SelectionDAGISel.cpp revision 47c144505b9be28ed22c626b3a407c11dba2fec5
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/DebugInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/Module.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/GCStrategy.h"
32#include "llvm/CodeGen/GCMetadata.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39#include "llvm/CodeGen/SchedulerRegistry.h"
40#include "llvm/CodeGen/SelectionDAG.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetIntrinsicInfo.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLibraryInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Support/Compiler.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/Timer.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/ADT/PostOrderIterator.h"
55#include "llvm/ADT/Statistic.h"
56#include <algorithm>
57using namespace llvm;
58
59STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
60STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
61STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
62STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
63STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
64
65#ifndef NDEBUG
66static cl::opt<bool>
67EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
68          cl::desc("Enable extra verbose messages in the \"fast\" "
69                   "instruction selector"));
70  // Terminators
71STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
72STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
73STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
74STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
75STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
76STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
77STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
78
79  // Standard binary operators...
80STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
81STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
82STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
83STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
84STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
85STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
86STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
87STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
88STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
89STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
90STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
91STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
92
93  // Logical operators...
94STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
95STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
96STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
97
98  // Memory instructions...
99STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
100STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
101STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
102STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
103STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
104STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
105STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
106
107  // Convert instructions...
108STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
109STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
110STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
111STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
112STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
113STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
114STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
115STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
116STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
117STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
118STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
119STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
120
121  // Other instructions...
122STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
123STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
124STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
125STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
126STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
127STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
128STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
129STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
130STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
131STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
132STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
133STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
134STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
135STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
136STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
137#endif
138
139static cl::opt<bool>
140EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
141          cl::desc("Enable verbose messages in the \"fast\" "
142                   "instruction selector"));
143static cl::opt<bool>
144EnableFastISelAbort("fast-isel-abort", cl::Hidden,
145          cl::desc("Enable abort calls when \"fast\" instruction fails"));
146
147static cl::opt<bool>
148UseMBPI("use-mbpi",
149        cl::desc("use Machine Branch Probability Info"),
150        cl::init(true), cl::Hidden);
151
152#ifndef NDEBUG
153static cl::opt<bool>
154ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
155          cl::desc("Pop up a window to show dags before the first "
156                   "dag combine pass"));
157static cl::opt<bool>
158ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
159          cl::desc("Pop up a window to show dags before legalize types"));
160static cl::opt<bool>
161ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
162          cl::desc("Pop up a window to show dags before legalize"));
163static cl::opt<bool>
164ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
165          cl::desc("Pop up a window to show dags before the second "
166                   "dag combine pass"));
167static cl::opt<bool>
168ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
169          cl::desc("Pop up a window to show dags before the post legalize types"
170                   " dag combine pass"));
171static cl::opt<bool>
172ViewISelDAGs("view-isel-dags", cl::Hidden,
173          cl::desc("Pop up a window to show isel dags as they are selected"));
174static cl::opt<bool>
175ViewSchedDAGs("view-sched-dags", cl::Hidden,
176          cl::desc("Pop up a window to show sched dags as they are processed"));
177static cl::opt<bool>
178ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
179      cl::desc("Pop up a window to show SUnit dags after they are processed"));
180#else
181static const bool ViewDAGCombine1 = false,
182                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
183                  ViewDAGCombine2 = false,
184                  ViewDAGCombineLT = false,
185                  ViewISelDAGs = false, ViewSchedDAGs = false,
186                  ViewSUnitDAGs = false;
187#endif
188
189//===---------------------------------------------------------------------===//
190///
191/// RegisterScheduler class - Track the registration of instruction schedulers.
192///
193//===---------------------------------------------------------------------===//
194MachinePassRegistry RegisterScheduler::Registry;
195
196//===---------------------------------------------------------------------===//
197///
198/// ISHeuristic command line option for instruction schedulers.
199///
200//===---------------------------------------------------------------------===//
201static cl::opt<RegisterScheduler::FunctionPassCtor, false,
202               RegisterPassParser<RegisterScheduler> >
203ISHeuristic("pre-RA-sched",
204            cl::init(&createDefaultScheduler),
205            cl::desc("Instruction schedulers available (before register"
206                     " allocation):"));
207
208static RegisterScheduler
209defaultListDAGScheduler("default", "Best scheduler for the target",
210                        createDefaultScheduler);
211
212namespace llvm {
213  //===--------------------------------------------------------------------===//
214  /// createDefaultScheduler - This creates an instruction scheduler appropriate
215  /// for the target.
216  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
217                                             CodeGenOpt::Level OptLevel) {
218    const TargetLowering &TLI = IS->getTargetLowering();
219
220    if (OptLevel == CodeGenOpt::None ||
221        TLI.getSchedulingPreference() == Sched::Source)
222      return createSourceListDAGScheduler(IS, OptLevel);
223    if (TLI.getSchedulingPreference() == Sched::RegPressure)
224      return createBURRListDAGScheduler(IS, OptLevel);
225    if (TLI.getSchedulingPreference() == Sched::Hybrid)
226      return createHybridListDAGScheduler(IS, OptLevel);
227    if (TLI.getSchedulingPreference() == Sched::VLIW)
228      return createVLIWDAGScheduler(IS, OptLevel);
229    assert(TLI.getSchedulingPreference() == Sched::ILP &&
230           "Unknown sched type!");
231    return createILPListDAGScheduler(IS, OptLevel);
232  }
233}
234
235// EmitInstrWithCustomInserter - This method should be implemented by targets
236// that mark instructions with the 'usesCustomInserter' flag.  These
237// instructions are special in various ways, which require special support to
238// insert.  The specified MachineInstr is created but not inserted into any
239// basic blocks, and this method is called to expand it into a sequence of
240// instructions, potentially also creating new basic blocks and control flow.
241// When new basic blocks are inserted and the edges from MBB to its successors
242// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
243// DenseMap.
244MachineBasicBlock *
245TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
246                                            MachineBasicBlock *MBB) const {
247#ifndef NDEBUG
248  dbgs() << "If a target marks an instruction with "
249          "'usesCustomInserter', it must implement "
250          "TargetLowering::EmitInstrWithCustomInserter!";
251#endif
252  llvm_unreachable(0);
253}
254
255void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
256                                                   SDNode *Node) const {
257  assert(!MI->hasPostISelHook() &&
258         "If a target marks an instruction with 'hasPostISelHook', "
259         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
260}
261
262//===----------------------------------------------------------------------===//
263// SelectionDAGISel code
264//===----------------------------------------------------------------------===//
265
266void SelectionDAGISel::ISelUpdater::anchor() { }
267
268SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
269                                   CodeGenOpt::Level OL) :
270  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
271  FuncInfo(new FunctionLoweringInfo(TLI)),
272  CurDAG(new SelectionDAG(tm, OL)),
273  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
274  GFI(),
275  OptLevel(OL),
276  DAGSize(0) {
277    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
278    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
279    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
280    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
281  }
282
283SelectionDAGISel::~SelectionDAGISel() {
284  delete SDB;
285  delete CurDAG;
286  delete FuncInfo;
287}
288
289void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
290  AU.addRequired<AliasAnalysis>();
291  AU.addPreserved<AliasAnalysis>();
292  AU.addRequired<GCModuleInfo>();
293  AU.addPreserved<GCModuleInfo>();
294  AU.addRequired<TargetLibraryInfo>();
295  if (UseMBPI && OptLevel != CodeGenOpt::None)
296    AU.addRequired<BranchProbabilityInfo>();
297  MachineFunctionPass::getAnalysisUsage(AU);
298}
299
300/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
301/// may trap on it.  In this case we have to split the edge so that the path
302/// through the predecessor block that doesn't go to the phi block doesn't
303/// execute the possibly trapping instruction.
304///
305/// This is required for correctness, so it must be done at -O0.
306///
307static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
308  // Loop for blocks with phi nodes.
309  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
310    PHINode *PN = dyn_cast<PHINode>(BB->begin());
311    if (PN == 0) continue;
312
313  ReprocessBlock:
314    // For each block with a PHI node, check to see if any of the input values
315    // are potentially trapping constant expressions.  Constant expressions are
316    // the only potentially trapping value that can occur as the argument to a
317    // PHI.
318    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
319      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
320        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
321        if (CE == 0 || !CE->canTrap()) continue;
322
323        // The only case we have to worry about is when the edge is critical.
324        // Since this block has a PHI Node, we assume it has multiple input
325        // edges: check to see if the pred has multiple successors.
326        BasicBlock *Pred = PN->getIncomingBlock(i);
327        if (Pred->getTerminator()->getNumSuccessors() == 1)
328          continue;
329
330        // Okay, we have to split this edge.
331        SplitCriticalEdge(Pred->getTerminator(),
332                          GetSuccessorNumber(Pred, BB), SDISel, true);
333        goto ReprocessBlock;
334      }
335  }
336}
337
338bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
339  // Do some sanity-checking on the command-line options.
340  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
341         "-fast-isel-verbose requires -fast-isel");
342  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
343         "-fast-isel-abort requires -fast-isel");
344
345  const Function &Fn = *mf.getFunction();
346  const TargetInstrInfo &TII = *TM.getInstrInfo();
347  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
348
349  MF = &mf;
350  RegInfo = &MF->getRegInfo();
351  AA = &getAnalysis<AliasAnalysis>();
352  LibInfo = &getAnalysis<TargetLibraryInfo>();
353  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
354
355  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
356
357  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
358
359  CurDAG->init(*MF);
360  FuncInfo->set(Fn, *MF);
361
362  if (UseMBPI && OptLevel != CodeGenOpt::None)
363    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
364  else
365    FuncInfo->BPI = 0;
366
367  SDB->init(GFI, *AA, LibInfo);
368
369  SelectAllBasicBlocks(Fn);
370
371  // If the first basic block in the function has live ins that need to be
372  // copied into vregs, emit the copies into the top of the block before
373  // emitting the code for the block.
374  MachineBasicBlock *EntryMBB = MF->begin();
375  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
376
377  DenseMap<unsigned, unsigned> LiveInMap;
378  if (!FuncInfo->ArgDbgValues.empty())
379    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
380           E = RegInfo->livein_end(); LI != E; ++LI)
381      if (LI->second)
382        LiveInMap.insert(std::make_pair(LI->first, LI->second));
383
384  // Insert DBG_VALUE instructions for function arguments to the entry block.
385  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
386    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
387    unsigned Reg = MI->getOperand(0).getReg();
388    if (TargetRegisterInfo::isPhysicalRegister(Reg))
389      EntryMBB->insert(EntryMBB->begin(), MI);
390    else {
391      MachineInstr *Def = RegInfo->getVRegDef(Reg);
392      MachineBasicBlock::iterator InsertPos = Def;
393      // FIXME: VR def may not be in entry block.
394      Def->getParent()->insert(llvm::next(InsertPos), MI);
395    }
396
397    // If Reg is live-in then update debug info to track its copy in a vreg.
398    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
399    if (LDI != LiveInMap.end()) {
400      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
401      MachineBasicBlock::iterator InsertPos = Def;
402      const MDNode *Variable =
403        MI->getOperand(MI->getNumOperands()-1).getMetadata();
404      unsigned Offset = MI->getOperand(1).getImm();
405      // Def is never a terminator here, so it is ok to increment InsertPos.
406      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
407              TII.get(TargetOpcode::DBG_VALUE))
408        .addReg(LDI->second, RegState::Debug)
409        .addImm(Offset).addMetadata(Variable);
410
411      // If this vreg is directly copied into an exported register then
412      // that COPY instructions also need DBG_VALUE, if it is the only
413      // user of LDI->second.
