SelectionDAGISel.cpp revision 4991063c792ad7bfa20d3660ff76678da4fdde20
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/Statistic.h"
50#include <algorithm>
51using namespace llvm;
52
53STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
54STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
55
56static cl::opt<bool>
57EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
58          cl::desc("Enable verbose messages in the \"fast\" "
59                   "instruction selector"));
60static cl::opt<bool>
61EnableFastISelAbort("fast-isel-abort", cl::Hidden,
62          cl::desc("Enable abort calls when \"fast\" instruction fails"));
63
64#ifndef NDEBUG
65static cl::opt<bool>
66ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
67          cl::desc("Pop up a window to show dags before the first "
68                   "dag combine pass"));
69static cl::opt<bool>
70ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
71          cl::desc("Pop up a window to show dags before legalize types"));
72static cl::opt<bool>
73ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
74          cl::desc("Pop up a window to show dags before legalize"));
75static cl::opt<bool>
76ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the second "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before the post legalize types"
82                   " dag combine pass"));
83static cl::opt<bool>
84ViewISelDAGs("view-isel-dags", cl::Hidden,
85          cl::desc("Pop up a window to show isel dags as they are selected"));
86static cl::opt<bool>
87ViewSchedDAGs("view-sched-dags", cl::Hidden,
88          cl::desc("Pop up a window to show sched dags as they are processed"));
89static cl::opt<bool>
90ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
91      cl::desc("Pop up a window to show SUnit dags after they are processed"));
92#else
93static const bool ViewDAGCombine1 = false,
94                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
95                  ViewDAGCombine2 = false,
96                  ViewDAGCombineLT = false,
97                  ViewISelDAGs = false, ViewSchedDAGs = false,
98                  ViewSUnitDAGs = false;
99#endif
100
101//===---------------------------------------------------------------------===//
102///
103/// RegisterScheduler class - Track the registration of instruction schedulers.
104///
105//===---------------------------------------------------------------------===//
106MachinePassRegistry RegisterScheduler::Registry;
107
108//===---------------------------------------------------------------------===//
109///
110/// ISHeuristic command line option for instruction schedulers.
111///
112//===---------------------------------------------------------------------===//
113static cl::opt<RegisterScheduler::FunctionPassCtor, false,
114               RegisterPassParser<RegisterScheduler> >
115ISHeuristic("pre-RA-sched",
116            cl::init(&createDefaultScheduler),
117            cl::desc("Instruction schedulers available (before register"
118                     " allocation):"));
119
120static RegisterScheduler
121defaultListDAGScheduler("default", "Best scheduler for the target",
122                        createDefaultScheduler);
123
124namespace llvm {
125  //===--------------------------------------------------------------------===//
126  /// createDefaultScheduler - This creates an instruction scheduler appropriate
127  /// for the target.
128  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
129                                             CodeGenOpt::Level OptLevel) {
130    const TargetLowering &TLI = IS->getTargetLowering();
131
132    if (OptLevel == CodeGenOpt::None)
133      return createFastDAGScheduler(IS, OptLevel);
134    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
135      return createTDListDAGScheduler(IS, OptLevel);
136    assert(TLI.getSchedulingPreference() ==
137           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
138    return createBURRListDAGScheduler(IS, OptLevel);
139  }
140}
141
142// EmitInstrWithCustomInserter - This method should be implemented by targets
143// that mark instructions with the 'usesCustomInserter' flag.  These
144// instructions are special in various ways, which require special support to
145// insert.  The specified MachineInstr is created but not inserted into any
146// basic blocks, and this method is called to expand it into a sequence of
147// instructions, potentially also creating new basic blocks and control flow.
148// When new basic blocks are inserted and the edges from MBB to its successors
149// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
150// DenseMap.
151MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
152                                                         MachineBasicBlock *MBB,
153                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
154#ifndef NDEBUG
155  dbgs() << "If a target marks an instruction with "
156          "'usesCustomInserter', it must implement "
157          "TargetLowering::EmitInstrWithCustomInserter!";
158#endif
159  llvm_unreachable(0);
160  return 0;
161}
162
163//===----------------------------------------------------------------------===//
164// SelectionDAGISel code
165//===----------------------------------------------------------------------===//
166
167SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
168  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
169  FuncInfo(new FunctionLoweringInfo(TLI)),
170  CurDAG(new SelectionDAG(tm, *FuncInfo)),
171  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
172  GFI(),
173  OptLevel(OL),
174  DAGSize(0)
175{}
176
177SelectionDAGISel::~SelectionDAGISel() {
178  delete SDB;
179  delete CurDAG;
180  delete FuncInfo;
181}
182
183void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
184  AU.addRequired<AliasAnalysis>();
185  AU.addPreserved<AliasAnalysis>();
186  AU.addRequired<GCModuleInfo>();
187  AU.addPreserved<GCModuleInfo>();
188  MachineFunctionPass::getAnalysisUsage(AU);
189}
190
191bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
192  // Do some sanity-checking on the command-line options.
