SelectionDAGISel.cpp revision 4477d691ed9fa63f051986dcb98e358054c8281f
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/DebugInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/Module.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/GCStrategy.h"
32#include "llvm/CodeGen/GCMetadata.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39#include "llvm/CodeGen/SchedulerRegistry.h"
40#include "llvm/CodeGen/SelectionDAG.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetIntrinsicInfo.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLowering.h"
45#include "llvm/Target/TargetMachine.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/Transforms/Utils/BasicBlockUtils.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/Timer.h"
52#include "llvm/Support/raw_ostream.h"
53#include "llvm/ADT/PostOrderIterator.h"
54#include "llvm/ADT/Statistic.h"
55#include <algorithm>
56using namespace llvm;
57
58STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
59STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
60STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
61STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
62STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
63
64static cl::opt<bool>
65EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
66          cl::desc("Enable verbose messages in the \"fast\" "
67                   "instruction selector"));
68static cl::opt<bool>
69EnableFastISelAbort("fast-isel-abort", cl::Hidden,
70          cl::desc("Enable abort calls when \"fast\" instruction fails"));
71
72static cl::opt<bool>
73UseMBPI("use-mbpi",
74        cl::desc("use Machine Branch Probability Info"),
75        cl::init(true), cl::Hidden);
76
77#ifndef NDEBUG
78static cl::opt<bool>
79ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
80          cl::desc("Pop up a window to show dags before the first "
81                   "dag combine pass"));
82static cl::opt<bool>
83ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize types"));
85static cl::opt<bool>
86ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before legalize"));
88static cl::opt<bool>
89ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
90          cl::desc("Pop up a window to show dags before the second "
91                   "dag combine pass"));
92static cl::opt<bool>
93ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
94          cl::desc("Pop up a window to show dags before the post legalize types"
95                   " dag combine pass"));
96static cl::opt<bool>
97ViewISelDAGs("view-isel-dags", cl::Hidden,
98          cl::desc("Pop up a window to show isel dags as they are selected"));
99static cl::opt<bool>
100ViewSchedDAGs("view-sched-dags", cl::Hidden,
101          cl::desc("Pop up a window to show sched dags as they are processed"));
102static cl::opt<bool>
103ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
104      cl::desc("Pop up a window to show SUnit dags after they are processed"));
105#else
106static const bool ViewDAGCombine1 = false,
107                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
108                  ViewDAGCombine2 = false,
109                  ViewDAGCombineLT = false,
110                  ViewISelDAGs = false, ViewSchedDAGs = false,
111                  ViewSUnitDAGs = false;
112#endif
113
114//===---------------------------------------------------------------------===//
115///
116/// RegisterScheduler class - Track the registration of instruction schedulers.
117///
118//===---------------------------------------------------------------------===//
119MachinePassRegistry RegisterScheduler::Registry;
120
121//===---------------------------------------------------------------------===//
122///
123/// ISHeuristic command line option for instruction schedulers.
124///
125//===---------------------------------------------------------------------===//
126static cl::opt<RegisterScheduler::FunctionPassCtor, false,
127               RegisterPassParser<RegisterScheduler> >
128ISHeuristic("pre-RA-sched",
129            cl::init(&createDefaultScheduler),
130            cl::desc("Instruction schedulers available (before register"
131                     " allocation):"));
132
133static RegisterScheduler
134defaultListDAGScheduler("default", "Best scheduler for the target",
135                        createDefaultScheduler);
136
137namespace llvm {
138  //===--------------------------------------------------------------------===//
139  /// createDefaultScheduler - This creates an instruction scheduler appropriate
140  /// for the target.
141  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
142                                             CodeGenOpt::Level OptLevel) {
143    const TargetLowering &TLI = IS->getTargetLowering();
144
145    if (OptLevel == CodeGenOpt::None)
146      return createSourceListDAGScheduler(IS, OptLevel);
147    if (TLI.getSchedulingPreference() == Sched::Latency)
148      return createTDListDAGScheduler(IS, OptLevel);
149    if (TLI.getSchedulingPreference() == Sched::RegPressure)
150      return createBURRListDAGScheduler(IS, OptLevel);
151    if (TLI.getSchedulingPreference() == Sched::Hybrid)
152      return createHybridListDAGScheduler(IS, OptLevel);
153    assert(TLI.getSchedulingPreference() == Sched::ILP &&
154           "Unknown sched type!");
155    return createILPListDAGScheduler(IS, OptLevel);
156  }
157}
158
159// EmitInstrWithCustomInserter - This method should be implemented by targets
160// that mark instructions with the 'usesCustomInserter' flag.  These
161// instructions are special in various ways, which require special support to
162// insert.  The specified MachineInstr is created but not inserted into any
163// basic blocks, and this method is called to expand it into a sequence of
164// instructions, potentially also creating new basic blocks and control flow.
165// When new basic blocks are inserted and the edges from MBB to its successors
166// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
167// DenseMap.
168MachineBasicBlock *
169TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
170                                            MachineBasicBlock *MBB) const {
171#ifndef NDEBUG
172  dbgs() << "If a target marks an instruction with "
173          "'usesCustomInserter', it must implement "
174          "TargetLowering::EmitInstrWithCustomInserter!";
175#endif
176  llvm_unreachable(0);
177  return 0;
178}
179
180//===----------------------------------------------------------------------===//
181// SelectionDAGISel code
182//===----------------------------------------------------------------------===//
183
184SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
185                                   CodeGenOpt::Level OL) :
186  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
187  FuncInfo(new FunctionLoweringInfo(TLI)),
188  CurDAG(new SelectionDAG(tm)),
189  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
190  GFI(),
191  OptLevel(OL),
192  DAGSize(0) {
193    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
194    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
195    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
196  }
197
198SelectionDAGISel::~SelectionDAGISel() {
199  delete SDB;
200  delete CurDAG;
201  delete FuncInfo;
202}
203
204void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
205  AU.addRequired<AliasAnalysis>();
206  AU.addPreserved<AliasAnalysis>();
207  AU.addRequired<GCModuleInfo>();
208  AU.addPreserved<GCModuleInfo>();
209  if (UseMBPI && OptLevel != CodeGenOpt::None)
210    AU.addRequired<BranchProbabilityInfo>();
211  MachineFunctionPass::getAnalysisUsage(AU);
212}
213
214/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
215/// may trap on it.  In this case we have to split the edge so that the path
216/// through the predecessor block that doesn't go to the phi block doesn't
217/// execute the possibly trapping instruction.
218///
219/// This is required for correctness, so it must be done at -O0.
220///
221static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
222  // Loop for blocks with phi nodes.
223  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
224    PHINode *PN = dyn_cast<PHINode>(BB->begin());
225    if (PN == 0) continue;
226
227  ReprocessBlock:
228    // For each block with a PHI node, check to see if any of the input values
229    // are potentially trapping constant expressions.  Constant expressions are
230    // the only potentially trapping value that can occur as the argument to a
231    // PHI.
232    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
233      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
234        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
235        if (CE == 0 || !CE->canTrap()) continue;
236
237        // The only case we have to worry about is when the edge is critical.
238        // Since this block has a PHI Node, we assume it has multiple input
239        // edges: check to see if the pred has multiple successors.
240        BasicBlock *Pred = PN->getIncomingBlock(i);
241        if (Pred->getTerminator()->getNumSuccessors() == 1)
242          continue;
243
244        // Okay, we have to split this edge.
245        SplitCriticalEdge(Pred->getTerminator(),
246                          GetSuccessorNumber(Pred, BB), SDISel, true);
247        goto ReprocessBlock;
248      }
249  }
250}
251
252bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
253  // Do some sanity-checking on the command-line options.
254  assert((!EnableFastISelVerbose || EnableFastISel) &&
255         "-fast-isel-verbose requires -fast-isel");
256  assert((!EnableFastISelAbort || EnableFastISel) &&
257         "-fast-isel-abort requires -fast-isel");
258
259  const Function &Fn = *mf.getFunction();
260  const TargetInstrInfo &TII = *TM.getInstrInfo();
261  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
262
263  MF = &mf;
264  RegInfo = &MF->getRegInfo();
265  AA = &getAnalysis<AliasAnalysis>();
266  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
267
268  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
269
270  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
271
272  CurDAG->init(*MF);
273  FuncInfo->set(Fn, *MF);
274
275  if (UseMBPI && OptLevel != CodeGenOpt::None)
276    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
277  else
278    FuncInfo->BPI = 0;
279
280  SDB->init(GFI, *AA);
281
282  SelectAllBasicBlocks(Fn);
283
284  // If the first basic block in the function has live ins that need to be
285  // copied into vregs, emit the copies into the top of the block before
286  // emitting the code for the block.
287  MachineBasicBlock *EntryMBB = MF->begin();
288  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
289
290  DenseMap<unsigned, unsigned> LiveInMap;
291  if (!FuncInfo->ArgDbgValues.empty())
292    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
293           E = RegInfo->livein_end(); LI != E; ++LI)
294      if (LI->second)
295        LiveInMap.insert(std::make_pair(LI->first, LI->second));
296
297  // Insert DBG_VALUE instructions for function arguments to the entry block.
298  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
299    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
300    unsigned Reg = MI->getOperand(0).getReg();
301    if (TargetRegisterInfo::isPhysicalRegister(Reg))
302      EntryMBB->insert(EntryMBB->begin(), MI);
303    else {
304      MachineInstr *Def = RegInfo->getVRegDef(Reg);
305      MachineBasicBlock::iterator InsertPos = Def;
306      // FIXME: VR def may not be in entry block.
307      Def->getParent()->insert(llvm::next(InsertPos), MI);
308    }
309
310    // If Reg is live-in then update debug info to track its copy in a vreg.
311    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
312    if (LDI != LiveInMap.end()) {
313      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
314      MachineBasicBlock::iterator InsertPos = Def;
315      const MDNode *Variable =
316        MI->getOperand(MI->getNumOperands()-1).getMetadata();
317      unsigned Offset = MI->getOperand(1).getImm();
318      // Def is never a terminator here, so it is ok to increment InsertPos.
319      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
320              TII.get(TargetOpcode::DBG_VALUE))
321        .addReg(LDI->second, RegState::Debug)
322        .addImm(Offset).addMetadata(Variable);
323
324      // If this vreg is directly copied into an exported register then
325      // that COPY instructions also need DBG_VALUE, if it is the only
326      // user of LDI->second.
327      MachineInstr *CopyUseMI = NULL;
328      for (MachineRegisterInfo::use_iterator
329             UI = RegInfo->use_begin(LDI->second);
330           MachineInstr *UseMI = UI.skipInstruction();) {
331        if (UseMI->isDebugValue()) continue;
332        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
333          CopyUseMI = UseMI; continue;
334        }
335        // Otherwise this is another use or second copy use.
336        CopyUseMI = NULL; break;
337      }
338      if (CopyUseMI) {
339        MachineInstr *NewMI =
340          BuildMI(*MF, CopyUseMI->getDebugLoc(),
341                  TII.get(TargetOpcode::DBG_VALUE))
342          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
343          .addImm(Offset).addMetadata(Variable);
344        EntryMBB->insertAfter(CopyUseMI, NewMI);
345      }
346    }
347  }
348
349  // Determine if there are any calls in this machine function.