414      MachineInstr *CopyUseMI = NULL;
415      for (MachineRegisterInfo::use_iterator
416             UI = RegInfo->use_begin(LDI->second);
417           MachineInstr *UseMI = UI.skipInstruction();) {
418        if (UseMI->isDebugValue()) continue;
419        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
420          CopyUseMI = UseMI; continue;
421        }
422        // Otherwise this is another use or second copy use.
423        CopyUseMI = NULL; break;
424      }
425      if (CopyUseMI) {
426        MachineInstr *NewMI =
427          BuildMI(*MF, CopyUseMI->getDebugLoc(),
428                  TII.get(TargetOpcode::DBG_VALUE))
429          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
430          .addImm(Offset).addMetadata(Variable);
431        MachineBasicBlock::iterator Pos = CopyUseMI;
432        EntryMBB->insertAfter(Pos, NewMI);
433      }
434    }
435  }
436
437  // Determine if there are any calls in this machine function.
438  MachineFrameInfo *MFI = MF->getFrameInfo();
439  if (!MFI->hasCalls()) {
440    for (MachineFunction::const_iterator
441           I = MF->begin(), E = MF->end(); I != E; ++I) {
442      const MachineBasicBlock *MBB = I;
443      for (MachineBasicBlock::const_iterator
444             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
445        const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
446
447        if ((MCID.isCall() && !MCID.isReturn()) ||
448            II->isStackAligningInlineAsm()) {
449          MFI->setHasCalls(true);
450          goto done;
451        }
452      }
453    }
454  done:;
455  }
456
457  // Determine if there is a call to setjmp in the machine function.
458  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
459
460  // Replace forward-declared registers with the registers containing
461  // the desired value.
462  MachineRegisterInfo &MRI = MF->getRegInfo();
463  for (DenseMap<unsigned, unsigned>::iterator
464       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
465       I != E; ++I) {
466    unsigned From = I->first;
467    unsigned To = I->second;
468    // If To is also scheduled to be replaced, find what its ultimate
469    // replacement is.
470    for (;;) {
471      DenseMap<unsigned, unsigned>::iterator J =
472        FuncInfo->RegFixups.find(To);
473      if (J == E) break;
474      To = J->second;
475    }
476    // Replace it.
477    MRI.replaceRegWith(From, To);
478  }
479
480  // Release function-specific state. SDB and CurDAG are already cleared
481  // at this point.
482  FuncInfo->clear();
483
484  return true;
485}
486
487void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
488                                        BasicBlock::const_iterator End,
489                                        bool &HadTailCall) {
490  // Lower all of the non-terminator instructions. If a call is emitted
491  // as a tail call, cease emitting nodes for this block. Terminators
492  // are handled below.
493  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
494    SDB->visit(*I);
495
496  // Make sure the root of the DAG is up-to-date.
497  CurDAG->setRoot(SDB->getControlRoot());
498  HadTailCall = SDB->HasTailCall;
499  SDB->clear();
500
501  // Final step, emit the lowered DAG as machine code.
502  CodeGenAndEmitDAG();
503}
504
505void SelectionDAGISel::ComputeLiveOutVRegInfo() {
506  SmallPtrSet<SDNode*, 128> VisitedNodes;
507  SmallVector<SDNode*, 128> Worklist;
508
509  Worklist.push_back(CurDAG->getRoot().getNode());
510
511  APInt Mask;
512  APInt KnownZero;
513  APInt KnownOne;
514
515  do {
516    SDNode *N = Worklist.pop_back_val();
517
518    // If we've already seen this node, ignore it.
519    if (!VisitedNodes.insert(N))
520      continue;
521
522    // Otherwise, add all chain operands to the worklist.
523    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
524      if (N->getOperand(i).getValueType() == MVT::Other)
525        Worklist.push_back(N->getOperand(i).getNode());
526
527    // If this is a CopyToReg with a vreg dest, process it.
528    if (N->getOpcode() != ISD::CopyToReg)
529      continue;
530
531    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
532    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
533      continue;
534
535    // Ignore non-scalar or non-integer values.
536    SDValue Src = N->getOperand(2);
537    EVT SrcVT = Src.getValueType();
538    if (!SrcVT.isInteger() || SrcVT.isVector())
539      continue;
540
541    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
542    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
543    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
544    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
545  } while (!Worklist.empty());
546}
547
548void SelectionDAGISel::CodeGenAndEmitDAG() {
549  std::string GroupName;
550  if (TimePassesIsEnabled)
551    GroupName = "Instruction Selection and Scheduling";
552  std::string BlockName;
553  int BlockNumber = -1;
554  (void)BlockNumber;
555#ifdef NDEBUG
556  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
557      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
558      ViewSUnitDAGs)
559#endif
560  {
561    BlockNumber = FuncInfo->MBB->getNumber();
562    BlockName = MF->getFunction()->getName().str() + ":" +
563                FuncInfo->MBB->getBasicBlock()->getName().str();
564  }
565  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
566        << " '" << BlockName << "'\n"; CurDAG->dump());
567
568  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
569
570  // Run the DAG combiner in pre-legalize mode.
571  {
572    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
573    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
574  }
575
576  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
577        << " '" << BlockName << "'\n"; CurDAG->dump());
578
579  // Second step, hack on the DAG until it only uses operations and types that
580  // the target supports.
581  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
582                                               BlockName);
583
584  bool Changed;
585  {
586    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
587    Changed = CurDAG->LegalizeTypes();
588  }
589
590  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
591        << " '" << BlockName << "'\n"; CurDAG->dump());
592
593  if (Changed) {
594    if (ViewDAGCombineLT)
595      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
596
597    // Run the DAG combiner in post-type-legalize mode.
598    {
599      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
600                         TimePassesIsEnabled);
601      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
602    }
603
604    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
605          << " '" << BlockName << "'\n"; CurDAG->dump());
606  }
607
608  {
609    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
610    Changed = CurDAG->LegalizeVectors();
611  }
612
613  if (Changed) {
614    {
615      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
616      CurDAG->LegalizeTypes();
617    }
618
619    if (ViewDAGCombineLT)
620      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
621
622    // Run the DAG combiner in post-type-legalize mode.
623    {
624      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
625                         TimePassesIsEnabled);
626      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
627    }
628
629    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
630          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
631  }
632
633  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
634
635  {
636    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
637    CurDAG->Legalize();
638  }
639
640  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
641        << " '" << BlockName << "'\n"; CurDAG->dump());
642
643  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
644
645  // Run the DAG combiner in post-legalize mode.
646  {
647    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
648    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
649  }
650
651  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
652        << " '" << BlockName << "'\n"; CurDAG->dump());
653
654  if (OptLevel != CodeGenOpt::None)
655    ComputeLiveOutVRegInfo();
656
657  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
658
659  // Third, instruction select all of the operations to machine code, adding the
660  // code to the MachineBasicBlock.
661  {
662    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
663    DoInstructionSelection();
664  }
665
666  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
667        << " '" << BlockName << "'\n"; CurDAG->dump());
668
669  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
670
671  // Schedule machine code.
672  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
673  {
674    NamedRegionTimer T("Instruction Scheduling", GroupName,
675                       TimePassesIsEnabled);
676    Scheduler->Run(CurDAG, FuncInfo->MBB);
677  }
678
679  if (ViewSUnitDAGs) Scheduler->viewGraph();
680
681  // Emit machine code to BB.  This can change 'BB' to the last block being
682  // inserted into.
683  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
684  {
685    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
686
687    // FuncInfo->InsertPt is passed by reference and set to the end of the
688    // scheduled instructions.
689    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
690  }
691
692  // If the block was split, make sure we update any references that are used to
693  // update PHI nodes later on.
694  if (FirstMBB != LastMBB)
695    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
696
697  // Free the scheduler state.
698  {
699    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
700                       TimePassesIsEnabled);
701    delete Scheduler;
702  }
703
704  // Free the SelectionDAG state, now that we're finished with it.
705  CurDAG->clear();
706}
707
708void SelectionDAGISel::DoInstructionSelection() {
709  DEBUG(errs() << "===== Instruction selection begins: BB#"
710        << FuncInfo->MBB->getNumber()
711        << " '" << FuncInfo->MBB->getName() << "'\n");
712
713  PreprocessISelDAG();
714
715  // Select target instructions for the DAG.
716  {
717    // Number all nodes with a topological order and set DAGSize.
718    DAGSize = CurDAG->AssignTopologicalOrder();
719
720    // Create a dummy node (which is not added to allnodes), that adds
721    // a reference to the root node, preventing it from being deleted,
722    // and tracking any changes of the root.
723    HandleSDNode Dummy(CurDAG->getRoot());
724    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
725    ++ISelPosition;
726
727    // The AllNodes list is now topological-sorted. Visit the
728    // nodes by starting at the end of the list (the root of the
729    // graph) and preceding back toward the beginning (the entry
730    // node).
731    while (ISelPosition != CurDAG->allnodes_begin()) {
732      SDNode *Node = --ISelPosition;
733      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
734      // but there are currently some corner cases that it misses. Also, this
735      // makes it theoretically possible to disable the DAGCombiner.
736      if (Node->use_empty())
737        continue;
738
739      SDNode *ResNode = Select(Node);
740
741      // FIXME: This is pretty gross.  'Select' should be changed to not return
742      // anything at all and this code should be nuked with a tactical strike.
743
744      // If node should not be replaced, continue with the next one.
745      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
746        continue;
747      // Replace node.
748      if (ResNode)
749        ReplaceUses(Node, ResNode);
750
751      // If after the replacement this node is not used any more,
752      // remove this dead node.
753      if (Node->use_empty()) { // Don't delete EntryToken, etc.
754        ISelUpdater ISU(ISelPosition);
755        CurDAG->RemoveDeadNode(Node, &ISU);
756      }
757    }
758
759    CurDAG->setRoot(Dummy.getValue());
760  }
761
762  DEBUG(errs() << "===== Instruction selection ends:\n");
763
764  PostprocessISelDAG();
765}
766
767/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
768/// do other setup for EH landing-pad blocks.
769void SelectionDAGISel::PrepareEHLandingPad() {
770  MachineBasicBlock *MBB = FuncInfo->MBB;
771
772  // Add a label to mark the beginning of the landing pad.  Deletion of the
773  // landing pad can thus be detected via the MachineModuleInfo.
774  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
775
776  // Assign the call site to the landing pad's begin label.
777  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
778
779  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
780  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
781    .addSym(Label);
782
783  // Mark exception register as live in.
784  unsigned Reg = TLI.getExceptionPointerRegister();
785  if (Reg) MBB->addLiveIn(Reg);
786
787  // Mark exception selector register as live in.
788  Reg = TLI.getExceptionSelectorRegister();
789  if (Reg) MBB->addLiveIn(Reg);
790}
791
792/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
793/// load into the specified FoldInst.  Note that we could have a sequence where
794/// multiple LLVM IR instructions are folded into the same machineinstr.  For
795/// example we could have:
796///   A: x = load i32 *P
797///   B: y = icmp A, 42
798///   C: br y, ...
799///
800/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
801/// any other folded instructions) because it is between A and C.
802///
803/// If we succeed in folding the load into the operation, return true.
804///
805bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
806                                             const Instruction *FoldInst,
807                                             FastISel *FastIS) {
808  // We know that the load has a single use, but don't know what it is.  If it
809  // isn't one of the folded instructions, then we can't succeed here.  Handle
810  // this by scanning the single-use users of the load until we get to FoldInst.
811  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
812
813  const Instruction *TheUser = LI->use_back();
814  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
815         // Stay in the right block.
