SelectionDAGISel.cpp revision 47857812e29324a9d1560796a05b53d3a9217fd9
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/CodeGen/ScheduleDAG.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/MachineDebugInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SchedulerRegistry.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/CodeGen/SSARegMap.h"
35#include "llvm/Target/MRegisterInfo.h"
36#include "llvm/Target/TargetAsmInfo.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Target/TargetFrameInfo.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61
62//===---------------------------------------------------------------------===//
63///
64/// RegisterScheduler class - Track the registration of instruction schedulers.
65///
66//===---------------------------------------------------------------------===//
67MachinePassRegistry RegisterScheduler::Registry;
68
69//===---------------------------------------------------------------------===//
70///
71/// ISHeuristic command line option for instruction schedulers.
72///
73//===---------------------------------------------------------------------===//
74namespace {
75  cl::opt<RegisterScheduler::FunctionPassCtor, false,
76          RegisterPassParser<RegisterScheduler> >
77  ISHeuristic("sched",
78              cl::init(&createDefaultScheduler),
79              cl::desc("Instruction schedulers available:"));
80
81  static RegisterScheduler
82  defaultListDAGScheduler("default", "  Best scheduler for the target",
83                          createDefaultScheduler);
84} // namespace
85
86namespace {
87  /// RegsForValue - This struct represents the physical registers that a
88  /// particular value is assigned and the type information about the value.
89  /// This is needed because values can be promoted into larger registers and
90  /// expanded into multiple smaller registers than the value.
91  struct VISIBILITY_HIDDEN RegsForValue {
92    /// Regs - This list hold the register (for legal and promoted values)
93    /// or register set (for expanded values) that the value should be assigned
94    /// to.
95    std::vector<unsigned> Regs;
96
97    /// RegVT - The value type of each register.
98    ///
99    MVT::ValueType RegVT;
100
101    /// ValueVT - The value type of the LLVM value, which may be promoted from
102    /// RegVT or made from merging the two expanded parts.
103    MVT::ValueType ValueVT;
104
105    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
106
107    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
108      : RegVT(regvt), ValueVT(valuevt) {
109        Regs.push_back(Reg);
110    }
111    RegsForValue(const std::vector<unsigned> &regs,
112                 MVT::ValueType regvt, MVT::ValueType valuevt)
113      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
114    }
115
116    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
117    /// this value and returns the result as a ValueVT value.  This uses
118    /// Chain/Flag as the input and updates them for the output Chain/Flag.
119    SDOperand getCopyFromRegs(SelectionDAG &DAG,
120                              SDOperand &Chain, SDOperand &Flag) const;
121
122    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
123    /// specified value into the registers specified by this object.  This uses
124    /// Chain/Flag as the input and updates them for the output Chain/Flag.
125    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
126                       SDOperand &Chain, SDOperand &Flag,
127                       MVT::ValueType PtrVT) const;
128
129    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
130    /// operand list.  This adds the code marker and includes the number of
131    /// values added into it.
132    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
133                              std::vector<SDOperand> &Ops) const;
134  };
135}
136
137namespace llvm {
138  //===--------------------------------------------------------------------===//
139  /// createDefaultScheduler - This creates an instruction scheduler appropriate
140  /// for the target.
141  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
142                                      SelectionDAG *DAG,
143                                      MachineBasicBlock *BB) {
144    TargetLowering &TLI = IS->getTargetLowering();
145
146    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
147      return createTDListDAGScheduler(IS, DAG, BB);
148    } else {
149      assert(TLI.getSchedulingPreference() ==
150           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
151      return createBURRListDAGScheduler(IS, DAG, BB);
152    }
153  }
154
155
156  //===--------------------------------------------------------------------===//
157  /// FunctionLoweringInfo - This contains information that is global to a
158  /// function that is used when lowering a region of the function.
159  class FunctionLoweringInfo {
160  public:
161    TargetLowering &TLI;
162    Function &Fn;
163    MachineFunction &MF;
164    SSARegMap *RegMap;
165
166    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
167
168    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
169    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
170
171    /// ValueMap - Since we emit code for the function a basic block at a time,
172    /// we must remember which virtual registers hold the values for
173    /// cross-basic-block values.
174    std::map<const Value*, unsigned> ValueMap;
175
176    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
177    /// the entry block.  This allows the allocas to be efficiently referenced
178    /// anywhere in the function.
179    std::map<const AllocaInst*, int> StaticAllocaMap;
180
181    unsigned MakeReg(MVT::ValueType VT) {
182      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
183    }
184
185    /// isExportedInst - Return true if the specified value is an instruction
186    /// exported from its block.
187    bool isExportedInst(const Value *V) {
188      return ValueMap.count(V);
189    }
190
191    unsigned CreateRegForValue(const Value *V);
192
193    unsigned InitializeRegForValue(const Value *V) {
194      unsigned &R = ValueMap[V];
195      assert(R == 0 && "Already initialized this value register!");
196      return R = CreateRegForValue(V);
197    }
198  };
199}
200
201/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
202/// PHI nodes or outside of the basic block that defines it, or used by a
203/// switch instruction, which may expand to multiple basic blocks.
204static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
205  if (isa<PHINode>(I)) return true;
206  BasicBlock *BB = I->getParent();
207  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
208    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
209        // FIXME: Remove switchinst special case.
210        isa<SwitchInst>(*UI))
211      return true;
212  return false;
213}
214
215/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
216/// entry block, return true.  This includes arguments used by switches, since
217/// the switch may expand into multiple basic blocks.
218static bool isOnlyUsedInEntryBlock(Argument *A) {
219  BasicBlock *Entry = A->getParent()->begin();
220  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
221    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
222      return false;  // Use not in entry block.
223  return true;
224}
225
226FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
227                                           Function &fn, MachineFunction &mf)
228    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
229
230  // Create a vreg for each argument register that is not dead and is used
231  // outside of the entry block for the function.
232  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
233       AI != E; ++AI)
234    if (!isOnlyUsedInEntryBlock(AI))
235      InitializeRegForValue(AI);
236
237  // Initialize the mapping of values to registers.  This is only set up for
238  // instruction values that are used outside of the block that defines
239  // them.
240  Function::iterator BB = Fn.begin(), EB = Fn.end();
241  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
242    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
243      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
244        const Type *Ty = AI->getAllocatedType();
245        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
246        unsigned Align =
247          std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
248                   AI->getAlignment());
249
250        // If the alignment of the value is smaller than the size of the
251        // value, and if the size of the value is particularly small
252        // (<= 8 bytes), round up to the size of the value for potentially
253        // better performance.
254        //
255        // FIXME: This could be made better with a preferred alignment hook in
256        // TargetData.  It serves primarily to 8-byte align doubles for X86.
257        if (Align < TySize && TySize <= 8) Align = TySize;
258        TySize *= CUI->getZExtValue();   // Get total allocated size.
259        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
260        StaticAllocaMap[AI] =
261          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
262      }
263
264  for (; BB != EB; ++BB)
265    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
266      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
267        if (!isa<AllocaInst>(I) ||
268            !StaticAllocaMap.count(cast<AllocaInst>(I)))
269          InitializeRegForValue(I);
270
271  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
272  // also creates the initial PHI MachineInstrs, though none of the input
273  // operands are populated.
274  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
275    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
276    MBBMap[BB] = MBB;
277    MF.getBasicBlockList().push_back(MBB);
278
279    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
280    // appropriate.
281    PHINode *PN;
282    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
283      if (PN->use_empty()) continue;
284
285      MVT::ValueType VT = TLI.getValueType(PN->getType());
286      unsigned NumElements;
287      if (VT != MVT::Vector)
288        NumElements = TLI.getNumElements(VT);
289      else {
290        MVT::ValueType VT1,VT2;
291        NumElements =
292          TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
293                                     VT1, VT2);
294      }
295      unsigned PHIReg = ValueMap[PN];
296      assert(PHIReg && "PHI node does not have an assigned virtual register!");
297      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
298      for (unsigned i = 0; i != NumElements; ++i)
299        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
300    }
301  }
302}
303
304/// CreateRegForValue - Allocate the appropriate number of virtual registers of
305/// the correctly promoted or expanded types.  Assign these registers
306/// consecutive vreg numbers and return the first assigned number.
307unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
308  MVT::ValueType VT = TLI.getValueType(V->getType());
309
310  // The number of multiples of registers that we need, to, e.g., split up
311  // a <2 x int64> -> 4 x i32 registers.
312  unsigned NumVectorRegs = 1;
313
314  // If this is a packed type, figure out what type it will decompose into
315  // and how many of the elements it will use.
316  if (VT == MVT::Vector) {
317    const PackedType *PTy = cast<PackedType>(V->getType());
318    unsigned NumElts = PTy->getNumElements();
319    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
320
321    // Divide the input until we get to a supported size.  This will always
322    // end with a scalar if the target doesn't support vectors.
323    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
324      NumElts >>= 1;
325      NumVectorRegs <<= 1;
326    }
327    if (NumElts == 1)
328      VT = EltTy;
329    else
330      VT = getVectorType(EltTy, NumElts);
331  }
332
333  // The common case is that we will only create one register for this
334  // value.  If we have that case, create and return the virtual register.
335  unsigned NV = TLI.getNumElements(VT);
336  if (NV == 1) {
337    // If we are promoting this value, pick the next largest supported type.
338    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
339    unsigned Reg = MakeReg(PromotedType);
340    // If this is a vector of supported or promoted types (e.g. 4 x i16),
341    // create all of the registers.
342    for (unsigned i = 1; i != NumVectorRegs; ++i)
343      MakeReg(PromotedType);
344    return Reg;
345  }
346
347  // If this value is represented with multiple target registers, make sure
348  // to create enough consecutive registers of the right (smaller) type.
349  VT = TLI.getTypeToExpandTo(VT);
350  unsigned R = MakeReg(VT);
351  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
352    MakeReg(VT);
353  return R;
354}
355
356//===----------------------------------------------------------------------===//
357/// SelectionDAGLowering - This is the common target-independent lowering
358/// implementation that is parameterized by a TargetLowering object.
359/// Also, targets can overload any lowering method.
360///
361namespace llvm {
362class SelectionDAGLowering {
363  MachineBasicBlock *CurMBB;
364
365  std::map<const Value*, SDOperand> NodeMap;
366
367  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
368  /// them up and then emit token factor nodes when possible.  This allows us to
369  /// get simple disambiguation between loads without worrying about alias
370  /// analysis.
371  std::vector<SDOperand> PendingLoads;
372
373  /// Case - A pair of values to record the Value for a switch case, and the
374  /// case's target basic block.
375  typedef std::pair<Constant*, MachineBasicBlock*> Case;
376  typedef std::vector<Case>::iterator              CaseItr;
377  typedef std::pair<CaseItr, CaseItr>              CaseRange;
378
379  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
380  /// of conditional branches.
381  struct CaseRec {
382    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
383    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
384
385    /// CaseBB - The MBB in which to emit the compare and branch
386    MachineBasicBlock *CaseBB;
387    /// LT, GE - If nonzero, we know the current case value must be less-than or
388    /// greater-than-or-equal-to these Constants.
389    Constant *LT;
390    Constant *GE;
391    /// Range - A pair of iterators representing the range of case values to be
392    /// processed at this point in the binary search tree.
393    CaseRange Range;
394  };
395
396  /// The comparison function for sorting Case values.
397  struct CaseCmp {
398    bool operator () (const Case& C1, const Case& C2) {
399      assert(isa<ConstantInt>(C1.first) && isa<ConstantInt>(C2.first));
400      return cast<const ConstantInt>(C1.first)->getZExtValue() <
401        cast<const ConstantInt>(C2.first)->getZExtValue();
402    }
403  };
404
405public:
406  // TLI - This is information that describes the available target features we
407  // need for lowering.  This indicates when operations are unavailable,
408  // implemented with a libcall, etc.
409  TargetLowering &TLI;
410  SelectionDAG &DAG;
411  const TargetData *TD;
412
413  /// SwitchCases - Vector of CaseBlock structures used to communicate
414  /// SwitchInst code generation information.
415  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
416  SelectionDAGISel::JumpTable JT;
417
418  /// FuncInfo - Information about the function as a whole.
419  ///
420  FunctionLoweringInfo &FuncInfo;
421
422  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
423                       FunctionLoweringInfo &funcinfo)
424    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
425      JT(0,0,0,0), FuncInfo(funcinfo) {
426  }
427
428  /// getRoot - Return the current virtual root of the Selection DAG.
429  ///
430  SDOperand getRoot() {
431    if (PendingLoads.empty())
432      return DAG.getRoot();
433
434    if (PendingLoads.size() == 1) {
435      SDOperand Root = PendingLoads[0];
436      DAG.setRoot(Root);
437      PendingLoads.clear();
438      return Root;
439    }
440
441    // Otherwise, we have to make a token factor node.
442    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
443                                 &PendingLoads[0], PendingLoads.size());
444    PendingLoads.clear();
445    DAG.setRoot(Root);
446    return Root;
447  }
448
449  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
450
451  void visit(Instruction &I) { visit(I.getOpcode(), I); }
452
453  void visit(unsigned Opcode, User &I) {
454    // Note: this doesn't use InstVisitor, because it has to work with
455    // ConstantExpr's in addition to instructions.
456    switch (Opcode) {
457    default: assert(0 && "Unknown instruction type encountered!");
458             abort();
459      // Build the switch statement using the Instruction.def file.
460#define HANDLE_INST(NUM, OPCODE, CLASS) \
461    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
462#include "llvm/Instruction.def"
463    }
464  }
465
466  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
467
468  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
469                        const Value *SV, SDOperand Root,
470                        bool isVolatile);
471
472  SDOperand getIntPtrConstant(uint64_t Val) {
473    return DAG.getConstant(Val, TLI.getPointerTy());
474  }
475
476  SDOperand getValue(const Value *V);
477
478  const SDOperand &setValue(const Value *V, SDOperand NewN) {
479    SDOperand &N = NodeMap[V];
480    assert(N.Val == 0 && "Already set a value for this node!");
481    return N = NewN;
482  }
483
484  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
485                                    MVT::ValueType VT,
486                                    bool OutReg, bool InReg,
487                                    std::set<unsigned> &OutputRegs,
488                                    std::set<unsigned> &InputRegs);
489
490  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
491                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
492                            unsigned Opc);
493  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
494  void ExportFromCurrentBlock(Value *V);
495
496  // Terminator instructions.
497  void visitRet(ReturnInst &I);
498  void visitBr(BranchInst &I);
499  void visitSwitch(SwitchInst &I);
500  void visitUnreachable(UnreachableInst &I) { /* noop */ }
501
502  // Helper for visitSwitch
503  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
504  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
505
506  // These all get lowered before this pass.
507  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
508  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
509
510  void visitIntBinary(User &I, unsigned IntOp, unsigned VecOp);
511  void visitFPBinary(User &I, unsigned FPOp, unsigned VecOp);
512  void visitShift(User &I, unsigned Opcode);
513  void visitAdd(User &I) {
514    if (I.getType()->isFloatingPoint())
515      visitFPBinary(I, ISD::FADD, ISD::VADD);
516    else
517      visitIntBinary(I, ISD::ADD, ISD::VADD);
518  }
519  void visitSub(User &I);
520  void visitMul(User &I) {
521    if (I.getType()->isFloatingPoint())
522      visitFPBinary(I, ISD::FMUL, ISD::VMUL);
523    else
524      visitIntBinary(I, ISD::MUL, ISD::VMUL);
525  }
526  void visitURem(User &I) { visitIntBinary(I, ISD::UREM, 0); }
527  void visitSRem(User &I) { visitIntBinary(I, ISD::SREM, 0); }
528  void visitFRem(User &I) { visitFPBinary (I, ISD::FREM, 0); }
529  void visitUDiv(User &I) { visitIntBinary(I, ISD::UDIV, ISD::VUDIV); }
530  void visitSDiv(User &I) { visitIntBinary(I, ISD::SDIV, ISD::VSDIV); }
531  void visitFDiv(User &I) { visitFPBinary (I, ISD::FDIV, ISD::VSDIV); }
532  void visitAnd(User &I) { visitIntBinary(I, ISD::AND, ISD::VAND); }
533  void visitOr (User &I) { visitIntBinary(I, ISD::OR,  ISD::VOR); }
534  void visitXor(User &I) { visitIntBinary(I, ISD::XOR, ISD::VXOR); }
535  void visitShl(User &I) { visitShift(I, ISD::SHL); }
536  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
537  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
538  void visitICmp(User &I);
539  void visitFCmp(User &I);
540  // Visit the conversion instructions
541  void visitTrunc(User &I);
542  void visitZExt(User &I);
543  void visitSExt(User &I);
544  void visitFPTrunc(User &I);
545  void visitFPExt(User &I);
546  void visitFPToUI(User &I);
547  void visitFPToSI(User &I);
548  void visitUIToFP(User &I);
549  void visitSIToFP(User &I);
550  void visitPtrToInt(User &I);
551  void visitIntToPtr(User &I);
552  void visitBitCast(User &I);
553
554  void visitExtractElement(User &I);
555  void visitInsertElement(User &I);
556  void visitShuffleVector(User &I);
557
558  void visitGetElementPtr(User &I);
559  void visitSelect(User &I);
560
561  void visitMalloc(MallocInst &I);
562  void visitFree(FreeInst &I);
563  void visitAlloca(AllocaInst &I);
564  void visitLoad(LoadInst &I);
565  void visitStore(StoreInst &I);
566  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
567  void visitCall(CallInst &I);
568  void visitInlineAsm(CallInst &I);
569  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
570  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
571
572  void visitVAStart(CallInst &I);
573  void visitVAArg(VAArgInst &I);
574  void visitVAEnd(CallInst &I);
575  void visitVACopy(CallInst &I);
576  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
577
578  void visitMemIntrinsic(CallInst &I, unsigned Op);
579
580  void visitUserOp1(Instruction &I) {
581    assert(0 && "UserOp1 should not exist at instruction selection time!");
582    abort();
583  }
584  void visitUserOp2(Instruction &I) {
585    assert(0 && "UserOp2 should not exist at instruction selection time!");
586    abort();
587  }
588};
589} // end namespace llvm
590
591SDOperand SelectionDAGLowering::getValue(const Value *V) {
592  SDOperand &N = NodeMap[V];
593  if (N.Val) return N;
594
595  const Type *VTy = V->getType();
596  MVT::ValueType VT = TLI.getValueType(VTy);
597  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
598    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
599      visit(CE->getOpcode(), *CE);
600      assert(N.Val && "visit didn't populate the ValueMap!");
601      return N;
602    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
603      return N = DAG.getGlobalAddress(GV, VT);
604    } else if (isa<ConstantPointerNull>(C)) {
605      return N = DAG.getConstant(0, TLI.getPointerTy());
606    } else if (isa<UndefValue>(C)) {
607      if (!isa<PackedType>(VTy))
608        return N = DAG.getNode(ISD::UNDEF, VT);
609
610      // Create a VBUILD_VECTOR of undef nodes.
