to worry about is when the edge is critical.
335        // Since this block has a PHI Node, we assume it has multiple input
336        // edges: check to see if the pred has multiple successors.
337        BasicBlock *Pred = PN->getIncomingBlock(i);
338        if (Pred->getTerminator()->getNumSuccessors() == 1)
339          continue;
340
341        // Okay, we have to split this edge.
342        SplitCriticalEdge(Pred->getTerminator(),
343                          GetSuccessorNumber(Pred, BB), SDISel, true);
344        goto ReprocessBlock;
345      }
346  }
347}
348
349bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
350  // Do some sanity-checking on the command-line options.
351  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
352         "-fast-isel-verbose requires -fast-isel");
353  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
354         "-fast-isel-abort requires -fast-isel");
355
356  const Function &Fn = *mf.getFunction();
357  const TargetInstrInfo &TII = *TM.getInstrInfo();
358  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
359
360  MF = &mf;
361  RegInfo = &MF->getRegInfo();
362  AA = &getAnalysis<AliasAnalysis>();
363  LibInfo = &getAnalysis<TargetLibraryInfo>();
364  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
365  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
366
367  TargetSubtargetInfo &ST =
368    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
369  ST.resetSubtargetFeatures(MF);
370  TM.resetTargetOptions(MF);
371
372  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
373
374  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
375
376  CurDAG->init(*MF, TTI);
377  FuncInfo->set(Fn, *MF);
378
379  if (UseMBPI && OptLevel != CodeGenOpt::None)
380    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
381  else
382    FuncInfo->BPI = 0;
383
384  SDB->init(GFI, *AA, LibInfo);
385
386  MF->setHasMSInlineAsm(false);
387  SelectAllBasicBlocks(Fn);
388
389  // If the first basic block in the function has live ins that need to be
390  // copied into vregs, emit the copies into the top of the block before
391  // emitting the code for the block.
392  MachineBasicBlock *EntryMBB = MF->begin();
393  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
394
395  DenseMap<unsigned, unsigned> LiveInMap;
396  if (!FuncInfo->ArgDbgValues.empty())
397    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
398           E = RegInfo->livein_end(); LI != E; ++LI)
399      if (LI->second)
400        LiveInMap.insert(std::make_pair(LI->first, LI->second));
401
402  // Insert DBG_VALUE instructions for function arguments to the entry block.
403  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
404    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
405    bool hasFI = MI->getOperand(0).isFI();
406    unsigned Reg = hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
407    if (TargetRegisterInfo::isPhysicalRegister(Reg))
408      EntryMBB->insert(EntryMBB->begin(), MI);
409    else {
410      MachineInstr *Def = RegInfo->getVRegDef(Reg);
411      if (Def) {
412        MachineBasicBlock::iterator InsertPos = Def;
413        // FIXME: VR def may not be in entry block.
414        Def->getParent()->insert(llvm::next(InsertPos), MI);
415      } else
416        DEBUG(dbgs() << "Dropping debug info for dead vreg"
417              << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
418    }
419
420    // If Reg is live-in then update debug info to track its copy in a vreg.
421    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
422    if (LDI != LiveInMap.end()) {
423      assert(!hasFI && "There's no handling of frame pointer updating here yet "
424                       "- add if needed");
425      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
426      MachineBasicBlock::iterator InsertPos = Def;
427      const MDNode *Variable =
428        MI->getOperand(MI->getNumOperands()-1).getMetadata();
429      bool IsIndirect = MI->isIndirectDebugValue();
430      unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
431      // Def is never a terminator here, so it is ok to increment InsertPos.
432      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
433              TII.get(TargetOpcode::DBG_VALUE),
434              IsIndirect,
435              LDI->second, Offset, Variable);
436
437      // If this vreg is directly copied into an exported register then
438      // that COPY instructions also need DBG_VALUE, if it is the only
439      // user of LDI->second.
440      MachineInstr *CopyUseMI = NULL;
441      for (MachineRegisterInfo::use_iterator
442             UI = RegInfo->use_begin(LDI->second);
443           MachineInstr *UseMI = UI.skipInstruction();) {
444        if (UseMI->isDebugValue()) continue;
445        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
446          CopyUseMI = UseMI; continue;
447        }
448        // Otherwise this is another use or second copy use.
449        CopyUseMI = NULL; break;
450      }
451      if (CopyUseMI) {
452        MachineInstr *NewMI =
453          BuildMI(*MF, CopyUseMI->getDebugLoc(),
454                  TII.get(TargetOpcode::DBG_VALUE),
455                  IsIndirect,
456                  CopyUseMI->getOperand(0).getReg(),
457                  Offset, Variable);
458        MachineBasicBlock::iterator Pos = CopyUseMI;
459        EntryMBB->insertAfter(Pos, NewMI);
460      }
461    }
462  }
463
464  // Determine if there are any calls in this machine function.
465  MachineFrameInfo *MFI = MF->getFrameInfo();
466  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
467       ++I) {
468
469    if (MFI->hasCalls() && MF->hasMSInlineAsm())
470      break;
471
472    const MachineBasicBlock *MBB = I;
473    for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
474         II != IE; ++II) {
475      const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
476      if ((MCID.isCall() && !MCID.isReturn()) ||
477          II->isStackAligningInlineAsm()) {
478        MFI->setHasCalls(true);
479      }
480      if (II->isMSInlineAsm()) {
481        MF->setHasMSInlineAsm(true);
482      }
483    }
484  }
485
486  // Determine if there is a call to setjmp in the machine function.
487  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
488
489  // Replace forward-declared registers with the registers containing
490  // the desired value.
491  MachineRegisterInfo &MRI = MF->getRegInfo();
492  for (DenseMap<unsigned, unsigned>::iterator
493       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
494       I != E; ++I) {
495    unsigned From = I->first;
496    unsigned To = I->second;
497    // If To is also scheduled to be replaced, find what its ultimate
498    // replacement is.
499    for (;;) {
500      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
501      if (J == E) break;
502      To = J->second;
503    }
504    // Make sure the new register has a sufficiently constrained register class.
505    if (TargetRegisterInfo::isVirtualRegister(From) &&
506        TargetRegisterInfo::isVirtualRegister(To))
507      MRI.constrainRegClass(To, MRI.getRegClass(From));
508    // Replace it.
509    MRI.replaceRegWith(From, To);
510  }
511
512  // Freeze the set of reserved registers now that MachineFrameInfo has been
513  // set up. All the information required by getReservedRegs() should be
514  // available now.
515  MRI.freezeReservedRegs(*MF);
516
517  // Release function-specific state. SDB and CurDAG are already cleared
518  // at this point.
519  FuncInfo->clear();
520
521  return true;
522}
523
524void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
525                                        BasicBlock::const_iterator End,
526                                        bool &HadTailCall) {
527  // Lower all of the non-terminator instructions. If a call is emitted
528  // as a tail call, cease emitting nodes for this block. Terminators
529  // are handled below.
530  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
531    SDB->visit(*I);
532
533  // Make sure the root of the DAG is up-to-date.
534  CurDAG->setRoot(SDB->getControlRoot());
535  HadTailCall = SDB->HasTailCall;
536  SDB->clear();
537
538  // Final step, emit the lowered DAG as machine code.
539  CodeGenAndEmitDAG();
540}
541
542void SelectionDAGISel::ComputeLiveOutVRegInfo() {
543  SmallPtrSet<SDNode*, 128> VisitedNodes;
544  SmallVector<SDNode*, 128> Worklist;
545
546  Worklist.push_back(CurDAG->getRoot().getNode());
547
548  APInt KnownZero;
549  APInt KnownOne;
550
551  do {
552    SDNode *N = Worklist.pop_back_val();
553
554    // If we've already seen this node, ignore it.
555    if (!VisitedNodes.insert(N))
556      continue;
557
558    // Otherwise, add all chain operands to the worklist.
559    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
560      if (N->getOperand(i).getValueType() == MVT::Other)
561        Worklist.push_back(N->getOperand(i).getNode());
562
563    // If this is a CopyToReg with a vreg dest, process it.
564    if (N->getOpcode() != ISD::CopyToReg)
565      continue;
566
567    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
568    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
569      continue;
570
571    // Ignore non-scalar or non-integer values.
572    SDValue Src = N->getOperand(2);
573    EVT SrcVT = Src.getValueType();
574    if (!SrcVT.isInteger() || SrcVT.isVector())
575      continue;
576
577    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
578    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
579    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
580  } while (!Worklist.empty());
581}
582
583void SelectionDAGISel::CodeGenAndEmitDAG() {
584  std::string GroupName;
585  if (TimePassesIsEnabled)
586    GroupName = "Instruction Selection and Scheduling";
587  std::string BlockName;
588  int BlockNumber = -1;
589  (void)BlockNumber;
590#ifdef NDEBUG
591  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
592      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
593      ViewSUnitDAGs)
594#endif
595  {
596    BlockNumber = FuncInfo->MBB->getNumber();
597    BlockName = MF->getName().str() + ":" +
598                FuncInfo->MBB->getBasicBlock()->getName().str();
599  }
600  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
601        << " '" << BlockName << "'\n"; CurDAG->dump());
602
603  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
604
605  // Run the DAG combiner in pre-legalize mode.
606  {
607    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
608    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
609  }
610
611  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
612        << " '" << BlockName << "'\n"; CurDAG->dump());
613
614  // Second step, hack on the DAG until it only uses operations and types that
615  // the target supports.
616  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
617                                               BlockName);
618
619  bool Changed;
620  {
621    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
622    Changed = CurDAG->LegalizeTypes();
623  }
624
625  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
626        << " '" << BlockName << "'\n"; CurDAG->dump());
627
628  if (Changed) {
629    if (ViewDAGCombineLT)
630      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
631
632    // Run the DAG combiner in post-type-legalize mode.
633    {
634      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
635                         TimePassesIsEnabled);
636      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
637    }
638
639    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
640          << " '" << BlockName << "'\n"; CurDAG->dump());
641
642  }
643
644  {
645    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
646    Changed = CurDAG->LegalizeVectors();
647  }
648
649  if (Changed) {
650    {
651      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
652      CurDAG->LegalizeTypes();
653    }
654
655    if (ViewDAGCombineLT)
656      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
657
658    // Run the DAG combiner in post-type-legalize mode.
659    {
660      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
661                         TimePassesIsEnabled);
662      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
663    }
664
665    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
666          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
667  }
668
669  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
670
671  {
672    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
673    CurDAG->Legalize();
674  }
675
676  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
677        << " '" << BlockName << "'\n"; CurDAG->dump());
678
679  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
680
681  // Run the DAG combiner in post-legalize mode.
682  {
683    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
684    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
685  }
686
687  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
688        << " '" << BlockName << "'\n"; CurDAG->dump());
689
690  if (OptLevel != CodeGenOpt::None)
691    ComputeLiveOutVRegInfo();
692
693  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
694
695  // Third, instruction select all of the operations to machine code, adding the
696  // code to the MachineBasicBlock.
697  {
698    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
699    DoInstructionSelection();
700  }
701
702  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
703        << " '" << BlockName << "'\n"; CurDAG->dump());
704
705  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
706
707  // Schedule machine code.
708  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
709  {
710    NamedRegionTimer T("Instruction Scheduling", GroupName,
711                       TimePassesIsEnabled);
712    Scheduler->Run(CurDAG, FuncInfo->MBB);
713  }
714
715  if (ViewSUnitDAGs) Scheduler->viewGraph();
716
717  // Emit machine code to BB.  This can change 'BB' to the last block being
718  // inserted into.
