SelectionDAGISel.cpp revision 4234f57fa02b1f04a9f52a7b3c2aa22d32ac521c
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/Analysis/LoopInfo.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/CallingConv.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/SchedulerRegistry.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/CodeGen/SSARegMap.h"
36#include "llvm/Target/MRegisterInfo.h"
37#include "llvm/Target/TargetAsmInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/Compiler.h"
48#include <algorithm>
49using namespace llvm;
50
51#ifndef NDEBUG
52static cl::opt<bool>
53ViewISelDAGs("view-isel-dags", cl::Hidden,
54          cl::desc("Pop up a window to show isel dags as they are selected"));
55static cl::opt<bool>
56ViewSchedDAGs("view-sched-dags", cl::Hidden,
57          cl::desc("Pop up a window to show sched dags as they are processed"));
58#else
59static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
60#endif
61
62//===---------------------------------------------------------------------===//
63///
64/// RegisterScheduler class - Track the registration of instruction schedulers.
65///
66//===---------------------------------------------------------------------===//
67MachinePassRegistry RegisterScheduler::Registry;
68
69//===---------------------------------------------------------------------===//
70///
71/// ISHeuristic command line option for instruction schedulers.
72///
73//===---------------------------------------------------------------------===//
74namespace {
75  cl::opt<RegisterScheduler::FunctionPassCtor, false,
76          RegisterPassParser<RegisterScheduler> >
77  ISHeuristic("sched",
78              cl::init(&createDefaultScheduler),
79              cl::desc("Instruction schedulers available:"));
80
81  static RegisterScheduler
82  defaultListDAGScheduler("default", "  Best scheduler for the target",
83                          createDefaultScheduler);
84} // namespace
85
86namespace {
87  /// RegsForValue - This struct represents the physical registers that a
88  /// particular value is assigned and the type information about the value.
89  /// This is needed because values can be promoted into larger registers and
90  /// expanded into multiple smaller registers than the value.
91  struct VISIBILITY_HIDDEN RegsForValue {
92    /// Regs - This list hold the register (for legal and promoted values)
93    /// or register set (for expanded values) that the value should be assigned
94    /// to.
95    std::vector<unsigned> Regs;
96
97    /// RegVT - The value type of each register.
98    ///
99    MVT::ValueType RegVT;
100
101    /// ValueVT - The value type of the LLVM value, which may be promoted from
102    /// RegVT or made from merging the two expanded parts.
103    MVT::ValueType ValueVT;
104
105    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
106
107    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
108      : RegVT(regvt), ValueVT(valuevt) {
109        Regs.push_back(Reg);
110    }
111    RegsForValue(const std::vector<unsigned> &regs,
112                 MVT::ValueType regvt, MVT::ValueType valuevt)
113      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
114    }
115
116    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
117    /// this value and returns the result as a ValueVT value.  This uses
118    /// Chain/Flag as the input and updates them for the output Chain/Flag.
119    SDOperand getCopyFromRegs(SelectionDAG &DAG,
120                              SDOperand &Chain, SDOperand &Flag) const;
121
122    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
123    /// specified value into the registers specified by this object.  This uses
124    /// Chain/Flag as the input and updates them for the output Chain/Flag.
125    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
126                       SDOperand &Chain, SDOperand &Flag,
127                       MVT::ValueType PtrVT) const;
128
129    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
130    /// operand list.  This adds the code marker and includes the number of
131    /// values added into it.
132    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
133                              std::vector<SDOperand> &Ops) const;
134  };
135}
136
137namespace llvm {
138  //===--------------------------------------------------------------------===//
139  /// createDefaultScheduler - This creates an instruction scheduler appropriate
140  /// for the target.
141  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
142                                      SelectionDAG *DAG,
143                                      MachineBasicBlock *BB) {
144    TargetLowering &TLI = IS->getTargetLowering();
145
146    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
147      return createTDListDAGScheduler(IS, DAG, BB);
148    } else {
149      assert(TLI.getSchedulingPreference() ==
150           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
151      return createBURRListDAGScheduler(IS, DAG, BB);
152    }
153  }
154
155
156  //===--------------------------------------------------------------------===//
157  /// FunctionLoweringInfo - This contains information that is global to a
158  /// function that is used when lowering a region of the function.
159  class FunctionLoweringInfo {
160  public:
161    TargetLowering &TLI;
162    Function &Fn;
163    MachineFunction &MF;
164    SSARegMap *RegMap;
165
166    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
167
168    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
169    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
170
171    /// ValueMap - Since we emit code for the function a basic block at a time,
172    /// we must remember which virtual registers hold the values for
173    /// cross-basic-block values.
174    DenseMap<const Value*, unsigned> ValueMap;
175
176    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
177    /// the entry block.  This allows the allocas to be efficiently referenced
178    /// anywhere in the function.
179    std::map<const AllocaInst*, int> StaticAllocaMap;
180
181    unsigned MakeReg(MVT::ValueType VT) {
182      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
183    }
184
185    /// isExportedInst - Return true if the specified value is an instruction
186    /// exported from its block.
187    bool isExportedInst(const Value *V) {
188      return ValueMap.count(V);
189    }
190
191    unsigned CreateRegForValue(const Value *V);
192
193    unsigned InitializeRegForValue(const Value *V) {
194      unsigned &R = ValueMap[V];
195      assert(R == 0 && "Already initialized this value register!");
196      return R = CreateRegForValue(V);
197    }
198  };
199}
200
201/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
202/// PHI nodes or outside of the basic block that defines it, or used by a
203/// switch instruction, which may expand to multiple basic blocks.
204static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
205  if (isa<PHINode>(I)) return true;
206  BasicBlock *BB = I->getParent();
207  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
208    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
209        // FIXME: Remove switchinst special case.
210        isa<SwitchInst>(*UI))
211      return true;
212  return false;
213}
214
215/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
216/// entry block, return true.  This includes arguments used by switches, since
217/// the switch may expand into multiple basic blocks.
218static bool isOnlyUsedInEntryBlock(Argument *A) {
219  BasicBlock *Entry = A->getParent()->begin();
220  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
221    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
222      return false;  // Use not in entry block.
223  return true;
224}
225
226FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
227                                           Function &fn, MachineFunction &mf)
228    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
229
230  // Create a vreg for each argument register that is not dead and is used
231  // outside of the entry block for the function.
232  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
233       AI != E; ++AI)
234    if (!isOnlyUsedInEntryBlock(AI))
235      InitializeRegForValue(AI);
236
237  // Initialize the mapping of values to registers.  This is only set up for
238  // instruction values that are used outside of the block that defines
239  // them.
240  Function::iterator BB = Fn.begin(), EB = Fn.end();
241  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
242    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
243      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
244        const Type *Ty = AI->getAllocatedType();
245        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
246        unsigned Align =
247          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
248                   AI->getAlignment());
249
250        TySize *= CUI->getZExtValue();   // Get total allocated size.
251        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
252        StaticAllocaMap[AI] =
253          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
254      }
255
256  for (; BB != EB; ++BB)
257    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
258      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
259        if (!isa<AllocaInst>(I) ||
260            !StaticAllocaMap.count(cast<AllocaInst>(I)))
261          InitializeRegForValue(I);
262
263  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
264  // also creates the initial PHI MachineInstrs, though none of the input
265  // operands are populated.
266  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
267    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
268    MBBMap[BB] = MBB;
269    MF.getBasicBlockList().push_back(MBB);
270
271    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
272    // appropriate.
273    PHINode *PN;
274    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
275      if (PN->use_empty()) continue;
276
277      MVT::ValueType VT = TLI.getValueType(PN->getType());
278      unsigned NumElements;
279      if (VT != MVT::Vector)
280        NumElements = TLI.getNumElements(VT);
281      else {
282        MVT::ValueType VT1,VT2;
283        NumElements =
284          TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
285                                     VT1, VT2);
286      }
287      unsigned PHIReg = ValueMap[PN];
288      assert(PHIReg && "PHI node does not have an assigned virtual register!");
289      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
290      for (unsigned i = 0; i != NumElements; ++i)
291        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
292    }
293  }
294}
295
296/// CreateRegForValue - Allocate the appropriate number of virtual registers of
297/// the correctly promoted or expanded types.  Assign these registers
298/// consecutive vreg numbers and return the first assigned number.
299unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
300  MVT::ValueType VT = TLI.getValueType(V->getType());
301
302  // The number of multiples of registers that we need, to, e.g., split up
303  // a <2 x int64> -> 4 x i32 registers.
304  unsigned NumVectorRegs = 1;
305
306  // If this is a vector type, figure out what type it will decompose into
307  // and how many of the elements it will use.
308  if (VT == MVT::Vector) {
309    const VectorType *PTy = cast<VectorType>(V->getType());
310    unsigned NumElts = PTy->getNumElements();
311    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
312
313    // Divide the input until we get to a supported size.  This will always
314    // end with a scalar if the target doesn't support vectors.
315    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
316      NumElts >>= 1;
317      NumVectorRegs <<= 1;
318    }
319    if (NumElts == 1)
320      VT = EltTy;
321    else
322      VT = getVectorType(EltTy, NumElts);
323  }
324
325  // The common case is that we will only create one register for this
326  // value.  If we have that case, create and return the virtual register.
327  unsigned NV = TLI.getNumElements(VT);
328  if (NV == 1) {
329    // If we are promoting this value, pick the next largest supported type.
330    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
331    unsigned Reg = MakeReg(PromotedType);
332    // If this is a vector of supported or promoted types (e.g. 4 x i16),
333    // create all of the registers.
334    for (unsigned i = 1; i != NumVectorRegs; ++i)
335      MakeReg(PromotedType);
336    return Reg;
337  }
338
339  // If this value is represented with multiple target registers, make sure
340  // to create enough consecutive registers of the right (smaller) type.
341  VT = TLI.getTypeToExpandTo(VT);
342  unsigned R = MakeReg(VT);
343  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
344    MakeReg(VT);
345  return R;
346}
347
348//===----------------------------------------------------------------------===//
349/// SelectionDAGLowering - This is the common target-independent lowering
350/// implementation that is parameterized by a TargetLowering object.
351/// Also, targets can overload any lowering method.
352///
353namespace llvm {
354class SelectionDAGLowering {
355  MachineBasicBlock *CurMBB;
356
357  DenseMap<const Value*, SDOperand> NodeMap;
358
359  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
360  /// them up and then emit token factor nodes when possible.  This allows us to
361  /// get simple disambiguation between loads without worrying about alias
362  /// analysis.
363  std::vector<SDOperand> PendingLoads;
364
365  /// Case - A pair of values to record the Value for a switch case, and the
366  /// case's target basic block.
367  typedef std::pair<Constant*, MachineBasicBlock*> Case;
368  typedef std::vector<Case>::iterator              CaseItr;
369  typedef std::pair<CaseItr, CaseItr>              CaseRange;
370
371  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
372  /// of conditional branches.
373  struct CaseRec {
374    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
375    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
376
377    /// CaseBB - The MBB in which to emit the compare and branch
378    MachineBasicBlock *CaseBB;
379    /// LT, GE - If nonzero, we know the current case value must be less-than or
380    /// greater-than-or-equal-to these Constants.
381    Constant *LT;
382    Constant *GE;
383    /// Range - A pair of iterators representing the range of case values to be
384    /// processed at this point in the binary search tree.
385    CaseRange Range;
386  };
387
388  /// The comparison function for sorting Case values.
389  struct CaseCmp {
390    bool operator () (const Case& C1, const Case& C2) {
391      assert(isa<ConstantInt>(C1.first) && isa<ConstantInt>(C2.first));
392      return cast<const ConstantInt>(C1.first)->getSExtValue() <
393        cast<const ConstantInt>(C2.first)->getSExtValue();
394    }
395  };
396
397public:
398  // TLI - This is information that describes the available target features we
399  // need for lowering.  This indicates when operations are unavailable,
400  // implemented with a libcall, etc.
401  TargetLowering &TLI;
402  SelectionDAG &DAG;
403  const TargetData *TD;
404
405  /// SwitchCases - Vector of CaseBlock structures used to communicate
406  /// SwitchInst code generation information.
407  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
408  SelectionDAGISel::JumpTable JT;
409
410  /// FuncInfo - Information about the function as a whole.
411  ///
412  FunctionLoweringInfo &FuncInfo;
413
414  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
415                       FunctionLoweringInfo &funcinfo)
416    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
417      JT(0,0,0,0), FuncInfo(funcinfo) {
418  }
419
420  /// getRoot - Return the current virtual root of the Selection DAG.
421  ///
422  SDOperand getRoot() {
423    if (PendingLoads.empty())
424      return DAG.getRoot();
425
426    if (PendingLoads.size() == 1) {
427      SDOperand Root = PendingLoads[0];
428      DAG.setRoot(Root);
429      PendingLoads.clear();
430      return Root;
431    }
432
433    // Otherwise, we have to make a token factor node.
434    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
435                                 &PendingLoads[0], PendingLoads.size());
436    PendingLoads.clear();
437    DAG.setRoot(Root);
438    return Root;
439  }
440
441  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
442
443  void visit(Instruction &I) { visit(I.getOpcode(), I); }
444
445  void visit(unsigned Opcode, User &I) {
446    // Note: this doesn't use InstVisitor, because it has to work with
447    // ConstantExpr's in addition to instructions.
448    switch (Opcode) {
449    default: assert(0 && "Unknown instruction type encountered!");
450             abort();
451      // Build the switch statement using the Instruction.def file.
452#define HANDLE_INST(NUM, OPCODE, CLASS) \
453    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
454#include "llvm/Instruction.def"
455    }
456  }
457
458  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
459
460  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
461                        const Value *SV, SDOperand Root,
462                        bool isVolatile);
463
464  SDOperand getIntPtrConstant(uint64_t Val) {
465    return DAG.getConstant(Val, TLI.getPointerTy());
466  }
467
468  SDOperand getValue(const Value *V);
469
470  void setValue(const Value *V, SDOperand NewN) {
471    SDOperand &N = NodeMap[V];
472    assert(N.Val == 0 && "Already set a value for this node!");
473    N = NewN;
474  }
475
476  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
477                                    MVT::ValueType VT,
478                                    bool OutReg, bool InReg,
479                                    std::set<unsigned> &OutputRegs,
480                                    std::set<unsigned> &InputRegs);
481
482  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
483                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
484                            unsigned Opc);
485  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
486  void ExportFromCurrentBlock(Value *V);
487  void LowerCallTo(Instruction &I,
488                   const Type *CalledValueTy, unsigned CallingConv,
489                   bool IsTailCall, SDOperand Callee, unsigned OpIdx);
490
491  // Terminator instructions.
492  void visitRet(ReturnInst &I);
493  void visitBr(BranchInst &I);
494  void visitSwitch(SwitchInst &I);
495  void visitUnreachable(UnreachableInst &I) { /* noop */ }
496
497  // Helper for visitSwitch
498  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
499  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
500
501  // These all get lowered before this pass.
502  void visitInvoke(InvokeInst &I);
503  void visitInvoke(InvokeInst &I, bool AsTerminator);
504  void visitUnwind(UnwindInst &I);
505
506  void visitScalarBinary(User &I, unsigned OpCode);
507  void visitVectorBinary(User &I, unsigned OpCode);
508  void visitEitherBinary(User &I, unsigned ScalarOp, unsigned VectorOp);
509  void visitShift(User &I, unsigned Opcode);
510  void visitAdd(User &I) {
511    if (isa<VectorType>(I.getType()))
512      visitVectorBinary(I, ISD::VADD);
513    else if (I.getType()->isFloatingPoint())
514      visitScalarBinary(I, ISD::FADD);
515    else
516      visitScalarBinary(I, ISD::ADD);
517  }
518  void visitSub(User &I);
519  void visitMul(User &I) {
520    if (isa<VectorType>(I.getType()))
521      visitVectorBinary(I, ISD::VMUL);
522    else if (I.getType()->isFloatingPoint())
523      visitScalarBinary(I, ISD::FMUL);
524    else
525      visitScalarBinary(I, ISD::MUL);
526  }
527  void visitURem(User &I) { visitScalarBinary(I, ISD::UREM); }
528  void visitSRem(User &I) { visitScalarBinary(I, ISD::SREM); }
529  void visitFRem(User &I) { visitScalarBinary(I, ISD::FREM); }
530  void visitUDiv(User &I) { visitEitherBinary(I, ISD::UDIV, ISD::VUDIV); }
531  void visitSDiv(User &I) { visitEitherBinary(I, ISD::SDIV, ISD::VSDIV); }
532  void visitFDiv(User &I) { visitEitherBinary(I, ISD::FDIV, ISD::VSDIV); }
533  void visitAnd (User &I) { visitEitherBinary(I, ISD::AND,  ISD::VAND ); }
534  void visitOr  (User &I) { visitEitherBinary(I, ISD::OR,   ISD::VOR  ); }
535  void visitXor (User &I) { visitEitherBinary(I, ISD::XOR,  ISD::VXOR ); }
536  void visitShl (User &I) { visitShift(I, ISD::SHL); }
537  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
538  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
539  void visitICmp(User &I);
540  void visitFCmp(User &I);
541  // Visit the conversion instructions
542  void visitTrunc(User &I);
543  void visitZExt(User &I);
544  void visitSExt(User &I);
545  void visitFPTrunc(User &I);
546  void visitFPExt(User &I);
547  void visitFPToUI(User &I);
548  void visitFPToSI(User &I);
549  void visitUIToFP(User &I);
550  void visitSIToFP(User &I);
551  void visitPtrToInt(User &I);
552  void visitIntToPtr(User &I);
553  void visitBitCast(User &I);
554
555  void visitExtractElement(User &I);
556  void visitInsertElement(User &I);
557  void visitShuffleVector(User &I);
558
559  void visitGetElementPtr(User &I);
560  void visitSelect(User &I);
561
562  void visitMalloc(MallocInst &I);
563  void visitFree(FreeInst &I);
564  void visitAlloca(AllocaInst &I);
565  void visitLoad(LoadInst &I);
566  void visitStore(StoreInst &I);
567  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
568  void visitCall(CallInst &I);
569  void visitInlineAsm(CallInst &I);
570  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
571  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
572
573  void visitVAStart(CallInst &I);
574  void visitVAArg(VAArgInst &I);
575  void visitVAEnd(CallInst &I);
576  void visitVACopy(CallInst &I);
577
578  void visitMemIntrinsic(CallInst &I, unsigned Op);
579
580  void visitUserOp1(Instruction &I) {
581    assert(0 && "UserOp1 should not exist at instruction selection time!");
582    abort();
583  }
584  void visitUserOp2(Instruction &I) {
585    assert(0 && "UserOp2 should not exist at instruction selection time!");
586    abort();
587  }
588};
589} // end namespace llvm
590
591SDOperand SelectionDAGLowering::getValue(const Value *V) {
592  SDOperand &N = NodeMap[V];
593  if (N.Val) return N;
594
595  const Type *VTy = V->getType();
596  MVT::ValueType VT = TLI.getValueType(VTy);
597  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
598    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
599      visit(CE->getOpcode(), *CE);
600      SDOperand N1 = NodeMap[V];
601      assert(N1.Val && "visit didn't populate the ValueMap!");
602      return N1;
603    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
604      return N = DAG.getGlobalAddress(GV, VT);
605    } else if (isa<ConstantPointerNull>(C)) {
606      return N = DAG.getConstant(0, TLI.getPointerTy());
607    } else if (isa<UndefValue>(C)) {
608      if (!isa<VectorType>(VTy))
609        return N = DAG.getNode(ISD::UNDEF, VT);
610
611      // Create a VBUILD_VECTOR of undef nodes.
612      const VectorType *PTy = cast<VectorType>(VTy);
613      unsigned NumElements = PTy->getNumElements();
614      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
615
616      SmallVector<SDOperand, 8> Ops;
617      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
618
619      // Create a VConstant node with generic Vector type.