350  MachineFrameInfo *MFI = MF->getFrameInfo();
351  if (!MFI->hasCalls()) {
352    for (MachineFunction::const_iterator
353           I = MF->begin(), E = MF->end(); I != E; ++I) {
354      const MachineBasicBlock *MBB = I;
355      for (MachineBasicBlock::const_iterator
356             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
357        const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
358
359        if ((MCID.isCall() && !MCID.isReturn()) ||
360            II->isStackAligningInlineAsm()) {
361          MFI->setHasCalls(true);
362          goto done;
363        }
364      }
365    }
366  done:;
367  }
368
369  // Determine if there is a call to setjmp in the machine function.
370  MF->setCallsSetJmp(Fn.callsFunctionThatReturnsTwice());
371
372  // Replace forward-declared registers with the registers containing
373  // the desired value.
374  MachineRegisterInfo &MRI = MF->getRegInfo();
375  for (DenseMap<unsigned, unsigned>::iterator
376       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
377       I != E; ++I) {
378    unsigned From = I->first;
379    unsigned To = I->second;
380    // If To is also scheduled to be replaced, find what its ultimate
381    // replacement is.
382    for (;;) {
383      DenseMap<unsigned, unsigned>::iterator J =
384        FuncInfo->RegFixups.find(To);
385      if (J == E) break;
386      To = J->second;
387    }
388    // Replace it.
389    MRI.replaceRegWith(From, To);
390  }
391
392  // Release function-specific state. SDB and CurDAG are already cleared
393  // at this point.
394  FuncInfo->clear();
395
396  return true;
397}
398
399void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
400                                        BasicBlock::const_iterator End,
401                                        bool &HadTailCall) {
402  // Lower all of the non-terminator instructions. If a call is emitted
403  // as a tail call, cease emitting nodes for this block. Terminators
404  // are handled below.
405  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
406    SDB->visit(*I);
407
408  // Make sure the root of the DAG is up-to-date.
409  CurDAG->setRoot(SDB->getControlRoot());
410  HadTailCall = SDB->HasTailCall;
411  SDB->clear();
412
413  // Final step, emit the lowered DAG as machine code.
414  CodeGenAndEmitDAG();
415}
416
417void SelectionDAGISel::ComputeLiveOutVRegInfo() {
418  SmallPtrSet<SDNode*, 128> VisitedNodes;
419  SmallVector<SDNode*, 128> Worklist;
420
421  Worklist.push_back(CurDAG->getRoot().getNode());
422
423  APInt Mask;
424  APInt KnownZero;
425  APInt KnownOne;
426
427  do {
428    SDNode *N = Worklist.pop_back_val();
429
430    // If we've already seen this node, ignore it.
431    if (!VisitedNodes.insert(N))
432      continue;
433
434    // Otherwise, add all chain operands to the worklist.
435    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
436      if (N->getOperand(i).getValueType() == MVT::Other)
437        Worklist.push_back(N->getOperand(i).getNode());
438
439    // If this is a CopyToReg with a vreg dest, process it.
440    if (N->getOpcode() != ISD::CopyToReg)
441      continue;
442
443    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
444    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
445      continue;
446
447    // Ignore non-scalar or non-integer values.
448    SDValue Src = N->getOperand(2);
449    EVT SrcVT = Src.getValueType();
450    if (!SrcVT.isInteger() || SrcVT.isVector())
451      continue;
452
453    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
454    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
455    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
456    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
457  } while (!Worklist.empty());
458}
459
460void SelectionDAGISel::CodeGenAndEmitDAG() {
461  std::string GroupName;
462  if (TimePassesIsEnabled)
463    GroupName = "Instruction Selection and Scheduling";
464  std::string BlockName;
465  int BlockNumber = -1;
466  (void)BlockNumber;
467#ifdef NDEBUG
468  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
469      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
470      ViewSUnitDAGs)
471#endif
472  {
473    BlockNumber = FuncInfo->MBB->getNumber();
474    BlockName = MF->getFunction()->getNameStr() + ":" +
475                FuncInfo->MBB->getBasicBlock()->getNameStr();
476  }
477  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
478        << " '" << BlockName << "'\n"; CurDAG->dump());
479
480  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
481
482  // Run the DAG combiner in pre-legalize mode.
483  {
484    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
485    CurDAG->Combine(Unrestricted, *AA, OptLevel);
486  }
487
488  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
489        << " '" << BlockName << "'\n"; CurDAG->dump());
490
491  // Second step, hack on the DAG until it only uses operations and types that
492  // the target supports.
493  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
494                                               BlockName);
495
496  bool Changed;
497  {
498    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
499    Changed = CurDAG->LegalizeTypes();
500  }
501
502  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
503        << " '" << BlockName << "'\n"; CurDAG->dump());
504
505  if (Changed) {
506    if (ViewDAGCombineLT)
507      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
508
509    // Run the DAG combiner in post-type-legalize mode.
510    {
511      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
512                         TimePassesIsEnabled);
513      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
514    }
515
516    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
517          << " '" << BlockName << "'\n"; CurDAG->dump());
518  }
519
520  {
521    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
522    Changed = CurDAG->LegalizeVectors();
523  }
524
525  if (Changed) {
526    {
527      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
528      CurDAG->LegalizeTypes();
529    }
530
531    if (ViewDAGCombineLT)
532      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
533
534    // Run the DAG combiner in post-type-legalize mode.
535    {
536      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
537                         TimePassesIsEnabled);
538      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
539    }
540
541    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
542          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
543  }
544
545  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
546
547  {
548    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
549    CurDAG->Legalize();
550  }
551
552  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
553        << " '" << BlockName << "'\n"; CurDAG->dump());
554
555  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
556
557  // Run the DAG combiner in post-legalize mode.
558  {
559    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
560    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
561  }
562
563  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
564        << " '" << BlockName << "'\n"; CurDAG->dump());
565
566  if (OptLevel != CodeGenOpt::None)
567    ComputeLiveOutVRegInfo();
568
569  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
570
571  // Third, instruction select all of the operations to machine code, adding the
572  // code to the MachineBasicBlock.
573  {
574    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
575    DoInstructionSelection();
576  }
577
578  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
579        << " '" << BlockName << "'\n"; CurDAG->dump());
580
581  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
582
583  // Schedule machine code.
584  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
585  {
586    NamedRegionTimer T("Instruction Scheduling", GroupName,
587                       TimePassesIsEnabled);
588    Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
589  }
590
591  if (ViewSUnitDAGs) Scheduler->viewGraph();
592
593  // Emit machine code to BB.  This can change 'BB' to the last block being
594  // inserted into.
595  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
596  {
597    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
598
599    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
600    FuncInfo->InsertPt = Scheduler->InsertPos;
601  }
602
603  // If the block was split, make sure we update any references that are used to
604  // update PHI nodes later on.
605  if (FirstMBB != LastMBB)
606    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
607
608  // Free the scheduler state.
609  {
610    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
611                       TimePassesIsEnabled);
612    delete Scheduler;
613  }
614
615  // Free the SelectionDAG state, now that we're finished with it.
616  CurDAG->clear();
617}
618
619void SelectionDAGISel::DoInstructionSelection() {
620  DEBUG(errs() << "===== Instruction selection begins: BB#"
621        << FuncInfo->MBB->getNumber()
622        << " '" << FuncInfo->MBB->getName() << "'\n");
623
624  PreprocessISelDAG();
625
626  // Select target instructions for the DAG.
627  {
628    // Number all nodes with a topological order and set DAGSize.
629    DAGSize = CurDAG->AssignTopologicalOrder();
630
631    // Create a dummy node (which is not added to allnodes), that adds
632    // a reference to the root node, preventing it from being deleted,
633    // and tracking any changes of the root.
634    HandleSDNode Dummy(CurDAG->getRoot());
635    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
636    ++ISelPosition;
637
638    // The AllNodes list is now topological-sorted. Visit the
639    // nodes by starting at the end of the list (the root of the
640    // graph) and preceding back toward the beginning (the entry
641    // node).
642    while (ISelPosition != CurDAG->allnodes_begin()) {
643      SDNode *Node = --ISelPosition;
644      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
645      // but there are currently some corner cases that it misses. Also, this
646      // makes it theoretically possible to disable the DAGCombiner.
647      if (Node->use_empty())
648        continue;
649
650      SDNode *ResNode = Select(Node);
651
652      // FIXME: This is pretty gross.  'Select' should be changed to not return
653      // anything at all and this code should be nuked with a tactical strike.
654
655      // If node should not be replaced, continue with the next one.
656      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
657        continue;
658      // Replace node.
659      if (ResNode)
660        ReplaceUses(Node, ResNode);
661
662      // If after the replacement this node is not used any more,
663      // remove this dead node.
664      if (Node->use_empty()) { // Don't delete EntryToken, etc.
665        ISelUpdater ISU(ISelPosition);
666        CurDAG->RemoveDeadNode(Node, &ISU);
667      }
668    }
669
670    CurDAG->setRoot(Dummy.getValue());
671  }
672
673  DEBUG(errs() << "===== Instruction selection ends:\n");
674
675  PostprocessISelDAG();
676}
677
678/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
679/// do other setup for EH landing-pad blocks.
680void SelectionDAGISel::PrepareEHLandingPad() {
681  // Add a label to mark the beginning of the landing pad.  Deletion of the
682  // landing pad can thus be detected via the MachineModuleInfo.
683  MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
684
685  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
686  BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
687    .addSym(Label);
688
689  // Mark exception register as live in.
690  unsigned Reg = TLI.getExceptionAddressRegister();
691  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
692
693  // Mark exception selector register as live in.
694  Reg = TLI.getExceptionSelectorRegister();
695  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
696
697  // FIXME: Hack around an exception handling flaw (PR1508): the personality
698  // function and list of typeids logically belong to the invoke (or, if you
699  // like, the basic block containing the invoke), and need to be associated
700  // with it in the dwarf exception handling tables.  Currently however the
701  // information is provided by an intrinsic (eh.selector) that can be moved
702  // to unexpected places by the optimizers: if the unwind edge is critical,
703  // then breaking it can result in the intrinsics being in the successor of
704  // the landing pad, not the landing pad itself.  This results
705  // in exceptions not being caught because no typeids are associated with
706  // the invoke.  This may not be the only way things can go wrong, but it
707  // is the only way we try to work around for the moment.
708  const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
709  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
710
711  if (Br && Br->isUnconditional()) { // Critical edge?
712    BasicBlock::const_iterator I, E;
713    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
714      if (isa<EHSelectorInst>(I))
715        break;
716
717    if (I == E)
718      // No catch info found - try to extract some from the successor.
719      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
720  }
721}
722
723
724
725/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
726/// load into the specified FoldInst.  Note that we could have a sequence where
727/// multiple LLVM IR instructions are folded into the same machineinstr.  For
728/// example we could have:
729///   A: x = load i32 *P
730///   B: y = icmp A, 42
731///   C: br y, ...
