SelectionDAGISel.cpp revision 497a397f3e4edeb102bb2e2509a3795feafaf742
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/DebugInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/Module.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/GCStrategy.h"
32#include "llvm/CodeGen/GCMetadata.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39#include "llvm/CodeGen/SchedulerRegistry.h"
40#include "llvm/CodeGen/SelectionDAG.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetIntrinsicInfo.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLowering.h"
45#include "llvm/Target/TargetMachine.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/Transforms/Utils/BasicBlockUtils.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/Timer.h"
52#include "llvm/Support/raw_ostream.h"
53#include "llvm/ADT/PostOrderIterator.h"
54#include "llvm/ADT/Statistic.h"
55#include <algorithm>
56using namespace llvm;
57
58STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
59STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
60STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
61STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
62STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
63
64static cl::opt<bool>
65EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
66          cl::desc("Enable verbose messages in the \"fast\" "
67                   "instruction selector"));
68static cl::opt<bool>
69EnableFastISelAbort("fast-isel-abort", cl::Hidden,
70          cl::desc("Enable abort calls when \"fast\" instruction fails"));
71
72static cl::opt<bool>
73UseMBPI("use-mbpi",
74        cl::desc("use Machine Branch Probability Info"),
75        cl::init(true), cl::Hidden);
76
77#ifndef NDEBUG
78static cl::opt<bool>
79ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
80          cl::desc("Pop up a window to show dags before the first "
81                   "dag combine pass"));
82static cl::opt<bool>
83ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize types"));
85static cl::opt<bool>
86ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before legalize"));
88static cl::opt<bool>
89ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
90          cl::desc("Pop up a window to show dags before the second "
91                   "dag combine pass"));
92static cl::opt<bool>
93ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
94          cl::desc("Pop up a window to show dags before the post legalize types"
95                   " dag combine pass"));
96static cl::opt<bool>
97ViewISelDAGs("view-isel-dags", cl::Hidden,
98          cl::desc("Pop up a window to show isel dags as they are selected"));
99static cl::opt<bool>
100ViewSchedDAGs("view-sched-dags", cl::Hidden,
101          cl::desc("Pop up a window to show sched dags as they are processed"));
102static cl::opt<bool>
103ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
104      cl::desc("Pop up a window to show SUnit dags after they are processed"));
105#else
106static const bool ViewDAGCombine1 = false,
107                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
108                  ViewDAGCombine2 = false,
109                  ViewDAGCombineLT = false,
110                  ViewISelDAGs = false, ViewSchedDAGs = false,
111                  ViewSUnitDAGs = false;
112#endif
113
114//===---------------------------------------------------------------------===//
115///
116/// RegisterScheduler class - Track the registration of instruction schedulers.
117///
118//===---------------------------------------------------------------------===//
119MachinePassRegistry RegisterScheduler::Registry;
120
121//===---------------------------------------------------------------------===//
122///
123/// ISHeuristic command line option for instruction schedulers.
124///
125//===---------------------------------------------------------------------===//
126static cl::opt<RegisterScheduler::FunctionPassCtor, false,
127               RegisterPassParser<RegisterScheduler> >
128ISHeuristic("pre-RA-sched",
129            cl::init(&createDefaultScheduler),
130            cl::desc("Instruction schedulers available (before register"
131                     " allocation):"));
132
133static RegisterScheduler
134defaultListDAGScheduler("default", "Best scheduler for the target",
135                        createDefaultScheduler);
136
137namespace llvm {
138  //===--------------------------------------------------------------------===//
139  /// createDefaultScheduler - This creates an instruction scheduler appropriate
140  /// for the target.
141  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
142                                             CodeGenOpt::Level OptLevel) {
143    const TargetLowering &TLI = IS->getTargetLowering();
144
145    if (OptLevel == CodeGenOpt::None)
146      return createSourceListDAGScheduler(IS, OptLevel);
147    if (TLI.getSchedulingPreference() == Sched::Latency)
148      return createTDListDAGScheduler(IS, OptLevel);
149    if (TLI.getSchedulingPreference() == Sched::RegPressure)
150      return createBURRListDAGScheduler(IS, OptLevel);
151    if (TLI.getSchedulingPreference() == Sched::Hybrid)
152      return createHybridListDAGScheduler(IS, OptLevel);
153    assert(TLI.getSchedulingPreference() == Sched::ILP &&
154           "Unknown sched type!");
155    return createILPListDAGScheduler(IS, OptLevel);
156  }
157}
158
159// EmitInstrWithCustomInserter - This method should be implemented by targets
160// that mark instructions with the 'usesCustomInserter' flag.  These
161// instructions are special in various ways, which require special support to
162// insert.  The specified MachineInstr is created but not inserted into any
163// basic blocks, and this method is called to expand it into a sequence of
164// instructions, potentially also creating new basic blocks and control flow.
165// When new basic blocks are inserted and the edges from MBB to its successors
166// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
167// DenseMap.
168MachineBasicBlock *
169TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
170                                            MachineBasicBlock *MBB) const {
171#ifndef NDEBUG
172  dbgs() << "If a target marks an instruction with "
173          "'usesCustomInserter', it must implement "
174          "TargetLowering::EmitInstrWithCustomInserter!";
175#endif
176  llvm_unreachable(0);
177  return 0;
178}
179
180//===----------------------------------------------------------------------===//
181// SelectionDAGISel code
182//===----------------------------------------------------------------------===//
183
184SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
185                                   CodeGenOpt::Level OL) :
186  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
187  FuncInfo(new FunctionLoweringInfo(TLI)),
188  CurDAG(new SelectionDAG(tm)),
189  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
190  GFI(),
191  OptLevel(OL),
192  DAGSize(0) {
193    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
194    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
195    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
196  }
197
198SelectionDAGISel::~SelectionDAGISel() {
199  delete SDB;
200  delete CurDAG;
201  delete FuncInfo;
202}
203
204void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
205  AU.addRequired<AliasAnalysis>();
206  AU.addPreserved<AliasAnalysis>();
207  AU.addRequired<GCModuleInfo>();
208  AU.addPreserved<GCModuleInfo>();
209  if (UseMBPI && OptLevel != CodeGenOpt::None)
210    AU.addRequired<BranchProbabilityInfo>();
211  MachineFunctionPass::getAnalysisUsage(AU);
212}
213
214/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
215/// may trap on it.  In this case we have to split the edge so that the path
216/// through the predecessor block that doesn't go to the phi block doesn't
217/// execute the possibly trapping instruction.
218///
219/// This is required for correctness, so it must be done at -O0.
220///
221static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
222  // Loop for blocks with phi nodes.
223  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
224    PHINode *PN = dyn_cast<PHINode>(BB->begin());
225    if (PN == 0) continue;
226
227  ReprocessBlock:
228    // For each block with a PHI node, check to see if any of the input values
229    // are potentially trapping constant expressions.  Constant expressions are
230    // the only potentially trapping value that can occur as the argument to a
231    // PHI.
232    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
233      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
234        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
235        if (CE == 0 || !CE->canTrap()) continue;
236
237        // The only case we have to worry about is when the edge is critical.
238        // Since this block has a PHI Node, we assume it has multiple input
239        // edges: check to see if the pred has multiple successors.
240        BasicBlock *Pred = PN->getIncomingBlock(i);
241        if (Pred->getTerminator()->getNumSuccessors() == 1)
242          continue;
243
244        // Okay, we have to split this edge.
245        SplitCriticalEdge(Pred->getTerminator(),
246                          GetSuccessorNumber(Pred, BB), SDISel, true);
247        goto ReprocessBlock;
248      }
249  }
250}
251
252bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
253  // Do some sanity-checking on the command-line options.
254  assert((!EnableFastISelVerbose || EnableFastISel) &&
255         "-fast-isel-verbose requires -fast-isel");
256  assert((!EnableFastISelAbort || EnableFastISel) &&
257         "-fast-isel-abort requires -fast-isel");
258
259  const Function &Fn = *mf.getFunction();
260  const TargetInstrInfo &TII = *TM.getInstrInfo();
261  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
262
263  MF = &mf;
264  RegInfo = &MF->getRegInfo();
265  AA = &getAnalysis<AliasAnalysis>();
266  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
267
268  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
269
270  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
271
272  CurDAG->init(*MF);
273  FuncInfo->set(Fn, *MF);
274
275  if (UseMBPI && OptLevel != CodeGenOpt::None)
276    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
277  else
278    FuncInfo->BPI = 0;
279
280  SDB->init(GFI, *AA);
281
282  SelectAllBasicBlocks(Fn);
283
284  // If the first basic block in the function has live ins that need to be
285  // copied into vregs, emit the copies into the top of the block before
286  // emitting the code for the block.
287  MachineBasicBlock *EntryMBB = MF->begin();
288  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
289
290  DenseMap<unsigned, unsigned> LiveInMap;
291  if (!FuncInfo->ArgDbgValues.empty())
292    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
293           E = RegInfo->livein_end(); LI != E; ++LI)
294      if (LI->second)
295        LiveInMap.insert(std::make_pair(LI->first, LI->second));
296
297  // Insert DBG_VALUE instructions for function arguments to the entry block.
298  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
299    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
300    unsigned Reg = MI->getOperand(0).getReg();
301    if (TargetRegisterInfo::isPhysicalRegister(Reg))
302      EntryMBB->insert(EntryMBB->begin(), MI);
303    else {
304      MachineInstr *Def = RegInfo->getVRegDef(Reg);
305      MachineBasicBlock::iterator InsertPos = Def;
306      // FIXME: VR def may not be in entry block.
307      Def->getParent()->insert(llvm::next(InsertPos), MI);
308    }
309
310    // If Reg is live-in then update debug info to track its copy in a vreg.
311    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
312    if (LDI != LiveInMap.end()) {
313      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
314      MachineBasicBlock::iterator InsertPos = Def;
315      const MDNode *Variable =
316        MI->getOperand(MI->getNumOperands()-1).getMetadata();
317      unsigned Offset = MI->getOperand(1).getImm();
318      // Def is never a terminator here, so it is ok to increment InsertPos.
319      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
320              TII.get(TargetOpcode::DBG_VALUE))
321        .addReg(LDI->second, RegState::Debug)
322        .addImm(Offset).addMetadata(Variable);
323
324      // If this vreg is directly copied into an exported register then
325      // that COPY instructions also need DBG_VALUE, if it is the only
326      // user of LDI->second.
327      MachineInstr *CopyUseMI = NULL;
328      for (MachineRegisterInfo::use_iterator
329             UI = RegInfo->use_begin(LDI->second);
330           MachineInstr *UseMI = UI.skipInstruction();) {
331        if (UseMI->isDebugValue()) continue;
332        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
333          CopyUseMI = UseMI; continue;
334        }
335        // Otherwise this is another use or second copy use.
336        CopyUseMI = NULL; break;
337      }
338      if (CopyUseMI) {
339        MachineInstr *NewMI =
340          BuildMI(*MF, CopyUseMI->getDebugLoc(),
341                  TII.get(TargetOpcode::DBG_VALUE))
342          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
343          .addImm(Offset).addMetadata(Variable);
344        EntryMBB->insertAfter(CopyUseMI, NewMI);
345      }
346    }
347  }
348
349  // Determine if there are any calls in this machine function.
