SelectionDAGISel.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/CFG.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/FunctionLoweringInfo.h"
25#include "llvm/CodeGen/GCMetadata.h"
26#include "llvm/CodeGen/GCStrategy.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
33#include "llvm/CodeGen/SchedulerRegistry.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DebugInfo.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/InlineAsm.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/Intrinsics.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/IR/Module.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLibraryInfo.h"
52#include "llvm/Target/TargetLowering.h"
53#include "llvm/Target/TargetMachine.h"
54#include "llvm/Target/TargetOptions.h"
55#include "llvm/Target/TargetRegisterInfo.h"
56#include "llvm/Target/TargetSubtargetInfo.h"
57#include "llvm/Transforms/Utils/BasicBlockUtils.h"
58#include <algorithm>
59using namespace llvm;
60
61STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
62STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
63STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
64STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
65STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
66STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
67STATISTIC(NumFastIselFailLowerArguments,
68          "Number of entry blocks where fast isel failed to lower arguments");
69
70#ifndef NDEBUG
71static cl::opt<bool>
72EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
73          cl::desc("Enable extra verbose messages in the \"fast\" "
74                   "instruction selector"));
75
76  // Terminators
77STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
78STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
79STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
80STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
81STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
82STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
83STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
84
85  // Standard binary operators...
86STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
87STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
88STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
89STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
90STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
91STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
92STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
93STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
94STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
95STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
96STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
97STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
98
99  // Logical operators...
100STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
101STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
102STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
103
104  // Memory instructions...
105STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
106STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
107STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
108STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
109STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
110STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
111STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
112
113  // Convert instructions...
114STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
115STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
116STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
117STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
118STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
119STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
120STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
121STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
122STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
123STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
124STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
125STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
126
127  // Other instructions...
128STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
129STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
130STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
131STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
132STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
133STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
134STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
135STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
136STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
137STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
138STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
139STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
140STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
141STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
142STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
143#endif
144
145static cl::opt<bool>
146EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
147          cl::desc("Enable verbose messages in the \"fast\" "
148                   "instruction selector"));
149static cl::opt<bool>
150EnableFastISelAbort("fast-isel-abort", cl::Hidden,
151          cl::desc("Enable abort calls when \"fast\" instruction selection "
152                   "fails to lower an instruction"));
153static cl::opt<bool>
154EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
155          cl::desc("Enable abort calls when \"fast\" instruction selection "
156                   "fails to lower a formal argument"));
157
158static cl::opt<bool>
159UseMBPI("use-mbpi",
160        cl::desc("use Machine Branch Probability Info"),
161        cl::init(true), cl::Hidden);
162
163#ifndef NDEBUG
164static cl::opt<bool>
165ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
166          cl::desc("Pop up a window to show dags before the first "
167                   "dag combine pass"));
168static cl::opt<bool>
169ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
170          cl::desc("Pop up a window to show dags before legalize types"));
171static cl::opt<bool>
172ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
173          cl::desc("Pop up a window to show dags before legalize"));
174static cl::opt<bool>
175ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
176          cl::desc("Pop up a window to show dags before the second "
177                   "dag combine pass"));
178static cl::opt<bool>
179ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
180          cl::desc("Pop up a window to show dags before the post legalize types"
181                   " dag combine pass"));
182static cl::opt<bool>
183ViewISelDAGs("view-isel-dags", cl::Hidden,
184          cl::desc("Pop up a window to show isel dags as they are selected"));
185static cl::opt<bool>
186ViewSchedDAGs("view-sched-dags", cl::Hidden,
187          cl::desc("Pop up a window to show sched dags as they are processed"));
188static cl::opt<bool>
189ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
190      cl::desc("Pop up a window to show SUnit dags after they are processed"));
191#else
192static const bool ViewDAGCombine1 = false,
193                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
194                  ViewDAGCombine2 = false,
195                  ViewDAGCombineLT = false,
196                  ViewISelDAGs = false, ViewSchedDAGs = false,
197                  ViewSUnitDAGs = false;
198#endif
199
200//===---------------------------------------------------------------------===//
201///
202/// RegisterScheduler class - Track the registration of instruction schedulers.
203///
204//===---------------------------------------------------------------------===//
205MachinePassRegistry RegisterScheduler::Registry;
206
207//===---------------------------------------------------------------------===//
208///
209/// ISHeuristic command line option for instruction schedulers.
210///
211//===---------------------------------------------------------------------===//
212static cl::opt<RegisterScheduler::FunctionPassCtor, false,
213               RegisterPassParser<RegisterScheduler> >
214ISHeuristic("pre-RA-sched",
215            cl::init(&createDefaultScheduler), cl::Hidden,
216            cl::desc("Instruction schedulers available (before register"
217                     " allocation):"));
218
219static RegisterScheduler
220defaultListDAGScheduler("default", "Best scheduler for the target",
221                        createDefaultScheduler);
222
223namespace llvm {
224  //===--------------------------------------------------------------------===//
225  /// \brief This class is used by SelectionDAGISel to temporarily override
226  /// the optimization level on a per-function basis.
227  class OptLevelChanger {
228    SelectionDAGISel &IS;
229    CodeGenOpt::Level SavedOptLevel;
230    bool SavedFastISel;
231
232  public:
233    OptLevelChanger(SelectionDAGISel &ISel,
234                    CodeGenOpt::Level NewOptLevel) : IS(ISel) {
235      SavedOptLevel = IS.OptLevel;
236      if (NewOptLevel == SavedOptLevel)
237        return;
238      IS.OptLevel = NewOptLevel;
239      IS.TM.setOptLevel(NewOptLevel);
240      SavedFastISel = IS.TM.Options.EnableFastISel;
241      if (NewOptLevel == CodeGenOpt::None)
242        IS.TM.setFastISel(true);
243      DEBUG(dbgs() << "\nChanging optimization level for Function "
244            << IS.MF->getFunction()->getName() << "\n");
245      DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
246            << " ; After: -O" << NewOptLevel << "\n");
247    }
248
249    ~OptLevelChanger() {
250      if (IS.OptLevel == SavedOptLevel)
251        return;
252      DEBUG(dbgs() << "\nRestoring optimization level for Function "
253            << IS.MF->getFunction()->getName() << "\n");
254      DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel
255            << " ; After: -O" << SavedOptLevel << "\n");
256      IS.OptLevel = SavedOptLevel;
257      IS.TM.setOptLevel(SavedOptLevel);
258      IS.TM.setFastISel(SavedFastISel);
259    }
260  };
261
262  //===--------------------------------------------------------------------===//
263  /// createDefaultScheduler - This creates an instruction scheduler appropriate
264  /// for the target.
265  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
266                                             CodeGenOpt::Level OptLevel) {
267    const TargetLowering *TLI = IS->getTargetLowering();
268    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
269
270    if (OptLevel == CodeGenOpt::None || ST.useMachineScheduler() ||
271        TLI->getSchedulingPreference() == Sched::Source)
272      return createSourceListDAGScheduler(IS, OptLevel);
273    if (TLI->getSchedulingPreference() == Sched::RegPressure)
274      return createBURRListDAGScheduler(IS, OptLevel);
275    if (TLI->getSchedulingPreference() == Sched::Hybrid)
276      return createHybridListDAGScheduler(IS, OptLevel);
277    if (TLI->getSchedulingPreference() == Sched::VLIW)
278      return createVLIWDAGScheduler(IS, OptLevel);
279    assert(TLI->getSchedulingPreference() == Sched::ILP &&
280           "Unknown sched type!");
281    return createILPListDAGScheduler(IS, OptLevel);
282  }
283}
284
285// EmitInstrWithCustomInserter - This method should be implemented by targets
286// that mark instructions with the 'usesCustomInserter' flag.  These
287// instructions are special in various ways, which require special support to
288// insert.  The specified MachineInstr is created but not inserted into any
289// basic blocks, and this method is called to expand it into a sequence of
290// instructions, potentially also creating new basic blocks and control flow.
291// When new basic blocks are inserted and the edges from MBB to its successors
292// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
293// DenseMap.
294MachineBasicBlock *
295TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
296                                            MachineBasicBlock *MBB) const {
297#ifndef NDEBUG
298  dbgs() << "If a target marks an instruction with "
299          "'usesCustomInserter', it must implement "
300          "TargetLowering::EmitInstrWithCustomInserter!";
301#endif
302  llvm_unreachable(0);
303}
304
305void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
306                                                   SDNode *Node) const {
307  assert(!MI->hasPostISelHook() &&
308         "If a target marks an instruction with 'hasPostISelHook', "
309         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
310}
311
312//===----------------------------------------------------------------------===//
313// SelectionDAGISel code
314//===----------------------------------------------------------------------===//
315
316SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
317                                   CodeGenOpt::Level OL) :
318  MachineFunctionPass(ID), TM(tm),
319  FuncInfo(new FunctionLoweringInfo(TM)),
320  CurDAG(new SelectionDAG(tm, OL)),
321  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
322  GFI(),
323  OptLevel(OL),
324  DAGSize(0) {
325    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
326    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
327    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
328    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
329  }
330
331SelectionDAGISel::~SelectionDAGISel() {
332  delete SDB;
333  delete CurDAG;
334  delete FuncInfo;
335}
336
337void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
338  AU.addRequired<AliasAnalysis>();
339  AU.addPreserved<AliasAnalysis>();
340  AU.addRequired<GCModuleInfo>();
341  AU.addPreserved<GCModuleInfo>();
342  AU.addRequired<TargetLibraryInfo>();
343  if (UseMBPI && OptLevel != CodeGenOpt::None)
344    AU.addRequired<BranchProbabilityInfo>();
345  MachineFunctionPass::getAnalysisUsage(AU);
346}
347
348/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
349/// may trap on it.  In this case we have to split the edge so that the path
350/// through the predecessor block that doesn't go to the phi block doesn't
351/// execute the possibly trapping instruction.
352///
353/// This is required for correctness, so it must be done at -O0.
354///
355static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
356  // Loop for blocks with phi nodes.
357  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
358    PHINode *PN = dyn_cast<PHINode>(BB->begin());
359    if (PN == 0) continue;
360
361  ReprocessBlock:
362    // For each block with a PHI node, check to see if any of the input values
363    // are potentially trapping constant expressions.  Constant expressions are
364    // the only potentially trapping value that can occur as the argument to a
365    // PHI.
366    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
367      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
368        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
369        if (CE == 0 || !CE->canTrap()) continue;
370
371        // The only case we have to worry about is when the edge is critical.
372        // Since this block has a PHI Node, we assume it has multiple input
373        // edges: check to see if the pred has multiple successors.
374        BasicBlock *Pred = PN->getIncomingBlock(i);
375        if (Pred->getTerminator()->getNumSuccessors() == 1)
376          continue;
377
378        // Okay, we have to split this edge.
379        SplitCriticalEdge(Pred->getTerminator(),
380                          GetSuccessorNumber(Pred, BB), SDISel, true);
381        goto ReprocessBlock;
382      }
383  }
384}
385
386bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
387  // Do some sanity-checking on the command-line options.
388  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
389         "-fast-isel-verbose requires -fast-isel");
390  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
391         "-fast-isel-abort requires -fast-isel");
392
393  const Function &Fn = *mf.getFunction();
394  const TargetInstrInfo &TII = *TM.getInstrInfo();
395  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
396  const TargetLowering *TLI = TM.getTargetLowering();
397
398  MF = &mf;
399  RegInfo = &MF->getRegInfo();
400  AA = &getAnalysis<AliasAnalysis>();
401  LibInfo = &getAnalysis<TargetLibraryInfo>();
402  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
403
404  TargetSubtargetInfo &ST =
405    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
406  ST.resetSubtargetFeatures(MF);
407  TM.resetTargetOptions(MF);
408
409  // Reset OptLevel to None for optnone functions.
410  CodeGenOpt::Level NewOptLevel = OptLevel;
411  if (Fn.hasFnAttribute(Attribute::OptimizeNone))
412    NewOptLevel = CodeGenOpt::None;
413  OptLevelChanger OLC(*this, NewOptLevel);
414
415  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
416
417  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
418
419  CurDAG->init(*MF, TLI);
420  FuncInfo->set(Fn, *MF, CurDAG);
421
422  if (UseMBPI && OptLevel != CodeGenOpt::None)
423    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
424  else
425    FuncInfo->BPI = 0;
426
427  SDB->init(GFI, *AA, LibInfo);
428
429  MF->setHasInlineAsm(false);
430
431  SelectAllBasicBlocks(Fn);
432
433  // If the first basic block in the function has live ins that need to be
434  // copied into vregs, emit the copies into the top of the block before
435  // emitting the code for the block.