719  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
720  {
721    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
722
723    // FuncInfo->InsertPt is passed by reference and set to the end of the
724    // scheduled instructions.
725    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
726  }
727
728  // If the block was split, make sure we update any references that are used to
729  // update PHI nodes later on.
730  if (FirstMBB != LastMBB)
731    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
732
733  // Free the scheduler state.
734  {
735    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
736                       TimePassesIsEnabled);
737    delete Scheduler;
738  }
739
740  // Free the SelectionDAG state, now that we're finished with it.
741  CurDAG->clear();
742}
743
744namespace {
745/// ISelUpdater - helper class to handle updates of the instruction selection
746/// graph.
747class ISelUpdater : public SelectionDAG::DAGUpdateListener {
748  SelectionDAG::allnodes_iterator &ISelPosition;
749public:
750  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
751    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
752
753  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
754  /// deleted is the current ISelPosition node, update ISelPosition.
755  ///
756  virtual void NodeDeleted(SDNode *N, SDNode *E) {
757    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
758      ++ISelPosition;
759  }
760};
761} // end anonymous namespace
762
763void SelectionDAGISel::DoInstructionSelection() {
764  DEBUG(dbgs() << "===== Instruction selection begins: BB#"
765        << FuncInfo->MBB->getNumber()
766        << " '" << FuncInfo->MBB->getName() << "'\n");
767
768  PreprocessISelDAG();
769
770  // Select target instructions for the DAG.
771  {
772    // Number all nodes with a topological order and set DAGSize.
773    DAGSize = CurDAG->AssignTopologicalOrder();
774
775    // Create a dummy node (which is not added to allnodes), that adds
776    // a reference to the root node, preventing it from being deleted,
777    // and tracking any changes of the root.
778    HandleSDNode Dummy(CurDAG->getRoot());
779    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
780    ++ISelPosition;
781
782    // Make sure that ISelPosition gets properly updated when nodes are deleted
783    // in calls made from this function.
784    ISelUpdater ISU(*CurDAG, ISelPosition);
785
786    // The AllNodes list is now topological-sorted. Visit the
787    // nodes by starting at the end of the list (the root of the
788    // graph) and preceding back toward the beginning (the entry
789    // node).
790    while (ISelPosition != CurDAG->allnodes_begin()) {
791      SDNode *Node = --ISelPosition;
792      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
793      // but there are currently some corner cases that it misses. Also, this
794      // makes it theoretically possible to disable the DAGCombiner.
795      if (Node->use_empty())
796        continue;
797
798      SDNode *ResNode = Select(Node);
799
800      // FIXME: This is pretty gross.  'Select' should be changed to not return
801      // anything at all and this code should be nuked with a tactical strike.
802
803      // If node should not be replaced, continue with the next one.
804      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
805        continue;
806      // Replace node.
807      if (ResNode) {
808        ReplaceUses(Node, ResNode);
809      }
810
811      // If after the replacement this node is not used any more,
812      // remove this dead node.
813      if (Node->use_empty()) // Don't delete EntryToken, etc.
814        CurDAG->RemoveDeadNode(Node);
815    }
816
817    CurDAG->setRoot(Dummy.getValue());
818  }
819
820  DEBUG(dbgs() << "===== Instruction selection ends:\n");
821
822  PostprocessISelDAG();
823}
824
825/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
826/// do other setup for EH landing-pad blocks.
827void SelectionDAGISel::PrepareEHLandingPad() {
828  MachineBasicBlock *MBB = FuncInfo->MBB;
829
830  // Add a label to mark the beginning of the landing pad.  Deletion of the
831  // landing pad can thus be detected via the MachineModuleInfo.
832  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
833
834  // Assign the call site to the landing pad's begin label.
835  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
836
837  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
838  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
839    .addSym(Label);
840
841  // Mark exception register as live in.
842  const TargetLowering *TLI = getTargetLowering();
843  const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy());
844  if (unsigned Reg = TLI->getExceptionPointerRegister())
845    FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
846
847  // Mark exception selector register as live in.
848  if (unsigned Reg = TLI->getExceptionSelectorRegister())
849    FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
850}
851
852/// isFoldedOrDeadInstruction - Return true if the specified instruction is
853/// side-effect free and is either dead or folded into a generated instruction.
854/// Return false if it needs to be emitted.
855static bool isFoldedOrDeadInstruction(const Instruction *I,
856                                      FunctionLoweringInfo *FuncInfo) {
857  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
858         !isa<TerminatorInst>(I) && // Terminators aren't folded.
859         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
860         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
861         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
862}
863
864#ifndef NDEBUG
865// Collect per Instruction statistics for fast-isel misses.  Only those
866// instructions that cause the bail are accounted for.  It does not account for
867// instructions higher in the block.  Thus, summing the per instructions stats
868// will not add up to what is reported by NumFastIselFailures.
869static void collectFailStats(const Instruction *I) {
870  switch (I->getOpcode()) {
871  default: assert (0 && "<Invalid operator> ");
872
873  // Terminators
874  case Instruction::Ret:         NumFastIselFailRet++; return;
875  case Instruction::Br:          NumFastIselFailBr++; return;
876  case Instruction::Switch:      NumFastIselFailSwitch++; return;
877  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
878  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
879  case Instruction::Resume:      NumFastIselFailResume++; return;
880  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
881
882  // Standard binary operators...
883  case Instruction::Add:  NumFastIselFailAdd++; return;
884  case Instruction::FAdd: NumFastIselFailFAdd++; return;
885  case Instruction::Sub:  NumFastIselFailSub++; return;
886  case Instruction::FSub: NumFastIselFailFSub++; return;
887  case Instruction::Mul:  NumFastIselFailMul++; return;
888  case Instruction::FMul: NumFastIselFailFMul++; return;
889  case Instruction::UDiv: NumFastIselFailUDiv++; return;
890  case Instruction::SDiv: NumFastIselFailSDiv++; return;
891  case Instruction::FDiv: NumFastIselFailFDiv++; return;
892  case Instruction::URem: NumFastIselFailURem++; return;
893  case Instruction::SRem: NumFastIselFailSRem++; return;
894  case Instruction::FRem: NumFastIselFailFRem++; return;
895
896  // Logical operators...
897  case Instruction::And: NumFastIselFailAnd++; return;
898  case Instruction::Or:  NumFastIselFailOr++; return;
899  case Instruction::Xor: NumFastIselFailXor++; return;
900
901  // Memory instructions...
902  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
903  case Instruction::Load:          NumFastIselFailLoad++; return;
904  case Instruction::Store:         NumFastIselFailStore++; return;
905  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
906  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
907  case Instruction::Fence:         NumFastIselFailFence++; return;
908  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
909
910  // Convert instructions...
911  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
912  case Instruction::ZExt:     NumFastIselFailZExt++; return;
913  case Instruction::SExt:     NumFastIselFailSExt++; return;
914  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
915  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
916  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
917  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
918  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
919  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
920  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
921  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
922  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
923
924  // Other instructions...
925  case Instruction::ICmp:           NumFastIselFailICmp++; return;
926  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
927  case Instruction::PHI:            NumFastIselFailPHI++; return;
928  case Instruction::Select:         NumFastIselFailSelect++; return;
929  case Instruction::Call:           NumFastIselFailCall++; return;
930  case Instruction::Shl:            NumFastIselFailShl++; return;
931  case Instruction::LShr:           NumFastIselFailLShr++; return;
932  case Instruction::AShr:           NumFastIselFailAShr++; return;
933  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
934  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
935  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
936  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
937  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
938  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
939  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
940  }
941}
942#endif
943
944void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
945  // Initialize the Fast-ISel state, if needed.
946  FastISel *FastIS = 0;
947  if (TM.Options.EnableFastISel)
948    FastIS = getTargetLowering()->createFastISel(*FuncInfo, LibInfo);
949
950  // Iterate over all basic blocks in the function.
951  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
952  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
953       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
954    const BasicBlock *LLVMBB = *I;
955
956    if (OptLevel != CodeGenOpt::None) {
957      bool AllPredsVisited = true;
958      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
959           PI != PE; ++PI) {
960        if (!FuncInfo->VisitedBBs.count(*PI)) {
961          AllPredsVisited = false;
962          break;
963        }
964      }
965
966      if (AllPredsVisited) {
967        for (BasicBlock::const_iterator I = LLVMBB->begin();
968             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
969          FuncInfo->ComputePHILiveOutRegInfo(PN);
970      } else {
971        for (BasicBlock::const_iterator I = LLVMBB->begin();
972             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
973          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
974      }
975
976      FuncInfo->VisitedBBs.insert(LLVMBB);
977    }
978
979    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
980    BasicBlock::const_iterator const End = LLVMBB->end();
981    BasicBlock::const_iterator BI = End;
982
983    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
984    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
985
986    // Setup an EH landing-pad block.
987    FuncInfo->ExceptionPointerVirtReg = 0;
988    FuncInfo->ExceptionSelectorVirtReg = 0;
989    if (FuncInfo->MBB->isLandingPad())
990      PrepareEHLandingPad();
991
992    // Before doing SelectionDAG ISel, see if FastISel has been requested.
993    if (FastIS) {
994      FastIS->startNewBlock();
995
996      // Emit code for any incoming arguments. This must happen before
997      // beginning FastISel on the entry block.
998      if (LLVMBB == &Fn.getEntryBlock()) {
999        ++NumEntryBlocks;
1000
1001        // Lower any arguments needed in this block if this is the entry block.
1002        if (!FastIS->LowerArguments()) {
1003          // Fast isel failed to lower these arguments
1004          ++NumFastIselFailLowerArguments;
1005          if (EnableFastISelAbortArgs)
1006            llvm_unreachable("FastISel didn't lower all arguments");
1007
1008          // Use SelectionDAG argument lowering
1009          LowerArguments(Fn);
1010          CurDAG->setRoot(SDB->getControlRoot());
1011          SDB->clear();
1012          CodeGenAndEmitDAG();
1013        }
1014
1015        // If we inserted any instructions at the beginning, make a note of
1016        // where they are, so we can be sure to emit subsequent instructions
1017        // after them.
1018        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1019          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1020        else
1021          FastIS->setLastLocalValue(0);
1022      }
1023
1024      unsigned NumFastIselRemaining = std::distance(Begin, End);
1025      // Do FastISel on as many instructions as possible.
1026      for (; BI != Begin; --BI) {
1027        const Instruction *Inst = llvm::prior(BI);
1028
1029        // If we no longer require this instruction, skip it.
1030        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1031          --NumFastIselRemaining;
1032          continue;
1033        }
1034
1035        // Bottom-up: reset the insert pos at the top, after any local-value
1036        // instructions.
1037        FastIS->recomputeInsertPt();
1038
1039        // Try to select the instruction with FastISel.
1040        if (FastIS->SelectInstruction(Inst)) {
1041          --NumFastIselRemaining;
1042          ++NumFastIselSuccess;
1043          // If fast isel succeeded, skip over all the folded instructions, and
1044          // then see if there is a load right before the selected instructions.
1045          // Try to fold the load if so.
1046          const Instruction *BeforeInst = Inst;
1047          while (BeforeInst != Begin) {
1048            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1049            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1050              break;
1051          }
1052          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1053              BeforeInst->hasOneUse() &&
1054              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1055            // If we succeeded, don't re-select the load.