350  MachineFrameInfo *MFI = MF->getFrameInfo();
351  if (!MFI->hasCalls()) {
352    for (MachineFunction::const_iterator
353           I = MF->begin(), E = MF->end(); I != E; ++I) {
354      const MachineBasicBlock *MBB = I;
355      for (MachineBasicBlock::const_iterator
356             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
357        const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
358
359        if ((MCID.isCall() && !MCID.isReturn()) ||
360            II->isStackAligningInlineAsm()) {
361          MFI->setHasCalls(true);
362          goto done;
363        }
364      }
365    }
366  done:;
367  }
368
369  // Determine if there is a call to setjmp in the machine function.
370  MF->setCallsSetJmp(Fn.callsFunctionThatReturnsTwice());
371
372  // Replace forward-declared registers with the registers containing
373  // the desired value.
374  MachineRegisterInfo &MRI = MF->getRegInfo();
375  for (DenseMap<unsigned, unsigned>::iterator
376       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
377       I != E; ++I) {
378    unsigned From = I->first;
379    unsigned To = I->second;
380    // If To is also scheduled to be replaced, find what its ultimate
381    // replacement is.
382    for (;;) {
383      DenseMap<unsigned, unsigned>::iterator J =
384        FuncInfo->RegFixups.find(To);
385      if (J == E) break;
386      To = J->second;
387    }
388    // Replace it.
389    MRI.replaceRegWith(From, To);
390  }
391
392  // Release function-specific state. SDB and CurDAG are already cleared
393  // at this point.
394  FuncInfo->clear();
395
396  return true;
397}
398
399void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
400                                        BasicBlock::const_iterator End,
401                                        bool &HadTailCall) {
402  // Lower all of the non-terminator instructions. If a call is emitted
403  // as a tail call, cease emitting nodes for this block. Terminators
404  // are handled below.
405  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
406    SDB->visit(*I);
407
408  // Make sure the root of the DAG is up-to-date.
409  CurDAG->setRoot(SDB->getControlRoot());
410  HadTailCall = SDB->HasTailCall;
411  SDB->clear();
412
413  // Final step, emit the lowered DAG as machine code.
414  CodeGenAndEmitDAG();
415}
416
417void SelectionDAGISel::ComputeLiveOutVRegInfo() {
418  SmallPtrSet<SDNode*, 128> VisitedNodes;
419  SmallVector<SDNode*, 128> Worklist;
420
421  Worklist.push_back(CurDAG->getRoot().getNode());
422
423  APInt Mask;
424  APInt KnownZero;
425  APInt KnownOne;
426
427  do {
428    SDNode *N = Worklist.pop_back_val();
429
430    // If we've already seen this node, ignore it.
431    if (!VisitedNodes.insert(N))
432      continue;
433
434    // Otherwise, add all chain operands to the worklist.
435    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
436      if (N->getOperand(i).getValueType() == MVT::Other)
437        Worklist.push_back(N->getOperand(i).getNode());
438
439    // If this is a CopyToReg with a vreg dest, process it.
440    if (N->getOpcode() != ISD::CopyToReg)
441      continue;
442
443    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
444    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
445      continue;
446
447    // Ignore non-scalar or non-integer values.
448    SDValue Src = N->getOperand(2);
449    EVT SrcVT = Src.getValueType();
450    if (!SrcVT.isInteger() || SrcVT.isVector())
451      continue;
452
453    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
454    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
455    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
456    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
457  } while (!Worklist.empty());
458}
459
460void SelectionDAGISel::CodeGenAndEmitDAG() {
461  std::string GroupName;
462  if (TimePassesIsEnabled)
463    GroupName = "Instruction Selection and Scheduling";
464  std::string BlockName;
465  int BlockNumber = -1;
466#ifdef NDEBUG
467  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
468      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
469      ViewSUnitDAGs)
470#endif
471  {
472    BlockNumber = FuncInfo->MBB->getNumber();
473    BlockName = MF->getFunction()->getNameStr() + ":" +
474                FuncInfo->MBB->getBasicBlock()->getNameStr();
475  }
476  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
477        << " '" << BlockName << "'\n"; CurDAG->dump());
478
479  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
480
481  // Run the DAG combiner in pre-legalize mode.
482  {
483    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
484    CurDAG->Combine(Unrestricted, *AA, OptLevel);
485  }
486
487  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
488        << " '" << BlockName << "'\n"; CurDAG->dump());
489
490  // Second step, hack on the DAG until it only uses operations and types that
491  // the target supports.
492  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
493                                               BlockName);
494
495  bool Changed;
496  {
497    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
498    Changed = CurDAG->LegalizeTypes();
499  }
500
501  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
502        << " '" << BlockName << "'\n"; CurDAG->dump());
503
504  if (Changed) {
505    if (ViewDAGCombineLT)
506      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
507
508    // Run the DAG combiner in post-type-legalize mode.
509    {
510      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
511                         TimePassesIsEnabled);
512      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
513    }
514
515    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
516          << " '" << BlockName << "'\n"; CurDAG->dump());
517  }
518
519  {
520    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
521    Changed = CurDAG->LegalizeVectors();
522  }
523
524  if (Changed) {
525    {
526      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
527      CurDAG->LegalizeTypes();
528    }
529
530    if (ViewDAGCombineLT)
531      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
532
533    // Run the DAG combiner in post-type-legalize mode.
534    {
535      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
536                         TimePassesIsEnabled);
537      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
538    }
539
540    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
541          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
542  }
543
544  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
545
546  {
547    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
548    CurDAG->Legalize();
549  }
550
551  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
552        << " '" << BlockName << "'\n"; CurDAG->dump());
553
554  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
555
556  // Run the DAG combiner in post-legalize mode.
557  {
558    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
559    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
560  }
561
562  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
563        << " '" << BlockName << "'\n"; CurDAG->dump());
564
565  if (OptLevel != CodeGenOpt::None)
566    ComputeLiveOutVRegInfo();
567
568  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
569
570  // Third, instruction select all of the operations to machine code, adding the
571  // code to the MachineBasicBlock.
572  {
573    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
574    DoInstructionSelection();
575  }
576
577  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
578        << " '" << BlockName << "'\n"; CurDAG->dump());
579
580  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
581
582  // Schedule machine code.
583  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
584  {
585    NamedRegionTimer T("Instruction Scheduling", GroupName,
586                       TimePassesIsEnabled);
587    Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
588  }
589
590  if (ViewSUnitDAGs) Scheduler->viewGraph();
591
592  // Emit machine code to BB.  This can change 'BB' to the last block being
593  // inserted into.
594  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
595  {
596    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
597
598    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
599    FuncInfo->InsertPt = Scheduler->InsertPos;
600  }
601
602  // If the block was split, make sure we update any references that are used to
603  // update PHI nodes later on.
604  if (FirstMBB != LastMBB)
605    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
606
607  // Free the scheduler state.
608  {
609    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
610                       TimePassesIsEnabled);
611    delete Scheduler;
612  }
613
614  // Free the SelectionDAG state, now that we're finished with it.
615  CurDAG->clear();
616}
617
618void SelectionDAGISel::DoInstructionSelection() {
619  DEBUG(errs() << "===== Instruction selection begins: BB#"
620        << FuncInfo->MBB->getNumber()
621        << " '" << FuncInfo->MBB->getName() << "'\n");
622
623  PreprocessISelDAG();
624
625  // Select target instructions for the DAG.
626  {
627    // Number all nodes with a topological order and set DAGSize.
628    DAGSize = CurDAG->AssignTopologicalOrder();
629
630    // Create a dummy node (which is not added to allnodes), that adds
631    // a reference to the root node, preventing it from being deleted,
632    // and tracking any changes of the root.
633    HandleSDNode Dummy(CurDAG->getRoot());
634    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
635    ++ISelPosition;
636
637    // The AllNodes list is now topological-sorted. Visit the
638    // nodes by starting at the end of the list (the root of the
639    // graph) and preceding back toward the beginning (the entry
640    // node).
641    while (ISelPosition != CurDAG->allnodes_begin()) {
642      SDNode *Node = --ISelPosition;
643      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
644      // but there are currently some corner cases that it misses. Also, this
645      // makes it theoretically possible to disable the DAGCombiner.
646      if (Node->use_empty())
647        continue;
648
649      SDNode *ResNode = Select(Node);
650
651      // FIXME: This is pretty gross.  'Select' should be changed to not return
652      // anything at all and this code should be nuked with a tactical strike.
653
654      // If node should not be replaced, continue with the next one.
655      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
656        continue;
657      // Replace node.
658      if (ResNode)
659        ReplaceUses(Node, ResNode);
660
661      // If after the replacement this node is not used any more,
662      // remove this dead node.
663      if (Node->use_empty()) { // Don't delete EntryToken, etc.
664        ISelUpdater ISU(ISelPosition);
665        CurDAG->RemoveDeadNode(Node, &ISU);
666      }
667    }
668
669    CurDAG->setRoot(Dummy.getValue());
670  }
671
672  DEBUG(errs() << "===== Instruction selection ends:\n");
673
674  PostprocessISelDAG();
675}
676
677/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
678/// do other setup for EH landing-pad blocks.
679void SelectionDAGISel::PrepareEHLandingPad() {
680  // Add a label to mark the beginning of the landing pad.  Deletion of the
681  // landing pad can thus be detected via the MachineModuleInfo.
682  MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
683
684  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
685  BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
686    .addSym(Label);
687
688  // Mark exception register as live in.
689  unsigned Reg = TLI.getExceptionAddressRegister();
690  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
691
692  // Mark exception selector register as live in.
693  Reg = TLI.getExceptionSelectorRegister();
694  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
695
696  // FIXME: Hack around an exception handling flaw (PR1508): the personality
697  // function and list of typeids logically belong to the invoke (or, if you
698  // like, the basic block containing the invoke), and need to be associated
699  // with it in the dwarf exception handling tables.  Currently however the
700  // information is provided by an intrinsic (eh.selector) that can be moved
701  // to unexpected places by the optimizers: if the unwind edge is critical,
702  // then breaking it can result in the intrinsics being in the successor of
703  // the landing pad, not the landing pad itself.  This results
704  // in exceptions not being caught because no typeids are associated with
705  // the invoke.  This may not be the only way things can go wrong, but it
706  // is the only way we try to work around for the moment.
707  const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
708  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
709
710  if (Br && Br->isUnconditional()) { // Critical edge?
711    BasicBlock::const_iterator I, E;
712    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
713      if (isa<EHSelectorInst>(I))
714        break;
715
716    if (I == E)
717      // No catch info found - try to extract some from the successor.
718      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
719  }
720}
721
722
723
724/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
725/// load into the specified FoldInst.  Note that we could have a sequence where
726/// multiple LLVM IR instructions are folded into the same machineinstr.  For
727/// example we could have:
728///   A: x = load i32 *P
729///   B: y = icmp A, 42
730///   C: br y, ...
731///
732/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
733/// any other folded instructions) because it is between A and C.