436  MachineBasicBlock *EntryMBB = MF->begin();
437  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
438
439  DenseMap<unsigned, unsigned> LiveInMap;
440  if (!FuncInfo->ArgDbgValues.empty())
441    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
442           E = RegInfo->livein_end(); LI != E; ++LI)
443      if (LI->second)
444        LiveInMap.insert(std::make_pair(LI->first, LI->second));
445
446  // Insert DBG_VALUE instructions for function arguments to the entry block.
447  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
448    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
449    bool hasFI = MI->getOperand(0).isFI();
450    unsigned Reg =
451        hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
452    if (TargetRegisterInfo::isPhysicalRegister(Reg))
453      EntryMBB->insert(EntryMBB->begin(), MI);
454    else {
455      MachineInstr *Def = RegInfo->getVRegDef(Reg);
456      if (Def) {
457        MachineBasicBlock::iterator InsertPos = Def;
458        // FIXME: VR def may not be in entry block.
459        Def->getParent()->insert(std::next(InsertPos), MI);
460      } else
461        DEBUG(dbgs() << "Dropping debug info for dead vreg"
462              << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
463    }
464
465    // If Reg is live-in then update debug info to track its copy in a vreg.
466    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
467    if (LDI != LiveInMap.end()) {
468      assert(!hasFI && "There's no handling of frame pointer updating here yet "
469                       "- add if needed");
470      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
471      MachineBasicBlock::iterator InsertPos = Def;
472      const MDNode *Variable =
473        MI->getOperand(MI->getNumOperands()-1).getMetadata();
474      bool IsIndirect = MI->isIndirectDebugValue();
475      unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
476      // Def is never a terminator here, so it is ok to increment InsertPos.
477      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
478              TII.get(TargetOpcode::DBG_VALUE),
479              IsIndirect,
480              LDI->second, Offset, Variable);
481
482      // If this vreg is directly copied into an exported register then
483      // that COPY instructions also need DBG_VALUE, if it is the only
484      // user of LDI->second.
485      MachineInstr *CopyUseMI = NULL;
486      for (MachineRegisterInfo::use_instr_iterator
487           UI = RegInfo->use_instr_begin(LDI->second),
488           E = RegInfo->use_instr_end(); UI != E; ) {
489        MachineInstr *UseMI = &*(UI++);
490        if (UseMI->isDebugValue()) continue;
491        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
492          CopyUseMI = UseMI; continue;
493        }
494        // Otherwise this is another use or second copy use.
495        CopyUseMI = NULL; break;
496      }
497      if (CopyUseMI) {
498        MachineInstr *NewMI =
499          BuildMI(*MF, CopyUseMI->getDebugLoc(),
500                  TII.get(TargetOpcode::DBG_VALUE),
501                  IsIndirect,
502                  CopyUseMI->getOperand(0).getReg(),
503                  Offset, Variable);
504        MachineBasicBlock::iterator Pos = CopyUseMI;
505        EntryMBB->insertAfter(Pos, NewMI);
506      }
507    }
508  }
509
510  // Determine if there are any calls in this machine function.
511  MachineFrameInfo *MFI = MF->getFrameInfo();
512  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
513       ++I) {
514
515    if (MFI->hasCalls() && MF->hasInlineAsm())
516      break;
517
518    const MachineBasicBlock *MBB = I;
519    for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
520         II != IE; ++II) {
521      const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
522      if ((MCID.isCall() && !MCID.isReturn()) ||
523          II->isStackAligningInlineAsm()) {
524        MFI->setHasCalls(true);
525      }
526      if (II->isInlineAsm()) {
527        MF->setHasInlineAsm(true);
528      }
529    }
530  }
531
532  // Determine if there is a call to setjmp in the machine function.
533  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
534
535  // Replace forward-declared registers with the registers containing
536  // the desired value.
537  MachineRegisterInfo &MRI = MF->getRegInfo();
538  for (DenseMap<unsigned, unsigned>::iterator
539       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
540       I != E; ++I) {
541    unsigned From = I->first;
542    unsigned To = I->second;
543    // If To is also scheduled to be replaced, find what its ultimate
544    // replacement is.
545    for (;;) {
546      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
547      if (J == E) break;
548      To = J->second;
549    }
550    // Make sure the new register has a sufficiently constrained register class.
551    if (TargetRegisterInfo::isVirtualRegister(From) &&
552        TargetRegisterInfo::isVirtualRegister(To))
553      MRI.constrainRegClass(To, MRI.getRegClass(From));
554    // Replace it.
555    MRI.replaceRegWith(From, To);
556  }
557
558  // Freeze the set of reserved registers now that MachineFrameInfo has been
559  // set up. All the information required by getReservedRegs() should be
560  // available now.
561  MRI.freezeReservedRegs(*MF);
562
563  // Release function-specific state. SDB and CurDAG are already cleared
564  // at this point.
565  FuncInfo->clear();
566
567  DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
568  DEBUG(MF->print(dbgs()));
569
570  return true;
571}
572
573void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
574                                        BasicBlock::const_iterator End,
575                                        bool &HadTailCall) {
576  // Lower all of the non-terminator instructions. If a call is emitted
577  // as a tail call, cease emitting nodes for this block. Terminators
578  // are handled below.
579  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
580    SDB->visit(*I);
581
582  // Make sure the root of the DAG is up-to-date.
583  CurDAG->setRoot(SDB->getControlRoot());
584  HadTailCall = SDB->HasTailCall;
585  SDB->clear();
586
587  // Final step, emit the lowered DAG as machine code.
588  CodeGenAndEmitDAG();
589}
590
591void SelectionDAGISel::ComputeLiveOutVRegInfo() {
592  SmallPtrSet<SDNode*, 128> VisitedNodes;
593  SmallVector<SDNode*, 128> Worklist;
594
595  Worklist.push_back(CurDAG->getRoot().getNode());
596
597  APInt KnownZero;
598  APInt KnownOne;
599
600  do {
601    SDNode *N = Worklist.pop_back_val();
602
603    // If we've already seen this node, ignore it.
604    if (!VisitedNodes.insert(N))
605      continue;
606
607    // Otherwise, add all chain operands to the worklist.
608    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
609      if (N->getOperand(i).getValueType() == MVT::Other)
610        Worklist.push_back(N->getOperand(i).getNode());
611
612    // If this is a CopyToReg with a vreg dest, process it.
613    if (N->getOpcode() != ISD::CopyToReg)
614      continue;
615
616    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
617    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
618      continue;
619
620    // Ignore non-scalar or non-integer values.
621    SDValue Src = N->getOperand(2);
622    EVT SrcVT = Src.getValueType();
623    if (!SrcVT.isInteger() || SrcVT.isVector())
624      continue;
625
626    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
627    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
628    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
629  } while (!Worklist.empty());
630}
631
632void SelectionDAGISel::CodeGenAndEmitDAG() {
633  std::string GroupName;
634  if (TimePassesIsEnabled)
635    GroupName = "Instruction Selection and Scheduling";
636  std::string BlockName;
637  int BlockNumber = -1;
638  (void)BlockNumber;
639#ifdef NDEBUG
640  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
641      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
642      ViewSUnitDAGs)
643#endif
644  {
645    BlockNumber = FuncInfo->MBB->getNumber();
646    BlockName = MF->getName().str() + ":" +
647                FuncInfo->MBB->getBasicBlock()->getName().str();
648  }
649  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
650        << " '" << BlockName << "'\n"; CurDAG->dump());
651
652  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
653
654  // Run the DAG combiner in pre-legalize mode.
655  {
656    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
657    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
658  }
659
660  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
661        << " '" << BlockName << "'\n"; CurDAG->dump());
662
663  // Second step, hack on the DAG until it only uses operations and types that
664  // the target supports.
665  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
666                                               BlockName);
667
668  bool Changed;
669  {
670    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
671    Changed = CurDAG->LegalizeTypes();
672  }
673
674  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
675        << " '" << BlockName << "'\n"; CurDAG->dump());
676
677  CurDAG->NewNodesMustHaveLegalTypes = true;
678
679  if (Changed) {
680    if (ViewDAGCombineLT)
681      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
682
683    // Run the DAG combiner in post-type-legalize mode.
684    {
685      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
686                         TimePassesIsEnabled);
687      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
688    }
689
690    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
691          << " '" << BlockName << "'\n"; CurDAG->dump());
692
693  }
694
695  {
696    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
697    Changed = CurDAG->LegalizeVectors();
698  }
699
700  if (Changed) {
701    {
702      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
703      CurDAG->LegalizeTypes();
704    }
705
706    if (ViewDAGCombineLT)
707      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
708
709    // Run the DAG combiner in post-type-legalize mode.
710    {
711      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
712                         TimePassesIsEnabled);
713      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
714    }
715
716    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
717          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
718  }
719
720  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
721
722  {
723    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
724    CurDAG->Legalize();
725  }
726
727  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
728        << " '" << BlockName << "'\n"; CurDAG->dump());
729
730  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
731
732  // Run the DAG combiner in post-legalize mode.
733  {
734    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
735    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
736  }
737
738  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
739        << " '" << BlockName << "'\n"; CurDAG->dump());
740
741  if (OptLevel != CodeGenOpt::None)
742    ComputeLiveOutVRegInfo();
743
744  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
745
746  // Third, instruction select all of the operations to machine code, adding the
747  // code to the MachineBasicBlock.
748  {
749    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
750    DoInstructionSelection();
751  }
752
753  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
754        << " '" << BlockName << "'\n"; CurDAG->dump());
755
756  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
757
758  // Schedule machine code.
759  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
760  {
761    NamedRegionTimer T("Instruction Scheduling", GroupName,
762                       TimePassesIsEnabled);
763    Scheduler->Run(CurDAG, FuncInfo->MBB);
764  }
765
766  if (ViewSUnitDAGs) Scheduler->viewGraph();
767
768  // Emit machine code to BB.  This can change 'BB' to the last block being
769  // inserted into.
770  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
771  {
772    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
773
774    // FuncInfo->InsertPt is passed by reference and set to the end of the
775    // scheduled instructions.
776    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
777  }
778
779  // If the block was split, make sure we update any references that are used to
780  // update PHI nodes later on.
781  if (FirstMBB != LastMBB)
782    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
783
784  // Free the scheduler state.
785  {
786    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
787                       TimePassesIsEnabled);
788    delete Scheduler;
789  }
790
791  // Free the SelectionDAG state, now that we're finished with it.
792  CurDAG->clear();
793}
794
795namespace {
796/// ISelUpdater - helper class to handle updates of the instruction selection
797/// graph.
798class ISelUpdater : public SelectionDAG::DAGUpdateListener {
799  SelectionDAG::allnodes_iterator &ISelPosition;
800public:
801  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
802    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
803
804  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
805  /// deleted is the current ISelPosition node, update ISelPosition.
806  ///
807  void NodeDeleted(SDNode *N, SDNode *E) override {
808    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
809      ++ISelPosition;
810  }
811};
812} // end anonymous namespace
813
814void SelectionDAGISel::DoInstructionSelection() {
815  DEBUG(dbgs() << "===== Instruction selection begins: BB#"
816        << FuncInfo->MBB->getNumber()
817        << " '" << FuncInfo->MBB->getName() << "'\n");
818
819  PreprocessISelDAG();
820
821  // Select target instructions for the DAG.
822  {
823    // Number all nodes with a topological order and set DAGSize.
824    DAGSize = CurDAG->AssignTopologicalOrder();
825
826    // Create a dummy node (which is not added to allnodes), that adds
827    // a reference to the root node, preventing it from being deleted,
828    // and tracking any changes of the root.
829    HandleSDNode Dummy(CurDAG->getRoot());
830    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
831    ++ISelPosition;
832
833    // Make sure that ISelPosition gets properly updated when nodes are deleted
834    // in calls made from this function.
835    ISelUpdater ISU(*CurDAG, ISelPosition);
836
837    // The AllNodes list is now topological-sorted. Visit the
838    // nodes by starting at the end of the list (the root of the
839    // graph) and preceding back toward the beginning (the entry
840    // node).
841    while (ISelPosition != CurDAG->allnodes_begin()) {
842      SDNode *Node = --ISelPosition;
843      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
844      // but there are currently some corner cases that it misses. Also, this
845      // makes it theoretically possible to disable the DAGCombiner.
846      if (Node->use_empty())
847        continue;
848
849      SDNode *ResNode = Select(Node);
850
851      // FIXME: This is pretty gross.  'Select' should be changed to not return
852      // anything at all and this code should be nuked with a tactical strike.
853
854      // If node should not be replaced, continue with the next one.
855      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
856        continue;
857      // Replace node.
858      if (ResNode) {
859        ReplaceUses(Node, ResNode);
860      }
861
862      // If after the replacement this node is not used any more,
863      // remove this dead node.
864      if (Node->use_empty()) // Don't delete EntryToken, etc.
865        CurDAG->RemoveDeadNode(Node);
866    }
867
868    CurDAG->setRoot(Dummy.getValue());
869  }
870
871  DEBUG(dbgs() << "===== Instruction selection ends:\n");
872
873  PostprocessISelDAG();
874}
875
876/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
877/// do other setup for EH landing-pad blocks.