611      const PackedType *PTy = cast<PackedType>(VTy);
612      unsigned NumElements = PTy->getNumElements();
613      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
614
615      SmallVector<SDOperand, 8> Ops;
616      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
617
618      // Create a VConstant node with generic Vector type.
619      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
620      Ops.push_back(DAG.getValueType(PVT));
621      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
622                             &Ops[0], Ops.size());
623    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
624      return N = DAG.getConstantFP(CFP->getValue(), VT);
625    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
626      unsigned NumElements = PTy->getNumElements();
627      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
628
629      // Now that we know the number and type of the elements, push a
630      // Constant or ConstantFP node onto the ops list for each element of
631      // the packed constant.
632      SmallVector<SDOperand, 8> Ops;
633      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
634        for (unsigned i = 0; i != NumElements; ++i)
635          Ops.push_back(getValue(CP->getOperand(i)));
636      } else {
637        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
638        SDOperand Op;
639        if (MVT::isFloatingPoint(PVT))
640          Op = DAG.getConstantFP(0, PVT);
641        else
642          Op = DAG.getConstant(0, PVT);
643        Ops.assign(NumElements, Op);
644      }
645
646      // Create a VBUILD_VECTOR node with generic Vector type.
647      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
648      Ops.push_back(DAG.getValueType(PVT));
649      return N = DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector,&Ops[0],Ops.size());
650    } else {
651      // Canonicalize all constant ints to be unsigned.
652      return N = DAG.getConstant(cast<ConstantIntegral>(C)->getZExtValue(),VT);
653    }
654  }
655
656  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
657    std::map<const AllocaInst*, int>::iterator SI =
658    FuncInfo.StaticAllocaMap.find(AI);
659    if (SI != FuncInfo.StaticAllocaMap.end())
660      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
661  }
662
663  std::map<const Value*, unsigned>::const_iterator VMI =
664      FuncInfo.ValueMap.find(V);
665  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
666
667  unsigned InReg = VMI->second;
668
669  // If this type is not legal, make it so now.
670  if (VT != MVT::Vector) {
671    if (TLI.getTypeAction(VT) == TargetLowering::Expand) {
672      // Source must be expanded.  This input value is actually coming from the
673      // register pair VMI->second and VMI->second+1.
674      MVT::ValueType DestVT = TLI.getTypeToExpandTo(VT);
675      unsigned NumVals = TLI.getNumElements(VT);
676      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
677      if (NumVals == 1)
678        N = DAG.getNode(ISD::BIT_CONVERT, VT, N);
679      else {
680        assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
681        N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
682                       DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
683      }
684    } else {
685      MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
686      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
687      if (TLI.getTypeAction(VT) == TargetLowering::Promote) // Promotion case
688        N = MVT::isFloatingPoint(VT)
689          ? DAG.getNode(ISD::FP_ROUND, VT, N)
690          : DAG.getNode(ISD::TRUNCATE, VT, N);
691    }
692  } else {
693    // Otherwise, if this is a vector, make it available as a generic vector
694    // here.
695    MVT::ValueType PTyElementVT, PTyLegalElementVT;
696    const PackedType *PTy = cast<PackedType>(VTy);
697    unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT,
698                                             PTyLegalElementVT);
699
700    // Build a VBUILD_VECTOR with the input registers.
701    SmallVector<SDOperand, 8> Ops;
702    if (PTyElementVT == PTyLegalElementVT) {
703      // If the value types are legal, just VBUILD the CopyFromReg nodes.
704      for (unsigned i = 0; i != NE; ++i)
705        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
706                                         PTyElementVT));
707    } else if (PTyElementVT < PTyLegalElementVT) {
708      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
709      for (unsigned i = 0; i != NE; ++i) {
710        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
711                                          PTyElementVT);
712        if (MVT::isFloatingPoint(PTyElementVT))
713          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
714        else
715          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
716        Ops.push_back(Op);
717      }
718    } else {
719      // If the register was expanded, use BUILD_PAIR.
720      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
721      for (unsigned i = 0; i != NE/2; ++i) {
722        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
723                                           PTyElementVT);
724        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
725                                           PTyElementVT);
726        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
727      }
728    }
729
730    Ops.push_back(DAG.getConstant(NE, MVT::i32));
731    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
732    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
733
734    // Finally, use a VBIT_CONVERT to make this available as the appropriate
735    // vector type.
736    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
737                    DAG.getConstant(PTy->getNumElements(),
738                                    MVT::i32),
739                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
740  }
741
742  return N;
743}
744
745
746void SelectionDAGLowering::visitRet(ReturnInst &I) {
747  if (I.getNumOperands() == 0) {
748    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
749    return;
750  }
751  SmallVector<SDOperand, 8> NewValues;
752  NewValues.push_back(getRoot());
753  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
754    SDOperand RetOp = getValue(I.getOperand(i));
755
756    // If this is an integer return value, we need to promote it ourselves to
757    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
758    // than sign/zero.
759    // FIXME: C calling convention requires the return type to be promoted to
760    // at least 32-bit. But this is not necessary for non-C calling conventions.
761    if (MVT::isInteger(RetOp.getValueType()) &&
762        RetOp.getValueType() < MVT::i64) {
763      MVT::ValueType TmpVT;
764      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
765        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
766      else
767        TmpVT = MVT::i32;
768      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
769      ISD::NodeType ExtendKind = ISD::SIGN_EXTEND;
770      if (FTy->paramHasAttr(0, FunctionType::ZExtAttribute))
771        ExtendKind = ISD::ZERO_EXTEND;
772      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
773    }
774    NewValues.push_back(RetOp);
775    NewValues.push_back(DAG.getConstant(false, MVT::i32));
776  }
777  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
778                          &NewValues[0], NewValues.size()));
779}
780
781/// ExportFromCurrentBlock - If this condition isn't known to be exported from
782/// the current basic block, add it to ValueMap now so that we'll get a
783/// CopyTo/FromReg.
784void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
785  // No need to export constants.
786  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
787
788  // Already exported?
789  if (FuncInfo.isExportedInst(V)) return;
790
791  unsigned Reg = FuncInfo.InitializeRegForValue(V);
792  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
793}
794
795bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
796                                                    const BasicBlock *FromBB) {
797  // The operands of the setcc have to be in this block.  We don't know
798  // how to export them from some other block.
799  if (Instruction *VI = dyn_cast<Instruction>(V)) {
800    // Can export from current BB.
801    if (VI->getParent() == FromBB)
802      return true;
803
804    // Is already exported, noop.
805    return FuncInfo.isExportedInst(V);
806  }
807
808  // If this is an argument, we can export it if the BB is the entry block or
809  // if it is already exported.
810  if (isa<Argument>(V)) {
811    if (FromBB == &FromBB->getParent()->getEntryBlock())
812      return true;
813
814    // Otherwise, can only export this if it is already exported.
815    return FuncInfo.isExportedInst(V);
816  }
817
818  // Otherwise, constants can always be exported.
819  return true;
820}
821
822static bool InBlock(const Value *V, const BasicBlock *BB) {
823  if (const Instruction *I = dyn_cast<Instruction>(V))
824    return I->getParent() == BB;
825  return true;
826}
827
828/// FindMergedConditions - If Cond is an expression like
829void SelectionDAGLowering::FindMergedConditions(Value *Cond,
830                                                MachineBasicBlock *TBB,
831                                                MachineBasicBlock *FBB,
832                                                MachineBasicBlock *CurBB,
833                                                unsigned Opc) {
834  // If this node is not part of the or/and tree, emit it as a branch.
835  Instruction *BOp = dyn_cast<Instruction>(Cond);
836
837  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
838      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
839      BOp->getParent() != CurBB->getBasicBlock() ||
840      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
841      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
842    const BasicBlock *BB = CurBB->getBasicBlock();
843
844    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Cond))
845      if ((II->getIntrinsicID() == Intrinsic::isunordered_f32 ||
846           II->getIntrinsicID() == Intrinsic::isunordered_f64) &&
847          // The operands of the setcc have to be in this block.  We don't know
848          // how to export them from some other block.  If this is the first
849          // block of the sequence, no exporting is needed.
850          (CurBB == CurMBB ||
851           (isExportableFromCurrentBlock(II->getOperand(1), BB) &&
852            isExportableFromCurrentBlock(II->getOperand(2), BB)))) {
853        SelectionDAGISel::CaseBlock CB(ISD::SETUO, II->getOperand(1),
854                                       II->getOperand(2), TBB, FBB, CurBB);
855        SwitchCases.push_back(CB);
856        return;
857      }
858
859
860    // If the leaf of the tree is a comparison, merge the condition into
861    // the caseblock.
862    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
863        // The operands of the cmp have to be in this block.  We don't know
864        // how to export them from some other block.  If this is the first block
865        // of the sequence, no exporting is needed.
866        (CurBB == CurMBB ||
867         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
868          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
869      BOp = cast<Instruction>(Cond);
870      ISD::CondCode Condition;
871      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
872        switch (IC->getPredicate()) {
873        default: assert(0 && "Unknown icmp predicate opcode!");
874        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
875        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
876        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
877        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
878        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
879        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
880        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
881        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
882        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
883        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
884        }
885      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
886        ISD::CondCode FPC, FOC;
887        switch (FC->getPredicate()) {
888        default: assert(0 && "Unknown fcmp predicate opcode!");
889        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
890        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
891        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
892        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
893        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
894        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
895        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
896        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
897        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
898        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
899        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
900        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
901        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
902        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
903        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
904        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
905        }
906        if (FiniteOnlyFPMath())
907          Condition = FOC;
908        else
909          Condition = FPC;
910      } else {
911        assert(0 && "Unknown compare instruction");
912      }
913
914      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
915                                     BOp->getOperand(1), TBB, FBB, CurBB);
916      SwitchCases.push_back(CB);
917      return;
918    }
919
920    // Create a CaseBlock record representing this branch.
921    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantBool::getTrue(),
922                                   TBB, FBB, CurBB);
923    SwitchCases.push_back(CB);
924    return;
925  }
926
927
928  //  Create TmpBB after CurBB.
929  MachineFunction::iterator BBI = CurBB;
930  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
931  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
932
933  if (Opc == Instruction::Or) {
934    // Codegen X | Y as:
935    //   jmp_if_X TBB
936    //   jmp TmpBB
937    // TmpBB:
938    //   jmp_if_Y TBB
939    //   jmp FBB
940    //
941
942    // Emit the LHS condition.
943    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
944
945    // Emit the RHS condition into TmpBB.
946    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
947  } else {
948    assert(Opc == Instruction::And && "Unknown merge op!");
949    // Codegen X & Y as:
950    //   jmp_if_X TmpBB
951    //   jmp FBB
952    // TmpBB:
953    //   jmp_if_Y TBB
954    //   jmp FBB
955    //
956    //  This requires creation of TmpBB after CurBB.
957
958    // Emit the LHS condition.
959    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
960
961    // Emit the RHS condition into TmpBB.
962    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
963  }
964}
965
966/// If the set of cases should be emitted as a series of branches, return true.
967/// If we should emit this as a bunch of and/or'd together conditions, return
968/// false.
969static bool
970ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
971  if (Cases.size() != 2) return true;
972
973  // If this is two comparisons of the same values or'd or and'd together, they
974  // will get folded into a single comparison, so don't emit two blocks.
975  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
976       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
977      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
978       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
979    return false;
980  }
981
982  return true;
983}
984
985void SelectionDAGLowering::visitBr(BranchInst &I) {
986  // Update machine-CFG edges.
987  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
988
989  // Figure out which block is immediately after the current one.
990  MachineBasicBlock *NextBlock = 0;
991  MachineFunction::iterator BBI = CurMBB;
992  if (++BBI != CurMBB->getParent()->end())
993    NextBlock = BBI;
994
995  if (I.isUnconditional()) {
996    // If this is not a fall-through branch, emit the branch.
997    if (Succ0MBB != NextBlock)
998      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
999                              DAG.getBasicBlock(Succ0MBB)));
1000
1001    // Update machine-CFG edges.
1002    CurMBB->addSuccessor(Succ0MBB);
1003
1004    return;
1005  }
1006
1007  // If this condition is one of the special cases we handle, do special stuff
1008  // now.
1009  Value *CondVal = I.getCondition();
1010  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1011
1012  // If this is a series of conditions that are or'd or and'd together, emit
1013  // this as a sequence of branches instead of setcc's with and/or operations.
1014  // For example, instead of something like:
1015  //     cmp A, B
1016  //     C = seteq
1017  //     cmp D, E
1018  //     F = setle
1019  //     or C, F
1020  //     jnz foo
1021  // Emit:
1022  //     cmp A, B
1023  //     je foo
1024  //     cmp D, E
1025  //     jle foo
1026  //
1027  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1028    if (BOp->hasOneUse() &&
1029        (BOp->getOpcode() == Instruction::And ||
1030         BOp->getOpcode() == Instruction::Or)) {
1031      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1032      // If the compares in later blocks need to use values not currently
1033      // exported from this block, export them now.  This block should always
1034      // be the first entry.
1035      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1036
1037      // Allow some cases to be rejected.
1038      if (ShouldEmitAsBranches(SwitchCases)) {
1039        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1040          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1041          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1042        }
1043
1044        // Emit the branch for this block.
1045        visitSwitchCase(SwitchCases[0]);
1046        SwitchCases.erase(SwitchCases.begin());
1047        return;
1048      }
1049
1050      // Okay, we decided not to do this, remove any inserted MBB's and clear
1051      // SwitchCases.
1052      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1053        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1054
1055      SwitchCases.clear();
1056    }
1057  }
1058
1059  // Create a CaseBlock record representing this branch.
1060  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantBool::getTrue(),
1061                                 Succ0MBB, Succ1MBB, CurMBB);
1062  // Use visitSwitchCase to actually insert the fast branch sequence for this
1063  // cond branch.
1064  visitSwitchCase(CB);
1065}
1066
1067/// visitSwitchCase - Emits the necessary code to represent a single node in
1068/// the binary search tree resulting from lowering a switch instruction.
1069void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1070  SDOperand Cond;
1071  SDOperand CondLHS = getValue(CB.CmpLHS);
1072
1073  // Build the setcc now, fold "(X == true)" to X and "(X == false)" to !X to
1074  // handle common cases produced by branch lowering.
1075  if (CB.CmpRHS == ConstantBool::getTrue() && CB.CC == ISD::SETEQ)
1076    Cond = CondLHS;
1077  else if (CB.CmpRHS == ConstantBool::getFalse() && CB.CC == ISD::SETEQ) {
1078    SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1079    Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1080  } else
1081    Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1082
1083  // Set NextBlock to be the MBB immediately after the current one, if any.
1084  // This is used to avoid emitting unnecessary branches to the next block.
1085  MachineBasicBlock *NextBlock = 0;
1086  MachineFunction::iterator BBI = CurMBB;
1087  if (++BBI != CurMBB->getParent()->end())
1088    NextBlock = BBI;
1089
1090  // If the lhs block is the next block, invert the condition so that we can
1091  // fall through to the lhs instead of the rhs block.
1092  if (CB.TrueBB == NextBlock) {
1093    std::swap(CB.TrueBB, CB.FalseBB);
1094    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1095    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1096  }
1097  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1098                                 DAG.getBasicBlock(CB.TrueBB));
1099  if (CB.FalseBB == NextBlock)
1100    DAG.setRoot(BrCond);
1101  else
1102    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1103                            DAG.getBasicBlock(CB.FalseBB)));
1104  // Update successor info
1105  CurMBB->addSuccessor(CB.TrueBB);
1106  CurMBB->addSuccessor(CB.FalseBB);
1107}
1108
1109void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1110  // Emit the code for the jump table
1111  MVT::ValueType PTy = TLI.getPointerTy();
1112  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1113  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1114  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1115                          Table, Index));
1116  return;
1117}
1118
1119void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
1120  // Figure out which block is immediately after the current one.
1121  MachineBasicBlock *NextBlock = 0;
1122  MachineFunction::iterator BBI = CurMBB;
1123
1124  if (++BBI != CurMBB->getParent()->end())
1125    NextBlock = BBI;
1126
1127  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
1128
1129  // If there is only the default destination, branch to it if it is not the
1130  // next basic block.  Otherwise, just fall through.
1131  if (I.getNumOperands() == 2) {
1132    // Update machine-CFG edges.
1133
1134    // If this is not a fall-through branch, emit the branch.
1135    if (Default != NextBlock)
1136      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1137                              DAG.getBasicBlock(Default)));
1138
1139    CurMBB->addSuccessor(Default);
1140    return;
1141  }
1142
1143  // If there are any non-default case statements, create a vector of Cases
1144  // representing each one, and sort the vector so that we can efficiently
1145  // create a binary search tree from them.
1146  std::vector<Case> Cases;
1147
1148  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
1149    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
1150    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
1151  }
1152
1153  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1154
1155  // Get the Value to be switched on and default basic blocks, which will be
1156  // inserted into CaseBlock records, representing basic blocks in the binary
1157  // search tree.
1158  Value *SV = I.getOperand(0);
1159
1160  // Get the MachineFunction which holds the current MBB.  This is used during
1161  // emission of jump tables, and when inserting any additional MBBs necessary
1162  // to represent the switch.