816         TheUser->getParent() == FoldInst->getParent() &&
817         --MaxUsers) {  // Don't scan too far.
818    // If there are multiple or no uses of this instruction, then bail out.
819    if (!TheUser->hasOneUse())
820      return false;
821
822    TheUser = TheUser->use_back();
823  }
824
825  // If we didn't find the fold instruction, then we failed to collapse the
826  // sequence.
827  if (TheUser != FoldInst)
828    return false;
829
830  // Don't try to fold volatile loads.  Target has to deal with alignment
831  // constraints.
832  if (LI->isVolatile()) return false;
833
834  // Figure out which vreg this is going into.  If there is no assigned vreg yet
835  // then there actually was no reference to it.  Perhaps the load is referenced
836  // by a dead instruction.
837  unsigned LoadReg = FastIS->getRegForValue(LI);
838  if (LoadReg == 0)
839    return false;
840
841  // Check to see what the uses of this vreg are.  If it has no uses, or more
842  // than one use (at the machine instr level) then we can't fold it.
843  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
844  if (RI == RegInfo->reg_end())
845    return false;
846
847  // See if there is exactly one use of the vreg.  If there are multiple uses,
848  // then the instruction got lowered to multiple machine instructions or the
849  // use of the loaded value ended up being multiple operands of the result, in
850  // either case, we can't fold this.
851  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
852  if (PostRI != RegInfo->reg_end())
853    return false;
854
855  assert(RI.getOperand().isUse() &&
856         "The only use of the vreg must be a use, we haven't emitted the def!");
857
858  MachineInstr *User = &*RI;
859
860  // Set the insertion point properly.  Folding the load can cause generation of
861  // other random instructions (like sign extends) for addressing modes, make
862  // sure they get inserted in a logical place before the new instruction.
863  FuncInfo->InsertPt = User;
864  FuncInfo->MBB = User->getParent();
865
866  // Ask the target to try folding the load.
867  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
868}
869
870/// isFoldedOrDeadInstruction - Return true if the specified instruction is
871/// side-effect free and is either dead or folded into a generated instruction.
872/// Return false if it needs to be emitted.
873static bool isFoldedOrDeadInstruction(const Instruction *I,
874                                      FunctionLoweringInfo *FuncInfo) {
875  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
876         !isa<TerminatorInst>(I) && // Terminators aren't folded.
877         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
878         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
879         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
880}
881
882#ifndef NDEBUG
883// Collect per Instruction statistics for fast-isel misses.  Only those
884// instructions that cause the bail are accounted for.  It does not account for
885// instructions higher in the block.  Thus, summing the per instructions stats
886// will not add up to what is reported by NumFastIselFailures.
887static void collectFailStats(const Instruction *I) {
888  switch (I->getOpcode()) {
889  default: assert (0 && "<Invalid operator> ");
890
891  // Terminators
892  case Instruction::Ret:         NumFastIselFailRet++; return;
893  case Instruction::Br:          NumFastIselFailBr++; return;
894  case Instruction::Switch:      NumFastIselFailSwitch++; return;
895  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
896  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
897  case Instruction::Resume:      NumFastIselFailResume++; return;
898  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
899
900  // Standard binary operators...
901  case Instruction::Add:  NumFastIselFailAdd++; return;
902  case Instruction::FAdd: NumFastIselFailFAdd++; return;
903  case Instruction::Sub:  NumFastIselFailSub++; return;
904  case Instruction::FSub: NumFastIselFailFSub++; return;
905  case Instruction::Mul:  NumFastIselFailMul++; return;
906  case Instruction::FMul: NumFastIselFailFMul++; return;
907  case Instruction::UDiv: NumFastIselFailUDiv++; return;
908  case Instruction::SDiv: NumFastIselFailSDiv++; return;
909  case Instruction::FDiv: NumFastIselFailFDiv++; return;
910  case Instruction::URem: NumFastIselFailURem++; return;
911  case Instruction::SRem: NumFastIselFailSRem++; return;
912  case Instruction::FRem: NumFastIselFailFRem++; return;
913
914  // Logical operators...
915  case Instruction::And: NumFastIselFailAnd++; return;
916  case Instruction::Or:  NumFastIselFailOr++; return;
917  case Instruction::Xor: NumFastIselFailXor++; return;
918
919  // Memory instructions...
920  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
921  case Instruction::Load:          NumFastIselFailLoad++; return;
922  case Instruction::Store:         NumFastIselFailStore++; return;
923  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
924  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
925  case Instruction::Fence:         NumFastIselFailFence++; return;
926  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
927
928  // Convert instructions...
929  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
930  case Instruction::ZExt:     NumFastIselFailZExt++; return;
931  case Instruction::SExt:     NumFastIselFailSExt++; return;
932  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
933  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
934  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
935  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
936  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
937  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
938  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
939  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
940  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
941
942  // Other instructions...
943  case Instruction::ICmp:           NumFastIselFailICmp++; return;
944  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
945  case Instruction::PHI:            NumFastIselFailPHI++; return;
946  case Instruction::Select:         NumFastIselFailSelect++; return;
947  case Instruction::Call:           NumFastIselFailCall++; return;
948  case Instruction::Shl:            NumFastIselFailShl++; return;
949  case Instruction::LShr:           NumFastIselFailLShr++; return;
950  case Instruction::AShr:           NumFastIselFailAShr++; return;
951  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
952  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
953  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
954  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
955  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
956  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
957  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
958  }
959}
960#endif
961
962void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
963  // Initialize the Fast-ISel state, if needed.
964  FastISel *FastIS = 0;
965  if (TM.Options.EnableFastISel)
966    FastIS = TLI.createFastISel(*FuncInfo);
967
968  // Iterate over all basic blocks in the function.
969  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
970  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
971       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
972    const BasicBlock *LLVMBB = *I;
973
974    if (OptLevel != CodeGenOpt::None) {
975      bool AllPredsVisited = true;
976      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
977           PI != PE; ++PI) {
978        if (!FuncInfo->VisitedBBs.count(*PI)) {
979          AllPredsVisited = false;
980          break;
981        }
982      }
983
984      if (AllPredsVisited) {
985        for (BasicBlock::const_iterator I = LLVMBB->begin();
986             isa<PHINode>(I); ++I)
987          FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
988      } else {
989        for (BasicBlock::const_iterator I = LLVMBB->begin();
990             isa<PHINode>(I); ++I)
991          FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
992      }
993
994      FuncInfo->VisitedBBs.insert(LLVMBB);
995    }
996
997    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
998    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
999
1000    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
1001    BasicBlock::const_iterator const End = LLVMBB->end();
1002    BasicBlock::const_iterator BI = End;
1003
1004    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1005
1006    // Setup an EH landing-pad block.
1007    if (FuncInfo->MBB->isLandingPad())
1008      PrepareEHLandingPad();
1009
1010    // Lower any arguments needed in this block if this is the entry block.
1011    if (LLVMBB == &Fn.getEntryBlock())
1012      LowerArguments(LLVMBB);
1013
1014    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1015    if (FastIS) {
1016      FastIS->startNewBlock();
1017
1018      // Emit code for any incoming arguments. This must happen before
1019      // beginning FastISel on the entry block.
1020      if (LLVMBB == &Fn.getEntryBlock()) {
1021        CurDAG->setRoot(SDB->getControlRoot());
1022        SDB->clear();
1023        CodeGenAndEmitDAG();
1024
1025        // If we inserted any instructions at the beginning, make a note of
1026        // where they are, so we can be sure to emit subsequent instructions
1027        // after them.
1028        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1029          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1030        else
1031          FastIS->setLastLocalValue(0);
1032      }
1033
1034      unsigned NumFastIselRemaining = std::distance(Begin, End);
1035      // Do FastISel on as many instructions as possible.
1036      for (; BI != Begin; --BI) {
1037        const Instruction *Inst = llvm::prior(BI);
1038
1039        // If we no longer require this instruction, skip it.
1040        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1041          --NumFastIselRemaining;
1042          continue;
1043        }
1044
1045        // Bottom-up: reset the insert pos at the top, after any local-value
1046        // instructions.
1047        FastIS->recomputeInsertPt();
1048
1049        // Try to select the instruction with FastISel.
1050        if (FastIS->SelectInstruction(Inst)) {
1051          --NumFastIselRemaining;
1052          ++NumFastIselSuccess;
1053          // If fast isel succeeded, skip over all the folded instructions, and
1054          // then see if there is a load right before the selected instructions.
1055          // Try to fold the load if so.
1056          const Instruction *BeforeInst = Inst;
1057          while (BeforeInst != Begin) {
1058            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1059            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1060              break;
1061          }
1062          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1063              BeforeInst->hasOneUse() &&
1064              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) {
1065            // If we succeeded, don't re-select the load.
1066            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1067            --NumFastIselRemaining;
1068            ++NumFastIselSuccess;
1069          }
1070          continue;
1071        }
1072
1073#ifndef NDEBUG
1074        if (EnableFastISelVerbose2)
1075          collectFailStats(Inst);
1076#endif
1077
1078        // Then handle certain instructions as single-LLVM-Instruction blocks.
1079        if (isa<CallInst>(Inst)) {
1080
1081          if (EnableFastISelVerbose || EnableFastISelAbort) {
1082            dbgs() << "FastISel missed call: ";
1083            Inst->dump();
1084          }
1085
1086          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1087            unsigned &R = FuncInfo->ValueMap[Inst];
1088            if (!R)
1089              R = FuncInfo->CreateRegs(Inst->getType());
1090          }
1091
1092          bool HadTailCall = false;
1093          SelectBasicBlock(Inst, BI, HadTailCall);
1094
1095          // Recompute NumFastIselRemaining as Selection DAG instruction
1096          // selection may have handled the call, input args, etc.
1097          unsigned RemainingNow = std::distance(Begin, BI);
1098          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1099
1100          // If the call was emitted as a tail call, we're done with the block.
1101          if (HadTailCall) {
1102            --BI;
1103            break;
1104          }
1105
1106          NumFastIselRemaining = RemainingNow;
1107          continue;
1108        }
1109
1110        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1111          // Don't abort, and use a different message for terminator misses.
1112          NumFastIselFailures += NumFastIselRemaining;
1113          if (EnableFastISelVerbose || EnableFastISelAbort) {
1114            dbgs() << "FastISel missed terminator: ";
1115            Inst->dump();
1116          }
1117        } else {
1118          NumFastIselFailures += NumFastIselRemaining;
1119          if (EnableFastISelVerbose || EnableFastISelAbort) {
1120            dbgs() << "FastISel miss: ";
1121            Inst->dump();
1122          }
1123          if (EnableFastISelAbort)
1124            // The "fast" selector couldn't handle something and bailed.
1125            // For the purpose of debugging, just abort.
1126            llvm_unreachable("FastISel didn't select the entire block");
1127        }
1128        break;
1129      }
1130
1131      FastIS->recomputeInsertPt();
1132    }
1133
1134    if (Begin != BI)
1135      ++NumDAGBlocks;
1136    else
1137      ++NumFastIselBlocks;
1138
1139    if (Begin != BI) {
1140      // Run SelectionDAG instruction selection on the remainder of the block
1141      // not handled by FastISel. If FastISel is not run, this is the entire
1142      // block.
1143      bool HadTailCall;
1144      SelectBasicBlock(Begin, BI, HadTailCall);
1145    }
1146
1147    FinishBasicBlock();
1148    FuncInfo->PHINodesToUpdate.clear();
1149  }
1150
1151  delete FastIS;
1152  SDB->clearDanglingDebugInfo();
1153}
1154
1155void
1156SelectionDAGISel::FinishBasicBlock() {
1157
1158  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1159               << FuncInfo->PHINodesToUpdate.size() << "\n";
1160        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1161          dbgs() << "Node " << i << " : ("
1162                 << FuncInfo->PHINodesToUpdate[i].first
1163                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1164
1165  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1166  // PHI nodes in successors.