1056            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1057            --NumFastIselRemaining;
1058            ++NumFastIselSuccess;
1059          }
1060          continue;
1061        }
1062
1063#ifndef NDEBUG
1064        if (EnableFastISelVerbose2)
1065          collectFailStats(Inst);
1066#endif
1067
1068        // Then handle certain instructions as single-LLVM-Instruction blocks.
1069        if (isa<CallInst>(Inst)) {
1070
1071          if (EnableFastISelVerbose || EnableFastISelAbort) {
1072            dbgs() << "FastISel missed call: ";
1073            Inst->dump();
1074          }
1075
1076          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1077            unsigned &R = FuncInfo->ValueMap[Inst];
1078            if (!R)
1079              R = FuncInfo->CreateRegs(Inst->getType());
1080          }
1081
1082          bool HadTailCall = false;
1083          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1084          SelectBasicBlock(Inst, BI, HadTailCall);
1085
1086          // If the call was emitted as a tail call, we're done with the block.
1087          // We also need to delete any previously emitted instructions.
1088          if (HadTailCall) {
1089            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1090            --BI;
1091            break;
1092          }
1093
1094          // Recompute NumFastIselRemaining as Selection DAG instruction
1095          // selection may have handled the call, input args, etc.
1096          unsigned RemainingNow = std::distance(Begin, BI);
1097          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1098          NumFastIselRemaining = RemainingNow;
1099          continue;
1100        }
1101
1102        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1103          // Don't abort, and use a different message for terminator misses.
1104          NumFastIselFailures += NumFastIselRemaining;
1105          if (EnableFastISelVerbose || EnableFastISelAbort) {
1106            dbgs() << "FastISel missed terminator: ";
1107            Inst->dump();
1108          }
1109        } else {
1110          NumFastIselFailures += NumFastIselRemaining;
1111          if (EnableFastISelVerbose || EnableFastISelAbort) {
1112            dbgs() << "FastISel miss: ";
1113            Inst->dump();
1114          }
1115          if (EnableFastISelAbort)
1116            // The "fast" selector couldn't handle something and bailed.
1117            // For the purpose of debugging, just abort.
1118            llvm_unreachable("FastISel didn't select the entire block");
1119        }
1120        break;
1121      }
1122
1123      FastIS->recomputeInsertPt();
1124    } else {
1125      // Lower any arguments needed in this block if this is the entry block.
1126      if (LLVMBB == &Fn.getEntryBlock()) {
1127        ++NumEntryBlocks;
1128        LowerArguments(Fn);
1129      }
1130    }
1131
1132    if (Begin != BI)
1133      ++NumDAGBlocks;
1134    else
1135      ++NumFastIselBlocks;
1136
1137    if (Begin != BI) {
1138      // Run SelectionDAG instruction selection on the remainder of the block
1139      // not handled by FastISel. If FastISel is not run, this is the entire
1140      // block.
1141      bool HadTailCall;
1142      SelectBasicBlock(Begin, BI, HadTailCall);
1143    }
1144
1145    FinishBasicBlock();
1146    FuncInfo->PHINodesToUpdate.clear();
1147  }
1148
1149  delete FastIS;
1150  SDB->clearDanglingDebugInfo();
1151  SDB->SPDescriptor.resetPerFunctionState();
1152}
1153
1154/// Given that the input MI is before a partial terminator sequence TSeq, return
1155/// true if M + TSeq also a partial terminator sequence.
1156///
1157/// A Terminator sequence is a sequence of MachineInstrs which at this point in
1158/// lowering copy vregs into physical registers, which are then passed into
1159/// terminator instructors so we can satisfy ABI constraints. A partial
1160/// terminator sequence is an improper subset of a terminator sequence (i.e. it
1161/// may be the whole terminator sequence).
1162static bool MIIsInTerminatorSequence(const MachineInstr *MI) {
1163  // If we do not have a copy or an implicit def, we return true if and only if
1164  // MI is a debug value.
1165  if (!MI->isCopy() && !MI->isImplicitDef())
1166    // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1167    // physical registers if there is debug info associated with the terminator
1168    // of our mbb. We want to include said debug info in our terminator
1169    // sequence, so we return true in that case.
1170    return MI->isDebugValue();
1171
1172  // We have left the terminator sequence if we are not doing one of the
1173  // following:
1174  //
1175  // 1. Copying a vreg into a physical register.
1176  // 2. Copying a vreg into a vreg.
1177  // 3. Defining a register via an implicit def.
1178
1179  // OPI should always be a register definition...
1180  MachineInstr::const_mop_iterator OPI = MI->operands_begin();
1181  if (!OPI->isReg() || !OPI->isDef())
1182    return false;
1183
1184  // Defining any register via an implicit def is always ok.
1185  if (MI->isImplicitDef())
1186    return true;
1187
1188  // Grab the copy source...
1189  MachineInstr::const_mop_iterator OPI2 = OPI;
1190  ++OPI2;
1191  assert(OPI2 != MI->operands_end()
1192         && "Should have a copy implying we should have 2 arguments.");
1193
1194  // Make sure that the copy dest is not a vreg when the copy source is a
1195  // physical register.
1196  if (!OPI2->isReg() ||
1197      (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1198       TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1199    return false;
1200
1201  return true;
1202}
1203
1204/// Find the split point at which to splice the end of BB into its success stack
1205/// protector check machine basic block.
1206///
1207/// On many platforms, due to ABI constraints, terminators, even before register
1208/// allocation, use physical registers. This creates an issue for us since
1209/// physical registers at this point can not travel across basic
1210/// blocks. Luckily, selectiondag always moves physical registers into vregs
1211/// when they enter functions and moves them through a sequence of copies back
1212/// into the physical registers right before the terminator creating a
1213/// ``Terminator Sequence''. This function is searching for the beginning of the
1214/// terminator sequence so that we can ensure that we splice off not just the
1215/// terminator, but additionally the copies that move the vregs into the
1216/// physical registers.
1217static MachineBasicBlock::iterator
1218FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) {
1219  MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1220  //
1221  if (SplitPoint == BB->begin())
1222    return SplitPoint;
1223
1224  MachineBasicBlock::iterator Start = BB->begin();
1225  MachineBasicBlock::iterator Previous = SplitPoint;
1226  --Previous;
1227
1228  while (MIIsInTerminatorSequence(Previous)) {
1229    SplitPoint = Previous;
1230    if (Previous == Start)
1231      break;
1232    --Previous;
1233  }
1234
1235  return SplitPoint;
1236}
1237
1238void
1239SelectionDAGISel::FinishBasicBlock() {
1240
1241  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1242               << FuncInfo->PHINodesToUpdate.size() << "\n";
1243        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1244          dbgs() << "Node " << i << " : ("
1245                 << FuncInfo->PHINodesToUpdate[i].first
1246                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1247
1248  const bool MustUpdatePHINodes = SDB->SwitchCases.empty() &&
1249                                  SDB->JTCases.empty() &&
1250                                  SDB->BitTestCases.empty();
1251
1252  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1253  // PHI nodes in successors.
1254  if (MustUpdatePHINodes) {
1255    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1256      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1257      assert(PHI->isPHI() &&
1258             "This is not a machine PHI node that we are updating!");
1259      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1260        continue;
1261      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1262    }
1263  }
1264
1265  // Handle stack protector.
1266  if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1267    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1268    MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1269
1270    // Find the split point to split the parent mbb. At the same time copy all
1271    // physical registers used in the tail of parent mbb into virtual registers
1272    // before the split point and back into physical registers after the split
1273    // point. This prevents us needing to deal with Live-ins and many other
1274    // register allocation issues caused by us splitting the parent mbb. The
1275    // register allocator will clean up said virtual copies later on.
1276    MachineBasicBlock::iterator SplitPoint =
1277      FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc());
1278
1279    // Splice the terminator of ParentMBB into SuccessMBB.
1280    SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1281                       SplitPoint,
1282                       ParentMBB->end());
1283
1284    // Add compare/jump on neq/jump to the parent BB.
1285    FuncInfo->MBB = ParentMBB;
1286    FuncInfo->InsertPt = ParentMBB->end();
1287    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1288    CurDAG->setRoot(SDB->getRoot());
1289    SDB->clear();
1290    CodeGenAndEmitDAG();
1291
1292    // CodeGen Failure MBB if we have not codegened it yet.
1293    MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1294    if (!FailureMBB->size()) {
1295      FuncInfo->MBB = FailureMBB;
1296      FuncInfo->InsertPt = FailureMBB->end();
1297      SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1298      CurDAG->setRoot(SDB->getRoot());
1299      SDB->clear();
1300      CodeGenAndEmitDAG();
1301    }
1302
1303    // Clear the Per-BB State.
1304    SDB->SPDescriptor.resetPerBBState();
1305  }
1306
1307  // If we updated PHI Nodes, return early.
1308  if (MustUpdatePHINodes)
1309    return;
1310
1311  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1312    // Lower header first, if it wasn't already lowered
1313    if (!SDB->BitTestCases[i].Emitted) {
1314      // Set the current basic block to the mbb we wish to insert the code into
1315      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1316      FuncInfo->InsertPt = FuncInfo->MBB->end();
1317      // Emit the code
1318      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1319      CurDAG->setRoot(SDB->getRoot());
1320      SDB->clear();
1321      CodeGenAndEmitDAG();
1322    }
1323
1324    uint32_t UnhandledWeight = 0;
1325    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1326      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1327
1328    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1329      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1330      // Set the current basic block to the mbb we wish to insert the code into
1331      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1332      FuncInfo->InsertPt = FuncInfo->MBB->end();
1333      // Emit the code
1334      if (j+1 != ej)
1335        SDB->visitBitTestCase(SDB->BitTestCases[i],
1336                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1337                              UnhandledWeight,
1338                              SDB->BitTestCases[i].Reg,
1339                              SDB->BitTestCases[i].Cases[j],
1340                              FuncInfo->MBB);
1341      else
1342        SDB->visitBitTestCase(SDB->BitTestCases[i],
1343                              SDB->BitTestCases[i].Default,
1344                              UnhandledWeight,
1345                              SDB->BitTestCases[i].Reg,
1346                              SDB->BitTestCases[i].Cases[j],
1347                              FuncInfo->MBB);
1348
1349
1350      CurDAG->setRoot(SDB->getRoot());
1351      SDB->clear();
1352      CodeGenAndEmitDAG();
1353    }
1354
1355    // Update PHI Nodes
1356    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1357         pi != pe; ++pi) {
1358      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1359      MachineBasicBlock *PHIBB = PHI->getParent();
1360      assert(PHI->isPHI() &&
1361             "This is not a machine PHI node that we are updating!");
1362      // This is "default" BB. We have two jumps to it. From "header" BB and
1363      // from last "case" BB.
1364      if (PHIBB == SDB->BitTestCases[i].Default)
1365        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1366           .addMBB(SDB->BitTestCases[i].Parent)
1367           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1368           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1369      // One of "cases" BB.
1370      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1371           j != ej; ++j) {
1372        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1373        if (cBB->isSuccessor(PHIBB))
1374          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1375      }
1376    }
1377  }
1378  SDB->BitTestCases.clear();
1379
1380  // If the JumpTable record is filled in, then we need to emit a jump table.