193  assert((!EnableFastISelVerbose || EnableFastISel) &&
194         "-fast-isel-verbose requires -fast-isel");
195  assert((!EnableFastISelAbort || EnableFastISel) &&
196         "-fast-isel-abort requires -fast-isel");
197
198  const Function &Fn = *mf.getFunction();
199  const TargetInstrInfo &TII = *TM.getInstrInfo();
200  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
201
202  MF = &mf;
203  RegInfo = &MF->getRegInfo();
204  AA = &getAnalysis<AliasAnalysis>();
205  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
206
207  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
208
209  CurDAG->init(*MF);
210  FuncInfo->set(Fn, *MF, EnableFastISel);
211  SDB->init(GFI, *AA);
212
213  SelectAllBasicBlocks(Fn);
214
215  // Release function-specific state. SDB and CurDAG are already cleared
216  // at this point.
217  FuncInfo->clear();
218
219  // If the first basic block in the function has live ins that need to be
220  // copied into vregs, emit the copies into the top of the block before
221  // emitting the code for the block.
222  RegInfo->EmitLiveInCopies(MF->begin(), TRI, TII);
223
224  return true;
225}
226
227/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
228/// attached with this instruction.
229static void SetDebugLoc(const Instruction *I, SelectionDAGBuilder *SDB,
230                        FastISel *FastIS, MachineFunction *MF) {
231  DebugLoc DL = I->getDebugLoc();
232  if (DL.isUnknown()) return;
233
234  SDB->setCurDebugLoc(DL);
235
236  if (FastIS)
237    FastIS->setCurDebugLoc(DL);
238
239  // If the function doesn't have a default debug location yet, set
240  // it. This is a total hack.
241  if (MF->getDefaultDebugLoc().isUnknown())
242    MF->setDefaultDebugLoc(DL);
243}
244
245/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
246static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
247  SDB->setCurDebugLoc(DebugLoc());
248  if (FastIS)
249    FastIS->setCurDebugLoc(DebugLoc());
250}
251
252void SelectionDAGISel::SelectBasicBlock(const BasicBlock *LLVMBB,
253                                        BasicBlock::const_iterator Begin,
254                                        BasicBlock::const_iterator End,
255                                        bool &HadTailCall) {
256  // Lower all of the non-terminator instructions. If a call is emitted
257  // as a tail call, cease emitting nodes for this block. Terminators
258  // are handled below.
259  for (BasicBlock::const_iterator I = Begin;
260       I != End && !SDB->HasTailCall && !isa<TerminatorInst>(I);
261       ++I) {
262    SetDebugLoc(I, SDB, 0, MF);
263    SDB->visit(*I);
264    ResetDebugLoc(SDB, 0);
265  }
266
267  if (!SDB->HasTailCall) {
268    // Ensure that all instructions which are used outside of their defining
269    // blocks are available as virtual registers.  Invoke is handled elsewhere.
270    for (BasicBlock::const_iterator I = Begin; I != End; ++I)
271      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
272        SDB->CopyToExportRegsIfNeeded(I);
273
274    // Handle PHI nodes in successor blocks.
275    if (End == LLVMBB->end()) {
276      HandlePHINodesInSuccessorBlocks(LLVMBB);
277
278      // Lower the terminator after the copies are emitted.
279      SetDebugLoc(LLVMBB->getTerminator(), SDB, 0, MF);
280      SDB->visit(*LLVMBB->getTerminator());
281      ResetDebugLoc(SDB, 0);
282    }
283  }
284
285  // Make sure the root of the DAG is up-to-date.
286  CurDAG->setRoot(SDB->getControlRoot());
287
288  // Final step, emit the lowered DAG as machine code.
289  CodeGenAndEmitDAG();
290  HadTailCall = SDB->HasTailCall;
291  SDB->clear();
292}
293
294namespace {
295/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
296/// nodes from the worklist.