620      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
621      Ops.push_back(DAG.getValueType(PVT));
622      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
623                             &Ops[0], Ops.size());
624    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
625      return N = DAG.getConstantFP(CFP->getValue(), VT);
626    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
627      unsigned NumElements = PTy->getNumElements();
628      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
629
630      // Now that we know the number and type of the elements, push a
631      // Constant or ConstantFP node onto the ops list for each element of
632      // the packed constant.
633      SmallVector<SDOperand, 8> Ops;
634      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
635        for (unsigned i = 0; i != NumElements; ++i)
636          Ops.push_back(getValue(CP->getOperand(i)));
637      } else {
638        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
639        SDOperand Op;
640        if (MVT::isFloatingPoint(PVT))
641          Op = DAG.getConstantFP(0, PVT);
642        else
643          Op = DAG.getConstant(0, PVT);
644        Ops.assign(NumElements, Op);
645      }
646
647      // Create a VBUILD_VECTOR node with generic Vector type.
648      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
649      Ops.push_back(DAG.getValueType(PVT));
650      return NodeMap[V] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0],
651                                      Ops.size());
652    } else {
653      // Canonicalize all constant ints to be unsigned.
654      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
655    }
656  }
657
658  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
659    std::map<const AllocaInst*, int>::iterator SI =
660    FuncInfo.StaticAllocaMap.find(AI);
661    if (SI != FuncInfo.StaticAllocaMap.end())
662      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
663  }
664
665  unsigned InReg = FuncInfo.ValueMap[V];
666  assert(InReg && "Value not in map!");
667
668  // If this type is not legal, make it so now.
669  if (VT != MVT::Vector) {
670    if (TLI.getTypeAction(VT) == TargetLowering::Expand) {
671      // Source must be expanded.  This input value is actually coming from the
672      // register pair InReg and InReg+1.
673      MVT::ValueType DestVT = TLI.getTypeToExpandTo(VT);
674      unsigned NumVals = TLI.getNumElements(VT);
675      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
676      if (NumVals == 1)
677        N = DAG.getNode(ISD::BIT_CONVERT, VT, N);
678      else {
679        assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
680        N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
681                       DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
682      }
683    } else {
684      MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
685      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
686      if (TLI.getTypeAction(VT) == TargetLowering::Promote) // Promotion case
687        N = MVT::isFloatingPoint(VT)
688          ? DAG.getNode(ISD::FP_ROUND, VT, N)
689          : DAG.getNode(ISD::TRUNCATE, VT, N);
690    }
691  } else {
692    // Otherwise, if this is a vector, make it available as a generic vector
693    // here.
694    MVT::ValueType PTyElementVT, PTyLegalElementVT;
695    const VectorType *PTy = cast<VectorType>(VTy);
696    unsigned NE = TLI.getVectorTypeBreakdown(PTy, PTyElementVT,
697                                             PTyLegalElementVT);
698
699    // Build a VBUILD_VECTOR with the input registers.
700    SmallVector<SDOperand, 8> Ops;
701    if (PTyElementVT == PTyLegalElementVT) {
702      // If the value types are legal, just VBUILD the CopyFromReg nodes.
703      for (unsigned i = 0; i != NE; ++i)
704        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
705                                         PTyElementVT));
706    } else if (PTyElementVT < PTyLegalElementVT) {
707      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
708      for (unsigned i = 0; i != NE; ++i) {
709        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
710                                          PTyElementVT);
711        if (MVT::isFloatingPoint(PTyElementVT))
712          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
713        else
714          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
715        Ops.push_back(Op);
716      }
717    } else {
718      // If the register was expanded, use BUILD_PAIR.
719      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
720      for (unsigned i = 0; i != NE/2; ++i) {
721        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
722                                           PTyElementVT);
723        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
724                                           PTyElementVT);
725        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
726      }
727    }
728
729    Ops.push_back(DAG.getConstant(NE, MVT::i32));
730    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
731    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
732
733    // Finally, use a VBIT_CONVERT to make this available as the appropriate
734    // vector type.
735    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
736                    DAG.getConstant(PTy->getNumElements(),
737                                    MVT::i32),
738                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
739  }
740
741  return N;
742}
743
744
745void SelectionDAGLowering::visitRet(ReturnInst &I) {
746  if (I.getNumOperands() == 0) {
747    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
748    return;
749  }
750  SmallVector<SDOperand, 8> NewValues;
751  NewValues.push_back(getRoot());
752  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
753    SDOperand RetOp = getValue(I.getOperand(i));
754
755    // If this is an integer return value, we need to promote it ourselves to
756    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
757    // than sign/zero.
758    // FIXME: C calling convention requires the return type to be promoted to
759    // at least 32-bit. But this is not necessary for non-C calling conventions.
760    if (MVT::isInteger(RetOp.getValueType()) &&
761        RetOp.getValueType() < MVT::i64) {
762      MVT::ValueType TmpVT;
763      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
764        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
765      else
766        TmpVT = MVT::i32;
767      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
768      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
769      if (FTy->paramHasAttr(0, FunctionType::SExtAttribute))
770        ExtendKind = ISD::SIGN_EXTEND;
771      if (FTy->paramHasAttr(0, FunctionType::ZExtAttribute))
772        ExtendKind = ISD::ZERO_EXTEND;
773      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
774    }
775    NewValues.push_back(RetOp);
776    NewValues.push_back(DAG.getConstant(false, MVT::i32));
777  }
778  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
779                          &NewValues[0], NewValues.size()));
780}
781
782/// ExportFromCurrentBlock - If this condition isn't known to be exported from
783/// the current basic block, add it to ValueMap now so that we'll get a
784/// CopyTo/FromReg.
785void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
786  // No need to export constants.
787  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
788
789  // Already exported?
790  if (FuncInfo.isExportedInst(V)) return;
791
792  unsigned Reg = FuncInfo.InitializeRegForValue(V);
793  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
794}
795
796bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
797                                                    const BasicBlock *FromBB) {
798  // The operands of the setcc have to be in this block.  We don't know
799  // how to export them from some other block.
800  if (Instruction *VI = dyn_cast<Instruction>(V)) {
801    // Can export from current BB.
802    if (VI->getParent() == FromBB)
803      return true;
804
805    // Is already exported, noop.
806    return FuncInfo.isExportedInst(V);
807  }
808
809  // If this is an argument, we can export it if the BB is the entry block or
810  // if it is already exported.
811  if (isa<Argument>(V)) {
812    if (FromBB == &FromBB->getParent()->getEntryBlock())
813      return true;
814
815    // Otherwise, can only export this if it is already exported.
816    return FuncInfo.isExportedInst(V);
817  }
818
819  // Otherwise, constants can always be exported.
820  return true;
821}
822
823static bool InBlock(const Value *V, const BasicBlock *BB) {
824  if (const Instruction *I = dyn_cast<Instruction>(V))
825    return I->getParent() == BB;
826  return true;
827}
828
829/// FindMergedConditions - If Cond is an expression like
830void SelectionDAGLowering::FindMergedConditions(Value *Cond,
831                                                MachineBasicBlock *TBB,
832                                                MachineBasicBlock *FBB,
833                                                MachineBasicBlock *CurBB,
834                                                unsigned Opc) {
835  // If this node is not part of the or/and tree, emit it as a branch.
836  Instruction *BOp = dyn_cast<Instruction>(Cond);
837
838  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
839      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
840      BOp->getParent() != CurBB->getBasicBlock() ||
841      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
842      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
843    const BasicBlock *BB = CurBB->getBasicBlock();
844
845    // If the leaf of the tree is a comparison, merge the condition into
846    // the caseblock.
847    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
848        // The operands of the cmp have to be in this block.  We don't know
849        // how to export them from some other block.  If this is the first block
850        // of the sequence, no exporting is needed.
851        (CurBB == CurMBB ||
852         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
853          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
854      BOp = cast<Instruction>(Cond);
855      ISD::CondCode Condition;
856      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
857        switch (IC->getPredicate()) {
858        default: assert(0 && "Unknown icmp predicate opcode!");
859        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
860        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
861        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
862        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
863        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
864        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
865        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
866        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
867        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
868        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
869        }
870      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
871        ISD::CondCode FPC, FOC;
872        switch (FC->getPredicate()) {
873        default: assert(0 && "Unknown fcmp predicate opcode!");
874        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
875        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
876        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
877        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
878        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
879        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
880        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
881        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
882        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
883        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
884        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
885        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
886        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
887        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
888        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
889        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
890        }
891        if (FiniteOnlyFPMath())
892          Condition = FOC;
893        else
894          Condition = FPC;
895      } else {
896        Condition = ISD::SETEQ; // silence warning.
897        assert(0 && "Unknown compare instruction");
898      }
899
900      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
901                                     BOp->getOperand(1), TBB, FBB, CurBB);
902      SwitchCases.push_back(CB);
903      return;
904    }
905
906    // Create a CaseBlock record representing this branch.
907    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
908                                   TBB, FBB, CurBB);
909    SwitchCases.push_back(CB);
910    return;
911  }
912
913
914  //  Create TmpBB after CurBB.
915  MachineFunction::iterator BBI = CurBB;
916  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
917  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
918
919  if (Opc == Instruction::Or) {
920    // Codegen X | Y as:
921    //   jmp_if_X TBB
922    //   jmp TmpBB
923    // TmpBB:
924    //   jmp_if_Y TBB
925    //   jmp FBB
926    //
927
928    // Emit the LHS condition.
929    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
930
931    // Emit the RHS condition into TmpBB.
932    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
933  } else {
934    assert(Opc == Instruction::And && "Unknown merge op!");
935    // Codegen X & Y as:
936    //   jmp_if_X TmpBB
937    //   jmp FBB
938    // TmpBB:
939    //   jmp_if_Y TBB
940    //   jmp FBB
941    //
942    //  This requires creation of TmpBB after CurBB.
943
944    // Emit the LHS condition.
945    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
946
947    // Emit the RHS condition into TmpBB.
948    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
949  }
950}
951
952/// If the set of cases should be emitted as a series of branches, return true.
953/// If we should emit this as a bunch of and/or'd together conditions, return
954/// false.
955static bool
956ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
957  if (Cases.size() != 2) return true;
958
959  // If this is two comparisons of the same values or'd or and'd together, they
960  // will get folded into a single comparison, so don't emit two blocks.
961  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
962       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
963      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
964       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
965    return false;
966  }
967
968  return true;
969}
970
971void SelectionDAGLowering::visitBr(BranchInst &I) {
972  // Update machine-CFG edges.
973  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
974
975  // Figure out which block is immediately after the current one.
976  MachineBasicBlock *NextBlock = 0;
977  MachineFunction::iterator BBI = CurMBB;
978  if (++BBI != CurMBB->getParent()->end())
979    NextBlock = BBI;
980
981  if (I.isUnconditional()) {
982    // If this is not a fall-through branch, emit the branch.
983    if (Succ0MBB != NextBlock)
984      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
985                              DAG.getBasicBlock(Succ0MBB)));
986
987    // Update machine-CFG edges.
988    CurMBB->addSuccessor(Succ0MBB);
989
990    return;
991  }
992
993  // If this condition is one of the special cases we handle, do special stuff
994  // now.
995  Value *CondVal = I.getCondition();
996  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
997
998  // If this is a series of conditions that are or'd or and'd together, emit
999  // this as a sequence of branches instead of setcc's with and/or operations.
1000  // For example, instead of something like:
1001  //     cmp A, B
1002  //     C = seteq
1003  //     cmp D, E
1004  //     F = setle
1005  //     or C, F
1006  //     jnz foo
1007  // Emit:
1008  //     cmp A, B
1009  //     je foo
1010  //     cmp D, E
1011  //     jle foo
1012  //
1013  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1014    if (BOp->hasOneUse() &&
1015        (BOp->getOpcode() == Instruction::And ||
1016         BOp->getOpcode() == Instruction::Or)) {
1017      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1018      // If the compares in later blocks need to use values not currently
1019      // exported from this block, export them now.  This block should always
1020      // be the first entry.
1021      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1022
1023      // Allow some cases to be rejected.
1024      if (ShouldEmitAsBranches(SwitchCases)) {
1025        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1026          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1027          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1028        }
1029
1030        // Emit the branch for this block.
1031        visitSwitchCase(SwitchCases[0]);
1032        SwitchCases.erase(SwitchCases.begin());
1033        return;
1034      }
1035
1036      // Okay, we decided not to do this, remove any inserted MBB's and clear
1037      // SwitchCases.
1038      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1039        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1040
1041      SwitchCases.clear();
1042    }
1043  }
1044
1045  // Create a CaseBlock record representing this branch.
1046  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1047                                 Succ0MBB, Succ1MBB, CurMBB);
1048  // Use visitSwitchCase to actually insert the fast branch sequence for this
1049  // cond branch.
1050  visitSwitchCase(CB);
1051}
1052
1053/// visitSwitchCase - Emits the necessary code to represent a single node in
1054/// the binary search tree resulting from lowering a switch instruction.
1055void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1056  SDOperand Cond;
1057  SDOperand CondLHS = getValue(CB.CmpLHS);
1058
1059  // Build the setcc now, fold "(X == true)" to X and "(X == false)" to !X to
1060  // handle common cases produced by branch lowering.
1061  if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1062    Cond = CondLHS;
1063  else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1064    SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1065    Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1066  } else
1067    Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1068
1069  // Set NextBlock to be the MBB immediately after the current one, if any.
1070  // This is used to avoid emitting unnecessary branches to the next block.
1071  MachineBasicBlock *NextBlock = 0;
1072  MachineFunction::iterator BBI = CurMBB;
1073  if (++BBI != CurMBB->getParent()->end())
1074    NextBlock = BBI;
1075
1076  // If the lhs block is the next block, invert the condition so that we can
1077  // fall through to the lhs instead of the rhs block.
1078  if (CB.TrueBB == NextBlock) {
1079    std::swap(CB.TrueBB, CB.FalseBB);
1080    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1081    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1082  }
1083  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1084                                 DAG.getBasicBlock(CB.TrueBB));
1085  if (CB.FalseBB == NextBlock)
1086    DAG.setRoot(BrCond);
1087  else
1088    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1089                            DAG.getBasicBlock(CB.FalseBB)));
1090  // Update successor info
1091  CurMBB->addSuccessor(CB.TrueBB);
1092  CurMBB->addSuccessor(CB.FalseBB);
1093}
1094
1095void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1096  // Emit the code for the jump table
1097  MVT::ValueType PTy = TLI.getPointerTy();
1098  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1099  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1100  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1101                          Table, Index));
1102  return;
1103}
1104
1105void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1106  assert(0 && "Should never be visited directly");
1107}
1108void SelectionDAGLowering::visitInvoke(InvokeInst &I, bool AsTerminator) {
1109  // Retrieve successors.
1110  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1111  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1112
1113  if (!AsTerminator) {
1114    // Mark landing pad so that it doesn't get deleted in branch folding.
1115    LandingPad->setIsLandingPad();
1116
1117    // Insert a label before the invoke call to mark the try range.
1118    // This can be used to detect deletion of the invoke via the
1119    // MachineModuleInfo.
1120    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
1121    unsigned BeginLabel = MMI->NextLabelID();
1122    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
1123                            DAG.getConstant(BeginLabel, MVT::i32)));
1124
1125    LowerCallTo(I, I.getCalledValue()->getType(),
1126                   I.getCallingConv(),
1127                   false,
1128                   getValue(I.getOperand(0)),
1129                   3);
1130
1131    // Insert a label before the invoke call to mark the try range.
1132    // This can be used to detect deletion of the invoke via the
1133    // MachineModuleInfo.
1134    unsigned EndLabel = MMI->NextLabelID();
1135    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
1136                            DAG.getConstant(EndLabel, MVT::i32)));
1137
1138    // Inform MachineModuleInfo of range.
1139    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
1140
1141    // Update successor info
1142    CurMBB->addSuccessor(Return);
1143    CurMBB->addSuccessor(LandingPad);
1144  } else {
1145    // Drop into normal successor.
1146    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1147                            DAG.getBasicBlock(Return)));
1148  }
1149}
1150
1151void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1152}
1153
1154void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
1155  // Figure out which block is immediately after the current one.
1156  MachineBasicBlock *NextBlock = 0;
1157  MachineFunction::iterator BBI = CurMBB;
1158
1159  if (++BBI != CurMBB->getParent()->end())
1160    NextBlock = BBI;
1161
1162  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
1163
1164  // If there is only the default destination, branch to it if it is not the
1165  // next basic block.  Otherwise, just fall through.
1166  if (I.getNumOperands() == 2) {
1167    // Update machine-CFG edges.
1168
1169    // If this is not a fall-through branch, emit the branch.
1170    if (Default != NextBlock)
1171      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1172                              DAG.getBasicBlock(Default)));
1173
1174    CurMBB->addSuccessor(Default);
1175    return;
1176  }
1177
1178  // If there are any non-default case statements, create a vector of Cases
1179  // representing each one, and sort the vector so that we can efficiently
1180  // create a binary search tree from them.
1181  std::vector<Case> Cases;
1182
1183  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
1184    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
1185    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
1186  }
1187
1188  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1189
1190  // Get the Value to be switched on and default basic blocks, which will be
1191  // inserted into CaseBlock records, representing basic blocks in the binary
1192  // search tree.
1193  Value *SV = I.getOperand(0);
1194
1195  // Get the MachineFunction which holds the current MBB.  This is used during
1196  // emission of jump tables, and when inserting any additional MBBs necessary
1197  // to represent the switch.
1198  MachineFunction *CurMF = CurMBB->getParent();
1199  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
1200
1201  // If the switch has few cases (two or less) emit a series of specific
1202  // tests.
1203  if (Cases.size() < 3) {
1204    // TODO: If any two of the cases has the same destination, and if one value
1205    // is the same as the other, but has one bit unset that the other has set,
1206    // use bit manipulation to do two compares at once.  For example:
1207    // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1208
1209    // Rearrange the case blocks so that the last one falls through if possible.
1210    if (NextBlock && Default != NextBlock && Cases.back().second != NextBlock) {
1211      // The last case block won't fall through into 'NextBlock' if we emit the
1212      // branches in this order.  See if rearranging a case value would help.
1213      for (unsigned i = 0, e = Cases.size()-1; i != e; ++i) {
1214        if (Cases[i].second == NextBlock) {
1215          std::swap(Cases[i], Cases.back());
1216          break;
1217        }
1218      }
1219    }
1220
1221    // Create a CaseBlock record representing a conditional branch to
1222    // the Case's target mbb if the value being switched on SV is equal
1223    // to C.
1224    MachineBasicBlock *CurBlock = CurMBB;
1225    for (unsigned i = 0, e = Cases.size(); i != e; ++i) {
1226      MachineBasicBlock *FallThrough;
1227      if (i != e-1) {
1228        FallThrough = new MachineBasicBlock(CurMBB->getBasicBlock());
1229        CurMF->getBasicBlockList().insert(BBI, FallThrough);
1230      } else {
1231        // If the last case doesn't match, go to the default block.
1232        FallThrough = Default;
1233      }
1234
1235      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, Cases[i].first,
1236                                     Cases[i].second, FallThrough, CurBlock);
1237
1238      // If emitting the first comparison, just call visitSwitchCase to emit the
1239      // code into the current block.  Otherwise, push the CaseBlock onto the
1240      // vector to be later processed by SDISel, and insert the node's MBB
1241      // before the next MBB.
1242      if (CurBlock == CurMBB)
1243        visitSwitchCase(CB);
1244      else
1245        SwitchCases.push_back(CB);
1246
1247      CurBlock = FallThrough;
1248    }
1249    return;
1250  }
1251
1252  // If the switch has more than 5 blocks, and at least 31.25% dense, and the
1253  // target supports indirect branches, then emit a jump table rather than
1254  // lowering the switch to a binary tree of conditional branches.