1167  if (SDB->SwitchCases.empty() &&
1168      SDB->JTCases.empty() &&
1169      SDB->BitTestCases.empty()) {
1170    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1171      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1172      assert(PHI->isPHI() &&
1173             "This is not a machine PHI node that we are updating!");
1174      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1175        continue;
1176      PHI->addOperand(
1177        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1178      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1179    }
1180    return;
1181  }
1182
1183  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1184    // Lower header first, if it wasn't already lowered
1185    if (!SDB->BitTestCases[i].Emitted) {
1186      // Set the current basic block to the mbb we wish to insert the code into
1187      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1188      FuncInfo->InsertPt = FuncInfo->MBB->end();
1189      // Emit the code
1190      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1191      CurDAG->setRoot(SDB->getRoot());
1192      SDB->clear();
1193      CodeGenAndEmitDAG();
1194    }
1195
1196    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1197      // Set the current basic block to the mbb we wish to insert the code into
1198      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1199      FuncInfo->InsertPt = FuncInfo->MBB->end();
1200      // Emit the code
1201      if (j+1 != ej)
1202        SDB->visitBitTestCase(SDB->BitTestCases[i],
1203                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1204                              SDB->BitTestCases[i].Reg,
1205                              SDB->BitTestCases[i].Cases[j],
1206                              FuncInfo->MBB);
1207      else
1208        SDB->visitBitTestCase(SDB->BitTestCases[i],
1209                              SDB->BitTestCases[i].Default,
1210                              SDB->BitTestCases[i].Reg,
1211                              SDB->BitTestCases[i].Cases[j],
1212                              FuncInfo->MBB);
1213
1214
1215      CurDAG->setRoot(SDB->getRoot());
1216      SDB->clear();
1217      CodeGenAndEmitDAG();
1218    }
1219
1220    // Update PHI Nodes
1221    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1222         pi != pe; ++pi) {
1223      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1224      MachineBasicBlock *PHIBB = PHI->getParent();
1225      assert(PHI->isPHI() &&
1226             "This is not a machine PHI node that we are updating!");
1227      // This is "default" BB. We have two jumps to it. From "header" BB and
1228      // from last "case" BB.
1229      if (PHIBB == SDB->BitTestCases[i].Default) {
1230        PHI->addOperand(MachineOperand::
1231                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1232                                  false));
1233        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1234        PHI->addOperand(MachineOperand::
1235                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1236                                  false));
1237        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1238                                                  back().ThisBB));
1239      }
1240      // One of "cases" BB.
1241      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1242           j != ej; ++j) {
1243        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1244        if (cBB->isSuccessor(PHIBB)) {
1245          PHI->addOperand(MachineOperand::
1246                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1247                                    false));
1248          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1249        }
1250      }
1251    }
1252  }
1253  SDB->BitTestCases.clear();
1254
1255  // If the JumpTable record is filled in, then we need to emit a jump table.
1256  // Updating the PHI nodes is tricky in this case, since we need to determine
1257  // whether the PHI is a successor of the range check MBB or the jump table MBB
1258  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1259    // Lower header first, if it wasn't already lowered
1260    if (!SDB->JTCases[i].first.Emitted) {
1261      // Set the current basic block to the mbb we wish to insert the code into
1262      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1263      FuncInfo->InsertPt = FuncInfo->MBB->end();
1264      // Emit the code
1265      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1266                                FuncInfo->MBB);
1267      CurDAG->setRoot(SDB->getRoot());
1268      SDB->clear();
1269      CodeGenAndEmitDAG();
1270    }
1271
1272    // Set the current basic block to the mbb we wish to insert the code into
1273    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1274    FuncInfo->InsertPt = FuncInfo->MBB->end();
1275    // Emit the code
1276    SDB->visitJumpTable(SDB->JTCases[i].second);
1277    CurDAG->setRoot(SDB->getRoot());
1278    SDB->clear();
1279    CodeGenAndEmitDAG();
1280
1281    // Update PHI Nodes
1282    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1283         pi != pe; ++pi) {
1284      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1285      MachineBasicBlock *PHIBB = PHI->getParent();
1286      assert(PHI->isPHI() &&
1287             "This is not a machine PHI node that we are updating!");
1288      // "default" BB. We can go there only from header BB.
1289      if (PHIBB == SDB->JTCases[i].second.Default) {
1290        PHI->addOperand
1291          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1292                                     false));
1293        PHI->addOperand
1294          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1295      }
1296      // JT BB. Just iterate over successors here
1297      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1298        PHI->addOperand
1299          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1300                                     false));
1301        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1302      }
1303    }
1304  }
1305  SDB->JTCases.clear();
1306
1307  // If the switch block involved a branch to one of the actual successors, we
1308  // need to update PHI nodes in that block.
1309  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1310    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1311    assert(PHI->isPHI() &&
1312           "This is not a machine PHI node that we are updating!");
1313    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1314      PHI->addOperand(
1315        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1316      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1317    }
1318  }
1319
1320  // If we generated any switch lowering information, build and codegen any
1321  // additional DAGs necessary.
1322  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1323    // Set the current basic block to the mbb we wish to insert the code into
1324    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1325    FuncInfo->InsertPt = FuncInfo->MBB->end();
1326
1327    // Determine the unique successors.
1328    SmallVector<MachineBasicBlock *, 2> Succs;
1329    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1330    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1331      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1332
1333    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1334    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1335    CurDAG->setRoot(SDB->getRoot());
1336    SDB->clear();
1337    CodeGenAndEmitDAG();
1338
1339    // Remember the last block, now that any splitting is done, for use in
1340    // populating PHI nodes in successors.
1341    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1342
1343    // Handle any PHI nodes in successors of this chunk, as if we were coming
1344    // from the original BB before switch expansion.  Note that PHI nodes can
1345    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1346    // handle them the right number of times.
1347    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1348      FuncInfo->MBB = Succs[i];
1349      FuncInfo->InsertPt = FuncInfo->MBB->end();
1350      // FuncInfo->MBB may have been removed from the CFG if a branch was
1351      // constant folded.
1352      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1353        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1354             Phi != FuncInfo->MBB->end() && Phi->isPHI();
1355             ++Phi) {
1356          // This value for this PHI node is recorded in PHINodesToUpdate.
1357          for (unsigned pn = 0; ; ++pn) {
1358            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1359                   "Didn't find PHI entry!");
1360            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1361              Phi->addOperand(MachineOperand::
1362                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1363                                        false));
1364              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1365              break;
1366            }
1367          }
1368        }
1369      }
1370    }
1371  }
1372  SDB->SwitchCases.clear();
1373}
1374
1375
1376/// Create the scheduler. If a specific scheduler was specified
1377/// via the SchedulerRegistry, use it, otherwise select the
1378/// one preferred by the target.
1379///
1380ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1381  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1382
1383  if (!Ctor) {
1384    Ctor = ISHeuristic;
1385    RegisterScheduler::setDefault(Ctor);
1386  }
1387
1388  return Ctor(this, OptLevel);
1389}
1390
1391//===----------------------------------------------------------------------===//
1392// Helper functions used by the generated instruction selector.
1393//===----------------------------------------------------------------------===//
1394// Calls to these methods are generated by tblgen.
1395
1396/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1397/// the dag combiner simplified the 255, we still want to match.  RHS is the
1398/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1399/// specified in the .td file (e.g. 255).
1400bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1401                                    int64_t DesiredMaskS) const {
1402  const APInt &ActualMask = RHS->getAPIntValue();
1403  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1404
1405  // If the actual mask exactly matches, success!
1406  if (ActualMask == DesiredMask)
1407    return true;
1408
1409  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1410  if (ActualMask.intersects(~DesiredMask))
1411    return false;
1412
1413  // Otherwise, the DAG Combiner may have proven that the value coming in is
1414  // either already zero or is not demanded.  Check for known zero input bits.
1415  APInt NeededMask = DesiredMask & ~ActualMask;
1416  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1417    return true;
1418
1419  // TODO: check to see if missing bits are just not demanded.
1420
1421  // Otherwise, this pattern doesn't match.
1422  return false;
1423}
1424
1425/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1426/// the dag combiner simplified the 255, we still want to match.  RHS is the
1427/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1428/// specified in the .td file (e.g. 255).
1429bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1430                                   int64_t DesiredMaskS) const {
1431  const APInt &ActualMask = RHS->getAPIntValue();
1432  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1433
1434  // If the actual mask exactly matches, success!
1435  if (ActualMask == DesiredMask)
1436    return true;
1437
1438  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1439  if (ActualMask.intersects(~DesiredMask))
1440    return false;
1441
1442  // Otherwise, the DAG Combiner may have proven that the value coming in is
1443  // either already zero or is not demanded.  Check for known zero input bits.
1444  APInt NeededMask = DesiredMask & ~ActualMask;
1445
1446  APInt KnownZero, KnownOne;
1447  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1448
1449  // If all the missing bits in the or are already known to be set, match!
1450  if ((NeededMask & KnownOne) == NeededMask)
1451    return true;
1452
1453  // TODO: check to see if missing bits are just not demanded.
1454
1455  // Otherwise, this pattern doesn't match.
1456  return false;
1457}
1458
1459
1460/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1461/// by tblgen.  Others should not call it.
1462void SelectionDAGISel::
1463SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1464  std::vector<SDValue> InOps;
1465  std::swap(InOps, Ops);
1466
1467  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1468  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1469  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1470  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1471
1472  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1473  if (InOps[e-1].getValueType() == MVT::Glue)
1474    --e;  // Don't process a glue operand if it is here.
1475
1476  while (i != e) {
1477    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1478    if (!InlineAsm::isMemKind(Flags)) {
1479      // Just skip over this operand, copying the operands verbatim.
1480      Ops.insert(Ops.end(), InOps.begin()+i,
1481                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1482      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1483    } else {
1484      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1485             "Memory operand with multiple values?");
1486      // Otherwise, this is a memory operand.  Ask the target to select it.
1487      std::vector<SDValue> SelOps;
1488      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1489        report_fatal_error("Could not match memory address.  Inline asm"
1490                           " failure!");
1491
1492      // Add this to the output node.
1493      unsigned NewFlags =
1494        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1495      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1496      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1497      i += 2;
1498    }
1499  }
1500
1501  // Add the glue input back if present.
1502  if (e != InOps.size())
1503    Ops.push_back(InOps.back());
1504}
1505
1506/// findGlueUse - Return use of MVT::Glue value produced by the specified
1507/// SDNode.
1508///
1509static SDNode *findGlueUse(SDNode *N) {
1510  unsigned FlagResNo = N->getNumValues()-1;
1511  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1512    SDUse &Use = I.getUse();
1513    if (Use.getResNo() == FlagResNo)
1514      return Use.getUser();
1515  }
1516  return NULL;
1517}
1518
1519/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1520/// This function recursively traverses up the operand chain, ignoring
1521/// certain nodes.
1522static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1523                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1524                          bool IgnoreChains) {
1525  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1526  // greater than all of its (recursive) operands.  If we scan to a point where
1527  // 'use' is smaller than the node we're scanning for, then we know we will
1528  // never find it.
1529  //
1530  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1531  // happen because we scan down to newly selected nodes in the case of glue
1532  // uses.
1533  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1534    return false;
1535
1536  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1537  // won't fail if we scan it again.
1538  if (!Visited.insert(Use))
1539    return false;
1540
1541  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1542    // Ignore chain uses, they are validated by HandleMergeInputChains.