297class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
298  SmallVector<SDNode*, 128> &Worklist;
299  SmallPtrSet<SDNode*, 128> &InWorklist;
300public:
301  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
302                       SmallPtrSet<SDNode*, 128> &inwl)
303    : Worklist(wl), InWorklist(inwl) {}
304
305  void RemoveFromWorklist(SDNode *N) {
306    if (!InWorklist.erase(N)) return;
307
308    SmallVector<SDNode*, 128>::iterator I =
309    std::find(Worklist.begin(), Worklist.end(), N);
310    assert(I != Worklist.end() && "Not in worklist");
311
312    *I = Worklist.back();
313    Worklist.pop_back();
314  }
315
316  virtual void NodeDeleted(SDNode *N, SDNode *E) {
317    RemoveFromWorklist(N);
318  }
319
320  virtual void NodeUpdated(SDNode *N) {
321    // Ignore updates.
322  }
323};
324}
325
326/// TrivialTruncElim - Eliminate some trivial nops that can result from
327/// ShrinkDemandedOps: (trunc (ext n)) -> n.
328static bool TrivialTruncElim(SDValue Op,
329                             TargetLowering::TargetLoweringOpt &TLO) {
330  SDValue N0 = Op.getOperand(0);
331  EVT VT = Op.getValueType();
332  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
333       N0.getOpcode() == ISD::SIGN_EXTEND ||
334       N0.getOpcode() == ISD::ANY_EXTEND) &&
335      N0.getOperand(0).getValueType() == VT) {
336    return TLO.CombineTo(Op, N0.getOperand(0));
337  }
338  return false;
339}
340
341/// ShrinkDemandedOps - A late transformation pass that shrink expressions
342/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
343/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
344void SelectionDAGISel::ShrinkDemandedOps() {
345  SmallVector<SDNode*, 128> Worklist;
346  SmallPtrSet<SDNode*, 128> InWorklist;
347
348  // Add all the dag nodes to the worklist.
349  Worklist.reserve(CurDAG->allnodes_size());
350  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
351       E = CurDAG->allnodes_end(); I != E; ++I) {
352    Worklist.push_back(I);
353    InWorklist.insert(I);
354  }
355
356  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true, true, true);
357  while (!Worklist.empty()) {
358    SDNode *N = Worklist.pop_back_val();
359    InWorklist.erase(N);
360
361    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
362      // Deleting this node may make its operands dead, add them to the worklist
363      // if they aren't already there.
364      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
365        if (InWorklist.insert(N->getOperand(i).getNode()))
366          Worklist.push_back(N->getOperand(i).getNode());
367
368      CurDAG->DeleteNode(N);
369      continue;
370    }
371
372    // Run ShrinkDemandedOp on scalar binary operations.
373    if (N->getNumValues() != 1 ||
374        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
375      continue;
376
377    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
378    APInt Demanded = APInt::getAllOnesValue(BitWidth);
379    APInt KnownZero, KnownOne;
380    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
381                                  KnownZero, KnownOne, TLO) &&
382        (N->getOpcode() != ISD::TRUNCATE ||
383         !TrivialTruncElim(SDValue(N, 0), TLO)))
384      continue;
385
386    // Revisit the node.
387    assert(!InWorklist.count(N) && "Already in worklist");
388    Worklist.push_back(N);
389    InWorklist.insert(N);
390
391    // Replace the old value with the new one.
392    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
393          TLO.Old.getNode()->dump(CurDAG);
394          errs() << "\nWith: ";
395          TLO.New.getNode()->dump(CurDAG);
396          errs() << '\n');
397
398    if (InWorklist.insert(TLO.New.getNode()))
399      Worklist.push_back(TLO.New.getNode());
400
401    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
402    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
403
404    if (!TLO.Old.getNode()->use_empty()) continue;
405
406    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
407         i != e; ++i) {
408      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
409      if (OpNode->hasOneUse()) {
410        // Add OpNode to the end of the list to revisit.
411        DeadNodes.RemoveFromWorklist(OpNode);
412        Worklist.push_back(OpNode);
413        InWorklist.insert(OpNode);
414      }
415    }
416
417    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
418    CurDAG->DeleteNode(TLO.Old.getNode());
419  }
420}
421
422void SelectionDAGISel::ComputeLiveOutVRegInfo() {
423  SmallPtrSet<SDNode*, 128> VisitedNodes;
424  SmallVector<SDNode*, 128> Worklist;
425
426  Worklist.push_back(CurDAG->getRoot().getNode());
427
428  APInt Mask;
429  APInt KnownZero;
430  APInt KnownOne;
431
432  do {
433    SDNode *N = Worklist.pop_back_val();
434
435    // If we've already seen this node, ignore it.
436    if (!VisitedNodes.insert(N))
437      continue;
438
439    // Otherwise, add all chain operands to the worklist.
440    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
441      if (N->getOperand(i).getValueType() == MVT::Other)
442        Worklist.push_back(N->getOperand(i).getNode());
443
444    // If this is a CopyToReg with a vreg dest, process it.