1163  MachineFunction *CurMF = CurMBB->getParent();
1164  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
1165
1166  // If the switch has few cases (two or less) emit a series of specific
1167  // tests.
1168  if (Cases.size() < 3) {
1169    // TODO: If any two of the cases has the same destination, and if one value
1170    // is the same as the other, but has one bit unset that the other has set,
1171    // use bit manipulation to do two compares at once.  For example:
1172    // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1173
1174    // Rearrange the case blocks so that the last one falls through if possible.
1175    if (NextBlock && Default != NextBlock && Cases.back().second != NextBlock) {
1176      // The last case block won't fall through into 'NextBlock' if we emit the
1177      // branches in this order.  See if rearranging a case value would help.
1178      for (unsigned i = 0, e = Cases.size()-1; i != e; ++i) {
1179        if (Cases[i].second == NextBlock) {
1180          std::swap(Cases[i], Cases.back());
1181          break;
1182        }
1183      }
1184    }
1185
1186    // Create a CaseBlock record representing a conditional branch to
1187    // the Case's target mbb if the value being switched on SV is equal
1188    // to C.
1189    MachineBasicBlock *CurBlock = CurMBB;
1190    for (unsigned i = 0, e = Cases.size(); i != e; ++i) {
1191      MachineBasicBlock *FallThrough;
1192      if (i != e-1) {
1193        FallThrough = new MachineBasicBlock(CurMBB->getBasicBlock());
1194        CurMF->getBasicBlockList().insert(BBI, FallThrough);
1195      } else {
1196        // If the last case doesn't match, go to the default block.
1197        FallThrough = Default;
1198      }
1199
1200      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, Cases[i].first,
1201                                     Cases[i].second, FallThrough, CurBlock);
1202
1203      // If emitting the first comparison, just call visitSwitchCase to emit the
1204      // code into the current block.  Otherwise, push the CaseBlock onto the
1205      // vector to be later processed by SDISel, and insert the node's MBB
1206      // before the next MBB.
1207      if (CurBlock == CurMBB)
1208        visitSwitchCase(CB);
1209      else
1210        SwitchCases.push_back(CB);
1211
1212      CurBlock = FallThrough;
1213    }
1214    return;
1215  }
1216
1217  // If the switch has more than 5 blocks, and at least 31.25% dense, and the
1218  // target supports indirect branches, then emit a jump table rather than
1219  // lowering the switch to a binary tree of conditional branches.
1220  if ((TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1221       TLI.isOperationLegal(ISD::BRIND, MVT::Other)) &&
1222      Cases.size() > 5) {
1223    uint64_t First =cast<ConstantIntegral>(Cases.front().first)->getZExtValue();
1224    uint64_t Last  = cast<ConstantIntegral>(Cases.back().first)->getZExtValue();
1225    double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
1226
1227    if (Density >= 0.3125) {
1228      // Create a new basic block to hold the code for loading the address
1229      // of the jump table, and jumping to it.  Update successor information;
1230      // we will either branch to the default case for the switch, or the jump
1231      // table.
1232      MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1233      CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1234      CurMBB->addSuccessor(Default);
1235      CurMBB->addSuccessor(JumpTableBB);
1236
1237      // Subtract the lowest switch case value from the value being switched on
1238      // and conditional branch to default mbb if the result is greater than the
1239      // difference between smallest and largest cases.
1240      SDOperand SwitchOp = getValue(SV);
1241      MVT::ValueType VT = SwitchOp.getValueType();
1242      SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1243                                  DAG.getConstant(First, VT));
1244
1245      // The SDNode we just created, which holds the value being switched on
1246      // minus the the smallest case value, needs to be copied to a virtual
1247      // register so it can be used as an index into the jump table in a
1248      // subsequent basic block.  This value may be smaller or larger than the
1249      // target's pointer type, and therefore require extension or truncating.
1250      if (VT > TLI.getPointerTy())
1251        SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1252      else
1253        SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1254
1255      unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1256      SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1257
1258      // Emit the range check for the jump table, and branch to the default
1259      // block for the switch statement if the value being switched on exceeds
1260      // the largest case in the switch.
1261      SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1262                                   DAG.getConstant(Last-First,VT), ISD::SETUGT);
1263      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1264                              DAG.getBasicBlock(Default)));
1265
1266      // Build a vector of destination BBs, corresponding to each target
1267      // of the jump table.  If the value of the jump table slot corresponds to
1268      // a case statement, push the case's BB onto the vector, otherwise, push
1269      // the default BB.
1270      std::vector<MachineBasicBlock*> DestBBs;
1271      uint64_t TEI = First;
1272      for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI)
1273        if (cast<ConstantIntegral>(ii->first)->getZExtValue() == TEI) {
1274          DestBBs.push_back(ii->second);
1275          ++ii;
1276        } else {
1277          DestBBs.push_back(Default);
1278        }
1279
1280      // Update successor info.  Add one edge to each unique successor.
1281      // Vector bool would be better, but vector<bool> is really slow.
1282      std::vector<unsigned char> SuccsHandled;
1283      SuccsHandled.resize(CurMBB->getParent()->getNumBlockIDs());
1284
1285      for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1286           E = DestBBs.end(); I != E; ++I) {
1287        if (!SuccsHandled[(*I)->getNumber()]) {
1288          SuccsHandled[(*I)->getNumber()] = true;
1289          JumpTableBB->addSuccessor(*I);
1290        }
1291      }
1292
1293      // Create a jump table index for this jump table, or return an existing
1294      // one.
1295      unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1296
1297      // Set the jump table information so that we can codegen it as a second
1298      // MachineBasicBlock
1299      JT.Reg = JumpTableReg;
1300      JT.JTI = JTI;
1301      JT.MBB = JumpTableBB;
1302      JT.Default = Default;
1303      return;
1304    }
1305  }
1306
1307  // Push the initial CaseRec onto the worklist
1308  std::vector<CaseRec> CaseVec;
1309  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1310
1311  while (!CaseVec.empty()) {
1312    // Grab a record representing a case range to process off the worklist
1313    CaseRec CR = CaseVec.back();
1314    CaseVec.pop_back();
1315
1316    // Size is the number of Cases represented by this range.  If Size is 1,
1317    // then we are processing a leaf of the binary search tree.  Otherwise,
1318    // we need to pick a pivot, and push left and right ranges onto the
1319    // worklist.
1320    unsigned Size = CR.Range.second - CR.Range.first;
1321
1322    if (Size == 1) {
1323      // Create a CaseBlock record representing a conditional branch to
1324      // the Case's target mbb if the value being switched on SV is equal
1325      // to C.  Otherwise, branch to default.
1326      Constant *C = CR.Range.first->first;
1327      MachineBasicBlock *Target = CR.Range.first->second;
1328      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
1329                                     CR.CaseBB);
1330
1331      // If the MBB representing the leaf node is the current MBB, then just
1332      // call visitSwitchCase to emit the code into the current block.
1333      // Otherwise, push the CaseBlock onto the vector to be later processed
1334      // by SDISel, and insert the node's MBB before the next MBB.
1335      if (CR.CaseBB == CurMBB)
1336        visitSwitchCase(CB);
1337      else
1338        SwitchCases.push_back(CB);
1339    } else {
1340      // split case range at pivot
1341      CaseItr Pivot = CR.Range.first + (Size / 2);
1342      CaseRange LHSR(CR.Range.first, Pivot);
1343      CaseRange RHSR(Pivot, CR.Range.second);
1344      Constant *C = Pivot->first;
1345      MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1346
1347      // We know that we branch to the LHS if the Value being switched on is
1348      // less than the Pivot value, C.  We use this to optimize our binary
1349      // tree a bit, by recognizing that if SV is greater than or equal to the
1350      // LHS's Case Value, and that Case Value is exactly one less than the
1351      // Pivot's Value, then we can branch directly to the LHS's Target,
1352      // rather than creating a leaf node for it.
1353      if ((LHSR.second - LHSR.first) == 1 &&
1354          LHSR.first->first == CR.GE &&
1355          cast<ConstantIntegral>(C)->getZExtValue() ==
1356          (cast<ConstantIntegral>(CR.GE)->getZExtValue() + 1ULL)) {
1357        TrueBB = LHSR.first->second;
1358      } else {
1359        TrueBB = new MachineBasicBlock(LLVMBB);
1360        CurMF->getBasicBlockList().insert(BBI, TrueBB);
1361        CaseVec.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1362      }
1363
1364      // Similar to the optimization above, if the Value being switched on is
1365      // known to be less than the Constant CR.LT, and the current Case Value
1366      // is CR.LT - 1, then we can branch directly to the target block for
1367      // the current Case Value, rather than emitting a RHS leaf node for it.
1368      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1369          cast<ConstantIntegral>(RHSR.first->first)->getZExtValue() ==
1370          (cast<ConstantIntegral>(CR.LT)->getZExtValue() - 1ULL)) {
1371        FalseBB = RHSR.first->second;
1372      } else {
1373        FalseBB = new MachineBasicBlock(LLVMBB);
1374        CurMF->getBasicBlockList().insert(BBI, FalseBB);
1375        CaseVec.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1376      }
1377
1378      // Create a CaseBlock record representing a conditional branch to
1379      // the LHS node if the value being switched on SV is less than C.
1380      // Otherwise, branch to LHS.
1381      ISD::CondCode CC =  ISD::SETULT;
1382      SelectionDAGISel::CaseBlock CB(CC, SV, C, TrueBB, FalseBB, CR.CaseBB);
1383
1384      if (CR.CaseBB == CurMBB)
1385        visitSwitchCase(CB);
1386      else
1387        SwitchCases.push_back(CB);
1388    }
1389  }
1390}
1391
1392void SelectionDAGLowering::visitSub(User &I) {
1393  // -0.0 - X --> fneg
1394  if (I.getType()->isFloatingPoint()) {
1395    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1396      if (CFP->isExactlyValue(-0.0)) {
1397        SDOperand Op2 = getValue(I.getOperand(1));
1398        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1399        return;
1400      }
1401    visitFPBinary(I, ISD::FSUB, ISD::VSUB);
1402  } else
1403    visitIntBinary(I, ISD::SUB, ISD::VSUB);
1404}
1405
1406void
1407SelectionDAGLowering::visitIntBinary(User &I, unsigned IntOp, unsigned VecOp) {
1408  const Type *Ty = I.getType();
1409  SDOperand Op1 = getValue(I.getOperand(0));
1410  SDOperand Op2 = getValue(I.getOperand(1));
1411
1412  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1413    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
1414    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
1415    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
1416  } else {
1417    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
1418  }
1419}
1420
1421void
1422SelectionDAGLowering::visitFPBinary(User &I, unsigned FPOp, unsigned VecOp) {
1423  const Type *Ty = I.getType();
1424  SDOperand Op1 = getValue(I.getOperand(0));
1425  SDOperand Op2 = getValue(I.getOperand(1));
1426
1427  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1428    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
1429    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
1430    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
1431  } else {
1432    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
1433  }
1434}
1435
1436void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1437  SDOperand Op1 = getValue(I.getOperand(0));
1438  SDOperand Op2 = getValue(I.getOperand(1));
1439
1440  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1441
1442  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1443}
1444
1445void SelectionDAGLowering::visitICmp(User &I) {
1446  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
1447  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
1448    predicate = IC->getPredicate();
1449  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
1450    predicate = ICmpInst::Predicate(IC->getPredicate());
1451  SDOperand Op1 = getValue(I.getOperand(0));
1452  SDOperand Op2 = getValue(I.getOperand(1));
1453  ISD::CondCode Opcode;
1454  switch (predicate) {
1455    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
1456    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
1457    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
1458    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
1459    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
1460    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
1461    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
1462    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
1463    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
1464    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
1465    default:
1466      assert(!"Invalid ICmp predicate value");
1467      Opcode = ISD::SETEQ;
1468      break;
1469  }
1470  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1471}
1472
1473void SelectionDAGLowering::visitFCmp(User &I) {
1474  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
1475  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
1476    predicate = FC->getPredicate();
1477  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
1478    predicate = FCmpInst::Predicate(FC->getPredicate());
1479  SDOperand Op1 = getValue(I.getOperand(0));
1480  SDOperand Op2 = getValue(I.getOperand(1));
1481  ISD::CondCode Condition, FOC, FPC;
1482  switch (predicate) {
1483    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1484    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1485    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1486    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1487    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1488    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1489    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1490    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1491    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1492    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1493    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1494    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1495    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1496    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1497    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1498    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1499    default:
1500      assert(!"Invalid FCmp predicate value");
1501      FOC = FPC = ISD::SETFALSE;
1502      break;
1503  }
1504  if (FiniteOnlyFPMath())
1505    Condition = FOC;
1506  else
1507    Condition = FPC;
1508  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
1509}
1510
1511void SelectionDAGLowering::visitSelect(User &I) {
1512  SDOperand Cond     = getValue(I.getOperand(0));
1513  SDOperand TrueVal  = getValue(I.getOperand(1));
1514  SDOperand FalseVal = getValue(I.getOperand(2));
1515  if (!isa<PackedType>(I.getType())) {
1516    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1517                             TrueVal, FalseVal));
1518  } else {
1519    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1520                             *(TrueVal.Val->op_end()-2),
1521                             *(TrueVal.Val->op_end()-1)));
1522  }
1523}
1524
1525
1526void SelectionDAGLowering::visitTrunc(User &I) {
1527  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
1528  SDOperand N = getValue(I.getOperand(0));
1529  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1530  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1531}
1532
1533void SelectionDAGLowering::visitZExt(User &I) {
1534  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1535  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
1536  SDOperand N = getValue(I.getOperand(0));
1537  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1538  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1539}
1540
1541void SelectionDAGLowering::visitSExt(User &I) {
1542  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1543  // SExt also can't be a cast to bool for same reason. So, nothing much to do
1544  SDOperand N = getValue(I.getOperand(0));
1545  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1546  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1547}
1548
1549void SelectionDAGLowering::visitFPTrunc(User &I) {
1550  // FPTrunc is never a no-op cast, no need to check
1551  SDOperand N = getValue(I.getOperand(0));
1552  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1553  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1554}
1555
1556void SelectionDAGLowering::visitFPExt(User &I){
1557  // FPTrunc is never a no-op cast, no need to check
1558  SDOperand N = getValue(I.getOperand(0));
1559  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1560  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1561}
1562
1563void SelectionDAGLowering::visitFPToUI(User &I) {
1564  // FPToUI is never a no-op cast, no need to check
1565  SDOperand N = getValue(I.getOperand(0));
1566  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1567  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1568}
1569
1570void SelectionDAGLowering::visitFPToSI(User &I) {
1571  // FPToSI is never a no-op cast, no need to check
1572  SDOperand N = getValue(I.getOperand(0));
1573  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1574  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1575}
1576
1577void SelectionDAGLowering::visitUIToFP(User &I) {
1578  // UIToFP is never a no-op cast, no need to check
1579  SDOperand N = getValue(I.getOperand(0));
1580  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1581  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1582}
1583
1584void SelectionDAGLowering::visitSIToFP(User &I){
1585  // UIToFP is never a no-op cast, no need to check
1586  SDOperand N = getValue(I.getOperand(0));
1587  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1588  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1589}
1590
1591void SelectionDAGLowering::visitPtrToInt(User &I) {
1592  // What to do depends on the size of the integer and the size of the pointer.
1593  // We can either truncate, zero extend, or no-op, accordingly.
1594  SDOperand N = getValue(I.getOperand(0));
1595  MVT::ValueType SrcVT = N.getValueType();
1596  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1597  SDOperand Result;
1598  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1599    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
1600  else
1601    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1602    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
1603  setValue(&I, Result);
1604}
1605
1606void SelectionDAGLowering::visitIntToPtr(User &I) {
1607  // What to do depends on the size of the integer and the size of the pointer.
1608  // We can either truncate, zero extend, or no-op, accordingly.
1609  SDOperand N = getValue(I.getOperand(0));
1610  MVT::ValueType SrcVT = N.getValueType();
1611  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1612  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1613    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1614  else
1615    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1616    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1617}
1618
1619void SelectionDAGLowering::visitBitCast(User &I) {
1620  SDOperand N = getValue(I.getOperand(0));
1621  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1622  if (DestVT == MVT::Vector) {
1623    // This is a cast to a vector from something else.
1624    // Get information about the output vector.
1625    const PackedType *DestTy = cast<PackedType>(I.getType());
1626    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1627    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1628                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1629                             DAG.getValueType(EltVT)));
1630    return;
1631  }
1632  MVT::ValueType SrcVT = N.getValueType();
1633  if (SrcVT == MVT::Vector) {
1634    // This is a cast from a vctor to something else.
1635    // Get information about the input vector.
1636    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1637    return;
1638  }
1639
1640  // BitCast assures us that source and destination are the same size so this
1641  // is either a BIT_CONVERT or a no-op.
1642  if (DestVT != N.getValueType())
1643    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
1644  else
1645    setValue(&I, N); // noop cast.
1646}
1647
1648void SelectionDAGLowering::visitInsertElement(User &I) {
1649  SDOperand InVec = getValue(I.getOperand(0));
1650  SDOperand InVal = getValue(I.getOperand(1));
1651  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1652                                getValue(I.getOperand(2)));
1653
1654  SDOperand Num = *(InVec.Val->op_end()-2);
1655  SDOperand Typ = *(InVec.Val->op_end()-1);
1656  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1657                           InVec, InVal, InIdx, Num, Typ));
1658}
1659
1660void SelectionDAGLowering::visitExtractElement(User &I) {
1661  SDOperand InVec = getValue(I.getOperand(0));
1662  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1663                                getValue(I.getOperand(1)));
1664  SDOperand Typ = *(InVec.Val->op_end()-1);
1665  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1666                           TLI.getValueType(I.getType()), InVec, InIdx));
1667}
1668
1669void SelectionDAGLowering::visitShuffleVector(User &I) {
1670  SDOperand V1   = getValue(I.getOperand(0));
1671  SDOperand V2   = getValue(I.getOperand(1));
1672  SDOperand Mask = getValue(I.getOperand(2));
1673
1674  SDOperand Num = *(V1.Val->op_end()-2);
1675  SDOperand Typ = *(V2.Val->op_end()-1);
1676  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1677                           V1, V2, Mask, Num, Typ));
1678}
1679
1680
1681void SelectionDAGLowering::visitGetElementPtr(User &I) {
1682  SDOperand N = getValue(I.getOperand(0));
1683  const Type *Ty = I.getOperand(0)->getType();
1684
1685  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1686       OI != E; ++OI) {
1687    Value *Idx = *OI;
1688    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1689      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
1690      if (Field) {
1691        // N = N + Offset
1692        uint64_t Offset = TD->getStructLayout(StTy)->MemberOffsets[Field];
1693        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1694                        getIntPtrConstant(Offset));
1695      }
1696      Ty = StTy->getElementType(Field);
1697    } else {
1698      Ty = cast<SequentialType>(Ty)->getElementType();
1699
1700      // If this is a constant subscript, handle it quickly.