734///
735/// If we succeed in folding the load into the operation, return true.
736///
737bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
738                                             const Instruction *FoldInst,
739                                             FastISel *FastIS) {
740  // We know that the load has a single use, but don't know what it is.  If it
741  // isn't one of the folded instructions, then we can't succeed here.  Handle
742  // this by scanning the single-use users of the load until we get to FoldInst.
743  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
744
745  const Instruction *TheUser = LI->use_back();
746  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
747         // Stay in the right block.
748         TheUser->getParent() == FoldInst->getParent() &&
749         --MaxUsers) {  // Don't scan too far.
750    // If there are multiple or no uses of this instruction, then bail out.
751    if (!TheUser->hasOneUse())
752      return false;
753
754    TheUser = TheUser->use_back();
755  }
756
757  // Don't try to fold volatile loads.  Target has to deal with alignment
758  // constraints.
759  if (LI->isVolatile()) return false;
760
761  // Figure out which vreg this is going into.  If there is no assigned vreg yet
762  // then there actually was no reference to it.  Perhaps the load is referenced
763  // by a dead instruction.
764  unsigned LoadReg = FastIS->getRegForValue(LI);
765  if (LoadReg == 0)
766    return false;
767
768  // Check to see what the uses of this vreg are.  If it has no uses, or more
769  // than one use (at the machine instr level) then we can't fold it.
770  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
771  if (RI == RegInfo->reg_end())
772    return false;
773
774  // See if there is exactly one use of the vreg.  If there are multiple uses,
775  // then the instruction got lowered to multiple machine instructions or the
776  // use of the loaded value ended up being multiple operands of the result, in
777  // either case, we can't fold this.
778  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
779  if (PostRI != RegInfo->reg_end())
780    return false;
781
782  assert(RI.getOperand().isUse() &&
783         "The only use of the vreg must be a use, we haven't emitted the def!");
784
785  MachineInstr *User = &*RI;
786
787  // Set the insertion point properly.  Folding the load can cause generation of
788  // other random instructions (like sign extends) for addressing modes, make
789  // sure they get inserted in a logical place before the new instruction.
790  FuncInfo->InsertPt = User;
791  FuncInfo->MBB = User->getParent();
792
793  // Ask the target to try folding the load.
794  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
795}
796
797/// isFoldedOrDeadInstruction - Return true if the specified instruction is
798/// side-effect free and is either dead or folded into a generated instruction.
799/// Return false if it needs to be emitted.
800static bool isFoldedOrDeadInstruction(const Instruction *I,
801                                      FunctionLoweringInfo *FuncInfo) {
802  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
803         !isa<TerminatorInst>(I) && // Terminators aren't folded.
804         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
805         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
806}
807
808void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
809  // Initialize the Fast-ISel state, if needed.
810  FastISel *FastIS = 0;
811  if (EnableFastISel)
812    FastIS = TLI.createFastISel(*FuncInfo);
813
814  // Iterate over all basic blocks in the function.
815  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
816  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
817       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
818    const BasicBlock *LLVMBB = *I;
819
820    if (OptLevel != CodeGenOpt::None) {
821      bool AllPredsVisited = true;
822      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
823           PI != PE; ++PI) {
824        if (!FuncInfo->VisitedBBs.count(*PI)) {
825          AllPredsVisited = false;
826          break;
827        }
828      }
829
830      if (AllPredsVisited) {
831        for (BasicBlock::const_iterator I = LLVMBB->begin();
832             isa<PHINode>(I); ++I)
833          FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
834      } else {
835        for (BasicBlock::const_iterator I = LLVMBB->begin();
836             isa<PHINode>(I); ++I)
837          FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
838      }
839
840      FuncInfo->VisitedBBs.insert(LLVMBB);
841    }
842
843    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
844    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
845
846    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
847    BasicBlock::const_iterator const End = LLVMBB->end();
848    BasicBlock::const_iterator BI = End;
849
850    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
851
852    // Setup an EH landing-pad block.
853    if (FuncInfo->MBB->isLandingPad())
854      PrepareEHLandingPad();
855
856    // Lower any arguments needed in this block if this is the entry block.
857    if (LLVMBB == &Fn.getEntryBlock())
858      LowerArguments(LLVMBB);
859
860    // Before doing SelectionDAG ISel, see if FastISel has been requested.
861    if (FastIS) {
862      FastIS->startNewBlock();
863
864      // Emit code for any incoming arguments. This must happen before
865      // beginning FastISel on the entry block.
866      if (LLVMBB == &Fn.getEntryBlock()) {
867        CurDAG->setRoot(SDB->getControlRoot());
868        SDB->clear();
869        CodeGenAndEmitDAG();
870
871        // If we inserted any instructions at the beginning, make a note of
872        // where they are, so we can be sure to emit subsequent instructions
873        // after them.
874        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
875          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
876        else
877          FastIS->setLastLocalValue(0);
878      }
879
880      // Do FastISel on as many instructions as possible.
881      for (; BI != Begin; --BI) {
882        const Instruction *Inst = llvm::prior(BI);
883
884        // If we no longer require this instruction, skip it.
885        if (isFoldedOrDeadInstruction(Inst, FuncInfo))
886          continue;
887
888        // Bottom-up: reset the insert pos at the top, after any local-value
889        // instructions.
890        FastIS->recomputeInsertPt();
891
892        // Try to select the instruction with FastISel.
893        if (FastIS->SelectInstruction(Inst)) {
894          ++NumFastIselSuccess;
895          // If fast isel succeeded, skip over all the folded instructions, and
896          // then see if there is a load right before the selected instructions.
897          // Try to fold the load if so.
898          const Instruction *BeforeInst = Inst;
899          while (BeforeInst != Begin) {
900            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
901            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
902              break;
903          }
904          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
905              BeforeInst->hasOneUse() &&
906              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS))
907            // If we succeeded, don't re-select the load.
908            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
909          continue;
910        }
911
912        // Then handle certain instructions as single-LLVM-Instruction blocks.
913        if (isa<CallInst>(Inst)) {
914          ++NumFastIselFailures;
915          if (EnableFastISelVerbose || EnableFastISelAbort) {
916            dbgs() << "FastISel missed call: ";
917            Inst->dump();
918          }
919
920          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
921            unsigned &R = FuncInfo->ValueMap[Inst];
922            if (!R)
923              R = FuncInfo->CreateRegs(Inst->getType());
924          }
925
926          bool HadTailCall = false;
927          SelectBasicBlock(Inst, BI, HadTailCall);
928
929          // If the call was emitted as a tail call, we're done with the block.
930          if (HadTailCall) {
931            --BI;
932            break;
933          }
934
935          continue;
936        }
937
938        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
939          // Don't abort, and use a different message for terminator misses.
940          ++NumFastIselFailures;
941          if (EnableFastISelVerbose || EnableFastISelAbort) {
942            dbgs() << "FastISel missed terminator: ";
943            Inst->dump();
944          }
945        } else {
946          ++NumFastIselFailures;
947          if (EnableFastISelVerbose || EnableFastISelAbort) {
948            dbgs() << "FastISel miss: ";
949            Inst->dump();
950          }
951          if (EnableFastISelAbort)
952            // The "fast" selector couldn't handle something and bailed.
953            // For the purpose of debugging, just abort.
954            llvm_unreachable("FastISel didn't select the entire block");
955        }
956        break;
957      }
958
959      FastIS->recomputeInsertPt();
960    }
961
962    if (Begin != BI)
963      ++NumDAGBlocks;
964    else
965      ++NumFastIselBlocks;
966
967    if (Begin != BI) {
968      // Run SelectionDAG instruction selection on the remainder of the block
969      // not handled by FastISel. If FastISel is not run, this is the entire
970      // block.
971      bool HadTailCall;
972      SelectBasicBlock(Begin, BI, HadTailCall);
973    }
974
975    FinishBasicBlock();
976    FuncInfo->PHINodesToUpdate.clear();
977  }
978
979  delete FastIS;
980  SDB->clearDanglingDebugInfo();
981}
982
983void
984SelectionDAGISel::FinishBasicBlock() {
985
986  DEBUG(dbgs() << "Total amount of phi nodes to update: "
987               << FuncInfo->PHINodesToUpdate.size() << "\n";
988        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
989          dbgs() << "Node " << i << " : ("
990                 << FuncInfo->PHINodesToUpdate[i].first
991                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
992
993  // Next, now that we know what the last MBB the LLVM BB expanded is, update
994  // PHI nodes in successors.
995  if (SDB->SwitchCases.empty() &&
996      SDB->JTCases.empty() &&
997      SDB->BitTestCases.empty()) {
998    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
999      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1000      assert(PHI->isPHI() &&
1001             "This is not a machine PHI node that we are updating!");
1002      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1003        continue;
1004      PHI->addOperand(
1005        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1006      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1007    }
1008    return;
1009  }
1010
1011  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1012    // Lower header first, if it wasn't already lowered
1013    if (!SDB->BitTestCases[i].Emitted) {
1014      // Set the current basic block to the mbb we wish to insert the code into
1015      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1016      FuncInfo->InsertPt = FuncInfo->MBB->end();
1017      // Emit the code
1018      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1019      CurDAG->setRoot(SDB->getRoot());
1020      SDB->clear();
1021      CodeGenAndEmitDAG();
1022    }
1023
1024    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1025      // Set the current basic block to the mbb we wish to insert the code into
1026      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1027      FuncInfo->InsertPt = FuncInfo->MBB->end();
1028      // Emit the code
1029      if (j+1 != ej)
1030        SDB->visitBitTestCase(SDB->BitTestCases[i],
1031                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1032                              SDB->BitTestCases[i].Reg,
1033                              SDB->BitTestCases[i].Cases[j],
1034                              FuncInfo->MBB);
1035      else
1036        SDB->visitBitTestCase(SDB->BitTestCases[i],
1037                              SDB->BitTestCases[i].Default,
1038                              SDB->BitTestCases[i].Reg,
1039                              SDB->BitTestCases[i].Cases[j],
1040                              FuncInfo->MBB);
1041
1042
1043      CurDAG->setRoot(SDB->getRoot());
1044      SDB->clear();
1045      CodeGenAndEmitDAG();
1046    }
1047
1048    // Update PHI Nodes
1049    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1050         pi != pe; ++pi) {
1051      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1052      MachineBasicBlock *PHIBB = PHI->getParent();
1053      assert(PHI->isPHI() &&
1054             "This is not a machine PHI node that we are updating!");
1055      // This is "default" BB. We have two jumps to it. From "header" BB and
1056      // from last "case" BB.
1057      if (PHIBB == SDB->BitTestCases[i].Default) {
1058        PHI->addOperand(MachineOperand::
1059                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1060                                  false));
1061        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1062        PHI->addOperand(MachineOperand::
1063                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1064                                  false));
1065        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1066                                                  back().ThisBB));
1067      }
1068      // One of "cases" BB.
1069      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1070           j != ej; ++j) {
1071        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1072        if (cBB->isSuccessor(PHIBB)) {
1073          PHI->addOperand(MachineOperand::
1074                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1075                                    false));
1076          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1077        }
1078      }
1079    }
1080  }
1081  SDB->BitTestCases.clear();
1082
1083  // If the JumpTable record is filled in, then we need to emit a jump table.