878void SelectionDAGISel::PrepareEHLandingPad() {
879  MachineBasicBlock *MBB = FuncInfo->MBB;
880
881  // Add a label to mark the beginning of the landing pad.  Deletion of the
882  // landing pad can thus be detected via the MachineModuleInfo.
883  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
884
885  // Assign the call site to the landing pad's begin label.
886  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
887
888  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
889  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
890    .addSym(Label);
891
892  // Mark exception register as live in.
893  const TargetLowering *TLI = getTargetLowering();
894  const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy());
895  if (unsigned Reg = TLI->getExceptionPointerRegister())
896    FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
897
898  // Mark exception selector register as live in.
899  if (unsigned Reg = TLI->getExceptionSelectorRegister())
900    FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
901}
902
903/// isFoldedOrDeadInstruction - Return true if the specified instruction is
904/// side-effect free and is either dead or folded into a generated instruction.
905/// Return false if it needs to be emitted.
906static bool isFoldedOrDeadInstruction(const Instruction *I,
907                                      FunctionLoweringInfo *FuncInfo) {
908  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
909         !isa<TerminatorInst>(I) && // Terminators aren't folded.
910         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
911         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
912         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
913}
914
915#ifndef NDEBUG
916// Collect per Instruction statistics for fast-isel misses.  Only those
917// instructions that cause the bail are accounted for.  It does not account for
918// instructions higher in the block.  Thus, summing the per instructions stats
919// will not add up to what is reported by NumFastIselFailures.
920static void collectFailStats(const Instruction *I) {
921  switch (I->getOpcode()) {
922  default: assert (0 && "<Invalid operator> ");
923
924  // Terminators
925  case Instruction::Ret:         NumFastIselFailRet++; return;
926  case Instruction::Br:          NumFastIselFailBr++; return;
927  case Instruction::Switch:      NumFastIselFailSwitch++; return;
928  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
929  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
930  case Instruction::Resume:      NumFastIselFailResume++; return;
931  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
932
933  // Standard binary operators...
934  case Instruction::Add:  NumFastIselFailAdd++; return;
935  case Instruction::FAdd: NumFastIselFailFAdd++; return;
936  case Instruction::Sub:  NumFastIselFailSub++; return;
937  case Instruction::FSub: NumFastIselFailFSub++; return;
938  case Instruction::Mul:  NumFastIselFailMul++; return;
939  case Instruction::FMul: NumFastIselFailFMul++; return;
940  case Instruction::UDiv: NumFastIselFailUDiv++; return;
941  case Instruction::SDiv: NumFastIselFailSDiv++; return;
942  case Instruction::FDiv: NumFastIselFailFDiv++; return;
943  case Instruction::URem: NumFastIselFailURem++; return;
944  case Instruction::SRem: NumFastIselFailSRem++; return;
945  case Instruction::FRem: NumFastIselFailFRem++; return;
946
947  // Logical operators...
948  case Instruction::And: NumFastIselFailAnd++; return;
949  case Instruction::Or:  NumFastIselFailOr++; return;
950  case Instruction::Xor: NumFastIselFailXor++; return;
951
952  // Memory instructions...
953  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
954  case Instruction::Load:          NumFastIselFailLoad++; return;
955  case Instruction::Store:         NumFastIselFailStore++; return;
956  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
957  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
958  case Instruction::Fence:         NumFastIselFailFence++; return;
959  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
960
961  // Convert instructions...
962  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
963  case Instruction::ZExt:     NumFastIselFailZExt++; return;
964  case Instruction::SExt:     NumFastIselFailSExt++; return;
965  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
966  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
967  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
968  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
969  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
970  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
971  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
972  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
973  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
974
975  // Other instructions...
976  case Instruction::ICmp:           NumFastIselFailICmp++; return;
977  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
978  case Instruction::PHI:            NumFastIselFailPHI++; return;
979  case Instruction::Select:         NumFastIselFailSelect++; return;
980  case Instruction::Call:           NumFastIselFailCall++; return;
981  case Instruction::Shl:            NumFastIselFailShl++; return;
982  case Instruction::LShr:           NumFastIselFailLShr++; return;
983  case Instruction::AShr:           NumFastIselFailAShr++; return;
984  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
985  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
986  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
987  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
988  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
989  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
990  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
991  }
992}
993#endif
994
995void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
996  // Initialize the Fast-ISel state, if needed.
997  FastISel *FastIS = 0;
998  if (TM.Options.EnableFastISel)
999    FastIS = getTargetLowering()->createFastISel(*FuncInfo, LibInfo);
1000
1001  // Iterate over all basic blocks in the function.
1002  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1003  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
1004       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
1005    const BasicBlock *LLVMBB = *I;
1006
1007    if (OptLevel != CodeGenOpt::None) {
1008      bool AllPredsVisited = true;
1009      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1010           PI != PE; ++PI) {
1011        if (!FuncInfo->VisitedBBs.count(*PI)) {
1012          AllPredsVisited = false;
1013          break;
1014        }
1015      }
1016
1017      if (AllPredsVisited) {
1018        for (BasicBlock::const_iterator I = LLVMBB->begin();
1019             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1020          FuncInfo->ComputePHILiveOutRegInfo(PN);
1021      } else {
1022        for (BasicBlock::const_iterator I = LLVMBB->begin();
1023             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1024          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
1025      }
1026
1027      FuncInfo->VisitedBBs.insert(LLVMBB);
1028    }
1029
1030    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
1031    BasicBlock::const_iterator const End = LLVMBB->end();
1032    BasicBlock::const_iterator BI = End;
1033
1034    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1035    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1036
1037    // Setup an EH landing-pad block.
1038    FuncInfo->ExceptionPointerVirtReg = 0;
1039    FuncInfo->ExceptionSelectorVirtReg = 0;
1040    if (FuncInfo->MBB->isLandingPad())
1041      PrepareEHLandingPad();
1042
1043    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1044    if (FastIS) {
1045      FastIS->startNewBlock();
1046
1047      // Emit code for any incoming arguments. This must happen before
1048      // beginning FastISel on the entry block.
1049      if (LLVMBB == &Fn.getEntryBlock()) {
1050        ++NumEntryBlocks;
1051
1052        // Lower any arguments needed in this block if this is the entry block.
1053        if (!FastIS->LowerArguments()) {
1054          // Fast isel failed to lower these arguments
1055          ++NumFastIselFailLowerArguments;
1056          if (EnableFastISelAbortArgs)
1057            llvm_unreachable("FastISel didn't lower all arguments");
1058
1059          // Use SelectionDAG argument lowering
1060          LowerArguments(Fn);
1061          CurDAG->setRoot(SDB->getControlRoot());
1062          SDB->clear();
1063          CodeGenAndEmitDAG();
1064        }
1065
1066        // If we inserted any instructions at the beginning, make a note of
1067        // where they are, so we can be sure to emit subsequent instructions
1068        // after them.
1069        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1070          FastIS->setLastLocalValue(std::prev(FuncInfo->InsertPt));
1071        else
1072          FastIS->setLastLocalValue(0);
1073      }
1074
1075      unsigned NumFastIselRemaining = std::distance(Begin, End);
1076      // Do FastISel on as many instructions as possible.
1077      for (; BI != Begin; --BI) {
1078        const Instruction *Inst = std::prev(BI);
1079
1080        // If we no longer require this instruction, skip it.
1081        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1082          --NumFastIselRemaining;
1083          continue;
1084        }
1085
1086        // Bottom-up: reset the insert pos at the top, after any local-value
1087        // instructions.
1088        FastIS->recomputeInsertPt();
1089
1090        // Try to select the instruction with FastISel.
1091        if (FastIS->SelectInstruction(Inst)) {
1092          --NumFastIselRemaining;
1093          ++NumFastIselSuccess;
1094          // If fast isel succeeded, skip over all the folded instructions, and
1095          // then see if there is a load right before the selected instructions.
1096          // Try to fold the load if so.
1097          const Instruction *BeforeInst = Inst;
1098          while (BeforeInst != Begin) {
1099            BeforeInst = std::prev(BasicBlock::const_iterator(BeforeInst));
1100            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1101              break;
1102          }
1103          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1104              BeforeInst->hasOneUse() &&
1105              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1106            // If we succeeded, don't re-select the load.
1107            BI = std::next(BasicBlock::const_iterator(BeforeInst));
1108            --NumFastIselRemaining;
1109            ++NumFastIselSuccess;
1110          }
1111          continue;
1112        }
1113
1114#ifndef NDEBUG
1115        if (EnableFastISelVerbose2)
1116          collectFailStats(Inst);
1117#endif
1118
1119        // Then handle certain instructions as single-LLVM-Instruction blocks.
1120        if (isa<CallInst>(Inst)) {
1121
1122          if (EnableFastISelVerbose || EnableFastISelAbort) {
1123            dbgs() << "FastISel missed call: ";
1124            Inst->dump();
1125          }
1126
1127          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1128            unsigned &R = FuncInfo->ValueMap[Inst];
1129            if (!R)
1130              R = FuncInfo->CreateRegs(Inst->getType());
1131          }
1132
1133          bool HadTailCall = false;
1134          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1135          SelectBasicBlock(Inst, BI, HadTailCall);
1136
1137          // If the call was emitted as a tail call, we're done with the block.
1138          // We also need to delete any previously emitted instructions.
1139          if (HadTailCall) {
1140            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1141            --BI;
1142            break;
1143          }
1144
1145          // Recompute NumFastIselRemaining as Selection DAG instruction
1146          // selection may have handled the call, input args, etc.
1147          unsigned RemainingNow = std::distance(Begin, BI);
1148          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1149          NumFastIselRemaining = RemainingNow;
1150          continue;
1151        }
1152
1153        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1154          // Don't abort, and use a different message for terminator misses.
1155          NumFastIselFailures += NumFastIselRemaining;
1156          if (EnableFastISelVerbose || EnableFastISelAbort) {
1157            dbgs() << "FastISel missed terminator: ";
1158            Inst->dump();
1159          }
1160        } else {
1161          NumFastIselFailures += NumFastIselRemaining;
1162          if (EnableFastISelVerbose || EnableFastISelAbort) {
1163            dbgs() << "FastISel miss: ";
1164            Inst->dump();
1165          }
1166          if (EnableFastISelAbort)
1167            // The "fast" selector couldn't handle something and bailed.
1168            // For the purpose of debugging, just abort.
1169            llvm_unreachable("FastISel didn't select the entire block");
1170        }
1171        break;
1172      }
1173
1174      FastIS->recomputeInsertPt();
1175    } else {
1176      // Lower any arguments needed in this block if this is the entry block.
1177      if (LLVMBB == &Fn.getEntryBlock()) {
1178        ++NumEntryBlocks;
1179        LowerArguments(Fn);
1180      }
1181    }
1182
1183    if (Begin != BI)
1184      ++NumDAGBlocks;
1185    else
1186      ++NumFastIselBlocks;
1187
1188    if (Begin != BI) {
1189      // Run SelectionDAG instruction selection on the remainder of the block
1190      // not handled by FastISel. If FastISel is not run, this is the entire
1191      // block.
1192      bool HadTailCall;
1193      SelectBasicBlock(Begin, BI, HadTailCall);
1194    }
1195
1196    FinishBasicBlock();
1197    FuncInfo->PHINodesToUpdate.clear();
1198  }
1199
1200  delete FastIS;
1201  SDB->clearDanglingDebugInfo();
1202  SDB->SPDescriptor.resetPerFunctionState();
1203}
1204
1205/// Given that the input MI is before a partial terminator sequence TSeq, return
1206/// true if M + TSeq also a partial terminator sequence.
1207///
1208/// A Terminator sequence is a sequence of MachineInstrs which at this point in
1209/// lowering copy vregs into physical registers, which are then passed into
1210/// terminator instructors so we can satisfy ABI constraints. A partial
1211/// terminator sequence is an improper subset of a terminator sequence (i.e. it
1212/// may be the whole terminator sequence).
1213static bool MIIsInTerminatorSequence(const MachineInstr *MI) {
1214  // If we do not have a copy or an implicit def, we return true if and only if
1215  // MI is a debug value.
1216  if (!MI->isCopy() && !MI->isImplicitDef())
1217    // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1218    // physical registers if there is debug info associated with the terminator
1219    // of our mbb. We want to include said debug info in our terminator
1220    // sequence, so we return true in that case.
1221    return MI->isDebugValue();
1222
1223  // We have left the terminator sequence if we are not doing one of the
1224  // following:
1225  //
1226  // 1. Copying a vreg into a physical register.
1227  // 2. Copying a vreg into a vreg.
1228  // 3. Defining a register via an implicit def.
1229
1230  // OPI should always be a register definition...
1231  MachineInstr::const_mop_iterator OPI = MI->operands_begin();
1232  if (!OPI->isReg() || !OPI->isDef())
1233    return false;
1234
1235  // Defining any register via an implicit def is always ok.