1255  if ((TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1256       TLI.isOperationLegal(ISD::BRIND, MVT::Other)) &&
1257      Cases.size() > 5) {
1258    uint64_t First =cast<ConstantInt>(Cases.front().first)->getSExtValue();
1259    uint64_t Last  = cast<ConstantInt>(Cases.back().first)->getSExtValue();
1260    double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
1261
1262    if (Density >= 0.3125) {
1263      // Create a new basic block to hold the code for loading the address
1264      // of the jump table, and jumping to it.  Update successor information;
1265      // we will either branch to the default case for the switch, or the jump
1266      // table.
1267      MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1268      CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1269      CurMBB->addSuccessor(Default);
1270      CurMBB->addSuccessor(JumpTableBB);
1271
1272      // Subtract the lowest switch case value from the value being switched on
1273      // and conditional branch to default mbb if the result is greater than the
1274      // difference between smallest and largest cases.
1275      SDOperand SwitchOp = getValue(SV);
1276      MVT::ValueType VT = SwitchOp.getValueType();
1277      SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1278                                  DAG.getConstant(First, VT));
1279
1280      // The SDNode we just created, which holds the value being switched on
1281      // minus the the smallest case value, needs to be copied to a virtual
1282      // register so it can be used as an index into the jump table in a
1283      // subsequent basic block.  This value may be smaller or larger than the
1284      // target's pointer type, and therefore require extension or truncating.
1285      if (VT > TLI.getPointerTy())
1286        SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1287      else
1288        SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1289
1290      unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1291      SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1292
1293      // Emit the range check for the jump table, and branch to the default
1294      // block for the switch statement if the value being switched on exceeds
1295      // the largest case in the switch.
1296      SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1297                                   DAG.getConstant(Last-First,VT), ISD::SETUGT);
1298      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1299                              DAG.getBasicBlock(Default)));
1300
1301      // Build a vector of destination BBs, corresponding to each target
1302      // of the jump table.  If the value of the jump table slot corresponds to
1303      // a case statement, push the case's BB onto the vector, otherwise, push
1304      // the default BB.
1305      std::vector<MachineBasicBlock*> DestBBs;
1306      int64_t TEI = First;
1307      for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI)
1308        if (cast<ConstantInt>(ii->first)->getSExtValue() == TEI) {
1309          DestBBs.push_back(ii->second);
1310          ++ii;
1311        } else {
1312          DestBBs.push_back(Default);
1313        }
1314
1315      // Update successor info.  Add one edge to each unique successor.
1316      // Vector bool would be better, but vector<bool> is really slow.
1317      std::vector<unsigned char> SuccsHandled;
1318      SuccsHandled.resize(CurMBB->getParent()->getNumBlockIDs());
1319
1320      for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1321           E = DestBBs.end(); I != E; ++I) {
1322        if (!SuccsHandled[(*I)->getNumber()]) {
1323          SuccsHandled[(*I)->getNumber()] = true;
1324          JumpTableBB->addSuccessor(*I);
1325        }
1326      }
1327
1328      // Create a jump table index for this jump table, or return an existing
1329      // one.
1330      unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1331
1332      // Set the jump table information so that we can codegen it as a second
1333      // MachineBasicBlock
1334      JT.Reg = JumpTableReg;
1335      JT.JTI = JTI;
1336      JT.MBB = JumpTableBB;
1337      JT.Default = Default;
1338      return;
1339    }
1340  }
1341
1342  // Push the initial CaseRec onto the worklist
1343  std::vector<CaseRec> CaseVec;
1344  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1345
1346  while (!CaseVec.empty()) {
1347    // Grab a record representing a case range to process off the worklist
1348    CaseRec CR = CaseVec.back();
1349    CaseVec.pop_back();
1350
1351    // Size is the number of Cases represented by this range.  If Size is 1,
1352    // then we are processing a leaf of the binary search tree.  Otherwise,
1353    // we need to pick a pivot, and push left and right ranges onto the
1354    // worklist.
1355    unsigned Size = CR.Range.second - CR.Range.first;
1356
1357    if (Size == 1) {
1358      // Create a CaseBlock record representing a conditional branch to
1359      // the Case's target mbb if the value being switched on SV is equal
1360      // to C.  Otherwise, branch to default.
1361      Constant *C = CR.Range.first->first;
1362      MachineBasicBlock *Target = CR.Range.first->second;
1363      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
1364                                     CR.CaseBB);
1365
1366      // If the MBB representing the leaf node is the current MBB, then just
1367      // call visitSwitchCase to emit the code into the current block.
1368      // Otherwise, push the CaseBlock onto the vector to be later processed
1369      // by SDISel, and insert the node's MBB before the next MBB.
1370      if (CR.CaseBB == CurMBB)
1371        visitSwitchCase(CB);
1372      else
1373        SwitchCases.push_back(CB);
1374    } else {
1375      // split case range at pivot
1376      CaseItr Pivot = CR.Range.first + (Size / 2);
1377      CaseRange LHSR(CR.Range.first, Pivot);
1378      CaseRange RHSR(Pivot, CR.Range.second);
1379      Constant *C = Pivot->first;
1380      MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1381
1382      // We know that we branch to the LHS if the Value being switched on is
1383      // less than the Pivot value, C.  We use this to optimize our binary
1384      // tree a bit, by recognizing that if SV is greater than or equal to the
1385      // LHS's Case Value, and that Case Value is exactly one less than the
1386      // Pivot's Value, then we can branch directly to the LHS's Target,
1387      // rather than creating a leaf node for it.
1388      if ((LHSR.second - LHSR.first) == 1 &&
1389          LHSR.first->first == CR.GE &&
1390          cast<ConstantInt>(C)->getZExtValue() ==
1391          (cast<ConstantInt>(CR.GE)->getZExtValue() + 1ULL)) {
1392        TrueBB = LHSR.first->second;
1393      } else {
1394        TrueBB = new MachineBasicBlock(LLVMBB);
1395        CurMF->getBasicBlockList().insert(BBI, TrueBB);
1396        CaseVec.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1397      }
1398
1399      // Similar to the optimization above, if the Value being switched on is
1400      // known to be less than the Constant CR.LT, and the current Case Value
1401      // is CR.LT - 1, then we can branch directly to the target block for
1402      // the current Case Value, rather than emitting a RHS leaf node for it.
1403      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1404          cast<ConstantInt>(RHSR.first->first)->getZExtValue() ==
1405          (cast<ConstantInt>(CR.LT)->getZExtValue() - 1ULL)) {
1406        FalseBB = RHSR.first->second;
1407      } else {
1408        FalseBB = new MachineBasicBlock(LLVMBB);
1409        CurMF->getBasicBlockList().insert(BBI, FalseBB);
1410        CaseVec.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1411      }
1412
1413      // Create a CaseBlock record representing a conditional branch to
1414      // the LHS node if the value being switched on SV is less than C.
1415      // Otherwise, branch to LHS.
1416      SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, TrueBB, FalseBB,
1417                                     CR.CaseBB);
1418
1419      if (CR.CaseBB == CurMBB)
1420        visitSwitchCase(CB);
1421      else
1422        SwitchCases.push_back(CB);
1423    }
1424  }
1425}
1426
1427void SelectionDAGLowering::visitSub(User &I) {
1428  // -0.0 - X --> fneg
1429  const Type *Ty = I.getType();
1430  if (isa<VectorType>(Ty)) {
1431    visitVectorBinary(I, ISD::VSUB);
1432  } else if (Ty->isFloatingPoint()) {
1433    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1434      if (CFP->isExactlyValue(-0.0)) {
1435        SDOperand Op2 = getValue(I.getOperand(1));
1436        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1437        return;
1438      }
1439    visitScalarBinary(I, ISD::FSUB);
1440  } else
1441    visitScalarBinary(I, ISD::SUB);
1442}
1443
1444void SelectionDAGLowering::visitScalarBinary(User &I, unsigned OpCode) {
1445  SDOperand Op1 = getValue(I.getOperand(0));
1446  SDOperand Op2 = getValue(I.getOperand(1));
1447
1448  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
1449}
1450
1451void
1452SelectionDAGLowering::visitVectorBinary(User &I, unsigned OpCode) {
1453  assert(isa<VectorType>(I.getType()));
1454  const VectorType *Ty = cast<VectorType>(I.getType());
1455  SDOperand Typ = DAG.getValueType(TLI.getValueType(Ty->getElementType()));
1456
1457  setValue(&I, DAG.getNode(OpCode, MVT::Vector,
1458                           getValue(I.getOperand(0)),
1459                           getValue(I.getOperand(1)),
1460                           DAG.getConstant(Ty->getNumElements(), MVT::i32),
1461                           Typ));
1462}
1463
1464void SelectionDAGLowering::visitEitherBinary(User &I, unsigned ScalarOp,
1465                                             unsigned VectorOp) {
1466  if (isa<VectorType>(I.getType()))
1467    visitVectorBinary(I, VectorOp);
1468  else
1469    visitScalarBinary(I, ScalarOp);
1470}
1471
1472void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1473  SDOperand Op1 = getValue(I.getOperand(0));
1474  SDOperand Op2 = getValue(I.getOperand(1));
1475
1476  if (TLI.getShiftAmountTy() < Op2.getValueType())
1477    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
1478  else if (TLI.getShiftAmountTy() > Op2.getValueType())
1479    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1480
1481  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1482}
1483
1484void SelectionDAGLowering::visitICmp(User &I) {
1485  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
1486  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
1487    predicate = IC->getPredicate();
1488  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
1489    predicate = ICmpInst::Predicate(IC->getPredicate());
1490  SDOperand Op1 = getValue(I.getOperand(0));
1491  SDOperand Op2 = getValue(I.getOperand(1));
1492  ISD::CondCode Opcode;
1493  switch (predicate) {
1494    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
1495    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
1496    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
1497    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
1498    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
1499    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
1500    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
1501    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
1502    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
1503    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
1504    default:
1505      assert(!"Invalid ICmp predicate value");
1506      Opcode = ISD::SETEQ;
1507      break;
1508  }
1509  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1510}
1511
1512void SelectionDAGLowering::visitFCmp(User &I) {
1513  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
1514  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
1515    predicate = FC->getPredicate();
1516  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
1517    predicate = FCmpInst::Predicate(FC->getPredicate());
1518  SDOperand Op1 = getValue(I.getOperand(0));
1519  SDOperand Op2 = getValue(I.getOperand(1));
1520  ISD::CondCode Condition, FOC, FPC;
1521  switch (predicate) {
1522    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1523    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1524    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1525    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1526    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1527    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1528    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1529    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1530    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1531    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1532    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1533    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1534    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1535    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1536    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1537    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1538    default:
1539      assert(!"Invalid FCmp predicate value");
1540      FOC = FPC = ISD::SETFALSE;
1541      break;
1542  }
1543  if (FiniteOnlyFPMath())
1544    Condition = FOC;
1545  else
1546    Condition = FPC;
1547  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
1548}
1549
1550void SelectionDAGLowering::visitSelect(User &I) {
1551  SDOperand Cond     = getValue(I.getOperand(0));
1552  SDOperand TrueVal  = getValue(I.getOperand(1));
1553  SDOperand FalseVal = getValue(I.getOperand(2));
1554  if (!isa<VectorType>(I.getType())) {
1555    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1556                             TrueVal, FalseVal));
1557  } else {
1558    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1559                             *(TrueVal.Val->op_end()-2),
1560                             *(TrueVal.Val->op_end()-1)));
1561  }
1562}
1563
1564
1565void SelectionDAGLowering::visitTrunc(User &I) {
1566  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
1567  SDOperand N = getValue(I.getOperand(0));
1568  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1569  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1570}
1571
1572void SelectionDAGLowering::visitZExt(User &I) {
1573  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1574  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
1575  SDOperand N = getValue(I.getOperand(0));
1576  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1577  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1578}
1579
1580void SelectionDAGLowering::visitSExt(User &I) {
1581  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1582  // SExt also can't be a cast to bool for same reason. So, nothing much to do
1583  SDOperand N = getValue(I.getOperand(0));
1584  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1585  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1586}
1587
1588void SelectionDAGLowering::visitFPTrunc(User &I) {
1589  // FPTrunc is never a no-op cast, no need to check
1590  SDOperand N = getValue(I.getOperand(0));
1591  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1592  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1593}
1594
1595void SelectionDAGLowering::visitFPExt(User &I){
1596  // FPTrunc is never a no-op cast, no need to check
1597  SDOperand N = getValue(I.getOperand(0));
1598  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1599  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1600}
1601
1602void SelectionDAGLowering::visitFPToUI(User &I) {
1603  // FPToUI is never a no-op cast, no need to check
1604  SDOperand N = getValue(I.getOperand(0));
1605  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1606  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1607}
1608
1609void SelectionDAGLowering::visitFPToSI(User &I) {
1610  // FPToSI is never a no-op cast, no need to check
1611  SDOperand N = getValue(I.getOperand(0));
1612  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1613  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1614}
1615
1616void SelectionDAGLowering::visitUIToFP(User &I) {
1617  // UIToFP is never a no-op cast, no need to check
1618  SDOperand N = getValue(I.getOperand(0));
1619  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1620  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1621}
1622
1623void SelectionDAGLowering::visitSIToFP(User &I){
1624  // UIToFP is never a no-op cast, no need to check
1625  SDOperand N = getValue(I.getOperand(0));
1626  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1627  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1628}
1629
1630void SelectionDAGLowering::visitPtrToInt(User &I) {
1631  // What to do depends on the size of the integer and the size of the pointer.
1632  // We can either truncate, zero extend, or no-op, accordingly.
1633  SDOperand N = getValue(I.getOperand(0));
1634  MVT::ValueType SrcVT = N.getValueType();
1635  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1636  SDOperand Result;
1637  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1638    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
1639  else
1640    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1641    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
1642  setValue(&I, Result);
1643}
1644
1645void SelectionDAGLowering::visitIntToPtr(User &I) {
1646  // What to do depends on the size of the integer and the size of the pointer.
1647  // We can either truncate, zero extend, or no-op, accordingly.
1648  SDOperand N = getValue(I.getOperand(0));
1649  MVT::ValueType SrcVT = N.getValueType();
1650  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1651  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1652    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1653  else
1654    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1655    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1656}
1657
1658void SelectionDAGLowering::visitBitCast(User &I) {
1659  SDOperand N = getValue(I.getOperand(0));
1660  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1661  if (DestVT == MVT::Vector) {
1662    // This is a cast to a vector from something else.
1663    // Get information about the output vector.
1664    const VectorType *DestTy = cast<VectorType>(I.getType());
1665    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1666    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1667                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1668                             DAG.getValueType(EltVT)));
1669    return;
1670  }
1671  MVT::ValueType SrcVT = N.getValueType();
1672  if (SrcVT == MVT::Vector) {
1673    // This is a cast from a vctor to something else.
1674    // Get information about the input vector.
1675    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1676    return;
1677  }
1678
1679  // BitCast assures us that source and destination are the same size so this
1680  // is either a BIT_CONVERT or a no-op.
1681  if (DestVT != N.getValueType())
1682    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
1683  else
1684    setValue(&I, N); // noop cast.
1685}
1686
1687void SelectionDAGLowering::visitInsertElement(User &I) {
1688  SDOperand InVec = getValue(I.getOperand(0));
1689  SDOperand InVal = getValue(I.getOperand(1));
1690  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1691                                getValue(I.getOperand(2)));
1692
1693  SDOperand Num = *(InVec.Val->op_end()-2);
1694  SDOperand Typ = *(InVec.Val->op_end()-1);
1695  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1696                           InVec, InVal, InIdx, Num, Typ));
1697}
1698
1699void SelectionDAGLowering::visitExtractElement(User &I) {
1700  SDOperand InVec = getValue(I.getOperand(0));
1701  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1702                                getValue(I.getOperand(1)));
1703  SDOperand Typ = *(InVec.Val->op_end()-1);
1704  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1705                           TLI.getValueType(I.getType()), InVec, InIdx));
1706}
1707
1708void SelectionDAGLowering::visitShuffleVector(User &I) {
1709  SDOperand V1   = getValue(I.getOperand(0));
1710  SDOperand V2   = getValue(I.getOperand(1));
1711  SDOperand Mask = getValue(I.getOperand(2));
1712
1713  SDOperand Num = *(V1.Val->op_end()-2);
1714  SDOperand Typ = *(V2.Val->op_end()-1);
1715  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1716                           V1, V2, Mask, Num, Typ));
1717}
1718
1719
1720void SelectionDAGLowering::visitGetElementPtr(User &I) {
1721  SDOperand N = getValue(I.getOperand(0));
1722  const Type *Ty = I.getOperand(0)->getType();
1723
1724  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1725       OI != E; ++OI) {
1726    Value *Idx = *OI;
1727    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1728      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
1729      if (Field) {
1730        // N = N + Offset
1731        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
1732        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1733                        getIntPtrConstant(Offset));
1734      }
1735      Ty = StTy->getElementType(Field);
1736    } else {
1737      Ty = cast<SequentialType>(Ty)->getElementType();
1738
1739      // If this is a constant subscript, handle it quickly.
1740      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1741        if (CI->getZExtValue() == 0) continue;
1742        uint64_t Offs =
1743            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
1744        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1745        continue;
1746      }
1747
1748      // N = N + Idx * ElementSize;
1749      uint64_t ElementSize = TD->getTypeSize(Ty);
1750      SDOperand IdxN = getValue(Idx);
1751
1752      // If the index is smaller or larger than intptr_t, truncate or extend
1753      // it.
1754      if (IdxN.getValueType() < N.getValueType()) {
1755        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1756      } else if (IdxN.getValueType() > N.getValueType())
1757        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1758
1759      // If this is a multiply by a power of two, turn it into a shl
1760      // immediately.  This is a very common case.
1761      if (isPowerOf2_64(ElementSize)) {
1762        unsigned Amt = Log2_64(ElementSize);
1763        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1764                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1765        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1766        continue;
1767      }
1768
1769      SDOperand Scale = getIntPtrConstant(ElementSize);
1770      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1771      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1772    }
1773  }
1774  setValue(&I, N);
1775}
1776
1777void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1778  // If this is a fixed sized alloca in the entry block of the function,
1779  // allocate it statically on the stack.
1780  if (FuncInfo.StaticAllocaMap.count(&I))
1781    return;   // getValue will auto-populate this.
1782
1783  const Type *Ty = I.getAllocatedType();
1784  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
1785  unsigned Align =
1786    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
1787             I.getAlignment());
1788
1789  SDOperand AllocSize = getValue(I.getArraySize());
1790  MVT::ValueType IntPtr = TLI.getPointerTy();
1791  if (IntPtr < AllocSize.getValueType())
1792    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1793  else if (IntPtr > AllocSize.getValueType())
1794    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1795
1796  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1797                          getIntPtrConstant(TySize));
1798
1799  // Handle alignment.  If the requested alignment is less than or equal to the
1800  // stack alignment, ignore it and round the size of the allocation up to the
1801  // stack alignment size.  If the size is greater than the stack alignment, we
1802  // note this in the DYNAMIC_STACKALLOC node.
1803  unsigned StackAlign =
1804    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1805  if (Align <= StackAlign) {
1806    Align = 0;
1807    // Add SA-1 to the size.
1808    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1809                            getIntPtrConstant(StackAlign-1));
1810    // Mask out the low bits for alignment purposes.
1811    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1812                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1813  }
1814
1815  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
1816  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
1817                                                    MVT::Other);
1818  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
1819  setValue(&I, DSA);
1820  DAG.setRoot(DSA.getValue(1));
1821
1822  // Inform the Frame Information that we have just allocated a variable-sized
1823  // object.
1824  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1825}
1826
1827void SelectionDAGLowering::visitLoad(LoadInst &I) {
1828  SDOperand Ptr = getValue(I.getOperand(0));
1829
1830  SDOperand Root;
1831  if (I.isVolatile())
1832    Root = getRoot();
1833  else {
1834    // Do not serialize non-volatile loads against each other.