1381  // Updating the PHI nodes is tricky in this case, since we need to determine
1382  // whether the PHI is a successor of the range check MBB or the jump table MBB
1383  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1384    // Lower header first, if it wasn't already lowered
1385    if (!SDB->JTCases[i].first.Emitted) {
1386      // Set the current basic block to the mbb we wish to insert the code into
1387      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1388      FuncInfo->InsertPt = FuncInfo->MBB->end();
1389      // Emit the code
1390      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1391                                FuncInfo->MBB);
1392      CurDAG->setRoot(SDB->getRoot());
1393      SDB->clear();
1394      CodeGenAndEmitDAG();
1395    }
1396
1397    // Set the current basic block to the mbb we wish to insert the code into
1398    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1399    FuncInfo->InsertPt = FuncInfo->MBB->end();
1400    // Emit the code
1401    SDB->visitJumpTable(SDB->JTCases[i].second);
1402    CurDAG->setRoot(SDB->getRoot());
1403    SDB->clear();
1404    CodeGenAndEmitDAG();
1405
1406    // Update PHI Nodes
1407    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1408         pi != pe; ++pi) {
1409      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1410      MachineBasicBlock *PHIBB = PHI->getParent();
1411      assert(PHI->isPHI() &&
1412             "This is not a machine PHI node that we are updating!");
1413      // "default" BB. We can go there only from header BB.
1414      if (PHIBB == SDB->JTCases[i].second.Default)
1415        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1416           .addMBB(SDB->JTCases[i].first.HeaderBB);
1417      // JT BB. Just iterate over successors here
1418      if (FuncInfo->MBB->isSuccessor(PHIBB))
1419        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1420    }
1421  }
1422  SDB->JTCases.clear();
1423
1424  // If the switch block involved a branch to one of the actual successors, we
1425  // need to update PHI nodes in that block.
1426  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1427    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1428    assert(PHI->isPHI() &&
1429           "This is not a machine PHI node that we are updating!");
1430    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1431      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1432  }
1433
1434  // If we generated any switch lowering information, build and codegen any
1435  // additional DAGs necessary.
1436  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1437    // Set the current basic block to the mbb we wish to insert the code into
1438    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1439    FuncInfo->InsertPt = FuncInfo->MBB->end();
1440
1441    // Determine the unique successors.
1442    SmallVector<MachineBasicBlock *, 2> Succs;
1443    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1444    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1445      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1446
1447    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1448    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1449    CurDAG->setRoot(SDB->getRoot());
1450    SDB->clear();
1451    CodeGenAndEmitDAG();
1452
1453    // Remember the last block, now that any splitting is done, for use in
1454    // populating PHI nodes in successors.
1455    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1456
1457    // Handle any PHI nodes in successors of this chunk, as if we were coming
1458    // from the original BB before switch expansion.  Note that PHI nodes can
1459    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1460    // handle them the right number of times.
1461    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1462      FuncInfo->MBB = Succs[i];
1463      FuncInfo->InsertPt = FuncInfo->MBB->end();
1464      // FuncInfo->MBB may have been removed from the CFG if a branch was
1465      // constant folded.
1466      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1467        for (MachineBasicBlock::iterator
1468             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1469             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1470          MachineInstrBuilder PHI(*MF, MBBI);
1471          // This value for this PHI node is recorded in PHINodesToUpdate.
1472          for (unsigned pn = 0; ; ++pn) {
1473            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1474                   "Didn't find PHI entry!");
1475            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1476              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1477              break;
1478            }
1479          }
1480        }
1481      }
1482    }
1483  }
1484  SDB->SwitchCases.clear();
1485}
1486
1487
1488/// Create the scheduler. If a specific scheduler was specified
1489/// via the SchedulerRegistry, use it, otherwise select the
1490/// one preferred by the target.
1491///
1492ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1493  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1494
1495  if (!Ctor) {
1496    Ctor = ISHeuristic;
1497    RegisterScheduler::setDefault(Ctor);
1498  }
1499
1500  return Ctor(this, OptLevel);
1501}
1502
1503//===----------------------------------------------------------------------===//
1504// Helper functions used by the generated instruction selector.
1505//===----------------------------------------------------------------------===//
1506// Calls to these methods are generated by tblgen.
1507
1508/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1509/// the dag combiner simplified the 255, we still want to match.  RHS is the
1510/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1511/// specified in the .td file (e.g. 255).
1512bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1513                                    int64_t DesiredMaskS) const {
1514  const APInt &ActualMask = RHS->getAPIntValue();
1515  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1516
1517  // If the actual mask exactly matches, success!
1518  if (ActualMask == DesiredMask)
1519    return true;
1520
1521  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1522  if (ActualMask.intersects(~DesiredMask))
1523    return false;
1524
1525  // Otherwise, the DAG Combiner may have proven that the value coming in is
1526  // either already zero or is not demanded.  Check for known zero input bits.
1527  APInt NeededMask = DesiredMask & ~ActualMask;
1528  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1529    return true;
1530
1531  // TODO: check to see if missing bits are just not demanded.
1532
1533  // Otherwise, this pattern doesn't match.
1534  return false;
1535}
1536
1537/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1538/// the dag combiner simplified the 255, we still want to match.  RHS is the
1539/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1540/// specified in the .td file (e.g. 255).
1541bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1542                                   int64_t DesiredMaskS) const {
1543  const APInt &ActualMask = RHS->getAPIntValue();
1544  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1545
1546  // If the actual mask exactly matches, success!
1547  if (ActualMask == DesiredMask)
1548    return true;
1549
1550  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1551  if (ActualMask.intersects(~DesiredMask))
1552    return false;
1553
1554  // Otherwise, the DAG Combiner may have proven that the value coming in is
1555  // either already zero or is not demanded.  Check for known zero input bits.
1556  APInt NeededMask = DesiredMask & ~ActualMask;
1557
1558  APInt KnownZero, KnownOne;
1559  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1560
1561  // If all the missing bits in the or are already known to be set, match!
1562  if ((NeededMask & KnownOne) == NeededMask)
1563    return true;
1564
1565  // TODO: check to see if missing bits are just not demanded.
1566
1567  // Otherwise, this pattern doesn't match.
1568  return false;
1569}
1570
1571
1572/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1573/// by tblgen.  Others should not call it.
1574void SelectionDAGISel::
1575SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1576  std::vector<SDValue> InOps;
1577  std::swap(InOps, Ops);
1578
1579  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1580  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1581  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1582  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1583
1584  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1585  if (InOps[e-1].getValueType() == MVT::Glue)
1586    --e;  // Don't process a glue operand if it is here.
1587
1588  while (i != e) {
1589    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1590    if (!InlineAsm::isMemKind(Flags)) {
1591      // Just skip over this operand, copying the operands verbatim.
1592      Ops.insert(Ops.end(), InOps.begin()+i,
1593                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1594      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1595    } else {
1596      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1597             "Memory operand with multiple values?");
1598      // Otherwise, this is a memory operand.  Ask the target to select it.
1599      std::vector<SDValue> SelOps;
1600      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1601        report_fatal_error("Could not match memory address.  Inline asm"
1602                           " failure!");
1603
1604      // Add this to the output node.
1605      unsigned NewFlags =
1606        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1607      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1608      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1609      i += 2;
1610    }
1611  }
1612
1613  // Add the glue input back if present.
1614  if (e != InOps.size())
1615    Ops.push_back(InOps.back());
1616}
1617
1618/// findGlueUse - Return use of MVT::Glue value produced by the specified
1619/// SDNode.
1620///
1621static SDNode *findGlueUse(SDNode *N) {
1622  unsigned FlagResNo = N->getNumValues()-1;
1623  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1624    SDUse &Use = I.getUse();
1625    if (Use.getResNo() == FlagResNo)
1626      return Use.getUser();
1627  }
1628  return NULL;
1629}
1630
1631/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1632/// This function recursively traverses up the operand chain, ignoring
1633/// certain nodes.
1634static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1635                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1636                          bool IgnoreChains) {
1637  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1638  // greater than all of its (recursive) operands.  If we scan to a point where
1639  // 'use' is smaller than the node we're scanning for, then we know we will
1640  // never find it.
1641  //
1642  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1643  // happen because we scan down to newly selected nodes in the case of glue
1644  // uses.
1645  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1646    return false;
1647
1648  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1649  // won't fail if we scan it again.
1650  if (!Visited.insert(Use))
1651    return false;
1652
1653  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1654    // Ignore chain uses, they are validated by HandleMergeInputChains.
1655    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1656      continue;
1657
1658    SDNode *N = Use->getOperand(i).getNode();
1659    if (N == Def) {
1660      if (Use == ImmedUse || Use == Root)
1661        continue;  // We are not looking for immediate use.
1662      assert(N != Root);
1663      return true;
1664    }
1665
1666    // Traverse up the operand chain.
1667    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1668      return true;
1669  }
1670  return false;
1671}
1672
1673/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1674/// operand node N of U during instruction selection that starts at Root.
1675bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1676                                          SDNode *Root) const {
1677  if (OptLevel == CodeGenOpt::None) return false;
1678  return N.hasOneUse();
1679}
1680
1681/// IsLegalToFold - Returns true if the specific operand node N of
1682/// U can be folded during instruction selection that starts at Root.
1683bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1684                                     CodeGenOpt::Level OptLevel,
1685                                     bool IgnoreChains) {
1686  if (OptLevel == CodeGenOpt::None) return false;
1687
1688  // If Root use can somehow reach N through a path that that doesn't contain
1689  // U then folding N would create a cycle. e.g. In the following
1690  // diagram, Root can reach N through X. If N is folded into into Root, then
1691  // X is both a predecessor and a successor of U.
1692  //
1693  //          [N*]           //
1694  //         ^   ^           //
1695  //        /     \          //
1696  //      [U*]    [X]?       //
1697  //        ^     ^          //
1698  //         \   /           //
1699  //          \ /            //
1700  //         [Root*]         //
1701  //
1702  // * indicates nodes to be folded together.
1703  //
1704  // If Root produces glue, then it gets (even more) interesting. Since it
1705  // will be "glued" together with its glue use in the scheduler, we need to
1706  // check if it might reach N.
1707  //
1708  //          [N*]           //
1709  //         ^   ^           //
1710  //        /     \          //
1711  //      [U*]    [X]?       //
1712  //        ^       ^        //
1713  //         \       \       //
1714  //          \      |       //
1715  //         [Root*] |       //
1716  //          ^      |       //
1717  //          f      |       //
1718  //          |      /       //
1719  //         [Y]    /        //
1720  //           ^   /         //
1721  //           f  /          //
1722  //           | /           //
1723  //          [GU]           //
1724  //
1725  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1726  // (call it Fold), then X is a predecessor of GU and a successor of
1727  // Fold. But since Fold and GU are glued together, this will create
1728  // a cycle in the scheduling graph.
1729
1730  // If the node has glue, walk down the graph to the "lowest" node in the
1731  // glueged set.
1732  EVT VT = Root->getValueType(Root->getNumValues()-1);
1733  while (VT == MVT::Glue) {
1734    SDNode *GU = findGlueUse(Root);
1735    if (GU == NULL)
1736      break;
1737    Root = GU;
1738    VT = Root->getValueType(Root->getNumValues()-1);
1739
1740    // If our query node has a glue result with a use, we've walked up it.  If
1741    // the user (which has already been selected) has a chain or indirectly uses
1742    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1743    // this, we cannot ignore chains in this predicate.