1236  if (MI->isImplicitDef())
1237    return true;
1238
1239  // Grab the copy source...
1240  MachineInstr::const_mop_iterator OPI2 = OPI;
1241  ++OPI2;
1242  assert(OPI2 != MI->operands_end()
1243         && "Should have a copy implying we should have 2 arguments.");
1244
1245  // Make sure that the copy dest is not a vreg when the copy source is a
1246  // physical register.
1247  if (!OPI2->isReg() ||
1248      (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1249       TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1250    return false;
1251
1252  return true;
1253}
1254
1255/// Find the split point at which to splice the end of BB into its success stack
1256/// protector check machine basic block.
1257///
1258/// On many platforms, due to ABI constraints, terminators, even before register
1259/// allocation, use physical registers. This creates an issue for us since
1260/// physical registers at this point can not travel across basic
1261/// blocks. Luckily, selectiondag always moves physical registers into vregs
1262/// when they enter functions and moves them through a sequence of copies back
1263/// into the physical registers right before the terminator creating a
1264/// ``Terminator Sequence''. This function is searching for the beginning of the
1265/// terminator sequence so that we can ensure that we splice off not just the
1266/// terminator, but additionally the copies that move the vregs into the
1267/// physical registers.
1268static MachineBasicBlock::iterator
1269FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) {
1270  MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1271  //
1272  if (SplitPoint == BB->begin())
1273    return SplitPoint;
1274
1275  MachineBasicBlock::iterator Start = BB->begin();
1276  MachineBasicBlock::iterator Previous = SplitPoint;
1277  --Previous;
1278
1279  while (MIIsInTerminatorSequence(Previous)) {
1280    SplitPoint = Previous;
1281    if (Previous == Start)
1282      break;
1283    --Previous;
1284  }
1285
1286  return SplitPoint;
1287}
1288
1289void
1290SelectionDAGISel::FinishBasicBlock() {
1291
1292  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1293               << FuncInfo->PHINodesToUpdate.size() << "\n";
1294        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1295          dbgs() << "Node " << i << " : ("
1296                 << FuncInfo->PHINodesToUpdate[i].first
1297                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1298
1299  const bool MustUpdatePHINodes = SDB->SwitchCases.empty() &&
1300                                  SDB->JTCases.empty() &&
1301                                  SDB->BitTestCases.empty();
1302
1303  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1304  // PHI nodes in successors.
1305  if (MustUpdatePHINodes) {
1306    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1307      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1308      assert(PHI->isPHI() &&
1309             "This is not a machine PHI node that we are updating!");
1310      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1311        continue;
1312      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1313    }
1314  }
1315
1316  // Handle stack protector.
1317  if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1318    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1319    MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1320
1321    // Find the split point to split the parent mbb. At the same time copy all
1322    // physical registers used in the tail of parent mbb into virtual registers
1323    // before the split point and back into physical registers after the split
1324    // point. This prevents us needing to deal with Live-ins and many other
1325    // register allocation issues caused by us splitting the parent mbb. The
1326    // register allocator will clean up said virtual copies later on.
1327    MachineBasicBlock::iterator SplitPoint =
1328      FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc());
1329
1330    // Splice the terminator of ParentMBB into SuccessMBB.
1331    SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1332                       SplitPoint,
1333                       ParentMBB->end());
1334
1335    // Add compare/jump on neq/jump to the parent BB.
1336    FuncInfo->MBB = ParentMBB;
1337    FuncInfo->InsertPt = ParentMBB->end();
1338    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1339    CurDAG->setRoot(SDB->getRoot());
1340    SDB->clear();
1341    CodeGenAndEmitDAG();
1342
1343    // CodeGen Failure MBB if we have not codegened it yet.
1344    MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1345    if (!FailureMBB->size()) {
1346      FuncInfo->MBB = FailureMBB;
1347      FuncInfo->InsertPt = FailureMBB->end();
1348      SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1349      CurDAG->setRoot(SDB->getRoot());
1350      SDB->clear();
1351      CodeGenAndEmitDAG();
1352    }
1353
1354    // Clear the Per-BB State.
1355    SDB->SPDescriptor.resetPerBBState();
1356  }
1357
1358  // If we updated PHI Nodes, return early.
1359  if (MustUpdatePHINodes)
1360    return;
1361
1362  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1363    // Lower header first, if it wasn't already lowered
1364    if (!SDB->BitTestCases[i].Emitted) {
1365      // Set the current basic block to the mbb we wish to insert the code into
1366      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1367      FuncInfo->InsertPt = FuncInfo->MBB->end();
1368      // Emit the code
1369      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1370      CurDAG->setRoot(SDB->getRoot());
1371      SDB->clear();
1372      CodeGenAndEmitDAG();
1373    }
1374
1375    uint32_t UnhandledWeight = 0;
1376    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1377      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1378
1379    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1380      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1381      // Set the current basic block to the mbb we wish to insert the code into
1382      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1383      FuncInfo->InsertPt = FuncInfo->MBB->end();
1384      // Emit the code
1385      if (j+1 != ej)
1386        SDB->visitBitTestCase(SDB->BitTestCases[i],
1387                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1388                              UnhandledWeight,
1389                              SDB->BitTestCases[i].Reg,
1390                              SDB->BitTestCases[i].Cases[j],
1391                              FuncInfo->MBB);
1392      else
1393        SDB->visitBitTestCase(SDB->BitTestCases[i],
1394                              SDB->BitTestCases[i].Default,
1395                              UnhandledWeight,
1396                              SDB->BitTestCases[i].Reg,
1397                              SDB->BitTestCases[i].Cases[j],
1398                              FuncInfo->MBB);
1399
1400
1401      CurDAG->setRoot(SDB->getRoot());
1402      SDB->clear();
1403      CodeGenAndEmitDAG();
1404    }
1405
1406    // Update PHI Nodes
1407    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1408         pi != pe; ++pi) {
1409      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1410      MachineBasicBlock *PHIBB = PHI->getParent();
1411      assert(PHI->isPHI() &&
1412             "This is not a machine PHI node that we are updating!");
1413      // This is "default" BB. We have two jumps to it. From "header" BB and
1414      // from last "case" BB.
1415      if (PHIBB == SDB->BitTestCases[i].Default)
1416        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1417           .addMBB(SDB->BitTestCases[i].Parent)
1418           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1419           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1420      // One of "cases" BB.
1421      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1422           j != ej; ++j) {
1423        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1424        if (cBB->isSuccessor(PHIBB))
1425          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1426      }
1427    }
1428  }
1429  SDB->BitTestCases.clear();
1430
1431  // If the JumpTable record is filled in, then we need to emit a jump table.
1432  // Updating the PHI nodes is tricky in this case, since we need to determine
1433  // whether the PHI is a successor of the range check MBB or the jump table MBB
1434  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1435    // Lower header first, if it wasn't already lowered
1436    if (!SDB->JTCases[i].first.Emitted) {
1437      // Set the current basic block to the mbb we wish to insert the code into
1438      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1439      FuncInfo->InsertPt = FuncInfo->MBB->end();
1440      // Emit the code
1441      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1442                                FuncInfo->MBB);
1443      CurDAG->setRoot(SDB->getRoot());
1444      SDB->clear();
1445      CodeGenAndEmitDAG();
1446    }
1447
1448    // Set the current basic block to the mbb we wish to insert the code into
1449    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1450    FuncInfo->InsertPt = FuncInfo->MBB->end();
1451    // Emit the code
1452    SDB->visitJumpTable(SDB->JTCases[i].second);
1453    CurDAG->setRoot(SDB->getRoot());
1454    SDB->clear();
1455    CodeGenAndEmitDAG();
1456
1457    // Update PHI Nodes
1458    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1459         pi != pe; ++pi) {
1460      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1461      MachineBasicBlock *PHIBB = PHI->getParent();
1462      assert(PHI->isPHI() &&
1463             "This is not a machine PHI node that we are updating!");
1464      // "default" BB. We can go there only from header BB.
1465      if (PHIBB == SDB->JTCases[i].second.Default)
1466        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1467           .addMBB(SDB->JTCases[i].first.HeaderBB);
1468      // JT BB. Just iterate over successors here
1469      if (FuncInfo->MBB->isSuccessor(PHIBB))
1470        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1471    }
1472  }
1473  SDB->JTCases.clear();
1474
1475  // If the switch block involved a branch to one of the actual successors, we
1476  // need to update PHI nodes in that block.
1477  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1478    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1479    assert(PHI->isPHI() &&
1480           "This is not a machine PHI node that we are updating!");
1481    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1482      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1483  }
1484
1485  // If we generated any switch lowering information, build and codegen any
1486  // additional DAGs necessary.
1487  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1488    // Set the current basic block to the mbb we wish to insert the code into
1489    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1490    FuncInfo->InsertPt = FuncInfo->MBB->end();
1491
1492    // Determine the unique successors.
1493    SmallVector<MachineBasicBlock *, 2> Succs;
1494    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1495    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1496      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1497
1498    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1499    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1500    CurDAG->setRoot(SDB->getRoot());
1501    SDB->clear();
1502    CodeGenAndEmitDAG();
1503
1504    // Remember the last block, now that any splitting is done, for use in
1505    // populating PHI nodes in successors.
1506    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1507
1508    // Handle any PHI nodes in successors of this chunk, as if we were coming
1509    // from the original BB before switch expansion.  Note that PHI nodes can
1510    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1511    // handle them the right number of times.
1512    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1513      FuncInfo->MBB = Succs[i];
1514      FuncInfo->InsertPt = FuncInfo->MBB->end();
1515      // FuncInfo->MBB may have been removed from the CFG if a branch was
1516      // constant folded.
1517      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1518        for (MachineBasicBlock::iterator
1519             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1520             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1521          MachineInstrBuilder PHI(*MF, MBBI);
1522          // This value for this PHI node is recorded in PHINodesToUpdate.
1523          for (unsigned pn = 0; ; ++pn) {
1524            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1525                   "Didn't find PHI entry!");
1526            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1527              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1528              break;
1529            }
1530          }
1531        }
1532      }
1533    }
1534  }
1535  SDB->SwitchCases.clear();
1536}
1537
1538
1539/// Create the scheduler. If a specific scheduler was specified
1540/// via the SchedulerRegistry, use it, otherwise select the
1541/// one preferred by the target.
1542///
1543ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1544  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1545
1546  if (!Ctor) {
1547    Ctor = ISHeuristic;
1548    RegisterScheduler::setDefault(Ctor);
1549  }
1550
1551  return Ctor(this, OptLevel);
1552}
1553
1554//===----------------------------------------------------------------------===//
1555// Helper functions used by the generated instruction selector.
1556//===----------------------------------------------------------------------===//
1557// Calls to these methods are generated by tblgen.
1558
1559/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1560/// the dag combiner simplified the 255, we still want to match.  RHS is the
1561/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1562/// specified in the .td file (e.g. 255).
1563bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1564                                    int64_t DesiredMaskS) const {
1565  const APInt &ActualMask = RHS->getAPIntValue();
1566  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1567
1568  // If the actual mask exactly matches, success!
1569  if (ActualMask == DesiredMask)
1570    return true;
1571
1572  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1573  if (ActualMask.intersects(~DesiredMask))
1574    return false;
1575
1576  // Otherwise, the DAG Combiner may have proven that the value coming in is
1577  // either already zero or is not demanded.  Check for known zero input bits.
1578  APInt NeededMask = DesiredMask & ~ActualMask;
1579  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1580    return true;
1581
1582  // TODO: check to see if missing bits are just not demanded.
1583
1584  // Otherwise, this pattern doesn't match.
1585  return false;
1586}
1587
1588/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1589/// the dag combiner simplified the 255, we still want to match.  RHS is the
1590/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1591/// specified in the .td file (e.g. 255).
1592bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1593                                   int64_t DesiredMaskS) const {
1594  const APInt &ActualMask = RHS->getAPIntValue();
1595  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1596
1597  // If the actual mask exactly matches, success!
1598  if (ActualMask == DesiredMask)
1599    return true;
1600
1601  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1602  if (ActualMask.intersects(~DesiredMask))
1603    return false;
1604
1605  // Otherwise, the DAG Combiner may have proven that the value coming in is
1606  // either already zero or is not demanded.  Check for known zero input bits.
1607  APInt NeededMask = DesiredMask & ~ActualMask;
1608
1609  APInt KnownZero, KnownOne;
1610  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1611
1612  // If all the missing bits in the or are already known to be set, match!
1613  if ((NeededMask & KnownOne) == NeededMask)
1614    return true;
1615
1616  // TODO: check to see if missing bits are just not demanded.
1617
1618  // Otherwise, this pattern doesn't match.
1619  return false;
1620}
1621
1622
1623/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1624/// by tblgen.  Others should not call it.
1625void SelectionDAGISel::
1626SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1627  std::vector<SDValue> InOps;
1628  std::swap(InOps, Ops);
1629
1630  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1631  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1632  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1633  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1634
1635  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1636  if (InOps[e-1].getValueType() == MVT::Glue)
1637    --e;  // Don't process a glue operand if it is here.