445    if (N->getOpcode() != ISD::CopyToReg)
446      continue;
447
448    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
449    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
450      continue;
451
452    // Ignore non-scalar or non-integer values.
453    SDValue Src = N->getOperand(2);
454    EVT SrcVT = Src.getValueType();
455    if (!SrcVT.isInteger() || SrcVT.isVector())
456      continue;
457
458    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
459    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
460    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
461
462    // Only install this information if it tells us something.
463    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
464      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
465      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
466        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
467      FunctionLoweringInfo::LiveOutInfo &LOI =
468        FuncInfo->LiveOutRegInfo[DestReg];
469      LOI.NumSignBits = NumSignBits;
470      LOI.KnownOne = KnownOne;
471      LOI.KnownZero = KnownZero;
472    }
473  } while (!Worklist.empty());
474}
475
476void SelectionDAGISel::CodeGenAndEmitDAG() {
477  std::string GroupName;
478  if (TimePassesIsEnabled)
479    GroupName = "Instruction Selection and Scheduling";
480  std::string BlockName;
481  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
482      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
483      ViewSUnitDAGs)
484    BlockName = MF->getFunction()->getNameStr() + ":" +
485                BB->getBasicBlock()->getNameStr();
486
487  DEBUG(dbgs() << "Initial selection DAG:\n");
488  DEBUG(CurDAG->dump());
489
490  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
491
492  // Run the DAG combiner in pre-legalize mode.
493  if (TimePassesIsEnabled) {
494    NamedRegionTimer T("DAG Combining 1", GroupName);
495    CurDAG->Combine(Unrestricted, *AA, OptLevel);
496  } else {
497    CurDAG->Combine(Unrestricted, *AA, OptLevel);
498  }
499
500  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
501  DEBUG(CurDAG->dump());
502
503  // Second step, hack on the DAG until it only uses operations and types that
504  // the target supports.
505  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
506                                               BlockName);
507
508  bool Changed;
509  if (TimePassesIsEnabled) {
510    NamedRegionTimer T("Type Legalization", GroupName);
511    Changed = CurDAG->LegalizeTypes();
512  } else {
513    Changed = CurDAG->LegalizeTypes();
514  }
515
516  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
517  DEBUG(CurDAG->dump());
518
519  if (Changed) {
520    if (ViewDAGCombineLT)
521      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
522
523    // Run the DAG combiner in post-type-legalize mode.
524    if (TimePassesIsEnabled) {
525      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
526      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
527    } else {
528      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
529    }
530
531    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
532    DEBUG(CurDAG->dump());
533  }
534
535  if (TimePassesIsEnabled) {
536    NamedRegionTimer T("Vector Legalization", GroupName);
537    Changed = CurDAG->LegalizeVectors();
538  } else {
539    Changed = CurDAG->LegalizeVectors();
540  }
541
542  if (Changed) {
543    if (TimePassesIsEnabled) {
544      NamedRegionTimer T("Type Legalization 2", GroupName);
545      CurDAG->LegalizeTypes();
546    } else {
547      CurDAG->LegalizeTypes();
548    }
549
550    if (ViewDAGCombineLT)
551      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
552
553    // Run the DAG combiner in post-type-legalize mode.
554    if (TimePassesIsEnabled) {
555      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
556      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
557    } else {
558      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
559    }
560
561    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
562    DEBUG(CurDAG->dump());
563  }
564
565  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
566
567  if (TimePassesIsEnabled) {
568    NamedRegionTimer T("DAG Legalization", GroupName);
569    CurDAG->Legalize(OptLevel);
570  } else {
571    CurDAG->Legalize(OptLevel);
572  }
573
574  DEBUG(dbgs() << "Legalized selection DAG:\n");
575  DEBUG(CurDAG->dump());
576
577  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
578
579  // Run the DAG combiner in post-legalize mode.
580  if (TimePassesIsEnabled) {
581    NamedRegionTimer T("DAG Combining 2", GroupName);
582    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
583  } else {
584    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
585  }
586
587  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
588  DEBUG(CurDAG->dump());
589
590  if (OptLevel != CodeGenOpt::None) {
591    ShrinkDemandedOps();
592    ComputeLiveOutVRegInfo();
593  }
594
595  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
596
597  // Third, instruction select all of the operations to machine code, adding the
598  // code to the MachineBasicBlock.
599  if (TimePassesIsEnabled) {
600    NamedRegionTimer T("Instruction Selection", GroupName);
601    DoInstructionSelection();
602  } else {
603    DoInstructionSelection();
604  }
605
606  DEBUG(dbgs() << "Selected selection DAG:\n");
607  DEBUG(CurDAG->dump());
608
609  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
610
611  // Schedule machine code.
