SelectionDAGISel.cpp revision 48884cd80b52be1528618f2e9b3425ac24e7b5ca
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61//===---------------------------------------------------------------------===//
62///
63/// RegisterScheduler class - Track the registration of instruction schedulers.
64///
65//===---------------------------------------------------------------------===//
66MachinePassRegistry RegisterScheduler::Registry;
67
68//===---------------------------------------------------------------------===//
69///
70/// ISHeuristic command line option for instruction schedulers.
71///
72//===---------------------------------------------------------------------===//
73namespace {
74  cl::opt<RegisterScheduler::FunctionPassCtor, false,
75          RegisterPassParser<RegisterScheduler> >
76  ISHeuristic("pre-RA-sched",
77              cl::init(&createDefaultScheduler),
78              cl::desc("Instruction schedulers available (before register allocation):"));
79
80  static RegisterScheduler
81  defaultListDAGScheduler("default", "  Best scheduler for the target",
82                          createDefaultScheduler);
83} // namespace
84
85namespace { struct AsmOperandInfo; }
86
87namespace {
88  /// RegsForValue - This struct represents the physical registers that a
89  /// particular value is assigned and the type information about the value.
90  /// This is needed because values can be promoted into larger registers and
91  /// expanded into multiple smaller registers than the value.
92  struct VISIBILITY_HIDDEN RegsForValue {
93    /// Regs - This list holds the register (for legal and promoted values)
94    /// or register set (for expanded values) that the value should be assigned
95    /// to.
96    std::vector<unsigned> Regs;
97
98    /// RegVT - The value type of each register.
99    ///
100    MVT::ValueType RegVT;
101
102    /// ValueVT - The value type of the LLVM value, which may be promoted from
103    /// RegVT or made from merging the two expanded parts.
104    MVT::ValueType ValueVT;
105
106    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
107
108    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
109      : RegVT(regvt), ValueVT(valuevt) {
110        Regs.push_back(Reg);
111    }
112    RegsForValue(const std::vector<unsigned> &regs,
113                 MVT::ValueType regvt, MVT::ValueType valuevt)
114      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
115    }
116
117    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
118    /// this value and returns the result as a ValueVT value.  This uses
119    /// Chain/Flag as the input and updates them for the output Chain/Flag.
120    /// If the Flag pointer is NULL, no flag is used.
121    SDOperand getCopyFromRegs(SelectionDAG &DAG,
122                              SDOperand &Chain, SDOperand *Flag) const;
123
124    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
125    /// specified value into the registers specified by this object.  This uses
126    /// Chain/Flag as the input and updates them for the output Chain/Flag.
127    /// If the Flag pointer is NULL, no flag is used.
128    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
129                       SDOperand &Chain, SDOperand *Flag) const;
130
131    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
132    /// operand list.  This adds the code marker and includes the number of
133    /// values added into it.
134    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
135                              std::vector<SDOperand> &Ops) const;
136  };
137}
138
139namespace llvm {
140  //===--------------------------------------------------------------------===//
141  /// createDefaultScheduler - This creates an instruction scheduler appropriate
142  /// for the target.
143  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
144                                      SelectionDAG *DAG,
145                                      MachineBasicBlock *BB) {
146    TargetLowering &TLI = IS->getTargetLowering();
147
148    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
149      return createTDListDAGScheduler(IS, DAG, BB);
150    } else {
151      assert(TLI.getSchedulingPreference() ==
152           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
153      return createBURRListDAGScheduler(IS, DAG, BB);
154    }
155  }
156
157
158  //===--------------------------------------------------------------------===//
159  /// FunctionLoweringInfo - This contains information that is global to a
160  /// function that is used when lowering a region of the function.
161  class FunctionLoweringInfo {
162  public:
163    TargetLowering &TLI;
164    Function &Fn;
165    MachineFunction &MF;
166    SSARegMap *RegMap;
167
168    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
169
170    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
171    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
172
173    /// ValueMap - Since we emit code for the function a basic block at a time,
174    /// we must remember which virtual registers hold the values for
175    /// cross-basic-block values.
176    DenseMap<const Value*, unsigned> ValueMap;
177
178    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
179    /// the entry block.  This allows the allocas to be efficiently referenced
180    /// anywhere in the function.
181    std::map<const AllocaInst*, int> StaticAllocaMap;
182
183#ifndef NDEBUG
184    SmallSet<Instruction*, 8> CatchInfoLost;
185    SmallSet<Instruction*, 8> CatchInfoFound;
186#endif
187
188    unsigned MakeReg(MVT::ValueType VT) {
189      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
190    }
191
192    /// isExportedInst - Return true if the specified value is an instruction
193    /// exported from its block.
194    bool isExportedInst(const Value *V) {
195      return ValueMap.count(V);
196    }
197
198    unsigned CreateRegForValue(const Value *V);
199
200    unsigned InitializeRegForValue(const Value *V) {
201      unsigned &R = ValueMap[V];
202      assert(R == 0 && "Already initialized this value register!");
203      return R = CreateRegForValue(V);
204    }
205  };
206}
207
208/// isSelector - Return true if this instruction is a call to the
209/// eh.selector intrinsic.
210static bool isSelector(Instruction *I) {
211  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
212    return II->getIntrinsicID() == Intrinsic::eh_selector;
213  return false;
214}
215
216/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
217/// PHI nodes or outside of the basic block that defines it, or used by a
218/// switch instruction, which may expand to multiple basic blocks.
219static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
220  if (isa<PHINode>(I)) return true;
221  BasicBlock *BB = I->getParent();
222  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
223    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
224        // FIXME: Remove switchinst special case.
225        isa<SwitchInst>(*UI))
226      return true;
227  return false;
228}
229
230/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
231/// entry block, return true.  This includes arguments used by switches, since
232/// the switch may expand into multiple basic blocks.
233static bool isOnlyUsedInEntryBlock(Argument *A) {
234  BasicBlock *Entry = A->getParent()->begin();
235  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
236    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
237      return false;  // Use not in entry block.
238  return true;
239}
240
241FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
242                                           Function &fn, MachineFunction &mf)
243    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
244
245  // Create a vreg for each argument register that is not dead and is used
246  // outside of the entry block for the function.
247  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
248       AI != E; ++AI)
249    if (!isOnlyUsedInEntryBlock(AI))
250      InitializeRegForValue(AI);
251
252  // Initialize the mapping of values to registers.  This is only set up for
253  // instruction values that are used outside of the block that defines
254  // them.
255  Function::iterator BB = Fn.begin(), EB = Fn.end();
256  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
257    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
258      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
259        const Type *Ty = AI->getAllocatedType();
260        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
261        unsigned Align =
262          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
263                   AI->getAlignment());
264
265        TySize *= CUI->getZExtValue();   // Get total allocated size.
266        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
267        StaticAllocaMap[AI] =
268          MF.getFrameInfo()->CreateStackObject(TySize, Align);
269      }
270
271  for (; BB != EB; ++BB)
272    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
273      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
274        if (!isa<AllocaInst>(I) ||
275            !StaticAllocaMap.count(cast<AllocaInst>(I)))
276          InitializeRegForValue(I);
277
278  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
279  // also creates the initial PHI MachineInstrs, though none of the input
280  // operands are populated.
281  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
282    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
283    MBBMap[BB] = MBB;
284    MF.getBasicBlockList().push_back(MBB);
285
286    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
287    // appropriate.
288    PHINode *PN;
289    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
290      if (PN->use_empty()) continue;
291
292      MVT::ValueType VT = TLI.getValueType(PN->getType());
293      unsigned NumRegisters = TLI.getNumRegisters(VT);
294      unsigned PHIReg = ValueMap[PN];
295      assert(PHIReg && "PHI node does not have an assigned virtual register!");
296      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
297      for (unsigned i = 0; i != NumRegisters; ++i)
298        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
299    }
300  }
301}
302
303/// CreateRegForValue - Allocate the appropriate number of virtual registers of
304/// the correctly promoted or expanded types.  Assign these registers
305/// consecutive vreg numbers and return the first assigned number.
306unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
307  MVT::ValueType VT = TLI.getValueType(V->getType());
308
309  unsigned NumRegisters = TLI.getNumRegisters(VT);
310  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
311
312  unsigned R = MakeReg(RegisterVT);
313  for (unsigned i = 1; i != NumRegisters; ++i)
314    MakeReg(RegisterVT);
315
316  return R;
317}
318
319//===----------------------------------------------------------------------===//
320/// SelectionDAGLowering - This is the common target-independent lowering
321/// implementation that is parameterized by a TargetLowering object.
322/// Also, targets can overload any lowering method.
323///
324namespace llvm {
325class SelectionDAGLowering {
326  MachineBasicBlock *CurMBB;
327
328  DenseMap<const Value*, SDOperand> NodeMap;
329
330  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
331  /// them up and then emit token factor nodes when possible.  This allows us to
332  /// get simple disambiguation between loads without worrying about alias
333  /// analysis.
334  std::vector<SDOperand> PendingLoads;
335
336  /// Case - A struct to record the Value for a switch case, and the
337  /// case's target basic block.
338  struct Case {
339    Constant* Low;
340    Constant* High;
341    MachineBasicBlock* BB;
342
343    Case() : Low(0), High(0), BB(0) { }
344    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
345      Low(low), High(high), BB(bb) { }
346    uint64_t size() const {
347      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
348      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
349      return (rHigh - rLow + 1ULL);
350    }
351  };
352
353  struct CaseBits {
354    uint64_t Mask;
355    MachineBasicBlock* BB;
356    unsigned Bits;
357
358    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
359      Mask(mask), BB(bb), Bits(bits) { }
360  };
361
362  typedef std::vector<Case>           CaseVector;
363  typedef std::vector<CaseBits>       CaseBitsVector;
364  typedef CaseVector::iterator        CaseItr;
365  typedef std::pair<CaseItr, CaseItr> CaseRange;
366
367  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
368  /// of conditional branches.
369  struct CaseRec {
370    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
371    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
372
373    /// CaseBB - The MBB in which to emit the compare and branch
374    MachineBasicBlock *CaseBB;
375    /// LT, GE - If nonzero, we know the current case value must be less-than or
376    /// greater-than-or-equal-to these Constants.
377    Constant *LT;
378    Constant *GE;
379    /// Range - A pair of iterators representing the range of case values to be
380    /// processed at this point in the binary search tree.
381    CaseRange Range;
382  };
383
384  typedef std::vector<CaseRec> CaseRecVector;
385
386  /// The comparison function for sorting the switch case values in the vector.
387  /// WARNING: Case ranges should be disjoint!
388  struct CaseCmp {
389    bool operator () (const Case& C1, const Case& C2) {
390      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
391      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
392      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
393      return CI1->getValue().slt(CI2->getValue());
394    }
395  };
396
397  struct CaseBitsCmp {
398    bool operator () (const CaseBits& C1, const CaseBits& C2) {
399      return C1.Bits > C2.Bits;
400    }
401  };
402
403  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
404
405public:
406  // TLI - This is information that describes the available target features we
407  // need for lowering.  This indicates when operations are unavailable,
408  // implemented with a libcall, etc.
409  TargetLowering &TLI;
410  SelectionDAG &DAG;
411  const TargetData *TD;
412
413  /// SwitchCases - Vector of CaseBlock structures used to communicate
414  /// SwitchInst code generation information.
415  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
416  /// JTCases - Vector of JumpTable structures used to communicate
417  /// SwitchInst code generation information.
418  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
419  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
420
421  /// FuncInfo - Information about the function as a whole.
422  ///
423  FunctionLoweringInfo &FuncInfo;
424
425  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
426                       FunctionLoweringInfo &funcinfo)
427    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
428      FuncInfo(funcinfo) {
429  }
430
431  /// getRoot - Return the current virtual root of the Selection DAG.
432  ///
433  SDOperand getRoot() {
434    if (PendingLoads.empty())
435      return DAG.getRoot();
436
437    if (PendingLoads.size() == 1) {
438      SDOperand Root = PendingLoads[0];
439      DAG.setRoot(Root);
440      PendingLoads.clear();
441      return Root;
442    }
443
444    // Otherwise, we have to make a token factor node.
445    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
446                                 &PendingLoads[0], PendingLoads.size());
447    PendingLoads.clear();
448    DAG.setRoot(Root);
449    return Root;
450  }
451
452  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
453
454  void visit(Instruction &I) { visit(I.getOpcode(), I); }
455
456  void visit(unsigned Opcode, User &I) {
457    // Note: this doesn't use InstVisitor, because it has to work with
458    // ConstantExpr's in addition to instructions.
459    switch (Opcode) {
460    default: assert(0 && "Unknown instruction type encountered!");
461             abort();
462      // Build the switch statement using the Instruction.def file.
463#define HANDLE_INST(NUM, OPCODE, CLASS) \
464    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
465#include "llvm/Instruction.def"
466    }
467  }
468
469  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
470
471  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
472                        const Value *SV, SDOperand Root,
473                        bool isVolatile, unsigned Alignment);
474
475  SDOperand getIntPtrConstant(uint64_t Val) {
476    return DAG.getConstant(Val, TLI.getPointerTy());
477  }
478
479  SDOperand getValue(const Value *V);
480
481  void setValue(const Value *V, SDOperand NewN) {
482    SDOperand &N = NodeMap[V];
483    assert(N.Val == 0 && "Already set a value for this node!");
484    N = NewN;
485  }
486
487  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
488                            std::set<unsigned> &OutputRegs,
489                            std::set<unsigned> &InputRegs);
490
491  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
492                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
493                            unsigned Opc);
494  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
495  void ExportFromCurrentBlock(Value *V);
496  void LowerCallTo(Instruction &I,
497                   const Type *CalledValueTy, unsigned CallingConv,
498                   bool IsTailCall, SDOperand Callee, unsigned OpIdx,
499                   MachineBasicBlock *LandingPad = NULL);
500
501  // Terminator instructions.
502  void visitRet(ReturnInst &I);
503  void visitBr(BranchInst &I);
504  void visitSwitch(SwitchInst &I);
505  void visitUnreachable(UnreachableInst &I) { /* noop */ }
506
507  // Helpers for visitSwitch
508  bool handleSmallSwitchRange(CaseRec& CR,
509                              CaseRecVector& WorkList,
510                              Value* SV,
511                              MachineBasicBlock* Default);
512  bool handleJTSwitchCase(CaseRec& CR,
513                          CaseRecVector& WorkList,
514                          Value* SV,
515                          MachineBasicBlock* Default);
516  bool handleBTSplitSwitchCase(CaseRec& CR,
517                               CaseRecVector& WorkList,
518                               Value* SV,
519                               MachineBasicBlock* Default);
520  bool handleBitTestsSwitchCase(CaseRec& CR,
521                                CaseRecVector& WorkList,
522                                Value* SV,
523                                MachineBasicBlock* Default);
524  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
525  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
526  void visitBitTestCase(MachineBasicBlock* NextMBB,
527                        unsigned Reg,
528                        SelectionDAGISel::BitTestCase &B);
529  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
530  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
531                            SelectionDAGISel::JumpTableHeader &JTH);
532
533  // These all get lowered before this pass.
534  void visitInvoke(InvokeInst &I);
535  void visitUnwind(UnwindInst &I);
536
537  void visitBinary(User &I, unsigned OpCode);
538  void visitShift(User &I, unsigned Opcode);
539  void visitAdd(User &I) {
540    if (I.getType()->isFPOrFPVector())
541      visitBinary(I, ISD::FADD);
542    else
543      visitBinary(I, ISD::ADD);
544  }
545  void visitSub(User &I);
546  void visitMul(User &I) {
547    if (I.getType()->isFPOrFPVector())
548      visitBinary(I, ISD::FMUL);
549    else
550      visitBinary(I, ISD::MUL);
551  }
552  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
553  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
554  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
555  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
556  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
557  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
558  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
559  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
560  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
561  void visitShl (User &I) { visitShift(I, ISD::SHL); }
562  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
563  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
564  void visitICmp(User &I);
565  void visitFCmp(User &I);
566  // Visit the conversion instructions
567  void visitTrunc(User &I);
568  void visitZExt(User &I);
569  void visitSExt(User &I);
570  void visitFPTrunc(User &I);
571  void visitFPExt(User &I);
572  void visitFPToUI(User &I);
573  void visitFPToSI(User &I);
574  void visitUIToFP(User &I);
575  void visitSIToFP(User &I);
576  void visitPtrToInt(User &I);
577  void visitIntToPtr(User &I);
578  void visitBitCast(User &I);
579
580  void visitExtractElement(User &I);
581  void visitInsertElement(User &I);
582  void visitShuffleVector(User &I);
583
584  void visitGetElementPtr(User &I);
585  void visitSelect(User &I);
586
587  void visitMalloc(MallocInst &I);
588  void visitFree(FreeInst &I);
589  void visitAlloca(AllocaInst &I);
590  void visitLoad(LoadInst &I);
591  void visitStore(StoreInst &I);
592  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
593  void visitCall(CallInst &I);
594  void visitInlineAsm(CallInst &I);
595  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
596  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
597
598  void visitVAStart(CallInst &I);
599  void visitVAArg(VAArgInst &I);
600  void visitVAEnd(CallInst &I);
601  void visitVACopy(CallInst &I);
602
603  void visitMemIntrinsic(CallInst &I, unsigned Op);
604
605  void visitUserOp1(Instruction &I) {
606    assert(0 && "UserOp1 should not exist at instruction selection time!");
607    abort();
608  }
609  void visitUserOp2(Instruction &I) {
610    assert(0 && "UserOp2 should not exist at instruction selection time!");
611    abort();
612  }
613};
614} // end namespace llvm
615
616
617/// getCopyFromParts - Create a value that contains the
618/// specified legal parts combined into the value they represent.
619static SDOperand getCopyFromParts(SelectionDAG &DAG,
620                                  const SDOperand *Parts,
621                                  unsigned NumParts,
622                                  MVT::ValueType PartVT,
623                                  MVT::ValueType ValueVT,
624                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
625  if (!MVT::isVector(ValueVT) || NumParts == 1) {
626    SDOperand Val = Parts[0];
627
628    // If the value was expanded, copy from the top part.
629    if (NumParts > 1) {
630      assert(NumParts == 2 &&
631             "Cannot expand to more than 2 elts yet!");
632      SDOperand Hi = Parts[1];
633      if (!DAG.getTargetLoweringInfo().isLittleEndian())
634        std::swap(Val, Hi);
635      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
636    }
637
638    // Otherwise, if the value was promoted or extended, truncate it to the
639    // appropriate type.
640    if (PartVT == ValueVT)
641      return Val;
642
643    if (MVT::isVector(PartVT)) {
644      assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
645      return DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
646    }
647
648    if (MVT::isInteger(PartVT) &&
649        MVT::isInteger(ValueVT)) {
650      if (ValueVT < PartVT) {
651        // For a truncate, see if we have any information to
652        // indicate whether the truncated bits will always be
653        // zero or sign-extension.
654        if (AssertOp != ISD::DELETED_NODE)
655          Val = DAG.getNode(AssertOp, PartVT, Val,
656                            DAG.getValueType(ValueVT));
657        return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
658      } else {
659        return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
660      }
661    }
662
663    if (MVT::isFloatingPoint(PartVT) &&
664        MVT::isFloatingPoint(ValueVT))
665      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
666
667    if (MVT::getSizeInBits(PartVT) ==
668        MVT::getSizeInBits(ValueVT))
669      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
670
671    assert(0 && "Unknown mismatch!");
672  }
673
674  // Handle a multi-element vector.