1638
1639  while (i != e) {
1640    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1641    if (!InlineAsm::isMemKind(Flags)) {
1642      // Just skip over this operand, copying the operands verbatim.
1643      Ops.insert(Ops.end(), InOps.begin()+i,
1644                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1645      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1646    } else {
1647      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1648             "Memory operand with multiple values?");
1649      // Otherwise, this is a memory operand.  Ask the target to select it.
1650      std::vector<SDValue> SelOps;
1651      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1652        report_fatal_error("Could not match memory address.  Inline asm"
1653                           " failure!");
1654
1655      // Add this to the output node.
1656      unsigned NewFlags =
1657        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1658      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1659      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1660      i += 2;
1661    }
1662  }
1663
1664  // Add the glue input back if present.
1665  if (e != InOps.size())
1666    Ops.push_back(InOps.back());
1667}
1668
1669/// findGlueUse - Return use of MVT::Glue value produced by the specified
1670/// SDNode.
1671///
1672static SDNode *findGlueUse(SDNode *N) {
1673  unsigned FlagResNo = N->getNumValues()-1;
1674  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1675    SDUse &Use = I.getUse();
1676    if (Use.getResNo() == FlagResNo)
1677      return Use.getUser();
1678  }
1679  return NULL;
1680}
1681
1682/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1683/// This function recursively traverses up the operand chain, ignoring
1684/// certain nodes.
1685static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1686                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1687                          bool IgnoreChains) {
1688  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1689  // greater than all of its (recursive) operands.  If we scan to a point where
1690  // 'use' is smaller than the node we're scanning for, then we know we will
1691  // never find it.
1692  //
1693  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1694  // happen because we scan down to newly selected nodes in the case of glue
1695  // uses.
1696  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1697    return false;
1698
1699  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1700  // won't fail if we scan it again.
1701  if (!Visited.insert(Use))
1702    return false;
1703
1704  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1705    // Ignore chain uses, they are validated by HandleMergeInputChains.
1706    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1707      continue;
1708
1709    SDNode *N = Use->getOperand(i).getNode();
1710    if (N == Def) {
1711      if (Use == ImmedUse || Use == Root)
1712        continue;  // We are not looking for immediate use.
1713      assert(N != Root);
1714      return true;
1715    }
1716
1717    // Traverse up the operand chain.
1718    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1719      return true;
1720  }
1721  return false;
1722}
1723
1724/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1725/// operand node N of U during instruction selection that starts at Root.
1726bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1727                                          SDNode *Root) const {
1728  if (OptLevel == CodeGenOpt::None) return false;
1729  return N.hasOneUse();
1730}
1731
1732/// IsLegalToFold - Returns true if the specific operand node N of
1733/// U can be folded during instruction selection that starts at Root.
1734bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1735                                     CodeGenOpt::Level OptLevel,
1736                                     bool IgnoreChains) {
1737  if (OptLevel == CodeGenOpt::None) return false;
1738
1739  // If Root use can somehow reach N through a path that that doesn't contain
1740  // U then folding N would create a cycle. e.g. In the following
1741  // diagram, Root can reach N through X. If N is folded into into Root, then
1742  // X is both a predecessor and a successor of U.
1743  //
1744  //          [N*]           //
1745  //         ^   ^           //
1746  //        /     \          //
1747  //      [U*]    [X]?       //
1748  //        ^     ^          //
1749  //         \   /           //
1750  //          \ /            //
1751  //         [Root*]         //
1752  //
1753  // * indicates nodes to be folded together.
1754  //
1755  // If Root produces glue, then it gets (even more) interesting. Since it
1756  // will be "glued" together with its glue use in the scheduler, we need to
1757  // check if it might reach N.
1758  //
1759  //          [N*]           //
1760  //         ^   ^           //
1761  //        /     \          //
1762  //      [U*]    [X]?       //
1763  //        ^       ^        //
1764  //         \       \       //
1765  //          \      |       //
1766  //         [Root*] |       //
1767  //          ^      |       //
1768  //          f      |       //
1769  //          |      /       //
1770  //         [Y]    /        //
1771  //           ^   /         //
1772  //           f  /          //
1773  //           | /           //
1774  //          [GU]           //
1775  //
1776  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1777  // (call it Fold), then X is a predecessor of GU and a successor of
1778  // Fold. But since Fold and GU are glued together, this will create
1779  // a cycle in the scheduling graph.
1780
1781  // If the node has glue, walk down the graph to the "lowest" node in the
1782  // glueged set.
1783  EVT VT = Root->getValueType(Root->getNumValues()-1);
1784  while (VT == MVT::Glue) {
1785    SDNode *GU = findGlueUse(Root);
1786    if (GU == NULL)
1787      break;
1788    Root = GU;
1789    VT = Root->getValueType(Root->getNumValues()-1);
1790
1791    // If our query node has a glue result with a use, we've walked up it.  If
1792    // the user (which has already been selected) has a chain or indirectly uses
1793    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1794    // this, we cannot ignore chains in this predicate.
1795    IgnoreChains = false;
1796  }
1797
1798
1799  SmallPtrSet<SDNode*, 16> Visited;
1800  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1801}
1802
1803SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1804  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1805  SelectInlineAsmMemoryOperands(Ops);
1806
1807  EVT VTs[] = { MVT::Other, MVT::Glue };
1808  SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
1809                                VTs, &Ops[0], Ops.size());
1810  New->setNodeId(-1);
1811  return New.getNode();
1812}
1813
1814SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1815  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1816}
1817
1818/// GetVBR - decode a vbr encoding whose top bit is set.
1819LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1820GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1821  assert(Val >= 128 && "Not a VBR");
1822  Val &= 127;  // Remove first vbr bit.
1823
1824  unsigned Shift = 7;
1825  uint64_t NextBits;
1826  do {
1827    NextBits = MatcherTable[Idx++];
1828    Val |= (NextBits&127) << Shift;
1829    Shift += 7;
1830  } while (NextBits & 128);
1831
1832  return Val;
1833}
1834
1835
1836/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1837/// interior glue and chain results to use the new glue and chain results.
1838void SelectionDAGISel::
1839UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1840                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1841                    SDValue InputGlue,
1842                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1843                    bool isMorphNodeTo) {
1844  SmallVector<SDNode*, 4> NowDeadNodes;
1845
1846  // Now that all the normal results are replaced, we replace the chain and
1847  // glue results if present.
1848  if (!ChainNodesMatched.empty()) {
1849    assert(InputChain.getNode() != 0 &&
1850           "Matched input chains but didn't produce a chain");
1851    // Loop over all of the nodes we matched that produced a chain result.
1852    // Replace all the chain results with the final chain we ended up with.
1853    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1854      SDNode *ChainNode = ChainNodesMatched[i];
1855
1856      // If this node was already deleted, don't look at it.
1857      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1858        continue;
1859
1860      // Don't replace the results of the root node if we're doing a
1861      // MorphNodeTo.
1862      if (ChainNode == NodeToMatch && isMorphNodeTo)
1863        continue;
1864
1865      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1866      if (ChainVal.getValueType() == MVT::Glue)
1867        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1868      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1869      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1870
1871      // If the node became dead and we haven't already seen it, delete it.
1872      if (ChainNode->use_empty() &&
1873          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1874        NowDeadNodes.push_back(ChainNode);
1875    }
1876  }
1877
1878  // If the result produces glue, update any glue results in the matched
1879  // pattern with the glue result.
1880  if (InputGlue.getNode() != 0) {
1881    // Handle any interior nodes explicitly marked.
1882    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1883      SDNode *FRN = GlueResultNodesMatched[i];
1884
1885      // If this node was already deleted, don't look at it.
1886      if (FRN->getOpcode() == ISD::DELETED_NODE)
1887        continue;
1888
1889      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1890             "Doesn't have a glue result");
1891      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1892                                        InputGlue);
1893
1894      // If the node became dead and we haven't already seen it, delete it.
1895      if (FRN->use_empty() &&
1896          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1897        NowDeadNodes.push_back(FRN);
1898    }
1899  }
1900
1901  if (!NowDeadNodes.empty())
1902    CurDAG->RemoveDeadNodes(NowDeadNodes);
1903
1904  DEBUG(dbgs() << "ISEL: Match complete!\n");
1905}
1906
1907enum ChainResult {
1908  CR_Simple,
1909  CR_InducesCycle,
1910  CR_LeadsToInteriorNode
1911};
1912
1913/// WalkChainUsers - Walk down the users of the specified chained node that is
1914/// part of the pattern we're matching, looking at all of the users we find.
1915/// This determines whether something is an interior node, whether we have a
1916/// non-pattern node in between two pattern nodes (which prevent folding because
1917/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1918/// between pattern nodes (in which case the TF becomes part of the pattern).
1919///
1920/// The walk we do here is guaranteed to be small because we quickly get down to
1921/// already selected nodes "below" us.
1922static ChainResult
1923WalkChainUsers(const SDNode *ChainedNode,
1924               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1925               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1926  ChainResult Result = CR_Simple;
1927
1928  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1929         E = ChainedNode->use_end(); UI != E; ++UI) {
1930    // Make sure the use is of the chain, not some other value we produce.
1931    if (UI.getUse().getValueType() != MVT::Other) continue;
1932
1933    SDNode *User = *UI;
1934
1935    if (User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1936      continue;
1937
1938    // If we see an already-selected machine node, then we've gone beyond the
1939    // pattern that we're selecting down into the already selected chunk of the
1940    // DAG.
1941    unsigned UserOpcode = User->getOpcode();
1942    if (User->isMachineOpcode() ||
1943        UserOpcode == ISD::CopyToReg ||
1944        UserOpcode == ISD::CopyFromReg ||
1945        UserOpcode == ISD::INLINEASM ||
1946        UserOpcode == ISD::EH_LABEL ||
1947        UserOpcode == ISD::LIFETIME_START ||
1948        UserOpcode == ISD::LIFETIME_END) {
1949      // If their node ID got reset to -1 then they've already been selected.
1950      // Treat them like a MachineOpcode.
1951      if (User->getNodeId() == -1)
1952        continue;
1953    }
1954
1955    // If we have a TokenFactor, we handle it specially.
1956    if (User->getOpcode() != ISD::TokenFactor) {
1957      // If the node isn't a token factor and isn't part of our pattern, then it
1958      // must be a random chained node in between two nodes we're selecting.
1959      // This happens when we have something like:
1960      //   x = load ptr
1961      //   call
1962      //   y = x+4
1963      //   store y -> ptr
1964      // Because we structurally match the load/store as a read/modify/write,
1965      // but the call is chained between them.  We cannot fold in this case
1966      // because it would induce a cycle in the graph.
1967      if (!std::count(ChainedNodesInPattern.begin(),
1968                      ChainedNodesInPattern.end(), User))
1969        return CR_InducesCycle;
1970
1971      // Otherwise we found a node that is part of our pattern.  For example in:
1972      //   x = load ptr
1973      //   y = x+4
1974      //   store y -> ptr
1975      // This would happen when we're scanning down from the load and see the
1976      // store as a user.  Record that there is a use of ChainedNode that is
1977      // part of the pattern and keep scanning uses.
1978      Result = CR_LeadsToInteriorNode;
1979      InteriorChainedNodes.push_back(User);
1980      continue;
1981    }
1982
1983    // If we found a TokenFactor, there are two cases to consider: first if the
1984    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1985    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1986    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1987    //     [Load chain]
1988    //         ^
1989    //         |
1990    //       [Load]
1991    //       ^    ^
1992    //       |    \                    DAG's like cheese
1993    //      /       \                       do you?
1994    //     /         |
1995    // [TokenFactor] [Op]
1996    //     ^          ^
1997    //     |          |
1998    //      \        /
1999    //       \      /
2000    //       [Store]
2001    //
2002    // In this case, the TokenFactor becomes part of our match and we rewrite it
2003    // as a new TokenFactor.
2004    //
2005    // To distinguish these two cases, do a recursive walk down the uses.
2006    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
2007    case CR_Simple:
2008      // If the uses of the TokenFactor are just already-selected nodes, ignore
2009      // it, it is "below" our pattern.
2010      continue;
2011    case CR_InducesCycle:
2012      // If the uses of the TokenFactor lead to nodes that are not part of our
2013      // pattern that are not selected, folding would turn this into a cycle,
2014      // bail out now.
2015      return CR_InducesCycle;
2016    case CR_LeadsToInteriorNode:
2017      break;  // Otherwise, keep processing.
2018    }
2019
2020    // Okay, we know we're in the interesting interior case.  The TokenFactor
2021    // is now going to be considered part of the pattern so that we rewrite its
2022    // uses (it may have uses that are not part of the pattern) with the
2023    // ultimate chain result of the generated code.  We will also add its chain
2024    // inputs as inputs to the ultimate TokenFactor we create.