1701      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1702        if (CI->getZExtValue() == 0) continue;
1703        uint64_t Offs =
1704            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getZExtValue();
1705        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1706        continue;
1707      }
1708
1709      // N = N + Idx * ElementSize;
1710      uint64_t ElementSize = TD->getTypeSize(Ty);
1711      SDOperand IdxN = getValue(Idx);
1712
1713      // If the index is smaller or larger than intptr_t, truncate or extend
1714      // it.
1715      if (IdxN.getValueType() < N.getValueType()) {
1716        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1717      } else if (IdxN.getValueType() > N.getValueType())
1718        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1719
1720      // If this is a multiply by a power of two, turn it into a shl
1721      // immediately.  This is a very common case.
1722      if (isPowerOf2_64(ElementSize)) {
1723        unsigned Amt = Log2_64(ElementSize);
1724        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1725                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1726        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1727        continue;
1728      }
1729
1730      SDOperand Scale = getIntPtrConstant(ElementSize);
1731      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1732      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1733    }
1734  }
1735  setValue(&I, N);
1736}
1737
1738void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1739  // If this is a fixed sized alloca in the entry block of the function,
1740  // allocate it statically on the stack.
1741  if (FuncInfo.StaticAllocaMap.count(&I))
1742    return;   // getValue will auto-populate this.
1743
1744  const Type *Ty = I.getAllocatedType();
1745  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
1746  unsigned Align = std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
1747                            I.getAlignment());
1748
1749  SDOperand AllocSize = getValue(I.getArraySize());
1750  MVT::ValueType IntPtr = TLI.getPointerTy();
1751  if (IntPtr < AllocSize.getValueType())
1752    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1753  else if (IntPtr > AllocSize.getValueType())
1754    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1755
1756  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1757                          getIntPtrConstant(TySize));
1758
1759  // Handle alignment.  If the requested alignment is less than or equal to the
1760  // stack alignment, ignore it and round the size of the allocation up to the
1761  // stack alignment size.  If the size is greater than the stack alignment, we
1762  // note this in the DYNAMIC_STACKALLOC node.
1763  unsigned StackAlign =
1764    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1765  if (Align <= StackAlign) {
1766    Align = 0;
1767    // Add SA-1 to the size.
1768    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1769                            getIntPtrConstant(StackAlign-1));
1770    // Mask out the low bits for alignment purposes.
1771    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1772                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1773  }
1774
1775  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
1776  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
1777                                                    MVT::Other);
1778  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
1779  DAG.setRoot(setValue(&I, DSA).getValue(1));
1780
1781  // Inform the Frame Information that we have just allocated a variable-sized
1782  // object.
1783  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1784}
1785
1786void SelectionDAGLowering::visitLoad(LoadInst &I) {
1787  SDOperand Ptr = getValue(I.getOperand(0));
1788
1789  SDOperand Root;
1790  if (I.isVolatile())
1791    Root = getRoot();
1792  else {
1793    // Do not serialize non-volatile loads against each other.
1794    Root = DAG.getRoot();
1795  }
1796
1797  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
1798                           Root, I.isVolatile()));
1799}
1800
1801SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1802                                            const Value *SV, SDOperand Root,
1803                                            bool isVolatile) {
1804  SDOperand L;
1805  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1806    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1807    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
1808                       DAG.getSrcValue(SV));
1809  } else {
1810    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0, isVolatile);
1811  }
1812
1813  if (isVolatile)
1814    DAG.setRoot(L.getValue(1));
1815  else
1816    PendingLoads.push_back(L.getValue(1));
1817
1818  return L;
1819}
1820
1821
1822void SelectionDAGLowering::visitStore(StoreInst &I) {
1823  Value *SrcV = I.getOperand(0);
1824  SDOperand Src = getValue(SrcV);
1825  SDOperand Ptr = getValue(I.getOperand(1));
1826  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
1827                           I.isVolatile()));
1828}
1829
1830/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1831/// access memory and has no other side effects at all.
1832static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1833#define GET_NO_MEMORY_INTRINSICS
1834#include "llvm/Intrinsics.gen"
1835#undef GET_NO_MEMORY_INTRINSICS
1836  return false;
1837}
1838
1839// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
1840// have any side-effects or if it only reads memory.
1841static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
1842#define GET_SIDE_EFFECT_INFO
1843#include "llvm/Intrinsics.gen"
1844#undef GET_SIDE_EFFECT_INFO
1845  return false;
1846}
1847
1848/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1849/// node.
1850void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1851                                                unsigned Intrinsic) {
1852  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1853  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
1854
1855  // Build the operand list.
1856  SmallVector<SDOperand, 8> Ops;
1857  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
1858    if (OnlyLoad) {
1859      // We don't need to serialize loads against other loads.
1860      Ops.push_back(DAG.getRoot());
1861    } else {
1862      Ops.push_back(getRoot());
1863    }
1864  }
1865
1866  // Add the intrinsic ID as an integer operand.
1867  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1868
1869  // Add all operands of the call to the operand list.
1870  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1871    SDOperand Op = getValue(I.getOperand(i));
1872
1873    // If this is a vector type, force it to the right packed type.
1874    if (Op.getValueType() == MVT::Vector) {
1875      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1876      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1877
1878      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1879      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1880      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1881    }
1882
1883    assert(TLI.isTypeLegal(Op.getValueType()) &&
1884           "Intrinsic uses a non-legal type?");
1885    Ops.push_back(Op);
1886  }
1887
1888  std::vector<MVT::ValueType> VTs;
1889  if (I.getType() != Type::VoidTy) {
1890    MVT::ValueType VT = TLI.getValueType(I.getType());
1891    if (VT == MVT::Vector) {
1892      const PackedType *DestTy = cast<PackedType>(I.getType());
1893      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1894
1895      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1896      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1897    }
1898
1899    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1900    VTs.push_back(VT);
1901  }
1902  if (HasChain)
1903    VTs.push_back(MVT::Other);
1904
1905  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
1906
1907  // Create the node.
1908  SDOperand Result;
1909  if (!HasChain)
1910    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
1911                         &Ops[0], Ops.size());
1912  else if (I.getType() != Type::VoidTy)
1913    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
1914                         &Ops[0], Ops.size());
1915  else
1916    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
1917                         &Ops[0], Ops.size());
1918
1919  if (HasChain) {
1920    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
1921    if (OnlyLoad)
1922      PendingLoads.push_back(Chain);
1923    else
1924      DAG.setRoot(Chain);
1925  }
1926  if (I.getType() != Type::VoidTy) {
1927    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1928      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1929      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1930                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1931                           DAG.getValueType(EVT));
1932    }
1933    setValue(&I, Result);
1934  }
1935}
1936
1937/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1938/// we want to emit this as a call to a named external function, return the name
1939/// otherwise lower it and return null.
1940const char *
1941SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1942  switch (Intrinsic) {
1943  default:
1944    // By default, turn this into a target intrinsic node.
1945    visitTargetIntrinsic(I, Intrinsic);
1946    return 0;
1947  case Intrinsic::vastart:  visitVAStart(I); return 0;
1948  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1949  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1950  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1951  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1952  case Intrinsic::setjmp:
1953    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
1954    break;
1955  case Intrinsic::longjmp:
1956    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
1957    break;
1958  case Intrinsic::memcpy_i32:
1959  case Intrinsic::memcpy_i64:
1960    visitMemIntrinsic(I, ISD::MEMCPY);
1961    return 0;
1962  case Intrinsic::memset_i32:
1963  case Intrinsic::memset_i64:
1964    visitMemIntrinsic(I, ISD::MEMSET);
1965    return 0;
1966  case Intrinsic::memmove_i32:
1967  case Intrinsic::memmove_i64:
1968    visitMemIntrinsic(I, ISD::MEMMOVE);
1969    return 0;
1970
1971  case Intrinsic::dbg_stoppoint: {
1972    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1973    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1974    if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
1975      SDOperand Ops[5];
1976
1977      Ops[0] = getRoot();
1978      Ops[1] = getValue(SPI.getLineValue());
1979      Ops[2] = getValue(SPI.getColumnValue());
1980
1981      DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
1982      assert(DD && "Not a debug information descriptor");
1983      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1984
1985      Ops[3] = DAG.getString(CompileUnit->getFileName());
1986      Ops[4] = DAG.getString(CompileUnit->getDirectory());
1987
1988      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
1989    }
1990
1991    return 0;
1992  }
1993  case Intrinsic::dbg_region_start: {
1994    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1995    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1996    if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
1997      unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
1998      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, getRoot(),
1999                              DAG.getConstant(LabelID, MVT::i32)));
2000    }
2001
2002    return 0;
2003  }
2004  case Intrinsic::dbg_region_end: {
2005    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
2006    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2007    if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
2008      unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
2009      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
2010                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2011    }
2012
2013    return 0;
2014  }
2015  case Intrinsic::dbg_func_start: {
2016    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
2017    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2018    if (DebugInfo && FSI.getSubprogram() &&
2019        DebugInfo->Verify(FSI.getSubprogram())) {
2020      unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
2021      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
2022                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2023    }
2024
2025    return 0;
2026  }
2027  case Intrinsic::dbg_declare: {
2028    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
2029    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2030    if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) {
2031      SDOperand AddressOp  = getValue(DI.getAddress());
2032      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2033        DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
2034    }
2035
2036    return 0;
2037  }
2038
2039  case Intrinsic::isunordered_f32:
2040  case Intrinsic::isunordered_f64:
2041    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
2042                              getValue(I.getOperand(2)), ISD::SETUO));
2043    return 0;
2044
2045  case Intrinsic::sqrt_f32:
2046  case Intrinsic::sqrt_f64:
2047    setValue(&I, DAG.getNode(ISD::FSQRT,
2048                             getValue(I.getOperand(1)).getValueType(),
2049                             getValue(I.getOperand(1))));
2050    return 0;
2051  case Intrinsic::powi_f32:
2052  case Intrinsic::powi_f64:
2053    setValue(&I, DAG.getNode(ISD::FPOWI,
2054                             getValue(I.getOperand(1)).getValueType(),
2055                             getValue(I.getOperand(1)),
2056                             getValue(I.getOperand(2))));
2057    return 0;
2058  case Intrinsic::pcmarker: {
2059    SDOperand Tmp = getValue(I.getOperand(1));
2060    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2061    return 0;
2062  }
2063  case Intrinsic::readcyclecounter: {
2064    SDOperand Op = getRoot();
2065    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2066                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2067                                &Op, 1);
2068    setValue(&I, Tmp);
2069    DAG.setRoot(Tmp.getValue(1));
2070    return 0;
2071  }
2072  case Intrinsic::bswap_i16:
2073  case Intrinsic::bswap_i32:
2074  case Intrinsic::bswap_i64:
2075    setValue(&I, DAG.getNode(ISD::BSWAP,
2076                             getValue(I.getOperand(1)).getValueType(),
2077                             getValue(I.getOperand(1))));
2078    return 0;
2079  case Intrinsic::cttz_i8:
2080  case Intrinsic::cttz_i16:
2081  case Intrinsic::cttz_i32:
2082  case Intrinsic::cttz_i64:
2083    setValue(&I, DAG.getNode(ISD::CTTZ,
2084                             getValue(I.getOperand(1)).getValueType(),
2085                             getValue(I.getOperand(1))));
2086    return 0;
2087  case Intrinsic::ctlz_i8:
2088  case Intrinsic::ctlz_i16:
2089  case Intrinsic::ctlz_i32:
2090  case Intrinsic::ctlz_i64:
2091    setValue(&I, DAG.getNode(ISD::CTLZ,
2092                             getValue(I.getOperand(1)).getValueType(),
2093                             getValue(I.getOperand(1))));
2094    return 0;
2095  case Intrinsic::ctpop_i8:
2096  case Intrinsic::ctpop_i16:
2097  case Intrinsic::ctpop_i32:
2098  case Intrinsic::ctpop_i64:
2099    setValue(&I, DAG.getNode(ISD::CTPOP,
2100                             getValue(I.getOperand(1)).getValueType(),
2101                             getValue(I.getOperand(1))));
2102    return 0;
2103  case Intrinsic::stacksave: {
2104    SDOperand Op = getRoot();
2105    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2106              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2107    setValue(&I, Tmp);
2108    DAG.setRoot(Tmp.getValue(1));
2109    return 0;
2110  }
2111  case Intrinsic::stackrestore: {
2112    SDOperand Tmp = getValue(I.getOperand(1));
2113    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2114    return 0;
2115  }
2116  case Intrinsic::prefetch:
2117    // FIXME: Currently discarding prefetches.
2118    return 0;
2119  }
2120}
2121
2122
2123void SelectionDAGLowering::visitCall(CallInst &I) {
2124  const char *RenameFn = 0;
2125  if (Function *F = I.getCalledFunction()) {
2126    if (F->isExternal())
2127      if (unsigned IID = F->getIntrinsicID()) {
2128        RenameFn = visitIntrinsicCall(I, IID);
2129        if (!RenameFn)
2130          return;
2131      } else {    // Not an LLVM intrinsic.
2132        const std::string &Name = F->getName();
2133        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2134          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2135              I.getOperand(1)->getType()->isFloatingPoint() &&
2136              I.getType() == I.getOperand(1)->getType() &&
2137              I.getType() == I.getOperand(2)->getType()) {
2138            SDOperand LHS = getValue(I.getOperand(1));
2139            SDOperand RHS = getValue(I.getOperand(2));
2140            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2141                                     LHS, RHS));
2142            return;
2143          }
2144        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2145          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2146              I.getOperand(1)->getType()->isFloatingPoint() &&
2147              I.getType() == I.getOperand(1)->getType()) {
2148            SDOperand Tmp = getValue(I.getOperand(1));
2149            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2150            return;
2151          }
2152        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2153          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2154              I.getOperand(1)->getType()->isFloatingPoint() &&
2155              I.getType() == I.getOperand(1)->getType()) {
2156            SDOperand Tmp = getValue(I.getOperand(1));
2157            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2158            return;
2159          }
2160        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2161          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2162              I.getOperand(1)->getType()->isFloatingPoint() &&
2163              I.getType() == I.getOperand(1)->getType()) {
2164            SDOperand Tmp = getValue(I.getOperand(1));
2165            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2166            return;
2167          }
2168        }
2169      }
2170  } else if (isa<InlineAsm>(I.getOperand(0))) {
2171    visitInlineAsm(I);
2172    return;
2173  }
2174
2175  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
2176  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2177
2178  SDOperand Callee;
2179  if (!RenameFn)
2180    Callee = getValue(I.getOperand(0));
2181  else
2182    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2183  TargetLowering::ArgListTy Args;
2184  TargetLowering::ArgListEntry Entry;
2185  Args.reserve(I.getNumOperands());
2186  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2187    Value *Arg = I.getOperand(i);
2188    SDOperand ArgNode = getValue(Arg);
2189    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2190    Entry.isSigned = FTy->paramHasAttr(i, FunctionType::SExtAttribute);
2191    Args.push_back(Entry);
2192  }
2193
2194  std::pair<SDOperand,SDOperand> Result =
2195    TLI.LowerCallTo(getRoot(), I.getType(),
2196                    FTy->paramHasAttr(0,FunctionType::SExtAttribute),
2197                    FTy->isVarArg(), I.getCallingConv(), I.isTailCall(),
2198                    Callee, Args, DAG);
2199  if (I.getType() != Type::VoidTy)
2200    setValue(&I, Result.first);
2201  DAG.setRoot(Result.second);
2202}
2203
2204SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2205                                        SDOperand &Chain, SDOperand &Flag)const{
2206  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
2207  Chain = Val.getValue(1);
2208  Flag  = Val.getValue(2);
2209
2210  // If the result was expanded, copy from the top part.
2211  if (Regs.size() > 1) {
2212    assert(Regs.size() == 2 &&
2213           "Cannot expand to more than 2 elts yet!");
2214    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
2215    Chain = Hi.getValue(1);
2216    Flag  = Hi.getValue(2);
2217    if (DAG.getTargetLoweringInfo().isLittleEndian())
2218      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
2219    else
2220      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
2221  }
2222
2223  // Otherwise, if the return value was promoted or extended, truncate it to the
2224  // appropriate type.
2225  if (RegVT == ValueVT)
2226    return Val;
2227
2228  if (MVT::isInteger(RegVT)) {
2229    if (ValueVT < RegVT)
2230      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
2231    else
2232      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
2233  } else {
2234    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
2235  }
2236}
2237
2238/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2239/// specified value into the registers specified by this object.  This uses
2240/// Chain/Flag as the input and updates them for the output Chain/Flag.
2241void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2242                                 SDOperand &Chain, SDOperand &Flag,
2243                                 MVT::ValueType PtrVT) const {
2244  if (Regs.size() == 1) {
2245    // If there is a single register and the types differ, this must be
2246    // a promotion.
2247    if (RegVT != ValueVT) {
2248      if (MVT::isInteger(RegVT)) {
2249        if (RegVT < ValueVT)
2250          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
2251        else
2252          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
2253      } else
2254        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
2255    }
2256    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
2257    Flag = Chain.getValue(1);
2258  } else {
2259    std::vector<unsigned> R(Regs);
2260    if (!DAG.getTargetLoweringInfo().isLittleEndian())
2261      std::reverse(R.begin(), R.end());
2262
2263    for (unsigned i = 0, e = R.size(); i != e; ++i) {
2264      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
2265                                   DAG.getConstant(i, PtrVT));
2266      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
2267      Flag = Chain.getValue(1);
2268    }
2269  }
2270}
2271
2272/// AddInlineAsmOperands - Add this value to the specified inlineasm node
2273/// operand list.  This adds the code marker and includes the number of
2274/// values added into it.