732///
733/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
734/// any other folded instructions) because it is between A and C.
735///
736/// If we succeed in folding the load into the operation, return true.
737///
738bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
739                                             const Instruction *FoldInst,
740                                             FastISel *FastIS) {
741  // We know that the load has a single use, but don't know what it is.  If it
742  // isn't one of the folded instructions, then we can't succeed here.  Handle
743  // this by scanning the single-use users of the load until we get to FoldInst.
744  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
745
746  const Instruction *TheUser = LI->use_back();
747  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
748         // Stay in the right block.
749         TheUser->getParent() == FoldInst->getParent() &&
750         --MaxUsers) {  // Don't scan too far.
751    // If there are multiple or no uses of this instruction, then bail out.
752    if (!TheUser->hasOneUse())
753      return false;
754
755    TheUser = TheUser->use_back();
756  }
757
758  // If we didn't find the fold instruction, then we failed to collapse the
759  // sequence.
760  if (TheUser != FoldInst)
761    return false;
762
763  // Don't try to fold volatile loads.  Target has to deal with alignment
764  // constraints.
765  if (LI->isVolatile()) return false;
766
767  // Figure out which vreg this is going into.  If there is no assigned vreg yet
768  // then there actually was no reference to it.  Perhaps the load is referenced
769  // by a dead instruction.
770  unsigned LoadReg = FastIS->getRegForValue(LI);
771  if (LoadReg == 0)
772    return false;
773
774  // Check to see what the uses of this vreg are.  If it has no uses, or more
775  // than one use (at the machine instr level) then we can't fold it.
776  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
777  if (RI == RegInfo->reg_end())
778    return false;
779
780  // See if there is exactly one use of the vreg.  If there are multiple uses,
781  // then the instruction got lowered to multiple machine instructions or the
782  // use of the loaded value ended up being multiple operands of the result, in
783  // either case, we can't fold this.
784  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
785  if (PostRI != RegInfo->reg_end())
786    return false;
787
788  assert(RI.getOperand().isUse() &&
789         "The only use of the vreg must be a use, we haven't emitted the def!");
790
791  MachineInstr *User = &*RI;
792
793  // Set the insertion point properly.  Folding the load can cause generation of
794  // other random instructions (like sign extends) for addressing modes, make
795  // sure they get inserted in a logical place before the new instruction.
796  FuncInfo->InsertPt = User;
797  FuncInfo->MBB = User->getParent();
798
799  // Ask the target to try folding the load.
800  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
801}
802
803/// isFoldedOrDeadInstruction - Return true if the specified instruction is
804/// side-effect free and is either dead or folded into a generated instruction.
805/// Return false if it needs to be emitted.
806static bool isFoldedOrDeadInstruction(const Instruction *I,
807                                      FunctionLoweringInfo *FuncInfo) {
808  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
809         !isa<TerminatorInst>(I) && // Terminators aren't folded.
810         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
811         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
812         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
813}
814
815void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
816  // Initialize the Fast-ISel state, if needed.
817  FastISel *FastIS = 0;
818  if (EnableFastISel)
819    FastIS = TLI.createFastISel(*FuncInfo);
820
821  // Iterate over all basic blocks in the function.
822  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
823  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
824       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
825    const BasicBlock *LLVMBB = *I;
826
827    if (OptLevel != CodeGenOpt::None) {
828      bool AllPredsVisited = true;
829      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
830           PI != PE; ++PI) {
831        if (!FuncInfo->VisitedBBs.count(*PI)) {
832          AllPredsVisited = false;
833          break;
834        }
835      }
836
837      if (AllPredsVisited) {
838        for (BasicBlock::const_iterator I = LLVMBB->begin();
839             isa<PHINode>(I); ++I)
840          FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
841      } else {
842        for (BasicBlock::const_iterator I = LLVMBB->begin();
843             isa<PHINode>(I); ++I)
844          FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
845      }
846
847      FuncInfo->VisitedBBs.insert(LLVMBB);
848    }
849
850    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
851    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
852
853    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
854    BasicBlock::const_iterator const End = LLVMBB->end();
855    BasicBlock::const_iterator BI = End;
856
857    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
858
859    // Setup an EH landing-pad block.
860    if (FuncInfo->MBB->isLandingPad())
861      PrepareEHLandingPad();
862
863    // Lower any arguments needed in this block if this is the entry block.
864    if (LLVMBB == &Fn.getEntryBlock())
865      LowerArguments(LLVMBB);
866
867    // Before doing SelectionDAG ISel, see if FastISel has been requested.
868    if (FastIS) {
869      FastIS->startNewBlock();
870
871      // Emit code for any incoming arguments. This must happen before
872      // beginning FastISel on the entry block.
873      if (LLVMBB == &Fn.getEntryBlock()) {
874        CurDAG->setRoot(SDB->getControlRoot());
875        SDB->clear();
876        CodeGenAndEmitDAG();
877
878        // If we inserted any instructions at the beginning, make a note of
879        // where they are, so we can be sure to emit subsequent instructions
880        // after them.
881        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
882          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
883        else
884          FastIS->setLastLocalValue(0);
885      }
886
887      // Do FastISel on as many instructions as possible.
888      for (; BI != Begin; --BI) {
889        const Instruction *Inst = llvm::prior(BI);
890
891        // If we no longer require this instruction, skip it.
892        if (isFoldedOrDeadInstruction(Inst, FuncInfo))
893          continue;
894
895        // Bottom-up: reset the insert pos at the top, after any local-value
896        // instructions.
897        FastIS->recomputeInsertPt();
898
899        // Try to select the instruction with FastISel.
900        if (FastIS->SelectInstruction(Inst)) {
901          ++NumFastIselSuccess;
902          // If fast isel succeeded, skip over all the folded instructions, and
903          // then see if there is a load right before the selected instructions.
904          // Try to fold the load if so.
905          const Instruction *BeforeInst = Inst;
906          while (BeforeInst != Begin) {
907            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
908            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
909              break;
910          }
911          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
912              BeforeInst->hasOneUse() &&
913              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS))
914            // If we succeeded, don't re-select the load.
915            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
916          continue;
917        }
918
919        // Then handle certain instructions as single-LLVM-Instruction blocks.
920        if (isa<CallInst>(Inst)) {
921          ++NumFastIselFailures;
922          if (EnableFastISelVerbose || EnableFastISelAbort) {
923            dbgs() << "FastISel missed call: ";
924            Inst->dump();
925          }
926
927          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
928            unsigned &R = FuncInfo->ValueMap[Inst];
929            if (!R)
930              R = FuncInfo->CreateRegs(Inst->getType());
931          }
932
933          bool HadTailCall = false;
934          SelectBasicBlock(Inst, BI, HadTailCall);
935
936          // If the call was emitted as a tail call, we're done with the block.
937          if (HadTailCall) {
938            --BI;
939            break;
940          }
941
942          continue;
943        }
944
945        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
946          // Don't abort, and use a different message for terminator misses.
947          ++NumFastIselFailures;
948          if (EnableFastISelVerbose || EnableFastISelAbort) {
949            dbgs() << "FastISel missed terminator: ";
950            Inst->dump();
951          }
952        } else {
953          ++NumFastIselFailures;
954          if (EnableFastISelVerbose || EnableFastISelAbort) {
955            dbgs() << "FastISel miss: ";
956            Inst->dump();
957          }
958          if (EnableFastISelAbort)
959            // The "fast" selector couldn't handle something and bailed.
960            // For the purpose of debugging, just abort.
961            llvm_unreachable("FastISel didn't select the entire block");
962        }
963        break;
964      }
965
966      FastIS->recomputeInsertPt();
967    }
968
969    if (Begin != BI)
970      ++NumDAGBlocks;
971    else
972      ++NumFastIselBlocks;
973
974    if (Begin != BI) {
975      // Run SelectionDAG instruction selection on the remainder of the block
976      // not handled by FastISel. If FastISel is not run, this is the entire
977      // block.
978      bool HadTailCall;
979      SelectBasicBlock(Begin, BI, HadTailCall);
980    }
981
982    FinishBasicBlock();
983    FuncInfo->PHINodesToUpdate.clear();
984  }
985
986  delete FastIS;
987  SDB->clearDanglingDebugInfo();
988}
989
990void
991SelectionDAGISel::FinishBasicBlock() {
992
993  DEBUG(dbgs() << "Total amount of phi nodes to update: "
994               << FuncInfo->PHINodesToUpdate.size() << "\n";
995        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
996          dbgs() << "Node " << i << " : ("
997                 << FuncInfo->PHINodesToUpdate[i].first
998                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
999
1000  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1001  // PHI nodes in successors.
1002  if (SDB->SwitchCases.empty() &&
1003      SDB->JTCases.empty() &&
1004      SDB->BitTestCases.empty()) {
1005    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1006      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1007      assert(PHI->isPHI() &&
1008             "This is not a machine PHI node that we are updating!");
1009      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1010        continue;
1011      PHI->addOperand(
1012        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1013      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1014    }
1015    return;
1016  }
1017
1018  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1019    // Lower header first, if it wasn't already lowered
1020    if (!SDB->BitTestCases[i].Emitted) {
1021      // Set the current basic block to the mbb we wish to insert the code into
1022      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1023      FuncInfo->InsertPt = FuncInfo->MBB->end();
1024      // Emit the code
1025      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1026      CurDAG->setRoot(SDB->getRoot());
1027      SDB->clear();
1028      CodeGenAndEmitDAG();
1029    }
1030
1031    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1032      // Set the current basic block to the mbb we wish to insert the code into
1033      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1034      FuncInfo->InsertPt = FuncInfo->MBB->end();
1035      // Emit the code
1036      if (j+1 != ej)
1037        SDB->visitBitTestCase(SDB->BitTestCases[i],
1038                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1039                              SDB->BitTestCases[i].Reg,
1040                              SDB->BitTestCases[i].Cases[j],
1041                              FuncInfo->MBB);
1042      else
1043        SDB->visitBitTestCase(SDB->BitTestCases[i],
1044                              SDB->BitTestCases[i].Default,
1045                              SDB->BitTestCases[i].Reg,
1046                              SDB->BitTestCases[i].Cases[j],
1047                              FuncInfo->MBB);
1048
1049
1050      CurDAG->setRoot(SDB->getRoot());
1051      SDB->clear();
1052      CodeGenAndEmitDAG();
1053    }
1054
1055    // Update PHI Nodes
1056    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1057         pi != pe; ++pi) {
1058      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1059      MachineBasicBlock *PHIBB = PHI->getParent();
1060      assert(PHI->isPHI() &&
1061             "This is not a machine PHI node that we are updating!");
1062      // This is "default" BB. We have two jumps to it. From "header" BB and
1063      // from last "case" BB.
1064      if (PHIBB == SDB->BitTestCases[i].Default) {
1065        PHI->addOperand(MachineOperand::
1066                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1067                                  false));
1068        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1069        PHI->addOperand(MachineOperand::
1070                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1071                                  false));
1072        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1073                                                  back().ThisBB));
1074      }
1075      // One of "cases" BB.