1744    IgnoreChains = false;
1745  }
1746
1747
1748  SmallPtrSet<SDNode*, 16> Visited;
1749  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1750}
1751
1752SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1753  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1754  SelectInlineAsmMemoryOperands(Ops);
1755
1756  EVT VTs[] = { MVT::Other, MVT::Glue };
1757  SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
1758                                VTs, &Ops[0], Ops.size());
1759  New->setNodeId(-1);
1760  return New.getNode();
1761}
1762
1763SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1764  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1765}
1766
1767/// GetVBR - decode a vbr encoding whose top bit is set.
1768LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1769GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1770  assert(Val >= 128 && "Not a VBR");
1771  Val &= 127;  // Remove first vbr bit.
1772
1773  unsigned Shift = 7;
1774  uint64_t NextBits;
1775  do {
1776    NextBits = MatcherTable[Idx++];
1777    Val |= (NextBits&127) << Shift;
1778    Shift += 7;
1779  } while (NextBits & 128);
1780
1781  return Val;
1782}
1783
1784
1785/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1786/// interior glue and chain results to use the new glue and chain results.
1787void SelectionDAGISel::
1788UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1789                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1790                    SDValue InputGlue,
1791                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1792                    bool isMorphNodeTo) {
1793  SmallVector<SDNode*, 4> NowDeadNodes;
1794
1795  // Now that all the normal results are replaced, we replace the chain and
1796  // glue results if present.
1797  if (!ChainNodesMatched.empty()) {
1798    assert(InputChain.getNode() != 0 &&
1799           "Matched input chains but didn't produce a chain");
1800    // Loop over all of the nodes we matched that produced a chain result.
1801    // Replace all the chain results with the final chain we ended up with.
1802    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1803      SDNode *ChainNode = ChainNodesMatched[i];
1804
1805      // If this node was already deleted, don't look at it.
1806      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1807        continue;
1808
1809      // Don't replace the results of the root node if we're doing a
1810      // MorphNodeTo.
1811      if (ChainNode == NodeToMatch && isMorphNodeTo)
1812        continue;
1813
1814      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1815      if (ChainVal.getValueType() == MVT::Glue)
1816        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1817      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1818      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1819
1820      // If the node became dead and we haven't already seen it, delete it.
1821      if (ChainNode->use_empty() &&
1822          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1823        NowDeadNodes.push_back(ChainNode);
1824    }
1825  }
1826
1827  // If the result produces glue, update any glue results in the matched
1828  // pattern with the glue result.
1829  if (InputGlue.getNode() != 0) {
1830    // Handle any interior nodes explicitly marked.
1831    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1832      SDNode *FRN = GlueResultNodesMatched[i];
1833
1834      // If this node was already deleted, don't look at it.
1835      if (FRN->getOpcode() == ISD::DELETED_NODE)
1836        continue;
1837
1838      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1839             "Doesn't have a glue result");
1840      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1841                                        InputGlue);
1842
1843      // If the node became dead and we haven't already seen it, delete it.
1844      if (FRN->use_empty() &&
1845          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1846        NowDeadNodes.push_back(FRN);
1847    }
1848  }
1849
1850  if (!NowDeadNodes.empty())
1851    CurDAG->RemoveDeadNodes(NowDeadNodes);
1852
1853  DEBUG(dbgs() << "ISEL: Match complete!\n");
1854}
1855
1856enum ChainResult {
1857  CR_Simple,
1858  CR_InducesCycle,
1859  CR_LeadsToInteriorNode
1860};
1861
1862/// WalkChainUsers - Walk down the users of the specified chained node that is
1863/// part of the pattern we're matching, looking at all of the users we find.
1864/// This determines whether something is an interior node, whether we have a
1865/// non-pattern node in between two pattern nodes (which prevent folding because
1866/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1867/// between pattern nodes (in which case the TF becomes part of the pattern).
1868///
1869/// The walk we do here is guaranteed to be small because we quickly get down to
1870/// already selected nodes "below" us.
1871static ChainResult
1872WalkChainUsers(const SDNode *ChainedNode,
1873               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1874               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1875  ChainResult Result = CR_Simple;
1876
1877  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1878         E = ChainedNode->use_end(); UI != E; ++UI) {
1879    // Make sure the use is of the chain, not some other value we produce.
1880    if (UI.getUse().getValueType() != MVT::Other) continue;
1881
1882    SDNode *User = *UI;
1883
1884    if (User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1885      continue;
1886
1887    // If we see an already-selected machine node, then we've gone beyond the
1888    // pattern that we're selecting down into the already selected chunk of the
1889    // DAG.
1890    unsigned UserOpcode = User->getOpcode();
1891    if (User->isMachineOpcode() ||
1892        UserOpcode == ISD::CopyToReg ||
1893        UserOpcode == ISD::CopyFromReg ||
1894        UserOpcode == ISD::INLINEASM ||
1895        UserOpcode == ISD::EH_LABEL ||
1896        UserOpcode == ISD::LIFETIME_START ||
1897        UserOpcode == ISD::LIFETIME_END) {
1898      // If their node ID got reset to -1 then they've already been selected.
1899      // Treat them like a MachineOpcode.
1900      if (User->getNodeId() == -1)
1901        continue;
1902    }
1903
1904    // If we have a TokenFactor, we handle it specially.
1905    if (User->getOpcode() != ISD::TokenFactor) {
1906      // If the node isn't a token factor and isn't part of our pattern, then it
1907      // must be a random chained node in between two nodes we're selecting.
1908      // This happens when we have something like:
1909      //   x = load ptr
1910      //   call
1911      //   y = x+4
1912      //   store y -> ptr
1913      // Because we structurally match the load/store as a read/modify/write,
1914      // but the call is chained between them.  We cannot fold in this case
1915      // because it would induce a cycle in the graph.
1916      if (!std::count(ChainedNodesInPattern.begin(),
1917                      ChainedNodesInPattern.end(), User))
1918        return CR_InducesCycle;
1919
1920      // Otherwise we found a node that is part of our pattern.  For example in:
1921      //   x = load ptr
1922      //   y = x+4
1923      //   store y -> ptr
1924      // This would happen when we're scanning down from the load and see the
1925      // store as a user.  Record that there is a use of ChainedNode that is
1926      // part of the pattern and keep scanning uses.
1927      Result = CR_LeadsToInteriorNode;
1928      InteriorChainedNodes.push_back(User);
1929      continue;
1930    }
1931
1932    // If we found a TokenFactor, there are two cases to consider: first if the
1933    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1934    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1935    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1936    //     [Load chain]
1937    //         ^
1938    //         |
1939    //       [Load]
1940    //       ^    ^
1941    //       |    \                    DAG's like cheese
1942    //      /       \                       do you?
1943    //     /         |
1944    // [TokenFactor] [Op]
1945    //     ^          ^
1946    //     |          |
1947    //      \        /
1948    //       \      /
1949    //       [Store]
1950    //
1951    // In this case, the TokenFactor becomes part of our match and we rewrite it
1952    // as a new TokenFactor.
1953    //
1954    // To distinguish these two cases, do a recursive walk down the uses.
1955    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1956    case CR_Simple:
1957      // If the uses of the TokenFactor are just already-selected nodes, ignore
1958      // it, it is "below" our pattern.
1959      continue;
1960    case CR_InducesCycle:
1961      // If the uses of the TokenFactor lead to nodes that are not part of our
1962      // pattern that are not selected, folding would turn this into a cycle,
1963      // bail out now.
1964      return CR_InducesCycle;
1965    case CR_LeadsToInteriorNode:
1966      break;  // Otherwise, keep processing.
1967    }
1968
1969    // Okay, we know we're in the interesting interior case.  The TokenFactor
1970    // is now going to be considered part of the pattern so that we rewrite its
1971    // uses (it may have uses that are not part of the pattern) with the
1972    // ultimate chain result of the generated code.  We will also add its chain
1973    // inputs as inputs to the ultimate TokenFactor we create.
1974    Result = CR_LeadsToInteriorNode;
1975    ChainedNodesInPattern.push_back(User);
1976    InteriorChainedNodes.push_back(User);
1977    continue;
1978  }
1979
1980  return Result;
1981}
1982
1983/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1984/// operation for when the pattern matched at least one node with a chains.  The
1985/// input vector contains a list of all of the chained nodes that we match.  We
1986/// must determine if this is a valid thing to cover (i.e. matching it won't
1987/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1988/// be used as the input node chain for the generated nodes.
1989static SDValue
1990HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1991                       SelectionDAG *CurDAG) {
1992  // Walk all of the chained nodes we've matched, recursively scanning down the
1993  // users of the chain result. This adds any TokenFactor nodes that are caught
1994  // in between chained nodes to the chained and interior nodes list.
1995  SmallVector<SDNode*, 3> InteriorChainedNodes;
1996  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1997    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1998                       InteriorChainedNodes) == CR_InducesCycle)
1999      return SDValue(); // Would induce a cycle.
2000  }
2001
2002  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
2003  // that we are interested in.  Form our input TokenFactor node.
2004  SmallVector<SDValue, 3> InputChains;
2005  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2006    // Add the input chain of this node to the InputChains list (which will be
2007    // the operands of the generated TokenFactor) if it's not an interior node.
2008    SDNode *N = ChainNodesMatched[i];
2009    if (N->getOpcode() != ISD::TokenFactor) {
2010      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
2011        continue;
2012
2013      // Otherwise, add the input chain.
2014      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
2015      assert(InChain.getValueType() == MVT::Other && "Not a chain");
2016      InputChains.push_back(InChain);
2017      continue;
2018    }
2019
2020    // If we have a token factor, we want to add all inputs of the token factor
2021    // that are not part of the pattern we're matching.
2022    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
2023      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
2024                      N->getOperand(op).getNode()))
2025        InputChains.push_back(N->getOperand(op));
2026    }
2027  }
2028
2029  if (InputChains.size() == 1)
2030    return InputChains[0];
2031  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2032                         MVT::Other, &InputChains[0], InputChains.size());
2033}
2034
2035/// MorphNode - Handle morphing a node in place for the selector.
2036SDNode *SelectionDAGISel::
2037MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2038          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
2039  // It is possible we're using MorphNodeTo to replace a node with no
2040  // normal results with one that has a normal result (or we could be
2041  // adding a chain) and the input could have glue and chains as well.
2042  // In this case we need to shift the operands down.
2043  // FIXME: This is a horrible hack and broken in obscure cases, no worse
2044  // than the old isel though.
2045  int OldGlueResultNo = -1, OldChainResultNo = -1;
2046
2047  unsigned NTMNumResults = Node->getNumValues();
2048  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2049    OldGlueResultNo = NTMNumResults-1;
2050    if (NTMNumResults != 1 &&
2051        Node->getValueType(NTMNumResults-2) == MVT::Other)
2052      OldChainResultNo = NTMNumResults-2;
2053  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2054    OldChainResultNo = NTMNumResults-1;
2055
2056  // Call the underlying SelectionDAG routine to do the transmogrification. Note
2057  // that this deletes operands of the old node that become dead.
2058  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
2059
2060  // MorphNodeTo can operate in two ways: if an existing node with the
2061  // specified operands exists, it can just return it.  Otherwise, it
2062  // updates the node in place to have the requested operands.
2063  if (Res == Node) {
2064    // If we updated the node in place, reset the node ID.  To the isel,
2065    // this should be just like a newly allocated machine node.
2066    Res->setNodeId(-1);
2067  }
2068
2069  unsigned ResNumResults = Res->getNumValues();
2070  // Move the glue if needed.
2071  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2072      (unsigned)OldGlueResultNo != ResNumResults-1)
2073    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2074                                      SDValue(Res, ResNumResults-1));
2075
2076  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2077    --ResNumResults;
2078
2079  // Move the chain reference if needed.