2275void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
2276                                        std::vector<SDOperand> &Ops) const {
2277  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
2278  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
2279    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
2280}
2281
2282/// isAllocatableRegister - If the specified register is safe to allocate,
2283/// i.e. it isn't a stack pointer or some other special register, return the
2284/// register class for the register.  Otherwise, return null.
2285static const TargetRegisterClass *
2286isAllocatableRegister(unsigned Reg, MachineFunction &MF,
2287                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
2288  MVT::ValueType FoundVT = MVT::Other;
2289  const TargetRegisterClass *FoundRC = 0;
2290  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
2291       E = MRI->regclass_end(); RCI != E; ++RCI) {
2292    MVT::ValueType ThisVT = MVT::Other;
2293
2294    const TargetRegisterClass *RC = *RCI;
2295    // If none of the the value types for this register class are valid, we
2296    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2297    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2298         I != E; ++I) {
2299      if (TLI.isTypeLegal(*I)) {
2300        // If we have already found this register in a different register class,
2301        // choose the one with the largest VT specified.  For example, on
2302        // PowerPC, we favor f64 register classes over f32.
2303        if (FoundVT == MVT::Other ||
2304            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
2305          ThisVT = *I;
2306          break;
2307        }
2308      }
2309    }
2310
2311    if (ThisVT == MVT::Other) continue;
2312
2313    // NOTE: This isn't ideal.  In particular, this might allocate the
2314    // frame pointer in functions that need it (due to them not being taken
2315    // out of allocation, because a variable sized allocation hasn't been seen
2316    // yet).  This is a slight code pessimization, but should still work.
2317    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
2318         E = RC->allocation_order_end(MF); I != E; ++I)
2319      if (*I == Reg) {
2320        // We found a matching register class.  Keep looking at others in case
2321        // we find one with larger registers that this physreg is also in.
2322        FoundRC = RC;
2323        FoundVT = ThisVT;
2324        break;
2325      }
2326  }
2327  return FoundRC;
2328}
2329
2330RegsForValue SelectionDAGLowering::
2331GetRegistersForValue(const std::string &ConstrCode,
2332                     MVT::ValueType VT, bool isOutReg, bool isInReg,
2333                     std::set<unsigned> &OutputRegs,
2334                     std::set<unsigned> &InputRegs) {
2335  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
2336    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
2337  std::vector<unsigned> Regs;
2338
2339  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
2340  MVT::ValueType RegVT;
2341  MVT::ValueType ValueVT = VT;
2342
2343  // If this is a constraint for a specific physical register, like {r17},
2344  // assign it now.
2345  if (PhysReg.first) {
2346    if (VT == MVT::Other)
2347      ValueVT = *PhysReg.second->vt_begin();
2348
2349    // Get the actual register value type.  This is important, because the user
2350    // may have asked for (e.g.) the AX register in i32 type.  We need to
2351    // remember that AX is actually i16 to get the right extension.
2352    RegVT = *PhysReg.second->vt_begin();
2353
2354    // This is a explicit reference to a physical register.
2355    Regs.push_back(PhysReg.first);
2356
2357    // If this is an expanded reference, add the rest of the regs to Regs.
2358    if (NumRegs != 1) {
2359      TargetRegisterClass::iterator I = PhysReg.second->begin();
2360      TargetRegisterClass::iterator E = PhysReg.second->end();
2361      for (; *I != PhysReg.first; ++I)
2362        assert(I != E && "Didn't find reg!");
2363
2364      // Already added the first reg.
2365      --NumRegs; ++I;
2366      for (; NumRegs; --NumRegs, ++I) {
2367        assert(I != E && "Ran out of registers to allocate!");
2368        Regs.push_back(*I);
2369      }
2370    }
2371    return RegsForValue(Regs, RegVT, ValueVT);
2372  }
2373
2374  // Otherwise, if this was a reference to an LLVM register class, create vregs
2375  // for this reference.
2376  std::vector<unsigned> RegClassRegs;
2377  if (PhysReg.second) {
2378    // If this is an early clobber or tied register, our regalloc doesn't know
2379    // how to maintain the constraint.  If it isn't, go ahead and create vreg
2380    // and let the regalloc do the right thing.
2381    if (!isOutReg || !isInReg) {
2382      if (VT == MVT::Other)
2383        ValueVT = *PhysReg.second->vt_begin();
2384      RegVT = *PhysReg.second->vt_begin();
2385
2386      // Create the appropriate number of virtual registers.
2387      SSARegMap *RegMap = DAG.getMachineFunction().getSSARegMap();
2388      for (; NumRegs; --NumRegs)
2389        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
2390
2391      return RegsForValue(Regs, RegVT, ValueVT);
2392    }
2393
2394    // Otherwise, we can't allocate it.  Let the code below figure out how to
2395    // maintain these constraints.
2396    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
2397
2398  } else {
2399    // This is a reference to a register class that doesn't directly correspond
2400    // to an LLVM register class.  Allocate NumRegs consecutive, available,
2401    // registers from the class.
2402    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
2403  }
2404
2405  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
2406  MachineFunction &MF = *CurMBB->getParent();
2407  unsigned NumAllocated = 0;
2408  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
2409    unsigned Reg = RegClassRegs[i];
2410    // See if this register is available.
2411    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
2412        (isInReg  && InputRegs.count(Reg))) {    // Already used.
2413      // Make sure we find consecutive registers.
2414      NumAllocated = 0;
2415      continue;
2416    }
2417
2418    // Check to see if this register is allocatable (i.e. don't give out the
2419    // stack pointer).
2420    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
2421    if (!RC) {
2422      // Make sure we find consecutive registers.
2423      NumAllocated = 0;
2424      continue;
2425    }
2426
2427    // Okay, this register is good, we can use it.
2428    ++NumAllocated;
2429
2430    // If we allocated enough consecutive
2431    if (NumAllocated == NumRegs) {
2432      unsigned RegStart = (i-NumAllocated)+1;
2433      unsigned RegEnd   = i+1;
2434      // Mark all of the allocated registers used.
2435      for (unsigned i = RegStart; i != RegEnd; ++i) {
2436        unsigned Reg = RegClassRegs[i];
2437        Regs.push_back(Reg);
2438        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
2439        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
2440      }
2441
2442      return RegsForValue(Regs, *RC->vt_begin(), VT);
2443    }
2444  }
2445
2446  // Otherwise, we couldn't allocate enough registers for this.
2447  return RegsForValue();
2448}
2449
2450
2451/// visitInlineAsm - Handle a call to an InlineAsm object.
2452///
2453void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
2454  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
2455
2456  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
2457                                                 MVT::Other);
2458
2459  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
2460  std::vector<MVT::ValueType> ConstraintVTs;
2461
2462  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
2463  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
2464  /// if it is a def of that register.
2465  std::vector<SDOperand> AsmNodeOperands;
2466  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
2467  AsmNodeOperands.push_back(AsmStr);
2468
2469  SDOperand Chain = getRoot();
2470  SDOperand Flag;
2471
2472  // We fully assign registers here at isel time.  This is not optimal, but
2473  // should work.  For register classes that correspond to LLVM classes, we
2474  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
2475  // over the constraints, collecting fixed registers that we know we can't use.
2476  std::set<unsigned> OutputRegs, InputRegs;
2477  unsigned OpNum = 1;
2478  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2479    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2480    std::string &ConstraintCode = Constraints[i].Codes[0];
2481
2482    MVT::ValueType OpVT;
2483
2484    // Compute the value type for each operand and add it to ConstraintVTs.
2485    switch (Constraints[i].Type) {
2486    case InlineAsm::isOutput:
2487      if (!Constraints[i].isIndirectOutput) {
2488        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2489        OpVT = TLI.getValueType(I.getType());
2490      } else {
2491        const Type *OpTy = I.getOperand(OpNum)->getType();
2492        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2493        OpNum++;  // Consumes a call operand.
2494      }
2495      break;
2496    case InlineAsm::isInput:
2497      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2498      OpNum++;  // Consumes a call operand.
2499      break;
2500    case InlineAsm::isClobber:
2501      OpVT = MVT::Other;
2502      break;
2503    }
2504
2505    ConstraintVTs.push_back(OpVT);
2506
2507    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2508      continue;  // Not assigned a fixed reg.
2509
2510    // Build a list of regs that this operand uses.  This always has a single
2511    // element for promoted/expanded operands.
2512    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2513                                             false, false,
2514                                             OutputRegs, InputRegs);
2515
2516    switch (Constraints[i].Type) {
2517    case InlineAsm::isOutput:
2518      // We can't assign any other output to this register.
2519      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2520      // If this is an early-clobber output, it cannot be assigned to the same
2521      // value as the input reg.
2522      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2523        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2524      break;
2525    case InlineAsm::isInput:
2526      // We can't assign any other input to this register.
2527      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2528      break;
2529    case InlineAsm::isClobber:
2530      // Clobbered regs cannot be used as inputs or outputs.
2531      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2532      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2533      break;
2534    }
2535  }
2536
2537  // Loop over all of the inputs, copying the operand values into the
2538  // appropriate registers and processing the output regs.
2539  RegsForValue RetValRegs;
2540  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2541  OpNum = 1;
2542
2543  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2544    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2545    std::string &ConstraintCode = Constraints[i].Codes[0];
2546
2547    switch (Constraints[i].Type) {
2548    case InlineAsm::isOutput: {
2549      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2550      if (ConstraintCode.size() == 1)   // not a physreg name.
2551        CTy = TLI.getConstraintType(ConstraintCode[0]);
2552
2553      if (CTy == TargetLowering::C_Memory) {
2554        // Memory output.
2555        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2556
2557        // Check that the operand (the address to store to) isn't a float.
2558        if (!MVT::isInteger(InOperandVal.getValueType()))
2559          assert(0 && "MATCH FAIL!");
2560
2561        if (!Constraints[i].isIndirectOutput)
2562          assert(0 && "MATCH FAIL!");
2563
2564        OpNum++;  // Consumes a call operand.
2565
2566        // Extend/truncate to the right pointer type if needed.
2567        MVT::ValueType PtrType = TLI.getPointerTy();
2568        if (InOperandVal.getValueType() < PtrType)
2569          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2570        else if (InOperandVal.getValueType() > PtrType)
2571          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2572
2573        // Add information to the INLINEASM node to know about this output.
2574        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2575        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2576        AsmNodeOperands.push_back(InOperandVal);
2577        break;
2578      }
2579
2580      // Otherwise, this is a register output.
2581      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2582
2583      // If this is an early-clobber output, or if there is an input
2584      // constraint that matches this, we need to reserve the input register
2585      // so no other inputs allocate to it.
2586      bool UsesInputRegister = false;
2587      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2588        UsesInputRegister = true;
2589
2590      // Copy the output from the appropriate register.  Find a register that
2591      // we can use.
2592      RegsForValue Regs =
2593        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2594                             true, UsesInputRegister,
2595                             OutputRegs, InputRegs);
2596      if (Regs.Regs.empty()) {
2597        cerr << "Couldn't allocate output reg for contraint '"
2598             << ConstraintCode << "'!\n";
2599        exit(1);
2600      }
2601
2602      if (!Constraints[i].isIndirectOutput) {
2603        assert(RetValRegs.Regs.empty() &&
2604               "Cannot have multiple output constraints yet!");
2605        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2606        RetValRegs = Regs;
2607      } else {
2608        IndirectStoresToEmit.push_back(std::make_pair(Regs,
2609                                                      I.getOperand(OpNum)));
2610        OpNum++;  // Consumes a call operand.
2611      }
2612
2613      // Add information to the INLINEASM node to know that this register is
2614      // set.
2615      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
2616      break;
2617    }
2618    case InlineAsm::isInput: {
2619      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2620      OpNum++;  // Consumes a call operand.
2621
2622      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
2623        // If this is required to match an output register we have already set,
2624        // just use its register.
2625        unsigned OperandNo = atoi(ConstraintCode.c_str());
2626
2627        // Scan until we find the definition we already emitted of this operand.
2628        // When we find it, create a RegsForValue operand.
2629        unsigned CurOp = 2;  // The first operand.
2630        for (; OperandNo; --OperandNo) {
2631          // Advance to the next operand.
2632          unsigned NumOps =
2633            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2634          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
2635                  (NumOps & 7) == 4 /*MEM*/) &&
2636                 "Skipped past definitions?");
2637          CurOp += (NumOps>>3)+1;
2638        }
2639
2640        unsigned NumOps =
2641          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2642        assert((NumOps & 7) == 2 /*REGDEF*/ &&
2643               "Skipped past definitions?");
2644
2645        // Add NumOps>>3 registers to MatchedRegs.
2646        RegsForValue MatchedRegs;
2647        MatchedRegs.ValueVT = InOperandVal.getValueType();
2648        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
2649        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
2650          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
2651          MatchedRegs.Regs.push_back(Reg);
2652        }
2653
2654        // Use the produced MatchedRegs object to
2655        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
2656                                  TLI.getPointerTy());
2657        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2658        break;
2659      }
2660
2661      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2662      if (ConstraintCode.size() == 1)   // not a physreg name.
2663        CTy = TLI.getConstraintType(ConstraintCode[0]);
2664
2665      if (CTy == TargetLowering::C_Other) {
2666        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
2667                                                       ConstraintCode[0], DAG);
2668        if (!InOperandVal.Val) {
2669          cerr << "Invalid operand for inline asm constraint '"
2670               << ConstraintCode << "'!\n";
2671          exit(1);
2672        }
2673
2674        // Add information to the INLINEASM node to know about this input.
2675        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2676        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2677        AsmNodeOperands.push_back(InOperandVal);
2678        break;
2679      } else if (CTy == TargetLowering::C_Memory) {
2680        // Memory input.
2681
2682        // Check that the operand isn't a float.
2683        if (!MVT::isInteger(InOperandVal.getValueType()))
2684          assert(0 && "MATCH FAIL!");
2685
2686        // Extend/truncate to the right pointer type if needed.
2687        MVT::ValueType PtrType = TLI.getPointerTy();
2688        if (InOperandVal.getValueType() < PtrType)
2689          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2690        else if (InOperandVal.getValueType() > PtrType)
2691          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2692
2693        // Add information to the INLINEASM node to know about this input.
2694        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2695        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2696        AsmNodeOperands.push_back(InOperandVal);
2697        break;
2698      }
2699
2700      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2701
2702      // Copy the input into the appropriate registers.
2703      RegsForValue InRegs =
2704        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2705                             false, true, OutputRegs, InputRegs);
2706      // FIXME: should be match fail.
2707      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2708
2709      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
2710
2711      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2712      break;
2713    }
2714    case InlineAsm::isClobber: {
2715      RegsForValue ClobberedRegs =
2716        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2717                             OutputRegs, InputRegs);
2718      // Add the clobbered value to the operand list, so that the register
2719      // allocator is aware that the physreg got clobbered.
2720      if (!ClobberedRegs.Regs.empty())
2721        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2722      break;
2723    }
2724    }
2725  }
2726
2727  // Finish up input operands.
2728  AsmNodeOperands[0] = Chain;
2729  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2730
2731  Chain = DAG.getNode(ISD::INLINEASM,
2732                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
2733                      &AsmNodeOperands[0], AsmNodeOperands.size());
2734  Flag = Chain.getValue(1);
2735
2736  // If this asm returns a register value, copy the result from that register
2737  // and set it as the value of the call.
2738  if (!RetValRegs.Regs.empty())
2739    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2740
2741  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2742
2743  // Process indirect outputs, first output all of the flagged copies out of
2744  // physregs.
2745  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2746    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2747    Value *Ptr = IndirectStoresToEmit[i].second;
2748    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2749    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2750  }
2751
2752  // Emit the non-flagged stores from the physregs.
2753  SmallVector<SDOperand, 8> OutChains;
2754  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2755    OutChains.push_back(DAG.getStore(Chain,  StoresToEmit[i].first,
2756                                    getValue(StoresToEmit[i].second),
2757                                    StoresToEmit[i].second, 0));
2758  if (!OutChains.empty())
2759    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2760                        &OutChains[0], OutChains.size());
2761  DAG.setRoot(Chain);
2762}
2763
2764
2765void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2766  SDOperand Src = getValue(I.getOperand(0));
2767
2768  MVT::ValueType IntPtr = TLI.getPointerTy();
2769
2770  if (IntPtr < Src.getValueType())
2771    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2772  else if (IntPtr > Src.getValueType())
2773    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2774
2775  // Scale the source by the type size.
2776  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
2777  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2778                    Src, getIntPtrConstant(ElementSize));
2779
2780  TargetLowering::ArgListTy Args;
2781  TargetLowering::ArgListEntry Entry;
2782  Entry.Node = Src;
2783  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2784  Entry.isSigned = false;
2785  Args.push_back(Entry);
2786
2787  std::pair<SDOperand,SDOperand> Result =
2788    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
2789                    DAG.getExternalSymbol("malloc", IntPtr),
2790                    Args, DAG);
2791  setValue(&I, Result.first);  // Pointers always fit in registers
2792  DAG.setRoot(Result.second);
2793}
2794
2795void SelectionDAGLowering::visitFree(FreeInst &I) {
2796  TargetLowering::ArgListTy Args;
2797  TargetLowering::ArgListEntry Entry;
2798  Entry.Node = getValue(I.getOperand(0));
2799  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2800  Entry.isSigned = false;
2801  Args.push_back(Entry);
2802  MVT::ValueType IntPtr = TLI.getPointerTy();
2803  std::pair<SDOperand,SDOperand> Result =
2804    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
2805                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2806  DAG.setRoot(Result.second);
2807}
2808
2809// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2810// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2811// instructions are special in various ways, which require special support to
2812// insert.  The specified MachineInstr is created but not inserted into any
2813// basic blocks, and the scheduler passes ownership of it to this method.