675  MVT::ValueType IntermediateVT, RegisterVT;
676  unsigned NumIntermediates;
677  unsigned NumRegs =
678    DAG.getTargetLoweringInfo()
679      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
680                              RegisterVT);
681
682  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
683  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
684  assert(RegisterVT == Parts[0].getValueType() &&
685         "Part type doesn't match part!");
686
687  // Assemble the parts into intermediate operands.
688  SmallVector<SDOperand, 8> Ops(NumIntermediates);
689  if (NumIntermediates == NumParts) {
690    // If the register was not expanded, truncate or copy the value,
691    // as appropriate.
692    for (unsigned i = 0; i != NumParts; ++i)
693      Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
694                                PartVT, IntermediateVT);
695  } else if (NumParts > 0) {
696    // If the intermediate type was expanded, build the intermediate operands
697    // from the parts.
698    assert(NumParts % NumIntermediates == 0 &&
699           "Must expand into a divisible number of parts!");
700    unsigned Factor = NumParts / NumIntermediates;
701    for (unsigned i = 0; i != NumIntermediates; ++i)
702      Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
703                                PartVT, IntermediateVT);
704  }
705
706  // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
707  // operands.
708  return DAG.getNode(MVT::isVector(IntermediateVT) ?
709                       ISD::CONCAT_VECTORS :
710                       ISD::BUILD_VECTOR,
711                     ValueVT, &Ops[0], NumIntermediates);
712}
713
714/// getCopyToParts - Create a series of nodes that contain the
715/// specified value split into legal parts.
716static void getCopyToParts(SelectionDAG &DAG,
717                           SDOperand Val,
718                           SDOperand *Parts,
719                           unsigned NumParts,
720                           MVT::ValueType PartVT) {
721  TargetLowering &TLI = DAG.getTargetLoweringInfo();
722  MVT::ValueType PtrVT = TLI.getPointerTy();
723  MVT::ValueType ValueVT = Val.getValueType();
724
725  if (!MVT::isVector(ValueVT) || NumParts == 1) {
726    // If the value was expanded, copy from the parts.
727    if (NumParts > 1) {
728      for (unsigned i = 0; i != NumParts; ++i)
729        Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
730                               DAG.getConstant(i, PtrVT));
731      if (!DAG.getTargetLoweringInfo().isLittleEndian())
732        std::reverse(Parts, Parts + NumParts);
733      return;
734    }
735
736    // If there is a single part and the types differ, this must be
737    // a promotion.
738    if (PartVT != ValueVT) {
739      if (MVT::isVector(PartVT)) {
740        assert(MVT::isVector(ValueVT) &&
741               "Not a vector-vector cast?");
742        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
743      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
744        if (PartVT < ValueVT)
745          Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
746        else
747          Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
748      } else if (MVT::isFloatingPoint(PartVT) &&
749                 MVT::isFloatingPoint(ValueVT)) {
750        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
751      } else if (MVT::getSizeInBits(PartVT) ==
752                 MVT::getSizeInBits(ValueVT)) {
753        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
754      } else {
755        assert(0 && "Unknown mismatch!");
756      }
757    }
758    Parts[0] = Val;
759    return;
760  }
761
762  // Handle a multi-element vector.
763  MVT::ValueType IntermediateVT, RegisterVT;
764  unsigned NumIntermediates;
765  unsigned NumRegs =
766    DAG.getTargetLoweringInfo()
767      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
768                              RegisterVT);
769  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
770
771  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
772  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
773
774  // Split the vector into intermediate operands.
775  SmallVector<SDOperand, 8> Ops(NumIntermediates);
776  for (unsigned i = 0; i != NumIntermediates; ++i)
777    if (MVT::isVector(IntermediateVT))
778      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
779                           IntermediateVT, Val,
780                           DAG.getConstant(i * (NumElements / NumIntermediates),
781                                           PtrVT));
782    else
783      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
784                           IntermediateVT, Val,
785                           DAG.getConstant(i, PtrVT));
786
787  // Split the intermediate operands into legal parts.
788  if (NumParts == NumIntermediates) {
789    // If the register was not expanded, promote or copy the value,
790    // as appropriate.
791    for (unsigned i = 0; i != NumParts; ++i)
792      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
793  } else if (NumParts > 0) {
794    // If the intermediate type was expanded, split each the value into
795    // legal parts.
796    assert(NumParts % NumIntermediates == 0 &&
797           "Must expand into a divisible number of parts!");
798    unsigned Factor = NumParts / NumIntermediates;
799    for (unsigned i = 0; i != NumIntermediates; ++i)
800      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
801  }
802}
803
804
805SDOperand SelectionDAGLowering::getValue(const Value *V) {
806  SDOperand &N = NodeMap[V];
807  if (N.Val) return N;
808
809  const Type *VTy = V->getType();
810  MVT::ValueType VT = TLI.getValueType(VTy);
811  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
812    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
813      visit(CE->getOpcode(), *CE);
814      SDOperand N1 = NodeMap[V];
815      assert(N1.Val && "visit didn't populate the ValueMap!");
816      return N1;
817    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
818      return N = DAG.getGlobalAddress(GV, VT);
819    } else if (isa<ConstantPointerNull>(C)) {
820      return N = DAG.getConstant(0, TLI.getPointerTy());
821    } else if (isa<UndefValue>(C)) {
822      if (!isa<VectorType>(VTy))
823        return N = DAG.getNode(ISD::UNDEF, VT);
824
825      // Create a BUILD_VECTOR of undef nodes.
826      const VectorType *PTy = cast<VectorType>(VTy);
827      unsigned NumElements = PTy->getNumElements();
828      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
829
830      SmallVector<SDOperand, 8> Ops;
831      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
832
833      // Create a VConstant node with generic Vector type.
834      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
835      return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
836                             &Ops[0], Ops.size());
837    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
838      return N = DAG.getConstantFP(CFP->getValue(), VT);
839    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
840      unsigned NumElements = PTy->getNumElements();
841      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
842
843      // Now that we know the number and type of the elements, push a
844      // Constant or ConstantFP node onto the ops list for each element of
845      // the vector constant.
846      SmallVector<SDOperand, 8> Ops;
847      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
848        for (unsigned i = 0; i != NumElements; ++i)
849          Ops.push_back(getValue(CP->getOperand(i)));
850      } else {
851        assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
852        SDOperand Op;
853        if (MVT::isFloatingPoint(PVT))
854          Op = DAG.getConstantFP(0, PVT);
855        else
856          Op = DAG.getConstant(0, PVT);
857        Ops.assign(NumElements, Op);
858      }
859
860      // Create a BUILD_VECTOR node.
861      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
862      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
863                                      Ops.size());
864    } else {
865      // Canonicalize all constant ints to be unsigned.
866      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
867    }
868  }
869
870  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
871    std::map<const AllocaInst*, int>::iterator SI =
872    FuncInfo.StaticAllocaMap.find(AI);
873    if (SI != FuncInfo.StaticAllocaMap.end())
874      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
875  }
876
877  unsigned InReg = FuncInfo.ValueMap[V];
878  assert(InReg && "Value not in map!");
879
880  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
881  unsigned NumRegs = TLI.getNumRegisters(VT);
882
883  std::vector<unsigned> Regs(NumRegs);
884  for (unsigned i = 0; i != NumRegs; ++i)
885    Regs[i] = InReg + i;
886
887  RegsForValue RFV(Regs, RegisterVT, VT);
888  SDOperand Chain = DAG.getEntryNode();
889
890  return RFV.getCopyFromRegs(DAG, Chain, NULL);
891}
892
893
894void SelectionDAGLowering::visitRet(ReturnInst &I) {
895  if (I.getNumOperands() == 0) {
896    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
897    return;
898  }
899  SmallVector<SDOperand, 8> NewValues;
900  NewValues.push_back(getRoot());
901  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
902    SDOperand RetOp = getValue(I.getOperand(i));
903
904    // If this is an integer return value, we need to promote it ourselves to
905    // the full width of a register, since getCopyToParts and Legalize will use
906    // ANY_EXTEND rather than sign/zero.
907    // FIXME: C calling convention requires the return type to be promoted to
908    // at least 32-bit. But this is not necessary for non-C calling conventions.
909    if (MVT::isInteger(RetOp.getValueType()) &&
910        RetOp.getValueType() < MVT::i64) {
911      MVT::ValueType TmpVT;
912      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
913        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
914      else
915        TmpVT = MVT::i32;
916      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
917      const ParamAttrsList *Attrs = FTy->getParamAttrs();
918      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
919      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt))
920        ExtendKind = ISD::SIGN_EXTEND;
921      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt))
922        ExtendKind = ISD::ZERO_EXTEND;
923      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
924      NewValues.push_back(RetOp);
925      NewValues.push_back(DAG.getConstant(false, MVT::i32));
926    } else {
927      MVT::ValueType VT = RetOp.getValueType();
928      unsigned NumParts = TLI.getNumRegisters(VT);
929      MVT::ValueType PartVT = TLI.getRegisterType(VT);
930      SmallVector<SDOperand, 4> Parts(NumParts);
931      getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT);
932      for (unsigned i = 0; i < NumParts; ++i) {
933        NewValues.push_back(Parts[i]);
934        NewValues.push_back(DAG.getConstant(false, MVT::i32));
935      }
936    }
937  }
938  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
939                          &NewValues[0], NewValues.size()));
940}
941
942/// ExportFromCurrentBlock - If this condition isn't known to be exported from
943/// the current basic block, add it to ValueMap now so that we'll get a
944/// CopyTo/FromReg.
945void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
946  // No need to export constants.
947  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
948
949  // Already exported?
950  if (FuncInfo.isExportedInst(V)) return;
951
952  unsigned Reg = FuncInfo.InitializeRegForValue(V);
953  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
954}
955
956bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
957                                                    const BasicBlock *FromBB) {
958  // The operands of the setcc have to be in this block.  We don't know
959  // how to export them from some other block.
960  if (Instruction *VI = dyn_cast<Instruction>(V)) {
961    // Can export from current BB.
962    if (VI->getParent() == FromBB)
963      return true;
964
965    // Is already exported, noop.
966    return FuncInfo.isExportedInst(V);
967  }
968
969  // If this is an argument, we can export it if the BB is the entry block or
970  // if it is already exported.
971  if (isa<Argument>(V)) {
972    if (FromBB == &FromBB->getParent()->getEntryBlock())
973      return true;
974
975    // Otherwise, can only export this if it is already exported.
976    return FuncInfo.isExportedInst(V);
977  }
978
979  // Otherwise, constants can always be exported.
980  return true;
981}
982
983static bool InBlock(const Value *V, const BasicBlock *BB) {
984  if (const Instruction *I = dyn_cast<Instruction>(V))
985    return I->getParent() == BB;
986  return true;
987}
988
989/// FindMergedConditions - If Cond is an expression like
990void SelectionDAGLowering::FindMergedConditions(Value *Cond,
991                                                MachineBasicBlock *TBB,
992                                                MachineBasicBlock *FBB,
993                                                MachineBasicBlock *CurBB,
994                                                unsigned Opc) {
995  // If this node is not part of the or/and tree, emit it as a branch.
996  Instruction *BOp = dyn_cast<Instruction>(Cond);
997
998  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
999      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1000      BOp->getParent() != CurBB->getBasicBlock() ||
1001      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1002      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1003    const BasicBlock *BB = CurBB->getBasicBlock();
1004
1005    // If the leaf of the tree is a comparison, merge the condition into
1006    // the caseblock.
1007    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1008        // The operands of the cmp have to be in this block.  We don't know
1009        // how to export them from some other block.  If this is the first block
1010        // of the sequence, no exporting is needed.
1011        (CurBB == CurMBB ||
1012         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1013          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1014      BOp = cast<Instruction>(Cond);
1015      ISD::CondCode Condition;
1016      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1017        switch (IC->getPredicate()) {
1018        default: assert(0 && "Unknown icmp predicate opcode!");
1019        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1020        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1021        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1022        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1023        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1024        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1025        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1026        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1027        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1028        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1029        }
1030      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1031        ISD::CondCode FPC, FOC;
1032        switch (FC->getPredicate()) {
1033        default: assert(0 && "Unknown fcmp predicate opcode!");
1034        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1035        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1036        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1037        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1038        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1039        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1040        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1041        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1042        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1043        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1044        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1045        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1046        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1047        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1048        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1049        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1050        }
1051        if (FiniteOnlyFPMath())
1052          Condition = FOC;
1053        else
1054          Condition = FPC;
1055      } else {
1056        Condition = ISD::SETEQ; // silence warning.
1057        assert(0 && "Unknown compare instruction");
1058      }
1059
1060      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1061                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1062      SwitchCases.push_back(CB);
1063      return;
1064    }
1065
1066    // Create a CaseBlock record representing this branch.
1067    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1068                                   NULL, TBB, FBB, CurBB);
1069    SwitchCases.push_back(CB);
1070    return;
1071  }
1072
1073
1074  //  Create TmpBB after CurBB.
1075  MachineFunction::iterator BBI = CurBB;
1076  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1077  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1078
1079  if (Opc == Instruction::Or) {
1080    // Codegen X | Y as:
1081    //   jmp_if_X TBB
1082    //   jmp TmpBB
1083    // TmpBB:
1084    //   jmp_if_Y TBB
1085    //   jmp FBB
1086    //
1087
1088    // Emit the LHS condition.
1089    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1090
1091    // Emit the RHS condition into TmpBB.
1092    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1093  } else {
1094    assert(Opc == Instruction::And && "Unknown merge op!");
1095    // Codegen X & Y as:
1096    //   jmp_if_X TmpBB
1097    //   jmp FBB
1098    // TmpBB:
1099    //   jmp_if_Y TBB
1100    //   jmp FBB
1101    //
1102    //  This requires creation of TmpBB after CurBB.
1103
1104    // Emit the LHS condition.
1105    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1106
1107    // Emit the RHS condition into TmpBB.
1108    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1109  }
1110}
1111
1112/// If the set of cases should be emitted as a series of branches, return true.
1113/// If we should emit this as a bunch of and/or'd together conditions, return
1114/// false.
1115static bool
1116ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1117  if (Cases.size() != 2) return true;
1118
1119  // If this is two comparisons of the same values or'd or and'd together, they
1120  // will get folded into a single comparison, so don't emit two blocks.
1121  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1122       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1123      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1124       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1125    return false;
1126  }
1127
1128  return true;
1129}
1130
1131void SelectionDAGLowering::visitBr(BranchInst &I) {
1132  // Update machine-CFG edges.
1133  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1134
1135  // Figure out which block is immediately after the current one.
1136  MachineBasicBlock *NextBlock = 0;
1137  MachineFunction::iterator BBI = CurMBB;
1138  if (++BBI != CurMBB->getParent()->end())
1139    NextBlock = BBI;
1140
1141  if (I.isUnconditional()) {
1142    // If this is not a fall-through branch, emit the branch.
1143    if (Succ0MBB != NextBlock)
1144      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1145                              DAG.getBasicBlock(Succ0MBB)));
1146
1147    // Update machine-CFG edges.
1148    CurMBB->addSuccessor(Succ0MBB);
1149
1150    return;
1151  }
1152
1153  // If this condition is one of the special cases we handle, do special stuff
1154  // now.
1155  Value *CondVal = I.getCondition();
1156  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1157
1158  // If this is a series of conditions that are or'd or and'd together, emit
1159  // this as a sequence of branches instead of setcc's with and/or operations.
1160  // For example, instead of something like:
1161  //     cmp A, B
1162  //     C = seteq
1163  //     cmp D, E
1164  //     F = setle
1165  //     or C, F
1166  //     jnz foo
1167  // Emit:
1168  //     cmp A, B
1169  //     je foo
1170  //     cmp D, E
1171  //     jle foo
1172  //
1173  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1174    if (BOp->hasOneUse() &&
1175        (BOp->getOpcode() == Instruction::And ||
1176         BOp->getOpcode() == Instruction::Or)) {
1177      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1178      // If the compares in later blocks need to use values not currently
1179      // exported from this block, export them now.  This block should always
1180      // be the first entry.
1181      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1182
1183      // Allow some cases to be rejected.
1184      if (ShouldEmitAsBranches(SwitchCases)) {
1185        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1186          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1187          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1188        }
1189
1190        // Emit the branch for this block.
1191        visitSwitchCase(SwitchCases[0]);
1192        SwitchCases.erase(SwitchCases.begin());
1193        return;
1194      }
1195
1196      // Okay, we decided not to do this, remove any inserted MBB's and clear
1197      // SwitchCases.
1198      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1199        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1200
1201      SwitchCases.clear();
1202    }
1203  }
1204
1205  // Create a CaseBlock record representing this branch.
1206  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1207                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1208  // Use visitSwitchCase to actually insert the fast branch sequence for this
1209  // cond branch.
1210  visitSwitchCase(CB);
1211}
1212
1213/// visitSwitchCase - Emits the necessary code to represent a single node in
1214/// the binary search tree resulting from lowering a switch instruction.
1215void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1216  SDOperand Cond;
1217  SDOperand CondLHS = getValue(CB.CmpLHS);
1218
1219  // Build the setcc now.
1220  if (CB.CmpMHS == NULL) {
1221    // Fold "(X == true)" to X and "(X == false)" to !X to
1222    // handle common cases produced by branch lowering.
1223    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1224      Cond = CondLHS;
1225    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1226      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1227      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1228    } else
1229      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1230  } else {
1231    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1232
1233    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1234    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1235
1236    SDOperand CmpOp = getValue(CB.CmpMHS);
1237    MVT::ValueType VT = CmpOp.getValueType();
1238
1239    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1240      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1241    } else {
1242      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1243      Cond = DAG.getSetCC(MVT::i1, SUB,
1244                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1245    }
1246
1247  }
1248
1249  // Set NextBlock to be the MBB immediately after the current one, if any.
1250  // This is used to avoid emitting unnecessary branches to the next block.
1251  MachineBasicBlock *NextBlock = 0;
1252  MachineFunction::iterator BBI = CurMBB;
1253  if (++BBI != CurMBB->getParent()->end())
1254    NextBlock = BBI;
1255
1256  // If the lhs block is the next block, invert the condition so that we can
1257  // fall through to the lhs instead of the rhs block.
1258  if (CB.TrueBB == NextBlock) {
1259    std::swap(CB.TrueBB, CB.FalseBB);
1260    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1261    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1262  }
1263  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1264                                 DAG.getBasicBlock(CB.TrueBB));
1265  if (CB.FalseBB == NextBlock)
1266    DAG.setRoot(BrCond);
1267  else
1268    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1269                            DAG.getBasicBlock(CB.FalseBB)));
1270  // Update successor info
1271  CurMBB->addSuccessor(CB.TrueBB);
1272  CurMBB->addSuccessor(CB.FalseBB);
1273}
1274
1275/// visitJumpTable - Emit JumpTable node in the current MBB
1276void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1277  // Emit the code for the jump table
1278  assert(JT.Reg != -1U && "Should lower JT Header first!");
1279  MVT::ValueType PTy = TLI.getPointerTy();
1280  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1281  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1282  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1283                          Table, Index));
1284  return;
1285}
1286
1287/// visitJumpTableHeader - This function emits necessary code to produce index
1288/// in the JumpTable from switch case.