1084  // Updating the PHI nodes is tricky in this case, since we need to determine
1085  // whether the PHI is a successor of the range check MBB or the jump table MBB
1086  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1087    // Lower header first, if it wasn't already lowered
1088    if (!SDB->JTCases[i].first.Emitted) {
1089      // Set the current basic block to the mbb we wish to insert the code into
1090      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1091      FuncInfo->InsertPt = FuncInfo->MBB->end();
1092      // Emit the code
1093      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1094                                FuncInfo->MBB);
1095      CurDAG->setRoot(SDB->getRoot());
1096      SDB->clear();
1097      CodeGenAndEmitDAG();
1098    }
1099
1100    // Set the current basic block to the mbb we wish to insert the code into
1101    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1102    FuncInfo->InsertPt = FuncInfo->MBB->end();
1103    // Emit the code
1104    SDB->visitJumpTable(SDB->JTCases[i].second);
1105    CurDAG->setRoot(SDB->getRoot());
1106    SDB->clear();
1107    CodeGenAndEmitDAG();
1108
1109    // Update PHI Nodes
1110    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1111         pi != pe; ++pi) {
1112      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1113      MachineBasicBlock *PHIBB = PHI->getParent();
1114      assert(PHI->isPHI() &&
1115             "This is not a machine PHI node that we are updating!");
1116      // "default" BB. We can go there only from header BB.
1117      if (PHIBB == SDB->JTCases[i].second.Default) {
1118        PHI->addOperand
1119          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1120                                     false));
1121        PHI->addOperand
1122          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1123      }
1124      // JT BB. Just iterate over successors here
1125      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1126        PHI->addOperand
1127          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1128                                     false));
1129        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1130      }
1131    }
1132  }
1133  SDB->JTCases.clear();
1134
1135  // If the switch block involved a branch to one of the actual successors, we
1136  // need to update PHI nodes in that block.
1137  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1138    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1139    assert(PHI->isPHI() &&
1140           "This is not a machine PHI node that we are updating!");
1141    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1142      PHI->addOperand(
1143        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1144      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1145    }
1146  }
1147
1148  // If we generated any switch lowering information, build and codegen any
1149  // additional DAGs necessary.
1150  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1151    // Set the current basic block to the mbb we wish to insert the code into
1152    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1153    FuncInfo->InsertPt = FuncInfo->MBB->end();
1154
1155    // Determine the unique successors.
1156    SmallVector<MachineBasicBlock *, 2> Succs;
1157    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1158    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1159      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1160
1161    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1162    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1163    CurDAG->setRoot(SDB->getRoot());
1164    SDB->clear();
1165    CodeGenAndEmitDAG();
1166
1167    // Remember the last block, now that any splitting is done, for use in
1168    // populating PHI nodes in successors.
1169    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1170
1171    // Handle any PHI nodes in successors of this chunk, as if we were coming
1172    // from the original BB before switch expansion.  Note that PHI nodes can
1173    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1174    // handle them the right number of times.
1175    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1176      FuncInfo->MBB = Succs[i];
1177      FuncInfo->InsertPt = FuncInfo->MBB->end();
1178      // FuncInfo->MBB may have been removed from the CFG if a branch was
1179      // constant folded.
1180      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1181        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1182             Phi != FuncInfo->MBB->end() && Phi->isPHI();
1183             ++Phi) {
1184          // This value for this PHI node is recorded in PHINodesToUpdate.
1185          for (unsigned pn = 0; ; ++pn) {
1186            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1187                   "Didn't find PHI entry!");
1188            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1189              Phi->addOperand(MachineOperand::
1190                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1191                                        false));
1192              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1193              break;
1194            }
1195          }
1196        }
1197      }
1198    }
1199  }
1200  SDB->SwitchCases.clear();
1201}
1202
1203
1204/// Create the scheduler. If a specific scheduler was specified
1205/// via the SchedulerRegistry, use it, otherwise select the
1206/// one preferred by the target.
1207///
1208ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1209  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1210
1211  if (!Ctor) {
1212    Ctor = ISHeuristic;
1213    RegisterScheduler::setDefault(Ctor);
1214  }
1215
1216  return Ctor(this, OptLevel);
1217}
1218
1219//===----------------------------------------------------------------------===//
1220// Helper functions used by the generated instruction selector.
1221//===----------------------------------------------------------------------===//
1222// Calls to these methods are generated by tblgen.
1223
1224/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1225/// the dag combiner simplified the 255, we still want to match.  RHS is the
1226/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1227/// specified in the .td file (e.g. 255).
1228bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1229                                    int64_t DesiredMaskS) const {
1230  const APInt &ActualMask = RHS->getAPIntValue();
1231  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1232
1233  // If the actual mask exactly matches, success!
1234  if (ActualMask == DesiredMask)
1235    return true;
1236
1237  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1238  if (ActualMask.intersects(~DesiredMask))
1239    return false;
1240
1241  // Otherwise, the DAG Combiner may have proven that the value coming in is
1242  // either already zero or is not demanded.  Check for known zero input bits.
1243  APInt NeededMask = DesiredMask & ~ActualMask;
1244  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1245    return true;
1246
1247  // TODO: check to see if missing bits are just not demanded.
1248
1249  // Otherwise, this pattern doesn't match.
1250  return false;
1251}
1252
1253/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1254/// the dag combiner simplified the 255, we still want to match.  RHS is the
1255/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1256/// specified in the .td file (e.g. 255).
1257bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1258                                   int64_t DesiredMaskS) const {
1259  const APInt &ActualMask = RHS->getAPIntValue();
1260  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1261
1262  // If the actual mask exactly matches, success!
1263  if (ActualMask == DesiredMask)
1264    return true;
1265
1266  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1267  if (ActualMask.intersects(~DesiredMask))
1268    return false;
1269
1270  // Otherwise, the DAG Combiner may have proven that the value coming in is
1271  // either already zero or is not demanded.  Check for known zero input bits.
1272  APInt NeededMask = DesiredMask & ~ActualMask;
1273
1274  APInt KnownZero, KnownOne;
1275  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1276
1277  // If all the missing bits in the or are already known to be set, match!
1278  if ((NeededMask & KnownOne) == NeededMask)
1279    return true;
1280
1281  // TODO: check to see if missing bits are just not demanded.
1282
1283  // Otherwise, this pattern doesn't match.
1284  return false;
1285}
1286
1287
1288/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1289/// by tblgen.  Others should not call it.
1290void SelectionDAGISel::
1291SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1292  std::vector<SDValue> InOps;
1293  std::swap(InOps, Ops);
1294
1295  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1296  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1297  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1298  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1299
1300  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1301  if (InOps[e-1].getValueType() == MVT::Glue)
1302    --e;  // Don't process a glue operand if it is here.
1303
1304  while (i != e) {
1305    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1306    if (!InlineAsm::isMemKind(Flags)) {
1307      // Just skip over this operand, copying the operands verbatim.
1308      Ops.insert(Ops.end(), InOps.begin()+i,
1309                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1310      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1311    } else {
1312      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1313             "Memory operand with multiple values?");
1314      // Otherwise, this is a memory operand.  Ask the target to select it.
1315      std::vector<SDValue> SelOps;
1316      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1317        report_fatal_error("Could not match memory address.  Inline asm"
1318                           " failure!");
1319
1320      // Add this to the output node.
1321      unsigned NewFlags =
1322        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1323      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1324      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1325      i += 2;
1326    }
1327  }
1328
1329  // Add the glue input back if present.
1330  if (e != InOps.size())
1331    Ops.push_back(InOps.back());
1332}
1333
1334/// findGlueUse - Return use of MVT::Glue value produced by the specified
1335/// SDNode.
1336///
1337static SDNode *findGlueUse(SDNode *N) {
1338  unsigned FlagResNo = N->getNumValues()-1;
1339  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1340    SDUse &Use = I.getUse();
1341    if (Use.getResNo() == FlagResNo)
1342      return Use.getUser();
1343  }
1344  return NULL;
1345}
1346
1347/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1348/// This function recursively traverses up the operand chain, ignoring
1349/// certain nodes.
1350static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1351                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1352                          bool IgnoreChains) {
1353  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1354  // greater than all of its (recursive) operands.  If we scan to a point where
1355  // 'use' is smaller than the node we're scanning for, then we know we will
1356  // never find it.
1357  //
1358  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1359  // happen because we scan down to newly selected nodes in the case of glue
1360  // uses.
1361  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1362    return false;
1363
1364  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1365  // won't fail if we scan it again.
1366  if (!Visited.insert(Use))
1367    return false;
1368
1369  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1370    // Ignore chain uses, they are validated by HandleMergeInputChains.
1371    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1372      continue;
1373
1374    SDNode *N = Use->getOperand(i).getNode();
1375    if (N == Def) {
1376      if (Use == ImmedUse || Use == Root)
1377        continue;  // We are not looking for immediate use.
1378      assert(N != Root);
1379      return true;
1380    }
1381
1382    // Traverse up the operand chain.
1383    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1384      return true;
1385  }
1386  return false;
1387}
1388
1389/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1390/// operand node N of U during instruction selection that starts at Root.
1391bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1392                                          SDNode *Root) const {
1393  if (OptLevel == CodeGenOpt::None) return false;
1394  return N.hasOneUse();
1395}
1396
1397/// IsLegalToFold - Returns true if the specific operand node N of
1398/// U can be folded during instruction selection that starts at Root.
1399bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1400                                     CodeGenOpt::Level OptLevel,
1401                                     bool IgnoreChains) {
1402  if (OptLevel == CodeGenOpt::None) return false;
1403
1404  // If Root use can somehow reach N through a path that that doesn't contain
1405  // U then folding N would create a cycle. e.g. In the following
1406  // diagram, Root can reach N through X. If N is folded into into Root, then
1407  // X is both a predecessor and a successor of U.
1408  //
1409  //          [N*]           //
1410  //         ^   ^           //
1411  //        /     \          //
1412  //      [U*]    [X]?       //
1413  //        ^     ^          //
1414  //         \   /           //
1415  //          \ /            //
1416  //         [Root*]         //
1417  //
1418  // * indicates nodes to be folded together.
1419  //
1420  // If Root produces glue, then it gets (even more) interesting. Since it
1421  // will be "glued" together with its glue use in the scheduler, we need to
1422  // check if it might reach N.
1423  //
1424  //          [N*]           //
1425  //         ^   ^           //
1426  //        /     \          //
1427  //      [U*]    [X]?       //
1428  //        ^       ^        //
1429  //         \       \       //
1430  //          \      |       //
1431  //         [Root*] |       //
1432  //          ^      |       //
1433  //          f      |       //
1434  //          |      /       //
1435  //         [Y]    /        //
1436  //           ^   /         //
1437  //           f  /          //
1438  //           | /           //
1439  //          [GU]           //
1440  //
1441  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1442  // (call it Fold), then X is a predecessor of GU and a successor of
1443  // Fold. But since Fold and GU are glued together, this will create
1444  // a cycle in the scheduling graph.