1543    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1544      continue;
1545
1546    SDNode *N = Use->getOperand(i).getNode();
1547    if (N == Def) {
1548      if (Use == ImmedUse || Use == Root)
1549        continue;  // We are not looking for immediate use.
1550      assert(N != Root);
1551      return true;
1552    }
1553
1554    // Traverse up the operand chain.
1555    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1556      return true;
1557  }
1558  return false;
1559}
1560
1561/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1562/// operand node N of U during instruction selection that starts at Root.
1563bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1564                                          SDNode *Root) const {
1565  if (OptLevel == CodeGenOpt::None) return false;
1566  return N.hasOneUse();
1567}
1568
1569/// IsLegalToFold - Returns true if the specific operand node N of
1570/// U can be folded during instruction selection that starts at Root.
1571bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1572                                     CodeGenOpt::Level OptLevel,
1573                                     bool IgnoreChains) {
1574  if (OptLevel == CodeGenOpt::None) return false;
1575
1576  // If Root use can somehow reach N through a path that that doesn't contain
1577  // U then folding N would create a cycle. e.g. In the following
1578  // diagram, Root can reach N through X. If N is folded into into Root, then
1579  // X is both a predecessor and a successor of U.
1580  //
1581  //          [N*]           //
1582  //         ^   ^           //
1583  //        /     \          //
1584  //      [U*]    [X]?       //
1585  //        ^     ^          //
1586  //         \   /           //
1587  //          \ /            //
1588  //         [Root*]         //
1589  //
1590  // * indicates nodes to be folded together.
1591  //
1592  // If Root produces glue, then it gets (even more) interesting. Since it
1593  // will be "glued" together with its glue use in the scheduler, we need to
1594  // check if it might reach N.
1595  //
1596  //          [N*]           //
1597  //         ^   ^           //
1598  //        /     \          //
1599  //      [U*]    [X]?       //
1600  //        ^       ^        //
1601  //         \       \       //
1602  //          \      |       //
1603  //         [Root*] |       //
1604  //          ^      |       //
1605  //          f      |       //
1606  //          |      /       //
1607  //         [Y]    /        //
1608  //           ^   /         //
1609  //           f  /          //
1610  //           | /           //
1611  //          [GU]           //
1612  //
1613  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1614  // (call it Fold), then X is a predecessor of GU and a successor of
1615  // Fold. But since Fold and GU are glued together, this will create
1616  // a cycle in the scheduling graph.
1617
1618  // If the node has glue, walk down the graph to the "lowest" node in the
1619  // glueged set.
1620  EVT VT = Root->getValueType(Root->getNumValues()-1);
1621  while (VT == MVT::Glue) {
1622    SDNode *GU = findGlueUse(Root);
1623    if (GU == NULL)
1624      break;
1625    Root = GU;
1626    VT = Root->getValueType(Root->getNumValues()-1);
1627
1628    // If our query node has a glue result with a use, we've walked up it.  If
1629    // the user (which has already been selected) has a chain or indirectly uses
1630    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1631    // this, we cannot ignore chains in this predicate.
1632    IgnoreChains = false;
1633  }
1634
1635
1636  SmallPtrSet<SDNode*, 16> Visited;
1637  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1638}
1639
1640SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1641  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1642  SelectInlineAsmMemoryOperands(Ops);
1643
1644  std::vector<EVT> VTs;
1645  VTs.push_back(MVT::Other);
1646  VTs.push_back(MVT::Glue);
1647  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1648                                VTs, &Ops[0], Ops.size());
1649  New->setNodeId(-1);
1650  return New.getNode();
1651}
1652
1653SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1654  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1655}
1656
1657/// GetVBR - decode a vbr encoding whose top bit is set.
1658LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1659GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1660  assert(Val >= 128 && "Not a VBR");
1661  Val &= 127;  // Remove first vbr bit.
1662
1663  unsigned Shift = 7;
1664  uint64_t NextBits;
1665  do {
1666    NextBits = MatcherTable[Idx++];
1667    Val |= (NextBits&127) << Shift;
1668    Shift += 7;
1669  } while (NextBits & 128);
1670
1671  return Val;
1672}
1673
1674
1675/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1676/// interior glue and chain results to use the new glue and chain results.
1677void SelectionDAGISel::
1678UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1679                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1680                    SDValue InputGlue,
1681                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1682                    bool isMorphNodeTo) {
1683  SmallVector<SDNode*, 4> NowDeadNodes;
1684
1685  ISelUpdater ISU(ISelPosition);
1686
1687  // Now that all the normal results are replaced, we replace the chain and
1688  // glue results if present.
1689  if (!ChainNodesMatched.empty()) {
1690    assert(InputChain.getNode() != 0 &&
1691           "Matched input chains but didn't produce a chain");
1692    // Loop over all of the nodes we matched that produced a chain result.
1693    // Replace all the chain results with the final chain we ended up with.
1694    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1695      SDNode *ChainNode = ChainNodesMatched[i];
1696
1697      // If this node was already deleted, don't look at it.
1698      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1699        continue;
1700
1701      // Don't replace the results of the root node if we're doing a
1702      // MorphNodeTo.
1703      if (ChainNode == NodeToMatch && isMorphNodeTo)
1704        continue;
1705
1706      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1707      if (ChainVal.getValueType() == MVT::Glue)
1708        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1709      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1710      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1711
1712      // If the node became dead and we haven't already seen it, delete it.
1713      if (ChainNode->use_empty() &&
1714          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1715        NowDeadNodes.push_back(ChainNode);
1716    }
1717  }
1718
1719  // If the result produces glue, update any glue results in the matched
1720  // pattern with the glue result.
1721  if (InputGlue.getNode() != 0) {
1722    // Handle any interior nodes explicitly marked.
1723    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1724      SDNode *FRN = GlueResultNodesMatched[i];
1725
1726      // If this node was already deleted, don't look at it.
1727      if (FRN->getOpcode() == ISD::DELETED_NODE)
1728        continue;
1729
1730      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1731             "Doesn't have a glue result");
1732      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1733                                        InputGlue, &ISU);
1734
1735      // If the node became dead and we haven't already seen it, delete it.
1736      if (FRN->use_empty() &&
1737          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1738        NowDeadNodes.push_back(FRN);
1739    }
1740  }
1741
1742  if (!NowDeadNodes.empty())
1743    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1744
1745  DEBUG(errs() << "ISEL: Match complete!\n");
1746}
1747
1748enum ChainResult {
1749  CR_Simple,
1750  CR_InducesCycle,
1751  CR_LeadsToInteriorNode
1752};
1753
1754/// WalkChainUsers - Walk down the users of the specified chained node that is
1755/// part of the pattern we're matching, looking at all of the users we find.
1756/// This determines whether something is an interior node, whether we have a
1757/// non-pattern node in between two pattern nodes (which prevent folding because
1758/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1759/// between pattern nodes (in which case the TF becomes part of the pattern).
1760///
1761/// The walk we do here is guaranteed to be small because we quickly get down to
1762/// already selected nodes "below" us.
1763static ChainResult
1764WalkChainUsers(SDNode *ChainedNode,
1765               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1766               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1767  ChainResult Result = CR_Simple;
1768
1769  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1770         E = ChainedNode->use_end(); UI != E; ++UI) {
1771    // Make sure the use is of the chain, not some other value we produce.
1772    if (UI.getUse().getValueType() != MVT::Other) continue;
1773
1774    SDNode *User = *UI;
1775
1776    // If we see an already-selected machine node, then we've gone beyond the
1777    // pattern that we're selecting down into the already selected chunk of the
1778    // DAG.
1779    if (User->isMachineOpcode() ||
1780        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1781      continue;
1782
1783    if (User->getOpcode() == ISD::CopyToReg ||
1784        User->getOpcode() == ISD::CopyFromReg ||
1785        User->getOpcode() == ISD::INLINEASM ||
1786        User->getOpcode() == ISD::EH_LABEL) {
1787      // If their node ID got reset to -1 then they've already been selected.
1788      // Treat them like a MachineOpcode.
1789      if (User->getNodeId() == -1)
1790        continue;
1791    }
1792
1793    // If we have a TokenFactor, we handle it specially.
1794    if (User->getOpcode() != ISD::TokenFactor) {
1795      // If the node isn't a token factor and isn't part of our pattern, then it
1796      // must be a random chained node in between two nodes we're selecting.
1797      // This happens when we have something like:
1798      //   x = load ptr
1799      //   call
1800      //   y = x+4
1801      //   store y -> ptr
1802      // Because we structurally match the load/store as a read/modify/write,
1803      // but the call is chained between them.  We cannot fold in this case
1804      // because it would induce a cycle in the graph.
1805      if (!std::count(ChainedNodesInPattern.begin(),
1806                      ChainedNodesInPattern.end(), User))
1807        return CR_InducesCycle;
1808
1809      // Otherwise we found a node that is part of our pattern.  For example in:
1810      //   x = load ptr
1811      //   y = x+4
1812      //   store y -> ptr
1813      // This would happen when we're scanning down from the load and see the
1814      // store as a user.  Record that there is a use of ChainedNode that is
1815      // part of the pattern and keep scanning uses.
1816      Result = CR_LeadsToInteriorNode;
1817      InteriorChainedNodes.push_back(User);
1818      continue;
1819    }
1820
1821    // If we found a TokenFactor, there are two cases to consider: first if the
1822    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1823    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1824    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1825    //     [Load chain]
1826    //         ^
1827    //         |
1828    //       [Load]
1829    //       ^    ^
1830    //       |    \                    DAG's like cheese
1831    //      /       \                       do you?
1832    //     /         |
1833    // [TokenFactor] [Op]
1834    //     ^          ^
1835    //     |          |
1836    //      \        /
1837    //       \      /
1838    //       [Store]
1839    //
1840    // In this case, the TokenFactor becomes part of our match and we rewrite it
1841    // as a new TokenFactor.
1842    //
1843    // To distinguish these two cases, do a recursive walk down the uses.
1844    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1845    case CR_Simple:
1846      // If the uses of the TokenFactor are just already-selected nodes, ignore
1847      // it, it is "below" our pattern.
1848      continue;
1849    case CR_InducesCycle:
1850      // If the uses of the TokenFactor lead to nodes that are not part of our
1851      // pattern that are not selected, folding would turn this into a cycle,
1852      // bail out now.
1853      return CR_InducesCycle;
1854    case CR_LeadsToInteriorNode:
1855      break;  // Otherwise, keep processing.
1856    }
1857
1858    // Okay, we know we're in the interesting interior case.  The TokenFactor
1859    // is now going to be considered part of the pattern so that we rewrite its
1860    // uses (it may have uses that are not part of the pattern) with the
1861    // ultimate chain result of the generated code.  We will also add its chain
1862    // inputs as inputs to the ultimate TokenFactor we create.
1863    Result = CR_LeadsToInteriorNode;
1864    ChainedNodesInPattern.push_back(User);
1865    InteriorChainedNodes.push_back(User);
1866    continue;
1867  }
1868
1869  return Result;
1870}
1871
1872/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1873/// operation for when the pattern matched at least one node with a chains.  The
1874/// input vector contains a list of all of the chained nodes that we match.  We
1875/// must determine if this is a valid thing to cover (i.e. matching it won't
1876/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1877/// be used as the input node chain for the generated nodes.
1878static SDValue
1879HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1880                       SelectionDAG *CurDAG) {
1881  // Walk all of the chained nodes we've matched, recursively scanning down the
1882  // users of the chain result. This adds any TokenFactor nodes that are caught
1883  // in between chained nodes to the chained and interior nodes list.
1884  SmallVector<SDNode*, 3> InteriorChainedNodes;
1885  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1886    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1887                       InteriorChainedNodes) == CR_InducesCycle)
1888      return SDValue(); // Would induce a cycle.