1289void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1290                                         SelectionDAGISel::JumpTableHeader &JTH) {
1291  // Subtract the lowest switch case value from the value being switched on
1292  // and conditional branch to default mbb if the result is greater than the
1293  // difference between smallest and largest cases.
1294  SDOperand SwitchOp = getValue(JTH.SValue);
1295  MVT::ValueType VT = SwitchOp.getValueType();
1296  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1297                              DAG.getConstant(JTH.First, VT));
1298
1299  // The SDNode we just created, which holds the value being switched on
1300  // minus the the smallest case value, needs to be copied to a virtual
1301  // register so it can be used as an index into the jump table in a
1302  // subsequent basic block.  This value may be smaller or larger than the
1303  // target's pointer type, and therefore require extension or truncating.
1304  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1305    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1306  else
1307    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1308
1309  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1310  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1311  JT.Reg = JumpTableReg;
1312
1313  // Emit the range check for the jump table, and branch to the default
1314  // block for the switch statement if the value being switched on exceeds
1315  // the largest case in the switch.
1316  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1317                               DAG.getConstant(JTH.Last-JTH.First,VT),
1318                               ISD::SETUGT);
1319
1320  // Set NextBlock to be the MBB immediately after the current one, if any.
1321  // This is used to avoid emitting unnecessary branches to the next block.
1322  MachineBasicBlock *NextBlock = 0;
1323  MachineFunction::iterator BBI = CurMBB;
1324  if (++BBI != CurMBB->getParent()->end())
1325    NextBlock = BBI;
1326
1327  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1328                                 DAG.getBasicBlock(JT.Default));
1329
1330  if (JT.MBB == NextBlock)
1331    DAG.setRoot(BrCond);
1332  else
1333    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1334                            DAG.getBasicBlock(JT.MBB)));
1335
1336  return;
1337}
1338
1339/// visitBitTestHeader - This function emits necessary code to produce value
1340/// suitable for "bit tests"
1341void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1342  // Subtract the minimum value
1343  SDOperand SwitchOp = getValue(B.SValue);
1344  MVT::ValueType VT = SwitchOp.getValueType();
1345  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1346                              DAG.getConstant(B.First, VT));
1347
1348  // Check range
1349  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1350                                    DAG.getConstant(B.Range, VT),
1351                                    ISD::SETUGT);
1352
1353  SDOperand ShiftOp;
1354  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1355    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1356  else
1357    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1358
1359  // Make desired shift
1360  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1361                                    DAG.getConstant(1, TLI.getPointerTy()),
1362                                    ShiftOp);
1363
1364  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1365  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1366  B.Reg = SwitchReg;
1367
1368  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1369                                  DAG.getBasicBlock(B.Default));
1370
1371  // Set NextBlock to be the MBB immediately after the current one, if any.
1372  // This is used to avoid emitting unnecessary branches to the next block.
1373  MachineBasicBlock *NextBlock = 0;
1374  MachineFunction::iterator BBI = CurMBB;
1375  if (++BBI != CurMBB->getParent()->end())
1376    NextBlock = BBI;
1377
1378  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1379  if (MBB == NextBlock)
1380    DAG.setRoot(BrRange);
1381  else
1382    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1383                            DAG.getBasicBlock(MBB)));
1384
1385  CurMBB->addSuccessor(B.Default);
1386  CurMBB->addSuccessor(MBB);
1387
1388  return;
1389}
1390
1391/// visitBitTestCase - this function produces one "bit test"
1392void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1393                                            unsigned Reg,
1394                                            SelectionDAGISel::BitTestCase &B) {
1395  // Emit bit tests and jumps
1396  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1397
1398  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1399                                SwitchVal,
1400                                DAG.getConstant(B.Mask,
1401                                                TLI.getPointerTy()));
1402  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1403                                  DAG.getConstant(0, TLI.getPointerTy()),
1404                                  ISD::SETNE);
1405  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1406                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1407
1408  // Set NextBlock to be the MBB immediately after the current one, if any.
1409  // This is used to avoid emitting unnecessary branches to the next block.
1410  MachineBasicBlock *NextBlock = 0;
1411  MachineFunction::iterator BBI = CurMBB;
1412  if (++BBI != CurMBB->getParent()->end())
1413    NextBlock = BBI;
1414
1415  if (NextMBB == NextBlock)
1416    DAG.setRoot(BrAnd);
1417  else
1418    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1419                            DAG.getBasicBlock(NextMBB)));
1420
1421  CurMBB->addSuccessor(B.TargetBB);
1422  CurMBB->addSuccessor(NextMBB);
1423
1424  return;
1425}
1426
1427void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1428  // Retrieve successors.
1429  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1430  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1431
1432  LowerCallTo(I, I.getCalledValue()->getType(),
1433              I.getCallingConv(),
1434              false,
1435              getValue(I.getOperand(0)),
1436              3, LandingPad);
1437
1438  // If the value of the invoke is used outside of its defining block, make it
1439  // available as a virtual register.
1440  if (!I.use_empty()) {
1441    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1442    if (VMI != FuncInfo.ValueMap.end())
1443      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1444  }
1445
1446  // Drop into normal successor.
1447  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1448                          DAG.getBasicBlock(Return)));
1449
1450  // Update successor info
1451  CurMBB->addSuccessor(Return);
1452  CurMBB->addSuccessor(LandingPad);
1453}
1454
1455void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1456}
1457
1458/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1459/// small case ranges).
1460bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1461                                                  CaseRecVector& WorkList,
1462                                                  Value* SV,
1463                                                  MachineBasicBlock* Default) {
1464  Case& BackCase  = *(CR.Range.second-1);
1465
1466  // Size is the number of Cases represented by this range.
1467  unsigned Size = CR.Range.second - CR.Range.first;
1468  if (Size > 3)
1469    return false;
1470
1471  // Get the MachineFunction which holds the current MBB.  This is used when
1472  // inserting any additional MBBs necessary to represent the switch.
1473  MachineFunction *CurMF = CurMBB->getParent();
1474
1475  // Figure out which block is immediately after the current one.
1476  MachineBasicBlock *NextBlock = 0;
1477  MachineFunction::iterator BBI = CR.CaseBB;
1478
1479  if (++BBI != CurMBB->getParent()->end())
1480    NextBlock = BBI;
1481
1482  // TODO: If any two of the cases has the same destination, and if one value
1483  // is the same as the other, but has one bit unset that the other has set,
1484  // use bit manipulation to do two compares at once.  For example:
1485  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1486
1487  // Rearrange the case blocks so that the last one falls through if possible.
1488  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1489    // The last case block won't fall through into 'NextBlock' if we emit the
1490    // branches in this order.  See if rearranging a case value would help.
1491    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1492      if (I->BB == NextBlock) {
1493        std::swap(*I, BackCase);
1494        break;
1495      }
1496    }
1497  }
1498
1499  // Create a CaseBlock record representing a conditional branch to
1500  // the Case's target mbb if the value being switched on SV is equal
1501  // to C.
1502  MachineBasicBlock *CurBlock = CR.CaseBB;
1503  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1504    MachineBasicBlock *FallThrough;
1505    if (I != E-1) {
1506      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1507      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1508    } else {
1509      // If the last case doesn't match, go to the default block.
1510      FallThrough = Default;
1511    }
1512
1513    Value *RHS, *LHS, *MHS;
1514    ISD::CondCode CC;
1515    if (I->High == I->Low) {
1516      // This is just small small case range :) containing exactly 1 case
1517      CC = ISD::SETEQ;
1518      LHS = SV; RHS = I->High; MHS = NULL;
1519    } else {
1520      CC = ISD::SETLE;
1521      LHS = I->Low; MHS = SV; RHS = I->High;
1522    }
1523    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1524                                   I->BB, FallThrough, CurBlock);
1525
1526    // If emitting the first comparison, just call visitSwitchCase to emit the
1527    // code into the current block.  Otherwise, push the CaseBlock onto the
1528    // vector to be later processed by SDISel, and insert the node's MBB
1529    // before the next MBB.
1530    if (CurBlock == CurMBB)
1531      visitSwitchCase(CB);
1532    else
1533      SwitchCases.push_back(CB);
1534
1535    CurBlock = FallThrough;
1536  }
1537
1538  return true;
1539}
1540
1541static inline bool areJTsAllowed(const TargetLowering &TLI) {
1542  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1543          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1544}
1545
1546/// handleJTSwitchCase - Emit jumptable for current switch case range
1547bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1548                                              CaseRecVector& WorkList,
1549                                              Value* SV,
1550                                              MachineBasicBlock* Default) {
1551  Case& FrontCase = *CR.Range.first;
1552  Case& BackCase  = *(CR.Range.second-1);
1553
1554  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1555  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1556
1557  uint64_t TSize = 0;
1558  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1559       I!=E; ++I)
1560    TSize += I->size();
1561
1562  if (!areJTsAllowed(TLI) || TSize <= 3)
1563    return false;
1564
1565  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1566  if (Density < 0.4)
1567    return false;
1568
1569  DOUT << "Lowering jump table\n"
1570       << "First entry: " << First << ". Last entry: " << Last << "\n"
1571       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1572
1573  // Get the MachineFunction which holds the current MBB.  This is used when
1574  // inserting any additional MBBs necessary to represent the switch.
1575  MachineFunction *CurMF = CurMBB->getParent();
1576
1577  // Figure out which block is immediately after the current one.
1578  MachineBasicBlock *NextBlock = 0;
1579  MachineFunction::iterator BBI = CR.CaseBB;
1580
1581  if (++BBI != CurMBB->getParent()->end())
1582    NextBlock = BBI;
1583
1584  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1585
1586  // Create a new basic block to hold the code for loading the address
1587  // of the jump table, and jumping to it.  Update successor information;
1588  // we will either branch to the default case for the switch, or the jump
1589  // table.
1590  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1591  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1592  CR.CaseBB->addSuccessor(Default);
1593  CR.CaseBB->addSuccessor(JumpTableBB);
1594
1595  // Build a vector of destination BBs, corresponding to each target
1596  // of the jump table. If the value of the jump table slot corresponds to
1597  // a case statement, push the case's BB onto the vector, otherwise, push
1598  // the default BB.
1599  std::vector<MachineBasicBlock*> DestBBs;
1600  int64_t TEI = First;
1601  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1602    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1603    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1604
1605    if ((Low <= TEI) && (TEI <= High)) {
1606      DestBBs.push_back(I->BB);
1607      if (TEI==High)
1608        ++I;
1609    } else {
1610      DestBBs.push_back(Default);
1611    }
1612  }
1613
1614  // Update successor info. Add one edge to each unique successor.
1615  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1616  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1617         E = DestBBs.end(); I != E; ++I) {
1618    if (!SuccsHandled[(*I)->getNumber()]) {
1619      SuccsHandled[(*I)->getNumber()] = true;
1620      JumpTableBB->addSuccessor(*I);
1621    }
1622  }
1623
1624  // Create a jump table index for this jump table, or return an existing
1625  // one.
1626  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1627
1628  // Set the jump table information so that we can codegen it as a second
1629  // MachineBasicBlock
1630  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1631  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1632                                        (CR.CaseBB == CurMBB));
1633  if (CR.CaseBB == CurMBB)
1634    visitJumpTableHeader(JT, JTH);
1635
1636  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1637
1638  return true;
1639}
1640
1641/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1642/// 2 subtrees.
1643bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1644                                                   CaseRecVector& WorkList,
1645                                                   Value* SV,
1646                                                   MachineBasicBlock* Default) {
1647  // Get the MachineFunction which holds the current MBB.  This is used when
1648  // inserting any additional MBBs necessary to represent the switch.
1649  MachineFunction *CurMF = CurMBB->getParent();
1650
1651  // Figure out which block is immediately after the current one.
1652  MachineBasicBlock *NextBlock = 0;
1653  MachineFunction::iterator BBI = CR.CaseBB;
1654
1655  if (++BBI != CurMBB->getParent()->end())
1656    NextBlock = BBI;
1657
1658  Case& FrontCase = *CR.Range.first;
1659  Case& BackCase  = *(CR.Range.second-1);
1660  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1661
1662  // Size is the number of Cases represented by this range.
1663  unsigned Size = CR.Range.second - CR.Range.first;
1664
1665  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1666  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1667  double FMetric = 0;
1668  CaseItr Pivot = CR.Range.first + Size/2;
1669
1670  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1671  // (heuristically) allow us to emit JumpTable's later.
1672  uint64_t TSize = 0;
1673  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1674       I!=E; ++I)
1675    TSize += I->size();
1676
1677  uint64_t LSize = FrontCase.size();
1678  uint64_t RSize = TSize-LSize;
1679  DOUT << "Selecting best pivot: \n"
1680       << "First: " << First << ", Last: " << Last <<"\n"
1681       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1682  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1683       J!=E; ++I, ++J) {
1684    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1685    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1686    assert((RBegin-LEnd>=1) && "Invalid case distance");
1687    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1688    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1689    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1690    // Should always split in some non-trivial place
1691    DOUT <<"=>Step\n"
1692         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1693         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1694         << "Metric: " << Metric << "\n";
1695    if (FMetric < Metric) {
1696      Pivot = J;
1697      FMetric = Metric;
1698      DOUT << "Current metric set to: " << FMetric << "\n";
1699    }
1700
1701    LSize += J->size();
1702    RSize -= J->size();
1703  }
1704  if (areJTsAllowed(TLI)) {
1705    // If our case is dense we *really* should handle it earlier!
1706    assert((FMetric > 0) && "Should handle dense range earlier!");
1707  } else {
1708    Pivot = CR.Range.first + Size/2;
1709  }
1710
1711  CaseRange LHSR(CR.Range.first, Pivot);
1712  CaseRange RHSR(Pivot, CR.Range.second);
1713  Constant *C = Pivot->Low;
1714  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1715
1716  // We know that we branch to the LHS if the Value being switched on is
1717  // less than the Pivot value, C.  We use this to optimize our binary
1718  // tree a bit, by recognizing that if SV is greater than or equal to the
1719  // LHS's Case Value, and that Case Value is exactly one less than the
1720  // Pivot's Value, then we can branch directly to the LHS's Target,
1721  // rather than creating a leaf node for it.
1722  if ((LHSR.second - LHSR.first) == 1 &&
1723      LHSR.first->High == CR.GE &&
1724      cast<ConstantInt>(C)->getSExtValue() ==
1725      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1726    TrueBB = LHSR.first->BB;
1727  } else {
1728    TrueBB = new MachineBasicBlock(LLVMBB);
1729    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1730    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1731  }
1732
1733  // Similar to the optimization above, if the Value being switched on is
1734  // known to be less than the Constant CR.LT, and the current Case Value
1735  // is CR.LT - 1, then we can branch directly to the target block for
1736  // the current Case Value, rather than emitting a RHS leaf node for it.
1737  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1738      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1739      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1740    FalseBB = RHSR.first->BB;
1741  } else {
1742    FalseBB = new MachineBasicBlock(LLVMBB);
1743    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1744    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1745  }
1746
1747  // Create a CaseBlock record representing a conditional branch to
1748  // the LHS node if the value being switched on SV is less than C.
1749  // Otherwise, branch to LHS.
1750  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1751                                 TrueBB, FalseBB, CR.CaseBB);
1752
1753  if (CR.CaseBB == CurMBB)
1754    visitSwitchCase(CB);
1755  else
1756    SwitchCases.push_back(CB);
1757
1758  return true;
1759}
1760
1761/// handleBitTestsSwitchCase - if current case range has few destination and
1762/// range span less, than machine word bitwidth, encode case range into series
1763/// of masks and emit bit tests with these masks.
1764bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1765                                                    CaseRecVector& WorkList,
1766                                                    Value* SV,
1767                                                    MachineBasicBlock* Default){
1768  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1769
1770  Case& FrontCase = *CR.Range.first;
1771  Case& BackCase  = *(CR.Range.second-1);
1772
1773  // Get the MachineFunction which holds the current MBB.  This is used when
1774  // inserting any additional MBBs necessary to represent the switch.
1775  MachineFunction *CurMF = CurMBB->getParent();
1776
1777  unsigned numCmps = 0;
1778  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1779       I!=E; ++I) {
1780    // Single case counts one, case range - two.
1781    if (I->Low == I->High)
1782      numCmps +=1;
1783    else
1784      numCmps +=2;
1785  }
1786
1787  // Count unique destinations
1788  SmallSet<MachineBasicBlock*, 4> Dests;
1789  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1790    Dests.insert(I->BB);
1791    if (Dests.size() > 3)
1792      // Don't bother the code below, if there are too much unique destinations
1793      return false;
1794  }
1795  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1796       << "Total number of comparisons: " << numCmps << "\n";
1797
1798  // Compute span of values.
1799  Constant* minValue = FrontCase.Low;
1800  Constant* maxValue = BackCase.High;
1801  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1802                   cast<ConstantInt>(minValue)->getSExtValue();
1803  DOUT << "Compare range: " << range << "\n"
1804       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1805       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1806
1807  if (range>=IntPtrBits ||
1808      (!(Dests.size() == 1 && numCmps >= 3) &&
1809       !(Dests.size() == 2 && numCmps >= 5) &&
1810       !(Dests.size() >= 3 && numCmps >= 6)))
1811    return false;
1812
1813  DOUT << "Emitting bit tests\n";
1814  int64_t lowBound = 0;
1815
1816  // Optimize the case where all the case values fit in a
1817  // word without having to subtract minValue. In this case,
1818  // we can optimize away the subtraction.
1819  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1820      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1821    range = cast<ConstantInt>(maxValue)->getSExtValue();
1822  } else {
1823    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1824  }
1825
1826  CaseBitsVector CasesBits;
1827  unsigned i, count = 0;
1828
1829  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1830    MachineBasicBlock* Dest = I->BB;
1831    for (i = 0; i < count; ++i)
1832      if (Dest == CasesBits[i].BB)
1833        break;
1834
1835    if (i == count) {
1836      assert((count < 3) && "Too much destinations to test!");
1837      CasesBits.push_back(CaseBits(0, Dest, 0));
1838      count++;
1839    }
1840
1841    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1842    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1843
1844    for (uint64_t j = lo; j <= hi; j++) {
1845      CasesBits[i].Mask |=  1ULL << j;
1846      CasesBits[i].Bits++;
1847    }
1848
1849  }
1850  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1851
1852  SelectionDAGISel::BitTestInfo BTC;
1853
1854  // Figure out which block is immediately after the current one.