1445
1446  // If the node has glue, walk down the graph to the "lowest" node in the
1447  // glueged set.
1448  EVT VT = Root->getValueType(Root->getNumValues()-1);
1449  while (VT == MVT::Glue) {
1450    SDNode *GU = findGlueUse(Root);
1451    if (GU == NULL)
1452      break;
1453    Root = GU;
1454    VT = Root->getValueType(Root->getNumValues()-1);
1455
1456    // If our query node has a glue result with a use, we've walked up it.  If
1457    // the user (which has already been selected) has a chain or indirectly uses
1458    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1459    // this, we cannot ignore chains in this predicate.
1460    IgnoreChains = false;
1461  }
1462
1463
1464  SmallPtrSet<SDNode*, 16> Visited;
1465  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1466}
1467
1468SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1469  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1470  SelectInlineAsmMemoryOperands(Ops);
1471
1472  std::vector<EVT> VTs;
1473  VTs.push_back(MVT::Other);
1474  VTs.push_back(MVT::Glue);
1475  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1476                                VTs, &Ops[0], Ops.size());
1477  New->setNodeId(-1);
1478  return New.getNode();
1479}
1480
1481SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1482  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1483}
1484
1485/// GetVBR - decode a vbr encoding whose top bit is set.
1486LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1487GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1488  assert(Val >= 128 && "Not a VBR");
1489  Val &= 127;  // Remove first vbr bit.
1490
1491  unsigned Shift = 7;
1492  uint64_t NextBits;
1493  do {
1494    NextBits = MatcherTable[Idx++];
1495    Val |= (NextBits&127) << Shift;
1496    Shift += 7;
1497  } while (NextBits & 128);
1498
1499  return Val;
1500}
1501
1502
1503/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1504/// interior glue and chain results to use the new glue and chain results.
1505void SelectionDAGISel::
1506UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1507                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1508                    SDValue InputGlue,
1509                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1510                    bool isMorphNodeTo) {
1511  SmallVector<SDNode*, 4> NowDeadNodes;
1512
1513  ISelUpdater ISU(ISelPosition);
1514
1515  // Now that all the normal results are replaced, we replace the chain and
1516  // glue results if present.
1517  if (!ChainNodesMatched.empty()) {
1518    assert(InputChain.getNode() != 0 &&
1519           "Matched input chains but didn't produce a chain");
1520    // Loop over all of the nodes we matched that produced a chain result.
1521    // Replace all the chain results with the final chain we ended up with.
1522    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1523      SDNode *ChainNode = ChainNodesMatched[i];
1524
1525      // If this node was already deleted, don't look at it.
1526      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1527        continue;
1528
1529      // Don't replace the results of the root node if we're doing a
1530      // MorphNodeTo.
1531      if (ChainNode == NodeToMatch && isMorphNodeTo)
1532        continue;
1533
1534      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1535      if (ChainVal.getValueType() == MVT::Glue)
1536        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1537      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1538      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1539
1540      // If the node became dead and we haven't already seen it, delete it.
1541      if (ChainNode->use_empty() &&
1542          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1543        NowDeadNodes.push_back(ChainNode);
1544    }
1545  }
1546
1547  // If the result produces glue, update any glue results in the matched
1548  // pattern with the glue result.
1549  if (InputGlue.getNode() != 0) {
1550    // Handle any interior nodes explicitly marked.
1551    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1552      SDNode *FRN = GlueResultNodesMatched[i];
1553
1554      // If this node was already deleted, don't look at it.
1555      if (FRN->getOpcode() == ISD::DELETED_NODE)
1556        continue;
1557
1558      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1559             "Doesn't have a glue result");
1560      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1561                                        InputGlue, &ISU);
1562
1563      // If the node became dead and we haven't already seen it, delete it.
1564      if (FRN->use_empty() &&
1565          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1566        NowDeadNodes.push_back(FRN);
1567    }
1568  }
1569
1570  if (!NowDeadNodes.empty())
1571    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1572
1573  DEBUG(errs() << "ISEL: Match complete!\n");
1574}
1575
1576enum ChainResult {
1577  CR_Simple,
1578  CR_InducesCycle,
1579  CR_LeadsToInteriorNode
1580};
1581
1582/// WalkChainUsers - Walk down the users of the specified chained node that is
1583/// part of the pattern we're matching, looking at all of the users we find.
1584/// This determines whether something is an interior node, whether we have a
1585/// non-pattern node in between two pattern nodes (which prevent folding because
1586/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1587/// between pattern nodes (in which case the TF becomes part of the pattern).
1588///
1589/// The walk we do here is guaranteed to be small because we quickly get down to
1590/// already selected nodes "below" us.
1591static ChainResult
1592WalkChainUsers(SDNode *ChainedNode,
1593               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1594               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1595  ChainResult Result = CR_Simple;
1596
1597  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1598         E = ChainedNode->use_end(); UI != E; ++UI) {
1599    // Make sure the use is of the chain, not some other value we produce.
1600    if (UI.getUse().getValueType() != MVT::Other) continue;
1601
1602    SDNode *User = *UI;
1603
1604    // If we see an already-selected machine node, then we've gone beyond the
1605    // pattern that we're selecting down into the already selected chunk of the
1606    // DAG.
1607    if (User->isMachineOpcode() ||
1608        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1609      continue;
1610
1611    if (User->getOpcode() == ISD::CopyToReg ||
1612        User->getOpcode() == ISD::CopyFromReg ||
1613        User->getOpcode() == ISD::INLINEASM ||
1614        User->getOpcode() == ISD::EH_LABEL) {
1615      // If their node ID got reset to -1 then they've already been selected.
1616      // Treat them like a MachineOpcode.
1617      if (User->getNodeId() == -1)
1618        continue;
1619    }
1620
1621    // If we have a TokenFactor, we handle it specially.
1622    if (User->getOpcode() != ISD::TokenFactor) {
1623      // If the node isn't a token factor and isn't part of our pattern, then it
1624      // must be a random chained node in between two nodes we're selecting.
1625      // This happens when we have something like:
1626      //   x = load ptr
1627      //   call
1628      //   y = x+4
1629      //   store y -> ptr
1630      // Because we structurally match the load/store as a read/modify/write,
1631      // but the call is chained between them.  We cannot fold in this case
1632      // because it would induce a cycle in the graph.
1633      if (!std::count(ChainedNodesInPattern.begin(),
1634                      ChainedNodesInPattern.end(), User))
1635        return CR_InducesCycle;
1636
1637      // Otherwise we found a node that is part of our pattern.  For example in:
1638      //   x = load ptr
1639      //   y = x+4
1640      //   store y -> ptr
1641      // This would happen when we're scanning down from the load and see the
1642      // store as a user.  Record that there is a use of ChainedNode that is
1643      // part of the pattern and keep scanning uses.
1644      Result = CR_LeadsToInteriorNode;
1645      InteriorChainedNodes.push_back(User);
1646      continue;
1647    }
1648
1649    // If we found a TokenFactor, there are two cases to consider: first if the
1650    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1651    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1652    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1653    //     [Load chain]
1654    //         ^
1655    //         |
1656    //       [Load]
1657    //       ^    ^
1658    //       |    \                    DAG's like cheese
1659    //      /       \                       do you?
1660    //     /         |
1661    // [TokenFactor] [Op]
1662    //     ^          ^
1663    //     |          |
1664    //      \        /
1665    //       \      /
1666    //       [Store]
1667    //
1668    // In this case, the TokenFactor becomes part of our match and we rewrite it
1669    // as a new TokenFactor.
1670    //
1671    // To distinguish these two cases, do a recursive walk down the uses.
1672    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1673    case CR_Simple:
1674      // If the uses of the TokenFactor are just already-selected nodes, ignore
1675      // it, it is "below" our pattern.
1676      continue;
1677    case CR_InducesCycle:
1678      // If the uses of the TokenFactor lead to nodes that are not part of our
1679      // pattern that are not selected, folding would turn this into a cycle,
1680      // bail out now.
1681      return CR_InducesCycle;
1682    case CR_LeadsToInteriorNode:
1683      break;  // Otherwise, keep processing.
1684    }
1685
1686    // Okay, we know we're in the interesting interior case.  The TokenFactor
1687    // is now going to be considered part of the pattern so that we rewrite its
1688    // uses (it may have uses that are not part of the pattern) with the
1689    // ultimate chain result of the generated code.  We will also add its chain
1690    // inputs as inputs to the ultimate TokenFactor we create.
1691    Result = CR_LeadsToInteriorNode;
1692    ChainedNodesInPattern.push_back(User);
1693    InteriorChainedNodes.push_back(User);
1694    continue;
1695  }
1696
1697  return Result;
1698}
1699
1700/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1701/// operation for when the pattern matched at least one node with a chains.  The
1702/// input vector contains a list of all of the chained nodes that we match.  We
1703/// must determine if this is a valid thing to cover (i.e. matching it won't
1704/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1705/// be used as the input node chain for the generated nodes.
1706static SDValue
1707HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1708                       SelectionDAG *CurDAG) {
1709  // Walk all of the chained nodes we've matched, recursively scanning down the
1710  // users of the chain result. This adds any TokenFactor nodes that are caught
1711  // in between chained nodes to the chained and interior nodes list.
1712  SmallVector<SDNode*, 3> InteriorChainedNodes;
1713  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1714    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1715                       InteriorChainedNodes) == CR_InducesCycle)
1716      return SDValue(); // Would induce a cycle.
1717  }
1718
1719  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1720  // that we are interested in.  Form our input TokenFactor node.
1721  SmallVector<SDValue, 3> InputChains;
1722  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1723    // Add the input chain of this node to the InputChains list (which will be
1724    // the operands of the generated TokenFactor) if it's not an interior node.
1725    SDNode *N = ChainNodesMatched[i];
1726    if (N->getOpcode() != ISD::TokenFactor) {
1727      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1728        continue;
1729
1730      // Otherwise, add the input chain.
1731      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1732      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1733      InputChains.push_back(InChain);
1734      continue;
1735    }
1736
1737    // If we have a token factor, we want to add all inputs of the token factor
1738    // that are not part of the pattern we're matching.
1739    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1740      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1741                      N->getOperand(op).getNode()))
1742        InputChains.push_back(N->getOperand(op));
1743    }
1744  }
1745
1746  SDValue Res;
1747  if (InputChains.size() == 1)
1748    return InputChains[0];
1749  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1750                         MVT::Other, &InputChains[0], InputChains.size());
1751}
1752
1753/// MorphNode - Handle morphing a node in place for the selector.
1754SDNode *SelectionDAGISel::
1755MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1756          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1757  // It is possible we're using MorphNodeTo to replace a node with no
1758  // normal results with one that has a normal result (or we could be
1759  // adding a chain) and the input could have glue and chains as well.
1760  // In this case we need to shift the operands down.
1761  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1762  // than the old isel though.