2080  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2081      (unsigned)OldChainResultNo != ResNumResults-1)
2082    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2083                                      SDValue(Res, ResNumResults-1));
2084
2085  // Otherwise, no replacement happened because the node already exists. Replace
2086  // Uses of the old node with the new one.
2087  if (Res != Node)
2088    CurDAG->ReplaceAllUsesWith(Node, Res);
2089
2090  return Res;
2091}
2092
2093/// CheckSame - Implements OP_CheckSame.
2094LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2095CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2096          SDValue N,
2097          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2098  // Accept if it is exactly the same as a previously recorded node.
2099  unsigned RecNo = MatcherTable[MatcherIndex++];
2100  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2101  return N == RecordedNodes[RecNo].first;
2102}
2103
2104/// CheckChildSame - Implements OP_CheckChildXSame.
2105LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2106CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2107             SDValue N,
2108             const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes,
2109             unsigned ChildNo) {
2110  if (ChildNo >= N.getNumOperands())
2111    return false;  // Match fails if out of range child #.
2112  return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2113                     RecordedNodes);
2114}
2115
2116/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2117LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2118CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2119                      const SelectionDAGISel &SDISel) {
2120  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2121}
2122
2123/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2124LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2125CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2126                   const SelectionDAGISel &SDISel, SDNode *N) {
2127  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2128}
2129
2130LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2131CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2132            SDNode *N) {
2133  uint16_t Opc = MatcherTable[MatcherIndex++];
2134  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2135  return N->getOpcode() == Opc;
2136}
2137
2138LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2139CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2140          SDValue N, const TargetLowering *TLI) {
2141  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2142  if (N.getValueType() == VT) return true;
2143
2144  // Handle the case when VT is iPTR.
2145  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy();
2146}
2147
2148LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2149CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2150               SDValue N, const TargetLowering *TLI,
2151               unsigned ChildNo) {
2152  if (ChildNo >= N.getNumOperands())
2153    return false;  // Match fails if out of range child #.
2154  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2155}
2156
2157LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2158CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2159              SDValue N) {
2160  return cast<CondCodeSDNode>(N)->get() ==
2161      (ISD::CondCode)MatcherTable[MatcherIndex++];
2162}
2163
2164LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2165CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2166               SDValue N, const TargetLowering *TLI) {
2167  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2168  if (cast<VTSDNode>(N)->getVT() == VT)
2169    return true;
2170
2171  // Handle the case when VT is iPTR.
2172  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy();
2173}
2174
2175LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2176CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2177             SDValue N) {
2178  int64_t Val = MatcherTable[MatcherIndex++];
2179  if (Val & 128)
2180    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2181
2182  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2183  return C != 0 && C->getSExtValue() == Val;
2184}
2185
2186LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2187CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2188            SDValue N, const SelectionDAGISel &SDISel) {
2189  int64_t Val = MatcherTable[MatcherIndex++];
2190  if (Val & 128)
2191    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2192
2193  if (N->getOpcode() != ISD::AND) return false;
2194
2195  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2196  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2197}
2198
2199LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2200CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2201           SDValue N, const SelectionDAGISel &SDISel) {
2202  int64_t Val = MatcherTable[MatcherIndex++];
2203  if (Val & 128)
2204    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2205
2206  if (N->getOpcode() != ISD::OR) return false;
2207
2208  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2209  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2210}
2211
2212/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2213/// scope, evaluate the current node.  If the current predicate is known to
2214/// fail, set Result=true and return anything.  If the current predicate is
2215/// known to pass, set Result=false and return the MatcherIndex to continue
2216/// with.  If the current predicate is unknown, set Result=false and return the
2217/// MatcherIndex to continue with.
2218static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2219                                       unsigned Index, SDValue N,
2220                                       bool &Result,
2221                                       const SelectionDAGISel &SDISel,
2222                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2223  switch (Table[Index++]) {
2224  default:
2225    Result = false;
2226    return Index-1;  // Could not evaluate this predicate.
2227  case SelectionDAGISel::OPC_CheckSame:
2228    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2229    return Index;
2230  case SelectionDAGISel::OPC_CheckChild0Same:
2231  case SelectionDAGISel::OPC_CheckChild1Same:
2232  case SelectionDAGISel::OPC_CheckChild2Same:
2233  case SelectionDAGISel::OPC_CheckChild3Same:
2234    Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2235                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2236    return Index;
2237  case SelectionDAGISel::OPC_CheckPatternPredicate:
2238    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2239    return Index;
2240  case SelectionDAGISel::OPC_CheckPredicate:
2241    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2242    return Index;
2243  case SelectionDAGISel::OPC_CheckOpcode:
2244    Result = !::CheckOpcode(Table, Index, N.getNode());
2245    return Index;
2246  case SelectionDAGISel::OPC_CheckType:
2247    Result = !::CheckType(Table, Index, N, SDISel.getTargetLowering());
2248    return Index;
2249  case SelectionDAGISel::OPC_CheckChild0Type:
2250  case SelectionDAGISel::OPC_CheckChild1Type:
2251  case SelectionDAGISel::OPC_CheckChild2Type:
2252  case SelectionDAGISel::OPC_CheckChild3Type:
2253  case SelectionDAGISel::OPC_CheckChild4Type:
2254  case SelectionDAGISel::OPC_CheckChild5Type:
2255  case SelectionDAGISel::OPC_CheckChild6Type:
2256  case SelectionDAGISel::OPC_CheckChild7Type:
2257    Result = !::CheckChildType(Table, Index, N, SDISel.getTargetLowering(),
2258                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2259    return Index;
2260  case SelectionDAGISel::OPC_CheckCondCode:
2261    Result = !::CheckCondCode(Table, Index, N);
2262    return Index;
2263  case SelectionDAGISel::OPC_CheckValueType:
2264    Result = !::CheckValueType(Table, Index, N, SDISel.getTargetLowering());
2265    return Index;
2266  case SelectionDAGISel::OPC_CheckInteger:
2267    Result = !::CheckInteger(Table, Index, N);
2268    return Index;
2269  case SelectionDAGISel::OPC_CheckAndImm:
2270    Result = !::CheckAndImm(Table, Index, N, SDISel);
2271    return Index;
2272  case SelectionDAGISel::OPC_CheckOrImm:
2273    Result = !::CheckOrImm(Table, Index, N, SDISel);
2274    return Index;
2275  }
2276}
2277
2278namespace {
2279
2280struct MatchScope {
2281  /// FailIndex - If this match fails, this is the index to continue with.
2282  unsigned FailIndex;
2283
2284  /// NodeStack - The node stack when the scope was formed.
2285  SmallVector<SDValue, 4> NodeStack;
2286
2287  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2288  unsigned NumRecordedNodes;
2289
2290  /// NumMatchedMemRefs - The number of matched memref entries.
2291  unsigned NumMatchedMemRefs;
2292
2293  /// InputChain/InputGlue - The current chain/glue
2294  SDValue InputChain, InputGlue;
2295
2296  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2297  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2298};
2299
2300}
2301
2302SDNode *SelectionDAGISel::
2303SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2304                 unsigned TableSize) {
2305  // FIXME: Should these even be selected?  Handle these cases in the caller?
2306  switch (NodeToMatch->getOpcode()) {
2307  default:
2308    break;
2309  case ISD::EntryToken:       // These nodes remain the same.
2310  case ISD::BasicBlock:
2311  case ISD::Register:
2312  case ISD::RegisterMask:
2313  //case ISD::VALUETYPE:
2314  //case ISD::CONDCODE:
2315  case ISD::HANDLENODE:
2316  case ISD::MDNODE_SDNODE:
2317  case ISD::TargetConstant:
2318  case ISD::TargetConstantFP:
2319  case ISD::TargetConstantPool:
2320  case ISD::TargetFrameIndex:
2321  case ISD::TargetExternalSymbol:
2322  case ISD::TargetBlockAddress:
2323  case ISD::TargetJumpTable:
2324  case ISD::TargetGlobalTLSAddress:
2325  case ISD::TargetGlobalAddress:
2326  case ISD::TokenFactor:
2327  case ISD::CopyFromReg:
2328  case ISD::CopyToReg:
2329  case ISD::EH_LABEL:
2330  case ISD::LIFETIME_START:
2331  case ISD::LIFETIME_END:
2332    NodeToMatch->setNodeId(-1); // Mark selected.
2333    return 0;
2334  case ISD::AssertSext:
2335  case ISD::AssertZext:
2336    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2337                                      NodeToMatch->getOperand(0));
2338    return 0;
2339  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2340  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2341  }
2342
2343  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2344
2345  // Set up the node stack with NodeToMatch as the only node on the stack.
2346  SmallVector<SDValue, 8> NodeStack;
2347  SDValue N = SDValue(NodeToMatch, 0);
2348  NodeStack.push_back(N);
2349
2350  // MatchScopes - Scopes used when matching, if a match failure happens, this
2351  // indicates where to continue checking.
2352  SmallVector<MatchScope, 8> MatchScopes;
2353
2354  // RecordedNodes - This is the set of nodes that have been recorded by the
2355  // state machine.  The second value is the parent of the node, or null if the
2356  // root is recorded.
2357  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2358
2359  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2360  // pattern.
2361  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2362
2363  // These are the current input chain and glue for use when generating nodes.
2364  // Various Emit operations change these.  For example, emitting a copytoreg
2365  // uses and updates these.
2366  SDValue InputChain, InputGlue;
2367
2368  // ChainNodesMatched - If a pattern matches nodes that have input/output
2369  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2370  // which ones they are.  The result is captured into this list so that we can
2371  // update the chain results when the pattern is complete.
2372  SmallVector<SDNode*, 3> ChainNodesMatched;
2373  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2374
2375  DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2376        NodeToMatch->dump(CurDAG);
2377        dbgs() << '\n');
2378
2379  // Determine where to start the interpreter.  Normally we start at opcode #0,
2380  // but if the state machine starts with an OPC_SwitchOpcode, then we
2381  // accelerate the first lookup (which is guaranteed to be hot) with the
2382  // OpcodeOffset table.
2383  unsigned MatcherIndex = 0;
2384
2385  if (!OpcodeOffset.empty()) {
2386    // Already computed the OpcodeOffset table, just index into it.
2387    if (N.getOpcode() < OpcodeOffset.size())
2388      MatcherIndex = OpcodeOffset[N.getOpcode()];
2389    DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2390
2391  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2392    // Otherwise, the table isn't computed, but the state machine does start
2393    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2394    // is the first time we're selecting an instruction.
2395    unsigned Idx = 1;
2396    while (1) {
2397      // Get the size of this case.
2398      unsigned CaseSize = MatcherTable[Idx++];
2399      if (CaseSize & 128)
2400        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2401      if (CaseSize == 0) break;
2402
2403      // Get the opcode, add the index to the table.
2404      uint16_t Opc = MatcherTable[Idx++];
2405      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2406      if (Opc >= OpcodeOffset.size())
2407        OpcodeOffset.resize((Opc+1)*2);
2408      OpcodeOffset[Opc] = Idx;
2409      Idx += CaseSize;
2410    }
2411
2412    // Okay, do the lookup for the first opcode.