1855  MachineFunction::iterator BBI = CR.CaseBB;
1856  ++BBI;
1857
1858  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1859
1860  DOUT << "Cases:\n";
1861  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1862    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1863         << ", BB: " << CasesBits[i].BB << "\n";
1864
1865    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1866    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1867    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1868                                                CaseBB,
1869                                                CasesBits[i].BB));
1870  }
1871
1872  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1873                                     -1U, (CR.CaseBB == CurMBB),
1874                                     CR.CaseBB, Default, BTC);
1875
1876  if (CR.CaseBB == CurMBB)
1877    visitBitTestHeader(BTB);
1878
1879  BitTestCases.push_back(BTB);
1880
1881  return true;
1882}
1883
1884
1885// Clusterify - Transform simple list of Cases into list of CaseRange's
1886unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1887                                          const SwitchInst& SI) {
1888  unsigned numCmps = 0;
1889
1890  // Start with "simple" cases
1891  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1892    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1893    Cases.push_back(Case(SI.getSuccessorValue(i),
1894                         SI.getSuccessorValue(i),
1895                         SMBB));
1896  }
1897  sort(Cases.begin(), Cases.end(), CaseCmp());
1898
1899  // Merge case into clusters
1900  if (Cases.size()>=2)
1901    // Must recompute end() each iteration because it may be
1902    // invalidated by erase if we hold on to it
1903    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
1904      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1905      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1906      MachineBasicBlock* nextBB = J->BB;
1907      MachineBasicBlock* currentBB = I->BB;
1908
1909      // If the two neighboring cases go to the same destination, merge them
1910      // into a single case.
1911      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1912        I->High = J->High;
1913        J = Cases.erase(J);
1914      } else {
1915        I = J++;
1916      }
1917    }
1918
1919  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1920    if (I->Low != I->High)
1921      // A range counts double, since it requires two compares.
1922      ++numCmps;
1923  }
1924
1925  return numCmps;
1926}
1927
1928void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1929  // Figure out which block is immediately after the current one.
1930  MachineBasicBlock *NextBlock = 0;
1931  MachineFunction::iterator BBI = CurMBB;
1932
1933  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1934
1935  // If there is only the default destination, branch to it if it is not the
1936  // next basic block.  Otherwise, just fall through.
1937  if (SI.getNumOperands() == 2) {
1938    // Update machine-CFG edges.
1939
1940    // If this is not a fall-through branch, emit the branch.
1941    if (Default != NextBlock)
1942      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1943                              DAG.getBasicBlock(Default)));
1944
1945    CurMBB->addSuccessor(Default);
1946    return;
1947  }
1948
1949  // If there are any non-default case statements, create a vector of Cases
1950  // representing each one, and sort the vector so that we can efficiently
1951  // create a binary search tree from them.
1952  CaseVector Cases;
1953  unsigned numCmps = Clusterify(Cases, SI);
1954  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1955       << ". Total compares: " << numCmps << "\n";
1956
1957  // Get the Value to be switched on and default basic blocks, which will be
1958  // inserted into CaseBlock records, representing basic blocks in the binary
1959  // search tree.
1960  Value *SV = SI.getOperand(0);
1961
1962  // Push the initial CaseRec onto the worklist
1963  CaseRecVector WorkList;
1964  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1965
1966  while (!WorkList.empty()) {
1967    // Grab a record representing a case range to process off the worklist
1968    CaseRec CR = WorkList.back();
1969    WorkList.pop_back();
1970
1971    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1972      continue;
1973
1974    // If the range has few cases (two or less) emit a series of specific
1975    // tests.
1976    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1977      continue;
1978
1979    // If the switch has more than 5 blocks, and at least 40% dense, and the
1980    // target supports indirect branches, then emit a jump table rather than
1981    // lowering the switch to a binary tree of conditional branches.
1982    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1983      continue;
1984
1985    // Emit binary tree. We need to pick a pivot, and push left and right ranges
1986    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
1987    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
1988  }
1989}
1990
1991
1992void SelectionDAGLowering::visitSub(User &I) {
1993  // -0.0 - X --> fneg
1994  const Type *Ty = I.getType();
1995  if (isa<VectorType>(Ty)) {
1996    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
1997      const VectorType *DestTy = cast<VectorType>(I.getType());
1998      const Type *ElTy = DestTy->getElementType();
1999      if (ElTy->isFloatingPoint()) {
2000        unsigned VL = DestTy->getNumElements();
2001        std::vector<Constant*> NZ(VL, ConstantFP::get(ElTy, -0.0));
2002        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2003        if (CV == CNZ) {
2004          SDOperand Op2 = getValue(I.getOperand(1));
2005          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2006          return;
2007        }
2008      }
2009    }
2010  }
2011  if (Ty->isFloatingPoint()) {
2012    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2013      if (CFP->isExactlyValue(-0.0)) {
2014        SDOperand Op2 = getValue(I.getOperand(1));
2015        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2016        return;
2017      }
2018  }
2019
2020  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2021}
2022
2023void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2024  SDOperand Op1 = getValue(I.getOperand(0));
2025  SDOperand Op2 = getValue(I.getOperand(1));
2026
2027  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2028}
2029
2030void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2031  SDOperand Op1 = getValue(I.getOperand(0));
2032  SDOperand Op2 = getValue(I.getOperand(1));
2033
2034  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2035      MVT::getSizeInBits(Op2.getValueType()))
2036    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2037  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2038    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2039
2040  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2041}
2042
2043void SelectionDAGLowering::visitICmp(User &I) {
2044  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2045  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2046    predicate = IC->getPredicate();
2047  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2048    predicate = ICmpInst::Predicate(IC->getPredicate());
2049  SDOperand Op1 = getValue(I.getOperand(0));
2050  SDOperand Op2 = getValue(I.getOperand(1));
2051  ISD::CondCode Opcode;
2052  switch (predicate) {
2053    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2054    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2055    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2056    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2057    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2058    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2059    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2060    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2061    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2062    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2063    default:
2064      assert(!"Invalid ICmp predicate value");
2065      Opcode = ISD::SETEQ;
2066      break;
2067  }
2068  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2069}
2070
2071void SelectionDAGLowering::visitFCmp(User &I) {
2072  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2073  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2074    predicate = FC->getPredicate();
2075  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2076    predicate = FCmpInst::Predicate(FC->getPredicate());
2077  SDOperand Op1 = getValue(I.getOperand(0));
2078  SDOperand Op2 = getValue(I.getOperand(1));
2079  ISD::CondCode Condition, FOC, FPC;
2080  switch (predicate) {
2081    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2082    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2083    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2084    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2085    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2086    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2087    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2088    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2089    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2090    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2091    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2092    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2093    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2094    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2095    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2096    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2097    default:
2098      assert(!"Invalid FCmp predicate value");
2099      FOC = FPC = ISD::SETFALSE;
2100      break;
2101  }
2102  if (FiniteOnlyFPMath())
2103    Condition = FOC;
2104  else
2105    Condition = FPC;
2106  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2107}
2108
2109void SelectionDAGLowering::visitSelect(User &I) {
2110  SDOperand Cond     = getValue(I.getOperand(0));
2111  SDOperand TrueVal  = getValue(I.getOperand(1));
2112  SDOperand FalseVal = getValue(I.getOperand(2));
2113  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2114                           TrueVal, FalseVal));
2115}
2116
2117
2118void SelectionDAGLowering::visitTrunc(User &I) {
2119  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2120  SDOperand N = getValue(I.getOperand(0));
2121  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2122  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2123}
2124
2125void SelectionDAGLowering::visitZExt(User &I) {
2126  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2127  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2128  SDOperand N = getValue(I.getOperand(0));
2129  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2130  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2131}
2132
2133void SelectionDAGLowering::visitSExt(User &I) {
2134  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2135  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2136  SDOperand N = getValue(I.getOperand(0));
2137  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2138  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2139}
2140
2141void SelectionDAGLowering::visitFPTrunc(User &I) {
2142  // FPTrunc is never a no-op cast, no need to check
2143  SDOperand N = getValue(I.getOperand(0));
2144  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2145  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2146}
2147
2148void SelectionDAGLowering::visitFPExt(User &I){
2149  // FPTrunc is never a no-op cast, no need to check
2150  SDOperand N = getValue(I.getOperand(0));
2151  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2152  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2153}
2154
2155void SelectionDAGLowering::visitFPToUI(User &I) {
2156  // FPToUI is never a no-op cast, no need to check
2157  SDOperand N = getValue(I.getOperand(0));
2158  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2159  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2160}
2161
2162void SelectionDAGLowering::visitFPToSI(User &I) {
2163  // FPToSI is never a no-op cast, no need to check
2164  SDOperand N = getValue(I.getOperand(0));
2165  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2166  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2167}
2168
2169void SelectionDAGLowering::visitUIToFP(User &I) {
2170  // UIToFP is never a no-op cast, no need to check
2171  SDOperand N = getValue(I.getOperand(0));
2172  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2173  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2174}
2175
2176void SelectionDAGLowering::visitSIToFP(User &I){
2177  // UIToFP is never a no-op cast, no need to check
2178  SDOperand N = getValue(I.getOperand(0));
2179  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2180  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2181}
2182
2183void SelectionDAGLowering::visitPtrToInt(User &I) {
2184  // What to do depends on the size of the integer and the size of the pointer.
2185  // We can either truncate, zero extend, or no-op, accordingly.
2186  SDOperand N = getValue(I.getOperand(0));
2187  MVT::ValueType SrcVT = N.getValueType();
2188  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2189  SDOperand Result;
2190  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2191    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2192  else
2193    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2194    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2195  setValue(&I, Result);
2196}
2197
2198void SelectionDAGLowering::visitIntToPtr(User &I) {
2199  // What to do depends on the size of the integer and the size of the pointer.
2200  // We can either truncate, zero extend, or no-op, accordingly.
2201  SDOperand N = getValue(I.getOperand(0));
2202  MVT::ValueType SrcVT = N.getValueType();
2203  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2204  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2205    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2206  else
2207    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2208    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2209}
2210
2211void SelectionDAGLowering::visitBitCast(User &I) {
2212  SDOperand N = getValue(I.getOperand(0));
2213  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2214
2215  // BitCast assures us that source and destination are the same size so this
2216  // is either a BIT_CONVERT or a no-op.
2217  if (DestVT != N.getValueType())
2218    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2219  else
2220    setValue(&I, N); // noop cast.
2221}
2222
2223void SelectionDAGLowering::visitInsertElement(User &I) {
2224  SDOperand InVec = getValue(I.getOperand(0));
2225  SDOperand InVal = getValue(I.getOperand(1));
2226  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2227                                getValue(I.getOperand(2)));
2228
2229  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2230                           TLI.getValueType(I.getType()),
2231                           InVec, InVal, InIdx));
2232}
2233
2234void SelectionDAGLowering::visitExtractElement(User &I) {
2235  SDOperand InVec = getValue(I.getOperand(0));
2236  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2237                                getValue(I.getOperand(1)));
2238  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2239                           TLI.getValueType(I.getType()), InVec, InIdx));
2240}
2241
2242void SelectionDAGLowering::visitShuffleVector(User &I) {
2243  SDOperand V1   = getValue(I.getOperand(0));
2244  SDOperand V2   = getValue(I.getOperand(1));
2245  SDOperand Mask = getValue(I.getOperand(2));
2246
2247  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2248                           TLI.getValueType(I.getType()),
2249                           V1, V2, Mask));
2250}
2251
2252
2253void SelectionDAGLowering::visitGetElementPtr(User &I) {
2254  SDOperand N = getValue(I.getOperand(0));
2255  const Type *Ty = I.getOperand(0)->getType();
2256
2257  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2258       OI != E; ++OI) {
2259    Value *Idx = *OI;
2260    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2261      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2262      if (Field) {
2263        // N = N + Offset
2264        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2265        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2266                        getIntPtrConstant(Offset));
2267      }
2268      Ty = StTy->getElementType(Field);
2269    } else {
2270      Ty = cast<SequentialType>(Ty)->getElementType();
2271
2272      // If this is a constant subscript, handle it quickly.
2273      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2274        if (CI->getZExtValue() == 0) continue;
2275        uint64_t Offs =
2276            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2277        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2278        continue;
2279      }
2280
2281      // N = N + Idx * ElementSize;
2282      uint64_t ElementSize = TD->getTypeSize(Ty);
2283      SDOperand IdxN = getValue(Idx);
2284
2285      // If the index is smaller or larger than intptr_t, truncate or extend
2286      // it.
2287      if (IdxN.getValueType() < N.getValueType()) {
2288        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2289      } else if (IdxN.getValueType() > N.getValueType())
2290        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2291
2292      // If this is a multiply by a power of two, turn it into a shl
2293      // immediately.  This is a very common case.
2294      if (isPowerOf2_64(ElementSize)) {
2295        unsigned Amt = Log2_64(ElementSize);
2296        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2297                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2298        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2299        continue;
2300      }
2301
2302      SDOperand Scale = getIntPtrConstant(ElementSize);
2303      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2304      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2305    }
2306  }
2307  setValue(&I, N);
2308}
2309
2310void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2311  // If this is a fixed sized alloca in the entry block of the function,
2312  // allocate it statically on the stack.
2313  if (FuncInfo.StaticAllocaMap.count(&I))
2314    return;   // getValue will auto-populate this.
2315
2316  const Type *Ty = I.getAllocatedType();
2317  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
2318  unsigned Align =
2319    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2320             I.getAlignment());
2321
2322  SDOperand AllocSize = getValue(I.getArraySize());
2323  MVT::ValueType IntPtr = TLI.getPointerTy();
2324  if (IntPtr < AllocSize.getValueType())
2325    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2326  else if (IntPtr > AllocSize.getValueType())
2327    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2328
2329  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2330                          getIntPtrConstant(TySize));
2331
2332  // Handle alignment.  If the requested alignment is less than or equal to
2333  // the stack alignment, ignore it.  If the size is greater than or equal to
2334  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2335  unsigned StackAlign =
2336    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2337  if (Align <= StackAlign)
2338    Align = 0;
2339
2340  // Round the size of the allocation up to the stack alignment size
2341  // by add SA-1 to the size.
2342  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2343                          getIntPtrConstant(StackAlign-1));
2344  // Mask out the low bits for alignment purposes.
2345  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2346                          getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2347
2348  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2349  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2350                                                    MVT::Other);
2351  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2352  setValue(&I, DSA);
2353  DAG.setRoot(DSA.getValue(1));
2354
2355  // Inform the Frame Information that we have just allocated a variable-sized
2356  // object.
2357  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2358}
2359
2360void SelectionDAGLowering::visitLoad(LoadInst &I) {
2361  SDOperand Ptr = getValue(I.getOperand(0));
2362
2363  SDOperand Root;
2364  if (I.isVolatile())
2365    Root = getRoot();
2366  else {
2367    // Do not serialize non-volatile loads against each other.
2368    Root = DAG.getRoot();
2369  }
2370
2371  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2372                           Root, I.isVolatile(), I.getAlignment()));
2373}
2374
2375SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2376                                            const Value *SV, SDOperand Root,
2377                                            bool isVolatile,
2378                                            unsigned Alignment) {
2379  SDOperand L =
2380    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2381                isVolatile, Alignment);
2382
2383  if (isVolatile)
2384    DAG.setRoot(L.getValue(1));
2385  else
2386    PendingLoads.push_back(L.getValue(1));
2387
2388  return L;
2389}
2390
2391
2392void SelectionDAGLowering::visitStore(StoreInst &I) {
2393  Value *SrcV = I.getOperand(0);
2394  SDOperand Src = getValue(SrcV);
2395  SDOperand Ptr = getValue(I.getOperand(1));
2396  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2397                           I.isVolatile(), I.getAlignment()));
2398}
2399
2400/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2401/// access memory and has no other side effects at all.
2402static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2403#define GET_NO_MEMORY_INTRINSICS
2404#include "llvm/Intrinsics.gen"
2405#undef GET_NO_MEMORY_INTRINSICS
2406  return false;
2407}
2408
2409// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2410// have any side-effects or if it only reads memory.
2411static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2412#define GET_SIDE_EFFECT_INFO
2413#include "llvm/Intrinsics.gen"
2414#undef GET_SIDE_EFFECT_INFO
2415  return false;
2416}
2417
2418/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2419/// node.
2420void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2421                                                unsigned Intrinsic) {
2422  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2423  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2424
2425  // Build the operand list.
2426  SmallVector<SDOperand, 8> Ops;
2427  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2428    if (OnlyLoad) {
2429      // We don't need to serialize loads against other loads.
2430      Ops.push_back(DAG.getRoot());
2431    } else {
2432      Ops.push_back(getRoot());
2433    }
2434  }
2435
2436  // Add the intrinsic ID as an integer operand.
2437  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2438
2439  // Add all operands of the call to the operand list.
2440  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2441    SDOperand Op = getValue(I.getOperand(i));
2442    assert(TLI.isTypeLegal(Op.getValueType()) &&
2443           "Intrinsic uses a non-legal type?");
2444    Ops.push_back(Op);
2445  }
2446
2447  std::vector<MVT::ValueType> VTs;
2448  if (I.getType() != Type::VoidTy) {
2449    MVT::ValueType VT = TLI.getValueType(I.getType());
2450    if (MVT::isVector(VT)) {
2451      const VectorType *DestTy = cast<VectorType>(I.getType());
2452      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2453
2454      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2455      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2456    }
2457
2458    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2459    VTs.push_back(VT);
2460  }
2461  if (HasChain)
2462    VTs.push_back(MVT::Other);
2463
2464  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2465
2466  // Create the node.
2467  SDOperand Result;
2468  if (!HasChain)
2469    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2470                         &Ops[0], Ops.size());
2471  else if (I.getType() != Type::VoidTy)
2472    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2473                         &Ops[0], Ops.size());
2474  else
2475    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2476                         &Ops[0], Ops.size());
2477
2478  if (HasChain) {
2479    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2480    if (OnlyLoad)
2481      PendingLoads.push_back(Chain);
2482    else
2483      DAG.setRoot(Chain);
2484  }
2485  if (I.getType() != Type::VoidTy) {
2486    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2487      MVT::ValueType VT = TLI.getValueType(PTy);
2488      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2489    }
2490    setValue(&I, Result);
2491  }
2492}
2493
2494/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2495static GlobalVariable *ExtractTypeInfo (Value *V) {
2496  V = IntrinsicInst::StripPointerCasts(V);
2497  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2498  assert (GV || isa<ConstantPointerNull>(V) &&
2499          "TypeInfo must be a global variable or NULL");
2500  return GV;
2501}
2502
2503/// addCatchInfo - Extract the personality and type infos from an eh.selector
2504/// call, and add them to the specified machine basic block.
2505static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2506                         MachineBasicBlock *MBB) {
2507  // Inform the MachineModuleInfo of the personality for this landing pad.
2508  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2509  assert(CE->getOpcode() == Instruction::BitCast &&
2510         isa<Function>(CE->getOperand(0)) &&
2511         "Personality should be a function");
2512  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2513
2514  // Gather all the type infos for this landing pad and pass them along to
2515  // MachineModuleInfo.
2516  std::vector<GlobalVariable *> TyInfo;
2517  unsigned N = I.getNumOperands();
2518
2519  for (unsigned i = N - 1; i > 2; --i) {
2520    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2521      unsigned FilterLength = CI->getZExtValue();
2522      unsigned FirstCatch = i + FilterLength + 1;
2523      assert (FirstCatch <= N && "Invalid filter length");
2524
2525      if (FirstCatch < N) {
2526        TyInfo.reserve(N - FirstCatch);
2527        for (unsigned j = FirstCatch; j < N; ++j)
2528          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2529        MMI->addCatchTypeInfo(MBB, TyInfo);
2530        TyInfo.clear();
2531      }
2532
2533      TyInfo.reserve(FilterLength);
2534      for (unsigned j = i + 1; j < FirstCatch; ++j)
2535        TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2536      MMI->addFilterTypeInfo(MBB, TyInfo);
2537      TyInfo.clear();
2538
2539      N = i;
2540    }
2541  }
2542
2543  if (N > 3) {
2544    TyInfo.reserve(N - 3);
2545    for (unsigned j = 3; j < N; ++j)
2546      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2547    MMI->addCatchTypeInfo(MBB, TyInfo);
2548  }
2549}
2550
2551/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2552/// we want to emit this as a call to a named external function, return the name
2553/// otherwise lower it and return null.