2814MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2815                                                       MachineBasicBlock *MBB) {
2816  cerr << "If a target marks an instruction with "
2817       << "'usesCustomDAGSchedInserter', it must implement "
2818       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
2819  abort();
2820  return 0;
2821}
2822
2823void SelectionDAGLowering::visitVAStart(CallInst &I) {
2824  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2825                          getValue(I.getOperand(1)),
2826                          DAG.getSrcValue(I.getOperand(1))));
2827}
2828
2829void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2830  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2831                             getValue(I.getOperand(0)),
2832                             DAG.getSrcValue(I.getOperand(0)));
2833  setValue(&I, V);
2834  DAG.setRoot(V.getValue(1));
2835}
2836
2837void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2838  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2839                          getValue(I.getOperand(1)),
2840                          DAG.getSrcValue(I.getOperand(1))));
2841}
2842
2843void SelectionDAGLowering::visitVACopy(CallInst &I) {
2844  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2845                          getValue(I.getOperand(1)),
2846                          getValue(I.getOperand(2)),
2847                          DAG.getSrcValue(I.getOperand(1)),
2848                          DAG.getSrcValue(I.getOperand(2))));
2849}
2850
2851/// ExpandScalarFormalArgs - Recursively expand the formal_argument node, either
2852/// bit_convert it or join a pair of them with a BUILD_PAIR when appropriate.
2853static SDOperand ExpandScalarFormalArgs(MVT::ValueType VT, SDNode *Arg,
2854                                        unsigned &i, SelectionDAG &DAG,
2855                                        TargetLowering &TLI) {
2856  if (TLI.getTypeAction(VT) != TargetLowering::Expand)
2857    return SDOperand(Arg, i++);
2858
2859  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
2860  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
2861  if (NumVals == 1) {
2862    return DAG.getNode(ISD::BIT_CONVERT, VT,
2863                       ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI));
2864  } else if (NumVals == 2) {
2865    SDOperand Lo = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
2866    SDOperand Hi = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
2867    if (!TLI.isLittleEndian())
2868      std::swap(Lo, Hi);
2869    return DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
2870  } else {
2871    // Value scalarized into many values.  Unimp for now.
2872    assert(0 && "Cannot expand i64 -> i16 yet!");
2873  }
2874  return SDOperand();
2875}
2876
2877/// TargetLowering::LowerArguments - This is the default LowerArguments
2878/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
2879/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
2880/// integrated into SDISel.
2881std::vector<SDOperand>
2882TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
2883  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
2884  std::vector<SDOperand> Ops;
2885  Ops.push_back(DAG.getRoot());
2886  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
2887  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
2888
2889  // Add one result value for each formal argument.
2890  std::vector<MVT::ValueType> RetVals;
2891  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2892    MVT::ValueType VT = getValueType(I->getType());
2893
2894    switch (getTypeAction(VT)) {
2895    default: assert(0 && "Unknown type action!");
2896    case Legal:
2897      RetVals.push_back(VT);
2898      break;
2899    case Promote:
2900      RetVals.push_back(getTypeToTransformTo(VT));
2901      break;
2902    case Expand:
2903      if (VT != MVT::Vector) {
2904        // If this is a large integer, it needs to be broken up into small
2905        // integers.  Figure out what the destination type is and how many small
2906        // integers it turns into.
2907        MVT::ValueType NVT = getTypeToExpandTo(VT);
2908        unsigned NumVals = getNumElements(VT);
2909        for (unsigned i = 0; i != NumVals; ++i)
2910          RetVals.push_back(NVT);
2911      } else {
2912        // Otherwise, this is a vector type.  We only support legal vectors
2913        // right now.
2914        unsigned NumElems = cast<PackedType>(I->getType())->getNumElements();
2915        const Type *EltTy = cast<PackedType>(I->getType())->getElementType();
2916
2917        // Figure out if there is a Packed type corresponding to this Vector
2918        // type.  If so, convert to the packed type.
2919        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2920        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2921          RetVals.push_back(TVT);
2922        } else {
2923          assert(0 && "Don't support illegal by-val vector arguments yet!");
2924        }
2925      }
2926      break;
2927    }
2928  }
2929
2930  RetVals.push_back(MVT::Other);
2931
2932  // Create the node.
2933  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
2934                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
2935                               &Ops[0], Ops.size()).Val;
2936
2937  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
2938
2939  // Set up the return result vector.
2940  Ops.clear();
2941  const FunctionType *FTy = F.getFunctionType();
2942  unsigned i = 0;
2943  unsigned Idx = 1;
2944  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
2945      ++I, ++Idx) {
2946    MVT::ValueType VT = getValueType(I->getType());
2947
2948    switch (getTypeAction(VT)) {
2949    default: assert(0 && "Unknown type action!");
2950    case Legal:
2951      Ops.push_back(SDOperand(Result, i++));
2952      break;
2953    case Promote: {
2954      SDOperand Op(Result, i++);
2955      if (MVT::isInteger(VT)) {
2956        unsigned AssertOp = ISD::AssertSext;
2957        if (FTy->paramHasAttr(Idx, FunctionType::ZExtAttribute))
2958          AssertOp = ISD::AssertZext;
2959        Op = DAG.getNode(AssertOp, Op.getValueType(), Op, DAG.getValueType(VT));
2960        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2961      } else {
2962        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2963        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
2964      }
2965      Ops.push_back(Op);
2966      break;
2967    }
2968    case Expand:
2969      if (VT != MVT::Vector) {
2970        // If this is a large integer or a floating point node that needs to be
2971        // expanded, it needs to be reassembled from small integers.  Figure out
2972        // what the source elt type is and how many small integers it is.
2973        Ops.push_back(ExpandScalarFormalArgs(VT, Result, i, DAG, *this));
2974      } else {
2975        // Otherwise, this is a vector type.  We only support legal vectors
2976        // right now.
2977        const PackedType *PTy = cast<PackedType>(I->getType());
2978        unsigned NumElems = PTy->getNumElements();
2979        const Type *EltTy = PTy->getElementType();
2980
2981        // Figure out if there is a Packed type corresponding to this Vector
2982        // type.  If so, convert to the packed type.
2983        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2984        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2985          SDOperand N = SDOperand(Result, i++);
2986          // Handle copies from generic vectors to registers.
2987          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
2988                          DAG.getConstant(NumElems, MVT::i32),
2989                          DAG.getValueType(getValueType(EltTy)));
2990          Ops.push_back(N);
2991        } else {
2992          assert(0 && "Don't support illegal by-val vector arguments yet!");
2993          abort();
2994        }
2995      }
2996      break;
2997    }
2998  }
2999  return Ops;
3000}
3001
3002
3003/// ExpandScalarCallArgs - Recursively expand call argument node by
3004/// bit_converting it or extract a pair of elements from the larger  node.
3005static void ExpandScalarCallArgs(MVT::ValueType VT, SDOperand Arg,
3006                                 bool isSigned,
3007                                 SmallVector<SDOperand, 32> &Ops,
3008                                 SelectionDAG &DAG,
3009                                 TargetLowering &TLI) {
3010  if (TLI.getTypeAction(VT) != TargetLowering::Expand) {
3011    Ops.push_back(Arg);
3012    Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
3013    return;
3014  }
3015
3016  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3017  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3018  if (NumVals == 1) {
3019    Arg = DAG.getNode(ISD::BIT_CONVERT, EVT, Arg);
3020    ExpandScalarCallArgs(EVT, Arg, isSigned, Ops, DAG, TLI);
3021  } else if (NumVals == 2) {
3022    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3023                               DAG.getConstant(0, TLI.getPointerTy()));
3024    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3025                               DAG.getConstant(1, TLI.getPointerTy()));
3026    if (!TLI.isLittleEndian())
3027      std::swap(Lo, Hi);
3028    ExpandScalarCallArgs(EVT, Lo, isSigned, Ops, DAG, TLI);
3029    ExpandScalarCallArgs(EVT, Hi, isSigned, Ops, DAG, TLI);
3030  } else {
3031    // Value scalarized into many values.  Unimp for now.
3032    assert(0 && "Cannot expand i64 -> i16 yet!");
3033  }
3034}
3035
3036/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3037/// implementation, which just inserts an ISD::CALL node, which is later custom
3038/// lowered by the target to something concrete.  FIXME: When all targets are
3039/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3040std::pair<SDOperand, SDOperand>
3041TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3042                            bool RetTyIsSigned, bool isVarArg,
3043                            unsigned CallingConv, bool isTailCall,
3044                            SDOperand Callee,
3045                            ArgListTy &Args, SelectionDAG &DAG) {
3046  SmallVector<SDOperand, 32> Ops;
3047  Ops.push_back(Chain);   // Op#0 - Chain
3048  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3049  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3050  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3051  Ops.push_back(Callee);
3052
3053  // Handle all of the outgoing arguments.
3054  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3055    MVT::ValueType VT = getValueType(Args[i].Ty);
3056    SDOperand Op = Args[i].Node;
3057    bool isSigned = Args[i].isSigned;
3058    switch (getTypeAction(VT)) {
3059    default: assert(0 && "Unknown type action!");
3060    case Legal:
3061      Ops.push_back(Op);
3062      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
3063      break;
3064    case Promote:
3065      if (MVT::isInteger(VT)) {
3066        unsigned ExtOp = isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3067        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3068      } else {
3069        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3070        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
3071      }
3072      Ops.push_back(Op);
3073      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
3074      break;
3075    case Expand:
3076      if (VT != MVT::Vector) {
3077        // If this is a large integer, it needs to be broken down into small
3078        // integers.  Figure out what the source elt type is and how many small
3079        // integers it is.
3080        ExpandScalarCallArgs(VT, Op, isSigned, Ops, DAG, *this);
3081      } else {
3082        // Otherwise, this is a vector type.  We only support legal vectors
3083        // right now.
3084        const PackedType *PTy = cast<PackedType>(Args[i].Ty);
3085        unsigned NumElems = PTy->getNumElements();
3086        const Type *EltTy = PTy->getElementType();
3087
3088        // Figure out if there is a Packed type corresponding to this Vector
3089        // type.  If so, convert to the packed type.
3090        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3091        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3092          // Insert a VBIT_CONVERT of the MVT::Vector type to the packed type.
3093          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
3094          Ops.push_back(Op);
3095          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
3096        } else {
3097          assert(0 && "Don't support illegal by-val vector call args yet!");
3098          abort();
3099        }
3100      }
3101      break;
3102    }
3103  }
3104
3105  // Figure out the result value types.
3106  SmallVector<MVT::ValueType, 4> RetTys;
3107
3108  if (RetTy != Type::VoidTy) {
3109    MVT::ValueType VT = getValueType(RetTy);
3110    switch (getTypeAction(VT)) {
3111    default: assert(0 && "Unknown type action!");
3112    case Legal:
3113      RetTys.push_back(VT);
3114      break;
3115    case Promote:
3116      RetTys.push_back(getTypeToTransformTo(VT));
3117      break;
3118    case Expand:
3119      if (VT != MVT::Vector) {
3120        // If this is a large integer, it needs to be reassembled from small
3121        // integers.  Figure out what the source elt type is and how many small
3122        // integers it is.
3123        MVT::ValueType NVT = getTypeToExpandTo(VT);
3124        unsigned NumVals = getNumElements(VT);
3125        for (unsigned i = 0; i != NumVals; ++i)
3126          RetTys.push_back(NVT);
3127      } else {
3128        // Otherwise, this is a vector type.  We only support legal vectors
3129        // right now.
3130        const PackedType *PTy = cast<PackedType>(RetTy);
3131        unsigned NumElems = PTy->getNumElements();
3132        const Type *EltTy = PTy->getElementType();
3133
3134        // Figure out if there is a Packed type corresponding to this Vector
3135        // type.  If so, convert to the packed type.
3136        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3137        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3138          RetTys.push_back(TVT);
3139        } else {
3140          assert(0 && "Don't support illegal by-val vector call results yet!");
3141          abort();
3142        }
3143      }
3144    }
3145  }
3146
3147  RetTys.push_back(MVT::Other);  // Always has a chain.
3148
3149  // Finally, create the CALL node.
3150  SDOperand Res = DAG.getNode(ISD::CALL,
3151                              DAG.getVTList(&RetTys[0], RetTys.size()),
3152                              &Ops[0], Ops.size());
3153
3154  // This returns a pair of operands.  The first element is the
3155  // return value for the function (if RetTy is not VoidTy).  The second
3156  // element is the outgoing token chain.
3157  SDOperand ResVal;
3158  if (RetTys.size() != 1) {
3159    MVT::ValueType VT = getValueType(RetTy);
3160    if (RetTys.size() == 2) {
3161      ResVal = Res;
3162
3163      // If this value was promoted, truncate it down.
3164      if (ResVal.getValueType() != VT) {
3165        if (VT == MVT::Vector) {
3166          // Insert a VBITCONVERT to convert from the packed result type to the
3167          // MVT::Vector type.
3168          unsigned NumElems = cast<PackedType>(RetTy)->getNumElements();
3169          const Type *EltTy = cast<PackedType>(RetTy)->getElementType();
3170
3171          // Figure out if there is a Packed type corresponding to this Vector
3172          // type.  If so, convert to the packed type.
3173          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3174          if (TVT != MVT::Other && isTypeLegal(TVT)) {
3175            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
3176            // "N x PTyElementVT" MVT::Vector type.
3177            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
3178                                 DAG.getConstant(NumElems, MVT::i32),
3179                                 DAG.getValueType(getValueType(EltTy)));
3180          } else {
3181            abort();
3182          }
3183        } else if (MVT::isInteger(VT)) {
3184          unsigned AssertOp = ISD::AssertSext;
3185          if (!RetTyIsSigned)
3186            AssertOp = ISD::AssertZext;
3187          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
3188                               DAG.getValueType(VT));
3189          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
3190        } else {
3191          assert(MVT::isFloatingPoint(VT));
3192          if (getTypeAction(VT) == Expand)
3193            ResVal = DAG.getNode(ISD::BIT_CONVERT, VT, ResVal);
3194          else
3195            ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
3196        }
3197      }
3198    } else if (RetTys.size() == 3) {
3199      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
3200                           Res.getValue(0), Res.getValue(1));
3201
3202    } else {
3203      assert(0 && "Case not handled yet!");
3204    }
3205  }
3206
3207  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
3208}
3209
3210
3211
3212// It is always conservatively correct for llvm.returnaddress and
3213// llvm.frameaddress to return 0.
3214//
3215// FIXME: Change this to insert a FRAMEADDR/RETURNADDR node, and have that be
3216// expanded to 0 if the target wants.
3217std::pair<SDOperand, SDOperand>
3218TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
3219                                        unsigned Depth, SelectionDAG &DAG) {
3220  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
3221}
3222
3223SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3224  assert(0 && "LowerOperation not implemented for this target!");
3225  abort();
3226  return SDOperand();
3227}
3228
3229SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
3230                                                 SelectionDAG &DAG) {
3231  assert(0 && "CustomPromoteOperation not implemented for this target!");
3232  abort();
3233  return SDOperand();
3234}
3235
3236void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
3237  unsigned Depth = (unsigned)cast<ConstantInt>(I.getOperand(1))->getZExtValue();
3238  std::pair<SDOperand,SDOperand> Result =
3239    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
3240  setValue(&I, Result.first);
3241  DAG.setRoot(Result.second);
3242}
3243
3244/// getMemsetValue - Vectorized representation of the memset value
3245/// operand.
3246static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
3247                                SelectionDAG &DAG) {
3248  MVT::ValueType CurVT = VT;
3249  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3250    uint64_t Val   = C->getValue() & 255;
3251    unsigned Shift = 8;
3252    while (CurVT != MVT::i8) {
3253      Val = (Val << Shift) | Val;
3254      Shift <<= 1;
3255      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3256    }
3257    return DAG.getConstant(Val, VT);
3258  } else {
3259    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
3260    unsigned Shift = 8;
3261    while (CurVT != MVT::i8) {
3262      Value =
3263        DAG.getNode(ISD::OR, VT,
3264                    DAG.getNode(ISD::SHL, VT, Value,
3265                                DAG.getConstant(Shift, MVT::i8)), Value);
3266      Shift <<= 1;
3267      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3268    }
3269
3270    return Value;
3271  }
3272}
3273
3274/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3275/// used when a memcpy is turned into a memset when the source is a constant
3276/// string ptr.
3277static SDOperand getMemsetStringVal(MVT::ValueType VT,
3278                                    SelectionDAG &DAG, TargetLowering &TLI,
3279                                    std::string &Str, unsigned Offset) {
3280  uint64_t Val = 0;
3281  unsigned MSB = getSizeInBits(VT) / 8;
3282  if (TLI.isLittleEndian())
3283    Offset = Offset + MSB - 1;
3284  for (unsigned i = 0; i != MSB; ++i) {
3285    Val = (Val << 8) | (unsigned char)Str[Offset];
3286    Offset += TLI.isLittleEndian() ? -1 : 1;
3287  }
3288  return DAG.getConstant(Val, VT);
3289}
3290
3291/// getMemBasePlusOffset - Returns base and offset node for the
3292static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
3293                                      SelectionDAG &DAG, TargetLowering &TLI) {
3294  MVT::ValueType VT = Base.getValueType();
3295  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
3296}
3297
3298/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3299/// to replace the memset / memcpy is below the threshold. It also returns the
3300/// types of the sequence of  memory ops to perform memset / memcpy.