1889  }
1890
1891  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1892  // that we are interested in.  Form our input TokenFactor node.
1893  SmallVector<SDValue, 3> InputChains;
1894  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1895    // Add the input chain of this node to the InputChains list (which will be
1896    // the operands of the generated TokenFactor) if it's not an interior node.
1897    SDNode *N = ChainNodesMatched[i];
1898    if (N->getOpcode() != ISD::TokenFactor) {
1899      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1900        continue;
1901
1902      // Otherwise, add the input chain.
1903      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1904      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1905      InputChains.push_back(InChain);
1906      continue;
1907    }
1908
1909    // If we have a token factor, we want to add all inputs of the token factor
1910    // that are not part of the pattern we're matching.
1911    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1912      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1913                      N->getOperand(op).getNode()))
1914        InputChains.push_back(N->getOperand(op));
1915    }
1916  }
1917
1918  SDValue Res;
1919  if (InputChains.size() == 1)
1920    return InputChains[0];
1921  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1922                         MVT::Other, &InputChains[0], InputChains.size());
1923}
1924
1925/// MorphNode - Handle morphing a node in place for the selector.
1926SDNode *SelectionDAGISel::
1927MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1928          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1929  // It is possible we're using MorphNodeTo to replace a node with no
1930  // normal results with one that has a normal result (or we could be
1931  // adding a chain) and the input could have glue and chains as well.
1932  // In this case we need to shift the operands down.
1933  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1934  // than the old isel though.
1935  int OldGlueResultNo = -1, OldChainResultNo = -1;
1936
1937  unsigned NTMNumResults = Node->getNumValues();
1938  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1939    OldGlueResultNo = NTMNumResults-1;
1940    if (NTMNumResults != 1 &&
1941        Node->getValueType(NTMNumResults-2) == MVT::Other)
1942      OldChainResultNo = NTMNumResults-2;
1943  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1944    OldChainResultNo = NTMNumResults-1;
1945
1946  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1947  // that this deletes operands of the old node that become dead.
1948  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1949
1950  // MorphNodeTo can operate in two ways: if an existing node with the
1951  // specified operands exists, it can just return it.  Otherwise, it
1952  // updates the node in place to have the requested operands.
1953  if (Res == Node) {
1954    // If we updated the node in place, reset the node ID.  To the isel,
1955    // this should be just like a newly allocated machine node.
1956    Res->setNodeId(-1);
1957  }
1958
1959  unsigned ResNumResults = Res->getNumValues();
1960  // Move the glue if needed.
1961  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1962      (unsigned)OldGlueResultNo != ResNumResults-1)
1963    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1964                                      SDValue(Res, ResNumResults-1));
1965
1966  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1967    --ResNumResults;
1968
1969  // Move the chain reference if needed.
1970  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1971      (unsigned)OldChainResultNo != ResNumResults-1)
1972    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1973                                      SDValue(Res, ResNumResults-1));
1974
1975  // Otherwise, no replacement happened because the node already exists. Replace
1976  // Uses of the old node with the new one.
1977  if (Res != Node)
1978    CurDAG->ReplaceAllUsesWith(Node, Res);
1979
1980  return Res;
1981}
1982
1983/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1984LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1985CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1986          SDValue N,
1987          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1988  // Accept if it is exactly the same as a previously recorded node.
1989  unsigned RecNo = MatcherTable[MatcherIndex++];
1990  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1991  return N == RecordedNodes[RecNo].first;
1992}
1993
1994/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1995LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1996CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1997                      SelectionDAGISel &SDISel) {
1998  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1999}
2000
2001/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2002LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2003CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2004                   SelectionDAGISel &SDISel, SDNode *N) {
2005  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2006}
2007
2008LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2009CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2010            SDNode *N) {
2011  uint16_t Opc = MatcherTable[MatcherIndex++];
2012  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2013  return N->getOpcode() == Opc;
2014}
2015
2016LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2017CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2018          SDValue N, const TargetLowering &TLI) {
2019  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2020  if (N.getValueType() == VT) return true;
2021
2022  // Handle the case when VT is iPTR.
2023  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
2024}
2025
2026LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2027CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2028               SDValue N, const TargetLowering &TLI,
2029               unsigned ChildNo) {
2030  if (ChildNo >= N.getNumOperands())
2031    return false;  // Match fails if out of range child #.
2032  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2033}
2034
2035
2036LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2037CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2038              SDValue N) {
2039  return cast<CondCodeSDNode>(N)->get() ==
2040      (ISD::CondCode)MatcherTable[MatcherIndex++];
2041}
2042
2043LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2044CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2045               SDValue N, const TargetLowering &TLI) {
2046  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2047  if (cast<VTSDNode>(N)->getVT() == VT)
2048    return true;
2049
2050  // Handle the case when VT is iPTR.
2051  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
2052}
2053
2054LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2055CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2056             SDValue N) {
2057  int64_t Val = MatcherTable[MatcherIndex++];
2058  if (Val & 128)
2059    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2060
2061  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2062  return C != 0 && C->getSExtValue() == Val;
2063}
2064
2065LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2066CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2067            SDValue N, SelectionDAGISel &SDISel) {
2068  int64_t Val = MatcherTable[MatcherIndex++];
2069  if (Val & 128)
2070    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2071
2072  if (N->getOpcode() != ISD::AND) return false;
2073
2074  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2075  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2076}
2077
2078LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2079CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2080           SDValue N, SelectionDAGISel &SDISel) {
2081  int64_t Val = MatcherTable[MatcherIndex++];
2082  if (Val & 128)
2083    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2084
2085  if (N->getOpcode() != ISD::OR) return false;
2086
2087  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2088  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2089}
2090
2091/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2092/// scope, evaluate the current node.  If the current predicate is known to
2093/// fail, set Result=true and return anything.  If the current predicate is
2094/// known to pass, set Result=false and return the MatcherIndex to continue
2095/// with.  If the current predicate is unknown, set Result=false and return the
2096/// MatcherIndex to continue with.
2097static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2098                                       unsigned Index, SDValue N,
2099                                       bool &Result, SelectionDAGISel &SDISel,
2100                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2101  switch (Table[Index++]) {
2102  default:
2103    Result = false;
2104    return Index-1;  // Could not evaluate this predicate.
2105  case SelectionDAGISel::OPC_CheckSame:
2106    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2107    return Index;
2108  case SelectionDAGISel::OPC_CheckPatternPredicate:
2109    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2110    return Index;
2111  case SelectionDAGISel::OPC_CheckPredicate:
2112    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2113    return Index;
2114  case SelectionDAGISel::OPC_CheckOpcode:
2115    Result = !::CheckOpcode(Table, Index, N.getNode());
2116    return Index;
2117  case SelectionDAGISel::OPC_CheckType:
2118    Result = !::CheckType(Table, Index, N, SDISel.TLI);
2119    return Index;
2120  case SelectionDAGISel::OPC_CheckChild0Type:
2121  case SelectionDAGISel::OPC_CheckChild1Type:
2122  case SelectionDAGISel::OPC_CheckChild2Type:
2123  case SelectionDAGISel::OPC_CheckChild3Type:
2124  case SelectionDAGISel::OPC_CheckChild4Type:
2125  case SelectionDAGISel::OPC_CheckChild5Type:
2126  case SelectionDAGISel::OPC_CheckChild6Type:
2127  case SelectionDAGISel::OPC_CheckChild7Type:
2128    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2129                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2130    return Index;
2131  case SelectionDAGISel::OPC_CheckCondCode:
2132    Result = !::CheckCondCode(Table, Index, N);
2133    return Index;
2134  case SelectionDAGISel::OPC_CheckValueType:
2135    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2136    return Index;
2137  case SelectionDAGISel::OPC_CheckInteger:
2138    Result = !::CheckInteger(Table, Index, N);
2139    return Index;
2140  case SelectionDAGISel::OPC_CheckAndImm:
2141    Result = !::CheckAndImm(Table, Index, N, SDISel);
2142    return Index;
2143  case SelectionDAGISel::OPC_CheckOrImm:
2144    Result = !::CheckOrImm(Table, Index, N, SDISel);
2145    return Index;
2146  }
2147}
2148
2149namespace {
2150
2151struct MatchScope {
2152  /// FailIndex - If this match fails, this is the index to continue with.
2153  unsigned FailIndex;
2154
2155  /// NodeStack - The node stack when the scope was formed.
2156  SmallVector<SDValue, 4> NodeStack;
2157
2158  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2159  unsigned NumRecordedNodes;
2160
2161  /// NumMatchedMemRefs - The number of matched memref entries.
2162  unsigned NumMatchedMemRefs;
2163
2164  /// InputChain/InputGlue - The current chain/glue
2165  SDValue InputChain, InputGlue;
2166
2167  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2168  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2169};
2170
2171}
2172
2173SDNode *SelectionDAGISel::
2174SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2175                 unsigned TableSize) {
2176  // FIXME: Should these even be selected?  Handle these cases in the caller?
2177  switch (NodeToMatch->getOpcode()) {
2178  default:
2179    break;
2180  case ISD::EntryToken:       // These nodes remain the same.
2181  case ISD::BasicBlock:
2182  case ISD::Register:
2183  case ISD::RegisterMask:
2184  //case ISD::VALUETYPE:
2185  //case ISD::CONDCODE:
2186  case ISD::HANDLENODE:
2187  case ISD::MDNODE_SDNODE:
2188  case ISD::TargetConstant:
2189  case ISD::TargetConstantFP:
2190  case ISD::TargetConstantPool:
2191  case ISD::TargetFrameIndex:
2192  case ISD::TargetExternalSymbol:
2193  case ISD::TargetBlockAddress:
2194  case ISD::TargetJumpTable:
2195  case ISD::TargetGlobalTLSAddress:
2196  case ISD::TargetGlobalAddress:
2197  case ISD::TokenFactor:
2198  case ISD::CopyFromReg:
2199  case ISD::CopyToReg:
2200  case ISD::EH_LABEL:
2201    NodeToMatch->setNodeId(-1); // Mark selected.
2202    return 0;
2203  case ISD::AssertSext:
2204  case ISD::AssertZext:
2205    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2206                                      NodeToMatch->getOperand(0));
2207    return 0;
2208  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2209  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2210  }
2211
2212  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2213
2214  // Set up the node stack with NodeToMatch as the only node on the stack.
2215  SmallVector<SDValue, 8> NodeStack;
2216  SDValue N = SDValue(NodeToMatch, 0);
2217  NodeStack.push_back(N);
2218
2219  // MatchScopes - Scopes used when matching, if a match failure happens, this
2220  // indicates where to continue checking.
2221  SmallVector<MatchScope, 8> MatchScopes;
2222
2223  // RecordedNodes - This is the set of nodes that have been recorded by the
2224  // state machine.  The second value is the parent of the node, or null if the
2225  // root is recorded.
2226  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2227
2228  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2229  // pattern.
2230  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2231
2232  // These are the current input chain and glue for use when generating nodes.
2233  // Various Emit operations change these.  For example, emitting a copytoreg
2234  // uses and updates these.
2235  SDValue InputChain, InputGlue;
2236
2237  // ChainNodesMatched - If a pattern matches nodes that have input/output
2238  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2239  // which ones they are.  The result is captured into this list so that we can
2240  // update the chain results when the pattern is complete.
2241  SmallVector<SDNode*, 3> ChainNodesMatched;
2242  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2243
2244  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2245        NodeToMatch->dump(CurDAG);
2246        errs() << '\n');
2247
2248  // Determine where to start the interpreter.  Normally we start at opcode #0,
2249  // but if the state machine starts with an OPC_SwitchOpcode, then we
2250  // accelerate the first lookup (which is guaranteed to be hot) with the
2251  // OpcodeOffset table.