1076      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1077           j != ej; ++j) {
1078        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1079        if (cBB->isSuccessor(PHIBB)) {
1080          PHI->addOperand(MachineOperand::
1081                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1082                                    false));
1083          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1084        }
1085      }
1086    }
1087  }
1088  SDB->BitTestCases.clear();
1089
1090  // If the JumpTable record is filled in, then we need to emit a jump table.
1091  // Updating the PHI nodes is tricky in this case, since we need to determine
1092  // whether the PHI is a successor of the range check MBB or the jump table MBB
1093  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1094    // Lower header first, if it wasn't already lowered
1095    if (!SDB->JTCases[i].first.Emitted) {
1096      // Set the current basic block to the mbb we wish to insert the code into
1097      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1098      FuncInfo->InsertPt = FuncInfo->MBB->end();
1099      // Emit the code
1100      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1101                                FuncInfo->MBB);
1102      CurDAG->setRoot(SDB->getRoot());
1103      SDB->clear();
1104      CodeGenAndEmitDAG();
1105    }
1106
1107    // Set the current basic block to the mbb we wish to insert the code into
1108    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1109    FuncInfo->InsertPt = FuncInfo->MBB->end();
1110    // Emit the code
1111    SDB->visitJumpTable(SDB->JTCases[i].second);
1112    CurDAG->setRoot(SDB->getRoot());
1113    SDB->clear();
1114    CodeGenAndEmitDAG();
1115
1116    // Update PHI Nodes
1117    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1118         pi != pe; ++pi) {
1119      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1120      MachineBasicBlock *PHIBB = PHI->getParent();
1121      assert(PHI->isPHI() &&
1122             "This is not a machine PHI node that we are updating!");
1123      // "default" BB. We can go there only from header BB.
1124      if (PHIBB == SDB->JTCases[i].second.Default) {
1125        PHI->addOperand
1126          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1127                                     false));
1128        PHI->addOperand
1129          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1130      }
1131      // JT BB. Just iterate over successors here
1132      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1133        PHI->addOperand
1134          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1135                                     false));
1136        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1137      }
1138    }
1139  }
1140  SDB->JTCases.clear();
1141
1142  // If the switch block involved a branch to one of the actual successors, we
1143  // need to update PHI nodes in that block.
1144  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1145    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1146    assert(PHI->isPHI() &&
1147           "This is not a machine PHI node that we are updating!");
1148    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1149      PHI->addOperand(
1150        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1151      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1152    }
1153  }
1154
1155  // If we generated any switch lowering information, build and codegen any
1156  // additional DAGs necessary.
1157  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1158    // Set the current basic block to the mbb we wish to insert the code into
1159    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1160    FuncInfo->InsertPt = FuncInfo->MBB->end();
1161
1162    // Determine the unique successors.
1163    SmallVector<MachineBasicBlock *, 2> Succs;
1164    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1165    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1166      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1167
1168    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1169    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1170    CurDAG->setRoot(SDB->getRoot());
1171    SDB->clear();
1172    CodeGenAndEmitDAG();
1173
1174    // Remember the last block, now that any splitting is done, for use in
1175    // populating PHI nodes in successors.
1176    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1177
1178    // Handle any PHI nodes in successors of this chunk, as if we were coming
1179    // from the original BB before switch expansion.  Note that PHI nodes can
1180    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1181    // handle them the right number of times.
1182    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1183      FuncInfo->MBB = Succs[i];
1184      FuncInfo->InsertPt = FuncInfo->MBB->end();
1185      // FuncInfo->MBB may have been removed from the CFG if a branch was
1186      // constant folded.
1187      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1188        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1189             Phi != FuncInfo->MBB->end() && Phi->isPHI();
1190             ++Phi) {
1191          // This value for this PHI node is recorded in PHINodesToUpdate.
1192          for (unsigned pn = 0; ; ++pn) {
1193            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1194                   "Didn't find PHI entry!");
1195            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1196              Phi->addOperand(MachineOperand::
1197                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1198                                        false));
1199              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1200              break;
1201            }
1202          }
1203        }
1204      }
1205    }
1206  }
1207  SDB->SwitchCases.clear();
1208}
1209
1210
1211/// Create the scheduler. If a specific scheduler was specified
1212/// via the SchedulerRegistry, use it, otherwise select the
1213/// one preferred by the target.
1214///
1215ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1216  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1217
1218  if (!Ctor) {
1219    Ctor = ISHeuristic;
1220    RegisterScheduler::setDefault(Ctor);
1221  }
1222
1223  return Ctor(this, OptLevel);
1224}
1225
1226//===----------------------------------------------------------------------===//
1227// Helper functions used by the generated instruction selector.
1228//===----------------------------------------------------------------------===//
1229// Calls to these methods are generated by tblgen.
1230
1231/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1232/// the dag combiner simplified the 255, we still want to match.  RHS is the
1233/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1234/// specified in the .td file (e.g. 255).
1235bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1236                                    int64_t DesiredMaskS) const {
1237  const APInt &ActualMask = RHS->getAPIntValue();
1238  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1239
1240  // If the actual mask exactly matches, success!
1241  if (ActualMask == DesiredMask)
1242    return true;
1243
1244  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1245  if (ActualMask.intersects(~DesiredMask))
1246    return false;
1247
1248  // Otherwise, the DAG Combiner may have proven that the value coming in is
1249  // either already zero or is not demanded.  Check for known zero input bits.
1250  APInt NeededMask = DesiredMask & ~ActualMask;
1251  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1252    return true;
1253
1254  // TODO: check to see if missing bits are just not demanded.
1255
1256  // Otherwise, this pattern doesn't match.
1257  return false;
1258}
1259
1260/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1261/// the dag combiner simplified the 255, we still want to match.  RHS is the
1262/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1263/// specified in the .td file (e.g. 255).
1264bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1265                                   int64_t DesiredMaskS) const {
1266  const APInt &ActualMask = RHS->getAPIntValue();
1267  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1268
1269  // If the actual mask exactly matches, success!
1270  if (ActualMask == DesiredMask)
1271    return true;
1272
1273  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1274  if (ActualMask.intersects(~DesiredMask))
1275    return false;
1276
1277  // Otherwise, the DAG Combiner may have proven that the value coming in is
1278  // either already zero or is not demanded.  Check for known zero input bits.
1279  APInt NeededMask = DesiredMask & ~ActualMask;
1280
1281  APInt KnownZero, KnownOne;
1282  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1283
1284  // If all the missing bits in the or are already known to be set, match!
1285  if ((NeededMask & KnownOne) == NeededMask)
1286    return true;
1287
1288  // TODO: check to see if missing bits are just not demanded.
1289
1290  // Otherwise, this pattern doesn't match.
1291  return false;
1292}
1293
1294
1295/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1296/// by tblgen.  Others should not call it.
1297void SelectionDAGISel::
1298SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1299  std::vector<SDValue> InOps;
1300  std::swap(InOps, Ops);
1301
1302  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1303  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1304  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1305  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1306
1307  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1308  if (InOps[e-1].getValueType() == MVT::Glue)
1309    --e;  // Don't process a glue operand if it is here.
1310
1311  while (i != e) {
1312    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1313    if (!InlineAsm::isMemKind(Flags)) {
1314      // Just skip over this operand, copying the operands verbatim.
1315      Ops.insert(Ops.end(), InOps.begin()+i,
1316                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1317      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1318    } else {
1319      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1320             "Memory operand with multiple values?");
1321      // Otherwise, this is a memory operand.  Ask the target to select it.
1322      std::vector<SDValue> SelOps;
1323      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1324        report_fatal_error("Could not match memory address.  Inline asm"
1325                           " failure!");
1326
1327      // Add this to the output node.
1328      unsigned NewFlags =
1329        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1330      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1331      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1332      i += 2;
1333    }
1334  }
1335
1336  // Add the glue input back if present.
1337  if (e != InOps.size())
1338    Ops.push_back(InOps.back());
1339}
1340
1341/// findGlueUse - Return use of MVT::Glue value produced by the specified
1342/// SDNode.
1343///
1344static SDNode *findGlueUse(SDNode *N) {
1345  unsigned FlagResNo = N->getNumValues()-1;
1346  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1347    SDUse &Use = I.getUse();
1348    if (Use.getResNo() == FlagResNo)
1349      return Use.getUser();
1350  }
1351  return NULL;
1352}
1353
1354/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1355/// This function recursively traverses up the operand chain, ignoring
1356/// certain nodes.
1357static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1358                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1359                          bool IgnoreChains) {
1360  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1361  // greater than all of its (recursive) operands.  If we scan to a point where
1362  // 'use' is smaller than the node we're scanning for, then we know we will
1363  // never find it.
1364  //
1365  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1366  // happen because we scan down to newly selected nodes in the case of glue
1367  // uses.
1368  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1369    return false;
1370
1371  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1372  // won't fail if we scan it again.
1373  if (!Visited.insert(Use))
1374    return false;
1375
1376  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1377    // Ignore chain uses, they are validated by HandleMergeInputChains.
1378    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1379      continue;
1380
1381    SDNode *N = Use->getOperand(i).getNode();
1382    if (N == Def) {
1383      if (Use == ImmedUse || Use == Root)
1384        continue;  // We are not looking for immediate use.
1385      assert(N != Root);
1386      return true;
1387    }
1388
1389    // Traverse up the operand chain.
1390    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1391      return true;
1392  }
1393  return false;
1394}
1395
1396/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1397/// operand node N of U during instruction selection that starts at Root.
1398bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1399                                          SDNode *Root) const {
1400  if (OptLevel == CodeGenOpt::None) return false;
1401  return N.hasOneUse();
1402}
1403
1404/// IsLegalToFold - Returns true if the specific operand node N of
1405/// U can be folded during instruction selection that starts at Root.
1406bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1407                                     CodeGenOpt::Level OptLevel,
1408                                     bool IgnoreChains) {
1409  if (OptLevel == CodeGenOpt::None) return false;
1410
1411  // If Root use can somehow reach N through a path that that doesn't contain
1412  // U then folding N would create a cycle. e.g. In the following
1413  // diagram, Root can reach N through X. If N is folded into into Root, then
1414  // X is both a predecessor and a successor of U.
1415  //
1416  //          [N*]           //
1417  //         ^   ^           //
1418  //        /     \          //
1419  //      [U*]    [X]?       //
1420  //        ^     ^          //
1421  //         \   /           //
1422  //          \ /            //
1423  //         [Root*]         //
1424  //
1425  // * indicates nodes to be folded together.
1426  //
1427  // If Root produces glue, then it gets (even more) interesting. Since it
1428  // will be "glued" together with its glue use in the scheduler, we need to
1429  // check if it might reach N.
1430  //
1431  //          [N*]           //
1432  //         ^   ^           //
1433  //        /     \          //
1434  //      [U*]    [X]?       //
1435  //        ^       ^        //
1436  //         \       \       //
1437  //          \      |       //
1438  //         [Root*] |       //
1439  //          ^      |       //
1440  //          f      |       //
1441  //          |      /       //
1442  //         [Y]    /        //
1443  //           ^   /         //
1444  //           f  /          //
1445  //           | /           //
1446  //          [GU]           //
1447  //
1448  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1449  // (call it Fold), then X is a predecessor of GU and a successor of
1450  // Fold. But since Fold and GU are glued together, this will create
1451  // a cycle in the scheduling graph.