3301static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
3302                                     unsigned Limit, uint64_t Size,
3303                                     unsigned Align, TargetLowering &TLI) {
3304  MVT::ValueType VT;
3305
3306  if (TLI.allowsUnalignedMemoryAccesses()) {
3307    VT = MVT::i64;
3308  } else {
3309    switch (Align & 7) {
3310    case 0:
3311      VT = MVT::i64;
3312      break;
3313    case 4:
3314      VT = MVT::i32;
3315      break;
3316    case 2:
3317      VT = MVT::i16;
3318      break;
3319    default:
3320      VT = MVT::i8;
3321      break;
3322    }
3323  }
3324
3325  MVT::ValueType LVT = MVT::i64;
3326  while (!TLI.isTypeLegal(LVT))
3327    LVT = (MVT::ValueType)((unsigned)LVT - 1);
3328  assert(MVT::isInteger(LVT));
3329
3330  if (VT > LVT)
3331    VT = LVT;
3332
3333  unsigned NumMemOps = 0;
3334  while (Size != 0) {
3335    unsigned VTSize = getSizeInBits(VT) / 8;
3336    while (VTSize > Size) {
3337      VT = (MVT::ValueType)((unsigned)VT - 1);
3338      VTSize >>= 1;
3339    }
3340    assert(MVT::isInteger(VT));
3341
3342    if (++NumMemOps > Limit)
3343      return false;
3344    MemOps.push_back(VT);
3345    Size -= VTSize;
3346  }
3347
3348  return true;
3349}
3350
3351void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
3352  SDOperand Op1 = getValue(I.getOperand(1));
3353  SDOperand Op2 = getValue(I.getOperand(2));
3354  SDOperand Op3 = getValue(I.getOperand(3));
3355  SDOperand Op4 = getValue(I.getOperand(4));
3356  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
3357  if (Align == 0) Align = 1;
3358
3359  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
3360    std::vector<MVT::ValueType> MemOps;
3361
3362    // Expand memset / memcpy to a series of load / store ops
3363    // if the size operand falls below a certain threshold.
3364    SmallVector<SDOperand, 8> OutChains;
3365    switch (Op) {
3366    default: break;  // Do nothing for now.
3367    case ISD::MEMSET: {
3368      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
3369                                   Size->getValue(), Align, TLI)) {
3370        unsigned NumMemOps = MemOps.size();
3371        unsigned Offset = 0;
3372        for (unsigned i = 0; i < NumMemOps; i++) {
3373          MVT::ValueType VT = MemOps[i];
3374          unsigned VTSize = getSizeInBits(VT) / 8;
3375          SDOperand Value = getMemsetValue(Op2, VT, DAG);
3376          SDOperand Store = DAG.getStore(getRoot(), Value,
3377                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
3378                                         I.getOperand(1), Offset);
3379          OutChains.push_back(Store);
3380          Offset += VTSize;
3381        }
3382      }
3383      break;
3384    }
3385    case ISD::MEMCPY: {
3386      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
3387                                   Size->getValue(), Align, TLI)) {
3388        unsigned NumMemOps = MemOps.size();
3389        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
3390        GlobalAddressSDNode *G = NULL;
3391        std::string Str;
3392        bool CopyFromStr = false;
3393
3394        if (Op2.getOpcode() == ISD::GlobalAddress)
3395          G = cast<GlobalAddressSDNode>(Op2);
3396        else if (Op2.getOpcode() == ISD::ADD &&
3397                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3398                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
3399          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
3400          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
3401        }
3402        if (G) {
3403          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3404          if (GV && GV->isConstant()) {
3405            Str = GV->getStringValue(false);
3406            if (!Str.empty()) {
3407              CopyFromStr = true;
3408              SrcOff += SrcDelta;
3409            }
3410          }
3411        }
3412
3413        for (unsigned i = 0; i < NumMemOps; i++) {
3414          MVT::ValueType VT = MemOps[i];
3415          unsigned VTSize = getSizeInBits(VT) / 8;
3416          SDOperand Value, Chain, Store;
3417
3418          if (CopyFromStr) {
3419            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3420            Chain = getRoot();
3421            Store =
3422              DAG.getStore(Chain, Value,
3423                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3424                           I.getOperand(1), DstOff);
3425          } else {
3426            Value = DAG.getLoad(VT, getRoot(),
3427                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
3428                        I.getOperand(2), SrcOff);
3429            Chain = Value.getValue(1);
3430            Store =
3431              DAG.getStore(Chain, Value,
3432                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3433                           I.getOperand(1), DstOff);
3434          }
3435          OutChains.push_back(Store);
3436          SrcOff += VTSize;
3437          DstOff += VTSize;
3438        }
3439      }
3440      break;
3441    }
3442    }
3443
3444    if (!OutChains.empty()) {
3445      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3446                  &OutChains[0], OutChains.size()));
3447      return;
3448    }
3449  }
3450
3451  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
3452}
3453
3454//===----------------------------------------------------------------------===//
3455// SelectionDAGISel code
3456//===----------------------------------------------------------------------===//
3457
3458unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
3459  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
3460}
3461
3462void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
3463  // FIXME: we only modify the CFG to split critical edges.  This
3464  // updates dom and loop info.
3465  AU.addRequired<AliasAnalysis>();
3466}
3467
3468
3469/// OptimizeNoopCopyExpression - We have determined that the specified cast
3470/// instruction is a noop copy (e.g. it's casting from one pointer type to
3471/// another, int->uint, or int->sbyte on PPC.
3472///
3473/// Return true if any changes are made.
3474static bool OptimizeNoopCopyExpression(CastInst *CI) {
3475  BasicBlock *DefBB = CI->getParent();
3476
3477  /// InsertedCasts - Only insert a cast in each block once.
3478  std::map<BasicBlock*, CastInst*> InsertedCasts;
3479
3480  bool MadeChange = false;
3481  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
3482       UI != E; ) {
3483    Use &TheUse = UI.getUse();
3484    Instruction *User = cast<Instruction>(*UI);
3485
3486    // Figure out which BB this cast is used in.  For PHI's this is the
3487    // appropriate predecessor block.
3488    BasicBlock *UserBB = User->getParent();
3489    if (PHINode *PN = dyn_cast<PHINode>(User)) {
3490      unsigned OpVal = UI.getOperandNo()/2;
3491      UserBB = PN->getIncomingBlock(OpVal);
3492    }
3493
3494    // Preincrement use iterator so we don't invalidate it.
3495    ++UI;
3496
3497    // If this user is in the same block as the cast, don't change the cast.
3498    if (UserBB == DefBB) continue;
3499
3500    // If we have already inserted a cast into this block, use it.
3501    CastInst *&InsertedCast = InsertedCasts[UserBB];
3502
3503    if (!InsertedCast) {
3504      BasicBlock::iterator InsertPt = UserBB->begin();
3505      while (isa<PHINode>(InsertPt)) ++InsertPt;
3506
3507      InsertedCast =
3508        CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
3509                         InsertPt);
3510      MadeChange = true;
3511    }
3512
3513    // Replace a use of the cast with a use of the new casat.
3514    TheUse = InsertedCast;
3515  }
3516
3517  // If we removed all uses, nuke the cast.
3518  if (CI->use_empty())
3519    CI->eraseFromParent();
3520
3521  return MadeChange;
3522}
3523
3524/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
3525/// casting to the type of GEPI.
3526static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
3527                                         Instruction *GEPI, Value *Ptr,
3528                                         Value *PtrOffset) {
3529  if (V) return V;   // Already computed.
3530
3531  // Figure out the insertion point
3532  BasicBlock::iterator InsertPt;
3533  if (BB == GEPI->getParent()) {
3534    // If GEP is already inserted into BB, insert right after the GEP.
3535    InsertPt = GEPI;
3536    ++InsertPt;
3537  } else {
3538    // Otherwise, insert at the top of BB, after any PHI nodes
3539    InsertPt = BB->begin();
3540    while (isa<PHINode>(InsertPt)) ++InsertPt;
3541  }
3542
3543  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
3544  // BB so that there is only one value live across basic blocks (the cast
3545  // operand).
3546  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
3547    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
3548      Ptr = CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(),
3549                             "", InsertPt);
3550
3551  // Add the offset, cast it to the right type.
3552  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
3553  // Ptr is an integer type, GEPI is pointer type ==> IntToPtr
3554  return V = CastInst::create(Instruction::IntToPtr, Ptr, GEPI->getType(),
3555                              "", InsertPt);
3556}
3557
3558/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
3559/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
3560/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
3561/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
3562/// sink PtrOffset into user blocks where doing so will likely allow us to fold
3563/// the constant add into a load or store instruction.  Additionally, if a user
3564/// is a pointer-pointer cast, we look through it to find its users.
3565static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
3566                                 Constant *PtrOffset, BasicBlock *DefBB,
3567                                 GetElementPtrInst *GEPI,
3568                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
3569  while (!RepPtr->use_empty()) {
3570    Instruction *User = cast<Instruction>(RepPtr->use_back());
3571
3572    // If the user is a Pointer-Pointer cast, recurse. Only BitCast can be
3573    // used for a Pointer-Pointer cast.
3574    if (isa<BitCastInst>(User)) {
3575      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3576
3577      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
3578      // could invalidate an iterator.
3579      User->setOperand(0, UndefValue::get(RepPtr->getType()));
3580      continue;
3581    }
3582
3583    // If this is a load of the pointer, or a store through the pointer, emit
3584    // the increment into the load/store block.
3585    Instruction *NewVal;
3586    if (isa<LoadInst>(User) ||
3587        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
3588      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
3589                                    User->getParent(), GEPI,
3590                                    Ptr, PtrOffset);
3591    } else {
3592      // If this use is not foldable into the addressing mode, use a version
3593      // emitted in the GEP block.
3594      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
3595                                    Ptr, PtrOffset);
3596    }
3597
3598    if (GEPI->getType() != RepPtr->getType()) {
3599      BasicBlock::iterator IP = NewVal;
3600      ++IP;
3601      // NewVal must be a GEP which must be pointer type, so BitCast
3602      NewVal = new BitCastInst(NewVal, RepPtr->getType(), "", IP);
3603    }
3604    User->replaceUsesOfWith(RepPtr, NewVal);
3605  }
3606}
3607
3608
3609/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
3610/// selection, we want to be a bit careful about some things.  In particular, if
3611/// we have a GEP instruction that is used in a different block than it is
3612/// defined, the addressing expression of the GEP cannot be folded into loads or
3613/// stores that use it.  In this case, decompose the GEP and move constant
3614/// indices into blocks that use it.
3615static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
3616                                  const TargetData *TD) {
3617  // If this GEP is only used inside the block it is defined in, there is no
3618  // need to rewrite it.
3619  bool isUsedOutsideDefBB = false;
3620  BasicBlock *DefBB = GEPI->getParent();
3621  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
3622       UI != E; ++UI) {
3623    if (cast<Instruction>(*UI)->getParent() != DefBB) {
3624      isUsedOutsideDefBB = true;
3625      break;
3626    }
3627  }
3628  if (!isUsedOutsideDefBB) return false;
3629
3630  // If this GEP has no non-zero constant indices, there is nothing we can do,
3631  // ignore it.
3632  bool hasConstantIndex = false;
3633  bool hasVariableIndex = false;
3634  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3635       E = GEPI->op_end(); OI != E; ++OI) {
3636    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
3637      if (CI->getZExtValue()) {
3638        hasConstantIndex = true;
3639        break;
3640      }
3641    } else {
3642      hasVariableIndex = true;
3643    }
3644  }
3645
3646  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
3647  if (!hasConstantIndex && !hasVariableIndex) {
3648    /// The GEP operand must be a pointer, so must its result -> BitCast
3649    Value *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
3650                             GEPI->getName(), GEPI);
3651    GEPI->replaceAllUsesWith(NC);
3652    GEPI->eraseFromParent();
3653    return true;
3654  }
3655
3656  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
3657  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
3658    return false;
3659
3660  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
3661  // constant offset (which we now know is non-zero) and deal with it later.
3662  uint64_t ConstantOffset = 0;
3663  const Type *UIntPtrTy = TD->getIntPtrType();
3664  Value *Ptr = new PtrToIntInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
3665  const Type *Ty = GEPI->getOperand(0)->getType();
3666
3667  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3668       E = GEPI->op_end(); OI != E; ++OI) {
3669    Value *Idx = *OI;
3670    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
3671      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3672      if (Field)
3673        ConstantOffset += TD->getStructLayout(StTy)->MemberOffsets[Field];
3674      Ty = StTy->getElementType(Field);
3675    } else {
3676      Ty = cast<SequentialType>(Ty)->getElementType();
3677
3678      // Handle constant subscripts.
3679      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3680        if (CI->getZExtValue() == 0) continue;
3681        ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CI->getSExtValue();
3682        continue;
3683      }
3684
3685      // Ptr = Ptr + Idx * ElementSize;
3686
3687      // Cast Idx to UIntPtrTy if needed.
3688      Idx = CastInst::createIntegerCast(Idx, UIntPtrTy, true/*SExt*/, "", GEPI);
3689
3690      uint64_t ElementSize = TD->getTypeSize(Ty);
3691      // Mask off bits that should not be set.
3692      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3693      Constant *SizeCst = ConstantInt::get(UIntPtrTy, ElementSize);
3694
3695      // Multiply by the element size and add to the base.
3696      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
3697      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
3698    }
3699  }
3700
3701  // Make sure that the offset fits in uintptr_t.
3702  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3703  Constant *PtrOffset = ConstantInt::get(UIntPtrTy, ConstantOffset);
3704
3705  // Okay, we have now emitted all of the variable index parts to the BB that
3706  // the GEP is defined in.  Loop over all of the using instructions, inserting
3707  // an "add Ptr, ConstantOffset" into each block that uses it and update the
3708  // instruction to use the newly computed value, making GEPI dead.  When the
3709  // user is a load or store instruction address, we emit the add into the user
3710  // block, otherwise we use a canonical version right next to the gep (these
3711  // won't be foldable as addresses, so we might as well share the computation).
3712
3713  std::map<BasicBlock*,Instruction*> InsertedExprs;
3714  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3715
3716  // Finally, the GEP is dead, remove it.
3717  GEPI->eraseFromParent();
3718
3719  return true;
3720}
3721
3722
3723/// SplitEdgeNicely - Split the critical edge from TI to it's specified
3724/// successor if it will improve codegen.  We only do this if the successor has
3725/// phi nodes (otherwise critical edges are ok).  If there is already another
3726/// predecessor of the succ that is empty (and thus has no phi nodes), use it
3727/// instead of introducing a new block.
3728static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
3729  BasicBlock *TIBB = TI->getParent();
3730  BasicBlock *Dest = TI->getSuccessor(SuccNum);
3731  assert(isa<PHINode>(Dest->begin()) &&
3732         "This should only be called if Dest has a PHI!");
3733
3734  /// TIPHIValues - This array is lazily computed to determine the values of
3735  /// PHIs in Dest that TI would provide.
3736  std::vector<Value*> TIPHIValues;
3737
3738  // Check to see if Dest has any blocks that can be used as a split edge for
3739  // this terminator.
3740  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
3741    BasicBlock *Pred = *PI;
3742    // To be usable, the pred has to end with an uncond branch to the dest.
3743    BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
3744    if (!PredBr || !PredBr->isUnconditional() ||
3745        // Must be empty other than the branch.
3746        &Pred->front() != PredBr)
3747      continue;
3748
3749    // Finally, since we know that Dest has phi nodes in it, we have to make
3750    // sure that jumping to Pred will have the same affect as going to Dest in
3751    // terms of PHI values.
3752    PHINode *PN;
3753    unsigned PHINo = 0;
3754    bool FoundMatch = true;
3755    for (BasicBlock::iterator I = Dest->begin();
3756         (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
3757      if (PHINo == TIPHIValues.size())
3758        TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
3759
3760      // If the PHI entry doesn't work, we can't use this pred.
3761      if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
3762        FoundMatch = false;
3763        break;
3764      }
3765    }
3766
3767    // If we found a workable predecessor, change TI to branch to Succ.
3768    if (FoundMatch) {
3769      Dest->removePredecessor(TIBB);
3770      TI->setSuccessor(SuccNum, Pred);
3771      return;
3772    }
3773  }
3774
3775  SplitCriticalEdge(TI, SuccNum, P, true);
3776}
3777
3778
3779bool SelectionDAGISel::runOnFunction(Function &Fn) {
3780  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
3781  RegMap = MF.getSSARegMap();
3782  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
3783
3784  // First, split all critical edges.
3785  //
3786  // In this pass we also look for GEP and cast instructions that are used
3787  // across basic blocks and rewrite them to improve basic-block-at-a-time
3788  // selection.
3789  //
3790  bool MadeChange = true;
3791  while (MadeChange) {
3792    MadeChange = false;
3793  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
3794    // Split all critical edges where the dest block has a PHI.
3795    TerminatorInst *BBTI = BB->getTerminator();
3796    if (BBTI->getNumSuccessors() > 1) {
3797      for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
3798        if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
3799            isCriticalEdge(BBTI, i, true))
3800          SplitEdgeNicely(BBTI, i, this);
3801    }
3802
3803
3804    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3805      Instruction *I = BBI++;
3806
3807      if (CallInst *CI = dyn_cast<CallInst>(I)) {
3808        // If we found an inline asm expession, and if the target knows how to
3809        // lower it to normal LLVM code, do so now.
3810        if (isa<InlineAsm>(CI->getCalledValue()))
3811          if (const TargetAsmInfo *TAI =
3812                TLI.getTargetMachine().getTargetAsmInfo()) {
3813            if (TAI->ExpandInlineAsm(CI))
3814              BBI = BB->begin();
3815          }
3816      } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
3817        MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
3818      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
3819        // If the source of the cast is a constant, then this should have
3820        // already been constant folded.  The only reason NOT to constant fold
3821        // it is if something (e.g. LSR) was careful to place the constant
3822        // evaluation in a block other than then one that uses it (e.g. to hoist
3823        // the address of globals out of a loop).  If this is the case, we don't
3824        // want to forward-subst the cast.
3825        if (isa<Constant>(CI->getOperand(0)))
3826          continue;
3827
3828        // If this is a noop copy, sink it into user blocks to reduce the number
3829        // of virtual registers that must be created and coallesced.
3830        MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
3831        MVT::ValueType DstVT = TLI.getValueType(CI->getType());
3832
3833        // This is an fp<->int conversion?
3834        if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
3835          continue;
3836
3837        // If this is an extension, it will be a zero or sign extension, which
3838        // isn't a noop.
3839        if (SrcVT < DstVT) continue;
3840
3841        // If these values will be promoted, find out what they will be promoted
3842        // to.  This helps us consider truncates on PPC as noop copies when they
3843        // are.