1835    Root = DAG.getRoot();
1836  }
1837
1838  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
1839                           Root, I.isVolatile()));
1840}
1841
1842SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1843                                            const Value *SV, SDOperand Root,
1844                                            bool isVolatile) {
1845  SDOperand L;
1846  if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
1847    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1848    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
1849                       DAG.getSrcValue(SV));
1850  } else {
1851    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0, isVolatile);
1852  }
1853
1854  if (isVolatile)
1855    DAG.setRoot(L.getValue(1));
1856  else
1857    PendingLoads.push_back(L.getValue(1));
1858
1859  return L;
1860}
1861
1862
1863void SelectionDAGLowering::visitStore(StoreInst &I) {
1864  Value *SrcV = I.getOperand(0);
1865  SDOperand Src = getValue(SrcV);
1866  SDOperand Ptr = getValue(I.getOperand(1));
1867  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
1868                           I.isVolatile()));
1869}
1870
1871/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1872/// access memory and has no other side effects at all.
1873static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1874#define GET_NO_MEMORY_INTRINSICS
1875#include "llvm/Intrinsics.gen"
1876#undef GET_NO_MEMORY_INTRINSICS
1877  return false;
1878}
1879
1880// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
1881// have any side-effects or if it only reads memory.
1882static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
1883#define GET_SIDE_EFFECT_INFO
1884#include "llvm/Intrinsics.gen"
1885#undef GET_SIDE_EFFECT_INFO
1886  return false;
1887}
1888
1889/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1890/// node.
1891void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1892                                                unsigned Intrinsic) {
1893  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1894  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
1895
1896  // Build the operand list.
1897  SmallVector<SDOperand, 8> Ops;
1898  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
1899    if (OnlyLoad) {
1900      // We don't need to serialize loads against other loads.
1901      Ops.push_back(DAG.getRoot());
1902    } else {
1903      Ops.push_back(getRoot());
1904    }
1905  }
1906
1907  // Add the intrinsic ID as an integer operand.
1908  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1909
1910  // Add all operands of the call to the operand list.
1911  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1912    SDOperand Op = getValue(I.getOperand(i));
1913
1914    // If this is a vector type, force it to the right vector type.
1915    if (Op.getValueType() == MVT::Vector) {
1916      const VectorType *OpTy = cast<VectorType>(I.getOperand(i)->getType());
1917      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1918
1919      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1920      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1921      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1922    }
1923
1924    assert(TLI.isTypeLegal(Op.getValueType()) &&
1925           "Intrinsic uses a non-legal type?");
1926    Ops.push_back(Op);
1927  }
1928
1929  std::vector<MVT::ValueType> VTs;
1930  if (I.getType() != Type::VoidTy) {
1931    MVT::ValueType VT = TLI.getValueType(I.getType());
1932    if (VT == MVT::Vector) {
1933      const VectorType *DestTy = cast<VectorType>(I.getType());
1934      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1935
1936      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1937      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1938    }
1939
1940    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1941    VTs.push_back(VT);
1942  }
1943  if (HasChain)
1944    VTs.push_back(MVT::Other);
1945
1946  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
1947
1948  // Create the node.
1949  SDOperand Result;
1950  if (!HasChain)
1951    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
1952                         &Ops[0], Ops.size());
1953  else if (I.getType() != Type::VoidTy)
1954    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
1955                         &Ops[0], Ops.size());
1956  else
1957    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
1958                         &Ops[0], Ops.size());
1959
1960  if (HasChain) {
1961    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
1962    if (OnlyLoad)
1963      PendingLoads.push_back(Chain);
1964    else
1965      DAG.setRoot(Chain);
1966  }
1967  if (I.getType() != Type::VoidTy) {
1968    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
1969      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1970      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1971                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1972                           DAG.getValueType(EVT));
1973    }
1974    setValue(&I, Result);
1975  }
1976}
1977
1978/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1979/// we want to emit this as a call to a named external function, return the name
1980/// otherwise lower it and return null.
1981const char *
1982SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1983  switch (Intrinsic) {
1984  default:
1985    // By default, turn this into a target intrinsic node.
1986    visitTargetIntrinsic(I, Intrinsic);
1987    return 0;
1988  case Intrinsic::vastart:  visitVAStart(I); return 0;
1989  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1990  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1991  case Intrinsic::returnaddress:
1992    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
1993                             getValue(I.getOperand(1))));
1994    return 0;
1995  case Intrinsic::frameaddress:
1996    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
1997                             getValue(I.getOperand(1))));
1998    return 0;
1999  case Intrinsic::setjmp:
2000    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2001    break;
2002  case Intrinsic::longjmp:
2003    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2004    break;
2005  case Intrinsic::memcpy_i32:
2006  case Intrinsic::memcpy_i64:
2007    visitMemIntrinsic(I, ISD::MEMCPY);
2008    return 0;
2009  case Intrinsic::memset_i32:
2010  case Intrinsic::memset_i64:
2011    visitMemIntrinsic(I, ISD::MEMSET);
2012    return 0;
2013  case Intrinsic::memmove_i32:
2014  case Intrinsic::memmove_i64:
2015    visitMemIntrinsic(I, ISD::MEMMOVE);
2016    return 0;
2017
2018  case Intrinsic::dbg_stoppoint: {
2019    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2020    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2021    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2022      SDOperand Ops[5];
2023
2024      Ops[0] = getRoot();
2025      Ops[1] = getValue(SPI.getLineValue());
2026      Ops[2] = getValue(SPI.getColumnValue());
2027
2028      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2029      assert(DD && "Not a debug information descriptor");
2030      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2031
2032      Ops[3] = DAG.getString(CompileUnit->getFileName());
2033      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2034
2035      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2036    }
2037
2038    return 0;
2039  }
2040  case Intrinsic::dbg_region_start: {
2041    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2042    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2043    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2044      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2045      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2046                              DAG.getConstant(LabelID, MVT::i32)));
2047    }
2048
2049    return 0;
2050  }
2051  case Intrinsic::dbg_region_end: {
2052    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2053    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2054    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2055      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2056      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2057                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2058    }
2059
2060    return 0;
2061  }
2062  case Intrinsic::dbg_func_start: {
2063    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2064    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2065    if (MMI && FSI.getSubprogram() &&
2066        MMI->Verify(FSI.getSubprogram())) {
2067      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2068      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2069                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2070    }
2071
2072    return 0;
2073  }
2074  case Intrinsic::dbg_declare: {
2075    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2076    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2077    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2078      SDOperand AddressOp  = getValue(DI.getAddress());
2079      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2080        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2081    }
2082
2083    return 0;
2084  }
2085
2086  case Intrinsic::eh_exception: {
2087    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2088
2089    if (MMI) {
2090      // Add a label to mark the beginning of the landing pad.  Deletion of the
2091      // landing pad can thus be detected via the MachineModuleInfo.
2092      unsigned LabelID = MMI->addLandingPad(CurMBB);
2093      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
2094                              DAG.getConstant(LabelID, MVT::i32)));
2095
2096      // Mark exception register as live in.
2097      unsigned Reg = TLI.getExceptionAddressRegister();
2098      if (Reg) CurMBB->addLiveIn(Reg);
2099
2100      // Insert the EXCEPTIONADDR instruction.
2101      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2102      SDOperand Ops[1];
2103      Ops[0] = DAG.getRoot();
2104      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2105      setValue(&I, Op);
2106      DAG.setRoot(Op.getValue(1));
2107    } else {
2108      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2109    }
2110    return 0;
2111  }
2112
2113  case Intrinsic::eh_selector:
2114  case Intrinsic::eh_filter:{
2115    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2116
2117    if (MMI) {
2118      // Inform the MachineModuleInfo of the personality for this landing pad.
2119      ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(2));
2120      assert(CE && CE->getOpcode() == Instruction::BitCast &&
2121             isa<Function>(CE->getOperand(0)) &&
2122             "Personality should be a function");
2123      MMI->addPersonality(CurMBB, cast<Function>(CE->getOperand(0)));
2124      if (Intrinsic == Intrinsic::eh_filter)
2125        MMI->setIsFilterLandingPad(CurMBB);
2126
2127      // Gather all the type infos for this landing pad and pass them along to
2128      // MachineModuleInfo.
2129      std::vector<GlobalVariable *> TyInfo;
2130      for (unsigned i = 3, N = I.getNumOperands(); i < N; ++i) {
2131        ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i));
2132        if (CE && CE->getOpcode() == Instruction::BitCast &&
2133            isa<GlobalVariable>(CE->getOperand(0))) {
2134          TyInfo.push_back(cast<GlobalVariable>(CE->getOperand(0)));
2135        } else {
2136          ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i));
2137          assert(CI && CI->getZExtValue() == 0 &&
2138            "TypeInfo must be a global variable typeinfo or NULL");
2139          TyInfo.push_back(NULL);
2140        }
2141      }
2142      MMI->addCatchTypeInfo(CurMBB, TyInfo);
2143
2144      // Mark exception selector register as live in.
2145      unsigned Reg = TLI.getExceptionSelectorRegister();
2146      if (Reg) CurMBB->addLiveIn(Reg);
2147
2148      // Insert the EHSELECTION instruction.
2149      SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2150      SDOperand Ops[2];
2151      Ops[0] = getValue(I.getOperand(1));
2152      Ops[1] = getRoot();
2153      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2154      setValue(&I, Op);
2155      DAG.setRoot(Op.getValue(1));
2156    } else {
2157      setValue(&I, DAG.getConstant(0, MVT::i32));
2158    }
2159
2160    return 0;
2161  }
2162
2163  case Intrinsic::eh_typeid_for: {
2164    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2165
2166    if (MMI) {
2167      // Find the type id for the given typeinfo.
2168      GlobalVariable *GV = NULL;
2169      ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(1));
2170      if (CE && CE->getOpcode() == Instruction::BitCast &&
2171          isa<GlobalVariable>(CE->getOperand(0))) {
2172        GV = cast<GlobalVariable>(CE->getOperand(0));
2173      } else {
2174        ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2175        assert(CI && CI->getZExtValue() == 0 &&
2176          "TypeInfo must be a global variable typeinfo or NULL");
2177        GV = NULL;
2178      }
2179
2180      unsigned TypeID = MMI->getTypeIDFor(GV);
2181      setValue(&I, DAG.getConstant(TypeID, MVT::i32));
2182    } else {
2183      setValue(&I, DAG.getConstant(0, MVT::i32));
2184    }
2185
2186    return 0;
2187  }
2188
2189  case Intrinsic::sqrt_f32:
2190  case Intrinsic::sqrt_f64:
2191    setValue(&I, DAG.getNode(ISD::FSQRT,
2192                             getValue(I.getOperand(1)).getValueType(),
2193                             getValue(I.getOperand(1))));
2194    return 0;
2195  case Intrinsic::powi_f32:
2196  case Intrinsic::powi_f64:
2197    setValue(&I, DAG.getNode(ISD::FPOWI,
2198                             getValue(I.getOperand(1)).getValueType(),
2199                             getValue(I.getOperand(1)),
2200                             getValue(I.getOperand(2))));
2201    return 0;
2202  case Intrinsic::pcmarker: {
2203    SDOperand Tmp = getValue(I.getOperand(1));
2204    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2205    return 0;
2206  }
2207  case Intrinsic::readcyclecounter: {
2208    SDOperand Op = getRoot();
2209    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2210                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2211                                &Op, 1);
2212    setValue(&I, Tmp);
2213    DAG.setRoot(Tmp.getValue(1));
2214    return 0;
2215  }
2216  case Intrinsic::bswap_i16:
2217  case Intrinsic::bswap_i32:
2218  case Intrinsic::bswap_i64:
2219    setValue(&I, DAG.getNode(ISD::BSWAP,
2220                             getValue(I.getOperand(1)).getValueType(),
2221                             getValue(I.getOperand(1))));
2222    return 0;
2223  case Intrinsic::cttz_i8:
2224  case Intrinsic::cttz_i16:
2225  case Intrinsic::cttz_i32:
2226  case Intrinsic::cttz_i64:
2227    setValue(&I, DAG.getNode(ISD::CTTZ,
2228                             getValue(I.getOperand(1)).getValueType(),
2229                             getValue(I.getOperand(1))));
2230    return 0;
2231  case Intrinsic::ctlz_i8:
2232  case Intrinsic::ctlz_i16:
2233  case Intrinsic::ctlz_i32:
2234  case Intrinsic::ctlz_i64:
2235    setValue(&I, DAG.getNode(ISD::CTLZ,
2236                             getValue(I.getOperand(1)).getValueType(),
2237                             getValue(I.getOperand(1))));
2238    return 0;
2239  case Intrinsic::ctpop_i8:
2240  case Intrinsic::ctpop_i16:
2241  case Intrinsic::ctpop_i32:
2242  case Intrinsic::ctpop_i64:
2243    setValue(&I, DAG.getNode(ISD::CTPOP,
2244                             getValue(I.getOperand(1)).getValueType(),
2245                             getValue(I.getOperand(1))));
2246    return 0;
2247  case Intrinsic::stacksave: {
2248    SDOperand Op = getRoot();
2249    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2250              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2251    setValue(&I, Tmp);
2252    DAG.setRoot(Tmp.getValue(1));
2253    return 0;
2254  }
2255  case Intrinsic::stackrestore: {
2256    SDOperand Tmp = getValue(I.getOperand(1));
2257    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2258    return 0;
2259  }
2260  case Intrinsic::prefetch:
2261    // FIXME: Currently discarding prefetches.
2262    return 0;
2263  }
2264}
2265
2266
2267void SelectionDAGLowering::LowerCallTo(Instruction &I,
2268                                       const Type *CalledValueTy,
2269                                       unsigned CallingConv,
2270                                       bool IsTailCall,
2271                                       SDOperand Callee, unsigned OpIdx) {
2272  const PointerType *PT = cast<PointerType>(CalledValueTy);
2273  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2274
2275  TargetLowering::ArgListTy Args;
2276  TargetLowering::ArgListEntry Entry;
2277  Args.reserve(I.getNumOperands());
2278  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2279    Value *Arg = I.getOperand(i);
2280    SDOperand ArgNode = getValue(Arg);
2281    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2282    Entry.isSExt   = FTy->paramHasAttr(i, FunctionType::SExtAttribute);
2283    Entry.isZExt   = FTy->paramHasAttr(i, FunctionType::ZExtAttribute);
2284    Entry.isInReg  = FTy->paramHasAttr(i, FunctionType::InRegAttribute);
2285    Entry.isSRet   = FTy->paramHasAttr(i, FunctionType::StructRetAttribute);
2286    Args.push_back(Entry);
2287  }
2288
2289  std::pair<SDOperand,SDOperand> Result =
2290    TLI.LowerCallTo(getRoot(), I.getType(),
2291                    FTy->paramHasAttr(0,FunctionType::SExtAttribute),
2292                    FTy->isVarArg(), CallingConv, IsTailCall,
2293                    Callee, Args, DAG);
2294  if (I.getType() != Type::VoidTy)
2295    setValue(&I, Result.first);
2296  DAG.setRoot(Result.second);
2297}
2298
2299
2300void SelectionDAGLowering::visitCall(CallInst &I) {
2301  const char *RenameFn = 0;
2302  if (Function *F = I.getCalledFunction()) {
2303    if (F->isDeclaration())
2304      if (unsigned IID = F->getIntrinsicID()) {
2305        RenameFn = visitIntrinsicCall(I, IID);
2306        if (!RenameFn)
2307          return;
2308      } else {    // Not an LLVM intrinsic.
2309        const std::string &Name = F->getName();
2310        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2311          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2312              I.getOperand(1)->getType()->isFloatingPoint() &&
2313              I.getType() == I.getOperand(1)->getType() &&
2314              I.getType() == I.getOperand(2)->getType()) {
2315            SDOperand LHS = getValue(I.getOperand(1));
2316            SDOperand RHS = getValue(I.getOperand(2));
2317            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2318                                     LHS, RHS));
2319            return;
2320          }
2321        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2322          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2323              I.getOperand(1)->getType()->isFloatingPoint() &&
2324              I.getType() == I.getOperand(1)->getType()) {
2325            SDOperand Tmp = getValue(I.getOperand(1));
2326            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2327            return;
2328          }
2329        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2330          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2331              I.getOperand(1)->getType()->isFloatingPoint() &&
2332              I.getType() == I.getOperand(1)->getType()) {
2333            SDOperand Tmp = getValue(I.getOperand(1));
2334            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2335            return;
2336          }
2337        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2338          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2339              I.getOperand(1)->getType()->isFloatingPoint() &&
2340              I.getType() == I.getOperand(1)->getType()) {
2341            SDOperand Tmp = getValue(I.getOperand(1));
2342            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2343            return;
2344          }
2345        }
2346      }
2347  } else if (isa<InlineAsm>(I.getOperand(0))) {
2348    visitInlineAsm(I);
2349    return;
2350  }
2351
2352  SDOperand Callee;
2353  if (!RenameFn)
2354    Callee = getValue(I.getOperand(0));
2355  else
2356    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2357
2358  LowerCallTo(I, I.getCalledValue()->getType(),
2359                 I.getCallingConv(),
2360                 I.isTailCall(),
2361                 Callee,
2362                 1);
2363}
2364
2365
2366SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2367                                        SDOperand &Chain, SDOperand &Flag)const{
2368  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
2369  Chain = Val.getValue(1);
2370  Flag  = Val.getValue(2);
2371
2372  // If the result was expanded, copy from the top part.
2373  if (Regs.size() > 1) {
2374    assert(Regs.size() == 2 &&
2375           "Cannot expand to more than 2 elts yet!");
2376    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
2377    Chain = Hi.getValue(1);
2378    Flag  = Hi.getValue(2);
2379    if (DAG.getTargetLoweringInfo().isLittleEndian())
2380      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
2381    else
2382      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
2383  }
2384
2385  // Otherwise, if the return value was promoted or extended, truncate it to the
2386  // appropriate type.
2387  if (RegVT == ValueVT)
2388    return Val;
2389
2390  if (MVT::isInteger(RegVT)) {
2391    if (ValueVT < RegVT)
2392      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
2393    else
2394      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
2395  } else {
2396    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
2397  }
2398}
2399
2400/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2401/// specified value into the registers specified by this object.  This uses
2402/// Chain/Flag as the input and updates them for the output Chain/Flag.
2403void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2404                                 SDOperand &Chain, SDOperand &Flag,
2405                                 MVT::ValueType PtrVT) const {
2406  if (Regs.size() == 1) {
2407    // If there is a single register and the types differ, this must be
2408    // a promotion.
2409    if (RegVT != ValueVT) {
2410      if (MVT::isInteger(RegVT)) {
2411        if (RegVT < ValueVT)
2412          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
2413        else
2414          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
2415      } else
2416        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
2417    }
2418    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
2419    Flag = Chain.getValue(1);
2420  } else {
2421    std::vector<unsigned> R(Regs);
2422    if (!DAG.getTargetLoweringInfo().isLittleEndian())
2423      std::reverse(R.begin(), R.end());
2424
2425    for (unsigned i = 0, e = R.size(); i != e; ++i) {
2426      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
2427                                   DAG.getConstant(i, PtrVT));
2428      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
2429      Flag = Chain.getValue(1);
2430    }
2431  }
2432}
2433
2434/// AddInlineAsmOperands - Add this value to the specified inlineasm node
2435/// operand list.  This adds the code marker and includes the number of
2436/// values added into it.
2437void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
2438                                        std::vector<SDOperand> &Ops) const {
2439  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
2440  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
2441    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
2442}
2443
2444/// isAllocatableRegister - If the specified register is safe to allocate,
2445/// i.e. it isn't a stack pointer or some other special register, return the
2446/// register class for the register.  Otherwise, return null.