1452
1453  // If the node has glue, walk down the graph to the "lowest" node in the
1454  // glueged set.
1455  EVT VT = Root->getValueType(Root->getNumValues()-1);
1456  while (VT == MVT::Glue) {
1457    SDNode *GU = findGlueUse(Root);
1458    if (GU == NULL)
1459      break;
1460    Root = GU;
1461    VT = Root->getValueType(Root->getNumValues()-1);
1462
1463    // If our query node has a glue result with a use, we've walked up it.  If
1464    // the user (which has already been selected) has a chain or indirectly uses
1465    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1466    // this, we cannot ignore chains in this predicate.
1467    IgnoreChains = false;
1468  }
1469
1470
1471  SmallPtrSet<SDNode*, 16> Visited;
1472  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1473}
1474
1475SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1476  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1477  SelectInlineAsmMemoryOperands(Ops);
1478
1479  std::vector<EVT> VTs;
1480  VTs.push_back(MVT::Other);
1481  VTs.push_back(MVT::Glue);
1482  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1483                                VTs, &Ops[0], Ops.size());
1484  New->setNodeId(-1);
1485  return New.getNode();
1486}
1487
1488SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1489  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1490}
1491
1492/// GetVBR - decode a vbr encoding whose top bit is set.
1493LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1494GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1495  assert(Val >= 128 && "Not a VBR");
1496  Val &= 127;  // Remove first vbr bit.
1497
1498  unsigned Shift = 7;
1499  uint64_t NextBits;
1500  do {
1501    NextBits = MatcherTable[Idx++];
1502    Val |= (NextBits&127) << Shift;
1503    Shift += 7;
1504  } while (NextBits & 128);
1505
1506  return Val;
1507}
1508
1509
1510/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1511/// interior glue and chain results to use the new glue and chain results.
1512void SelectionDAGISel::
1513UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1514                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1515                    SDValue InputGlue,
1516                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1517                    bool isMorphNodeTo) {
1518  SmallVector<SDNode*, 4> NowDeadNodes;
1519
1520  ISelUpdater ISU(ISelPosition);
1521
1522  // Now that all the normal results are replaced, we replace the chain and
1523  // glue results if present.
1524  if (!ChainNodesMatched.empty()) {
1525    assert(InputChain.getNode() != 0 &&
1526           "Matched input chains but didn't produce a chain");
1527    // Loop over all of the nodes we matched that produced a chain result.
1528    // Replace all the chain results with the final chain we ended up with.
1529    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1530      SDNode *ChainNode = ChainNodesMatched[i];
1531
1532      // If this node was already deleted, don't look at it.
1533      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1534        continue;
1535
1536      // Don't replace the results of the root node if we're doing a
1537      // MorphNodeTo.
1538      if (ChainNode == NodeToMatch && isMorphNodeTo)
1539        continue;
1540
1541      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1542      if (ChainVal.getValueType() == MVT::Glue)
1543        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1544      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1545      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1546
1547      // If the node became dead and we haven't already seen it, delete it.
1548      if (ChainNode->use_empty() &&
1549          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1550        NowDeadNodes.push_back(ChainNode);
1551    }
1552  }
1553
1554  // If the result produces glue, update any glue results in the matched
1555  // pattern with the glue result.
1556  if (InputGlue.getNode() != 0) {
1557    // Handle any interior nodes explicitly marked.
1558    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1559      SDNode *FRN = GlueResultNodesMatched[i];
1560
1561      // If this node was already deleted, don't look at it.
1562      if (FRN->getOpcode() == ISD::DELETED_NODE)
1563        continue;
1564
1565      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1566             "Doesn't have a glue result");
1567      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1568                                        InputGlue, &ISU);
1569
1570      // If the node became dead and we haven't already seen it, delete it.
1571      if (FRN->use_empty() &&
1572          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1573        NowDeadNodes.push_back(FRN);
1574    }
1575  }
1576
1577  if (!NowDeadNodes.empty())
1578    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1579
1580  DEBUG(errs() << "ISEL: Match complete!\n");
1581}
1582
1583enum ChainResult {
1584  CR_Simple,
1585  CR_InducesCycle,
1586  CR_LeadsToInteriorNode
1587};
1588
1589/// WalkChainUsers - Walk down the users of the specified chained node that is
1590/// part of the pattern we're matching, looking at all of the users we find.
1591/// This determines whether something is an interior node, whether we have a
1592/// non-pattern node in between two pattern nodes (which prevent folding because
1593/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1594/// between pattern nodes (in which case the TF becomes part of the pattern).
1595///
1596/// The walk we do here is guaranteed to be small because we quickly get down to
1597/// already selected nodes "below" us.
1598static ChainResult
1599WalkChainUsers(SDNode *ChainedNode,
1600               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1601               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1602  ChainResult Result = CR_Simple;
1603
1604  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1605         E = ChainedNode->use_end(); UI != E; ++UI) {
1606    // Make sure the use is of the chain, not some other value we produce.
1607    if (UI.getUse().getValueType() != MVT::Other) continue;
1608
1609    SDNode *User = *UI;
1610
1611    // If we see an already-selected machine node, then we've gone beyond the
1612    // pattern that we're selecting down into the already selected chunk of the
1613    // DAG.
1614    if (User->isMachineOpcode() ||
1615        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1616      continue;
1617
1618    if (User->getOpcode() == ISD::CopyToReg ||
1619        User->getOpcode() == ISD::CopyFromReg ||
1620        User->getOpcode() == ISD::INLINEASM ||
1621        User->getOpcode() == ISD::EH_LABEL) {
1622      // If their node ID got reset to -1 then they've already been selected.
1623      // Treat them like a MachineOpcode.
1624      if (User->getNodeId() == -1)
1625        continue;
1626    }
1627
1628    // If we have a TokenFactor, we handle it specially.
1629    if (User->getOpcode() != ISD::TokenFactor) {
1630      // If the node isn't a token factor and isn't part of our pattern, then it
1631      // must be a random chained node in between two nodes we're selecting.
1632      // This happens when we have something like:
1633      //   x = load ptr
1634      //   call
1635      //   y = x+4
1636      //   store y -> ptr
1637      // Because we structurally match the load/store as a read/modify/write,
1638      // but the call is chained between them.  We cannot fold in this case
1639      // because it would induce a cycle in the graph.
1640      if (!std::count(ChainedNodesInPattern.begin(),
1641                      ChainedNodesInPattern.end(), User))
1642        return CR_InducesCycle;
1643
1644      // Otherwise we found a node that is part of our pattern.  For example in:
1645      //   x = load ptr
1646      //   y = x+4
1647      //   store y -> ptr
1648      // This would happen when we're scanning down from the load and see the
1649      // store as a user.  Record that there is a use of ChainedNode that is
1650      // part of the pattern and keep scanning uses.
1651      Result = CR_LeadsToInteriorNode;
1652      InteriorChainedNodes.push_back(User);
1653      continue;
1654    }
1655
1656    // If we found a TokenFactor, there are two cases to consider: first if the
1657    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1658    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1659    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1660    //     [Load chain]
1661    //         ^
1662    //         |
1663    //       [Load]
1664    //       ^    ^
1665    //       |    \                    DAG's like cheese
1666    //      /       \                       do you?
1667    //     /         |
1668    // [TokenFactor] [Op]
1669    //     ^          ^
1670    //     |          |
1671    //      \        /
1672    //       \      /
1673    //       [Store]
1674    //
1675    // In this case, the TokenFactor becomes part of our match and we rewrite it
1676    // as a new TokenFactor.
1677    //
1678    // To distinguish these two cases, do a recursive walk down the uses.
1679    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1680    case CR_Simple:
1681      // If the uses of the TokenFactor are just already-selected nodes, ignore
1682      // it, it is "below" our pattern.
1683      continue;
1684    case CR_InducesCycle:
1685      // If the uses of the TokenFactor lead to nodes that are not part of our
1686      // pattern that are not selected, folding would turn this into a cycle,
1687      // bail out now.
1688      return CR_InducesCycle;
1689    case CR_LeadsToInteriorNode:
1690      break;  // Otherwise, keep processing.
1691    }
1692
1693    // Okay, we know we're in the interesting interior case.  The TokenFactor
1694    // is now going to be considered part of the pattern so that we rewrite its
1695    // uses (it may have uses that are not part of the pattern) with the
1696    // ultimate chain result of the generated code.  We will also add its chain
1697    // inputs as inputs to the ultimate TokenFactor we create.
1698    Result = CR_LeadsToInteriorNode;
1699    ChainedNodesInPattern.push_back(User);
1700    InteriorChainedNodes.push_back(User);
1701    continue;
1702  }
1703
1704  return Result;
1705}
1706
1707/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1708/// operation for when the pattern matched at least one node with a chains.  The
1709/// input vector contains a list of all of the chained nodes that we match.  We
1710/// must determine if this is a valid thing to cover (i.e. matching it won't
1711/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1712/// be used as the input node chain for the generated nodes.
1713static SDValue
1714HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1715                       SelectionDAG *CurDAG) {
1716  // Walk all of the chained nodes we've matched, recursively scanning down the
1717  // users of the chain result. This adds any TokenFactor nodes that are caught
1718  // in between chained nodes to the chained and interior nodes list.
1719  SmallVector<SDNode*, 3> InteriorChainedNodes;
1720  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1721    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1722                       InteriorChainedNodes) == CR_InducesCycle)
1723      return SDValue(); // Would induce a cycle.
1724  }
1725
1726  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1727  // that we are interested in.  Form our input TokenFactor node.
1728  SmallVector<SDValue, 3> InputChains;
1729  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1730    // Add the input chain of this node to the InputChains list (which will be
1731    // the operands of the generated TokenFactor) if it's not an interior node.
1732    SDNode *N = ChainNodesMatched[i];
1733    if (N->getOpcode() != ISD::TokenFactor) {
1734      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1735        continue;
1736
1737      // Otherwise, add the input chain.
1738      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1739      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1740      InputChains.push_back(InChain);
1741      continue;
1742    }
1743
1744    // If we have a token factor, we want to add all inputs of the token factor
1745    // that are not part of the pattern we're matching.
1746    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1747      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1748                      N->getOperand(op).getNode()))
1749        InputChains.push_back(N->getOperand(op));
1750    }
1751  }
1752
1753  SDValue Res;
1754  if (InputChains.size() == 1)
1755    return InputChains[0];
1756  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1757                         MVT::Other, &InputChains[0], InputChains.size());
1758}
1759
1760/// MorphNode - Handle morphing a node in place for the selector.
1761SDNode *SelectionDAGISel::
1762MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1763          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1764  // It is possible we're using MorphNodeTo to replace a node with no
1765  // normal results with one that has a normal result (or we could be
1766  // adding a chain) and the input could have glue and chains as well.
1767  // In this case we need to shift the operands down.
1768  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1769  // than the old isel though.