1763  int OldGlueResultNo = -1, OldChainResultNo = -1;
1764
1765  unsigned NTMNumResults = Node->getNumValues();
1766  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1767    OldGlueResultNo = NTMNumResults-1;
1768    if (NTMNumResults != 1 &&
1769        Node->getValueType(NTMNumResults-2) == MVT::Other)
1770      OldChainResultNo = NTMNumResults-2;
1771  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1772    OldChainResultNo = NTMNumResults-1;
1773
1774  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1775  // that this deletes operands of the old node that become dead.
1776  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1777
1778  // MorphNodeTo can operate in two ways: if an existing node with the
1779  // specified operands exists, it can just return it.  Otherwise, it
1780  // updates the node in place to have the requested operands.
1781  if (Res == Node) {
1782    // If we updated the node in place, reset the node ID.  To the isel,
1783    // this should be just like a newly allocated machine node.
1784    Res->setNodeId(-1);
1785  }
1786
1787  unsigned ResNumResults = Res->getNumValues();
1788  // Move the glue if needed.
1789  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1790      (unsigned)OldGlueResultNo != ResNumResults-1)
1791    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1792                                      SDValue(Res, ResNumResults-1));
1793
1794  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1795    --ResNumResults;
1796
1797  // Move the chain reference if needed.
1798  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1799      (unsigned)OldChainResultNo != ResNumResults-1)
1800    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1801                                      SDValue(Res, ResNumResults-1));
1802
1803  // Otherwise, no replacement happened because the node already exists. Replace
1804  // Uses of the old node with the new one.
1805  if (Res != Node)
1806    CurDAG->ReplaceAllUsesWith(Node, Res);
1807
1808  return Res;
1809}
1810
1811/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1812LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1813CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1814          SDValue N,
1815          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1816  // Accept if it is exactly the same as a previously recorded node.
1817  unsigned RecNo = MatcherTable[MatcherIndex++];
1818  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1819  return N == RecordedNodes[RecNo].first;
1820}
1821
1822/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1823LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1824CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1825                      SelectionDAGISel &SDISel) {
1826  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1827}
1828
1829/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1830LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1831CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1832                   SelectionDAGISel &SDISel, SDNode *N) {
1833  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1834}
1835
1836LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1837CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1838            SDNode *N) {
1839  uint16_t Opc = MatcherTable[MatcherIndex++];
1840  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1841  return N->getOpcode() == Opc;
1842}
1843
1844LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1845CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1846          SDValue N, const TargetLowering &TLI) {
1847  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1848  if (N.getValueType() == VT) return true;
1849
1850  // Handle the case when VT is iPTR.
1851  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1852}
1853
1854LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1855CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1856               SDValue N, const TargetLowering &TLI,
1857               unsigned ChildNo) {
1858  if (ChildNo >= N.getNumOperands())
1859    return false;  // Match fails if out of range child #.
1860  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1861}
1862
1863
1864LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1865CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1866              SDValue N) {
1867  return cast<CondCodeSDNode>(N)->get() ==
1868      (ISD::CondCode)MatcherTable[MatcherIndex++];
1869}
1870
1871LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1872CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1873               SDValue N, const TargetLowering &TLI) {
1874  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1875  if (cast<VTSDNode>(N)->getVT() == VT)
1876    return true;
1877
1878  // Handle the case when VT is iPTR.
1879  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1880}
1881
1882LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1883CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1884             SDValue N) {
1885  int64_t Val = MatcherTable[MatcherIndex++];
1886  if (Val & 128)
1887    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1888
1889  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1890  return C != 0 && C->getSExtValue() == Val;
1891}
1892
1893LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1894CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1895            SDValue N, SelectionDAGISel &SDISel) {
1896  int64_t Val = MatcherTable[MatcherIndex++];
1897  if (Val & 128)
1898    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1899
1900  if (N->getOpcode() != ISD::AND) return false;
1901
1902  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1903  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1904}
1905
1906LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1907CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1908           SDValue N, SelectionDAGISel &SDISel) {
1909  int64_t Val = MatcherTable[MatcherIndex++];
1910  if (Val & 128)
1911    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1912
1913  if (N->getOpcode() != ISD::OR) return false;
1914
1915  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1916  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1917}
1918
1919/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1920/// scope, evaluate the current node.  If the current predicate is known to
1921/// fail, set Result=true and return anything.  If the current predicate is
1922/// known to pass, set Result=false and return the MatcherIndex to continue
1923/// with.  If the current predicate is unknown, set Result=false and return the
1924/// MatcherIndex to continue with.
1925static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1926                                       unsigned Index, SDValue N,
1927                                       bool &Result, SelectionDAGISel &SDISel,
1928                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1929  switch (Table[Index++]) {
1930  default:
1931    Result = false;
1932    return Index-1;  // Could not evaluate this predicate.
1933  case SelectionDAGISel::OPC_CheckSame:
1934    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1935    return Index;
1936  case SelectionDAGISel::OPC_CheckPatternPredicate:
1937    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1938    return Index;
1939  case SelectionDAGISel::OPC_CheckPredicate:
1940    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1941    return Index;
1942  case SelectionDAGISel::OPC_CheckOpcode:
1943    Result = !::CheckOpcode(Table, Index, N.getNode());
1944    return Index;
1945  case SelectionDAGISel::OPC_CheckType:
1946    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1947    return Index;
1948  case SelectionDAGISel::OPC_CheckChild0Type:
1949  case SelectionDAGISel::OPC_CheckChild1Type:
1950  case SelectionDAGISel::OPC_CheckChild2Type:
1951  case SelectionDAGISel::OPC_CheckChild3Type:
1952  case SelectionDAGISel::OPC_CheckChild4Type:
1953  case SelectionDAGISel::OPC_CheckChild5Type:
1954  case SelectionDAGISel::OPC_CheckChild6Type:
1955  case SelectionDAGISel::OPC_CheckChild7Type:
1956    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1957                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1958    return Index;
1959  case SelectionDAGISel::OPC_CheckCondCode:
1960    Result = !::CheckCondCode(Table, Index, N);
1961    return Index;
1962  case SelectionDAGISel::OPC_CheckValueType:
1963    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1964    return Index;
1965  case SelectionDAGISel::OPC_CheckInteger:
1966    Result = !::CheckInteger(Table, Index, N);
1967    return Index;
1968  case SelectionDAGISel::OPC_CheckAndImm:
1969    Result = !::CheckAndImm(Table, Index, N, SDISel);
1970    return Index;
1971  case SelectionDAGISel::OPC_CheckOrImm:
1972    Result = !::CheckOrImm(Table, Index, N, SDISel);
1973    return Index;
1974  }
1975}
1976
1977namespace {
1978
1979struct MatchScope {
1980  /// FailIndex - If this match fails, this is the index to continue with.
1981  unsigned FailIndex;
1982
1983  /// NodeStack - The node stack when the scope was formed.
1984  SmallVector<SDValue, 4> NodeStack;
1985
1986  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1987  unsigned NumRecordedNodes;
1988
1989  /// NumMatchedMemRefs - The number of matched memref entries.
1990  unsigned NumMatchedMemRefs;
1991
1992  /// InputChain/InputGlue - The current chain/glue
1993  SDValue InputChain, InputGlue;
1994
1995  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1996  bool HasChainNodesMatched, HasGlueResultNodesMatched;
1997};
1998
1999}
2000
2001SDNode *SelectionDAGISel::
2002SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2003                 unsigned TableSize) {
2004  // FIXME: Should these even be selected?  Handle these cases in the caller?
2005  switch (NodeToMatch->getOpcode()) {
2006  default:
2007    break;
2008  case ISD::EntryToken:       // These nodes remain the same.
2009  case ISD::BasicBlock:
2010  case ISD::Register:
2011  //case ISD::VALUETYPE:
2012  //case ISD::CONDCODE:
2013  case ISD::HANDLENODE:
2014  case ISD::MDNODE_SDNODE:
2015  case ISD::TargetConstant:
2016  case ISD::TargetConstantFP:
2017  case ISD::TargetConstantPool:
2018  case ISD::TargetFrameIndex:
2019  case ISD::TargetExternalSymbol:
2020  case ISD::TargetBlockAddress:
2021  case ISD::TargetJumpTable:
2022  case ISD::TargetGlobalTLSAddress:
2023  case ISD::TargetGlobalAddress:
2024  case ISD::TokenFactor:
2025  case ISD::CopyFromReg:
2026  case ISD::CopyToReg:
2027  case ISD::EH_LABEL:
2028    NodeToMatch->setNodeId(-1); // Mark selected.
2029    return 0;
2030  case ISD::AssertSext:
2031  case ISD::AssertZext:
2032    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2033                                      NodeToMatch->getOperand(0));
2034    return 0;
2035  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2036  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2037  }
2038
2039  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2040
2041  // Set up the node stack with NodeToMatch as the only node on the stack.
2042  SmallVector<SDValue, 8> NodeStack;
2043  SDValue N = SDValue(NodeToMatch, 0);
2044  NodeStack.push_back(N);
2045
2046  // MatchScopes - Scopes used when matching, if a match failure happens, this
2047  // indicates where to continue checking.
2048  SmallVector<MatchScope, 8> MatchScopes;
2049
2050  // RecordedNodes - This is the set of nodes that have been recorded by the
2051  // state machine.  The second value is the parent of the node, or null if the
2052  // root is recorded.
2053  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2054
2055  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2056  // pattern.
2057  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2058
2059  // These are the current input chain and glue for use when generating nodes.
2060  // Various Emit operations change these.  For example, emitting a copytoreg
2061  // uses and updates these.
2062  SDValue InputChain, InputGlue;
2063
2064  // ChainNodesMatched - If a pattern matches nodes that have input/output
2065  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2066  // which ones they are.  The result is captured into this list so that we can
2067  // update the chain results when the pattern is complete.
2068  SmallVector<SDNode*, 3> ChainNodesMatched;
2069  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2070
2071  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2072        NodeToMatch->dump(CurDAG);
2073        errs() << '\n');
2074
2075  // Determine where to start the interpreter.  Normally we start at opcode #0,
2076  // but if the state machine starts with an OPC_SwitchOpcode, then we
2077  // accelerate the first lookup (which is guaranteed to be hot) with the
2078  // OpcodeOffset table.
2079  unsigned MatcherIndex = 0;
2080
2081  if (!OpcodeOffset.empty()) {
2082    // Already computed the OpcodeOffset table, just index into it.
2083    if (N.getOpcode() < OpcodeOffset.size())
2084      MatcherIndex = OpcodeOffset[N.getOpcode()];
2085    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2086
2087  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2088    // Otherwise, the table isn't computed, but the state machine does start
2089    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2090    // is the first time we're selecting an instruction.
2091    unsigned Idx = 1;
2092    while (1) {
2093      // Get the size of this case.
2094      unsigned CaseSize = MatcherTable[Idx++];
2095      if (CaseSize & 128)
2096        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2097      if (CaseSize == 0) break;
2098
2099      // Get the opcode, add the index to the table.
2100      uint16_t Opc = MatcherTable[Idx++];
2101      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2102      if (Opc >= OpcodeOffset.size())
2103        OpcodeOffset.resize((Opc+1)*2);
2104      OpcodeOffset[Opc] = Idx;
2105      Idx += CaseSize;
2106    }
2107
2108    // Okay, do the lookup for the first opcode.