2447static const TargetRegisterClass *
2448isAllocatableRegister(unsigned Reg, MachineFunction &MF,
2449                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
2450  MVT::ValueType FoundVT = MVT::Other;
2451  const TargetRegisterClass *FoundRC = 0;
2452  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
2453       E = MRI->regclass_end(); RCI != E; ++RCI) {
2454    MVT::ValueType ThisVT = MVT::Other;
2455
2456    const TargetRegisterClass *RC = *RCI;
2457    // If none of the the value types for this register class are valid, we
2458    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2459    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2460         I != E; ++I) {
2461      if (TLI.isTypeLegal(*I)) {
2462        // If we have already found this register in a different register class,
2463        // choose the one with the largest VT specified.  For example, on
2464        // PowerPC, we favor f64 register classes over f32.
2465        if (FoundVT == MVT::Other ||
2466            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
2467          ThisVT = *I;
2468          break;
2469        }
2470      }
2471    }
2472
2473    if (ThisVT == MVT::Other) continue;
2474
2475    // NOTE: This isn't ideal.  In particular, this might allocate the
2476    // frame pointer in functions that need it (due to them not being taken
2477    // out of allocation, because a variable sized allocation hasn't been seen
2478    // yet).  This is a slight code pessimization, but should still work.
2479    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
2480         E = RC->allocation_order_end(MF); I != E; ++I)
2481      if (*I == Reg) {
2482        // We found a matching register class.  Keep looking at others in case
2483        // we find one with larger registers that this physreg is also in.
2484        FoundRC = RC;
2485        FoundVT = ThisVT;
2486        break;
2487      }
2488  }
2489  return FoundRC;
2490}
2491
2492RegsForValue SelectionDAGLowering::
2493GetRegistersForValue(const std::string &ConstrCode,
2494                     MVT::ValueType VT, bool isOutReg, bool isInReg,
2495                     std::set<unsigned> &OutputRegs,
2496                     std::set<unsigned> &InputRegs) {
2497  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
2498    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
2499  std::vector<unsigned> Regs;
2500
2501  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
2502  MVT::ValueType RegVT;
2503  MVT::ValueType ValueVT = VT;
2504
2505  // If this is a constraint for a specific physical register, like {r17},
2506  // assign it now.
2507  if (PhysReg.first) {
2508    if (VT == MVT::Other)
2509      ValueVT = *PhysReg.second->vt_begin();
2510
2511    // Get the actual register value type.  This is important, because the user
2512    // may have asked for (e.g.) the AX register in i32 type.  We need to
2513    // remember that AX is actually i16 to get the right extension.
2514    RegVT = *PhysReg.second->vt_begin();
2515
2516    // This is a explicit reference to a physical register.
2517    Regs.push_back(PhysReg.first);
2518
2519    // If this is an expanded reference, add the rest of the regs to Regs.
2520    if (NumRegs != 1) {
2521      TargetRegisterClass::iterator I = PhysReg.second->begin();
2522      TargetRegisterClass::iterator E = PhysReg.second->end();
2523      for (; *I != PhysReg.first; ++I)
2524        assert(I != E && "Didn't find reg!");
2525
2526      // Already added the first reg.
2527      --NumRegs; ++I;
2528      for (; NumRegs; --NumRegs, ++I) {
2529        assert(I != E && "Ran out of registers to allocate!");
2530        Regs.push_back(*I);
2531      }
2532    }
2533    return RegsForValue(Regs, RegVT, ValueVT);
2534  }
2535
2536  // Otherwise, if this was a reference to an LLVM register class, create vregs
2537  // for this reference.
2538  std::vector<unsigned> RegClassRegs;
2539  if (PhysReg.second) {
2540    // If this is an early clobber or tied register, our regalloc doesn't know
2541    // how to maintain the constraint.  If it isn't, go ahead and create vreg
2542    // and let the regalloc do the right thing.
2543    if (!isOutReg || !isInReg) {
2544      if (VT == MVT::Other)
2545        ValueVT = *PhysReg.second->vt_begin();
2546      RegVT = *PhysReg.second->vt_begin();
2547
2548      // Create the appropriate number of virtual registers.
2549      SSARegMap *RegMap = DAG.getMachineFunction().getSSARegMap();
2550      for (; NumRegs; --NumRegs)
2551        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
2552
2553      return RegsForValue(Regs, RegVT, ValueVT);
2554    }
2555
2556    // Otherwise, we can't allocate it.  Let the code below figure out how to
2557    // maintain these constraints.
2558    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
2559
2560  } else {
2561    // This is a reference to a register class that doesn't directly correspond
2562    // to an LLVM register class.  Allocate NumRegs consecutive, available,
2563    // registers from the class.
2564    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
2565  }
2566
2567  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
2568  MachineFunction &MF = *CurMBB->getParent();
2569  unsigned NumAllocated = 0;
2570  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
2571    unsigned Reg = RegClassRegs[i];
2572    // See if this register is available.
2573    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
2574        (isInReg  && InputRegs.count(Reg))) {    // Already used.
2575      // Make sure we find consecutive registers.
2576      NumAllocated = 0;
2577      continue;
2578    }
2579
2580    // Check to see if this register is allocatable (i.e. don't give out the
2581    // stack pointer).
2582    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
2583    if (!RC) {
2584      // Make sure we find consecutive registers.
2585      NumAllocated = 0;
2586      continue;
2587    }
2588
2589    // Okay, this register is good, we can use it.
2590    ++NumAllocated;
2591
2592    // If we allocated enough consecutive
2593    if (NumAllocated == NumRegs) {
2594      unsigned RegStart = (i-NumAllocated)+1;
2595      unsigned RegEnd   = i+1;
2596      // Mark all of the allocated registers used.
2597      for (unsigned i = RegStart; i != RegEnd; ++i) {
2598        unsigned Reg = RegClassRegs[i];
2599        Regs.push_back(Reg);
2600        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
2601        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
2602      }
2603
2604      return RegsForValue(Regs, *RC->vt_begin(), VT);
2605    }
2606  }
2607
2608  // Otherwise, we couldn't allocate enough registers for this.
2609  return RegsForValue();
2610}
2611
2612/// getConstraintGenerality - Return an integer indicating how general CT is.
2613static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2614  switch (CT) {
2615  default: assert(0 && "Unknown constraint type!");
2616  case TargetLowering::C_Other:
2617  case TargetLowering::C_Unknown:
2618    return 0;
2619  case TargetLowering::C_Register:
2620    return 1;
2621  case TargetLowering::C_RegisterClass:
2622    return 2;
2623  case TargetLowering::C_Memory:
2624    return 3;
2625  }
2626}
2627
2628static std::string GetMostGeneralConstraint(std::vector<std::string> &C,
2629                                            const TargetLowering &TLI) {
2630  assert(!C.empty() && "Must have at least one constraint");
2631  if (C.size() == 1) return C[0];
2632
2633  std::string *Current = &C[0];
2634  // If we have multiple constraints, try to pick the most general one ahead
2635  // of time.  This isn't a wonderful solution, but handles common cases.
2636  TargetLowering::ConstraintType Flavor = TLI.getConstraintType(Current[0]);
2637  for (unsigned j = 1, e = C.size(); j != e; ++j) {
2638    TargetLowering::ConstraintType ThisFlavor = TLI.getConstraintType(C[j]);
2639    if (getConstraintGenerality(ThisFlavor) >
2640        getConstraintGenerality(Flavor)) {
2641      // This constraint letter is more general than the previous one,
2642      // use it.
2643      Flavor = ThisFlavor;
2644      Current = &C[j];
2645    }
2646  }
2647  return *Current;
2648}
2649
2650
2651/// visitInlineAsm - Handle a call to an InlineAsm object.
2652///
2653void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
2654  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
2655
2656  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
2657                                                 MVT::Other);
2658
2659  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
2660  std::vector<MVT::ValueType> ConstraintVTs;
2661
2662  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
2663  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
2664  /// if it is a def of that register.
2665  std::vector<SDOperand> AsmNodeOperands;
2666  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
2667  AsmNodeOperands.push_back(AsmStr);
2668
2669  SDOperand Chain = getRoot();
2670  SDOperand Flag;
2671
2672  // We fully assign registers here at isel time.  This is not optimal, but
2673  // should work.  For register classes that correspond to LLVM classes, we
2674  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
2675  // over the constraints, collecting fixed registers that we know we can't use.
2676  std::set<unsigned> OutputRegs, InputRegs;
2677  unsigned OpNum = 1;
2678  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2679    std::string ConstraintCode =
2680      GetMostGeneralConstraint(Constraints[i].Codes, TLI);
2681
2682    MVT::ValueType OpVT;
2683
2684    // Compute the value type for each operand and add it to ConstraintVTs.
2685    switch (Constraints[i].Type) {
2686    case InlineAsm::isOutput:
2687      if (!Constraints[i].isIndirectOutput) {
2688        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2689        OpVT = TLI.getValueType(I.getType());
2690      } else {
2691        const Type *OpTy = I.getOperand(OpNum)->getType();
2692        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2693        OpNum++;  // Consumes a call operand.
2694      }
2695      break;
2696    case InlineAsm::isInput:
2697      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2698      OpNum++;  // Consumes a call operand.
2699      break;
2700    case InlineAsm::isClobber:
2701      OpVT = MVT::Other;
2702      break;
2703    }
2704
2705    ConstraintVTs.push_back(OpVT);
2706
2707    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2708      continue;  // Not assigned a fixed reg.
2709
2710    // Build a list of regs that this operand uses.  This always has a single
2711    // element for promoted/expanded operands.
2712    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2713                                             false, false,
2714                                             OutputRegs, InputRegs);
2715
2716    switch (Constraints[i].Type) {
2717    case InlineAsm::isOutput:
2718      // We can't assign any other output to this register.
2719      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2720      // If this is an early-clobber output, it cannot be assigned to the same
2721      // value as the input reg.
2722      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2723        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2724      break;
2725    case InlineAsm::isInput:
2726      // We can't assign any other input to this register.
2727      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2728      break;
2729    case InlineAsm::isClobber:
2730      // Clobbered regs cannot be used as inputs or outputs.
2731      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2732      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2733      break;
2734    }
2735  }
2736
2737  // Loop over all of the inputs, copying the operand values into the
2738  // appropriate registers and processing the output regs.
2739  RegsForValue RetValRegs;
2740  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2741  OpNum = 1;
2742
2743  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2744    std::string ConstraintCode =
2745      GetMostGeneralConstraint(Constraints[i].Codes, TLI);
2746
2747    switch (Constraints[i].Type) {
2748    case InlineAsm::isOutput: {
2749      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2750      if (ConstraintCode.size() == 1)   // not a physreg name.
2751        CTy = TLI.getConstraintType(ConstraintCode);
2752
2753      if (CTy == TargetLowering::C_Memory) {
2754        // Memory output.
2755        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2756
2757        // Check that the operand (the address to store to) isn't a float.
2758        if (!MVT::isInteger(InOperandVal.getValueType()))
2759          assert(0 && "MATCH FAIL!");
2760
2761        if (!Constraints[i].isIndirectOutput)
2762          assert(0 && "MATCH FAIL!");
2763
2764        OpNum++;  // Consumes a call operand.
2765
2766        // Extend/truncate to the right pointer type if needed.
2767        MVT::ValueType PtrType = TLI.getPointerTy();
2768        if (InOperandVal.getValueType() < PtrType)
2769          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2770        else if (InOperandVal.getValueType() > PtrType)
2771          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2772
2773        // Add information to the INLINEASM node to know about this output.
2774        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2775        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2776        AsmNodeOperands.push_back(InOperandVal);
2777        break;
2778      }
2779
2780      // Otherwise, this is a register output.
2781      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2782
2783      // If this is an early-clobber output, or if there is an input
2784      // constraint that matches this, we need to reserve the input register
2785      // so no other inputs allocate to it.
2786      bool UsesInputRegister = false;
2787      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2788        UsesInputRegister = true;
2789
2790      // Copy the output from the appropriate register.  Find a register that
2791      // we can use.
2792      RegsForValue Regs =
2793        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2794                             true, UsesInputRegister,
2795                             OutputRegs, InputRegs);
2796      if (Regs.Regs.empty()) {
2797        cerr << "Couldn't allocate output reg for contraint '"
2798             << ConstraintCode << "'!\n";
2799        exit(1);
2800      }
2801
2802      if (!Constraints[i].isIndirectOutput) {
2803        assert(RetValRegs.Regs.empty() &&
2804               "Cannot have multiple output constraints yet!");
2805        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2806        RetValRegs = Regs;
2807      } else {
2808        IndirectStoresToEmit.push_back(std::make_pair(Regs,
2809                                                      I.getOperand(OpNum)));
2810        OpNum++;  // Consumes a call operand.
2811      }
2812
2813      // Add information to the INLINEASM node to know that this register is
2814      // set.
2815      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
2816      break;
2817    }
2818    case InlineAsm::isInput: {
2819      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2820      OpNum++;  // Consumes a call operand.
2821
2822      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
2823        // If this is required to match an output register we have already set,
2824        // just use its register.
2825        unsigned OperandNo = atoi(ConstraintCode.c_str());
2826
2827        // Scan until we find the definition we already emitted of this operand.
2828        // When we find it, create a RegsForValue operand.
2829        unsigned CurOp = 2;  // The first operand.
2830        for (; OperandNo; --OperandNo) {
2831          // Advance to the next operand.
2832          unsigned NumOps =
2833            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2834          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
2835                  (NumOps & 7) == 4 /*MEM*/) &&
2836                 "Skipped past definitions?");
2837          CurOp += (NumOps>>3)+1;
2838        }
2839
2840        unsigned NumOps =
2841          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2842        if ((NumOps & 7) == 2 /*REGDEF*/) {
2843          // Add NumOps>>3 registers to MatchedRegs.
2844          RegsForValue MatchedRegs;
2845          MatchedRegs.ValueVT = InOperandVal.getValueType();
2846          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
2847          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
2848            unsigned Reg =
2849              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
2850            MatchedRegs.Regs.push_back(Reg);
2851          }
2852
2853          // Use the produced MatchedRegs object to
2854          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
2855                                    TLI.getPointerTy());
2856          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2857          break;
2858        } else {
2859          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
2860          assert(0 && "matching constraints for memory operands unimp");
2861        }
2862      }
2863
2864      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2865      if (ConstraintCode.size() == 1)   // not a physreg name.
2866        CTy = TLI.getConstraintType(ConstraintCode);
2867
2868      if (CTy == TargetLowering::C_Other) {
2869        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
2870                                                       ConstraintCode[0], DAG);
2871        if (!InOperandVal.Val) {
2872          cerr << "Invalid operand for inline asm constraint '"
2873               << ConstraintCode << "'!\n";
2874          exit(1);
2875        }
2876
2877        // Add information to the INLINEASM node to know about this input.
2878        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2879        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2880        AsmNodeOperands.push_back(InOperandVal);
2881        break;
2882      } else if (CTy == TargetLowering::C_Memory) {
2883        // Memory input.
2884
2885        // If the operand is a float, spill to a constant pool entry to get its
2886        // address.
2887        if (ConstantFP *Val = dyn_cast<ConstantFP>(I.getOperand(OpNum-1)))
2888          InOperandVal = DAG.getConstantPool(Val, TLI.getPointerTy());
2889
2890        if (!MVT::isInteger(InOperandVal.getValueType())) {
2891          cerr << "Match failed, cannot handle this yet!\n";
2892          InOperandVal.Val->dump();
2893          exit(1);
2894        }
2895
2896        // Extend/truncate to the right pointer type if needed.
2897        MVT::ValueType PtrType = TLI.getPointerTy();
2898        if (InOperandVal.getValueType() < PtrType)
2899          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2900        else if (InOperandVal.getValueType() > PtrType)
2901          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2902
2903        // Add information to the INLINEASM node to know about this input.
2904        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2905        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2906        AsmNodeOperands.push_back(InOperandVal);
2907        break;
2908      }
2909
2910      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2911
2912      // Copy the input into the appropriate registers.
2913      RegsForValue InRegs =
2914        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2915                             false, true, OutputRegs, InputRegs);
2916      // FIXME: should be match fail.
2917      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2918
2919      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
2920
2921      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2922      break;
2923    }
2924    case InlineAsm::isClobber: {
2925      RegsForValue ClobberedRegs =
2926        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2927                             OutputRegs, InputRegs);
2928      // Add the clobbered value to the operand list, so that the register
2929      // allocator is aware that the physreg got clobbered.
2930      if (!ClobberedRegs.Regs.empty())
2931        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2932      break;
2933    }
2934    }
2935  }
2936
2937  // Finish up input operands.
2938  AsmNodeOperands[0] = Chain;
2939  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2940
2941  Chain = DAG.getNode(ISD::INLINEASM,
2942                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
2943                      &AsmNodeOperands[0], AsmNodeOperands.size());
2944  Flag = Chain.getValue(1);
2945
2946  // If this asm returns a register value, copy the result from that register
2947  // and set it as the value of the call.
2948  if (!RetValRegs.Regs.empty())
2949    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2950
2951  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2952
2953  // Process indirect outputs, first output all of the flagged copies out of
2954  // physregs.
2955  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2956    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2957    Value *Ptr = IndirectStoresToEmit[i].second;
2958    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2959    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2960  }
2961
2962  // Emit the non-flagged stores from the physregs.
2963  SmallVector<SDOperand, 8> OutChains;
2964  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2965    OutChains.push_back(DAG.getStore(Chain,  StoresToEmit[i].first,
2966                                    getValue(StoresToEmit[i].second),
2967                                    StoresToEmit[i].second, 0));
2968  if (!OutChains.empty())
2969    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2970                        &OutChains[0], OutChains.size());
2971  DAG.setRoot(Chain);
2972}
2973
2974
2975void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2976  SDOperand Src = getValue(I.getOperand(0));
2977
2978  MVT::ValueType IntPtr = TLI.getPointerTy();
2979
2980  if (IntPtr < Src.getValueType())
2981    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2982  else if (IntPtr > Src.getValueType())
2983    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2984
2985  // Scale the source by the type size.
2986  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
2987  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2988                    Src, getIntPtrConstant(ElementSize));
2989
2990  TargetLowering::ArgListTy Args;
2991  TargetLowering::ArgListEntry Entry;
2992  Entry.Node = Src;
2993  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2994  Args.push_back(Entry);
2995
2996  std::pair<SDOperand,SDOperand> Result =
2997    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
2998                    DAG.getExternalSymbol("malloc", IntPtr),
2999                    Args, DAG);
3000  setValue(&I, Result.first);  // Pointers always fit in registers
3001  DAG.setRoot(Result.second);
3002}
3003
3004void SelectionDAGLowering::visitFree(FreeInst &I) {
3005  TargetLowering::ArgListTy Args;
3006  TargetLowering::ArgListEntry Entry;
3007  Entry.Node = getValue(I.getOperand(0));
3008  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3009  Args.push_back(Entry);
3010  MVT::ValueType IntPtr = TLI.getPointerTy();
3011  std::pair<SDOperand,SDOperand> Result =
3012    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3013                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3014  DAG.setRoot(Result.second);
3015}
3016
3017// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3018// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3019// instructions are special in various ways, which require special support to
3020// insert.  The specified MachineInstr is created but not inserted into any
3021// basic blocks, and the scheduler passes ownership of it to this method.
3022MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3023                                                       MachineBasicBlock *MBB) {
3024  cerr << "If a target marks an instruction with "
3025       << "'usesCustomDAGSchedInserter', it must implement "
3026       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3027  abort();
3028  return 0;
3029}
3030
3031void SelectionDAGLowering::visitVAStart(CallInst &I) {
3032  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3033                          getValue(I.getOperand(1)),
3034                          DAG.getSrcValue(I.getOperand(1))));
3035}
3036
3037void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3038  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3039                             getValue(I.getOperand(0)),
3040                             DAG.getSrcValue(I.getOperand(0)));
3041  setValue(&I, V);
3042  DAG.setRoot(V.getValue(1));
3043}
3044
3045void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3046  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3047                          getValue(I.getOperand(1)),
3048                          DAG.getSrcValue(I.getOperand(1))));
3049}
3050
3051void SelectionDAGLowering::visitVACopy(CallInst &I) {
3052  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3053                          getValue(I.getOperand(1)),
3054                          getValue(I.getOperand(2)),
3055                          DAG.getSrcValue(I.getOperand(1)),
3056                          DAG.getSrcValue(I.getOperand(2))));
3057}
3058
3059/// ExpandScalarFormalArgs - Recursively expand the formal_argument node, either
3060/// bit_convert it or join a pair of them with a BUILD_PAIR when appropriate.