2554const char *
2555SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2556  switch (Intrinsic) {
2557  default:
2558    // By default, turn this into a target intrinsic node.
2559    visitTargetIntrinsic(I, Intrinsic);
2560    return 0;
2561  case Intrinsic::vastart:  visitVAStart(I); return 0;
2562  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2563  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2564  case Intrinsic::returnaddress:
2565    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2566                             getValue(I.getOperand(1))));
2567    return 0;
2568  case Intrinsic::frameaddress:
2569    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2570                             getValue(I.getOperand(1))));
2571    return 0;
2572  case Intrinsic::setjmp:
2573    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2574    break;
2575  case Intrinsic::longjmp:
2576    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2577    break;
2578  case Intrinsic::memcpy_i32:
2579  case Intrinsic::memcpy_i64:
2580    visitMemIntrinsic(I, ISD::MEMCPY);
2581    return 0;
2582  case Intrinsic::memset_i32:
2583  case Intrinsic::memset_i64:
2584    visitMemIntrinsic(I, ISD::MEMSET);
2585    return 0;
2586  case Intrinsic::memmove_i32:
2587  case Intrinsic::memmove_i64:
2588    visitMemIntrinsic(I, ISD::MEMMOVE);
2589    return 0;
2590
2591  case Intrinsic::dbg_stoppoint: {
2592    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2593    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2594    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2595      SDOperand Ops[5];
2596
2597      Ops[0] = getRoot();
2598      Ops[1] = getValue(SPI.getLineValue());
2599      Ops[2] = getValue(SPI.getColumnValue());
2600
2601      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2602      assert(DD && "Not a debug information descriptor");
2603      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2604
2605      Ops[3] = DAG.getString(CompileUnit->getFileName());
2606      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2607
2608      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2609    }
2610
2611    return 0;
2612  }
2613  case Intrinsic::dbg_region_start: {
2614    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2615    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2616    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2617      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2618      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2619                              DAG.getConstant(LabelID, MVT::i32)));
2620    }
2621
2622    return 0;
2623  }
2624  case Intrinsic::dbg_region_end: {
2625    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2626    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2627    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2628      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2629      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2630                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2631    }
2632
2633    return 0;
2634  }
2635  case Intrinsic::dbg_func_start: {
2636    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2637    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2638    if (MMI && FSI.getSubprogram() &&
2639        MMI->Verify(FSI.getSubprogram())) {
2640      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2641      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2642                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2643    }
2644
2645    return 0;
2646  }
2647  case Intrinsic::dbg_declare: {
2648    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2649    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2650    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2651      SDOperand AddressOp  = getValue(DI.getAddress());
2652      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2653        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2654    }
2655
2656    return 0;
2657  }
2658
2659  case Intrinsic::eh_exception: {
2660    if (ExceptionHandling) {
2661      if (!CurMBB->isLandingPad()) {
2662        // FIXME: Mark exception register as live in.  Hack for PR1508.
2663        unsigned Reg = TLI.getExceptionAddressRegister();
2664        if (Reg) CurMBB->addLiveIn(Reg);
2665      }
2666      // Insert the EXCEPTIONADDR instruction.
2667      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2668      SDOperand Ops[1];
2669      Ops[0] = DAG.getRoot();
2670      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2671      setValue(&I, Op);
2672      DAG.setRoot(Op.getValue(1));
2673    } else {
2674      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2675    }
2676    return 0;
2677  }
2678
2679  case Intrinsic::eh_selector:{
2680    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2681
2682    if (ExceptionHandling && MMI) {
2683      if (CurMBB->isLandingPad())
2684        addCatchInfo(I, MMI, CurMBB);
2685      else {
2686#ifndef NDEBUG
2687        FuncInfo.CatchInfoLost.insert(&I);
2688#endif
2689        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
2690        unsigned Reg = TLI.getExceptionSelectorRegister();
2691        if (Reg) CurMBB->addLiveIn(Reg);
2692      }
2693
2694      // Insert the EHSELECTION instruction.
2695      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2696      SDOperand Ops[2];
2697      Ops[0] = getValue(I.getOperand(1));
2698      Ops[1] = getRoot();
2699      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2700      setValue(&I, Op);
2701      DAG.setRoot(Op.getValue(1));
2702    } else {
2703      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2704    }
2705
2706    return 0;
2707  }
2708
2709  case Intrinsic::eh_typeid_for: {
2710    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2711
2712    if (MMI) {
2713      // Find the type id for the given typeinfo.
2714      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2715
2716      unsigned TypeID = MMI->getTypeIDFor(GV);
2717      setValue(&I, DAG.getConstant(TypeID, MVT::i32));
2718    } else {
2719      // Return something different to eh_selector.
2720      setValue(&I, DAG.getConstant(1, MVT::i32));
2721    }
2722
2723    return 0;
2724  }
2725
2726  case Intrinsic::eh_return: {
2727    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2728
2729    if (MMI && ExceptionHandling) {
2730      MMI->setCallsEHReturn(true);
2731      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2732                              MVT::Other,
2733                              getRoot(),
2734                              getValue(I.getOperand(1)),
2735                              getValue(I.getOperand(2))));
2736    } else {
2737      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2738    }
2739
2740    return 0;
2741  }
2742
2743   case Intrinsic::eh_unwind_init: {
2744     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2745       MMI->setCallsUnwindInit(true);
2746     }
2747
2748     return 0;
2749   }
2750
2751   case Intrinsic::eh_dwarf_cfa: {
2752     if (ExceptionHandling) {
2753       MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
2754       SDOperand CfaArg;
2755       if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2756         CfaArg = DAG.getNode(ISD::TRUNCATE,
2757                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2758       else
2759         CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2760                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2761
2762       SDOperand Offset = DAG.getNode(ISD::ADD,
2763                                      TLI.getPointerTy(),
2764                                      DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
2765                                                  TLI.getPointerTy()),
2766                                      CfaArg);
2767       setValue(&I, DAG.getNode(ISD::ADD,
2768                                TLI.getPointerTy(),
2769                                DAG.getNode(ISD::FRAMEADDR,
2770                                            TLI.getPointerTy(),
2771                                            DAG.getConstant(0,
2772                                                            TLI.getPointerTy())),
2773                                Offset));
2774     } else {
2775       setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2776     }
2777
2778     return 0;
2779  }
2780
2781  case Intrinsic::sqrt_f32:
2782  case Intrinsic::sqrt_f64:
2783    setValue(&I, DAG.getNode(ISD::FSQRT,
2784                             getValue(I.getOperand(1)).getValueType(),
2785                             getValue(I.getOperand(1))));
2786    return 0;
2787  case Intrinsic::powi_f32:
2788  case Intrinsic::powi_f64:
2789    setValue(&I, DAG.getNode(ISD::FPOWI,
2790                             getValue(I.getOperand(1)).getValueType(),
2791                             getValue(I.getOperand(1)),
2792                             getValue(I.getOperand(2))));
2793    return 0;
2794  case Intrinsic::pcmarker: {
2795    SDOperand Tmp = getValue(I.getOperand(1));
2796    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2797    return 0;
2798  }
2799  case Intrinsic::readcyclecounter: {
2800    SDOperand Op = getRoot();
2801    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2802                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2803                                &Op, 1);
2804    setValue(&I, Tmp);
2805    DAG.setRoot(Tmp.getValue(1));
2806    return 0;
2807  }
2808  case Intrinsic::part_select: {
2809    // Currently not implemented: just abort
2810    assert(0 && "part_select intrinsic not implemented");
2811    abort();
2812  }
2813  case Intrinsic::part_set: {
2814    // Currently not implemented: just abort
2815    assert(0 && "part_set intrinsic not implemented");
2816    abort();
2817  }
2818  case Intrinsic::bswap:
2819    setValue(&I, DAG.getNode(ISD::BSWAP,
2820                             getValue(I.getOperand(1)).getValueType(),
2821                             getValue(I.getOperand(1))));
2822    return 0;
2823  case Intrinsic::cttz: {
2824    SDOperand Arg = getValue(I.getOperand(1));
2825    MVT::ValueType Ty = Arg.getValueType();
2826    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2827    setValue(&I, result);
2828    return 0;
2829  }
2830  case Intrinsic::ctlz: {
2831    SDOperand Arg = getValue(I.getOperand(1));
2832    MVT::ValueType Ty = Arg.getValueType();
2833    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2834    setValue(&I, result);
2835    return 0;
2836  }
2837  case Intrinsic::ctpop: {
2838    SDOperand Arg = getValue(I.getOperand(1));
2839    MVT::ValueType Ty = Arg.getValueType();
2840    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2841    setValue(&I, result);
2842    return 0;
2843  }
2844  case Intrinsic::stacksave: {
2845    SDOperand Op = getRoot();
2846    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2847              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2848    setValue(&I, Tmp);
2849    DAG.setRoot(Tmp.getValue(1));
2850    return 0;
2851  }
2852  case Intrinsic::stackrestore: {
2853    SDOperand Tmp = getValue(I.getOperand(1));
2854    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2855    return 0;
2856  }
2857  case Intrinsic::prefetch:
2858    // FIXME: Currently discarding prefetches.
2859    return 0;
2860
2861  case Intrinsic::var_annotation:
2862    // Discard annotate attributes
2863    return 0;
2864
2865  case Intrinsic::adjust_trampoline: {
2866    SDOperand Arg = getValue(I.getOperand(1));
2867    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMP, TLI.getPointerTy(), Arg));
2868    return 0;
2869  }
2870
2871  case Intrinsic::init_trampoline: {
2872    const Function *F =
2873      cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
2874
2875    SDOperand Ops[6];
2876    Ops[0] = getRoot();
2877    Ops[1] = getValue(I.getOperand(1));
2878    Ops[2] = getValue(I.getOperand(2));
2879    Ops[3] = getValue(I.getOperand(3));
2880    Ops[4] = DAG.getSrcValue(I.getOperand(1));
2881    Ops[5] = DAG.getSrcValue(F);
2882
2883    DAG.setRoot(DAG.getNode(ISD::TRAMPOLINE, MVT::Other, Ops, 6));
2884    return 0;
2885  }
2886  }
2887}
2888
2889
2890void SelectionDAGLowering::LowerCallTo(Instruction &I,
2891                                       const Type *CalledValueTy,
2892                                       unsigned CallingConv,
2893                                       bool IsTailCall,
2894                                       SDOperand Callee, unsigned OpIdx,
2895                                       MachineBasicBlock *LandingPad) {
2896  const PointerType *PT = cast<PointerType>(CalledValueTy);
2897  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2898  const ParamAttrsList *Attrs = FTy->getParamAttrs();
2899  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2900  unsigned BeginLabel = 0, EndLabel = 0;
2901
2902  TargetLowering::ArgListTy Args;
2903  TargetLowering::ArgListEntry Entry;
2904  Args.reserve(I.getNumOperands());
2905  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2906    Value *Arg = I.getOperand(i);
2907    SDOperand ArgNode = getValue(Arg);
2908    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2909
2910    unsigned attrInd = i - OpIdx + 1;
2911    Entry.isSExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
2912    Entry.isZExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
2913    Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
2914    Entry.isSRet  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
2915    Entry.isNest  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::Nest);
2916    Entry.isByVal = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ByVal);
2917    Args.push_back(Entry);
2918  }
2919
2920  if (ExceptionHandling && MMI) {
2921    // Insert a label before the invoke call to mark the try range.  This can be
2922    // used to detect deletion of the invoke via the MachineModuleInfo.
2923    BeginLabel = MMI->NextLabelID();
2924    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2925                            DAG.getConstant(BeginLabel, MVT::i32)));
2926  }
2927
2928  std::pair<SDOperand,SDOperand> Result =
2929    TLI.LowerCallTo(getRoot(), I.getType(),
2930                    Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2931                    FTy->isVarArg(), CallingConv, IsTailCall,
2932                    Callee, Args, DAG);
2933  if (I.getType() != Type::VoidTy)
2934    setValue(&I, Result.first);
2935  DAG.setRoot(Result.second);
2936
2937  if (ExceptionHandling && MMI) {
2938    // Insert a label at the end of the invoke call to mark the try range.  This
2939    // can be used to detect deletion of the invoke via the MachineModuleInfo.
2940    EndLabel = MMI->NextLabelID();
2941    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2942                            DAG.getConstant(EndLabel, MVT::i32)));
2943
2944    // Inform MachineModuleInfo of range.
2945    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2946  }
2947}
2948
2949
2950void SelectionDAGLowering::visitCall(CallInst &I) {
2951  const char *RenameFn = 0;
2952  if (Function *F = I.getCalledFunction()) {
2953    if (F->isDeclaration())
2954      if (unsigned IID = F->getIntrinsicID()) {
2955        RenameFn = visitIntrinsicCall(I, IID);
2956        if (!RenameFn)
2957          return;
2958      } else {    // Not an LLVM intrinsic.
2959        const std::string &Name = F->getName();
2960        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2961          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2962              I.getOperand(1)->getType()->isFloatingPoint() &&
2963              I.getType() == I.getOperand(1)->getType() &&
2964              I.getType() == I.getOperand(2)->getType()) {
2965            SDOperand LHS = getValue(I.getOperand(1));
2966            SDOperand RHS = getValue(I.getOperand(2));
2967            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2968                                     LHS, RHS));
2969            return;
2970          }
2971        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2972          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2973              I.getOperand(1)->getType()->isFloatingPoint() &&
2974              I.getType() == I.getOperand(1)->getType()) {
2975            SDOperand Tmp = getValue(I.getOperand(1));
2976            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2977            return;
2978          }
2979        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2980          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2981              I.getOperand(1)->getType()->isFloatingPoint() &&
2982              I.getType() == I.getOperand(1)->getType()) {
2983            SDOperand Tmp = getValue(I.getOperand(1));
2984            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2985            return;
2986          }
2987        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2988          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2989              I.getOperand(1)->getType()->isFloatingPoint() &&
2990              I.getType() == I.getOperand(1)->getType()) {
2991            SDOperand Tmp = getValue(I.getOperand(1));
2992            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2993            return;
2994          }
2995        }
2996      }
2997  } else if (isa<InlineAsm>(I.getOperand(0))) {
2998    visitInlineAsm(I);
2999    return;
3000  }
3001
3002  SDOperand Callee;
3003  if (!RenameFn)
3004    Callee = getValue(I.getOperand(0));
3005  else
3006    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3007
3008  LowerCallTo(I, I.getCalledValue()->getType(),
3009              I.getCallingConv(),
3010              I.isTailCall(),
3011              Callee,
3012              1);
3013}
3014
3015
3016/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3017/// this value and returns the result as a ValueVT value.  This uses
3018/// Chain/Flag as the input and updates them for the output Chain/Flag.
3019/// If the Flag pointer is NULL, no flag is used.
3020SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3021                                        SDOperand &Chain, SDOperand *Flag)const{
3022  // Copy the legal parts from the registers.
3023  unsigned NumParts = Regs.size();
3024  SmallVector<SDOperand, 8> Parts(NumParts);
3025  for (unsigned i = 0; i != NumParts; ++i) {
3026    SDOperand Part = Flag ?
3027                     DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3028                     DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3029    Chain = Part.getValue(1);
3030    if (Flag)
3031      *Flag = Part.getValue(2);
3032    Parts[i] = Part;
3033  }
3034
3035  // Assemble the legal parts into the final value.
3036  return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3037}
3038
3039/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3040/// specified value into the registers specified by this object.  This uses
3041/// Chain/Flag as the input and updates them for the output Chain/Flag.
3042/// If the Flag pointer is NULL, no flag is used.
3043void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3044                                 SDOperand &Chain, SDOperand *Flag) const {
3045  // Get the list of the values's legal parts.
3046  unsigned NumParts = Regs.size();
3047  SmallVector<SDOperand, 8> Parts(NumParts);
3048  getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3049
3050  // Copy the parts into the registers.
3051  for (unsigned i = 0; i != NumParts; ++i) {
3052    SDOperand Part = Flag ?
3053                     DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3054                     DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3055    Chain = Part.getValue(0);
3056    if (Flag)
3057      *Flag = Part.getValue(1);
3058  }
3059}
3060
3061/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3062/// operand list.  This adds the code marker and includes the number of
3063/// values added into it.
3064void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3065                                        std::vector<SDOperand> &Ops) const {
3066  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3067  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3068  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3069    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3070}
3071
3072/// isAllocatableRegister - If the specified register is safe to allocate,
3073/// i.e. it isn't a stack pointer or some other special register, return the
3074/// register class for the register.  Otherwise, return null.
3075static const TargetRegisterClass *
3076isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3077                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
3078  MVT::ValueType FoundVT = MVT::Other;
3079  const TargetRegisterClass *FoundRC = 0;
3080  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3081       E = MRI->regclass_end(); RCI != E; ++RCI) {
3082    MVT::ValueType ThisVT = MVT::Other;
3083
3084    const TargetRegisterClass *RC = *RCI;
3085    // If none of the the value types for this register class are valid, we
3086    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3087    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3088         I != E; ++I) {
3089      if (TLI.isTypeLegal(*I)) {
3090        // If we have already found this register in a different register class,
3091        // choose the one with the largest VT specified.  For example, on
3092        // PowerPC, we favor f64 register classes over f32.
3093        if (FoundVT == MVT::Other ||
3094            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3095          ThisVT = *I;
3096          break;
3097        }
3098      }
3099    }
3100
3101    if (ThisVT == MVT::Other) continue;
3102
3103    // NOTE: This isn't ideal.  In particular, this might allocate the
3104    // frame pointer in functions that need it (due to them not being taken
3105    // out of allocation, because a variable sized allocation hasn't been seen
3106    // yet).  This is a slight code pessimization, but should still work.
3107    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3108         E = RC->allocation_order_end(MF); I != E; ++I)
3109      if (*I == Reg) {
3110        // We found a matching register class.  Keep looking at others in case
3111        // we find one with larger registers that this physreg is also in.
3112        FoundRC = RC;
3113        FoundVT = ThisVT;
3114        break;
3115      }
3116  }
3117  return FoundRC;
3118}
3119
3120
3121namespace {
3122/// AsmOperandInfo - This contains information for each constraint that we are
3123/// lowering.
3124struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3125  /// ConstraintCode - This contains the actual string for the code, like "m".
3126  std::string ConstraintCode;
3127
3128  /// ConstraintType - Information about the constraint code, e.g. Register,
3129  /// RegisterClass, Memory, Other, Unknown.
3130  TargetLowering::ConstraintType ConstraintType;
3131
3132  /// CallOperand/CallOperandval - If this is the result output operand or a
3133  /// clobber, this is null, otherwise it is the incoming operand to the
3134  /// CallInst.  This gets modified as the asm is processed.