2109    if (N.getOpcode() < OpcodeOffset.size())
2110      MatcherIndex = OpcodeOffset[N.getOpcode()];
2111  }
2112
2113  while (1) {
2114    assert(MatcherIndex < TableSize && "Invalid index");
2115#ifndef NDEBUG
2116    unsigned CurrentOpcodeIndex = MatcherIndex;
2117#endif
2118    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2119    switch (Opcode) {
2120    case OPC_Scope: {
2121      // Okay, the semantics of this operation are that we should push a scope
2122      // then evaluate the first child.  However, pushing a scope only to have
2123      // the first check fail (which then pops it) is inefficient.  If we can
2124      // determine immediately that the first check (or first several) will
2125      // immediately fail, don't even bother pushing a scope for them.
2126      unsigned FailIndex;
2127
2128      while (1) {
2129        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2130        if (NumToSkip & 128)
2131          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2132        // Found the end of the scope with no match.
2133        if (NumToSkip == 0) {
2134          FailIndex = 0;
2135          break;
2136        }
2137
2138        FailIndex = MatcherIndex+NumToSkip;
2139
2140        unsigned MatcherIndexOfPredicate = MatcherIndex;
2141        (void)MatcherIndexOfPredicate; // silence warning.
2142
2143        // If we can't evaluate this predicate without pushing a scope (e.g. if
2144        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2145        // push the scope and evaluate the full predicate chain.
2146        bool Result;
2147        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2148                                              Result, *this, RecordedNodes);
2149        if (!Result)
2150          break;
2151
2152        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2153                     << "index " << MatcherIndexOfPredicate
2154                     << ", continuing at " << FailIndex << "\n");
2155        ++NumDAGIselRetries;
2156
2157        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2158        // move to the next case.
2159        MatcherIndex = FailIndex;
2160      }
2161
2162      // If the whole scope failed to match, bail.
2163      if (FailIndex == 0) break;
2164
2165      // Push a MatchScope which indicates where to go if the first child fails
2166      // to match.
2167      MatchScope NewEntry;
2168      NewEntry.FailIndex = FailIndex;
2169      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2170      NewEntry.NumRecordedNodes = RecordedNodes.size();
2171      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2172      NewEntry.InputChain = InputChain;
2173      NewEntry.InputGlue = InputGlue;
2174      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2175      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2176      MatchScopes.push_back(NewEntry);
2177      continue;
2178    }
2179    case OPC_RecordNode: {
2180      // Remember this node, it may end up being an operand in the pattern.
2181      SDNode *Parent = 0;
2182      if (NodeStack.size() > 1)
2183        Parent = NodeStack[NodeStack.size()-2].getNode();
2184      RecordedNodes.push_back(std::make_pair(N, Parent));
2185      continue;
2186    }
2187
2188    case OPC_RecordChild0: case OPC_RecordChild1:
2189    case OPC_RecordChild2: case OPC_RecordChild3:
2190    case OPC_RecordChild4: case OPC_RecordChild5:
2191    case OPC_RecordChild6: case OPC_RecordChild7: {
2192      unsigned ChildNo = Opcode-OPC_RecordChild0;
2193      if (ChildNo >= N.getNumOperands())
2194        break;  // Match fails if out of range child #.
2195
2196      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2197                                             N.getNode()));
2198      continue;
2199    }
2200    case OPC_RecordMemRef:
2201      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2202      continue;
2203
2204    case OPC_CaptureGlueInput:
2205      // If the current node has an input glue, capture it in InputGlue.
2206      if (N->getNumOperands() != 0 &&
2207          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2208        InputGlue = N->getOperand(N->getNumOperands()-1);
2209      continue;
2210
2211    case OPC_MoveChild: {
2212      unsigned ChildNo = MatcherTable[MatcherIndex++];
2213      if (ChildNo >= N.getNumOperands())
2214        break;  // Match fails if out of range child #.
2215      N = N.getOperand(ChildNo);
2216      NodeStack.push_back(N);
2217      continue;
2218    }
2219
2220    case OPC_MoveParent:
2221      // Pop the current node off the NodeStack.
2222      NodeStack.pop_back();
2223      assert(!NodeStack.empty() && "Node stack imbalance!");
2224      N = NodeStack.back();
2225      continue;
2226
2227    case OPC_CheckSame:
2228      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2229      continue;
2230    case OPC_CheckPatternPredicate:
2231      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2232      continue;
2233    case OPC_CheckPredicate:
2234      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2235                                N.getNode()))
2236        break;
2237      continue;
2238    case OPC_CheckComplexPat: {
2239      unsigned CPNum = MatcherTable[MatcherIndex++];
2240      unsigned RecNo = MatcherTable[MatcherIndex++];
2241      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2242      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2243                               RecordedNodes[RecNo].first, CPNum,
2244                               RecordedNodes))
2245        break;
2246      continue;
2247    }
2248    case OPC_CheckOpcode:
2249      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2250      continue;
2251
2252    case OPC_CheckType:
2253      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2254      continue;
2255
2256    case OPC_SwitchOpcode: {
2257      unsigned CurNodeOpcode = N.getOpcode();
2258      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2259      unsigned CaseSize;
2260      while (1) {
2261        // Get the size of this case.
2262        CaseSize = MatcherTable[MatcherIndex++];
2263        if (CaseSize & 128)
2264          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2265        if (CaseSize == 0) break;
2266
2267        uint16_t Opc = MatcherTable[MatcherIndex++];
2268        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2269
2270        // If the opcode matches, then we will execute this case.
2271        if (CurNodeOpcode == Opc)
2272          break;
2273
2274        // Otherwise, skip over this case.
2275        MatcherIndex += CaseSize;
2276      }
2277
2278      // If no cases matched, bail out.
2279      if (CaseSize == 0) break;
2280
2281      // Otherwise, execute the case we found.
2282      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2283                   << " to " << MatcherIndex << "\n");
2284      continue;
2285    }
2286
2287    case OPC_SwitchType: {
2288      MVT CurNodeVT = N.getValueType().getSimpleVT();
2289      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2290      unsigned CaseSize;
2291      while (1) {
2292        // Get the size of this case.
2293        CaseSize = MatcherTable[MatcherIndex++];
2294        if (CaseSize & 128)
2295          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2296        if (CaseSize == 0) break;
2297
2298        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2299        if (CaseVT == MVT::iPTR)
2300          CaseVT = TLI.getPointerTy();
2301
2302        // If the VT matches, then we will execute this case.
2303        if (CurNodeVT == CaseVT)
2304          break;
2305
2306        // Otherwise, skip over this case.
2307        MatcherIndex += CaseSize;
2308      }
2309
2310      // If no cases matched, bail out.
2311      if (CaseSize == 0) break;
2312
2313      // Otherwise, execute the case we found.
2314      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2315                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2316      continue;
2317    }
2318    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2319    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2320    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2321    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2322      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2323                            Opcode-OPC_CheckChild0Type))
2324        break;
2325      continue;
2326    case OPC_CheckCondCode:
2327      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2328      continue;
2329    case OPC_CheckValueType:
2330      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2331      continue;
2332    case OPC_CheckInteger:
2333      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2334      continue;
2335    case OPC_CheckAndImm:
2336      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2337      continue;
2338    case OPC_CheckOrImm:
2339      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2340      continue;
2341
2342    case OPC_CheckFoldableChainNode: {
2343      assert(NodeStack.size() != 1 && "No parent node");
2344      // Verify that all intermediate nodes between the root and this one have
2345      // a single use.
2346      bool HasMultipleUses = false;
2347      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2348        if (!NodeStack[i].hasOneUse()) {
2349          HasMultipleUses = true;
2350          break;
2351        }
2352      if (HasMultipleUses) break;
2353
2354      // Check to see that the target thinks this is profitable to fold and that
2355      // we can fold it without inducing cycles in the graph.
2356      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2357                              NodeToMatch) ||
2358          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2359                         NodeToMatch, OptLevel,
2360                         true/*We validate our own chains*/))
2361        break;
2362
2363      continue;
2364    }
2365    case OPC_EmitInteger: {
2366      MVT::SimpleValueType VT =
2367        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2368      int64_t Val = MatcherTable[MatcherIndex++];
2369      if (Val & 128)
2370        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2371      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2372                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2373      continue;
2374    }
2375    case OPC_EmitRegister: {
2376      MVT::SimpleValueType VT =
2377        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2378      unsigned RegNo = MatcherTable[MatcherIndex++];
2379      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2380                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2381      continue;
2382    }
2383    case OPC_EmitRegister2: {
2384      // For targets w/ more than 256 register names, the register enum
2385      // values are stored in two bytes in the matcher table (just like
2386      // opcodes).
2387      MVT::SimpleValueType VT =
2388        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2389      unsigned RegNo = MatcherTable[MatcherIndex++];
2390      RegNo |= MatcherTable[MatcherIndex++] << 8;
2391      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2392                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2393      continue;
2394    }
2395
2396    case OPC_EmitConvertToTarget:  {
2397      // Convert from IMM/FPIMM to target version.
2398      unsigned RecNo = MatcherTable[MatcherIndex++];
2399      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2400      SDValue Imm = RecordedNodes[RecNo].first;
2401
2402      if (Imm->getOpcode() == ISD::Constant) {
2403        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2404        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2405      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2406        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2407        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2408      }
2409
2410      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2411      continue;
2412    }
2413
2414    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2415    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2416      // These are space-optimized forms of OPC_EmitMergeInputChains.
2417      assert(InputChain.getNode() == 0 &&
2418             "EmitMergeInputChains should be the first chain producing node");
2419      assert(ChainNodesMatched.empty() &&
2420             "Should only have one EmitMergeInputChains per match");
2421
2422      // Read all of the chained nodes.
2423      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2424      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2425      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2426
2427      // FIXME: What if other value results of the node have uses not matched
2428      // by this pattern?
2429      if (ChainNodesMatched.back() != NodeToMatch &&
2430          !RecordedNodes[RecNo].first.hasOneUse()) {
2431        ChainNodesMatched.clear();
2432        break;
2433      }
2434
2435      // Merge the input chains if they are not intra-pattern references.
2436      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2437
2438      if (InputChain.getNode() == 0)
2439        break;  // Failed to merge.
2440      continue;
2441    }
2442
2443    case OPC_EmitMergeInputChains: {
2444      assert(InputChain.getNode() == 0 &&
2445             "EmitMergeInputChains should be the first chain producing node");
2446      // This node gets a list of nodes we matched in the input that have
2447      // chains.  We want to token factor all of the input chains to these nodes
2448      // together.  However, if any of the input chains is actually one of the
2449      // nodes matched in this pattern, then we have an intra-match reference.
2450      // Ignore these because the newly token factored chain should not refer to
2451      // the old nodes.
2452      unsigned NumChains = MatcherTable[MatcherIndex++];
2453      assert(NumChains != 0 && "Can't TF zero chains");
2454
2455      assert(ChainNodesMatched.empty() &&
2456             "Should only have one EmitMergeInputChains per match");
2457
2458      // Read all of the chained nodes.