3061static SDOperand ExpandScalarFormalArgs(MVT::ValueType VT, SDNode *Arg,
3062                                        unsigned &i, SelectionDAG &DAG,
3063                                        TargetLowering &TLI) {
3064  if (TLI.getTypeAction(VT) != TargetLowering::Expand)
3065    return SDOperand(Arg, i++);
3066
3067  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3068  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3069  if (NumVals == 1) {
3070    return DAG.getNode(ISD::BIT_CONVERT, VT,
3071                       ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI));
3072  } else if (NumVals == 2) {
3073    SDOperand Lo = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
3074    SDOperand Hi = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
3075    if (!TLI.isLittleEndian())
3076      std::swap(Lo, Hi);
3077    return DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
3078  } else {
3079    // Value scalarized into many values.  Unimp for now.
3080    assert(0 && "Cannot expand i64 -> i16 yet!");
3081  }
3082  return SDOperand();
3083}
3084
3085/// TargetLowering::LowerArguments - This is the default LowerArguments
3086/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3087/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3088/// integrated into SDISel.
3089std::vector<SDOperand>
3090TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3091  const FunctionType *FTy = F.getFunctionType();
3092  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3093  std::vector<SDOperand> Ops;
3094  Ops.push_back(DAG.getRoot());
3095  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3096  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3097
3098  // Add one result value for each formal argument.
3099  std::vector<MVT::ValueType> RetVals;
3100  unsigned j = 1;
3101  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3102       I != E; ++I, ++j) {
3103    MVT::ValueType VT = getValueType(I->getType());
3104    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3105    unsigned OriginalAlignment =
3106      getTargetData()->getABITypeAlignment(I->getType());
3107
3108    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3109    // that is zero extended!
3110    if (FTy->paramHasAttr(j, FunctionType::ZExtAttribute))
3111      Flags &= ~(ISD::ParamFlags::SExt);
3112    if (FTy->paramHasAttr(j, FunctionType::SExtAttribute))
3113      Flags |= ISD::ParamFlags::SExt;
3114    if (FTy->paramHasAttr(j, FunctionType::InRegAttribute))
3115      Flags |= ISD::ParamFlags::InReg;
3116    if (FTy->paramHasAttr(j, FunctionType::StructRetAttribute))
3117      Flags |= ISD::ParamFlags::StructReturn;
3118    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3119
3120    switch (getTypeAction(VT)) {
3121    default: assert(0 && "Unknown type action!");
3122    case Legal:
3123      RetVals.push_back(VT);
3124      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3125      break;
3126    case Promote:
3127      RetVals.push_back(getTypeToTransformTo(VT));
3128      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3129      break;
3130    case Expand:
3131      if (VT != MVT::Vector) {
3132        // If this is a large integer, it needs to be broken up into small
3133        // integers.  Figure out what the destination type is and how many small
3134        // integers it turns into.
3135        MVT::ValueType NVT = getTypeToExpandTo(VT);
3136        unsigned NumVals = getNumElements(VT);
3137        for (unsigned i = 0; i != NumVals; ++i) {
3138          RetVals.push_back(NVT);
3139          // if it isn't first piece, alignment must be 1
3140          if (i > 0)
3141            Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3142              (1 << ISD::ParamFlags::OrigAlignmentOffs);
3143          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3144        }
3145      } else {
3146        // Otherwise, this is a vector type.  We only support legal vectors
3147        // right now.
3148        unsigned NumElems = cast<VectorType>(I->getType())->getNumElements();
3149        const Type *EltTy = cast<VectorType>(I->getType())->getElementType();
3150
3151        // Figure out if there is a Packed type corresponding to this Vector
3152        // type.  If so, convert to the vector type.
3153        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3154        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3155          RetVals.push_back(TVT);
3156          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3157        } else {
3158          assert(0 && "Don't support illegal by-val vector arguments yet!");
3159        }
3160      }
3161      break;
3162    }
3163  }
3164
3165  RetVals.push_back(MVT::Other);
3166
3167  // Create the node.
3168  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3169                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3170                               &Ops[0], Ops.size()).Val;
3171
3172  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
3173
3174  // Set up the return result vector.
3175  Ops.clear();
3176  unsigned i = 0;
3177  unsigned Idx = 1;
3178  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3179      ++I, ++Idx) {
3180    MVT::ValueType VT = getValueType(I->getType());
3181
3182    switch (getTypeAction(VT)) {
3183    default: assert(0 && "Unknown type action!");
3184    case Legal:
3185      Ops.push_back(SDOperand(Result, i++));
3186      break;
3187    case Promote: {
3188      SDOperand Op(Result, i++);
3189      if (MVT::isInteger(VT)) {
3190        if (FTy->paramHasAttr(Idx, FunctionType::SExtAttribute))
3191          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3192                           DAG.getValueType(VT));
3193        else if (FTy->paramHasAttr(Idx, FunctionType::ZExtAttribute))
3194          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3195                           DAG.getValueType(VT));
3196        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3197      } else {
3198        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3199        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3200      }
3201      Ops.push_back(Op);
3202      break;
3203    }
3204    case Expand:
3205      if (VT != MVT::Vector) {
3206        // If this is a large integer or a floating point node that needs to be
3207        // expanded, it needs to be reassembled from small integers.  Figure out
3208        // what the source elt type is and how many small integers it is.
3209        Ops.push_back(ExpandScalarFormalArgs(VT, Result, i, DAG, *this));
3210      } else {
3211        // Otherwise, this is a vector type.  We only support legal vectors
3212        // right now.
3213        const VectorType *PTy = cast<VectorType>(I->getType());
3214        unsigned NumElems = PTy->getNumElements();
3215        const Type *EltTy = PTy->getElementType();
3216
3217        // Figure out if there is a Packed type corresponding to this Vector
3218        // type.  If so, convert to the vector type.
3219        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3220        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3221          SDOperand N = SDOperand(Result, i++);
3222          // Handle copies from generic vectors to registers.
3223          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
3224                          DAG.getConstant(NumElems, MVT::i32),
3225                          DAG.getValueType(getValueType(EltTy)));
3226          Ops.push_back(N);
3227        } else {
3228          assert(0 && "Don't support illegal by-val vector arguments yet!");
3229          abort();
3230        }
3231      }
3232      break;
3233    }
3234  }
3235  return Ops;
3236}
3237
3238
3239/// ExpandScalarCallArgs - Recursively expand call argument node by
3240/// bit_converting it or extract a pair of elements from the larger  node.
3241static void ExpandScalarCallArgs(MVT::ValueType VT, SDOperand Arg,
3242                                 unsigned Flags,
3243                                 SmallVector<SDOperand, 32> &Ops,
3244                                 SelectionDAG &DAG,
3245                                 TargetLowering &TLI,
3246                                 bool isFirst = true) {
3247
3248  if (TLI.getTypeAction(VT) != TargetLowering::Expand) {
3249    // if it isn't first piece, alignment must be 1
3250    if (!isFirst)
3251      Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3252        (1 << ISD::ParamFlags::OrigAlignmentOffs);
3253    Ops.push_back(Arg);
3254    Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3255    return;
3256  }
3257
3258  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3259  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3260  if (NumVals == 1) {
3261    Arg = DAG.getNode(ISD::BIT_CONVERT, EVT, Arg);
3262    ExpandScalarCallArgs(EVT, Arg, Flags, Ops, DAG, TLI, isFirst);
3263  } else if (NumVals == 2) {
3264    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3265                               DAG.getConstant(0, TLI.getPointerTy()));
3266    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3267                               DAG.getConstant(1, TLI.getPointerTy()));
3268    if (!TLI.isLittleEndian())
3269      std::swap(Lo, Hi);
3270    ExpandScalarCallArgs(EVT, Lo, Flags, Ops, DAG, TLI, isFirst);
3271    ExpandScalarCallArgs(EVT, Hi, Flags, Ops, DAG, TLI, false);
3272  } else {
3273    // Value scalarized into many values.  Unimp for now.
3274    assert(0 && "Cannot expand i64 -> i16 yet!");
3275  }
3276}
3277
3278/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3279/// implementation, which just inserts an ISD::CALL node, which is later custom
3280/// lowered by the target to something concrete.  FIXME: When all targets are
3281/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3282std::pair<SDOperand, SDOperand>
3283TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3284                            bool RetTyIsSigned, bool isVarArg,
3285                            unsigned CallingConv, bool isTailCall,
3286                            SDOperand Callee,
3287                            ArgListTy &Args, SelectionDAG &DAG) {
3288  SmallVector<SDOperand, 32> Ops;
3289  Ops.push_back(Chain);   // Op#0 - Chain
3290  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3291  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3292  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3293  Ops.push_back(Callee);
3294
3295  // Handle all of the outgoing arguments.
3296  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3297    MVT::ValueType VT = getValueType(Args[i].Ty);
3298    SDOperand Op = Args[i].Node;
3299    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3300    unsigned OriginalAlignment =
3301      getTargetData()->getABITypeAlignment(Args[i].Ty);
3302
3303    if (Args[i].isSExt)
3304      Flags |= ISD::ParamFlags::SExt;
3305    if (Args[i].isZExt)
3306      Flags |= ISD::ParamFlags::ZExt;
3307    if (Args[i].isInReg)
3308      Flags |= ISD::ParamFlags::InReg;
3309    if (Args[i].isSRet)
3310      Flags |= ISD::ParamFlags::StructReturn;
3311    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
3312
3313    switch (getTypeAction(VT)) {
3314    default: assert(0 && "Unknown type action!");
3315    case Legal:
3316      Ops.push_back(Op);
3317      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3318      break;
3319    case Promote:
3320      if (MVT::isInteger(VT)) {
3321        unsigned ExtOp;
3322        if (Args[i].isSExt)
3323          ExtOp = ISD::SIGN_EXTEND;
3324        else if (Args[i].isZExt)
3325          ExtOp = ISD::ZERO_EXTEND;
3326        else
3327          ExtOp = ISD::ANY_EXTEND;
3328        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3329      } else {
3330        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3331        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
3332      }
3333      Ops.push_back(Op);
3334      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3335      break;
3336    case Expand:
3337      if (VT != MVT::Vector) {
3338        // If this is a large integer, it needs to be broken down into small
3339        // integers.  Figure out what the source elt type is and how many small
3340        // integers it is.
3341        ExpandScalarCallArgs(VT, Op, Flags, Ops, DAG, *this);
3342      } else {
3343        // Otherwise, this is a vector type.  We only support legal vectors
3344        // right now.
3345        const VectorType *PTy = cast<VectorType>(Args[i].Ty);
3346        unsigned NumElems = PTy->getNumElements();
3347        const Type *EltTy = PTy->getElementType();
3348
3349        // Figure out if there is a Packed type corresponding to this Vector
3350        // type.  If so, convert to the vector type.
3351        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3352        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3353          // Insert a VBIT_CONVERT of the MVT::Vector type to the vector type.
3354          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
3355          Ops.push_back(Op);
3356          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3357        } else {
3358          assert(0 && "Don't support illegal by-val vector call args yet!");
3359          abort();
3360        }
3361      }
3362      break;
3363    }
3364  }
3365
3366  // Figure out the result value types.
3367  SmallVector<MVT::ValueType, 4> RetTys;
3368
3369  if (RetTy != Type::VoidTy) {
3370    MVT::ValueType VT = getValueType(RetTy);
3371    switch (getTypeAction(VT)) {
3372    default: assert(0 && "Unknown type action!");
3373    case Legal:
3374      RetTys.push_back(VT);
3375      break;
3376    case Promote:
3377      RetTys.push_back(getTypeToTransformTo(VT));
3378      break;
3379    case Expand:
3380      if (VT != MVT::Vector) {
3381        // If this is a large integer, it needs to be reassembled from small
3382        // integers.  Figure out what the source elt type is and how many small
3383        // integers it is.
3384        MVT::ValueType NVT = getTypeToExpandTo(VT);
3385        unsigned NumVals = getNumElements(VT);
3386        for (unsigned i = 0; i != NumVals; ++i)
3387          RetTys.push_back(NVT);
3388      } else {
3389        // Otherwise, this is a vector type.  We only support legal vectors
3390        // right now.
3391        const VectorType *PTy = cast<VectorType>(RetTy);
3392        unsigned NumElems = PTy->getNumElements();
3393        const Type *EltTy = PTy->getElementType();
3394
3395        // Figure out if there is a Packed type corresponding to this Vector
3396        // type.  If so, convert to the vector type.
3397        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3398        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3399          RetTys.push_back(TVT);
3400        } else {
3401          assert(0 && "Don't support illegal by-val vector call results yet!");
3402          abort();
3403        }
3404      }
3405    }
3406  }
3407
3408  RetTys.push_back(MVT::Other);  // Always has a chain.
3409
3410  // Finally, create the CALL node.
3411  SDOperand Res = DAG.getNode(ISD::CALL,
3412                              DAG.getVTList(&RetTys[0], RetTys.size()),
3413                              &Ops[0], Ops.size());
3414
3415  // This returns a pair of operands.  The first element is the
3416  // return value for the function (if RetTy is not VoidTy).  The second
3417  // element is the outgoing token chain.
3418  SDOperand ResVal;
3419  if (RetTys.size() != 1) {
3420    MVT::ValueType VT = getValueType(RetTy);
3421    if (RetTys.size() == 2) {
3422      ResVal = Res;
3423
3424      // If this value was promoted, truncate it down.
3425      if (ResVal.getValueType() != VT) {
3426        if (VT == MVT::Vector) {
3427          // Insert a VBITCONVERT to convert from the packed result type to the
3428          // MVT::Vector type.
3429          unsigned NumElems = cast<VectorType>(RetTy)->getNumElements();
3430          const Type *EltTy = cast<VectorType>(RetTy)->getElementType();
3431
3432          // Figure out if there is a Packed type corresponding to this Vector
3433          // type.  If so, convert to the vector type.
3434          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy),NumElems);
3435          if (TVT != MVT::Other && isTypeLegal(TVT)) {
3436            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
3437            // "N x PTyElementVT" MVT::Vector type.
3438            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
3439                                 DAG.getConstant(NumElems, MVT::i32),
3440                                 DAG.getValueType(getValueType(EltTy)));
3441          } else {
3442            abort();
3443          }
3444        } else if (MVT::isInteger(VT)) {
3445          unsigned AssertOp = ISD::AssertSext;
3446          if (!RetTyIsSigned)
3447            AssertOp = ISD::AssertZext;
3448          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
3449                               DAG.getValueType(VT));
3450          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
3451        } else {
3452          assert(MVT::isFloatingPoint(VT));
3453          if (getTypeAction(VT) == Expand)
3454            ResVal = DAG.getNode(ISD::BIT_CONVERT, VT, ResVal);
3455          else
3456            ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
3457        }
3458      }
3459    } else if (RetTys.size() == 3) {
3460      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
3461                           Res.getValue(0), Res.getValue(1));
3462
3463    } else {
3464      assert(0 && "Case not handled yet!");
3465    }
3466  }
3467
3468  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
3469}
3470
3471SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3472  assert(0 && "LowerOperation not implemented for this target!");
3473  abort();
3474  return SDOperand();
3475}
3476
3477SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
3478                                                 SelectionDAG &DAG) {
3479  assert(0 && "CustomPromoteOperation not implemented for this target!");
3480  abort();
3481  return SDOperand();
3482}
3483
3484/// getMemsetValue - Vectorized representation of the memset value
3485/// operand.
3486static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
3487                                SelectionDAG &DAG) {
3488  MVT::ValueType CurVT = VT;
3489  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3490    uint64_t Val   = C->getValue() & 255;
3491    unsigned Shift = 8;
3492    while (CurVT != MVT::i8) {
3493      Val = (Val << Shift) | Val;
3494      Shift <<= 1;
3495      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3496    }
3497    return DAG.getConstant(Val, VT);
3498  } else {
3499    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
3500    unsigned Shift = 8;
3501    while (CurVT != MVT::i8) {
3502      Value =
3503        DAG.getNode(ISD::OR, VT,
3504                    DAG.getNode(ISD::SHL, VT, Value,
3505                                DAG.getConstant(Shift, MVT::i8)), Value);
3506      Shift <<= 1;
3507      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3508    }
3509
3510    return Value;
3511  }
3512}
3513
3514/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3515/// used when a memcpy is turned into a memset when the source is a constant
3516/// string ptr.
3517static SDOperand getMemsetStringVal(MVT::ValueType VT,
3518                                    SelectionDAG &DAG, TargetLowering &TLI,
3519                                    std::string &Str, unsigned Offset) {
3520  uint64_t Val = 0;
3521  unsigned MSB = getSizeInBits(VT) / 8;
3522  if (TLI.isLittleEndian())
3523    Offset = Offset + MSB - 1;
3524  for (unsigned i = 0; i != MSB; ++i) {
3525    Val = (Val << 8) | (unsigned char)Str[Offset];
3526    Offset += TLI.isLittleEndian() ? -1 : 1;
3527  }
3528  return DAG.getConstant(Val, VT);
3529}
3530
3531/// getMemBasePlusOffset - Returns base and offset node for the
3532static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
3533                                      SelectionDAG &DAG, TargetLowering &TLI) {
3534  MVT::ValueType VT = Base.getValueType();
3535  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
3536}
3537
3538/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3539/// to replace the memset / memcpy is below the threshold. It also returns the
3540/// types of the sequence of  memory ops to perform memset / memcpy.
3541static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
3542                                     unsigned Limit, uint64_t Size,
3543                                     unsigned Align, TargetLowering &TLI) {
3544  MVT::ValueType VT;
3545
3546  if (TLI.allowsUnalignedMemoryAccesses()) {
3547    VT = MVT::i64;
3548  } else {
3549    switch (Align & 7) {
3550    case 0:
3551      VT = MVT::i64;
3552      break;
3553    case 4:
3554      VT = MVT::i32;
3555      break;
3556    case 2:
3557      VT = MVT::i16;
3558      break;
3559    default:
3560      VT = MVT::i8;
3561      break;
3562    }
3563  }
3564
3565  MVT::ValueType LVT = MVT::i64;
3566  while (!TLI.isTypeLegal(LVT))
3567    LVT = (MVT::ValueType)((unsigned)LVT - 1);
3568  assert(MVT::isInteger(LVT));
3569
3570  if (VT > LVT)
3571    VT = LVT;
3572
3573  unsigned NumMemOps = 0;
3574  while (Size != 0) {
3575    unsigned VTSize = getSizeInBits(VT) / 8;
3576    while (VTSize > Size) {
3577      VT = (MVT::ValueType)((unsigned)VT - 1);
3578      VTSize >>= 1;
3579    }
3580    assert(MVT::isInteger(VT));
3581
3582    if (++NumMemOps > Limit)
3583      return false;
3584    MemOps.push_back(VT);
3585    Size -= VTSize;
3586  }
3587
3588  return true;
3589}
3590
3591void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
3592  SDOperand Op1 = getValue(I.getOperand(1));
3593  SDOperand Op2 = getValue(I.getOperand(2));
3594  SDOperand Op3 = getValue(I.getOperand(3));
3595  SDOperand Op4 = getValue(I.getOperand(4));
3596  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
3597  if (Align == 0) Align = 1;
3598
3599  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
3600    std::vector<MVT::ValueType> MemOps;
3601
3602    // Expand memset / memcpy to a series of load / store ops
3603    // if the size operand falls below a certain threshold.
3604    SmallVector<SDOperand, 8> OutChains;
3605    switch (Op) {
3606    default: break;  // Do nothing for now.