2025    Result = CR_LeadsToInteriorNode;
2026    ChainedNodesInPattern.push_back(User);
2027    InteriorChainedNodes.push_back(User);
2028    continue;
2029  }
2030
2031  return Result;
2032}
2033
2034/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2035/// operation for when the pattern matched at least one node with a chains.  The
2036/// input vector contains a list of all of the chained nodes that we match.  We
2037/// must determine if this is a valid thing to cover (i.e. matching it won't
2038/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2039/// be used as the input node chain for the generated nodes.
2040static SDValue
2041HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2042                       SelectionDAG *CurDAG) {
2043  // Walk all of the chained nodes we've matched, recursively scanning down the
2044  // users of the chain result. This adds any TokenFactor nodes that are caught
2045  // in between chained nodes to the chained and interior nodes list.
2046  SmallVector<SDNode*, 3> InteriorChainedNodes;
2047  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2048    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
2049                       InteriorChainedNodes) == CR_InducesCycle)
2050      return SDValue(); // Would induce a cycle.
2051  }
2052
2053  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
2054  // that we are interested in.  Form our input TokenFactor node.
2055  SmallVector<SDValue, 3> InputChains;
2056  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2057    // Add the input chain of this node to the InputChains list (which will be
2058    // the operands of the generated TokenFactor) if it's not an interior node.
2059    SDNode *N = ChainNodesMatched[i];
2060    if (N->getOpcode() != ISD::TokenFactor) {
2061      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
2062        continue;
2063
2064      // Otherwise, add the input chain.
2065      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
2066      assert(InChain.getValueType() == MVT::Other && "Not a chain");
2067      InputChains.push_back(InChain);
2068      continue;
2069    }
2070
2071    // If we have a token factor, we want to add all inputs of the token factor
2072    // that are not part of the pattern we're matching.
2073    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
2074      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
2075                      N->getOperand(op).getNode()))
2076        InputChains.push_back(N->getOperand(op));
2077    }
2078  }
2079
2080  if (InputChains.size() == 1)
2081    return InputChains[0];
2082  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2083                         MVT::Other, &InputChains[0], InputChains.size());
2084}
2085
2086/// MorphNode - Handle morphing a node in place for the selector.
2087SDNode *SelectionDAGISel::
2088MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2089          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
2090  // It is possible we're using MorphNodeTo to replace a node with no
2091  // normal results with one that has a normal result (or we could be
2092  // adding a chain) and the input could have glue and chains as well.
2093  // In this case we need to shift the operands down.
2094  // FIXME: This is a horrible hack and broken in obscure cases, no worse
2095  // than the old isel though.
2096  int OldGlueResultNo = -1, OldChainResultNo = -1;
2097
2098  unsigned NTMNumResults = Node->getNumValues();
2099  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2100    OldGlueResultNo = NTMNumResults-1;
2101    if (NTMNumResults != 1 &&
2102        Node->getValueType(NTMNumResults-2) == MVT::Other)
2103      OldChainResultNo = NTMNumResults-2;
2104  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2105    OldChainResultNo = NTMNumResults-1;
2106
2107  // Call the underlying SelectionDAG routine to do the transmogrification. Note
2108  // that this deletes operands of the old node that become dead.
2109  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
2110
2111  // MorphNodeTo can operate in two ways: if an existing node with the
2112  // specified operands exists, it can just return it.  Otherwise, it
2113  // updates the node in place to have the requested operands.
2114  if (Res == Node) {
2115    // If we updated the node in place, reset the node ID.  To the isel,
2116    // this should be just like a newly allocated machine node.
2117    Res->setNodeId(-1);
2118  }
2119
2120  unsigned ResNumResults = Res->getNumValues();
2121  // Move the glue if needed.
2122  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2123      (unsigned)OldGlueResultNo != ResNumResults-1)
2124    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2125                                      SDValue(Res, ResNumResults-1));
2126
2127  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2128    --ResNumResults;
2129
2130  // Move the chain reference if needed.
2131  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2132      (unsigned)OldChainResultNo != ResNumResults-1)
2133    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2134                                      SDValue(Res, ResNumResults-1));
2135
2136  // Otherwise, no replacement happened because the node already exists. Replace
2137  // Uses of the old node with the new one.
2138  if (Res != Node)
2139    CurDAG->ReplaceAllUsesWith(Node, Res);
2140
2141  return Res;
2142}
2143
2144/// CheckSame - Implements OP_CheckSame.
2145LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2146CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2147          SDValue N,
2148          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2149  // Accept if it is exactly the same as a previously recorded node.
2150  unsigned RecNo = MatcherTable[MatcherIndex++];
2151  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2152  return N == RecordedNodes[RecNo].first;
2153}
2154
2155/// CheckChildSame - Implements OP_CheckChildXSame.
2156LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2157CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2158             SDValue N,
2159             const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes,
2160             unsigned ChildNo) {
2161  if (ChildNo >= N.getNumOperands())
2162    return false;  // Match fails if out of range child #.
2163  return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2164                     RecordedNodes);
2165}
2166
2167/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2168LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2169CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2170                      const SelectionDAGISel &SDISel) {
2171  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2172}
2173
2174/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2175LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2176CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2177                   const SelectionDAGISel &SDISel, SDNode *N) {
2178  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2179}
2180
2181LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2182CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2183            SDNode *N) {
2184  uint16_t Opc = MatcherTable[MatcherIndex++];
2185  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2186  return N->getOpcode() == Opc;
2187}
2188
2189LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2190CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2191          SDValue N, const TargetLowering *TLI) {
2192  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2193  if (N.getValueType() == VT) return true;
2194
2195  // Handle the case when VT is iPTR.
2196  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy();
2197}
2198
2199LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2200CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2201               SDValue N, const TargetLowering *TLI, unsigned ChildNo) {
2202  if (ChildNo >= N.getNumOperands())
2203    return false;  // Match fails if out of range child #.
2204  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2205}
2206
2207LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2208CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2209              SDValue N) {
2210  return cast<CondCodeSDNode>(N)->get() ==
2211      (ISD::CondCode)MatcherTable[MatcherIndex++];
2212}
2213
2214LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2215CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2216               SDValue N, const TargetLowering *TLI) {
2217  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2218  if (cast<VTSDNode>(N)->getVT() == VT)
2219    return true;
2220
2221  // Handle the case when VT is iPTR.
2222  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy();
2223}
2224
2225LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2226CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2227             SDValue N) {
2228  int64_t Val = MatcherTable[MatcherIndex++];
2229  if (Val & 128)
2230    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2231
2232  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2233  return C != 0 && C->getSExtValue() == Val;
2234}
2235
2236LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2237CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2238                  SDValue N, unsigned ChildNo) {
2239  if (ChildNo >= N.getNumOperands())
2240    return false;  // Match fails if out of range child #.
2241  return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2242}
2243
2244LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2245CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2246            SDValue N, const SelectionDAGISel &SDISel) {
2247  int64_t Val = MatcherTable[MatcherIndex++];
2248  if (Val & 128)
2249    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2250
2251  if (N->getOpcode() != ISD::AND) return false;
2252
2253  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2254  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2255}
2256
2257LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2258CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2259           SDValue N, const SelectionDAGISel &SDISel) {
2260  int64_t Val = MatcherTable[MatcherIndex++];
2261  if (Val & 128)
2262    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2263
2264  if (N->getOpcode() != ISD::OR) return false;
2265
2266  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2267  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2268}
2269
2270/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2271/// scope, evaluate the current node.  If the current predicate is known to
2272/// fail, set Result=true and return anything.  If the current predicate is
2273/// known to pass, set Result=false and return the MatcherIndex to continue
2274/// with.  If the current predicate is unknown, set Result=false and return the
2275/// MatcherIndex to continue with.
2276static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2277                                       unsigned Index, SDValue N,
2278                                       bool &Result,
2279                                       const SelectionDAGISel &SDISel,
2280                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2281  switch (Table[Index++]) {
2282  default:
2283    Result = false;
2284    return Index-1;  // Could not evaluate this predicate.
2285  case SelectionDAGISel::OPC_CheckSame:
2286    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2287    return Index;
2288  case SelectionDAGISel::OPC_CheckChild0Same:
2289  case SelectionDAGISel::OPC_CheckChild1Same:
2290  case SelectionDAGISel::OPC_CheckChild2Same:
2291  case SelectionDAGISel::OPC_CheckChild3Same:
2292    Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2293                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2294    return Index;
2295  case SelectionDAGISel::OPC_CheckPatternPredicate:
2296    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2297    return Index;
2298  case SelectionDAGISel::OPC_CheckPredicate:
2299    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2300    return Index;
2301  case SelectionDAGISel::OPC_CheckOpcode:
2302    Result = !::CheckOpcode(Table, Index, N.getNode());
2303    return Index;
2304  case SelectionDAGISel::OPC_CheckType:
2305    Result = !::CheckType(Table, Index, N, SDISel.getTargetLowering());
2306    return Index;
2307  case SelectionDAGISel::OPC_CheckChild0Type:
2308  case SelectionDAGISel::OPC_CheckChild1Type:
2309  case SelectionDAGISel::OPC_CheckChild2Type:
2310  case SelectionDAGISel::OPC_CheckChild3Type:
2311  case SelectionDAGISel::OPC_CheckChild4Type:
2312  case SelectionDAGISel::OPC_CheckChild5Type:
2313  case SelectionDAGISel::OPC_CheckChild6Type:
2314  case SelectionDAGISel::OPC_CheckChild7Type:
2315    Result = !::CheckChildType(Table, Index, N, SDISel.getTargetLowering(),
2316                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2317    return Index;
2318  case SelectionDAGISel::OPC_CheckCondCode:
2319    Result = !::CheckCondCode(Table, Index, N);
2320    return Index;
2321  case SelectionDAGISel::OPC_CheckValueType:
2322    Result = !::CheckValueType(Table, Index, N, SDISel.getTargetLowering());
2323    return Index;
2324  case SelectionDAGISel::OPC_CheckInteger:
2325    Result = !::CheckInteger(Table, Index, N);
2326    return Index;
2327  case SelectionDAGISel::OPC_CheckChild0Integer:
2328  case SelectionDAGISel::OPC_CheckChild1Integer:
2329  case SelectionDAGISel::OPC_CheckChild2Integer:
2330  case SelectionDAGISel::OPC_CheckChild3Integer:
2331  case SelectionDAGISel::OPC_CheckChild4Integer:
2332    Result = !::CheckChildInteger(Table, Index, N,
2333                     Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2334    return Index;
2335  case SelectionDAGISel::OPC_CheckAndImm:
2336    Result = !::CheckAndImm(Table, Index, N, SDISel);
2337    return Index;
2338  case SelectionDAGISel::OPC_CheckOrImm:
2339    Result = !::CheckOrImm(Table, Index, N, SDISel);
2340    return Index;
2341  }
2342}
2343
2344namespace {
2345
2346struct MatchScope {
2347  /// FailIndex - If this match fails, this is the index to continue with.
2348  unsigned FailIndex;
2349
2350  /// NodeStack - The node stack when the scope was formed.
2351  SmallVector<SDValue, 4> NodeStack;
2352
2353  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2354  unsigned NumRecordedNodes;
2355
2356  /// NumMatchedMemRefs - The number of matched memref entries.
2357  unsigned NumMatchedMemRefs;
2358
2359  /// InputChain/InputGlue - The current chain/glue
2360  SDValue InputChain, InputGlue;
2361
2362  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2363  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2364};
2365
2366}
2367
2368SDNode *SelectionDAGISel::
2369SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2370                 unsigned TableSize) {
2371  // FIXME: Should these even be selected?  Handle these cases in the caller?
2372  switch (NodeToMatch->getOpcode()) {
2373  default:
2374    break;
2375  case ISD::EntryToken:       // These nodes remain the same.
2376  case ISD::BasicBlock:
2377  case ISD::Register:
2378  case ISD::RegisterMask:
2379  //case ISD::VALUETYPE:
2380  //case ISD::CONDCODE:
2381  case ISD::HANDLENODE:
2382  case ISD::MDNODE_SDNODE:
2383  case ISD::TargetConstant:
2384  case ISD::TargetConstantFP:
2385  case ISD::TargetConstantPool:
2386  case ISD::TargetFrameIndex:
2387  case ISD::TargetExternalSymbol:
2388  case ISD::TargetBlockAddress:
2389  case ISD::TargetJumpTable:
2390  case ISD::TargetGlobalTLSAddress:
2391  case ISD::TargetGlobalAddress:
2392  case ISD::TokenFactor:
2393  case ISD::CopyFromReg:
2394  case ISD::CopyToReg:
2395  case ISD::EH_LABEL:
2396  case ISD::LIFETIME_START:
2397  case ISD::LIFETIME_END:
2398    NodeToMatch->setNodeId(-1); // Mark selected.
2399    return 0;
2400  case ISD::AssertSext:
2401  case ISD::AssertZext:
2402    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2403                                      NodeToMatch->getOperand(0));
2404    return 0;
2405  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2406  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2407  }
2408
2409  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2410
2411  // Set up the node stack with NodeToMatch as the only node on the stack.