2459      for (unsigned i = 0; i != NumChains; ++i) {
2460        unsigned RecNo = MatcherTable[MatcherIndex++];
2461        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2462        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2463
2464        // FIXME: What if other value results of the node have uses not matched
2465        // by this pattern?
2466        if (ChainNodesMatched.back() != NodeToMatch &&
2467            !RecordedNodes[RecNo].first.hasOneUse()) {
2468          ChainNodesMatched.clear();
2469          break;
2470        }
2471      }
2472
2473      // If the inner loop broke out, the match fails.
2474      if (ChainNodesMatched.empty())
2475        break;
2476
2477      // Merge the input chains if they are not intra-pattern references.
2478      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2479
2480      if (InputChain.getNode() == 0)
2481        break;  // Failed to merge.
2482
2483      continue;
2484    }
2485
2486    case OPC_EmitCopyToReg: {
2487      unsigned RecNo = MatcherTable[MatcherIndex++];
2488      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2489      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2490
2491      if (InputChain.getNode() == 0)
2492        InputChain = CurDAG->getEntryNode();
2493
2494      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2495                                        DestPhysReg, RecordedNodes[RecNo].first,
2496                                        InputGlue);
2497
2498      InputGlue = InputChain.getValue(1);
2499      continue;
2500    }
2501
2502    case OPC_EmitNodeXForm: {
2503      unsigned XFormNo = MatcherTable[MatcherIndex++];
2504      unsigned RecNo = MatcherTable[MatcherIndex++];
2505      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2506      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2507      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2508      continue;
2509    }
2510
2511    case OPC_EmitNode:
2512    case OPC_MorphNodeTo: {
2513      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2514      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2515      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2516      // Get the result VT list.
2517      unsigned NumVTs = MatcherTable[MatcherIndex++];
2518      SmallVector<EVT, 4> VTs;
2519      for (unsigned i = 0; i != NumVTs; ++i) {
2520        MVT::SimpleValueType VT =
2521          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2522        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2523        VTs.push_back(VT);
2524      }
2525
2526      if (EmitNodeInfo & OPFL_Chain)
2527        VTs.push_back(MVT::Other);
2528      if (EmitNodeInfo & OPFL_GlueOutput)
2529        VTs.push_back(MVT::Glue);
2530
2531      // This is hot code, so optimize the two most common cases of 1 and 2
2532      // results.
2533      SDVTList VTList;
2534      if (VTs.size() == 1)
2535        VTList = CurDAG->getVTList(VTs[0]);
2536      else if (VTs.size() == 2)
2537        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2538      else
2539        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2540
2541      // Get the operand list.
2542      unsigned NumOps = MatcherTable[MatcherIndex++];
2543      SmallVector<SDValue, 8> Ops;
2544      for (unsigned i = 0; i != NumOps; ++i) {
2545        unsigned RecNo = MatcherTable[MatcherIndex++];
2546        if (RecNo & 128)
2547          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2548
2549        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2550        Ops.push_back(RecordedNodes[RecNo].first);
2551      }
2552
2553      // If there are variadic operands to add, handle them now.
2554      if (EmitNodeInfo & OPFL_VariadicInfo) {
2555        // Determine the start index to copy from.
2556        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2557        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2558        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2559               "Invalid variadic node");
2560        // Copy all of the variadic operands, not including a potential glue
2561        // input.
2562        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2563             i != e; ++i) {
2564          SDValue V = NodeToMatch->getOperand(i);
2565          if (V.getValueType() == MVT::Glue) break;
2566          Ops.push_back(V);
2567        }
2568      }
2569
2570      // If this has chain/glue inputs, add them.
2571      if (EmitNodeInfo & OPFL_Chain)
2572        Ops.push_back(InputChain);
2573      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2574        Ops.push_back(InputGlue);
2575
2576      // Create the node.
2577      SDNode *Res = 0;
2578      if (Opcode != OPC_MorphNodeTo) {
2579        // If this is a normal EmitNode command, just create the new node and
2580        // add the results to the RecordedNodes list.
2581        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2582                                     VTList, Ops.data(), Ops.size());
2583
2584        // Add all the non-glue/non-chain results to the RecordedNodes list.
2585        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2586          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2587          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2588                                                             (SDNode*) 0));
2589        }
2590
2591      } else {
2592        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2593                        EmitNodeInfo);
2594      }
2595
2596      // If the node had chain/glue results, update our notion of the current
2597      // chain and glue.
2598      if (EmitNodeInfo & OPFL_GlueOutput) {
2599        InputGlue = SDValue(Res, VTs.size()-1);
2600        if (EmitNodeInfo & OPFL_Chain)
2601          InputChain = SDValue(Res, VTs.size()-2);
2602      } else if (EmitNodeInfo & OPFL_Chain)
2603        InputChain = SDValue(Res, VTs.size()-1);
2604
2605      // If the OPFL_MemRefs glue is set on this node, slap all of the
2606      // accumulated memrefs onto it.
2607      //
2608      // FIXME: This is vastly incorrect for patterns with multiple outputs
2609      // instructions that access memory and for ComplexPatterns that match
2610      // loads.
2611      if (EmitNodeInfo & OPFL_MemRefs) {
2612        // Only attach load or store memory operands if the generated
2613        // instruction may load or store.
2614        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2615        bool mayLoad = MCID.mayLoad();
2616        bool mayStore = MCID.mayStore();
2617
2618        unsigned NumMemRefs = 0;
2619        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2620             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2621          if ((*I)->isLoad()) {
2622            if (mayLoad)
2623              ++NumMemRefs;
2624          } else if ((*I)->isStore()) {
2625            if (mayStore)
2626              ++NumMemRefs;
2627          } else {
2628            ++NumMemRefs;
2629          }
2630        }
2631
2632        MachineSDNode::mmo_iterator MemRefs =
2633          MF->allocateMemRefsArray(NumMemRefs);
2634
2635        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2636        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2637             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2638          if ((*I)->isLoad()) {
2639            if (mayLoad)
2640              *MemRefsPos++ = *I;
2641          } else if ((*I)->isStore()) {
2642            if (mayStore)
2643              *MemRefsPos++ = *I;
2644          } else {
2645            *MemRefsPos++ = *I;
2646          }
2647        }
2648
2649        cast<MachineSDNode>(Res)
2650          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2651      }
2652
2653      DEBUG(errs() << "  "
2654                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2655                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2656
2657      // If this was a MorphNodeTo then we're completely done!
2658      if (Opcode == OPC_MorphNodeTo) {
2659        // Update chain and glue uses.
2660        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2661                            InputGlue, GlueResultNodesMatched, true);
2662        return Res;
2663      }
2664
2665      continue;
2666    }
2667
2668    case OPC_MarkGlueResults: {
2669      unsigned NumNodes = MatcherTable[MatcherIndex++];
2670
2671      // Read and remember all the glue-result nodes.
2672      for (unsigned i = 0; i != NumNodes; ++i) {
2673        unsigned RecNo = MatcherTable[MatcherIndex++];
2674        if (RecNo & 128)
2675          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2676
2677        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2678        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2679      }
2680      continue;
2681    }
2682
2683    case OPC_CompleteMatch: {
2684      // The match has been completed, and any new nodes (if any) have been
2685      // created.  Patch up references to the matched dag to use the newly
2686      // created nodes.
2687      unsigned NumResults = MatcherTable[MatcherIndex++];
2688
2689      for (unsigned i = 0; i != NumResults; ++i) {
2690        unsigned ResSlot = MatcherTable[MatcherIndex++];
2691        if (ResSlot & 128)
2692          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2693
2694        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2695        SDValue Res = RecordedNodes[ResSlot].first;
2696
2697        assert(i < NodeToMatch->getNumValues() &&
2698               NodeToMatch->getValueType(i) != MVT::Other &&
2699               NodeToMatch->getValueType(i) != MVT::Glue &&
2700               "Invalid number of results to complete!");
2701        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2702                NodeToMatch->getValueType(i) == MVT::iPTR ||
2703                Res.getValueType() == MVT::iPTR ||
2704                NodeToMatch->getValueType(i).getSizeInBits() ==
2705                    Res.getValueType().getSizeInBits()) &&
2706               "invalid replacement");
2707        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2708      }
2709
2710      // If the root node defines glue, add it to the glue nodes to update list.
2711      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2712        GlueResultNodesMatched.push_back(NodeToMatch);
2713
2714      // Update chain and glue uses.
2715      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2716                          InputGlue, GlueResultNodesMatched, false);
2717
2718      assert(NodeToMatch->use_empty() &&
2719             "Didn't replace all uses of the node?");
2720
2721      // FIXME: We just return here, which interacts correctly with SelectRoot
2722      // above.  We should fix this to not return an SDNode* anymore.
2723      return 0;
2724    }
2725    }
2726
2727    // If the code reached this point, then the match failed.  See if there is
2728    // another child to try in the current 'Scope', otherwise pop it until we
2729    // find a case to check.
2730    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2731    ++NumDAGIselRetries;
2732    while (1) {
2733      if (MatchScopes.empty()) {
2734        CannotYetSelect(NodeToMatch);
2735        return 0;
2736      }
2737
2738      // Restore the interpreter state back to the point where the scope was
2739      // formed.
2740      MatchScope &LastScope = MatchScopes.back();
2741      RecordedNodes.resize(LastScope.NumRecordedNodes);
2742      NodeStack.clear();
2743      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2744      N = NodeStack.back();
2745
2746      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2747        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2748      MatcherIndex = LastScope.FailIndex;
2749
2750      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2751
2752      InputChain = LastScope.InputChain;
2753      InputGlue = LastScope.InputGlue;
2754      if (!LastScope.HasChainNodesMatched)
2755        ChainNodesMatched.clear();
2756      if (!LastScope.HasGlueResultNodesMatched)
2757        GlueResultNodesMatched.clear();
2758
2759      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2760      // we have reached the end of this scope, otherwise we have another child
2761      // in the current scope to try.
2762      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2763      if (NumToSkip & 128)
2764        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2765
2766      // If we have another child in this scope to match, update FailIndex and
2767      // try it.
2768      if (NumToSkip != 0) {
2769        LastScope.FailIndex = MatcherIndex+NumToSkip;
2770        break;
2771      }
2772
2773      // End of this scope, pop it and try the next child in the containing
2774      // scope.
2775      MatchScopes.pop_back();
2776    }
2777  }
2778}
2779
2780
2781
2782void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2783  std::string msg;
2784  raw_string_ostream Msg(msg);
2785  Msg << "Cannot select: ";
2786
2787  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2788      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2789      N->getOpcode() != ISD::INTRINSIC_VOID) {
2790    N->printrFull(Msg, CurDAG);
2791  } else {
2792    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2793    unsigned iid =
2794      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2795    if (iid < Intrinsic::num_intrinsics)
2796      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2797    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2798      Msg << "target intrinsic %" << TII->getName(iid);
2799    else
2800      Msg << "unknown intrinsic #" << iid;
2801  }
2802  report_fatal_error(Msg.str());
2803}
2804
2805char SelectionDAGISel::ID = 0;
2806