3135  SDOperand CallOperand;
3136  Value *CallOperandVal;
3137
3138  /// ConstraintVT - The ValueType for the operand value.
3139  MVT::ValueType ConstraintVT;
3140
3141  /// AssignedRegs - If this is a register or register class operand, this
3142  /// contains the set of register corresponding to the operand.
3143  RegsForValue AssignedRegs;
3144
3145  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3146    : InlineAsm::ConstraintInfo(info),
3147      ConstraintType(TargetLowering::C_Unknown),
3148      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3149  }
3150
3151  void ComputeConstraintToUse(const TargetLowering &TLI);
3152
3153  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3154  /// busy in OutputRegs/InputRegs.
3155  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3156                         std::set<unsigned> &OutputRegs,
3157                         std::set<unsigned> &InputRegs) const {
3158     if (isOutReg)
3159       OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3160     if (isInReg)
3161       InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3162   }
3163};
3164} // end anon namespace.
3165
3166/// getConstraintGenerality - Return an integer indicating how general CT is.
3167static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3168  switch (CT) {
3169    default: assert(0 && "Unknown constraint type!");
3170    case TargetLowering::C_Other:
3171    case TargetLowering::C_Unknown:
3172      return 0;
3173    case TargetLowering::C_Register:
3174      return 1;
3175    case TargetLowering::C_RegisterClass:
3176      return 2;
3177    case TargetLowering::C_Memory:
3178      return 3;
3179  }
3180}
3181
3182void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3183  assert(!Codes.empty() && "Must have at least one constraint");
3184
3185  std::string *Current = &Codes[0];
3186  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3187  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3188    ConstraintCode = *Current;
3189    ConstraintType = CurType;
3190    return;
3191  }
3192
3193  unsigned CurGenerality = getConstraintGenerality(CurType);
3194
3195  // If we have multiple constraints, try to pick the most general one ahead
3196  // of time.  This isn't a wonderful solution, but handles common cases.
3197  for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3198    TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3199    unsigned ThisGenerality = getConstraintGenerality(ThisType);
3200    if (ThisGenerality > CurGenerality) {
3201      // This constraint letter is more general than the previous one,
3202      // use it.
3203      CurType = ThisType;
3204      Current = &Codes[j];
3205      CurGenerality = ThisGenerality;
3206    }
3207  }
3208
3209  ConstraintCode = *Current;
3210  ConstraintType = CurType;
3211}
3212
3213
3214void SelectionDAGLowering::
3215GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3216                     std::set<unsigned> &OutputRegs,
3217                     std::set<unsigned> &InputRegs) {
3218  // Compute whether this value requires an input register, an output register,
3219  // or both.
3220  bool isOutReg = false;
3221  bool isInReg = false;
3222  switch (OpInfo.Type) {
3223  case InlineAsm::isOutput:
3224    isOutReg = true;
3225
3226    // If this is an early-clobber output, or if there is an input
3227    // constraint that matches this, we need to reserve the input register
3228    // so no other inputs allocate to it.
3229    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3230    break;
3231  case InlineAsm::isInput:
3232    isInReg = true;
3233    isOutReg = false;
3234    break;
3235  case InlineAsm::isClobber:
3236    isOutReg = true;
3237    isInReg = true;
3238    break;
3239  }
3240
3241
3242  MachineFunction &MF = DAG.getMachineFunction();
3243  std::vector<unsigned> Regs;
3244
3245  // If this is a constraint for a single physreg, or a constraint for a
3246  // register class, find it.
3247  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3248    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3249                                     OpInfo.ConstraintVT);
3250
3251  unsigned NumRegs = 1;
3252  if (OpInfo.ConstraintVT != MVT::Other)
3253    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3254  MVT::ValueType RegVT;
3255  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3256
3257
3258  // If this is a constraint for a specific physical register, like {r17},
3259  // assign it now.
3260  if (PhysReg.first) {
3261    if (OpInfo.ConstraintVT == MVT::Other)
3262      ValueVT = *PhysReg.second->vt_begin();
3263
3264    // Get the actual register value type.  This is important, because the user
3265    // may have asked for (e.g.) the AX register in i32 type.  We need to
3266    // remember that AX is actually i16 to get the right extension.
3267    RegVT = *PhysReg.second->vt_begin();
3268
3269    // This is a explicit reference to a physical register.
3270    Regs.push_back(PhysReg.first);
3271
3272    // If this is an expanded reference, add the rest of the regs to Regs.
3273    if (NumRegs != 1) {
3274      TargetRegisterClass::iterator I = PhysReg.second->begin();
3275      TargetRegisterClass::iterator E = PhysReg.second->end();
3276      for (; *I != PhysReg.first; ++I)
3277        assert(I != E && "Didn't find reg!");
3278
3279      // Already added the first reg.
3280      --NumRegs; ++I;
3281      for (; NumRegs; --NumRegs, ++I) {
3282        assert(I != E && "Ran out of registers to allocate!");
3283        Regs.push_back(*I);
3284      }
3285    }
3286    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3287    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3288    return;
3289  }
3290
3291  // Otherwise, if this was a reference to an LLVM register class, create vregs
3292  // for this reference.
3293  std::vector<unsigned> RegClassRegs;
3294  const TargetRegisterClass *RC = PhysReg.second;
3295  if (RC) {
3296    // If this is an early clobber or tied register, our regalloc doesn't know
3297    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3298    // and let the regalloc do the right thing.
3299    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3300        // If there is some other early clobber and this is an input register,
3301        // then we are forced to pre-allocate the input reg so it doesn't
3302        // conflict with the earlyclobber.
3303        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3304      RegVT = *PhysReg.second->vt_begin();
3305
3306      if (OpInfo.ConstraintVT == MVT::Other)
3307        ValueVT = RegVT;
3308
3309      // Create the appropriate number of virtual registers.
3310      SSARegMap *RegMap = MF.getSSARegMap();
3311      for (; NumRegs; --NumRegs)
3312        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3313
3314      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3315      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3316      return;
3317    }
3318
3319    // Otherwise, we can't allocate it.  Let the code below figure out how to
3320    // maintain these constraints.
3321    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3322
3323  } else {
3324    // This is a reference to a register class that doesn't directly correspond
3325    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3326    // registers from the class.
3327    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3328                                                         OpInfo.ConstraintVT);
3329  }
3330
3331  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3332  unsigned NumAllocated = 0;
3333  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3334    unsigned Reg = RegClassRegs[i];
3335    // See if this register is available.
3336    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3337        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3338      // Make sure we find consecutive registers.
3339      NumAllocated = 0;
3340      continue;
3341    }
3342
3343    // Check to see if this register is allocatable (i.e. don't give out the
3344    // stack pointer).
3345    if (RC == 0) {
3346      RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3347      if (!RC) {        // Couldn't allocate this register.
3348        // Reset NumAllocated to make sure we return consecutive registers.
3349        NumAllocated = 0;
3350        continue;
3351      }
3352    }
3353
3354    // Okay, this register is good, we can use it.
3355    ++NumAllocated;
3356
3357    // If we allocated enough consecutive registers, succeed.
3358    if (NumAllocated == NumRegs) {
3359      unsigned RegStart = (i-NumAllocated)+1;
3360      unsigned RegEnd   = i+1;
3361      // Mark all of the allocated registers used.
3362      for (unsigned i = RegStart; i != RegEnd; ++i)
3363        Regs.push_back(RegClassRegs[i]);
3364
3365      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3366                                         OpInfo.ConstraintVT);
3367      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3368      return;
3369    }
3370  }
3371
3372  // Otherwise, we couldn't allocate enough registers for this.
3373  return;
3374}
3375
3376
3377/// visitInlineAsm - Handle a call to an InlineAsm object.
3378///
3379void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
3380  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
3381
3382  /// ConstraintOperands - Information about all of the constraints.
3383  std::vector<AsmOperandInfo> ConstraintOperands;
3384
3385  SDOperand Chain = getRoot();
3386  SDOperand Flag;
3387
3388  std::set<unsigned> OutputRegs, InputRegs;
3389
3390  // Do a prepass over the constraints, canonicalizing them, and building up the
3391  // ConstraintOperands list.
3392  std::vector<InlineAsm::ConstraintInfo>
3393    ConstraintInfos = IA->ParseConstraints();
3394
3395  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3396  // constraint.  If so, we can't let the register allocator allocate any input
3397  // registers, because it will not know to avoid the earlyclobbered output reg.
3398  bool SawEarlyClobber = false;
3399
3400  unsigned OpNo = 1;   // OpNo - The operand of the CallInst.
3401  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3402    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3403    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3404
3405    MVT::ValueType OpVT = MVT::Other;
3406
3407    // Compute the value type for each operand.
3408    switch (OpInfo.Type) {
3409    case InlineAsm::isOutput:
3410      if (!OpInfo.isIndirect) {
3411        // The return value of the call is this value.  As such, there is no
3412        // corresponding argument.
3413        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3414        OpVT = TLI.getValueType(I.getType());
3415      } else {
3416        OpInfo.CallOperandVal = I.getOperand(OpNo++);
3417      }
3418      break;
3419    case InlineAsm::isInput:
3420      OpInfo.CallOperandVal = I.getOperand(OpNo++);
3421      break;
3422    case InlineAsm::isClobber:
3423      // Nothing to do.
3424      break;
3425    }
3426
3427    // If this is an input or an indirect output, process the call argument.
3428    if (OpInfo.CallOperandVal) {
3429      OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3430      const Type *OpTy = OpInfo.CallOperandVal->getType();
3431      // If this is an indirect operand, the operand is a pointer to the
3432      // accessed type.
3433      if (OpInfo.isIndirect)
3434        OpTy = cast<PointerType>(OpTy)->getElementType();
3435
3436      // If OpTy is not a first-class value, it may be a struct/union that we
3437      // can tile with integers.
3438      if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3439        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3440        switch (BitSize) {
3441        default: break;
3442        case 1:
3443        case 8:
3444        case 16:
3445        case 32:
3446        case 64:
3447          OpTy = IntegerType::get(BitSize);
3448          break;
3449        }
3450      }
3451
3452      OpVT = TLI.getValueType(OpTy, true);
3453    }
3454
3455    OpInfo.ConstraintVT = OpVT;
3456
3457    // Compute the constraint code and ConstraintType to use.
3458    OpInfo.ComputeConstraintToUse(TLI);
3459
3460    // Keep track of whether we see an earlyclobber.
3461    SawEarlyClobber |= OpInfo.isEarlyClobber;
3462
3463    // If this is a memory input, and if the operand is not indirect, do what we
3464    // need to to provide an address for the memory input.
3465    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3466        !OpInfo.isIndirect) {
3467      assert(OpInfo.Type == InlineAsm::isInput &&
3468             "Can only indirectify direct input operands!");
3469
3470      // Memory operands really want the address of the value.  If we don't have
3471      // an indirect input, put it in the constpool if we can, otherwise spill
3472      // it to a stack slot.
3473
3474      // If the operand is a float, integer, or vector constant, spill to a
3475      // constant pool entry to get its address.
3476      Value *OpVal = OpInfo.CallOperandVal;
3477      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3478          isa<ConstantVector>(OpVal)) {
3479        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3480                                                 TLI.getPointerTy());
3481      } else {
3482        // Otherwise, create a stack slot and emit a store to it before the
3483        // asm.
3484        const Type *Ty = OpVal->getType();
3485        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
3486        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3487        MachineFunction &MF = DAG.getMachineFunction();
3488        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3489        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3490        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3491        OpInfo.CallOperand = StackSlot;
3492      }
3493
3494      // There is no longer a Value* corresponding to this operand.
3495      OpInfo.CallOperandVal = 0;
3496      // It is now an indirect operand.
3497      OpInfo.isIndirect = true;
3498    }
3499
3500    // If this constraint is for a specific register, allocate it before
3501    // anything else.
3502    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3503      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3504  }
3505  ConstraintInfos.clear();
3506
3507
3508  // Second pass - Loop over all of the operands, assigning virtual or physregs
3509  // to registerclass operands.
3510  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3511    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3512
3513    // C_Register operands have already been allocated, Other/Memory don't need
3514    // to be.
3515    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3516      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3517  }
3518
3519  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3520  std::vector<SDOperand> AsmNodeOperands;
3521  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3522  AsmNodeOperands.push_back(
3523          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3524
3525
3526  // Loop over all of the inputs, copying the operand values into the
3527  // appropriate registers and processing the output regs.
3528  RegsForValue RetValRegs;
3529
3530  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3531  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3532
3533  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3534    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3535
3536    switch (OpInfo.Type) {
3537    case InlineAsm::isOutput: {
3538      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3539          OpInfo.ConstraintType != TargetLowering::C_Register) {
3540        // Memory output, or 'other' output (e.g. 'X' constraint).
3541        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3542
3543        // Add information to the INLINEASM node to know about this output.
3544        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3545        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3546                                                        TLI.getPointerTy()));
3547        AsmNodeOperands.push_back(OpInfo.CallOperand);
3548        break;
3549      }
3550
3551      // Otherwise, this is a register or register class output.
3552
3553      // Copy the output from the appropriate register.  Find a register that
3554      // we can use.
3555      if (OpInfo.AssignedRegs.Regs.empty()) {
3556        cerr << "Couldn't allocate output reg for contraint '"
3557             << OpInfo.ConstraintCode << "'!\n";
3558        exit(1);
3559      }
3560
3561      if (!OpInfo.isIndirect) {
3562        // This is the result value of the call.
3563        assert(RetValRegs.Regs.empty() &&
3564               "Cannot have multiple output constraints yet!");
3565        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3566        RetValRegs = OpInfo.AssignedRegs;
3567      } else {
3568        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3569                                                      OpInfo.CallOperandVal));
3570      }
3571
3572      // Add information to the INLINEASM node to know that this register is
3573      // set.
3574      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3575                                               AsmNodeOperands);
3576      break;
3577    }
3578    case InlineAsm::isInput: {
3579      SDOperand InOperandVal = OpInfo.CallOperand;
3580
3581      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3582        // If this is required to match an output register we have already set,
3583        // just use its register.
3584        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3585
3586        // Scan until we find the definition we already emitted of this operand.
3587        // When we find it, create a RegsForValue operand.
3588        unsigned CurOp = 2;  // The first operand.
3589        for (; OperandNo; --OperandNo) {
3590          // Advance to the next operand.
3591          unsigned NumOps =
3592            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3593          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3594                  (NumOps & 7) == 4 /*MEM*/) &&
3595                 "Skipped past definitions?");
3596          CurOp += (NumOps>>3)+1;
3597        }
3598
3599        unsigned NumOps =
3600          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3601        if ((NumOps & 7) == 2 /*REGDEF*/) {
3602          // Add NumOps>>3 registers to MatchedRegs.
3603          RegsForValue MatchedRegs;
3604          MatchedRegs.ValueVT = InOperandVal.getValueType();
3605          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3606          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3607            unsigned Reg =
3608              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3609            MatchedRegs.Regs.push_back(Reg);
3610          }
3611
3612          // Use the produced MatchedRegs object to
3613          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3614          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3615          break;
3616        } else {
3617          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3618          assert(0 && "matching constraints for memory operands unimp");
3619        }
3620      }
3621
3622      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3623        assert(!OpInfo.isIndirect &&
3624               "Don't know how to handle indirect other inputs yet!");
3625
3626        std::vector<SDOperand> Ops;
3627        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3628                                         Ops, DAG);
3629        if (Ops.empty()) {
3630          cerr << "Invalid operand for inline asm constraint '"
3631               << OpInfo.ConstraintCode << "'!\n";
3632          exit(1);
3633        }
3634
3635        // Add information to the INLINEASM node to know about this input.
3636        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
3637        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3638                                                        TLI.getPointerTy()));
3639        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
3640        break;
3641      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3642        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3643        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3644               "Memory operands expect pointer values");
3645
3646        // Add information to the INLINEASM node to know about this input.
3647        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3648        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3649                                                        TLI.getPointerTy()));
3650        AsmNodeOperands.push_back(InOperandVal);
3651        break;
3652      }
3653
3654      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3655              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3656             "Unknown constraint type!");
3657      assert(!OpInfo.isIndirect &&
3658             "Don't know how to handle indirect register inputs yet!");
3659
3660      // Copy the input into the appropriate registers.
3661      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3662             "Couldn't allocate input reg!");
3663
3664      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3665
3666      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3667                                               AsmNodeOperands);
3668      break;
3669    }
3670    case InlineAsm::isClobber: {
3671      // Add the clobbered value to the operand list, so that the register
3672      // allocator is aware that the physreg got clobbered.
3673      if (!OpInfo.AssignedRegs.Regs.empty())
3674        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3675                                                 AsmNodeOperands);
3676      break;
3677    }
3678    }
3679  }
3680
3681  // Finish up input operands.
3682  AsmNodeOperands[0] = Chain;
3683  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3684
3685  Chain = DAG.getNode(ISD::INLINEASM,
3686                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3687                      &AsmNodeOperands[0], AsmNodeOperands.size());
3688  Flag = Chain.getValue(1);
3689
3690  // If this asm returns a register value, copy the result from that register
3691  // and set it as the value of the call.
3692  if (!RetValRegs.Regs.empty()) {
3693    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3694
3695    // If the result of the inline asm is a vector, it may have the wrong
3696    // width/num elts.  Make sure to convert it to the right type with
3697    // bit_convert.
3698    if (MVT::isVector(Val.getValueType())) {
3699      const VectorType *VTy = cast<VectorType>(I.getType());
3700      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3701
3702      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3703    }
3704
3705    setValue(&I, Val);
3706  }
3707
3708  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3709
3710  // Process indirect outputs, first output all of the flagged copies out of
3711  // physregs.
3712  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3713    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3714    Value *Ptr = IndirectStoresToEmit[i].second;
3715    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3716    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3717  }
3718
3719  // Emit the non-flagged stores from the physregs.
3720  SmallVector<SDOperand, 8> OutChains;
3721  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3722    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3723                                    getValue(StoresToEmit[i].second),
3724                                    StoresToEmit[i].second, 0));
3725  if (!OutChains.empty())
3726    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3727                        &OutChains[0], OutChains.size());
3728  DAG.setRoot(Chain);
3729}
3730
3731
3732void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3733  SDOperand Src = getValue(I.getOperand(0));
3734
3735  MVT::ValueType IntPtr = TLI.getPointerTy();
3736
3737  if (IntPtr < Src.getValueType())
3738    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3739  else if (IntPtr > Src.getValueType())
3740    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3741
3742  // Scale the source by the type size.