3607    case ISD::MEMSET: {
3608      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
3609                                   Size->getValue(), Align, TLI)) {
3610        unsigned NumMemOps = MemOps.size();
3611        unsigned Offset = 0;
3612        for (unsigned i = 0; i < NumMemOps; i++) {
3613          MVT::ValueType VT = MemOps[i];
3614          unsigned VTSize = getSizeInBits(VT) / 8;
3615          SDOperand Value = getMemsetValue(Op2, VT, DAG);
3616          SDOperand Store = DAG.getStore(getRoot(), Value,
3617                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
3618                                         I.getOperand(1), Offset);
3619          OutChains.push_back(Store);
3620          Offset += VTSize;
3621        }
3622      }
3623      break;
3624    }
3625    case ISD::MEMCPY: {
3626      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
3627                                   Size->getValue(), Align, TLI)) {
3628        unsigned NumMemOps = MemOps.size();
3629        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
3630        GlobalAddressSDNode *G = NULL;
3631        std::string Str;
3632        bool CopyFromStr = false;
3633
3634        if (Op2.getOpcode() == ISD::GlobalAddress)
3635          G = cast<GlobalAddressSDNode>(Op2);
3636        else if (Op2.getOpcode() == ISD::ADD &&
3637                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3638                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
3639          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
3640          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
3641        }
3642        if (G) {
3643          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3644          if (GV && GV->isConstant()) {
3645            Str = GV->getStringValue(false);
3646            if (!Str.empty()) {
3647              CopyFromStr = true;
3648              SrcOff += SrcDelta;
3649            }
3650          }
3651        }
3652
3653        for (unsigned i = 0; i < NumMemOps; i++) {
3654          MVT::ValueType VT = MemOps[i];
3655          unsigned VTSize = getSizeInBits(VT) / 8;
3656          SDOperand Value, Chain, Store;
3657
3658          if (CopyFromStr) {
3659            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3660            Chain = getRoot();
3661            Store =
3662              DAG.getStore(Chain, Value,
3663                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3664                           I.getOperand(1), DstOff);
3665          } else {
3666            Value = DAG.getLoad(VT, getRoot(),
3667                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
3668                        I.getOperand(2), SrcOff);
3669            Chain = Value.getValue(1);
3670            Store =
3671              DAG.getStore(Chain, Value,
3672                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3673                           I.getOperand(1), DstOff);
3674          }
3675          OutChains.push_back(Store);
3676          SrcOff += VTSize;
3677          DstOff += VTSize;
3678        }
3679      }
3680      break;
3681    }
3682    }
3683
3684    if (!OutChains.empty()) {
3685      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3686                  &OutChains[0], OutChains.size()));
3687      return;
3688    }
3689  }
3690
3691  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
3692}
3693
3694//===----------------------------------------------------------------------===//
3695// SelectionDAGISel code
3696//===----------------------------------------------------------------------===//
3697
3698unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
3699  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
3700}
3701
3702void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
3703  // FIXME: we only modify the CFG to split critical edges.  This
3704  // updates dom and loop info.
3705  AU.addRequired<AliasAnalysis>();
3706  AU.addRequired<LoopInfo>();
3707  AU.setPreservesAll();
3708}
3709
3710
3711/// OptimizeNoopCopyExpression - We have determined that the specified cast
3712/// instruction is a noop copy (e.g. it's casting from one pointer type to
3713/// another, int->uint, or int->sbyte on PPC.
3714///
3715/// Return true if any changes are made.
3716static bool OptimizeNoopCopyExpression(CastInst *CI) {
3717  BasicBlock *DefBB = CI->getParent();
3718
3719  /// InsertedCasts - Only insert a cast in each block once.
3720  std::map<BasicBlock*, CastInst*> InsertedCasts;
3721
3722  bool MadeChange = false;
3723  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
3724       UI != E; ) {
3725    Use &TheUse = UI.getUse();
3726    Instruction *User = cast<Instruction>(*UI);
3727
3728    // Figure out which BB this cast is used in.  For PHI's this is the
3729    // appropriate predecessor block.
3730    BasicBlock *UserBB = User->getParent();
3731    if (PHINode *PN = dyn_cast<PHINode>(User)) {
3732      unsigned OpVal = UI.getOperandNo()/2;
3733      UserBB = PN->getIncomingBlock(OpVal);
3734    }
3735
3736    // Preincrement use iterator so we don't invalidate it.
3737    ++UI;
3738
3739    // If this user is in the same block as the cast, don't change the cast.
3740    if (UserBB == DefBB) continue;
3741
3742    // If we have already inserted a cast into this block, use it.
3743    CastInst *&InsertedCast = InsertedCasts[UserBB];
3744
3745    if (!InsertedCast) {
3746      BasicBlock::iterator InsertPt = UserBB->begin();
3747      while (isa<PHINode>(InsertPt)) ++InsertPt;
3748
3749      InsertedCast =
3750        CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
3751                         InsertPt);
3752      MadeChange = true;
3753    }
3754
3755    // Replace a use of the cast with a use of the new casat.
3756    TheUse = InsertedCast;
3757  }
3758
3759  // If we removed all uses, nuke the cast.
3760  if (CI->use_empty())
3761    CI->eraseFromParent();
3762
3763  return MadeChange;
3764}
3765
3766/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
3767/// casting to the type of GEPI.
3768static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
3769                                         Instruction *GEPI, Value *Ptr,
3770                                         Value *PtrOffset) {
3771  if (V) return V;   // Already computed.
3772
3773  // Figure out the insertion point
3774  BasicBlock::iterator InsertPt;
3775  if (BB == GEPI->getParent()) {
3776    // If GEP is already inserted into BB, insert right after the GEP.
3777    InsertPt = GEPI;
3778    ++InsertPt;
3779  } else {
3780    // Otherwise, insert at the top of BB, after any PHI nodes
3781    InsertPt = BB->begin();
3782    while (isa<PHINode>(InsertPt)) ++InsertPt;
3783  }
3784
3785  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
3786  // BB so that there is only one value live across basic blocks (the cast
3787  // operand).
3788  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
3789    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
3790      Ptr = CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(),
3791                             "", InsertPt);
3792
3793  // Add the offset, cast it to the right type.
3794  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
3795  // Ptr is an integer type, GEPI is pointer type ==> IntToPtr
3796  return V = CastInst::create(Instruction::IntToPtr, Ptr, GEPI->getType(),
3797                              "", InsertPt);
3798}
3799
3800/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
3801/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
3802/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
3803/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
3804/// sink PtrOffset into user blocks where doing so will likely allow us to fold
3805/// the constant add into a load or store instruction.  Additionally, if a user
3806/// is a pointer-pointer cast, we look through it to find its users.
3807static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
3808                                 Constant *PtrOffset, BasicBlock *DefBB,
3809                                 GetElementPtrInst *GEPI,
3810                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
3811  while (!RepPtr->use_empty()) {
3812    Instruction *User = cast<Instruction>(RepPtr->use_back());
3813
3814    // If the user is a Pointer-Pointer cast, recurse. Only BitCast can be
3815    // used for a Pointer-Pointer cast.
3816    if (isa<BitCastInst>(User)) {
3817      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3818
3819      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
3820      // could invalidate an iterator.
3821      User->setOperand(0, UndefValue::get(RepPtr->getType()));
3822      continue;
3823    }
3824
3825    // If this is a load of the pointer, or a store through the pointer, emit
3826    // the increment into the load/store block.
3827    Instruction *NewVal;
3828    if (isa<LoadInst>(User) ||
3829        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
3830      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
3831                                    User->getParent(), GEPI,
3832                                    Ptr, PtrOffset);
3833    } else {
3834      // If this use is not foldable into the addressing mode, use a version
3835      // emitted in the GEP block.
3836      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
3837                                    Ptr, PtrOffset);
3838    }
3839
3840    if (GEPI->getType() != RepPtr->getType()) {
3841      BasicBlock::iterator IP = NewVal;
3842      ++IP;
3843      // NewVal must be a GEP which must be pointer type, so BitCast
3844      NewVal = new BitCastInst(NewVal, RepPtr->getType(), "", IP);
3845    }
3846    User->replaceUsesOfWith(RepPtr, NewVal);
3847  }
3848}
3849
3850
3851/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
3852/// selection, we want to be a bit careful about some things.  In particular, if
3853/// we have a GEP instruction that is used in a different block than it is
3854/// defined, the addressing expression of the GEP cannot be folded into loads or
3855/// stores that use it.  In this case, decompose the GEP and move constant
3856/// indices into blocks that use it.
3857static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
3858                                  const TargetData *TD) {
3859  // If this GEP is only used inside the block it is defined in, there is no
3860  // need to rewrite it.
3861  bool isUsedOutsideDefBB = false;
3862  BasicBlock *DefBB = GEPI->getParent();
3863  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
3864       UI != E; ++UI) {
3865    if (cast<Instruction>(*UI)->getParent() != DefBB) {
3866      isUsedOutsideDefBB = true;
3867      break;
3868    }
3869  }
3870  if (!isUsedOutsideDefBB) return false;
3871
3872  // If this GEP has no non-zero constant indices, there is nothing we can do,
3873  // ignore it.
3874  bool hasConstantIndex = false;
3875  bool hasVariableIndex = false;
3876  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3877       E = GEPI->op_end(); OI != E; ++OI) {
3878    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
3879      if (CI->getZExtValue()) {
3880        hasConstantIndex = true;
3881        break;
3882      }
3883    } else {
3884      hasVariableIndex = true;
3885    }
3886  }
3887
3888  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
3889  if (!hasConstantIndex && !hasVariableIndex) {
3890    /// The GEP operand must be a pointer, so must its result -> BitCast
3891    Value *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
3892                             GEPI->getName(), GEPI);
3893    GEPI->replaceAllUsesWith(NC);
3894    GEPI->eraseFromParent();
3895    return true;
3896  }
3897
3898  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
3899  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
3900    return false;
3901
3902  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
3903  // constant offset (which we now know is non-zero) and deal with it later.
3904  uint64_t ConstantOffset = 0;
3905  const Type *UIntPtrTy = TD->getIntPtrType();
3906  Value *Ptr = new PtrToIntInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
3907  const Type *Ty = GEPI->getOperand(0)->getType();
3908
3909  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3910       E = GEPI->op_end(); OI != E; ++OI) {
3911    Value *Idx = *OI;
3912    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
3913      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3914      if (Field)
3915        ConstantOffset += TD->getStructLayout(StTy)->getElementOffset(Field);
3916      Ty = StTy->getElementType(Field);
3917    } else {
3918      Ty = cast<SequentialType>(Ty)->getElementType();
3919
3920      // Handle constant subscripts.
3921      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3922        if (CI->getZExtValue() == 0) continue;
3923        ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CI->getSExtValue();
3924        continue;
3925      }
3926
3927      // Ptr = Ptr + Idx * ElementSize;
3928
3929      // Cast Idx to UIntPtrTy if needed.
3930      Idx = CastInst::createIntegerCast(Idx, UIntPtrTy, true/*SExt*/, "", GEPI);
3931
3932      uint64_t ElementSize = TD->getTypeSize(Ty);
3933      // Mask off bits that should not be set.
3934      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3935      Constant *SizeCst = ConstantInt::get(UIntPtrTy, ElementSize);
3936
3937      // Multiply by the element size and add to the base.
3938      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
3939      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
3940    }
3941  }
3942
3943  // Make sure that the offset fits in uintptr_t.
3944  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3945  Constant *PtrOffset = ConstantInt::get(UIntPtrTy, ConstantOffset);
3946
3947  // Okay, we have now emitted all of the variable index parts to the BB that
3948  // the GEP is defined in.  Loop over all of the using instructions, inserting
3949  // an "add Ptr, ConstantOffset" into each block that uses it and update the
3950  // instruction to use the newly computed value, making GEPI dead.  When the
3951  // user is a load or store instruction address, we emit the add into the user
3952  // block, otherwise we use a canonical version right next to the gep (these
3953  // won't be foldable as addresses, so we might as well share the computation).
3954
3955  std::map<BasicBlock*,Instruction*> InsertedExprs;
3956  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3957
3958  // Finally, the GEP is dead, remove it.
3959  GEPI->eraseFromParent();
3960
3961  return true;
3962}
3963
3964/// isLoopInvariantInst - Returns true if all operands of the instruction are
3965/// loop invariants in the specified loop.
3966static bool isLoopInvariantInst(Instruction *I, Loop *L) {
3967  // The instruction is loop invariant if all of its operands are loop-invariant
3968  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
3969    if (!L->isLoopInvariant(I->getOperand(i)))
3970      return false;
3971  return true;
3972}
3973
3974/// SinkInvariantGEPIndex - If a GEP instruction has a variable index that has
3975/// been hoisted out of the loop by LICM pass, sink it back into the use BB
3976/// if it can be determined that the index computation can be folded into the
3977/// addressing mode of the load / store uses.
3978static bool SinkInvariantGEPIndex(BinaryOperator *BinOp, LoopInfo *loopInfo,
3979                             const TargetLowering &TLI) {
3980  // Only look at Add / Sub for now.
3981  if (BinOp->getOpcode() != Instruction::Add &&
3982      BinOp->getOpcode() != Instruction::Sub)
3983    return false;
3984
3985  // DestBBs - These are the blocks where a copy of BinOp will be inserted.
3986  SmallSet<BasicBlock*, 8> DestBBs;
3987  BasicBlock *DefBB = BinOp->getParent();
3988  bool MadeChange = false;
3989  for (Value::use_iterator UI = BinOp->use_begin(), E = BinOp->use_end();
3990       UI != E; ++UI) {
3991    Instruction *User = cast<Instruction>(*UI);
3992    // Only look for GEP use in another block.
3993    if (User->getParent() == DefBB) continue;
3994
3995    if (isa<GetElementPtrInst>(User)) {
3996      BasicBlock *UserBB = User->getParent();
3997      Loop *L = loopInfo->getLoopFor(UserBB);
3998
3999      // Only sink if expression is a loop invariant in the use BB.
4000      if (L && isLoopInvariantInst(BinOp, L) && !User->use_empty()) {
4001        const Type *UseTy = NULL;
4002        // FIXME: We are assuming all the uses of the GEP will have the
4003        // same type.
4004        Instruction *GEPUser = cast<Instruction>(*User->use_begin());
4005        if (LoadInst *Load = dyn_cast<LoadInst>(GEPUser))
4006          UseTy = Load->getType();
4007        else if (StoreInst *Store = dyn_cast<StoreInst>(GEPUser))
4008          UseTy = Store->getOperand(0)->getType();
4009
4010        // Check if it is possible to fold the expression to address mode.
4011        if (UseTy &&
4012            TLI.isLegalAddressExpression(BinOp->getOpcode(),
4013                                         BinOp->getOperand(0),
4014                                         BinOp->getOperand(1), UseTy)) {
4015          DestBBs.insert(UserBB);
4016          MadeChange = true;
4017        }
4018      }
4019    }
4020  }
4021
4022  // Nothing to do.
4023  if (!MadeChange)
4024    return false;
4025
4026  /// InsertedOps - Only insert a duplicate in each block once.
4027  std::map<BasicBlock*, BinaryOperator*> InsertedOps;
4028  for (Value::use_iterator UI = BinOp->use_begin(), E = BinOp->use_end();
4029       UI != E; ) {
4030    Instruction *User = cast<Instruction>(*UI);
4031    BasicBlock *UserBB = User->getParent();
4032
4033    // Preincrement use iterator so we don't invalidate it.
4034    ++UI;
4035
4036    // If any user in this BB wants it, replace all the uses in the BB.
4037    if (DestBBs.count(UserBB)) {
4038      // Sink it into user block.
4039      BinaryOperator *&InsertedOp = InsertedOps[UserBB];
4040      if (!InsertedOp) {
4041        BasicBlock::iterator InsertPt = UserBB->begin();
4042        while (isa<PHINode>(InsertPt)) ++InsertPt;
4043
4044        InsertedOp =
4045          BinaryOperator::create(BinOp->getOpcode(), BinOp->getOperand(0),
4046                                 BinOp->getOperand(1), "", InsertPt);
4047      }
4048
4049      User->replaceUsesOfWith(BinOp, InsertedOp);
4050    }
4051  }
4052
4053  if (BinOp->use_empty())
4054      BinOp->eraseFromParent();
4055
4056  return true;
4057}
4058
4059
4060/// SplitEdgeNicely - Split the critical edge from TI to it's specified
4061/// successor if it will improve codegen.  We only do this if the successor has
4062/// phi nodes (otherwise critical edges are ok).  If there is already another
4063/// predecessor of the succ that is empty (and thus has no phi nodes), use it
4064/// instead of introducing a new block.
4065static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
4066  BasicBlock *TIBB = TI->getParent();
4067  BasicBlock *Dest = TI->getSuccessor(SuccNum);
4068  assert(isa<PHINode>(Dest->begin()) &&
4069         "This should only be called if Dest has a PHI!");
4070
4071  /// TIPHIValues - This array is lazily computed to determine the values of
4072  /// PHIs in Dest that TI would provide.
4073  std::vector<Value*> TIPHIValues;
4074
4075  // Check to see if Dest has any blocks that can be used as a split edge for
4076  // this terminator.
4077  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
4078    BasicBlock *Pred = *PI;
4079    // To be usable, the pred has to end with an uncond branch to the dest.
4080    BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
4081    if (!PredBr || !PredBr->isUnconditional() ||
4082        // Must be empty other than the branch.
4083        &Pred->front() != PredBr)
4084      continue;
4085
4086    // Finally, since we know that Dest has phi nodes in it, we have to make
4087    // sure that jumping to Pred will have the same affect as going to Dest in
4088    // terms of PHI values.
4089    PHINode *PN;
4090    unsigned PHINo = 0;
4091    bool FoundMatch = true;
4092    for (BasicBlock::iterator I = Dest->begin();
4093         (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
4094      if (PHINo == TIPHIValues.size())
4095        TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
4096
4097      // If the PHI entry doesn't work, we can't use this pred.
4098      if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
4099        FoundMatch = false;
4100        break;
4101      }
4102    }
4103
4104    // If we found a workable predecessor, change TI to branch to Succ.
4105    if (FoundMatch) {
4106      Dest->removePredecessor(TIBB);
4107      TI->setSuccessor(SuccNum, Pred);
4108      return;
4109    }
4110  }
4111
4112  SplitCriticalEdge(TI, SuccNum, P, true);
4113}
4114
4115
4116bool SelectionDAGISel::runOnFunction(Function &Fn) {
4117  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4118  RegMap = MF.getSSARegMap();
4119  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4120
4121  LoopInfo *loopInfo = &getAnalysis<LoopInfo>();
4122
4123  // First, split all critical edges.
4124  //
4125  // In this pass we also look for GEP and cast instructions that are used
4126  // across basic blocks and rewrite them to improve basic-block-at-a-time
4127  // selection.
4128  //
4129  bool MadeChange = true;
4130  while (MadeChange) {
4131    MadeChange = false;
4132  for (Function::iterator FNI = Fn.begin(), E = Fn.end(); FNI != E; ++FNI) {
4133    // Split all critical edges where the dest block has a PHI.
4134    TerminatorInst *BBTI = FNI->getTerminator();
4135    if (BBTI->getNumSuccessors() > 1) {
4136      for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
4137        if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
4138            isCriticalEdge(BBTI, i, true))
4139          SplitEdgeNicely(BBTI, i, this);
4140    }
4141
4142
4143    for (BasicBlock::iterator BBI = FNI->begin(), E = FNI->end(); BBI != E; ) {
4144      Instruction *I = BBI++;
4145
4146      if (CallInst *CI = dyn_cast<CallInst>(I)) {
4147        // If we found an inline asm expession, and if the target knows how to
4148        // lower it to normal LLVM code, do so now.