2412  SmallVector<SDValue, 8> NodeStack;
2413  SDValue N = SDValue(NodeToMatch, 0);
2414  NodeStack.push_back(N);
2415
2416  // MatchScopes - Scopes used when matching, if a match failure happens, this
2417  // indicates where to continue checking.
2418  SmallVector<MatchScope, 8> MatchScopes;
2419
2420  // RecordedNodes - This is the set of nodes that have been recorded by the
2421  // state machine.  The second value is the parent of the node, or null if the
2422  // root is recorded.
2423  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2424
2425  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2426  // pattern.
2427  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2428
2429  // These are the current input chain and glue for use when generating nodes.
2430  // Various Emit operations change these.  For example, emitting a copytoreg
2431  // uses and updates these.
2432  SDValue InputChain, InputGlue;
2433
2434  // ChainNodesMatched - If a pattern matches nodes that have input/output
2435  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2436  // which ones they are.  The result is captured into this list so that we can
2437  // update the chain results when the pattern is complete.
2438  SmallVector<SDNode*, 3> ChainNodesMatched;
2439  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2440
2441  DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2442        NodeToMatch->dump(CurDAG);
2443        dbgs() << '\n');
2444
2445  // Determine where to start the interpreter.  Normally we start at opcode #0,
2446  // but if the state machine starts with an OPC_SwitchOpcode, then we
2447  // accelerate the first lookup (which is guaranteed to be hot) with the
2448  // OpcodeOffset table.
2449  unsigned MatcherIndex = 0;
2450
2451  if (!OpcodeOffset.empty()) {
2452    // Already computed the OpcodeOffset table, just index into it.
2453    if (N.getOpcode() < OpcodeOffset.size())
2454      MatcherIndex = OpcodeOffset[N.getOpcode()];
2455    DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2456
2457  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2458    // Otherwise, the table isn't computed, but the state machine does start
2459    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2460    // is the first time we're selecting an instruction.
2461    unsigned Idx = 1;
2462    while (1) {
2463      // Get the size of this case.
2464      unsigned CaseSize = MatcherTable[Idx++];
2465      if (CaseSize & 128)
2466        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2467      if (CaseSize == 0) break;
2468
2469      // Get the opcode, add the index to the table.
2470      uint16_t Opc = MatcherTable[Idx++];
2471      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2472      if (Opc >= OpcodeOffset.size())
2473        OpcodeOffset.resize((Opc+1)*2);
2474      OpcodeOffset[Opc] = Idx;
2475      Idx += CaseSize;
2476    }
2477
2478    // Okay, do the lookup for the first opcode.
2479    if (N.getOpcode() < OpcodeOffset.size())
2480      MatcherIndex = OpcodeOffset[N.getOpcode()];
2481  }
2482
2483  while (1) {
2484    assert(MatcherIndex < TableSize && "Invalid index");
2485#ifndef NDEBUG
2486    unsigned CurrentOpcodeIndex = MatcherIndex;
2487#endif
2488    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2489    switch (Opcode) {
2490    case OPC_Scope: {
2491      // Okay, the semantics of this operation are that we should push a scope
2492      // then evaluate the first child.  However, pushing a scope only to have
2493      // the first check fail (which then pops it) is inefficient.  If we can
2494      // determine immediately that the first check (or first several) will
2495      // immediately fail, don't even bother pushing a scope for them.
2496      unsigned FailIndex;
2497
2498      while (1) {
2499        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2500        if (NumToSkip & 128)
2501          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2502        // Found the end of the scope with no match.
2503        if (NumToSkip == 0) {
2504          FailIndex = 0;
2505          break;
2506        }
2507
2508        FailIndex = MatcherIndex+NumToSkip;
2509
2510        unsigned MatcherIndexOfPredicate = MatcherIndex;
2511        (void)MatcherIndexOfPredicate; // silence warning.
2512
2513        // If we can't evaluate this predicate without pushing a scope (e.g. if
2514        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2515        // push the scope and evaluate the full predicate chain.
2516        bool Result;
2517        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2518                                              Result, *this, RecordedNodes);
2519        if (!Result)
2520          break;
2521
2522        DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
2523                     << "index " << MatcherIndexOfPredicate
2524                     << ", continuing at " << FailIndex << "\n");
2525        ++NumDAGIselRetries;
2526
2527        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2528        // move to the next case.
2529        MatcherIndex = FailIndex;
2530      }
2531
2532      // If the whole scope failed to match, bail.
2533      if (FailIndex == 0) break;
2534
2535      // Push a MatchScope which indicates where to go if the first child fails
2536      // to match.
2537      MatchScope NewEntry;
2538      NewEntry.FailIndex = FailIndex;
2539      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2540      NewEntry.NumRecordedNodes = RecordedNodes.size();
2541      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2542      NewEntry.InputChain = InputChain;
2543      NewEntry.InputGlue = InputGlue;
2544      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2545      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2546      MatchScopes.push_back(NewEntry);
2547      continue;
2548    }
2549    case OPC_RecordNode: {
2550      // Remember this node, it may end up being an operand in the pattern.
2551      SDNode *Parent = 0;
2552      if (NodeStack.size() > 1)
2553        Parent = NodeStack[NodeStack.size()-2].getNode();
2554      RecordedNodes.push_back(std::make_pair(N, Parent));
2555      continue;
2556    }
2557
2558    case OPC_RecordChild0: case OPC_RecordChild1:
2559    case OPC_RecordChild2: case OPC_RecordChild3:
2560    case OPC_RecordChild4: case OPC_RecordChild5:
2561    case OPC_RecordChild6: case OPC_RecordChild7: {
2562      unsigned ChildNo = Opcode-OPC_RecordChild0;
2563      if (ChildNo >= N.getNumOperands())
2564        break;  // Match fails if out of range child #.
2565
2566      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2567                                             N.getNode()));
2568      continue;
2569    }
2570    case OPC_RecordMemRef:
2571      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2572      continue;
2573
2574    case OPC_CaptureGlueInput:
2575      // If the current node has an input glue, capture it in InputGlue.
2576      if (N->getNumOperands() != 0 &&
2577          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2578        InputGlue = N->getOperand(N->getNumOperands()-1);
2579      continue;
2580
2581    case OPC_MoveChild: {
2582      unsigned ChildNo = MatcherTable[MatcherIndex++];
2583      if (ChildNo >= N.getNumOperands())
2584        break;  // Match fails if out of range child #.
2585      N = N.getOperand(ChildNo);
2586      NodeStack.push_back(N);
2587      continue;
2588    }
2589
2590    case OPC_MoveParent:
2591      // Pop the current node off the NodeStack.
2592      NodeStack.pop_back();
2593      assert(!NodeStack.empty() && "Node stack imbalance!");
2594      N = NodeStack.back();
2595      continue;
2596
2597    case OPC_CheckSame:
2598      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2599      continue;
2600
2601    case OPC_CheckChild0Same: case OPC_CheckChild1Same:
2602    case OPC_CheckChild2Same: case OPC_CheckChild3Same:
2603      if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
2604                            Opcode-OPC_CheckChild0Same))
2605        break;
2606      continue;
2607
2608    case OPC_CheckPatternPredicate:
2609      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2610      continue;
2611    case OPC_CheckPredicate:
2612      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2613                                N.getNode()))
2614        break;
2615      continue;
2616    case OPC_CheckComplexPat: {
2617      unsigned CPNum = MatcherTable[MatcherIndex++];
2618      unsigned RecNo = MatcherTable[MatcherIndex++];
2619      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2620      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2621                               RecordedNodes[RecNo].first, CPNum,
2622                               RecordedNodes))
2623        break;
2624      continue;
2625    }
2626    case OPC_CheckOpcode:
2627      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2628      continue;
2629
2630    case OPC_CheckType:
2631      if (!::CheckType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2632        break;
2633      continue;
2634
2635    case OPC_SwitchOpcode: {
2636      unsigned CurNodeOpcode = N.getOpcode();
2637      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2638      unsigned CaseSize;
2639      while (1) {
2640        // Get the size of this case.
2641        CaseSize = MatcherTable[MatcherIndex++];
2642        if (CaseSize & 128)
2643          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2644        if (CaseSize == 0) break;
2645
2646        uint16_t Opc = MatcherTable[MatcherIndex++];
2647        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2648
2649        // If the opcode matches, then we will execute this case.
2650        if (CurNodeOpcode == Opc)
2651          break;
2652
2653        // Otherwise, skip over this case.
2654        MatcherIndex += CaseSize;
2655      }
2656
2657      // If no cases matched, bail out.
2658      if (CaseSize == 0) break;
2659
2660      // Otherwise, execute the case we found.
2661      DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
2662                   << " to " << MatcherIndex << "\n");
2663      continue;
2664    }
2665
2666    case OPC_SwitchType: {
2667      MVT CurNodeVT = N.getSimpleValueType();
2668      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2669      unsigned CaseSize;
2670      while (1) {
2671        // Get the size of this case.
2672        CaseSize = MatcherTable[MatcherIndex++];
2673        if (CaseSize & 128)
2674          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2675        if (CaseSize == 0) break;
2676
2677        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2678        if (CaseVT == MVT::iPTR)
2679          CaseVT = getTargetLowering()->getPointerTy();
2680
2681        // If the VT matches, then we will execute this case.
2682        if (CurNodeVT == CaseVT)
2683          break;
2684
2685        // Otherwise, skip over this case.
2686        MatcherIndex += CaseSize;
2687      }
2688
2689      // If no cases matched, bail out.
2690      if (CaseSize == 0) break;
2691
2692      // Otherwise, execute the case we found.
2693      DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2694                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2695      continue;
2696    }
2697    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2698    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2699    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2700    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2701      if (!::CheckChildType(MatcherTable, MatcherIndex, N, getTargetLowering(),
2702                            Opcode-OPC_CheckChild0Type))
2703        break;
2704      continue;
2705    case OPC_CheckCondCode:
2706      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2707      continue;
2708    case OPC_CheckValueType:
2709      if (!::CheckValueType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2710        break;
2711      continue;
2712    case OPC_CheckInteger:
2713      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2714      continue;
2715    case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
2716    case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
2717    case OPC_CheckChild4Integer:
2718      if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
2719                               Opcode-OPC_CheckChild0Integer)) break;
2720      continue;
2721    case OPC_CheckAndImm:
2722      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2723      continue;
2724    case OPC_CheckOrImm:
2725      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2726      continue;
2727
2728    case OPC_CheckFoldableChainNode: {
2729      assert(NodeStack.size() != 1 && "No parent node");
2730      // Verify that all intermediate nodes between the root and this one have
2731      // a single use.
2732      bool HasMultipleUses = false;
2733      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2734        if (!NodeStack[i].hasOneUse()) {
2735          HasMultipleUses = true;
2736          break;
2737        }
2738      if (HasMultipleUses) break;
2739
2740      // Check to see that the target thinks this is profitable to fold and that
2741      // we can fold it without inducing cycles in the graph.
2742      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2743                              NodeToMatch) ||
2744          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2745                         NodeToMatch, OptLevel,
2746                         true/*We validate our own chains*/))
2747        break;
2748
2749      continue;
2750    }
2751    case OPC_EmitInteger: {
2752      MVT::SimpleValueType VT =
2753        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2754      int64_t Val = MatcherTable[MatcherIndex++];
2755      if (Val & 128)
2756        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2757      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2758                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2759      continue;
2760    }
2761    case OPC_EmitRegister: {
2762      MVT::SimpleValueType VT =
2763        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2764      unsigned RegNo = MatcherTable[MatcherIndex++];
2765      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2766                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2767      continue;
2768    }
2769    case OPC_EmitRegister2: {
2770      // For targets w/ more than 256 register names, the register enum
2771      // values are stored in two bytes in the matcher table (just like
2772      // opcodes).
2773      MVT::SimpleValueType VT =
2774        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2775      unsigned RegNo = MatcherTable[MatcherIndex++];
2776      RegNo |= MatcherTable[MatcherIndex++] << 8;
2777      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2778                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2779      continue;
2780    }
2781
2782    case OPC_EmitConvertToTarget:  {
2783      // Convert from IMM/FPIMM to target version.
2784      unsigned RecNo = MatcherTable[MatcherIndex++];
2785      assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
2786      SDValue Imm = RecordedNodes[RecNo].first;
2787
2788      if (Imm->getOpcode() == ISD::Constant) {
2789        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
2790        Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
2791      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2792        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2793        Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
2794      }
2795
2796      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2797      continue;
2798    }
2799
2800    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2801    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2802      // These are space-optimized forms of OPC_EmitMergeInputChains.
2803      assert(InputChain.getNode() == 0 &&
2804             "EmitMergeInputChains should be the first chain producing node");
2805      assert(ChainNodesMatched.empty() &&
2806             "Should only have one EmitMergeInputChains per match");
2807
2808      // Read all of the chained nodes.