3743  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
3744  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3745                    Src, getIntPtrConstant(ElementSize));
3746
3747  TargetLowering::ArgListTy Args;
3748  TargetLowering::ArgListEntry Entry;
3749  Entry.Node = Src;
3750  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3751  Args.push_back(Entry);
3752
3753  std::pair<SDOperand,SDOperand> Result =
3754    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3755                    DAG.getExternalSymbol("malloc", IntPtr),
3756                    Args, DAG);
3757  setValue(&I, Result.first);  // Pointers always fit in registers
3758  DAG.setRoot(Result.second);
3759}
3760
3761void SelectionDAGLowering::visitFree(FreeInst &I) {
3762  TargetLowering::ArgListTy Args;
3763  TargetLowering::ArgListEntry Entry;
3764  Entry.Node = getValue(I.getOperand(0));
3765  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3766  Args.push_back(Entry);
3767  MVT::ValueType IntPtr = TLI.getPointerTy();
3768  std::pair<SDOperand,SDOperand> Result =
3769    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3770                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3771  DAG.setRoot(Result.second);
3772}
3773
3774// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3775// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3776// instructions are special in various ways, which require special support to
3777// insert.  The specified MachineInstr is created but not inserted into any
3778// basic blocks, and the scheduler passes ownership of it to this method.
3779MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3780                                                       MachineBasicBlock *MBB) {
3781  cerr << "If a target marks an instruction with "
3782       << "'usesCustomDAGSchedInserter', it must implement "
3783       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3784  abort();
3785  return 0;
3786}
3787
3788void SelectionDAGLowering::visitVAStart(CallInst &I) {
3789  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3790                          getValue(I.getOperand(1)),
3791                          DAG.getSrcValue(I.getOperand(1))));
3792}
3793
3794void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3795  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3796                             getValue(I.getOperand(0)),
3797                             DAG.getSrcValue(I.getOperand(0)));
3798  setValue(&I, V);
3799  DAG.setRoot(V.getValue(1));
3800}
3801
3802void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3803  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3804                          getValue(I.getOperand(1)),
3805                          DAG.getSrcValue(I.getOperand(1))));
3806}
3807
3808void SelectionDAGLowering::visitVACopy(CallInst &I) {
3809  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3810                          getValue(I.getOperand(1)),
3811                          getValue(I.getOperand(2)),
3812                          DAG.getSrcValue(I.getOperand(1)),
3813                          DAG.getSrcValue(I.getOperand(2))));
3814}
3815
3816/// TargetLowering::LowerArguments - This is the default LowerArguments
3817/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3818/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3819/// integrated into SDISel.
3820std::vector<SDOperand>
3821TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3822  const FunctionType *FTy = F.getFunctionType();
3823  const ParamAttrsList *Attrs = FTy->getParamAttrs();
3824  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3825  std::vector<SDOperand> Ops;
3826  Ops.push_back(DAG.getRoot());
3827  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3828  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3829
3830  // Add one result value for each formal argument.
3831  std::vector<MVT::ValueType> RetVals;
3832  unsigned j = 1;
3833  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3834       I != E; ++I, ++j) {
3835    MVT::ValueType VT = getValueType(I->getType());
3836    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3837    unsigned OriginalAlignment =
3838      getTargetData()->getABITypeAlignment(I->getType());
3839
3840    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3841    // that is zero extended!
3842    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt))
3843      Flags &= ~(ISD::ParamFlags::SExt);
3844    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt))
3845      Flags |= ISD::ParamFlags::SExt;
3846    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg))
3847      Flags |= ISD::ParamFlags::InReg;
3848    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet))
3849      Flags |= ISD::ParamFlags::StructReturn;
3850    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ByVal)) {
3851      Flags |= ISD::ParamFlags::ByVal;
3852      const PointerType *Ty = cast<PointerType>(I->getType());
3853      const StructType *STy = cast<StructType>(Ty->getElementType());
3854      unsigned StructAlign = Log2_32(getTargetData()->getABITypeAlignment(STy));
3855      unsigned StructSize  = getTargetData()->getTypeSize(STy);
3856      Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
3857      Flags |= (StructSize  << ISD::ParamFlags::ByValSizeOffs);
3858    }
3859    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::Nest))
3860      Flags |= ISD::ParamFlags::Nest;
3861    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3862
3863    switch (getTypeAction(VT)) {
3864    default: assert(0 && "Unknown type action!");
3865    case Legal:
3866      RetVals.push_back(VT);
3867      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3868      break;
3869    case Promote:
3870      RetVals.push_back(getTypeToTransformTo(VT));
3871      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3872      break;
3873    case Expand: {
3874      // If this is an illegal type, it needs to be broken up to fit into
3875      // registers.
3876      MVT::ValueType RegisterVT = getRegisterType(VT);
3877      unsigned NumRegs = getNumRegisters(VT);
3878      for (unsigned i = 0; i != NumRegs; ++i) {
3879        RetVals.push_back(RegisterVT);
3880        // if it isn't first piece, alignment must be 1
3881        if (i > 0)
3882          Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3883            (1 << ISD::ParamFlags::OrigAlignmentOffs);
3884        Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3885      }
3886      break;
3887    }
3888    }
3889  }
3890
3891  RetVals.push_back(MVT::Other);
3892
3893  // Create the node.
3894  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3895                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3896                               &Ops[0], Ops.size()).Val;
3897  unsigned NumArgRegs = Result->getNumValues() - 1;
3898  DAG.setRoot(SDOperand(Result, NumArgRegs));
3899
3900  // Set up the return result vector.
3901  Ops.clear();
3902  unsigned i = 0;
3903  unsigned Idx = 1;
3904  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3905      ++I, ++Idx) {
3906    MVT::ValueType VT = getValueType(I->getType());
3907
3908    switch (getTypeAction(VT)) {
3909    default: assert(0 && "Unknown type action!");
3910    case Legal:
3911      Ops.push_back(SDOperand(Result, i++));
3912      break;
3913    case Promote: {
3914      SDOperand Op(Result, i++);
3915      if (MVT::isInteger(VT)) {
3916        if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt))
3917          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3918                           DAG.getValueType(VT));
3919        else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt))
3920          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3921                           DAG.getValueType(VT));
3922        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3923      } else {
3924        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3925        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3926      }
3927      Ops.push_back(Op);
3928      break;
3929    }
3930    case Expand: {
3931      MVT::ValueType PartVT = getRegisterType(VT);
3932      unsigned NumParts = getNumRegisters(VT);
3933      SmallVector<SDOperand, 4> Parts(NumParts);
3934      for (unsigned j = 0; j != NumParts; ++j)
3935        Parts[j] = SDOperand(Result, i++);
3936      Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
3937      break;
3938    }
3939    }
3940  }
3941  assert(i == NumArgRegs && "Argument register count mismatch!");
3942  return Ops;
3943}
3944
3945
3946/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3947/// implementation, which just inserts an ISD::CALL node, which is later custom
3948/// lowered by the target to something concrete.  FIXME: When all targets are
3949/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3950std::pair<SDOperand, SDOperand>
3951TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3952                            bool RetTyIsSigned, bool isVarArg,
3953                            unsigned CallingConv, bool isTailCall,
3954                            SDOperand Callee,
3955                            ArgListTy &Args, SelectionDAG &DAG) {
3956  SmallVector<SDOperand, 32> Ops;
3957  Ops.push_back(Chain);   // Op#0 - Chain
3958  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3959  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3960  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3961  Ops.push_back(Callee);
3962
3963  // Handle all of the outgoing arguments.
3964  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3965    MVT::ValueType VT = getValueType(Args[i].Ty);
3966    SDOperand Op = Args[i].Node;
3967    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3968    unsigned OriginalAlignment =
3969      getTargetData()->getABITypeAlignment(Args[i].Ty);
3970
3971    if (Args[i].isSExt)
3972      Flags |= ISD::ParamFlags::SExt;
3973    if (Args[i].isZExt)
3974      Flags |= ISD::ParamFlags::ZExt;
3975    if (Args[i].isInReg)
3976      Flags |= ISD::ParamFlags::InReg;
3977    if (Args[i].isSRet)
3978      Flags |= ISD::ParamFlags::StructReturn;
3979    if (Args[i].isByVal) {
3980      Flags |= ISD::ParamFlags::ByVal;
3981      const PointerType *Ty = cast<PointerType>(Args[i].Ty);
3982      const StructType *STy = cast<StructType>(Ty->getElementType());
3983      unsigned StructAlign = Log2_32(getTargetData()->getABITypeAlignment(STy));
3984      unsigned StructSize  = getTargetData()->getTypeSize(STy);
3985      Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
3986      Flags |= (StructSize  << ISD::ParamFlags::ByValSizeOffs);
3987    }
3988    if (Args[i].isNest)
3989      Flags |= ISD::ParamFlags::Nest;
3990    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
3991
3992    switch (getTypeAction(VT)) {
3993    default: assert(0 && "Unknown type action!");
3994    case Legal:
3995      Ops.push_back(Op);
3996      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3997      break;
3998    case Promote:
3999      if (MVT::isInteger(VT)) {
4000        unsigned ExtOp;
4001        if (Args[i].isSExt)
4002          ExtOp = ISD::SIGN_EXTEND;
4003        else if (Args[i].isZExt)
4004          ExtOp = ISD::ZERO_EXTEND;
4005        else
4006          ExtOp = ISD::ANY_EXTEND;
4007        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
4008      } else {
4009        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
4010        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
4011      }
4012      Ops.push_back(Op);
4013      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4014      break;
4015    case Expand: {
4016      MVT::ValueType PartVT = getRegisterType(VT);
4017      unsigned NumParts = getNumRegisters(VT);
4018      SmallVector<SDOperand, 4> Parts(NumParts);
4019      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
4020      for (unsigned i = 0; i != NumParts; ++i) {
4021        // if it isn't first piece, alignment must be 1
4022        unsigned MyFlags = Flags;
4023        if (i != 0)
4024          MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4025            (1 << ISD::ParamFlags::OrigAlignmentOffs);
4026
4027        Ops.push_back(Parts[i]);
4028        Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
4029      }
4030      break;
4031    }
4032    }
4033  }
4034
4035  // Figure out the result value types.
4036  MVT::ValueType VT = getValueType(RetTy);
4037  MVT::ValueType RegisterVT = getRegisterType(VT);
4038  unsigned NumRegs = getNumRegisters(VT);
4039  SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
4040  for (unsigned i = 0; i != NumRegs; ++i)
4041    RetTys[i] = RegisterVT;
4042
4043  RetTys.push_back(MVT::Other);  // Always has a chain.
4044
4045  // Create the CALL node.
4046  SDOperand Res = DAG.getNode(ISD::CALL,
4047                              DAG.getVTList(&RetTys[0], NumRegs + 1),
4048                              &Ops[0], Ops.size());
4049  Chain = Res.getValue(NumRegs);
4050
4051  // Gather up the call result into a single value.
4052  if (RetTy != Type::VoidTy) {
4053    ISD::NodeType AssertOp = ISD::AssertSext;
4054    if (!RetTyIsSigned)
4055      AssertOp = ISD::AssertZext;
4056    SmallVector<SDOperand, 4> Results(NumRegs);
4057    for (unsigned i = 0; i != NumRegs; ++i)
4058      Results[i] = Res.getValue(i);
4059    Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
4060  }
4061
4062  return std::make_pair(Res, Chain);
4063}
4064
4065SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4066  assert(0 && "LowerOperation not implemented for this target!");
4067  abort();
4068  return SDOperand();
4069}
4070
4071SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4072                                                 SelectionDAG &DAG) {
4073  assert(0 && "CustomPromoteOperation not implemented for this target!");
4074  abort();
4075  return SDOperand();
4076}
4077
4078/// getMemsetValue - Vectorized representation of the memset value
4079/// operand.
4080static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4081                                SelectionDAG &DAG) {
4082  MVT::ValueType CurVT = VT;
4083  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4084    uint64_t Val   = C->getValue() & 255;
4085    unsigned Shift = 8;
4086    while (CurVT != MVT::i8) {
4087      Val = (Val << Shift) | Val;
4088      Shift <<= 1;
4089      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4090    }
4091    return DAG.getConstant(Val, VT);
4092  } else {
4093    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4094    unsigned Shift = 8;
4095    while (CurVT != MVT::i8) {
4096      Value =
4097        DAG.getNode(ISD::OR, VT,
4098                    DAG.getNode(ISD::SHL, VT, Value,
4099                                DAG.getConstant(Shift, MVT::i8)), Value);
4100      Shift <<= 1;
4101      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4102    }
4103
4104    return Value;
4105  }
4106}
4107
4108/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4109/// used when a memcpy is turned into a memset when the source is a constant
4110/// string ptr.
4111static SDOperand getMemsetStringVal(MVT::ValueType VT,
4112                                    SelectionDAG &DAG, TargetLowering &TLI,
4113                                    std::string &Str, unsigned Offset) {
4114  uint64_t Val = 0;
4115  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4116  if (TLI.isLittleEndian())
4117    Offset = Offset + MSB - 1;
4118  for (unsigned i = 0; i != MSB; ++i) {
4119    Val = (Val << 8) | (unsigned char)Str[Offset];
4120    Offset += TLI.isLittleEndian() ? -1 : 1;
4121  }
4122  return DAG.getConstant(Val, VT);
4123}
4124
4125/// getMemBasePlusOffset - Returns base and offset node for the
4126static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4127                                      SelectionDAG &DAG, TargetLowering &TLI) {
4128  MVT::ValueType VT = Base.getValueType();
4129  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4130}
4131
4132/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4133/// to replace the memset / memcpy is below the threshold. It also returns the
4134/// types of the sequence of  memory ops to perform memset / memcpy.
4135static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4136                                     unsigned Limit, uint64_t Size,
4137                                     unsigned Align, TargetLowering &TLI) {
4138  MVT::ValueType VT;
4139
4140  if (TLI.allowsUnalignedMemoryAccesses()) {
4141    VT = MVT::i64;
4142  } else {
4143    switch (Align & 7) {
4144    case 0:
4145      VT = MVT::i64;
4146      break;
4147    case 4:
4148      VT = MVT::i32;
4149      break;
4150    case 2:
4151      VT = MVT::i16;
4152      break;
4153    default:
4154      VT = MVT::i8;
4155      break;
4156    }
4157  }
4158
4159  MVT::ValueType LVT = MVT::i64;
4160  while (!TLI.isTypeLegal(LVT))
4161    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4162  assert(MVT::isInteger(LVT));
4163
4164  if (VT > LVT)
4165    VT = LVT;
4166
4167  unsigned NumMemOps = 0;
4168  while (Size != 0) {
4169    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4170    while (VTSize > Size) {
4171      VT = (MVT::ValueType)((unsigned)VT - 1);
4172      VTSize >>= 1;
4173    }
4174    assert(MVT::isInteger(VT));
4175
4176    if (++NumMemOps > Limit)
4177      return false;
4178    MemOps.push_back(VT);
4179    Size -= VTSize;
4180  }
4181
4182  return true;
4183}
4184
4185void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4186  SDOperand Op1 = getValue(I.getOperand(1));
4187  SDOperand Op2 = getValue(I.getOperand(2));
4188  SDOperand Op3 = getValue(I.getOperand(3));
4189  SDOperand Op4 = getValue(I.getOperand(4));
4190  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4191  if (Align == 0) Align = 1;
4192
4193  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4194    std::vector<MVT::ValueType> MemOps;
4195
4196    // Expand memset / memcpy to a series of load / store ops
4197    // if the size operand falls below a certain threshold.
4198    SmallVector<SDOperand, 8> OutChains;
4199    switch (Op) {
4200    default: break;  // Do nothing for now.
4201    case ISD::MEMSET: {
4202      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4203                                   Size->getValue(), Align, TLI)) {
4204        unsigned NumMemOps = MemOps.size();
4205        unsigned Offset = 0;
4206        for (unsigned i = 0; i < NumMemOps; i++) {
4207          MVT::ValueType VT = MemOps[i];
4208          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4209          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4210          SDOperand Store = DAG.getStore(getRoot(), Value,
4211                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4212                                         I.getOperand(1), Offset);
4213          OutChains.push_back(Store);
4214          Offset += VTSize;
4215        }
4216      }
4217      break;
4218    }
4219    case ISD::MEMCPY: {
4220      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4221                                   Size->getValue(), Align, TLI)) {
4222        unsigned NumMemOps = MemOps.size();
4223        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4224        GlobalAddressSDNode *G = NULL;
4225        std::string Str;
4226        bool CopyFromStr = false;
4227
4228        if (Op2.getOpcode() == ISD::GlobalAddress)
4229          G = cast<GlobalAddressSDNode>(Op2);
4230        else if (Op2.getOpcode() == ISD::ADD &&
4231                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4232                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4233          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4234          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4235        }
4236        if (G) {
4237          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4238          if (GV && GV->isConstant()) {
4239            Str = GV->getStringValue(false);
4240            if (!Str.empty()) {
4241              CopyFromStr = true;
4242              SrcOff += SrcDelta;
4243            }
4244          }
4245        }
4246
4247        for (unsigned i = 0; i < NumMemOps; i++) {
4248          MVT::ValueType VT = MemOps[i];
4249          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4250          SDOperand Value, Chain, Store;
4251
4252          if (CopyFromStr) {
4253            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4254            Chain = getRoot();
4255            Store =
4256              DAG.getStore(Chain, Value,
4257                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4258                           I.getOperand(1), DstOff);
4259          } else {
4260            Value = DAG.getLoad(VT, getRoot(),
4261                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4262                        I.getOperand(2), SrcOff);
4263            Chain = Value.getValue(1);
4264            Store =
4265              DAG.getStore(Chain, Value,
4266                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4267                           I.getOperand(1), DstOff);
4268          }
4269          OutChains.push_back(Store);
4270          SrcOff += VTSize;
4271          DstOff += VTSize;
4272        }
4273      }
4274      break;
4275    }
4276    }
4277
4278    if (!OutChains.empty()) {
4279      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4280                  &OutChains[0], OutChains.size()));
4281      return;
4282    }
4283  }
4284
4285  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
4286}
4287
4288//===----------------------------------------------------------------------===//
4289// SelectionDAGISel code
4290//===----------------------------------------------------------------------===//
4291
4292unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4293  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4294}
4295
4296void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4297  AU.addRequired<AliasAnalysis>();
4298  AU.setPreservesAll();
4299}
4300
4301
4302
4303bool SelectionDAGISel::runOnFunction(Function &Fn) {
4304  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4305  RegMap = MF.getSSARegMap();
4306  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4307
4308  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4309
4310  if (ExceptionHandling)
4311    for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4312      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4313        // Mark landing pad.
4314        FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4315
4316  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4317    SelectBasicBlock(I, MF, FuncInfo);
4318
4319  // Add function live-ins to entry block live-in set.
4320  BasicBlock *EntryBB = &Fn.getEntryBlock();
4321  BB = FuncInfo.MBBMap[EntryBB];
4322  if (!MF.livein_empty())
4323    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4324           E = MF.livein_end(); I != E; ++I)
4325      BB->addLiveIn(I->first);
4326
4327#ifndef NDEBUG
4328  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4329         "Not all catch info was assigned to a landing pad!");
4330#endif
4331
4332  return true;
4333}
4334
4335SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4336                                                           unsigned Reg) {
4337  SDOperand Op = getValue(V);
4338  assert((Op.getOpcode() != ISD::CopyFromReg ||
4339          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4340         "Copy from a reg to the same reg!");
4341
4342  MVT::ValueType SrcVT = Op.getValueType();
4343  MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4344  unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4345  SmallVector<SDOperand, 8> Regs(NumRegs);
4346  SmallVector<SDOperand, 8> Chains(NumRegs);
4347
4348  // Copy the value by legal parts into sequential virtual registers.