1770  int OldGlueResultNo = -1, OldChainResultNo = -1;
1771
1772  unsigned NTMNumResults = Node->getNumValues();
1773  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1774    OldGlueResultNo = NTMNumResults-1;
1775    if (NTMNumResults != 1 &&
1776        Node->getValueType(NTMNumResults-2) == MVT::Other)
1777      OldChainResultNo = NTMNumResults-2;
1778  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1779    OldChainResultNo = NTMNumResults-1;
1780
1781  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1782  // that this deletes operands of the old node that become dead.
1783  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1784
1785  // MorphNodeTo can operate in two ways: if an existing node with the
1786  // specified operands exists, it can just return it.  Otherwise, it
1787  // updates the node in place to have the requested operands.
1788  if (Res == Node) {
1789    // If we updated the node in place, reset the node ID.  To the isel,
1790    // this should be just like a newly allocated machine node.
1791    Res->setNodeId(-1);
1792  }
1793
1794  unsigned ResNumResults = Res->getNumValues();
1795  // Move the glue if needed.
1796  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1797      (unsigned)OldGlueResultNo != ResNumResults-1)
1798    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1799                                      SDValue(Res, ResNumResults-1));
1800
1801  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1802    --ResNumResults;
1803
1804  // Move the chain reference if needed.
1805  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1806      (unsigned)OldChainResultNo != ResNumResults-1)
1807    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1808                                      SDValue(Res, ResNumResults-1));
1809
1810  // Otherwise, no replacement happened because the node already exists. Replace
1811  // Uses of the old node with the new one.
1812  if (Res != Node)
1813    CurDAG->ReplaceAllUsesWith(Node, Res);
1814
1815  return Res;
1816}
1817
1818/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1819LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1820CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1821          SDValue N,
1822          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1823  // Accept if it is exactly the same as a previously recorded node.
1824  unsigned RecNo = MatcherTable[MatcherIndex++];
1825  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1826  return N == RecordedNodes[RecNo].first;
1827}
1828
1829/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1830LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1831CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1832                      SelectionDAGISel &SDISel) {
1833  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1834}
1835
1836/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1837LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1838CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1839                   SelectionDAGISel &SDISel, SDNode *N) {
1840  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1841}
1842
1843LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1844CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1845            SDNode *N) {
1846  uint16_t Opc = MatcherTable[MatcherIndex++];
1847  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1848  return N->getOpcode() == Opc;
1849}
1850
1851LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1852CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1853          SDValue N, const TargetLowering &TLI) {
1854  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1855  if (N.getValueType() == VT) return true;
1856
1857  // Handle the case when VT is iPTR.
1858  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1859}
1860
1861LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1862CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1863               SDValue N, const TargetLowering &TLI,
1864               unsigned ChildNo) {
1865  if (ChildNo >= N.getNumOperands())
1866    return false;  // Match fails if out of range child #.
1867  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1868}
1869
1870
1871LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1872CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1873              SDValue N) {
1874  return cast<CondCodeSDNode>(N)->get() ==
1875      (ISD::CondCode)MatcherTable[MatcherIndex++];
1876}
1877
1878LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1879CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1880               SDValue N, const TargetLowering &TLI) {
1881  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1882  if (cast<VTSDNode>(N)->getVT() == VT)
1883    return true;
1884
1885  // Handle the case when VT is iPTR.
1886  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1887}
1888
1889LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1890CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1891             SDValue N) {
1892  int64_t Val = MatcherTable[MatcherIndex++];
1893  if (Val & 128)
1894    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1895
1896  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1897  return C != 0 && C->getSExtValue() == Val;
1898}
1899
1900LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1901CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1902            SDValue N, SelectionDAGISel &SDISel) {
1903  int64_t Val = MatcherTable[MatcherIndex++];
1904  if (Val & 128)
1905    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1906
1907  if (N->getOpcode() != ISD::AND) return false;
1908
1909  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1910  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1911}
1912
1913LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1914CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1915           SDValue N, SelectionDAGISel &SDISel) {
1916  int64_t Val = MatcherTable[MatcherIndex++];
1917  if (Val & 128)
1918    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1919
1920  if (N->getOpcode() != ISD::OR) return false;
1921
1922  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1923  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1924}
1925
1926/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1927/// scope, evaluate the current node.  If the current predicate is known to
1928/// fail, set Result=true and return anything.  If the current predicate is
1929/// known to pass, set Result=false and return the MatcherIndex to continue
1930/// with.  If the current predicate is unknown, set Result=false and return the
1931/// MatcherIndex to continue with.
1932static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1933                                       unsigned Index, SDValue N,
1934                                       bool &Result, SelectionDAGISel &SDISel,
1935                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1936  switch (Table[Index++]) {
1937  default:
1938    Result = false;
1939    return Index-1;  // Could not evaluate this predicate.
1940  case SelectionDAGISel::OPC_CheckSame:
1941    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1942    return Index;
1943  case SelectionDAGISel::OPC_CheckPatternPredicate:
1944    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1945    return Index;
1946  case SelectionDAGISel::OPC_CheckPredicate:
1947    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1948    return Index;
1949  case SelectionDAGISel::OPC_CheckOpcode:
1950    Result = !::CheckOpcode(Table, Index, N.getNode());
1951    return Index;
1952  case SelectionDAGISel::OPC_CheckType:
1953    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1954    return Index;
1955  case SelectionDAGISel::OPC_CheckChild0Type:
1956  case SelectionDAGISel::OPC_CheckChild1Type:
1957  case SelectionDAGISel::OPC_CheckChild2Type:
1958  case SelectionDAGISel::OPC_CheckChild3Type:
1959  case SelectionDAGISel::OPC_CheckChild4Type:
1960  case SelectionDAGISel::OPC_CheckChild5Type:
1961  case SelectionDAGISel::OPC_CheckChild6Type:
1962  case SelectionDAGISel::OPC_CheckChild7Type:
1963    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1964                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1965    return Index;
1966  case SelectionDAGISel::OPC_CheckCondCode:
1967    Result = !::CheckCondCode(Table, Index, N);
1968    return Index;
1969  case SelectionDAGISel::OPC_CheckValueType:
1970    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1971    return Index;
1972  case SelectionDAGISel::OPC_CheckInteger:
1973    Result = !::CheckInteger(Table, Index, N);
1974    return Index;
1975  case SelectionDAGISel::OPC_CheckAndImm:
1976    Result = !::CheckAndImm(Table, Index, N, SDISel);
1977    return Index;
1978  case SelectionDAGISel::OPC_CheckOrImm:
1979    Result = !::CheckOrImm(Table, Index, N, SDISel);
1980    return Index;
1981  }
1982}
1983
1984namespace {
1985
1986struct MatchScope {
1987  /// FailIndex - If this match fails, this is the index to continue with.
1988  unsigned FailIndex;
1989
1990  /// NodeStack - The node stack when the scope was formed.
1991  SmallVector<SDValue, 4> NodeStack;
1992
1993  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1994  unsigned NumRecordedNodes;
1995
1996  /// NumMatchedMemRefs - The number of matched memref entries.
1997  unsigned NumMatchedMemRefs;
1998
1999  /// InputChain/InputGlue - The current chain/glue
2000  SDValue InputChain, InputGlue;
2001
2002  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2003  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2004};
2005
2006}
2007
2008SDNode *SelectionDAGISel::
2009SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2010                 unsigned TableSize) {
2011  // FIXME: Should these even be selected?  Handle these cases in the caller?
2012  switch (NodeToMatch->getOpcode()) {
2013  default:
2014    break;
2015  case ISD::EntryToken:       // These nodes remain the same.
2016  case ISD::BasicBlock:
2017  case ISD::Register:
2018  //case ISD::VALUETYPE:
2019  //case ISD::CONDCODE:
2020  case ISD::HANDLENODE:
2021  case ISD::MDNODE_SDNODE:
2022  case ISD::TargetConstant:
2023  case ISD::TargetConstantFP:
2024  case ISD::TargetConstantPool:
2025  case ISD::TargetFrameIndex:
2026  case ISD::TargetExternalSymbol:
2027  case ISD::TargetBlockAddress:
2028  case ISD::TargetJumpTable:
2029  case ISD::TargetGlobalTLSAddress:
2030  case ISD::TargetGlobalAddress:
2031  case ISD::TokenFactor:
2032  case ISD::CopyFromReg:
2033  case ISD::CopyToReg:
2034  case ISD::EH_LABEL:
2035    NodeToMatch->setNodeId(-1); // Mark selected.
2036    return 0;
2037  case ISD::AssertSext:
2038  case ISD::AssertZext:
2039    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2040                                      NodeToMatch->getOperand(0));
2041    return 0;
2042  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2043  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2044  }
2045
2046  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2047
2048  // Set up the node stack with NodeToMatch as the only node on the stack.
2049  SmallVector<SDValue, 8> NodeStack;
2050  SDValue N = SDValue(NodeToMatch, 0);
2051  NodeStack.push_back(N);
2052
2053  // MatchScopes - Scopes used when matching, if a match failure happens, this
2054  // indicates where to continue checking.
2055  SmallVector<MatchScope, 8> MatchScopes;
2056
2057  // RecordedNodes - This is the set of nodes that have been recorded by the
2058  // state machine.  The second value is the parent of the node, or null if the
2059  // root is recorded.
2060  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2061
2062  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2063  // pattern.
2064  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2065
2066  // These are the current input chain and glue for use when generating nodes.
2067  // Various Emit operations change these.  For example, emitting a copytoreg
2068  // uses and updates these.
2069  SDValue InputChain, InputGlue;
2070
2071  // ChainNodesMatched - If a pattern matches nodes that have input/output
2072  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2073  // which ones they are.  The result is captured into this list so that we can
2074  // update the chain results when the pattern is complete.
2075  SmallVector<SDNode*, 3> ChainNodesMatched;
2076  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2077
2078  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2079        NodeToMatch->dump(CurDAG);
2080        errs() << '\n');
2081
2082  // Determine where to start the interpreter.  Normally we start at opcode #0,
2083  // but if the state machine starts with an OPC_SwitchOpcode, then we
2084  // accelerate the first lookup (which is guaranteed to be hot) with the
2085  // OpcodeOffset table.
2086  unsigned MatcherIndex = 0;
2087
2088  if (!OpcodeOffset.empty()) {
2089    // Already computed the OpcodeOffset table, just index into it.
2090    if (N.getOpcode() < OpcodeOffset.size())
2091      MatcherIndex = OpcodeOffset[N.getOpcode()];
2092    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2093
2094  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2095    // Otherwise, the table isn't computed, but the state machine does start
2096    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2097    // is the first time we're selecting an instruction.
2098    unsigned Idx = 1;
2099    while (1) {
2100      // Get the size of this case.
2101      unsigned CaseSize = MatcherTable[Idx++];
2102      if (CaseSize & 128)
2103        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2104      if (CaseSize == 0) break;
2105
2106      // Get the opcode, add the index to the table.
2107      uint16_t Opc = MatcherTable[Idx++];
2108      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2109      if (Opc >= OpcodeOffset.size())
2110        OpcodeOffset.resize((Opc+1)*2);
2111      OpcodeOffset[Opc] = Idx;
2112      Idx += CaseSize;
2113    }
2114
2115    // Okay, do the lookup for the first opcode.