2413    if (N.getOpcode() < OpcodeOffset.size())
2414      MatcherIndex = OpcodeOffset[N.getOpcode()];
2415  }
2416
2417  while (1) {
2418    assert(MatcherIndex < TableSize && "Invalid index");
2419#ifndef NDEBUG
2420    unsigned CurrentOpcodeIndex = MatcherIndex;
2421#endif
2422    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2423    switch (Opcode) {
2424    case OPC_Scope: {
2425      // Okay, the semantics of this operation are that we should push a scope
2426      // then evaluate the first child.  However, pushing a scope only to have
2427      // the first check fail (which then pops it) is inefficient.  If we can
2428      // determine immediately that the first check (or first several) will
2429      // immediately fail, don't even bother pushing a scope for them.
2430      unsigned FailIndex;
2431
2432      while (1) {
2433        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2434        if (NumToSkip & 128)
2435          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2436        // Found the end of the scope with no match.
2437        if (NumToSkip == 0) {
2438          FailIndex = 0;
2439          break;
2440        }
2441
2442        FailIndex = MatcherIndex+NumToSkip;
2443
2444        unsigned MatcherIndexOfPredicate = MatcherIndex;
2445        (void)MatcherIndexOfPredicate; // silence warning.
2446
2447        // If we can't evaluate this predicate without pushing a scope (e.g. if
2448        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2449        // push the scope and evaluate the full predicate chain.
2450        bool Result;
2451        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2452                                              Result, *this, RecordedNodes);
2453        if (!Result)
2454          break;
2455
2456        DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
2457                     << "index " << MatcherIndexOfPredicate
2458                     << ", continuing at " << FailIndex << "\n");
2459        ++NumDAGIselRetries;
2460
2461        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2462        // move to the next case.
2463        MatcherIndex = FailIndex;
2464      }
2465
2466      // If the whole scope failed to match, bail.
2467      if (FailIndex == 0) break;
2468
2469      // Push a MatchScope which indicates where to go if the first child fails
2470      // to match.
2471      MatchScope NewEntry;
2472      NewEntry.FailIndex = FailIndex;
2473      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2474      NewEntry.NumRecordedNodes = RecordedNodes.size();
2475      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2476      NewEntry.InputChain = InputChain;
2477      NewEntry.InputGlue = InputGlue;
2478      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2479      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2480      MatchScopes.push_back(NewEntry);
2481      continue;
2482    }
2483    case OPC_RecordNode: {
2484      // Remember this node, it may end up being an operand in the pattern.
2485      SDNode *Parent = 0;
2486      if (NodeStack.size() > 1)
2487        Parent = NodeStack[NodeStack.size()-2].getNode();
2488      RecordedNodes.push_back(std::make_pair(N, Parent));
2489      continue;
2490    }
2491
2492    case OPC_RecordChild0: case OPC_RecordChild1:
2493    case OPC_RecordChild2: case OPC_RecordChild3:
2494    case OPC_RecordChild4: case OPC_RecordChild5:
2495    case OPC_RecordChild6: case OPC_RecordChild7: {
2496      unsigned ChildNo = Opcode-OPC_RecordChild0;
2497      if (ChildNo >= N.getNumOperands())
2498        break;  // Match fails if out of range child #.
2499
2500      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2501                                             N.getNode()));
2502      continue;
2503    }
2504    case OPC_RecordMemRef:
2505      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2506      continue;
2507
2508    case OPC_CaptureGlueInput:
2509      // If the current node has an input glue, capture it in InputGlue.
2510      if (N->getNumOperands() != 0 &&
2511          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2512        InputGlue = N->getOperand(N->getNumOperands()-1);
2513      continue;
2514
2515    case OPC_MoveChild: {
2516      unsigned ChildNo = MatcherTable[MatcherIndex++];
2517      if (ChildNo >= N.getNumOperands())
2518        break;  // Match fails if out of range child #.
2519      N = N.getOperand(ChildNo);
2520      NodeStack.push_back(N);
2521      continue;
2522    }
2523
2524    case OPC_MoveParent:
2525      // Pop the current node off the NodeStack.
2526      NodeStack.pop_back();
2527      assert(!NodeStack.empty() && "Node stack imbalance!");
2528      N = NodeStack.back();
2529      continue;
2530
2531    case OPC_CheckSame:
2532      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2533      continue;
2534
2535    case OPC_CheckChild0Same: case OPC_CheckChild1Same:
2536    case OPC_CheckChild2Same: case OPC_CheckChild3Same:
2537      if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
2538                            Opcode-OPC_CheckChild0Same))
2539        break;
2540      continue;
2541
2542    case OPC_CheckPatternPredicate:
2543      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2544      continue;
2545    case OPC_CheckPredicate:
2546      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2547                                N.getNode()))
2548        break;
2549      continue;
2550    case OPC_CheckComplexPat: {
2551      unsigned CPNum = MatcherTable[MatcherIndex++];
2552      unsigned RecNo = MatcherTable[MatcherIndex++];
2553      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2554      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2555                               RecordedNodes[RecNo].first, CPNum,
2556                               RecordedNodes))
2557        break;
2558      continue;
2559    }
2560    case OPC_CheckOpcode:
2561      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2562      continue;
2563
2564    case OPC_CheckType:
2565      if (!::CheckType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2566        break;
2567      continue;
2568
2569    case OPC_SwitchOpcode: {
2570      unsigned CurNodeOpcode = N.getOpcode();
2571      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2572      unsigned CaseSize;
2573      while (1) {
2574        // Get the size of this case.
2575        CaseSize = MatcherTable[MatcherIndex++];
2576        if (CaseSize & 128)
2577          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2578        if (CaseSize == 0) break;
2579
2580        uint16_t Opc = MatcherTable[MatcherIndex++];
2581        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2582
2583        // If the opcode matches, then we will execute this case.
2584        if (CurNodeOpcode == Opc)
2585          break;
2586
2587        // Otherwise, skip over this case.
2588        MatcherIndex += CaseSize;
2589      }
2590
2591      // If no cases matched, bail out.
2592      if (CaseSize == 0) break;
2593
2594      // Otherwise, execute the case we found.
2595      DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
2596                   << " to " << MatcherIndex << "\n");
2597      continue;
2598    }
2599
2600    case OPC_SwitchType: {
2601      MVT CurNodeVT = N.getSimpleValueType();
2602      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2603      unsigned CaseSize;
2604      while (1) {
2605        // Get the size of this case.
2606        CaseSize = MatcherTable[MatcherIndex++];
2607        if (CaseSize & 128)
2608          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2609        if (CaseSize == 0) break;
2610
2611        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2612        if (CaseVT == MVT::iPTR)
2613          CaseVT = getTargetLowering()->getPointerTy();
2614
2615        // If the VT matches, then we will execute this case.
2616        if (CurNodeVT == CaseVT)
2617          break;
2618
2619        // Otherwise, skip over this case.
2620        MatcherIndex += CaseSize;
2621      }
2622
2623      // If no cases matched, bail out.
2624      if (CaseSize == 0) break;
2625
2626      // Otherwise, execute the case we found.
2627      DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2628                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2629      continue;
2630    }
2631    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2632    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2633    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2634    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2635      if (!::CheckChildType(MatcherTable, MatcherIndex, N, getTargetLowering(),
2636                            Opcode-OPC_CheckChild0Type))
2637        break;
2638      continue;
2639    case OPC_CheckCondCode:
2640      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2641      continue;
2642    case OPC_CheckValueType:
2643      if (!::CheckValueType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2644        break;
2645      continue;
2646    case OPC_CheckInteger:
2647      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2648      continue;
2649    case OPC_CheckAndImm:
2650      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2651      continue;
2652    case OPC_CheckOrImm:
2653      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2654      continue;
2655
2656    case OPC_CheckFoldableChainNode: {
2657      assert(NodeStack.size() != 1 && "No parent node");
2658      // Verify that all intermediate nodes between the root and this one have
2659      // a single use.
2660      bool HasMultipleUses = false;
2661      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2662        if (!NodeStack[i].hasOneUse()) {
2663          HasMultipleUses = true;
2664          break;
2665        }
2666      if (HasMultipleUses) break;
2667
2668      // Check to see that the target thinks this is profitable to fold and that
2669      // we can fold it without inducing cycles in the graph.
2670      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2671                              NodeToMatch) ||
2672          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2673                         NodeToMatch, OptLevel,
2674                         true/*We validate our own chains*/))
2675        break;
2676
2677      continue;
2678    }
2679    case OPC_EmitInteger: {
2680      MVT::SimpleValueType VT =
2681        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2682      int64_t Val = MatcherTable[MatcherIndex++];
2683      if (Val & 128)
2684        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2685      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2686                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2687      continue;
2688    }
2689    case OPC_EmitRegister: {
2690      MVT::SimpleValueType VT =
2691        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2692      unsigned RegNo = MatcherTable[MatcherIndex++];
2693      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2694                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2695      continue;
2696    }
2697    case OPC_EmitRegister2: {
2698      // For targets w/ more than 256 register names, the register enum
2699      // values are stored in two bytes in the matcher table (just like
2700      // opcodes).
2701      MVT::SimpleValueType VT =
2702        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2703      unsigned RegNo = MatcherTable[MatcherIndex++];
2704      RegNo |= MatcherTable[MatcherIndex++] << 8;
2705      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2706                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2707      continue;
2708    }
2709
2710    case OPC_EmitConvertToTarget:  {
2711      // Convert from IMM/FPIMM to target version.
2712      unsigned RecNo = MatcherTable[MatcherIndex++];
2713      assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
2714      SDValue Imm = RecordedNodes[RecNo].first;
2715
2716      if (Imm->getOpcode() == ISD::Constant) {
2717        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
2718        Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
2719      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2720        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2721        Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
2722      }
2723
2724      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2725      continue;
2726    }
2727
2728    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2729    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2730      // These are space-optimized forms of OPC_EmitMergeInputChains.
2731      assert(InputChain.getNode() == 0 &&
2732             "EmitMergeInputChains should be the first chain producing node");
2733      assert(ChainNodesMatched.empty() &&
2734             "Should only have one EmitMergeInputChains per match");
2735
2736      // Read all of the chained nodes.
2737      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2738      assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
2739      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2740
2741      // FIXME: What if other value results of the node have uses not matched
2742      // by this pattern?
2743      if (ChainNodesMatched.back() != NodeToMatch &&
2744          !RecordedNodes[RecNo].first.hasOneUse()) {
2745        ChainNodesMatched.clear();
2746        break;
2747      }
2748
2749      // Merge the input chains if they are not intra-pattern references.
2750      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2751
2752      if (InputChain.getNode() == 0)
2753        break;  // Failed to merge.
2754      continue;
2755    }
2756
2757    case OPC_EmitMergeInputChains: {
2758      assert(InputChain.getNode() == 0 &&
2759             "EmitMergeInputChains should be the first chain producing node");
2760      // This node gets a list of nodes we matched in the input that have
2761      // chains.  We want to token factor all of the input chains to these nodes
2762      // together.  However, if any of the input chains is actually one of the
2763      // nodes matched in this pattern, then we have an intra-match reference.
2764      // Ignore these because the newly token factored chain should not refer to
2765      // the old nodes.
2766      unsigned NumChains = MatcherTable[MatcherIndex++];
2767      assert(NumChains != 0 && "Can't TF zero chains");
2768
2769      assert(ChainNodesMatched.empty() &&
2770             "Should only have one EmitMergeInputChains per match");
2771
2772      // Read all of the chained nodes.
2773      for (unsigned i = 0; i != NumChains; ++i) {
2774        unsigned RecNo = MatcherTable[MatcherIndex++];
2775        assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
2776        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2777
2778        // FIXME: What if other value results of the node have uses not matched
2779        // by this pattern?