2252  unsigned MatcherIndex = 0;
2253
2254  if (!OpcodeOffset.empty()) {
2255    // Already computed the OpcodeOffset table, just index into it.
2256    if (N.getOpcode() < OpcodeOffset.size())
2257      MatcherIndex = OpcodeOffset[N.getOpcode()];
2258    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2259
2260  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2261    // Otherwise, the table isn't computed, but the state machine does start
2262    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2263    // is the first time we're selecting an instruction.
2264    unsigned Idx = 1;
2265    while (1) {
2266      // Get the size of this case.
2267      unsigned CaseSize = MatcherTable[Idx++];
2268      if (CaseSize & 128)
2269        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2270      if (CaseSize == 0) break;
2271
2272      // Get the opcode, add the index to the table.
2273      uint16_t Opc = MatcherTable[Idx++];
2274      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2275      if (Opc >= OpcodeOffset.size())
2276        OpcodeOffset.resize((Opc+1)*2);
2277      OpcodeOffset[Opc] = Idx;
2278      Idx += CaseSize;
2279    }
2280
2281    // Okay, do the lookup for the first opcode.
2282    if (N.getOpcode() < OpcodeOffset.size())
2283      MatcherIndex = OpcodeOffset[N.getOpcode()];
2284  }
2285
2286  while (1) {
2287    assert(MatcherIndex < TableSize && "Invalid index");
2288#ifndef NDEBUG
2289    unsigned CurrentOpcodeIndex = MatcherIndex;
2290#endif
2291    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2292    switch (Opcode) {
2293    case OPC_Scope: {
2294      // Okay, the semantics of this operation are that we should push a scope
2295      // then evaluate the first child.  However, pushing a scope only to have
2296      // the first check fail (which then pops it) is inefficient.  If we can
2297      // determine immediately that the first check (or first several) will
2298      // immediately fail, don't even bother pushing a scope for them.
2299      unsigned FailIndex;
2300
2301      while (1) {
2302        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2303        if (NumToSkip & 128)
2304          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2305        // Found the end of the scope with no match.
2306        if (NumToSkip == 0) {
2307          FailIndex = 0;
2308          break;
2309        }
2310
2311        FailIndex = MatcherIndex+NumToSkip;
2312
2313        unsigned MatcherIndexOfPredicate = MatcherIndex;
2314        (void)MatcherIndexOfPredicate; // silence warning.
2315
2316        // If we can't evaluate this predicate without pushing a scope (e.g. if
2317        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2318        // push the scope and evaluate the full predicate chain.
2319        bool Result;
2320        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2321                                              Result, *this, RecordedNodes);
2322        if (!Result)
2323          break;
2324
2325        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2326                     << "index " << MatcherIndexOfPredicate
2327                     << ", continuing at " << FailIndex << "\n");
2328        ++NumDAGIselRetries;
2329
2330        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2331        // move to the next case.
2332        MatcherIndex = FailIndex;
2333      }
2334
2335      // If the whole scope failed to match, bail.
2336      if (FailIndex == 0) break;
2337
2338      // Push a MatchScope which indicates where to go if the first child fails
2339      // to match.
2340      MatchScope NewEntry;
2341      NewEntry.FailIndex = FailIndex;
2342      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2343      NewEntry.NumRecordedNodes = RecordedNodes.size();
2344      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2345      NewEntry.InputChain = InputChain;
2346      NewEntry.InputGlue = InputGlue;
2347      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2348      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2349      MatchScopes.push_back(NewEntry);
2350      continue;
2351    }
2352    case OPC_RecordNode: {
2353      // Remember this node, it may end up being an operand in the pattern.
2354      SDNode *Parent = 0;
2355      if (NodeStack.size() > 1)
2356        Parent = NodeStack[NodeStack.size()-2].getNode();
2357      RecordedNodes.push_back(std::make_pair(N, Parent));
2358      continue;
2359    }
2360
2361    case OPC_RecordChild0: case OPC_RecordChild1:
2362    case OPC_RecordChild2: case OPC_RecordChild3:
2363    case OPC_RecordChild4: case OPC_RecordChild5:
2364    case OPC_RecordChild6: case OPC_RecordChild7: {
2365      unsigned ChildNo = Opcode-OPC_RecordChild0;
2366      if (ChildNo >= N.getNumOperands())
2367        break;  // Match fails if out of range child #.
2368
2369      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2370                                             N.getNode()));
2371      continue;
2372    }
2373    case OPC_RecordMemRef:
2374      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2375      continue;
2376
2377    case OPC_CaptureGlueInput:
2378      // If the current node has an input glue, capture it in InputGlue.
2379      if (N->getNumOperands() != 0 &&
2380          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2381        InputGlue = N->getOperand(N->getNumOperands()-1);
2382      continue;
2383
2384    case OPC_MoveChild: {
2385      unsigned ChildNo = MatcherTable[MatcherIndex++];
2386      if (ChildNo >= N.getNumOperands())
2387        break;  // Match fails if out of range child #.
2388      N = N.getOperand(ChildNo);
2389      NodeStack.push_back(N);
2390      continue;
2391    }
2392
2393    case OPC_MoveParent:
2394      // Pop the current node off the NodeStack.
2395      NodeStack.pop_back();
2396      assert(!NodeStack.empty() && "Node stack imbalance!");
2397      N = NodeStack.back();
2398      continue;
2399
2400    case OPC_CheckSame:
2401      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2402      continue;
2403    case OPC_CheckPatternPredicate:
2404      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2405      continue;
2406    case OPC_CheckPredicate:
2407      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2408                                N.getNode()))
2409        break;
2410      continue;
2411    case OPC_CheckComplexPat: {
2412      unsigned CPNum = MatcherTable[MatcherIndex++];
2413      unsigned RecNo = MatcherTable[MatcherIndex++];
2414      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2415      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2416                               RecordedNodes[RecNo].first, CPNum,
2417                               RecordedNodes))
2418        break;
2419      continue;
2420    }
2421    case OPC_CheckOpcode:
2422      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2423      continue;
2424
2425    case OPC_CheckType:
2426      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2427      continue;
2428
2429    case OPC_SwitchOpcode: {
2430      unsigned CurNodeOpcode = N.getOpcode();
2431      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2432      unsigned CaseSize;
2433      while (1) {
2434        // Get the size of this case.
2435        CaseSize = MatcherTable[MatcherIndex++];
2436        if (CaseSize & 128)
2437          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2438        if (CaseSize == 0) break;
2439
2440        uint16_t Opc = MatcherTable[MatcherIndex++];
2441        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2442
2443        // If the opcode matches, then we will execute this case.
2444        if (CurNodeOpcode == Opc)
2445          break;
2446
2447        // Otherwise, skip over this case.
2448        MatcherIndex += CaseSize;
2449      }
2450
2451      // If no cases matched, bail out.
2452      if (CaseSize == 0) break;
2453
2454      // Otherwise, execute the case we found.
2455      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2456                   << " to " << MatcherIndex << "\n");
2457      continue;
2458    }
2459
2460    case OPC_SwitchType: {
2461      MVT CurNodeVT = N.getValueType().getSimpleVT();
2462      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2463      unsigned CaseSize;
2464      while (1) {
2465        // Get the size of this case.
2466        CaseSize = MatcherTable[MatcherIndex++];
2467        if (CaseSize & 128)
2468          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2469        if (CaseSize == 0) break;
2470
2471        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2472        if (CaseVT == MVT::iPTR)
2473          CaseVT = TLI.getPointerTy();
2474
2475        // If the VT matches, then we will execute this case.
2476        if (CurNodeVT == CaseVT)
2477          break;
2478
2479        // Otherwise, skip over this case.
2480        MatcherIndex += CaseSize;
2481      }
2482
2483      // If no cases matched, bail out.
2484      if (CaseSize == 0) break;
2485
2486      // Otherwise, execute the case we found.
2487      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2488                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2489      continue;
2490    }
2491    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2492    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2493    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2494    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2495      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2496                            Opcode-OPC_CheckChild0Type))
2497        break;
2498      continue;
2499    case OPC_CheckCondCode:
2500      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2501      continue;
2502    case OPC_CheckValueType:
2503      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2504      continue;
2505    case OPC_CheckInteger:
2506      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2507      continue;
2508    case OPC_CheckAndImm:
2509      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2510      continue;
2511    case OPC_CheckOrImm:
2512      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2513      continue;
2514
2515    case OPC_CheckFoldableChainNode: {
2516      assert(NodeStack.size() != 1 && "No parent node");
2517      // Verify that all intermediate nodes between the root and this one have
2518      // a single use.
2519      bool HasMultipleUses = false;
2520      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2521        if (!NodeStack[i].hasOneUse()) {
2522          HasMultipleUses = true;
2523          break;
2524        }
2525      if (HasMultipleUses) break;
2526
2527      // Check to see that the target thinks this is profitable to fold and that
2528      // we can fold it without inducing cycles in the graph.
2529      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2530                              NodeToMatch) ||
2531          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2532                         NodeToMatch, OptLevel,
2533                         true/*We validate our own chains*/))
2534        break;
2535
2536      continue;
2537    }
2538    case OPC_EmitInteger: {
2539      MVT::SimpleValueType VT =
2540        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2541      int64_t Val = MatcherTable[MatcherIndex++];
2542      if (Val & 128)
2543        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2544      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2545                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2546      continue;
2547    }
2548    case OPC_EmitRegister: {
2549      MVT::SimpleValueType VT =
2550        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2551      unsigned RegNo = MatcherTable[MatcherIndex++];
2552      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2553                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2554      continue;
2555    }
2556    case OPC_EmitRegister2: {
2557      // For targets w/ more than 256 register names, the register enum
2558      // values are stored in two bytes in the matcher table (just like
2559      // opcodes).
2560      MVT::SimpleValueType VT =
2561        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2562      unsigned RegNo = MatcherTable[MatcherIndex++];
2563      RegNo |= MatcherTable[MatcherIndex++] << 8;
2564      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2565                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2566      continue;
2567    }
2568
2569    case OPC_EmitConvertToTarget:  {
2570      // Convert from IMM/FPIMM to target version.
2571      unsigned RecNo = MatcherTable[MatcherIndex++];
2572      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2573      SDValue Imm = RecordedNodes[RecNo].first;
2574
2575      if (Imm->getOpcode() == ISD::Constant) {
2576        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2577        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2578      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2579        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2580        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2581      }
2582
2583      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2584      continue;
2585    }
2586
2587    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2588    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2589      // These are space-optimized forms of OPC_EmitMergeInputChains.
2590      assert(InputChain.getNode() == 0 &&
2591             "EmitMergeInputChains should be the first chain producing node");
2592      assert(ChainNodesMatched.empty() &&
2593             "Should only have one EmitMergeInputChains per match");
2594
2595      // Read all of the chained nodes.
2596      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2597      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2598      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2599
2600      // FIXME: What if other value results of the node have uses not matched
2601      // by this pattern?
2602      if (ChainNodesMatched.back() != NodeToMatch &&
2603          !RecordedNodes[RecNo].first.hasOneUse()) {
2604        ChainNodesMatched.clear();
2605        break;
2606      }
2607
2608      // Merge the input chains if they are not intra-pattern references.
2609      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2610
2611      if (InputChain.getNode() == 0)
2612        break;  // Failed to merge.
2613      continue;
2614    }
2615
2616    case OPC_EmitMergeInputChains: {
2617      assert(InputChain.getNode() == 0 &&
2618             "EmitMergeInputChains should be the first chain producing node");
2619      // This node gets a list of nodes we matched in the input that have
2620      // chains.  We want to token factor all of the input chains to these nodes
2621      // together.  However, if any of the input chains is actually one of the
2622      // nodes matched in this pattern, then we have an intra-match reference.