2116    if (N.getOpcode() < OpcodeOffset.size())
2117      MatcherIndex = OpcodeOffset[N.getOpcode()];
2118  }
2119
2120  while (1) {
2121    assert(MatcherIndex < TableSize && "Invalid index");
2122#ifndef NDEBUG
2123    unsigned CurrentOpcodeIndex = MatcherIndex;
2124#endif
2125    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2126    switch (Opcode) {
2127    case OPC_Scope: {
2128      // Okay, the semantics of this operation are that we should push a scope
2129      // then evaluate the first child.  However, pushing a scope only to have
2130      // the first check fail (which then pops it) is inefficient.  If we can
2131      // determine immediately that the first check (or first several) will
2132      // immediately fail, don't even bother pushing a scope for them.
2133      unsigned FailIndex;
2134
2135      while (1) {
2136        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2137        if (NumToSkip & 128)
2138          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2139        // Found the end of the scope with no match.
2140        if (NumToSkip == 0) {
2141          FailIndex = 0;
2142          break;
2143        }
2144
2145        FailIndex = MatcherIndex+NumToSkip;
2146
2147        unsigned MatcherIndexOfPredicate = MatcherIndex;
2148        (void)MatcherIndexOfPredicate; // silence warning.
2149
2150        // If we can't evaluate this predicate without pushing a scope (e.g. if
2151        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2152        // push the scope and evaluate the full predicate chain.
2153        bool Result;
2154        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2155                                              Result, *this, RecordedNodes);
2156        if (!Result)
2157          break;
2158
2159        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2160                     << "index " << MatcherIndexOfPredicate
2161                     << ", continuing at " << FailIndex << "\n");
2162        ++NumDAGIselRetries;
2163
2164        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2165        // move to the next case.
2166        MatcherIndex = FailIndex;
2167      }
2168
2169      // If the whole scope failed to match, bail.
2170      if (FailIndex == 0) break;
2171
2172      // Push a MatchScope which indicates where to go if the first child fails
2173      // to match.
2174      MatchScope NewEntry;
2175      NewEntry.FailIndex = FailIndex;
2176      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2177      NewEntry.NumRecordedNodes = RecordedNodes.size();
2178      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2179      NewEntry.InputChain = InputChain;
2180      NewEntry.InputGlue = InputGlue;
2181      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2182      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2183      MatchScopes.push_back(NewEntry);
2184      continue;
2185    }
2186    case OPC_RecordNode: {
2187      // Remember this node, it may end up being an operand in the pattern.
2188      SDNode *Parent = 0;
2189      if (NodeStack.size() > 1)
2190        Parent = NodeStack[NodeStack.size()-2].getNode();
2191      RecordedNodes.push_back(std::make_pair(N, Parent));
2192      continue;
2193    }
2194
2195    case OPC_RecordChild0: case OPC_RecordChild1:
2196    case OPC_RecordChild2: case OPC_RecordChild3:
2197    case OPC_RecordChild4: case OPC_RecordChild5:
2198    case OPC_RecordChild6: case OPC_RecordChild7: {
2199      unsigned ChildNo = Opcode-OPC_RecordChild0;
2200      if (ChildNo >= N.getNumOperands())
2201        break;  // Match fails if out of range child #.
2202
2203      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2204                                             N.getNode()));
2205      continue;
2206    }
2207    case OPC_RecordMemRef:
2208      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2209      continue;
2210
2211    case OPC_CaptureGlueInput:
2212      // If the current node has an input glue, capture it in InputGlue.
2213      if (N->getNumOperands() != 0 &&
2214          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2215        InputGlue = N->getOperand(N->getNumOperands()-1);
2216      continue;
2217
2218    case OPC_MoveChild: {
2219      unsigned ChildNo = MatcherTable[MatcherIndex++];
2220      if (ChildNo >= N.getNumOperands())
2221        break;  // Match fails if out of range child #.
2222      N = N.getOperand(ChildNo);
2223      NodeStack.push_back(N);
2224      continue;
2225    }
2226
2227    case OPC_MoveParent:
2228      // Pop the current node off the NodeStack.
2229      NodeStack.pop_back();
2230      assert(!NodeStack.empty() && "Node stack imbalance!");
2231      N = NodeStack.back();
2232      continue;
2233
2234    case OPC_CheckSame:
2235      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2236      continue;
2237    case OPC_CheckPatternPredicate:
2238      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2239      continue;
2240    case OPC_CheckPredicate:
2241      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2242                                N.getNode()))
2243        break;
2244      continue;
2245    case OPC_CheckComplexPat: {
2246      unsigned CPNum = MatcherTable[MatcherIndex++];
2247      unsigned RecNo = MatcherTable[MatcherIndex++];
2248      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2249      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2250                               RecordedNodes[RecNo].first, CPNum,
2251                               RecordedNodes))
2252        break;
2253      continue;
2254    }
2255    case OPC_CheckOpcode:
2256      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2257      continue;
2258
2259    case OPC_CheckType:
2260      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2261      continue;
2262
2263    case OPC_SwitchOpcode: {
2264      unsigned CurNodeOpcode = N.getOpcode();
2265      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2266      unsigned CaseSize;
2267      while (1) {
2268        // Get the size of this case.
2269        CaseSize = MatcherTable[MatcherIndex++];
2270        if (CaseSize & 128)
2271          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2272        if (CaseSize == 0) break;
2273
2274        uint16_t Opc = MatcherTable[MatcherIndex++];
2275        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2276
2277        // If the opcode matches, then we will execute this case.
2278        if (CurNodeOpcode == Opc)
2279          break;
2280
2281        // Otherwise, skip over this case.
2282        MatcherIndex += CaseSize;
2283      }
2284
2285      // If no cases matched, bail out.
2286      if (CaseSize == 0) break;
2287
2288      // Otherwise, execute the case we found.
2289      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2290                   << " to " << MatcherIndex << "\n");
2291      continue;
2292    }
2293
2294    case OPC_SwitchType: {
2295      MVT CurNodeVT = N.getValueType().getSimpleVT();
2296      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2297      unsigned CaseSize;
2298      while (1) {
2299        // Get the size of this case.
2300        CaseSize = MatcherTable[MatcherIndex++];
2301        if (CaseSize & 128)
2302          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2303        if (CaseSize == 0) break;
2304
2305        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2306        if (CaseVT == MVT::iPTR)
2307          CaseVT = TLI.getPointerTy();
2308
2309        // If the VT matches, then we will execute this case.
2310        if (CurNodeVT == CaseVT)
2311          break;
2312
2313        // Otherwise, skip over this case.
2314        MatcherIndex += CaseSize;
2315      }
2316
2317      // If no cases matched, bail out.
2318      if (CaseSize == 0) break;
2319
2320      // Otherwise, execute the case we found.
2321      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2322                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2323      continue;
2324    }
2325    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2326    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2327    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2328    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2329      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2330                            Opcode-OPC_CheckChild0Type))
2331        break;
2332      continue;
2333    case OPC_CheckCondCode:
2334      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2335      continue;
2336    case OPC_CheckValueType:
2337      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2338      continue;
2339    case OPC_CheckInteger:
2340      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2341      continue;
2342    case OPC_CheckAndImm:
2343      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2344      continue;
2345    case OPC_CheckOrImm:
2346      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2347      continue;
2348
2349    case OPC_CheckFoldableChainNode: {
2350      assert(NodeStack.size() != 1 && "No parent node");
2351      // Verify that all intermediate nodes between the root and this one have
2352      // a single use.
2353      bool HasMultipleUses = false;
2354      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2355        if (!NodeStack[i].hasOneUse()) {
2356          HasMultipleUses = true;
2357          break;
2358        }
2359      if (HasMultipleUses) break;
2360
2361      // Check to see that the target thinks this is profitable to fold and that
2362      // we can fold it without inducing cycles in the graph.
2363      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2364                              NodeToMatch) ||
2365          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2366                         NodeToMatch, OptLevel,
2367                         true/*We validate our own chains*/))
2368        break;
2369
2370      continue;
2371    }
2372    case OPC_EmitInteger: {
2373      MVT::SimpleValueType VT =
2374        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2375      int64_t Val = MatcherTable[MatcherIndex++];
2376      if (Val & 128)
2377        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2378      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2379                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2380      continue;
2381    }
2382    case OPC_EmitRegister: {
2383      MVT::SimpleValueType VT =
2384        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2385      unsigned RegNo = MatcherTable[MatcherIndex++];
2386      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2387                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2388      continue;
2389    }
2390    case OPC_EmitRegister2: {
2391      // For targets w/ more than 256 register names, the register enum
2392      // values are stored in two bytes in the matcher table (just like
2393      // opcodes).
2394      MVT::SimpleValueType VT =
2395        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2396      unsigned RegNo = MatcherTable[MatcherIndex++];
2397      RegNo |= MatcherTable[MatcherIndex++] << 8;
2398      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2399                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2400      continue;
2401    }
2402
2403    case OPC_EmitConvertToTarget:  {
2404      // Convert from IMM/FPIMM to target version.
2405      unsigned RecNo = MatcherTable[MatcherIndex++];
2406      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2407      SDValue Imm = RecordedNodes[RecNo].first;
2408
2409      if (Imm->getOpcode() == ISD::Constant) {
2410        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2411        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2412      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2413        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2414        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2415      }
2416
2417      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2418      continue;
2419    }
2420
2421    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2422    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2423      // These are space-optimized forms of OPC_EmitMergeInputChains.
2424      assert(InputChain.getNode() == 0 &&
2425             "EmitMergeInputChains should be the first chain producing node");
2426      assert(ChainNodesMatched.empty() &&
2427             "Should only have one EmitMergeInputChains per match");
2428
2429      // Read all of the chained nodes.
2430      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2431      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2432      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2433
2434      // FIXME: What if other value results of the node have uses not matched
2435      // by this pattern?
2436      if (ChainNodesMatched.back() != NodeToMatch &&
2437          !RecordedNodes[RecNo].first.hasOneUse()) {
2438        ChainNodesMatched.clear();
2439        break;
2440      }
2441
2442      // Merge the input chains if they are not intra-pattern references.
2443      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2444
2445      if (InputChain.getNode() == 0)
2446        break;  // Failed to merge.
2447      continue;
2448    }
2449
2450    case OPC_EmitMergeInputChains: {
2451      assert(InputChain.getNode() == 0 &&
2452             "EmitMergeInputChains should be the first chain producing node");
2453      // This node gets a list of nodes we matched in the input that have
2454      // chains.  We want to token factor all of the input chains to these nodes
2455      // together.  However, if any of the input chains is actually one of the
2456      // nodes matched in this pattern, then we have an intra-match reference.
2457      // Ignore these because the newly token factored chain should not refer to
2458      // the old nodes.
2459      unsigned NumChains = MatcherTable[MatcherIndex++];
2460      assert(NumChains != 0 && "Can't TF zero chains");
2461
2462      assert(ChainNodesMatched.empty() &&
2463             "Should only have one EmitMergeInputChains per match");
2464
2465      // Read all of the chained nodes.