2780        if (ChainNodesMatched.back() != NodeToMatch &&
2781            !RecordedNodes[RecNo].first.hasOneUse()) {
2782          ChainNodesMatched.clear();
2783          break;
2784        }
2785      }
2786
2787      // If the inner loop broke out, the match fails.
2788      if (ChainNodesMatched.empty())
2789        break;
2790
2791      // Merge the input chains if they are not intra-pattern references.
2792      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2793
2794      if (InputChain.getNode() == 0)
2795        break;  // Failed to merge.
2796
2797      continue;
2798    }
2799
2800    case OPC_EmitCopyToReg: {
2801      unsigned RecNo = MatcherTable[MatcherIndex++];
2802      assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
2803      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2804
2805      if (InputChain.getNode() == 0)
2806        InputChain = CurDAG->getEntryNode();
2807
2808      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
2809                                        DestPhysReg, RecordedNodes[RecNo].first,
2810                                        InputGlue);
2811
2812      InputGlue = InputChain.getValue(1);
2813      continue;
2814    }
2815
2816    case OPC_EmitNodeXForm: {
2817      unsigned XFormNo = MatcherTable[MatcherIndex++];
2818      unsigned RecNo = MatcherTable[MatcherIndex++];
2819      assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
2820      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2821      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2822      continue;
2823    }
2824
2825    case OPC_EmitNode:
2826    case OPC_MorphNodeTo: {
2827      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2828      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2829      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2830      // Get the result VT list.
2831      unsigned NumVTs = MatcherTable[MatcherIndex++];
2832      SmallVector<EVT, 4> VTs;
2833      for (unsigned i = 0; i != NumVTs; ++i) {
2834        MVT::SimpleValueType VT =
2835          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2836        if (VT == MVT::iPTR) VT = getTargetLowering()->getPointerTy().SimpleTy;
2837        VTs.push_back(VT);
2838      }
2839
2840      if (EmitNodeInfo & OPFL_Chain)
2841        VTs.push_back(MVT::Other);
2842      if (EmitNodeInfo & OPFL_GlueOutput)
2843        VTs.push_back(MVT::Glue);
2844
2845      // This is hot code, so optimize the two most common cases of 1 and 2
2846      // results.
2847      SDVTList VTList;
2848      if (VTs.size() == 1)
2849        VTList = CurDAG->getVTList(VTs[0]);
2850      else if (VTs.size() == 2)
2851        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2852      else
2853        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2854
2855      // Get the operand list.
2856      unsigned NumOps = MatcherTable[MatcherIndex++];
2857      SmallVector<SDValue, 8> Ops;
2858      for (unsigned i = 0; i != NumOps; ++i) {
2859        unsigned RecNo = MatcherTable[MatcherIndex++];
2860        if (RecNo & 128)
2861          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2862
2863        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2864        Ops.push_back(RecordedNodes[RecNo].first);
2865      }
2866
2867      // If there are variadic operands to add, handle them now.
2868      if (EmitNodeInfo & OPFL_VariadicInfo) {
2869        // Determine the start index to copy from.
2870        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2871        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2872        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2873               "Invalid variadic node");
2874        // Copy all of the variadic operands, not including a potential glue
2875        // input.
2876        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2877             i != e; ++i) {
2878          SDValue V = NodeToMatch->getOperand(i);
2879          if (V.getValueType() == MVT::Glue) break;
2880          Ops.push_back(V);
2881        }
2882      }
2883
2884      // If this has chain/glue inputs, add them.
2885      if (EmitNodeInfo & OPFL_Chain)
2886        Ops.push_back(InputChain);
2887      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2888        Ops.push_back(InputGlue);
2889
2890      // Create the node.
2891      SDNode *Res = 0;
2892      if (Opcode != OPC_MorphNodeTo) {
2893        // If this is a normal EmitNode command, just create the new node and
2894        // add the results to the RecordedNodes list.
2895        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
2896                                     VTList, Ops);
2897
2898        // Add all the non-glue/non-chain results to the RecordedNodes list.
2899        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2900          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2901          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2902                                                             (SDNode*) 0));
2903        }
2904
2905      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2906        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2907                        EmitNodeInfo);
2908      } else {
2909        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2910        // We will visit the equivalent node later.
2911        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2912        return 0;
2913      }
2914
2915      // If the node had chain/glue results, update our notion of the current
2916      // chain and glue.
2917      if (EmitNodeInfo & OPFL_GlueOutput) {
2918        InputGlue = SDValue(Res, VTs.size()-1);
2919        if (EmitNodeInfo & OPFL_Chain)
2920          InputChain = SDValue(Res, VTs.size()-2);
2921      } else if (EmitNodeInfo & OPFL_Chain)
2922        InputChain = SDValue(Res, VTs.size()-1);
2923
2924      // If the OPFL_MemRefs glue is set on this node, slap all of the
2925      // accumulated memrefs onto it.
2926      //
2927      // FIXME: This is vastly incorrect for patterns with multiple outputs
2928      // instructions that access memory and for ComplexPatterns that match
2929      // loads.
2930      if (EmitNodeInfo & OPFL_MemRefs) {
2931        // Only attach load or store memory operands if the generated
2932        // instruction may load or store.
2933        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2934        bool mayLoad = MCID.mayLoad();
2935        bool mayStore = MCID.mayStore();
2936
2937        unsigned NumMemRefs = 0;
2938        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
2939               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2940          if ((*I)->isLoad()) {
2941            if (mayLoad)
2942              ++NumMemRefs;
2943          } else if ((*I)->isStore()) {
2944            if (mayStore)
2945              ++NumMemRefs;
2946          } else {
2947            ++NumMemRefs;
2948          }
2949        }
2950
2951        MachineSDNode::mmo_iterator MemRefs =
2952          MF->allocateMemRefsArray(NumMemRefs);
2953
2954        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2955        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
2956               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2957          if ((*I)->isLoad()) {
2958            if (mayLoad)
2959              *MemRefsPos++ = *I;
2960          } else if ((*I)->isStore()) {
2961            if (mayStore)
2962              *MemRefsPos++ = *I;
2963          } else {
2964            *MemRefsPos++ = *I;
2965          }
2966        }
2967
2968        cast<MachineSDNode>(Res)
2969          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2970      }
2971
2972      DEBUG(dbgs() << "  "
2973                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2974                   << " node: "; Res->dump(CurDAG); dbgs() << "\n");
2975
2976      // If this was a MorphNodeTo then we're completely done!
2977      if (Opcode == OPC_MorphNodeTo) {
2978        // Update chain and glue uses.
2979        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2980                            InputGlue, GlueResultNodesMatched, true);
2981        return Res;
2982      }
2983
2984      continue;
2985    }
2986
2987    case OPC_MarkGlueResults: {
2988      unsigned NumNodes = MatcherTable[MatcherIndex++];
2989
2990      // Read and remember all the glue-result nodes.
2991      for (unsigned i = 0; i != NumNodes; ++i) {
2992        unsigned RecNo = MatcherTable[MatcherIndex++];
2993        if (RecNo & 128)
2994          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2995
2996        assert(RecNo < RecordedNodes.size() && "Invalid MarkGlueResults");
2997        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2998      }
2999      continue;
3000    }
3001
3002    case OPC_CompleteMatch: {
3003      // The match has been completed, and any new nodes (if any) have been
3004      // created.  Patch up references to the matched dag to use the newly
3005      // created nodes.
3006      unsigned NumResults = MatcherTable[MatcherIndex++];
3007
3008      for (unsigned i = 0; i != NumResults; ++i) {
3009        unsigned ResSlot = MatcherTable[MatcherIndex++];
3010        if (ResSlot & 128)
3011          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3012
3013        assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3014        SDValue Res = RecordedNodes[ResSlot].first;
3015
3016        assert(i < NodeToMatch->getNumValues() &&
3017               NodeToMatch->getValueType(i) != MVT::Other &&
3018               NodeToMatch->getValueType(i) != MVT::Glue &&
3019               "Invalid number of results to complete!");
3020        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3021                NodeToMatch->getValueType(i) == MVT::iPTR ||
3022                Res.getValueType() == MVT::iPTR ||
3023                NodeToMatch->getValueType(i).getSizeInBits() ==
3024                    Res.getValueType().getSizeInBits()) &&
3025               "invalid replacement");
3026        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
3027      }
3028
3029      // If the root node defines glue, add it to the glue nodes to update list.
3030      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
3031        GlueResultNodesMatched.push_back(NodeToMatch);
3032
3033      // Update chain and glue uses.
3034      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3035                          InputGlue, GlueResultNodesMatched, false);
3036
3037      assert(NodeToMatch->use_empty() &&
3038             "Didn't replace all uses of the node?");
3039
3040      // FIXME: We just return here, which interacts correctly with SelectRoot
3041      // above.  We should fix this to not return an SDNode* anymore.
3042      return 0;
3043    }
3044    }
3045
3046    // If the code reached this point, then the match failed.  See if there is
3047    // another child to try in the current 'Scope', otherwise pop it until we
3048    // find a case to check.
3049    DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
3050    ++NumDAGIselRetries;
3051    while (1) {
3052      if (MatchScopes.empty()) {
3053        CannotYetSelect(NodeToMatch);
3054        return 0;
3055      }
3056
3057      // Restore the interpreter state back to the point where the scope was
3058      // formed.
3059      MatchScope &LastScope = MatchScopes.back();
3060      RecordedNodes.resize(LastScope.NumRecordedNodes);
3061      NodeStack.clear();
3062      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3063      N = NodeStack.back();
3064
3065      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3066        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3067      MatcherIndex = LastScope.FailIndex;
3068
3069      DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3070
3071      InputChain = LastScope.InputChain;
3072      InputGlue = LastScope.InputGlue;
3073      if (!LastScope.HasChainNodesMatched)
3074        ChainNodesMatched.clear();
3075      if (!LastScope.HasGlueResultNodesMatched)
3076        GlueResultNodesMatched.clear();
3077
3078      // Check to see what the offset is at the new MatcherIndex.  If it is zero
3079      // we have reached the end of this scope, otherwise we have another child
3080      // in the current scope to try.
3081      unsigned NumToSkip = MatcherTable[MatcherIndex++];
3082      if (NumToSkip & 128)
3083        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3084
3085      // If we have another child in this scope to match, update FailIndex and
3086      // try it.
3087      if (NumToSkip != 0) {
3088        LastScope.FailIndex = MatcherIndex+NumToSkip;
3089        break;
3090      }
3091
3092      // End of this scope, pop it and try the next child in the containing
3093      // scope.
3094      MatchScopes.pop_back();
3095    }
3096  }
3097}
3098
3099
3100
3101void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3102  std::string msg;
3103  raw_string_ostream Msg(msg);
3104  Msg << "Cannot select: ";
3105
3106  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3107      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3108      N->getOpcode() != ISD::INTRINSIC_VOID) {
3109    N->printrFull(Msg, CurDAG);
3110    Msg << "\nIn function: " << MF->getName();
3111  } else {
3112    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3113    unsigned iid =
3114      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3115    if (iid < Intrinsic::num_intrinsics)
3116      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3117    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3118      Msg << "target intrinsic %" << TII->getName(iid);
3119    else
3120      Msg << "unknown intrinsic #" << iid;
3121  }
3122  report_fatal_error(Msg.str());
3123}
3124
3125char SelectionDAGISel::ID = 0;
3126