3844        if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
3845          SrcVT = TLI.getTypeToTransformTo(SrcVT);
3846        if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
3847          DstVT = TLI.getTypeToTransformTo(DstVT);
3848
3849        // If, after promotion, these are the same types, this is a noop copy.
3850        if (SrcVT == DstVT)
3851          MadeChange |= OptimizeNoopCopyExpression(CI);
3852      }
3853    }
3854  }
3855  }
3856
3857  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
3858
3859  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
3860    SelectBasicBlock(I, MF, FuncInfo);
3861
3862  return true;
3863}
3864
3865SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
3866                                                           unsigned Reg) {
3867  SDOperand Op = getValue(V);
3868  assert((Op.getOpcode() != ISD::CopyFromReg ||
3869          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
3870         "Copy from a reg to the same reg!");
3871
3872  // If this type is not legal, we must make sure to not create an invalid
3873  // register use.
3874  MVT::ValueType SrcVT = Op.getValueType();
3875  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
3876  if (SrcVT == DestVT) {
3877    return DAG.getCopyToReg(getRoot(), Reg, Op);
3878  } else if (SrcVT == MVT::Vector) {
3879    // Handle copies from generic vectors to registers.
3880    MVT::ValueType PTyElementVT, PTyLegalElementVT;
3881    unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
3882                                             PTyElementVT, PTyLegalElementVT);
3883
3884    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
3885    // MVT::Vector type.
3886    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
3887                     DAG.getConstant(NE, MVT::i32),
3888                     DAG.getValueType(PTyElementVT));
3889
3890    // Loop over all of the elements of the resultant vector,
3891    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
3892    // copying them into output registers.
3893    SmallVector<SDOperand, 8> OutChains;
3894    SDOperand Root = getRoot();
3895    for (unsigned i = 0; i != NE; ++i) {
3896      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
3897                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
3898      if (PTyElementVT == PTyLegalElementVT) {
3899        // Elements are legal.
3900        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3901      } else if (PTyLegalElementVT > PTyElementVT) {
3902        // Elements are promoted.
3903        if (MVT::isFloatingPoint(PTyLegalElementVT))
3904          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
3905        else
3906          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
3907        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3908      } else {
3909        // Elements are expanded.
3910        // The src value is expanded into multiple registers.
3911        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3912                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
3913        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3914                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
3915        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
3916        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
3917      }
3918    }
3919    return DAG.getNode(ISD::TokenFactor, MVT::Other,
3920                       &OutChains[0], OutChains.size());
3921  } else if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) {
3922    // The src value is promoted to the register.
3923    if (MVT::isFloatingPoint(SrcVT))
3924      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
3925    else
3926      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
3927    return DAG.getCopyToReg(getRoot(), Reg, Op);
3928  } else  {
3929    DestVT = TLI.getTypeToExpandTo(SrcVT);
3930    unsigned NumVals = TLI.getNumElements(SrcVT);
3931    if (NumVals == 1)
3932      return DAG.getCopyToReg(getRoot(), Reg,
3933                              DAG.getNode(ISD::BIT_CONVERT, DestVT, Op));
3934    assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
3935    // The src value is expanded into multiple registers.
3936    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3937                               Op, DAG.getConstant(0, TLI.getPointerTy()));
3938    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3939                               Op, DAG.getConstant(1, TLI.getPointerTy()));
3940    Op = DAG.getCopyToReg(getRoot(), Reg, Lo);
3941    return DAG.getCopyToReg(Op, Reg+1, Hi);
3942  }
3943}
3944
3945void SelectionDAGISel::
3946LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
3947               std::vector<SDOperand> &UnorderedChains) {
3948  // If this is the entry block, emit arguments.
3949  Function &F = *BB->getParent();
3950  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
3951  SDOperand OldRoot = SDL.DAG.getRoot();
3952  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
3953
3954  unsigned a = 0;
3955  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
3956       AI != E; ++AI, ++a)
3957    if (!AI->use_empty()) {
3958      SDL.setValue(AI, Args[a]);
3959
3960      // If this argument is live outside of the entry block, insert a copy from
3961      // whereever we got it to the vreg that other BB's will reference it as.
3962      if (FuncInfo.ValueMap.count(AI)) {
3963        SDOperand Copy =
3964          SDL.CopyValueToVirtualRegister(AI, FuncInfo.ValueMap[AI]);
3965        UnorderedChains.push_back(Copy);
3966      }
3967    }
3968
3969  // Finally, if the target has anything special to do, allow it to do so.
3970  // FIXME: this should insert code into the DAG!
3971  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
3972}
3973
3974void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
3975       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
3976                                         FunctionLoweringInfo &FuncInfo) {
3977  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
3978
3979  std::vector<SDOperand> UnorderedChains;
3980
3981  // Lower any arguments needed in this block if this is the entry block.
3982  if (LLVMBB == &LLVMBB->getParent()->front())
3983    LowerArguments(LLVMBB, SDL, UnorderedChains);
3984
3985  BB = FuncInfo.MBBMap[LLVMBB];
3986  SDL.setCurrentBasicBlock(BB);
3987
3988  // Lower all of the non-terminator instructions.
3989  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
3990       I != E; ++I)
3991    SDL.visit(*I);
3992
3993  // Ensure that all instructions which are used outside of their defining
3994  // blocks are available as virtual registers.
3995  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
3996    if (!I->use_empty() && !isa<PHINode>(I)) {
3997      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
3998      if (VMI != FuncInfo.ValueMap.end())
3999        UnorderedChains.push_back(
4000                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4001    }
4002
4003  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4004  // ensure constants are generated when needed.  Remember the virtual registers
4005  // that need to be added to the Machine PHI nodes as input.  We cannot just
4006  // directly add them, because expansion might result in multiple MBB's for one
4007  // BB.  As such, the start of the BB might correspond to a different MBB than
4008  // the end.
4009  //
4010  TerminatorInst *TI = LLVMBB->getTerminator();
4011
4012  // Emit constants only once even if used by multiple PHI nodes.
4013  std::map<Constant*, unsigned> ConstantsOut;
4014
4015  // Vector bool would be better, but vector<bool> is really slow.
4016  std::vector<unsigned char> SuccsHandled;
4017  if (TI->getNumSuccessors())
4018    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4019
4020  // Check successor nodes PHI nodes that expect a constant to be available from
4021  // this block.
4022  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4023    BasicBlock *SuccBB = TI->getSuccessor(succ);
4024    if (!isa<PHINode>(SuccBB->begin())) continue;
4025    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4026
4027    // If this terminator has multiple identical successors (common for
4028    // switches), only handle each succ once.
4029    unsigned SuccMBBNo = SuccMBB->getNumber();
4030    if (SuccsHandled[SuccMBBNo]) continue;
4031    SuccsHandled[SuccMBBNo] = true;
4032
4033    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4034    PHINode *PN;
4035
4036    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4037    // nodes and Machine PHI nodes, but the incoming operands have not been
4038    // emitted yet.
4039    for (BasicBlock::iterator I = SuccBB->begin();
4040         (PN = dyn_cast<PHINode>(I)); ++I) {
4041      // Ignore dead phi's.
4042      if (PN->use_empty()) continue;
4043
4044      unsigned Reg;
4045      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4046
4047      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4048        unsigned &RegOut = ConstantsOut[C];
4049        if (RegOut == 0) {
4050          RegOut = FuncInfo.CreateRegForValue(C);
4051          UnorderedChains.push_back(
4052                           SDL.CopyValueToVirtualRegister(C, RegOut));
4053        }
4054        Reg = RegOut;
4055      } else {
4056        Reg = FuncInfo.ValueMap[PHIOp];
4057        if (Reg == 0) {
4058          assert(isa<AllocaInst>(PHIOp) &&
4059                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4060                 "Didn't codegen value into a register!??");
4061          Reg = FuncInfo.CreateRegForValue(PHIOp);
4062          UnorderedChains.push_back(
4063                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4064        }
4065      }
4066
4067      // Remember that this register needs to added to the machine PHI node as
4068      // the input for this MBB.
4069      MVT::ValueType VT = TLI.getValueType(PN->getType());
4070      unsigned NumElements;
4071      if (VT != MVT::Vector)
4072        NumElements = TLI.getNumElements(VT);
4073      else {
4074        MVT::ValueType VT1,VT2;
4075        NumElements =
4076          TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
4077                                     VT1, VT2);
4078      }
4079      for (unsigned i = 0, e = NumElements; i != e; ++i)
4080        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4081    }
4082  }
4083  ConstantsOut.clear();
4084
4085  // Turn all of the unordered chains into one factored node.
4086  if (!UnorderedChains.empty()) {
4087    SDOperand Root = SDL.getRoot();
4088    if (Root.getOpcode() != ISD::EntryToken) {
4089      unsigned i = 0, e = UnorderedChains.size();
4090      for (; i != e; ++i) {
4091        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4092        if (UnorderedChains[i].Val->getOperand(0) == Root)
4093          break;  // Don't add the root if we already indirectly depend on it.
4094      }
4095
4096      if (i == e)
4097        UnorderedChains.push_back(Root);
4098    }
4099    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4100                            &UnorderedChains[0], UnorderedChains.size()));
4101  }
4102
4103  // Lower the terminator after the copies are emitted.
4104  SDL.visit(*LLVMBB->getTerminator());
4105
4106  // Copy over any CaseBlock records that may now exist due to SwitchInst
4107  // lowering, as well as any jump table information.
4108  SwitchCases.clear();
4109  SwitchCases = SDL.SwitchCases;
4110  JT = SDL.JT;
4111
4112  // Make sure the root of the DAG is up-to-date.
4113  DAG.setRoot(SDL.getRoot());
4114}
4115
4116void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4117  // Get alias analysis for load/store combining.
4118  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4119
4120  // Run the DAG combiner in pre-legalize mode.
4121  DAG.Combine(false, AA);
4122
4123  DOUT << "Lowered selection DAG:\n";
4124  DEBUG(DAG.dump());
4125
4126  // Second step, hack on the DAG until it only uses operations and types that
4127  // the target supports.
4128  DAG.Legalize();
4129
4130  DOUT << "Legalized selection DAG:\n";
4131  DEBUG(DAG.dump());
4132
4133  // Run the DAG combiner in post-legalize mode.
4134  DAG.Combine(true, AA);
4135
4136  if (ViewISelDAGs) DAG.viewGraph();
4137
4138  // Third, instruction select all of the operations to machine code, adding the
4139  // code to the MachineBasicBlock.
4140  InstructionSelectBasicBlock(DAG);
4141
4142  DOUT << "Selected machine code:\n";
4143  DEBUG(BB->dump());
4144}
4145
4146void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4147                                        FunctionLoweringInfo &FuncInfo) {
4148  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4149  {
4150    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
4151    CurDAG = &DAG;
4152
4153    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4154    // types that are not supported by the target.
4155    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4156
4157    // Second step, emit the lowered DAG as machine code.
4158    CodeGenAndEmitDAG(DAG);
4159  }
4160
4161  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4162  // PHI nodes in successors.
4163  if (SwitchCases.empty() && JT.Reg == 0) {
4164    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4165      MachineInstr *PHI = PHINodesToUpdate[i].first;
4166      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4167             "This is not a machine PHI node that we are updating!");
4168      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4169      PHI->addMachineBasicBlockOperand(BB);
4170    }
4171    return;
4172  }
4173
4174  // If the JumpTable record is filled in, then we need to emit a jump table.
4175  // Updating the PHI nodes is tricky in this case, since we need to determine
4176  // whether the PHI is a successor of the range check MBB or the jump table MBB
4177  if (JT.Reg) {
4178    assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
4179    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
4180    CurDAG = &SDAG;
4181    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4182    MachineBasicBlock *RangeBB = BB;
4183    // Set the current basic block to the mbb we wish to insert the code into
4184    BB = JT.MBB;
4185    SDL.setCurrentBasicBlock(BB);
4186    // Emit the code
4187    SDL.visitJumpTable(JT);
4188    SDAG.setRoot(SDL.getRoot());
4189    CodeGenAndEmitDAG(SDAG);
4190    // Update PHI Nodes
4191    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4192      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4193      MachineBasicBlock *PHIBB = PHI->getParent();
4194      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4195             "This is not a machine PHI node that we are updating!");
4196      if (PHIBB == JT.Default) {
4197        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4198        PHI->addMachineBasicBlockOperand(RangeBB);
4199      }
4200      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4201        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4202        PHI->addMachineBasicBlockOperand(BB);
4203      }
4204    }
4205    return;
4206  }
4207
4208  // If the switch block involved a branch to one of the actual successors, we
4209  // need to update PHI nodes in that block.
4210  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4211    MachineInstr *PHI = PHINodesToUpdate[i].first;
4212    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4213           "This is not a machine PHI node that we are updating!");
4214    if (BB->isSuccessor(PHI->getParent())) {
4215      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4216      PHI->addMachineBasicBlockOperand(BB);
4217    }
4218  }
4219
4220  // If we generated any switch lowering information, build and codegen any
4221  // additional DAGs necessary.
4222  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4223    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
4224    CurDAG = &SDAG;
4225    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4226
4227    // Set the current basic block to the mbb we wish to insert the code into
4228    BB = SwitchCases[i].ThisBB;
4229    SDL.setCurrentBasicBlock(BB);
4230
4231    // Emit the code
4232    SDL.visitSwitchCase(SwitchCases[i]);
4233    SDAG.setRoot(SDL.getRoot());
4234    CodeGenAndEmitDAG(SDAG);
4235
4236    // Handle any PHI nodes in successors of this chunk, as if we were coming
4237    // from the original BB before switch expansion.  Note that PHI nodes can
4238    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4239    // handle them the right number of times.
4240    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4241      for (MachineBasicBlock::iterator Phi = BB->begin();
4242           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4243        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4244        for (unsigned pn = 0; ; ++pn) {
4245          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4246          if (PHINodesToUpdate[pn].first == Phi) {
4247            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4248            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4249            break;
4250          }
4251        }
4252      }
4253
4254      // Don't process RHS if same block as LHS.
4255      if (BB == SwitchCases[i].FalseBB)
4256        SwitchCases[i].FalseBB = 0;
4257
4258      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4259      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4260      SwitchCases[i].FalseBB = 0;
4261    }
4262    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4263  }
4264}
4265
4266
4267//===----------------------------------------------------------------------===//
4268/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4269/// target node in the graph.
4270void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4271  if (ViewSchedDAGs) DAG.viewGraph();
4272
4273  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4274
4275  if (!Ctor) {
4276    Ctor = ISHeuristic;
4277    RegisterScheduler::setDefault(Ctor);
4278  }
4279
4280  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4281  BB = SL->Run();
4282  delete SL;
4283}
4284
4285
4286HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4287  return new HazardRecognizer();
4288}
4289
4290//===----------------------------------------------------------------------===//
4291// Helper functions used by the generated instruction selector.
4292//===----------------------------------------------------------------------===//
4293// Calls to these methods are generated by tblgen.
4294
4295/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4296/// the dag combiner simplified the 255, we still want to match.  RHS is the
4297/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4298/// specified in the .td file (e.g. 255).
4299bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4300                                    int64_t DesiredMaskS) {
4301  uint64_t ActualMask = RHS->getValue();
4302  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4303
4304  // If the actual mask exactly matches, success!
4305  if (ActualMask == DesiredMask)
4306    return true;
4307
4308  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4309  if (ActualMask & ~DesiredMask)
4310    return false;
4311
4312  // Otherwise, the DAG Combiner may have proven that the value coming in is
4313  // either already zero or is not demanded.  Check for known zero input bits.
4314  uint64_t NeededMask = DesiredMask & ~ActualMask;
4315  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
4316    return true;
4317
4318  // TODO: check to see if missing bits are just not demanded.
4319
4320  // Otherwise, this pattern doesn't match.
4321  return false;
4322}
4323
4324/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4325/// the dag combiner simplified the 255, we still want to match.  RHS is the
4326/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4327/// specified in the .td file (e.g. 255).
4328bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4329                                    int64_t DesiredMaskS) {
4330  uint64_t ActualMask = RHS->getValue();
4331  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4332
4333  // If the actual mask exactly matches, success!
4334  if (ActualMask == DesiredMask)
4335    return true;
4336
4337  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4338  if (ActualMask & ~DesiredMask)
4339    return false;
4340
4341  // Otherwise, the DAG Combiner may have proven that the value coming in is
4342  // either already zero or is not demanded.  Check for known zero input bits.
4343  uint64_t NeededMask = DesiredMask & ~ActualMask;
4344
4345  uint64_t KnownZero, KnownOne;
4346  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4347
4348  // If all the missing bits in the or are already known to be set, match!
4349  if ((NeededMask & KnownOne) == NeededMask)
4350    return true;
4351
4352  // TODO: check to see if missing bits are just not demanded.
4353
4354  // Otherwise, this pattern doesn't match.
4355  return false;
4356}
4357
4358
4359/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4360/// by tblgen.  Others should not call it.
4361void SelectionDAGISel::
4362SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4363  std::vector<SDOperand> InOps;
4364  std::swap(InOps, Ops);
4365
4366  Ops.push_back(InOps[0]);  // input chain.
4367  Ops.push_back(InOps[1]);  // input asm string.
4368
4369  unsigned i = 2, e = InOps.size();
4370  if (InOps[e-1].getValueType() == MVT::Flag)
4371    --e;  // Don't process a flag operand if it is here.
4372
4373  while (i != e) {
4374    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4375    if ((Flags & 7) != 4 /*MEM*/) {
4376      // Just skip over this operand, copying the operands verbatim.
4377      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4378      i += (Flags >> 3) + 1;
4379    } else {
4380      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4381      // Otherwise, this is a memory operand.  Ask the target to select it.
4382      std::vector<SDOperand> SelOps;
4383      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4384        cerr << "Could not match memory address.  Inline asm failure!\n";
4385        exit(1);
4386      }
4387
4388      // Add this to the output node.
4389      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4390                                          MVT::i32));
4391      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4392      i += 2;
4393    }
4394  }
4395
4396  // Add the flag input back if present.
4397  if (e != InOps.size())
4398    Ops.push_back(InOps.back());
4399}
4400