2466      for (unsigned i = 0; i != NumChains; ++i) {
2467        unsigned RecNo = MatcherTable[MatcherIndex++];
2468        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2469        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2470
2471        // FIXME: What if other value results of the node have uses not matched
2472        // by this pattern?
2473        if (ChainNodesMatched.back() != NodeToMatch &&
2474            !RecordedNodes[RecNo].first.hasOneUse()) {
2475          ChainNodesMatched.clear();
2476          break;
2477        }
2478      }
2479
2480      // If the inner loop broke out, the match fails.
2481      if (ChainNodesMatched.empty())
2482        break;
2483
2484      // Merge the input chains if they are not intra-pattern references.
2485      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2486
2487      if (InputChain.getNode() == 0)
2488        break;  // Failed to merge.
2489
2490      continue;
2491    }
2492
2493    case OPC_EmitCopyToReg: {
2494      unsigned RecNo = MatcherTable[MatcherIndex++];
2495      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2496      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2497
2498      if (InputChain.getNode() == 0)
2499        InputChain = CurDAG->getEntryNode();
2500
2501      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2502                                        DestPhysReg, RecordedNodes[RecNo].first,
2503                                        InputGlue);
2504
2505      InputGlue = InputChain.getValue(1);
2506      continue;
2507    }
2508
2509    case OPC_EmitNodeXForm: {
2510      unsigned XFormNo = MatcherTable[MatcherIndex++];
2511      unsigned RecNo = MatcherTable[MatcherIndex++];
2512      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2513      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2514      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2515      continue;
2516    }
2517
2518    case OPC_EmitNode:
2519    case OPC_MorphNodeTo: {
2520      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2521      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2522      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2523      // Get the result VT list.
2524      unsigned NumVTs = MatcherTable[MatcherIndex++];
2525      SmallVector<EVT, 4> VTs;
2526      for (unsigned i = 0; i != NumVTs; ++i) {
2527        MVT::SimpleValueType VT =
2528          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2529        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2530        VTs.push_back(VT);
2531      }
2532
2533      if (EmitNodeInfo & OPFL_Chain)
2534        VTs.push_back(MVT::Other);
2535      if (EmitNodeInfo & OPFL_GlueOutput)
2536        VTs.push_back(MVT::Glue);
2537
2538      // This is hot code, so optimize the two most common cases of 1 and 2
2539      // results.
2540      SDVTList VTList;
2541      if (VTs.size() == 1)
2542        VTList = CurDAG->getVTList(VTs[0]);
2543      else if (VTs.size() == 2)
2544        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2545      else
2546        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2547
2548      // Get the operand list.
2549      unsigned NumOps = MatcherTable[MatcherIndex++];
2550      SmallVector<SDValue, 8> Ops;
2551      for (unsigned i = 0; i != NumOps; ++i) {
2552        unsigned RecNo = MatcherTable[MatcherIndex++];
2553        if (RecNo & 128)
2554          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2555
2556        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2557        Ops.push_back(RecordedNodes[RecNo].first);
2558      }
2559
2560      // If there are variadic operands to add, handle them now.
2561      if (EmitNodeInfo & OPFL_VariadicInfo) {
2562        // Determine the start index to copy from.
2563        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2564        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2565        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2566               "Invalid variadic node");
2567        // Copy all of the variadic operands, not including a potential glue
2568        // input.
2569        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2570             i != e; ++i) {
2571          SDValue V = NodeToMatch->getOperand(i);
2572          if (V.getValueType() == MVT::Glue) break;
2573          Ops.push_back(V);
2574        }
2575      }
2576
2577      // If this has chain/glue inputs, add them.
2578      if (EmitNodeInfo & OPFL_Chain)
2579        Ops.push_back(InputChain);
2580      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2581        Ops.push_back(InputGlue);
2582
2583      // Create the node.
2584      SDNode *Res = 0;
2585      if (Opcode != OPC_MorphNodeTo) {
2586        // If this is a normal EmitNode command, just create the new node and
2587        // add the results to the RecordedNodes list.
2588        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2589                                     VTList, Ops.data(), Ops.size());
2590
2591        // Add all the non-glue/non-chain results to the RecordedNodes list.
2592        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2593          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2594          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2595                                                             (SDNode*) 0));
2596        }
2597
2598      } else {
2599        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2600                        EmitNodeInfo);
2601      }
2602
2603      // If the node had chain/glue results, update our notion of the current
2604      // chain and glue.
2605      if (EmitNodeInfo & OPFL_GlueOutput) {
2606        InputGlue = SDValue(Res, VTs.size()-1);
2607        if (EmitNodeInfo & OPFL_Chain)
2608          InputChain = SDValue(Res, VTs.size()-2);
2609      } else if (EmitNodeInfo & OPFL_Chain)
2610        InputChain = SDValue(Res, VTs.size()-1);
2611
2612      // If the OPFL_MemRefs glue is set on this node, slap all of the
2613      // accumulated memrefs onto it.
2614      //
2615      // FIXME: This is vastly incorrect for patterns with multiple outputs
2616      // instructions that access memory and for ComplexPatterns that match
2617      // loads.
2618      if (EmitNodeInfo & OPFL_MemRefs) {
2619        // Only attach load or store memory operands if the generated
2620        // instruction may load or store.
2621        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2622        bool mayLoad = MCID.mayLoad();
2623        bool mayStore = MCID.mayStore();
2624
2625        unsigned NumMemRefs = 0;
2626        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2627             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2628          if ((*I)->isLoad()) {
2629            if (mayLoad)
2630              ++NumMemRefs;
2631          } else if ((*I)->isStore()) {
2632            if (mayStore)
2633              ++NumMemRefs;
2634          } else {
2635            ++NumMemRefs;
2636          }
2637        }
2638
2639        MachineSDNode::mmo_iterator MemRefs =
2640          MF->allocateMemRefsArray(NumMemRefs);
2641
2642        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2643        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2644             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2645          if ((*I)->isLoad()) {
2646            if (mayLoad)
2647              *MemRefsPos++ = *I;
2648          } else if ((*I)->isStore()) {
2649            if (mayStore)
2650              *MemRefsPos++ = *I;
2651          } else {
2652            *MemRefsPos++ = *I;
2653          }
2654        }
2655
2656        cast<MachineSDNode>(Res)
2657          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2658      }
2659
2660      DEBUG(errs() << "  "
2661                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2662                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2663
2664      // If this was a MorphNodeTo then we're completely done!
2665      if (Opcode == OPC_MorphNodeTo) {
2666        // Update chain and glue uses.
2667        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2668                            InputGlue, GlueResultNodesMatched, true);
2669        return Res;
2670      }
2671
2672      continue;
2673    }
2674
2675    case OPC_MarkGlueResults: {
2676      unsigned NumNodes = MatcherTable[MatcherIndex++];
2677
2678      // Read and remember all the glue-result nodes.
2679      for (unsigned i = 0; i != NumNodes; ++i) {
2680        unsigned RecNo = MatcherTable[MatcherIndex++];
2681        if (RecNo & 128)
2682          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2683
2684        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2685        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2686      }
2687      continue;
2688    }
2689
2690    case OPC_CompleteMatch: {
2691      // The match has been completed, and any new nodes (if any) have been
2692      // created.  Patch up references to the matched dag to use the newly
2693      // created nodes.
2694      unsigned NumResults = MatcherTable[MatcherIndex++];
2695
2696      for (unsigned i = 0; i != NumResults; ++i) {
2697        unsigned ResSlot = MatcherTable[MatcherIndex++];
2698        if (ResSlot & 128)
2699          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2700
2701        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2702        SDValue Res = RecordedNodes[ResSlot].first;
2703
2704        assert(i < NodeToMatch->getNumValues() &&
2705               NodeToMatch->getValueType(i) != MVT::Other &&
2706               NodeToMatch->getValueType(i) != MVT::Glue &&
2707               "Invalid number of results to complete!");
2708        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2709                NodeToMatch->getValueType(i) == MVT::iPTR ||
2710                Res.getValueType() == MVT::iPTR ||
2711                NodeToMatch->getValueType(i).getSizeInBits() ==
2712                    Res.getValueType().getSizeInBits()) &&
2713               "invalid replacement");
2714        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2715      }
2716
2717      // If the root node defines glue, add it to the glue nodes to update list.
2718      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2719        GlueResultNodesMatched.push_back(NodeToMatch);
2720
2721      // Update chain and glue uses.
2722      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2723                          InputGlue, GlueResultNodesMatched, false);
2724
2725      assert(NodeToMatch->use_empty() &&
2726             "Didn't replace all uses of the node?");
2727
2728      // FIXME: We just return here, which interacts correctly with SelectRoot
2729      // above.  We should fix this to not return an SDNode* anymore.
2730      return 0;
2731    }
2732    }
2733
2734    // If the code reached this point, then the match failed.  See if there is
2735    // another child to try in the current 'Scope', otherwise pop it until we
2736    // find a case to check.
2737    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2738    ++NumDAGIselRetries;
2739    while (1) {
2740      if (MatchScopes.empty()) {
2741        CannotYetSelect(NodeToMatch);
2742        return 0;
2743      }
2744
2745      // Restore the interpreter state back to the point where the scope was
2746      // formed.
2747      MatchScope &LastScope = MatchScopes.back();
2748      RecordedNodes.resize(LastScope.NumRecordedNodes);
2749      NodeStack.clear();
2750      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2751      N = NodeStack.back();
2752
2753      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2754        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2755      MatcherIndex = LastScope.FailIndex;
2756
2757      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2758
2759      InputChain = LastScope.InputChain;
2760      InputGlue = LastScope.InputGlue;
2761      if (!LastScope.HasChainNodesMatched)
2762        ChainNodesMatched.clear();
2763      if (!LastScope.HasGlueResultNodesMatched)
2764        GlueResultNodesMatched.clear();
2765
2766      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2767      // we have reached the end of this scope, otherwise we have another child
2768      // in the current scope to try.
2769      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2770      if (NumToSkip & 128)
2771        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2772
2773      // If we have another child in this scope to match, update FailIndex and
2774      // try it.
2775      if (NumToSkip != 0) {
2776        LastScope.FailIndex = MatcherIndex+NumToSkip;
2777        break;
2778      }
2779
2780      // End of this scope, pop it and try the next child in the containing
2781      // scope.
2782      MatchScopes.pop_back();
2783    }
2784  }
2785}
2786
2787
2788
2789void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2790  std::string msg;
2791  raw_string_ostream Msg(msg);
2792  Msg << "Cannot select: ";
2793
2794  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2795      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2796      N->getOpcode() != ISD::INTRINSIC_VOID) {
2797    N->printrFull(Msg, CurDAG);
2798  } else {
2799    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2800    unsigned iid =
2801      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2802    if (iid < Intrinsic::num_intrinsics)
2803      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2804    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2805      Msg << "target intrinsic %" << TII->getName(iid);
2806    else
2807      Msg << "unknown intrinsic #" << iid;
2808  }
2809  report_fatal_error(Msg.str());
2810}
2811
2812char SelectionDAGISel::ID = 0;
2813