2809      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2810      assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
2811      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2812
2813      // FIXME: What if other value results of the node have uses not matched
2814      // by this pattern?
2815      if (ChainNodesMatched.back() != NodeToMatch &&
2816          !RecordedNodes[RecNo].first.hasOneUse()) {
2817        ChainNodesMatched.clear();
2818        break;
2819      }
2820
2821      // Merge the input chains if they are not intra-pattern references.
2822      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2823
2824      if (InputChain.getNode() == 0)
2825        break;  // Failed to merge.
2826      continue;
2827    }
2828
2829    case OPC_EmitMergeInputChains: {
2830      assert(InputChain.getNode() == 0 &&
2831             "EmitMergeInputChains should be the first chain producing node");
2832      // This node gets a list of nodes we matched in the input that have
2833      // chains.  We want to token factor all of the input chains to these nodes
2834      // together.  However, if any of the input chains is actually one of the
2835      // nodes matched in this pattern, then we have an intra-match reference.
2836      // Ignore these because the newly token factored chain should not refer to
2837      // the old nodes.
2838      unsigned NumChains = MatcherTable[MatcherIndex++];
2839      assert(NumChains != 0 && "Can't TF zero chains");
2840
2841      assert(ChainNodesMatched.empty() &&
2842             "Should only have one EmitMergeInputChains per match");
2843
2844      // Read all of the chained nodes.
2845      for (unsigned i = 0; i != NumChains; ++i) {
2846        unsigned RecNo = MatcherTable[MatcherIndex++];
2847        assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
2848        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2849
2850        // FIXME: What if other value results of the node have uses not matched
2851        // by this pattern?
2852        if (ChainNodesMatched.back() != NodeToMatch &&
2853            !RecordedNodes[RecNo].first.hasOneUse()) {
2854          ChainNodesMatched.clear();
2855          break;
2856        }
2857      }
2858
2859      // If the inner loop broke out, the match fails.
2860      if (ChainNodesMatched.empty())
2861        break;
2862
2863      // Merge the input chains if they are not intra-pattern references.
2864      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2865
2866      if (InputChain.getNode() == 0)
2867        break;  // Failed to merge.
2868
2869      continue;
2870    }
2871
2872    case OPC_EmitCopyToReg: {
2873      unsigned RecNo = MatcherTable[MatcherIndex++];
2874      assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
2875      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2876
2877      if (InputChain.getNode() == 0)
2878        InputChain = CurDAG->getEntryNode();
2879
2880      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
2881                                        DestPhysReg, RecordedNodes[RecNo].first,
2882                                        InputGlue);
2883
2884      InputGlue = InputChain.getValue(1);
2885      continue;
2886    }
2887
2888    case OPC_EmitNodeXForm: {
2889      unsigned XFormNo = MatcherTable[MatcherIndex++];
2890      unsigned RecNo = MatcherTable[MatcherIndex++];
2891      assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
2892      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2893      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2894      continue;
2895    }
2896
2897    case OPC_EmitNode:
2898    case OPC_MorphNodeTo: {
2899      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2900      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2901      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2902      // Get the result VT list.
2903      unsigned NumVTs = MatcherTable[MatcherIndex++];
2904      SmallVector<EVT, 4> VTs;
2905      for (unsigned i = 0; i != NumVTs; ++i) {
2906        MVT::SimpleValueType VT =
2907          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2908        if (VT == MVT::iPTR) VT = getTargetLowering()->getPointerTy().SimpleTy;
2909        VTs.push_back(VT);
2910      }
2911
2912      if (EmitNodeInfo & OPFL_Chain)
2913        VTs.push_back(MVT::Other);
2914      if (EmitNodeInfo & OPFL_GlueOutput)
2915        VTs.push_back(MVT::Glue);
2916
2917      // This is hot code, so optimize the two most common cases of 1 and 2
2918      // results.
2919      SDVTList VTList;
2920      if (VTs.size() == 1)
2921        VTList = CurDAG->getVTList(VTs[0]);
2922      else if (VTs.size() == 2)
2923        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2924      else
2925        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2926
2927      // Get the operand list.
2928      unsigned NumOps = MatcherTable[MatcherIndex++];
2929      SmallVector<SDValue, 8> Ops;
2930      for (unsigned i = 0; i != NumOps; ++i) {
2931        unsigned RecNo = MatcherTable[MatcherIndex++];
2932        if (RecNo & 128)
2933          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2934
2935        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2936        Ops.push_back(RecordedNodes[RecNo].first);
2937      }
2938
2939      // If there are variadic operands to add, handle them now.
2940      if (EmitNodeInfo & OPFL_VariadicInfo) {
2941        // Determine the start index to copy from.
2942        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2943        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2944        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2945               "Invalid variadic node");
2946        // Copy all of the variadic operands, not including a potential glue
2947        // input.
2948        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2949             i != e; ++i) {
2950          SDValue V = NodeToMatch->getOperand(i);
2951          if (V.getValueType() == MVT::Glue) break;
2952          Ops.push_back(V);
2953        }
2954      }
2955
2956      // If this has chain/glue inputs, add them.
2957      if (EmitNodeInfo & OPFL_Chain)
2958        Ops.push_back(InputChain);
2959      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2960        Ops.push_back(InputGlue);
2961
2962      // Create the node.
2963      SDNode *Res = 0;
2964      if (Opcode != OPC_MorphNodeTo) {
2965        // If this is a normal EmitNode command, just create the new node and
2966        // add the results to the RecordedNodes list.
2967        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
2968                                     VTList, Ops);
2969
2970        // Add all the non-glue/non-chain results to the RecordedNodes list.
2971        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2972          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2973          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2974                                                             (SDNode*) 0));
2975        }
2976
2977      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2978        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2979                        EmitNodeInfo);
2980      } else {
2981        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2982        // We will visit the equivalent node later.
2983        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2984        return 0;
2985      }
2986
2987      // If the node had chain/glue results, update our notion of the current
2988      // chain and glue.
2989      if (EmitNodeInfo & OPFL_GlueOutput) {
2990        InputGlue = SDValue(Res, VTs.size()-1);
2991        if (EmitNodeInfo & OPFL_Chain)
2992          InputChain = SDValue(Res, VTs.size()-2);
2993      } else if (EmitNodeInfo & OPFL_Chain)
2994        InputChain = SDValue(Res, VTs.size()-1);
2995
2996      // If the OPFL_MemRefs glue is set on this node, slap all of the
2997      // accumulated memrefs onto it.
2998      //
2999      // FIXME: This is vastly incorrect for patterns with multiple outputs
3000      // instructions that access memory and for ComplexPatterns that match
3001      // loads.
3002      if (EmitNodeInfo & OPFL_MemRefs) {
3003        // Only attach load or store memory operands if the generated
3004        // instruction may load or store.
3005        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
3006        bool mayLoad = MCID.mayLoad();
3007        bool mayStore = MCID.mayStore();
3008
3009        unsigned NumMemRefs = 0;
3010        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3011               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3012          if ((*I)->isLoad()) {
3013            if (mayLoad)
3014              ++NumMemRefs;
3015          } else if ((*I)->isStore()) {
3016            if (mayStore)
3017              ++NumMemRefs;
3018          } else {
3019            ++NumMemRefs;
3020          }
3021        }
3022
3023        MachineSDNode::mmo_iterator MemRefs =
3024          MF->allocateMemRefsArray(NumMemRefs);
3025
3026        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
3027        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3028               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3029          if ((*I)->isLoad()) {
3030            if (mayLoad)
3031              *MemRefsPos++ = *I;
3032          } else if ((*I)->isStore()) {
3033            if (mayStore)
3034              *MemRefsPos++ = *I;
3035          } else {
3036            *MemRefsPos++ = *I;
3037          }
3038        }
3039
3040        cast<MachineSDNode>(Res)
3041          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
3042      }
3043
3044      DEBUG(dbgs() << "  "
3045                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
3046                   << " node: "; Res->dump(CurDAG); dbgs() << "\n");
3047
3048      // If this was a MorphNodeTo then we're completely done!
3049      if (Opcode == OPC_MorphNodeTo) {
3050        // Update chain and glue uses.
3051        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3052                            InputGlue, GlueResultNodesMatched, true);
3053        return Res;
3054      }
3055
3056      continue;
3057    }
3058
3059    case OPC_MarkGlueResults: {
3060      unsigned NumNodes = MatcherTable[MatcherIndex++];
3061
3062      // Read and remember all the glue-result nodes.
3063      for (unsigned i = 0; i != NumNodes; ++i) {
3064        unsigned RecNo = MatcherTable[MatcherIndex++];
3065        if (RecNo & 128)
3066          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3067
3068        assert(RecNo < RecordedNodes.size() && "Invalid MarkGlueResults");
3069        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3070      }
3071      continue;
3072    }
3073
3074    case OPC_CompleteMatch: {
3075      // The match has been completed, and any new nodes (if any) have been
3076      // created.  Patch up references to the matched dag to use the newly
3077      // created nodes.
3078      unsigned NumResults = MatcherTable[MatcherIndex++];
3079
3080      for (unsigned i = 0; i != NumResults; ++i) {
3081        unsigned ResSlot = MatcherTable[MatcherIndex++];
3082        if (ResSlot & 128)
3083          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3084
3085        assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3086        SDValue Res = RecordedNodes[ResSlot].first;
3087
3088        assert(i < NodeToMatch->getNumValues() &&
3089               NodeToMatch->getValueType(i) != MVT::Other &&
3090               NodeToMatch->getValueType(i) != MVT::Glue &&
3091               "Invalid number of results to complete!");
3092        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3093                NodeToMatch->getValueType(i) == MVT::iPTR ||
3094                Res.getValueType() == MVT::iPTR ||
3095                NodeToMatch->getValueType(i).getSizeInBits() ==
3096                    Res.getValueType().getSizeInBits()) &&
3097               "invalid replacement");
3098        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
3099      }
3100
3101      // If the root node defines glue, add it to the glue nodes to update list.
3102      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
3103        GlueResultNodesMatched.push_back(NodeToMatch);
3104
3105      // Update chain and glue uses.
3106      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3107                          InputGlue, GlueResultNodesMatched, false);
3108
3109      assert(NodeToMatch->use_empty() &&
3110             "Didn't replace all uses of the node?");
3111
3112      // FIXME: We just return here, which interacts correctly with SelectRoot
3113      // above.  We should fix this to not return an SDNode* anymore.
3114      return 0;
3115    }
3116    }
3117
3118    // If the code reached this point, then the match failed.  See if there is
3119    // another child to try in the current 'Scope', otherwise pop it until we
3120    // find a case to check.
3121    DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
3122    ++NumDAGIselRetries;
3123    while (1) {
3124      if (MatchScopes.empty()) {
3125        CannotYetSelect(NodeToMatch);
3126        return 0;
3127      }
3128
3129      // Restore the interpreter state back to the point where the scope was
3130      // formed.
3131      MatchScope &LastScope = MatchScopes.back();
3132      RecordedNodes.resize(LastScope.NumRecordedNodes);
3133      NodeStack.clear();
3134      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3135      N = NodeStack.back();
3136
3137      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3138        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3139      MatcherIndex = LastScope.FailIndex;
3140
3141      DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3142
3143      InputChain = LastScope.InputChain;
3144      InputGlue = LastScope.InputGlue;
3145      if (!LastScope.HasChainNodesMatched)
3146        ChainNodesMatched.clear();
3147      if (!LastScope.HasGlueResultNodesMatched)
3148        GlueResultNodesMatched.clear();
3149
3150      // Check to see what the offset is at the new MatcherIndex.  If it is zero
3151      // we have reached the end of this scope, otherwise we have another child
3152      // in the current scope to try.
3153      unsigned NumToSkip = MatcherTable[MatcherIndex++];
3154      if (NumToSkip & 128)
3155        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3156
3157      // If we have another child in this scope to match, update FailIndex and
3158      // try it.
3159      if (NumToSkip != 0) {
3160        LastScope.FailIndex = MatcherIndex+NumToSkip;
3161        break;
3162      }
3163
3164      // End of this scope, pop it and try the next child in the containing
3165      // scope.
3166      MatchScopes.pop_back();
3167    }
3168  }
3169}
3170
3171
3172
3173void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3174  std::string msg;
3175  raw_string_ostream Msg(msg);
3176  Msg << "Cannot select: ";
3177
3178  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3179      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3180      N->getOpcode() != ISD::INTRINSIC_VOID) {
3181    N->printrFull(Msg, CurDAG);
3182    Msg << "\nIn function: " << MF->getName();
3183  } else {
3184    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3185    unsigned iid =
3186      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3187    if (iid < Intrinsic::num_intrinsics)
3188      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3189    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3190      Msg << "target intrinsic %" << TII->getName(iid);
3191    else
3192      Msg << "unknown intrinsic #" << iid;
3193  }
3194  report_fatal_error(Msg.str());
3195}
3196
3197char SelectionDAGISel::ID = 0;
3198