2623      // Ignore these because the newly token factored chain should not refer to
2624      // the old nodes.
2625      unsigned NumChains = MatcherTable[MatcherIndex++];
2626      assert(NumChains != 0 && "Can't TF zero chains");
2627
2628      assert(ChainNodesMatched.empty() &&
2629             "Should only have one EmitMergeInputChains per match");
2630
2631      // Read all of the chained nodes.
2632      for (unsigned i = 0; i != NumChains; ++i) {
2633        unsigned RecNo = MatcherTable[MatcherIndex++];
2634        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2635        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2636
2637        // FIXME: What if other value results of the node have uses not matched
2638        // by this pattern?
2639        if (ChainNodesMatched.back() != NodeToMatch &&
2640            !RecordedNodes[RecNo].first.hasOneUse()) {
2641          ChainNodesMatched.clear();
2642          break;
2643        }
2644      }
2645
2646      // If the inner loop broke out, the match fails.
2647      if (ChainNodesMatched.empty())
2648        break;
2649
2650      // Merge the input chains if they are not intra-pattern references.
2651      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2652
2653      if (InputChain.getNode() == 0)
2654        break;  // Failed to merge.
2655
2656      continue;
2657    }
2658
2659    case OPC_EmitCopyToReg: {
2660      unsigned RecNo = MatcherTable[MatcherIndex++];
2661      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2662      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2663
2664      if (InputChain.getNode() == 0)
2665        InputChain = CurDAG->getEntryNode();
2666
2667      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2668                                        DestPhysReg, RecordedNodes[RecNo].first,
2669                                        InputGlue);
2670
2671      InputGlue = InputChain.getValue(1);
2672      continue;
2673    }
2674
2675    case OPC_EmitNodeXForm: {
2676      unsigned XFormNo = MatcherTable[MatcherIndex++];
2677      unsigned RecNo = MatcherTable[MatcherIndex++];
2678      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2679      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2680      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2681      continue;
2682    }
2683
2684    case OPC_EmitNode:
2685    case OPC_MorphNodeTo: {
2686      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2687      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2688      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2689      // Get the result VT list.
2690      unsigned NumVTs = MatcherTable[MatcherIndex++];
2691      SmallVector<EVT, 4> VTs;
2692      for (unsigned i = 0; i != NumVTs; ++i) {
2693        MVT::SimpleValueType VT =
2694          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2695        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2696        VTs.push_back(VT);
2697      }
2698
2699      if (EmitNodeInfo & OPFL_Chain)
2700        VTs.push_back(MVT::Other);
2701      if (EmitNodeInfo & OPFL_GlueOutput)
2702        VTs.push_back(MVT::Glue);
2703
2704      // This is hot code, so optimize the two most common cases of 1 and 2
2705      // results.
2706      SDVTList VTList;
2707      if (VTs.size() == 1)
2708        VTList = CurDAG->getVTList(VTs[0]);
2709      else if (VTs.size() == 2)
2710        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2711      else
2712        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2713
2714      // Get the operand list.
2715      unsigned NumOps = MatcherTable[MatcherIndex++];
2716      SmallVector<SDValue, 8> Ops;
2717      for (unsigned i = 0; i != NumOps; ++i) {
2718        unsigned RecNo = MatcherTable[MatcherIndex++];
2719        if (RecNo & 128)
2720          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2721
2722        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2723        Ops.push_back(RecordedNodes[RecNo].first);
2724      }
2725
2726      // If there are variadic operands to add, handle them now.
2727      if (EmitNodeInfo & OPFL_VariadicInfo) {
2728        // Determine the start index to copy from.
2729        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2730        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2731        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2732               "Invalid variadic node");
2733        // Copy all of the variadic operands, not including a potential glue
2734        // input.
2735        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2736             i != e; ++i) {
2737          SDValue V = NodeToMatch->getOperand(i);
2738          if (V.getValueType() == MVT::Glue) break;
2739          Ops.push_back(V);
2740        }
2741      }
2742
2743      // If this has chain/glue inputs, add them.
2744      if (EmitNodeInfo & OPFL_Chain)
2745        Ops.push_back(InputChain);
2746      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2747        Ops.push_back(InputGlue);
2748
2749      // Create the node.
2750      SDNode *Res = 0;
2751      if (Opcode != OPC_MorphNodeTo) {
2752        // If this is a normal EmitNode command, just create the new node and
2753        // add the results to the RecordedNodes list.
2754        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2755                                     VTList, Ops.data(), Ops.size());
2756
2757        // Add all the non-glue/non-chain results to the RecordedNodes list.
2758        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2759          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2760          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2761                                                             (SDNode*) 0));
2762        }
2763
2764      } else {
2765        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2766                        EmitNodeInfo);
2767      }
2768
2769      // If the node had chain/glue results, update our notion of the current
2770      // chain and glue.
2771      if (EmitNodeInfo & OPFL_GlueOutput) {
2772        InputGlue = SDValue(Res, VTs.size()-1);
2773        if (EmitNodeInfo & OPFL_Chain)
2774          InputChain = SDValue(Res, VTs.size()-2);
2775      } else if (EmitNodeInfo & OPFL_Chain)
2776        InputChain = SDValue(Res, VTs.size()-1);
2777
2778      // If the OPFL_MemRefs glue is set on this node, slap all of the
2779      // accumulated memrefs onto it.
2780      //
2781      // FIXME: This is vastly incorrect for patterns with multiple outputs
2782      // instructions that access memory and for ComplexPatterns that match
2783      // loads.
2784      if (EmitNodeInfo & OPFL_MemRefs) {
2785        // Only attach load or store memory operands if the generated
2786        // instruction may load or store.
2787        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2788        bool mayLoad = MCID.mayLoad();
2789        bool mayStore = MCID.mayStore();
2790
2791        unsigned NumMemRefs = 0;
2792        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2793             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2794          if ((*I)->isLoad()) {
2795            if (mayLoad)
2796              ++NumMemRefs;
2797          } else if ((*I)->isStore()) {
2798            if (mayStore)
2799              ++NumMemRefs;
2800          } else {
2801            ++NumMemRefs;
2802          }
2803        }
2804
2805        MachineSDNode::mmo_iterator MemRefs =
2806          MF->allocateMemRefsArray(NumMemRefs);
2807
2808        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2809        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2810             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2811          if ((*I)->isLoad()) {
2812            if (mayLoad)
2813              *MemRefsPos++ = *I;
2814          } else if ((*I)->isStore()) {
2815            if (mayStore)
2816              *MemRefsPos++ = *I;
2817          } else {
2818            *MemRefsPos++ = *I;
2819          }
2820        }
2821
2822        cast<MachineSDNode>(Res)
2823          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2824      }
2825
2826      DEBUG(errs() << "  "
2827                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2828                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2829
2830      // If this was a MorphNodeTo then we're completely done!
2831      if (Opcode == OPC_MorphNodeTo) {
2832        // Update chain and glue uses.
2833        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2834                            InputGlue, GlueResultNodesMatched, true);
2835        return Res;
2836      }
2837
2838      continue;
2839    }
2840
2841    case OPC_MarkGlueResults: {
2842      unsigned NumNodes = MatcherTable[MatcherIndex++];
2843
2844      // Read and remember all the glue-result nodes.
2845      for (unsigned i = 0; i != NumNodes; ++i) {
2846        unsigned RecNo = MatcherTable[MatcherIndex++];
2847        if (RecNo & 128)
2848          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2849
2850        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2851        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2852      }
2853      continue;
2854    }
2855
2856    case OPC_CompleteMatch: {
2857      // The match has been completed, and any new nodes (if any) have been
2858      // created.  Patch up references to the matched dag to use the newly
2859      // created nodes.
2860      unsigned NumResults = MatcherTable[MatcherIndex++];
2861
2862      for (unsigned i = 0; i != NumResults; ++i) {
2863        unsigned ResSlot = MatcherTable[MatcherIndex++];
2864        if (ResSlot & 128)
2865          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2866
2867        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2868        SDValue Res = RecordedNodes[ResSlot].first;
2869
2870        assert(i < NodeToMatch->getNumValues() &&
2871               NodeToMatch->getValueType(i) != MVT::Other &&
2872               NodeToMatch->getValueType(i) != MVT::Glue &&
2873               "Invalid number of results to complete!");
2874        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2875                NodeToMatch->getValueType(i) == MVT::iPTR ||
2876                Res.getValueType() == MVT::iPTR ||
2877                NodeToMatch->getValueType(i).getSizeInBits() ==
2878                    Res.getValueType().getSizeInBits()) &&
2879               "invalid replacement");
2880        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2881      }
2882
2883      // If the root node defines glue, add it to the glue nodes to update list.
2884      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2885        GlueResultNodesMatched.push_back(NodeToMatch);
2886
2887      // Update chain and glue uses.
2888      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2889                          InputGlue, GlueResultNodesMatched, false);
2890
2891      assert(NodeToMatch->use_empty() &&
2892             "Didn't replace all uses of the node?");
2893
2894      // FIXME: We just return here, which interacts correctly with SelectRoot
2895      // above.  We should fix this to not return an SDNode* anymore.
2896      return 0;
2897    }
2898    }
2899
2900    // If the code reached this point, then the match failed.  See if there is
2901    // another child to try in the current 'Scope', otherwise pop it until we
2902    // find a case to check.
2903    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2904    ++NumDAGIselRetries;
2905    while (1) {
2906      if (MatchScopes.empty()) {
2907        CannotYetSelect(NodeToMatch);
2908        return 0;
2909      }
2910
2911      // Restore the interpreter state back to the point where the scope was
2912      // formed.
2913      MatchScope &LastScope = MatchScopes.back();
2914      RecordedNodes.resize(LastScope.NumRecordedNodes);
2915      NodeStack.clear();
2916      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2917      N = NodeStack.back();
2918
2919      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2920        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2921      MatcherIndex = LastScope.FailIndex;
2922
2923      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2924
2925      InputChain = LastScope.InputChain;
2926      InputGlue = LastScope.InputGlue;
2927      if (!LastScope.HasChainNodesMatched)
2928        ChainNodesMatched.clear();
2929      if (!LastScope.HasGlueResultNodesMatched)
2930        GlueResultNodesMatched.clear();
2931
2932      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2933      // we have reached the end of this scope, otherwise we have another child
2934      // in the current scope to try.
2935      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2936      if (NumToSkip & 128)
2937        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2938
2939      // If we have another child in this scope to match, update FailIndex and
2940      // try it.
2941      if (NumToSkip != 0) {
2942        LastScope.FailIndex = MatcherIndex+NumToSkip;
2943        break;
2944      }
2945
2946      // End of this scope, pop it and try the next child in the containing
2947      // scope.
2948      MatchScopes.pop_back();
2949    }
2950  }
2951}
2952
2953
2954
2955void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2956  std::string msg;
2957  raw_string_ostream Msg(msg);
2958  Msg << "Cannot select: ";
2959
2960  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2961      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2962      N->getOpcode() != ISD::INTRINSIC_VOID) {
2963    N->printrFull(Msg, CurDAG);
2964  } else {
2965    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2966    unsigned iid =
2967      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2968    if (iid < Intrinsic::num_intrinsics)
2969      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2970    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2971      Msg << "target intrinsic %" << TII->getName(iid);
2972    else
2973      Msg << "unknown intrinsic #" << iid;
2974  }
2975  report_fatal_error(Msg.str());
2976}
2977
2978char SelectionDAGISel::ID = 0;
2979