4349  getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4350  for (unsigned i = 0; i != NumRegs; ++i)
4351    Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4352  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4353}
4354
4355void SelectionDAGISel::
4356LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4357               std::vector<SDOperand> &UnorderedChains) {
4358  // If this is the entry block, emit arguments.
4359  Function &F = *LLVMBB->getParent();
4360  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4361  SDOperand OldRoot = SDL.DAG.getRoot();
4362  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4363
4364  unsigned a = 0;
4365  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4366       AI != E; ++AI, ++a)
4367    if (!AI->use_empty()) {
4368      SDL.setValue(AI, Args[a]);
4369
4370      // If this argument is live outside of the entry block, insert a copy from
4371      // whereever we got it to the vreg that other BB's will reference it as.
4372      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4373      if (VMI != FuncInfo.ValueMap.end()) {
4374        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4375        UnorderedChains.push_back(Copy);
4376      }
4377    }
4378
4379  // Finally, if the target has anything special to do, allow it to do so.
4380  // FIXME: this should insert code into the DAG!
4381  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4382}
4383
4384static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4385                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4386  assert(!FLI.MBBMap[SrcBB]->isLandingPad() &&
4387         "Copying catch info out of a landing pad!");
4388  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4389    if (isSelector(I)) {
4390      // Apply the catch info to DestBB.
4391      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4392#ifndef NDEBUG
4393      FLI.CatchInfoFound.insert(I);
4394#endif
4395    }
4396}
4397
4398void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4399       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4400                                         FunctionLoweringInfo &FuncInfo) {
4401  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
4402
4403  std::vector<SDOperand> UnorderedChains;
4404
4405  // Lower any arguments needed in this block if this is the entry block.
4406  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4407    LowerArguments(LLVMBB, SDL, UnorderedChains);
4408
4409  BB = FuncInfo.MBBMap[LLVMBB];
4410  SDL.setCurrentBasicBlock(BB);
4411
4412  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4413
4414  if (ExceptionHandling && MMI && BB->isLandingPad()) {
4415    // Add a label to mark the beginning of the landing pad.  Deletion of the
4416    // landing pad can thus be detected via the MachineModuleInfo.
4417    unsigned LabelID = MMI->addLandingPad(BB);
4418    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4419                            DAG.getConstant(LabelID, MVT::i32)));
4420
4421    // Mark exception register as live in.
4422    unsigned Reg = TLI.getExceptionAddressRegister();
4423    if (Reg) BB->addLiveIn(Reg);
4424
4425    // Mark exception selector register as live in.
4426    Reg = TLI.getExceptionSelectorRegister();
4427    if (Reg) BB->addLiveIn(Reg);
4428
4429    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4430    // function and list of typeids logically belong to the invoke (or, if you
4431    // like, the basic block containing the invoke), and need to be associated
4432    // with it in the dwarf exception handling tables.  Currently however the
4433    // information is provided by an intrinsic (eh.selector) that can be moved
4434    // to unexpected places by the optimizers: if the unwind edge is critical,
4435    // then breaking it can result in the intrinsics being in the successor of
4436    // the landing pad, not the landing pad itself.  This results in exceptions
4437    // not being caught because no typeids are associated with the invoke.
4438    // This may not be the only way things can go wrong, but it is the only way
4439    // we try to work around for the moment.
4440    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4441
4442    if (Br && Br->isUnconditional()) { // Critical edge?
4443      BasicBlock::iterator I, E;
4444      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4445        if (isSelector(I))
4446          break;
4447
4448      if (I == E)
4449        // No catch info found - try to extract some from the successor.
4450        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4451    }
4452  }
4453
4454  // Lower all of the non-terminator instructions.
4455  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4456       I != E; ++I)
4457    SDL.visit(*I);
4458
4459  // Ensure that all instructions which are used outside of their defining
4460  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4461  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4462    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4463      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4464      if (VMI != FuncInfo.ValueMap.end())
4465        UnorderedChains.push_back(
4466                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4467    }
4468
4469  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4470  // ensure constants are generated when needed.  Remember the virtual registers
4471  // that need to be added to the Machine PHI nodes as input.  We cannot just
4472  // directly add them, because expansion might result in multiple MBB's for one
4473  // BB.  As such, the start of the BB might correspond to a different MBB than
4474  // the end.
4475  //
4476  TerminatorInst *TI = LLVMBB->getTerminator();
4477
4478  // Emit constants only once even if used by multiple PHI nodes.
4479  std::map<Constant*, unsigned> ConstantsOut;
4480
4481  // Vector bool would be better, but vector<bool> is really slow.
4482  std::vector<unsigned char> SuccsHandled;
4483  if (TI->getNumSuccessors())
4484    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4485
4486  // Check successor nodes' PHI nodes that expect a constant to be available
4487  // from this block.
4488  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4489    BasicBlock *SuccBB = TI->getSuccessor(succ);
4490    if (!isa<PHINode>(SuccBB->begin())) continue;
4491    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4492
4493    // If this terminator has multiple identical successors (common for
4494    // switches), only handle each succ once.
4495    unsigned SuccMBBNo = SuccMBB->getNumber();
4496    if (SuccsHandled[SuccMBBNo]) continue;
4497    SuccsHandled[SuccMBBNo] = true;
4498
4499    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4500    PHINode *PN;
4501
4502    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4503    // nodes and Machine PHI nodes, but the incoming operands have not been
4504    // emitted yet.
4505    for (BasicBlock::iterator I = SuccBB->begin();
4506         (PN = dyn_cast<PHINode>(I)); ++I) {
4507      // Ignore dead phi's.
4508      if (PN->use_empty()) continue;
4509
4510      unsigned Reg;
4511      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4512
4513      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4514        unsigned &RegOut = ConstantsOut[C];
4515        if (RegOut == 0) {
4516          RegOut = FuncInfo.CreateRegForValue(C);
4517          UnorderedChains.push_back(
4518                           SDL.CopyValueToVirtualRegister(C, RegOut));
4519        }
4520        Reg = RegOut;
4521      } else {
4522        Reg = FuncInfo.ValueMap[PHIOp];
4523        if (Reg == 0) {
4524          assert(isa<AllocaInst>(PHIOp) &&
4525                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4526                 "Didn't codegen value into a register!??");
4527          Reg = FuncInfo.CreateRegForValue(PHIOp);
4528          UnorderedChains.push_back(
4529                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4530        }
4531      }
4532
4533      // Remember that this register needs to added to the machine PHI node as
4534      // the input for this MBB.
4535      MVT::ValueType VT = TLI.getValueType(PN->getType());
4536      unsigned NumRegisters = TLI.getNumRegisters(VT);
4537      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4538        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4539    }
4540  }
4541  ConstantsOut.clear();
4542
4543  // Turn all of the unordered chains into one factored node.
4544  if (!UnorderedChains.empty()) {
4545    SDOperand Root = SDL.getRoot();
4546    if (Root.getOpcode() != ISD::EntryToken) {
4547      unsigned i = 0, e = UnorderedChains.size();
4548      for (; i != e; ++i) {
4549        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4550        if (UnorderedChains[i].Val->getOperand(0) == Root)
4551          break;  // Don't add the root if we already indirectly depend on it.
4552      }
4553
4554      if (i == e)
4555        UnorderedChains.push_back(Root);
4556    }
4557    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4558                            &UnorderedChains[0], UnorderedChains.size()));
4559  }
4560
4561  // Lower the terminator after the copies are emitted.
4562  SDL.visit(*LLVMBB->getTerminator());
4563
4564  // Copy over any CaseBlock records that may now exist due to SwitchInst
4565  // lowering, as well as any jump table information.
4566  SwitchCases.clear();
4567  SwitchCases = SDL.SwitchCases;
4568  JTCases.clear();
4569  JTCases = SDL.JTCases;
4570  BitTestCases.clear();
4571  BitTestCases = SDL.BitTestCases;
4572
4573  // Make sure the root of the DAG is up-to-date.
4574  DAG.setRoot(SDL.getRoot());
4575}
4576
4577void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4578  // Get alias analysis for load/store combining.
4579  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4580
4581  // Run the DAG combiner in pre-legalize mode.
4582  DAG.Combine(false, AA);
4583
4584  DOUT << "Lowered selection DAG:\n";
4585  DEBUG(DAG.dump());
4586
4587  // Second step, hack on the DAG until it only uses operations and types that
4588  // the target supports.
4589  DAG.Legalize();
4590
4591  DOUT << "Legalized selection DAG:\n";
4592  DEBUG(DAG.dump());
4593
4594  // Run the DAG combiner in post-legalize mode.
4595  DAG.Combine(true, AA);
4596
4597  if (ViewISelDAGs) DAG.viewGraph();
4598
4599  // Third, instruction select all of the operations to machine code, adding the
4600  // code to the MachineBasicBlock.
4601  InstructionSelectBasicBlock(DAG);
4602
4603  DOUT << "Selected machine code:\n";
4604  DEBUG(BB->dump());
4605}
4606
4607void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4608                                        FunctionLoweringInfo &FuncInfo) {
4609  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4610  {
4611    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4612    CurDAG = &DAG;
4613
4614    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4615    // types that are not supported by the target.
4616    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4617
4618    // Second step, emit the lowered DAG as machine code.
4619    CodeGenAndEmitDAG(DAG);
4620  }
4621
4622  DOUT << "Total amount of phi nodes to update: "
4623       << PHINodesToUpdate.size() << "\n";
4624  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4625          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4626               << ", " << PHINodesToUpdate[i].second << ")\n";);
4627
4628  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4629  // PHI nodes in successors.
4630  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4631    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4632      MachineInstr *PHI = PHINodesToUpdate[i].first;
4633      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4634             "This is not a machine PHI node that we are updating!");
4635      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4636      PHI->addMachineBasicBlockOperand(BB);
4637    }
4638    return;
4639  }
4640
4641  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4642    // Lower header first, if it wasn't already lowered
4643    if (!BitTestCases[i].Emitted) {
4644      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4645      CurDAG = &HSDAG;
4646      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4647      // Set the current basic block to the mbb we wish to insert the code into
4648      BB = BitTestCases[i].Parent;
4649      HSDL.setCurrentBasicBlock(BB);
4650      // Emit the code
4651      HSDL.visitBitTestHeader(BitTestCases[i]);
4652      HSDAG.setRoot(HSDL.getRoot());
4653      CodeGenAndEmitDAG(HSDAG);
4654    }
4655
4656    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4657      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4658      CurDAG = &BSDAG;
4659      SelectionDAGLowering BSDL(BSDAG, TLI, FuncInfo);
4660      // Set the current basic block to the mbb we wish to insert the code into
4661      BB = BitTestCases[i].Cases[j].ThisBB;
4662      BSDL.setCurrentBasicBlock(BB);
4663      // Emit the code
4664      if (j+1 != ej)
4665        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4666                              BitTestCases[i].Reg,
4667                              BitTestCases[i].Cases[j]);
4668      else
4669        BSDL.visitBitTestCase(BitTestCases[i].Default,
4670                              BitTestCases[i].Reg,
4671                              BitTestCases[i].Cases[j]);
4672
4673
4674      BSDAG.setRoot(BSDL.getRoot());
4675      CodeGenAndEmitDAG(BSDAG);
4676    }
4677
4678    // Update PHI Nodes
4679    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4680      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4681      MachineBasicBlock *PHIBB = PHI->getParent();
4682      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4683             "This is not a machine PHI node that we are updating!");
4684      // This is "default" BB. We have two jumps to it. From "header" BB and
4685      // from last "case" BB.
4686      if (PHIBB == BitTestCases[i].Default) {
4687        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4688        PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4689        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4690        PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4691      }
4692      // One of "cases" BB.
4693      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4694        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4695        if (cBB->succ_end() !=
4696            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4697          PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4698          PHI->addMachineBasicBlockOperand(cBB);
4699        }
4700      }
4701    }
4702  }
4703
4704  // If the JumpTable record is filled in, then we need to emit a jump table.
4705  // Updating the PHI nodes is tricky in this case, since we need to determine
4706  // whether the PHI is a successor of the range check MBB or the jump table MBB
4707  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4708    // Lower header first, if it wasn't already lowered
4709    if (!JTCases[i].first.Emitted) {
4710      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4711      CurDAG = &HSDAG;
4712      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4713      // Set the current basic block to the mbb we wish to insert the code into
4714      BB = JTCases[i].first.HeaderBB;
4715      HSDL.setCurrentBasicBlock(BB);
4716      // Emit the code
4717      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4718      HSDAG.setRoot(HSDL.getRoot());
4719      CodeGenAndEmitDAG(HSDAG);
4720    }
4721
4722    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4723    CurDAG = &JSDAG;
4724    SelectionDAGLowering JSDL(JSDAG, TLI, FuncInfo);
4725    // Set the current basic block to the mbb we wish to insert the code into
4726    BB = JTCases[i].second.MBB;
4727    JSDL.setCurrentBasicBlock(BB);
4728    // Emit the code
4729    JSDL.visitJumpTable(JTCases[i].second);
4730    JSDAG.setRoot(JSDL.getRoot());
4731    CodeGenAndEmitDAG(JSDAG);
4732
4733    // Update PHI Nodes
4734    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4735      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4736      MachineBasicBlock *PHIBB = PHI->getParent();
4737      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4738             "This is not a machine PHI node that we are updating!");
4739      // "default" BB. We can go there only from header BB.
4740      if (PHIBB == JTCases[i].second.Default) {
4741        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4742        PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4743      }
4744      // JT BB. Just iterate over successors here
4745      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4746        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4747        PHI->addMachineBasicBlockOperand(BB);
4748      }
4749    }
4750  }
4751
4752  // If the switch block involved a branch to one of the actual successors, we
4753  // need to update PHI nodes in that block.
4754  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4755    MachineInstr *PHI = PHINodesToUpdate[i].first;
4756    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4757           "This is not a machine PHI node that we are updating!");
4758    if (BB->isSuccessor(PHI->getParent())) {
4759      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4760      PHI->addMachineBasicBlockOperand(BB);
4761    }
4762  }
4763
4764  // If we generated any switch lowering information, build and codegen any
4765  // additional DAGs necessary.
4766  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4767    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4768    CurDAG = &SDAG;
4769    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4770
4771    // Set the current basic block to the mbb we wish to insert the code into
4772    BB = SwitchCases[i].ThisBB;
4773    SDL.setCurrentBasicBlock(BB);
4774
4775    // Emit the code
4776    SDL.visitSwitchCase(SwitchCases[i]);
4777    SDAG.setRoot(SDL.getRoot());
4778    CodeGenAndEmitDAG(SDAG);
4779
4780    // Handle any PHI nodes in successors of this chunk, as if we were coming
4781    // from the original BB before switch expansion.  Note that PHI nodes can
4782    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4783    // handle them the right number of times.
4784    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4785      for (MachineBasicBlock::iterator Phi = BB->begin();
4786           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4787        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4788        for (unsigned pn = 0; ; ++pn) {
4789          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4790          if (PHINodesToUpdate[pn].first == Phi) {
4791            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4792            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4793            break;
4794          }
4795        }
4796      }
4797
4798      // Don't process RHS if same block as LHS.
4799      if (BB == SwitchCases[i].FalseBB)
4800        SwitchCases[i].FalseBB = 0;
4801
4802      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4803      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4804      SwitchCases[i].FalseBB = 0;
4805    }
4806    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4807  }
4808}
4809
4810
4811//===----------------------------------------------------------------------===//
4812/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4813/// target node in the graph.
4814void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4815  if (ViewSchedDAGs) DAG.viewGraph();
4816
4817  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4818
4819  if (!Ctor) {
4820    Ctor = ISHeuristic;
4821    RegisterScheduler::setDefault(Ctor);
4822  }
4823
4824  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4825  BB = SL->Run();
4826  delete SL;
4827}
4828
4829
4830HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4831  return new HazardRecognizer();
4832}
4833
4834//===----------------------------------------------------------------------===//
4835// Helper functions used by the generated instruction selector.
4836//===----------------------------------------------------------------------===//
4837// Calls to these methods are generated by tblgen.
4838
4839/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4840/// the dag combiner simplified the 255, we still want to match.  RHS is the
4841/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4842/// specified in the .td file (e.g. 255).
4843bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4844                                    int64_t DesiredMaskS) const {
4845  uint64_t ActualMask = RHS->getValue();
4846  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4847
4848  // If the actual mask exactly matches, success!
4849  if (ActualMask == DesiredMask)
4850    return true;
4851
4852  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4853  if (ActualMask & ~DesiredMask)
4854    return false;
4855
4856  // Otherwise, the DAG Combiner may have proven that the value coming in is
4857  // either already zero or is not demanded.  Check for known zero input bits.
4858  uint64_t NeededMask = DesiredMask & ~ActualMask;
4859  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
4860    return true;
4861
4862  // TODO: check to see if missing bits are just not demanded.
4863
4864  // Otherwise, this pattern doesn't match.
4865  return false;
4866}
4867
4868/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4869/// the dag combiner simplified the 255, we still want to match.  RHS is the
4870/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4871/// specified in the .td file (e.g. 255).
4872bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4873                                    int64_t DesiredMaskS) const {
4874  uint64_t ActualMask = RHS->getValue();
4875  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4876
4877  // If the actual mask exactly matches, success!
4878  if (ActualMask == DesiredMask)
4879    return true;
4880
4881  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4882  if (ActualMask & ~DesiredMask)
4883    return false;
4884
4885  // Otherwise, the DAG Combiner may have proven that the value coming in is
4886  // either already zero or is not demanded.  Check for known zero input bits.
4887  uint64_t NeededMask = DesiredMask & ~ActualMask;
4888
4889  uint64_t KnownZero, KnownOne;
4890  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4891
4892  // If all the missing bits in the or are already known to be set, match!
4893  if ((NeededMask & KnownOne) == NeededMask)
4894    return true;
4895
4896  // TODO: check to see if missing bits are just not demanded.
4897
4898  // Otherwise, this pattern doesn't match.
4899  return false;
4900}
4901
4902
4903/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4904/// by tblgen.  Others should not call it.
4905void SelectionDAGISel::
4906SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4907  std::vector<SDOperand> InOps;
4908  std::swap(InOps, Ops);
4909
4910  Ops.push_back(InOps[0]);  // input chain.
4911  Ops.push_back(InOps[1]);  // input asm string.
4912
4913  unsigned i = 2, e = InOps.size();
4914  if (InOps[e-1].getValueType() == MVT::Flag)
4915    --e;  // Don't process a flag operand if it is here.
4916
4917  while (i != e) {
4918    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4919    if ((Flags & 7) != 4 /*MEM*/) {
4920      // Just skip over this operand, copying the operands verbatim.
4921      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4922      i += (Flags >> 3) + 1;
4923    } else {
4924      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4925      // Otherwise, this is a memory operand.  Ask the target to select it.
4926      std::vector<SDOperand> SelOps;
4927      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4928        cerr << "Could not match memory address.  Inline asm failure!\n";
4929        exit(1);
4930      }
4931
4932      // Add this to the output node.
4933      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4934      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4935                                          IntPtrTy));
4936      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4937      i += 2;
4938    }
4939  }
4940
4941  // Add the flag input back if present.
4942  if (e != InOps.size())
4943    Ops.push_back(InOps.back());
4944}
4945
4946char SelectionDAGISel::ID = 0;
4947