4149        if (isa<InlineAsm>(CI->getCalledValue()))
4150          if (const TargetAsmInfo *TAI =
4151                TLI.getTargetMachine().getTargetAsmInfo()) {
4152            if (TAI->ExpandInlineAsm(CI))
4153              BBI = FNI->begin();
4154          }
4155      } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
4156        MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
4157      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
4158        // If the source of the cast is a constant, then this should have
4159        // already been constant folded.  The only reason NOT to constant fold
4160        // it is if something (e.g. LSR) was careful to place the constant
4161        // evaluation in a block other than then one that uses it (e.g. to hoist
4162        // the address of globals out of a loop).  If this is the case, we don't
4163        // want to forward-subst the cast.
4164        if (isa<Constant>(CI->getOperand(0)))
4165          continue;
4166
4167        // If this is a noop copy, sink it into user blocks to reduce the number
4168        // of virtual registers that must be created and coallesced.
4169        MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
4170        MVT::ValueType DstVT = TLI.getValueType(CI->getType());
4171
4172        // This is an fp<->int conversion?
4173        if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
4174          continue;
4175
4176        // If this is an extension, it will be a zero or sign extension, which
4177        // isn't a noop.
4178        if (SrcVT < DstVT) continue;
4179
4180        // If these values will be promoted, find out what they will be promoted
4181        // to.  This helps us consider truncates on PPC as noop copies when they
4182        // are.
4183        if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
4184          SrcVT = TLI.getTypeToTransformTo(SrcVT);
4185        if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
4186          DstVT = TLI.getTypeToTransformTo(DstVT);
4187
4188        // If, after promotion, these are the same types, this is a noop copy.
4189        if (SrcVT == DstVT)
4190          MadeChange |= OptimizeNoopCopyExpression(CI);
4191      } else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I)) {
4192        MadeChange |= SinkInvariantGEPIndex(BinOp, loopInfo, TLI);
4193      }
4194    }
4195  }
4196  }
4197
4198  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4199
4200  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4201    SelectBasicBlock(I, MF, FuncInfo);
4202
4203  // Add function live-ins to entry block live-in set.
4204  BasicBlock *EntryBB = &Fn.getEntryBlock();
4205  BB = FuncInfo.MBBMap[EntryBB];
4206  if (!MF.livein_empty())
4207    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4208           E = MF.livein_end(); I != E; ++I)
4209      BB->addLiveIn(I->first);
4210
4211  return true;
4212}
4213
4214SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4215                                                           unsigned Reg) {
4216  SDOperand Op = getValue(V);
4217  assert((Op.getOpcode() != ISD::CopyFromReg ||
4218          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4219         "Copy from a reg to the same reg!");
4220
4221  // If this type is not legal, we must make sure to not create an invalid
4222  // register use.
4223  MVT::ValueType SrcVT = Op.getValueType();
4224  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
4225  if (SrcVT == DestVT) {
4226    return DAG.getCopyToReg(getRoot(), Reg, Op);
4227  } else if (SrcVT == MVT::Vector) {
4228    // Handle copies from generic vectors to registers.
4229    MVT::ValueType PTyElementVT, PTyLegalElementVT;
4230    unsigned NE = TLI.getVectorTypeBreakdown(cast<VectorType>(V->getType()),
4231                                             PTyElementVT, PTyLegalElementVT);
4232
4233    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
4234    // MVT::Vector type.
4235    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
4236                     DAG.getConstant(NE, MVT::i32),
4237                     DAG.getValueType(PTyElementVT));
4238
4239    // Loop over all of the elements of the resultant vector,
4240    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
4241    // copying them into output registers.
4242    SmallVector<SDOperand, 8> OutChains;
4243    SDOperand Root = getRoot();
4244    for (unsigned i = 0; i != NE; ++i) {
4245      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
4246                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
4247      if (PTyElementVT == PTyLegalElementVT) {
4248        // Elements are legal.
4249        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
4250      } else if (PTyLegalElementVT > PTyElementVT) {
4251        // Elements are promoted.
4252        if (MVT::isFloatingPoint(PTyLegalElementVT))
4253          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
4254        else
4255          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
4256        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
4257      } else {
4258        // Elements are expanded.
4259        // The src value is expanded into multiple registers.
4260        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
4261                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
4262        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
4263                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
4264        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
4265        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
4266      }
4267    }
4268    return DAG.getNode(ISD::TokenFactor, MVT::Other,
4269                       &OutChains[0], OutChains.size());
4270  } else if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) {
4271    // The src value is promoted to the register.
4272    if (MVT::isFloatingPoint(SrcVT))
4273      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
4274    else
4275      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
4276    return DAG.getCopyToReg(getRoot(), Reg, Op);
4277  } else  {
4278    DestVT = TLI.getTypeToExpandTo(SrcVT);
4279    unsigned NumVals = TLI.getNumElements(SrcVT);
4280    if (NumVals == 1)
4281      return DAG.getCopyToReg(getRoot(), Reg,
4282                              DAG.getNode(ISD::BIT_CONVERT, DestVT, Op));
4283    assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
4284    // The src value is expanded into multiple registers.
4285    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
4286                               Op, DAG.getConstant(0, TLI.getPointerTy()));
4287    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
4288                               Op, DAG.getConstant(1, TLI.getPointerTy()));
4289    Op = DAG.getCopyToReg(getRoot(), Reg, Lo);
4290    return DAG.getCopyToReg(Op, Reg+1, Hi);
4291  }
4292}
4293
4294void SelectionDAGISel::
4295LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4296               std::vector<SDOperand> &UnorderedChains) {
4297  // If this is the entry block, emit arguments.
4298  Function &F = *LLVMBB->getParent();
4299  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4300  SDOperand OldRoot = SDL.DAG.getRoot();
4301  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4302
4303  unsigned a = 0;
4304  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4305       AI != E; ++AI, ++a)
4306    if (!AI->use_empty()) {
4307      SDL.setValue(AI, Args[a]);
4308
4309      // If this argument is live outside of the entry block, insert a copy from
4310      // whereever we got it to the vreg that other BB's will reference it as.
4311      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4312      if (VMI != FuncInfo.ValueMap.end()) {
4313        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4314        UnorderedChains.push_back(Copy);
4315      }
4316    }
4317
4318  // Finally, if the target has anything special to do, allow it to do so.
4319  // FIXME: this should insert code into the DAG!
4320  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4321}
4322
4323void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4324       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4325                                         FunctionLoweringInfo &FuncInfo) {
4326  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
4327
4328  std::vector<SDOperand> UnorderedChains;
4329
4330  // Lower any arguments needed in this block if this is the entry block.
4331  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4332    LowerArguments(LLVMBB, SDL, UnorderedChains);
4333
4334  BB = FuncInfo.MBBMap[LLVMBB];
4335  SDL.setCurrentBasicBlock(BB);
4336
4337  // Lower all of the non-terminator instructions.
4338  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4339       I != E; ++I)
4340    SDL.visit(*I);
4341
4342  // Lower call part of invoke.
4343  InvokeInst *Invoke = dyn_cast<InvokeInst>(LLVMBB->getTerminator());
4344  if (Invoke) SDL.visitInvoke(*Invoke, false);
4345
4346  // Ensure that all instructions which are used outside of their defining
4347  // blocks are available as virtual registers.
4348  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4349    if (!I->use_empty() && !isa<PHINode>(I)) {
4350      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4351      if (VMI != FuncInfo.ValueMap.end())
4352        UnorderedChains.push_back(
4353                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4354    }
4355
4356  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4357  // ensure constants are generated when needed.  Remember the virtual registers
4358  // that need to be added to the Machine PHI nodes as input.  We cannot just
4359  // directly add them, because expansion might result in multiple MBB's for one
4360  // BB.  As such, the start of the BB might correspond to a different MBB than
4361  // the end.
4362  //
4363  TerminatorInst *TI = LLVMBB->getTerminator();
4364
4365  // Emit constants only once even if used by multiple PHI nodes.
4366  std::map<Constant*, unsigned> ConstantsOut;
4367
4368  // Vector bool would be better, but vector<bool> is really slow.
4369  std::vector<unsigned char> SuccsHandled;
4370  if (TI->getNumSuccessors())
4371    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4372
4373  // Check successor nodes PHI nodes that expect a constant to be available from
4374  // this block.
4375  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4376    BasicBlock *SuccBB = TI->getSuccessor(succ);
4377    if (!isa<PHINode>(SuccBB->begin())) continue;
4378    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4379
4380    // If this terminator has multiple identical successors (common for
4381    // switches), only handle each succ once.
4382    unsigned SuccMBBNo = SuccMBB->getNumber();
4383    if (SuccsHandled[SuccMBBNo]) continue;
4384    SuccsHandled[SuccMBBNo] = true;
4385
4386    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4387    PHINode *PN;
4388
4389    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4390    // nodes and Machine PHI nodes, but the incoming operands have not been
4391    // emitted yet.
4392    for (BasicBlock::iterator I = SuccBB->begin();
4393         (PN = dyn_cast<PHINode>(I)); ++I) {
4394      // Ignore dead phi's.
4395      if (PN->use_empty()) continue;
4396
4397      unsigned Reg;
4398      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4399
4400      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4401        unsigned &RegOut = ConstantsOut[C];
4402        if (RegOut == 0) {
4403          RegOut = FuncInfo.CreateRegForValue(C);
4404          UnorderedChains.push_back(
4405                           SDL.CopyValueToVirtualRegister(C, RegOut));
4406        }
4407        Reg = RegOut;
4408      } else {
4409        Reg = FuncInfo.ValueMap[PHIOp];
4410        if (Reg == 0) {
4411          assert(isa<AllocaInst>(PHIOp) &&
4412                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4413                 "Didn't codegen value into a register!??");
4414          Reg = FuncInfo.CreateRegForValue(PHIOp);
4415          UnorderedChains.push_back(
4416                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4417        }
4418      }
4419
4420      // Remember that this register needs to added to the machine PHI node as
4421      // the input for this MBB.
4422      MVT::ValueType VT = TLI.getValueType(PN->getType());
4423      unsigned NumElements;
4424      if (VT != MVT::Vector)
4425        NumElements = TLI.getNumElements(VT);
4426      else {
4427        MVT::ValueType VT1,VT2;
4428        NumElements =
4429          TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
4430                                     VT1, VT2);
4431      }
4432      for (unsigned i = 0, e = NumElements; i != e; ++i)
4433        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4434    }
4435  }
4436  ConstantsOut.clear();
4437
4438  // Turn all of the unordered chains into one factored node.
4439  if (!UnorderedChains.empty()) {
4440    SDOperand Root = SDL.getRoot();
4441    if (Root.getOpcode() != ISD::EntryToken) {
4442      unsigned i = 0, e = UnorderedChains.size();
4443      for (; i != e; ++i) {
4444        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4445        if (UnorderedChains[i].Val->getOperand(0) == Root)
4446          break;  // Don't add the root if we already indirectly depend on it.
4447      }
4448
4449      if (i == e)
4450        UnorderedChains.push_back(Root);
4451    }
4452    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4453                            &UnorderedChains[0], UnorderedChains.size()));
4454  }
4455
4456  // Lower the terminator after the copies are emitted.
4457  if (Invoke) {
4458    // Just the branch part of invoke.
4459    SDL.visitInvoke(*Invoke, true);
4460  } else {
4461    SDL.visit(*LLVMBB->getTerminator());
4462  }
4463
4464  // Copy over any CaseBlock records that may now exist due to SwitchInst
4465  // lowering, as well as any jump table information.
4466  SwitchCases.clear();
4467  SwitchCases = SDL.SwitchCases;
4468  JT = SDL.JT;
4469
4470  // Make sure the root of the DAG is up-to-date.
4471  DAG.setRoot(SDL.getRoot());
4472}
4473
4474void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4475  // Get alias analysis for load/store combining.
4476  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4477
4478  // Run the DAG combiner in pre-legalize mode.
4479  DAG.Combine(false, AA);
4480
4481  DOUT << "Lowered selection DAG:\n";
4482  DEBUG(DAG.dump());
4483
4484  // Second step, hack on the DAG until it only uses operations and types that
4485  // the target supports.
4486  DAG.Legalize();
4487
4488  DOUT << "Legalized selection DAG:\n";
4489  DEBUG(DAG.dump());
4490
4491  // Run the DAG combiner in post-legalize mode.
4492  DAG.Combine(true, AA);
4493
4494  if (ViewISelDAGs) DAG.viewGraph();
4495
4496  // Third, instruction select all of the operations to machine code, adding the
4497  // code to the MachineBasicBlock.
4498  InstructionSelectBasicBlock(DAG);
4499
4500  DOUT << "Selected machine code:\n";
4501  DEBUG(BB->dump());
4502}
4503
4504void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4505                                        FunctionLoweringInfo &FuncInfo) {
4506  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4507  {
4508    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4509    CurDAG = &DAG;
4510
4511    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4512    // types that are not supported by the target.
4513    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4514
4515    // Second step, emit the lowered DAG as machine code.
4516    CodeGenAndEmitDAG(DAG);
4517  }
4518
4519  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4520  // PHI nodes in successors.
4521  if (SwitchCases.empty() && JT.Reg == 0) {
4522    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4523      MachineInstr *PHI = PHINodesToUpdate[i].first;
4524      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4525             "This is not a machine PHI node that we are updating!");
4526      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4527      PHI->addMachineBasicBlockOperand(BB);
4528    }
4529    return;
4530  }
4531
4532  // If the JumpTable record is filled in, then we need to emit a jump table.
4533  // Updating the PHI nodes is tricky in this case, since we need to determine
4534  // whether the PHI is a successor of the range check MBB or the jump table MBB
4535  if (JT.Reg) {
4536    assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
4537    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4538    CurDAG = &SDAG;
4539    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4540    MachineBasicBlock *RangeBB = BB;
4541    // Set the current basic block to the mbb we wish to insert the code into
4542    BB = JT.MBB;
4543    SDL.setCurrentBasicBlock(BB);
4544    // Emit the code
4545    SDL.visitJumpTable(JT);
4546    SDAG.setRoot(SDL.getRoot());
4547    CodeGenAndEmitDAG(SDAG);
4548    // Update PHI Nodes
4549    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4550      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4551      MachineBasicBlock *PHIBB = PHI->getParent();
4552      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4553             "This is not a machine PHI node that we are updating!");
4554      if (PHIBB == JT.Default) {
4555        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4556        PHI->addMachineBasicBlockOperand(RangeBB);
4557      }
4558      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4559        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4560        PHI->addMachineBasicBlockOperand(BB);
4561      }
4562    }
4563    return;
4564  }
4565
4566  // If the switch block involved a branch to one of the actual successors, we
4567  // need to update PHI nodes in that block.
4568  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4569    MachineInstr *PHI = PHINodesToUpdate[i].first;
4570    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4571           "This is not a machine PHI node that we are updating!");
4572    if (BB->isSuccessor(PHI->getParent())) {
4573      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4574      PHI->addMachineBasicBlockOperand(BB);
4575    }
4576  }
4577
4578  // If we generated any switch lowering information, build and codegen any
4579  // additional DAGs necessary.
4580  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4581    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4582    CurDAG = &SDAG;
4583    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4584
4585    // Set the current basic block to the mbb we wish to insert the code into
4586    BB = SwitchCases[i].ThisBB;
4587    SDL.setCurrentBasicBlock(BB);
4588
4589    // Emit the code
4590    SDL.visitSwitchCase(SwitchCases[i]);
4591    SDAG.setRoot(SDL.getRoot());
4592    CodeGenAndEmitDAG(SDAG);
4593
4594    // Handle any PHI nodes in successors of this chunk, as if we were coming
4595    // from the original BB before switch expansion.  Note that PHI nodes can
4596    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4597    // handle them the right number of times.
4598    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4599      for (MachineBasicBlock::iterator Phi = BB->begin();
4600           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4601        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4602        for (unsigned pn = 0; ; ++pn) {
4603          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4604          if (PHINodesToUpdate[pn].first == Phi) {
4605            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4606            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4607            break;
4608          }
4609        }
4610      }
4611
4612      // Don't process RHS if same block as LHS.
4613      if (BB == SwitchCases[i].FalseBB)
4614        SwitchCases[i].FalseBB = 0;
4615
4616      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4617      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4618      SwitchCases[i].FalseBB = 0;
4619    }
4620    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4621  }
4622}
4623
4624
4625//===----------------------------------------------------------------------===//
4626/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4627/// target node in the graph.
4628void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4629  if (ViewSchedDAGs) DAG.viewGraph();
4630
4631  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4632
4633  if (!Ctor) {
4634    Ctor = ISHeuristic;
4635    RegisterScheduler::setDefault(Ctor);
4636  }
4637
4638  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4639  BB = SL->Run();
4640  delete SL;
4641}
4642
4643
4644HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4645  return new HazardRecognizer();
4646}
4647
4648//===----------------------------------------------------------------------===//
4649// Helper functions used by the generated instruction selector.
4650//===----------------------------------------------------------------------===//
4651// Calls to these methods are generated by tblgen.
4652
4653/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4654/// the dag combiner simplified the 255, we still want to match.  RHS is the
4655/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4656/// specified in the .td file (e.g. 255).
4657bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4658                                    int64_t DesiredMaskS) {
4659  uint64_t ActualMask = RHS->getValue();
4660  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4661
4662  // If the actual mask exactly matches, success!
4663  if (ActualMask == DesiredMask)
4664    return true;
4665
4666  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4667  if (ActualMask & ~DesiredMask)
4668    return false;
4669
4670  // Otherwise, the DAG Combiner may have proven that the value coming in is
4671  // either already zero or is not demanded.  Check for known zero input bits.
4672  uint64_t NeededMask = DesiredMask & ~ActualMask;
4673  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
4674    return true;
4675
4676  // TODO: check to see if missing bits are just not demanded.
4677
4678  // Otherwise, this pattern doesn't match.
4679  return false;
4680}
4681
4682/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4683/// the dag combiner simplified the 255, we still want to match.  RHS is the
4684/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4685/// specified in the .td file (e.g. 255).
4686bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4687                                    int64_t DesiredMaskS) {
4688  uint64_t ActualMask = RHS->getValue();
4689  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4690
4691  // If the actual mask exactly matches, success!
4692  if (ActualMask == DesiredMask)
4693    return true;
4694
4695  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4696  if (ActualMask & ~DesiredMask)
4697    return false;
4698
4699  // Otherwise, the DAG Combiner may have proven that the value coming in is
4700  // either already zero or is not demanded.  Check for known zero input bits.
4701  uint64_t NeededMask = DesiredMask & ~ActualMask;
4702
4703  uint64_t KnownZero, KnownOne;
4704  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4705
4706  // If all the missing bits in the or are already known to be set, match!
4707  if ((NeededMask & KnownOne) == NeededMask)
4708    return true;
4709
4710  // TODO: check to see if missing bits are just not demanded.
4711
4712  // Otherwise, this pattern doesn't match.
4713  return false;
4714}
4715
4716
4717/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4718/// by tblgen.  Others should not call it.
4719void SelectionDAGISel::
4720SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4721  std::vector<SDOperand> InOps;
4722  std::swap(InOps, Ops);
4723
4724  Ops.push_back(InOps[0]);  // input chain.
4725  Ops.push_back(InOps[1]);  // input asm string.
4726
4727  unsigned i = 2, e = InOps.size();
4728  if (InOps[e-1].getValueType() == MVT::Flag)
4729    --e;  // Don't process a flag operand if it is here.
4730
4731  while (i != e) {
4732    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4733    if ((Flags & 7) != 4 /*MEM*/) {
4734      // Just skip over this operand, copying the operands verbatim.
4735      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4736      i += (Flags >> 3) + 1;
4737    } else {
4738      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4739      // Otherwise, this is a memory operand.  Ask the target to select it.
4740      std::vector<SDOperand> SelOps;
4741      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4742        cerr << "Could not match memory address.  Inline asm failure!\n";
4743        exit(1);
4744      }
4745
4746      // Add this to the output node.
4747      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4748                                          MVT::i32));
4749      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4750      i += 2;
4751    }
4752  }
4753
4754  // Add the flag input back if present.
4755  if (e != InOps.size())
4756    Ops.push_back(InOps.back());
4757}
4758