612  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
613  if (TimePassesIsEnabled) {
614    NamedRegionTimer T("Instruction Scheduling", GroupName);
615    Scheduler->Run(CurDAG, BB, BB->end());
616  } else {
617    Scheduler->Run(CurDAG, BB, BB->end());
618  }
619
620  if (ViewSUnitDAGs) Scheduler->viewGraph();
621
622  // Emit machine code to BB.  This can change 'BB' to the last block being
623  // inserted into.
624  if (TimePassesIsEnabled) {
625    NamedRegionTimer T("Instruction Creation", GroupName);
626    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
627  } else {
628    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
629  }
630
631  // Free the scheduler state.
632  if (TimePassesIsEnabled) {
633    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
634    delete Scheduler;
635  } else {
636    delete Scheduler;
637  }
638
639  DEBUG(dbgs() << "Selected machine code:\n");
640  DEBUG(BB->dump());
641}
642
643void SelectionDAGISel::DoInstructionSelection() {
644  DEBUG(errs() << "===== Instruction selection begins:\n");
645
646  PreprocessISelDAG();
647
648  // Select target instructions for the DAG.
649  {
650    // Number all nodes with a topological order and set DAGSize.
651    DAGSize = CurDAG->AssignTopologicalOrder();
652
653    // Create a dummy node (which is not added to allnodes), that adds
654    // a reference to the root node, preventing it from being deleted,
655    // and tracking any changes of the root.
656    HandleSDNode Dummy(CurDAG->getRoot());
657    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
658    ++ISelPosition;
659
660    // The AllNodes list is now topological-sorted. Visit the
661    // nodes by starting at the end of the list (the root of the
662    // graph) and preceding back toward the beginning (the entry
663    // node).
664    while (ISelPosition != CurDAG->allnodes_begin()) {
665      SDNode *Node = --ISelPosition;
666      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
667      // but there are currently some corner cases that it misses. Also, this
668      // makes it theoretically possible to disable the DAGCombiner.
669      if (Node->use_empty())
670        continue;
671
672      SDNode *ResNode = Select(Node);
673
674      // FIXME: This is pretty gross.  'Select' should be changed to not return
675      // anything at all and this code should be nuked with a tactical strike.
676
677      // If node should not be replaced, continue with the next one.
678      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
679        continue;
680      // Replace node.
681      if (ResNode)
682        ReplaceUses(Node, ResNode);
683
684      // If after the replacement this node is not used any more,
685      // remove this dead node.
686      if (Node->use_empty()) { // Don't delete EntryToken, etc.
687        ISelUpdater ISU(ISelPosition);
688        CurDAG->RemoveDeadNode(Node, &ISU);
689      }
690    }
691
692    CurDAG->setRoot(Dummy.getValue());
693  }
694  DEBUG(errs() << "===== Instruction selection ends:\n");
695
696  PostprocessISelDAG();
697}
698
699/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
700/// do other setup for EH landing-pad blocks.
701void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
702  // Add a label to mark the beginning of the landing pad.  Deletion of the
703  // landing pad can thus be detected via the MachineModuleInfo.
704  MCSymbol *Label = MF->getMMI().addLandingPad(BB);
705
706  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
707  BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
708
709  // Mark exception register as live in.
710  unsigned Reg = TLI.getExceptionAddressRegister();
711  if (Reg) BB->addLiveIn(Reg);
712
713  // Mark exception selector register as live in.
714  Reg = TLI.getExceptionSelectorRegister();
715  if (Reg) BB->addLiveIn(Reg);
716
717  // FIXME: Hack around an exception handling flaw (PR1508): the personality
718  // function and list of typeids logically belong to the invoke (or, if you
719  // like, the basic block containing the invoke), and need to be associated
720  // with it in the dwarf exception handling tables.  Currently however the
721  // information is provided by an intrinsic (eh.selector) that can be moved
722  // to unexpected places by the optimizers: if the unwind edge is critical,
723  // then breaking it can result in the intrinsics being in the successor of
724  // the landing pad, not the landing pad itself.  This results
725  // in exceptions not being caught because no typeids are associated with
726  // the invoke.  This may not be the only way things can go wrong, but it
727  // is the only way we try to work around for the moment.
728  const BasicBlock *LLVMBB = BB->getBasicBlock();
729  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
730
731  if (Br && Br->isUnconditional()) { // Critical edge?
732    BasicBlock::const_iterator I, E;
733    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
734      if (isa<EHSelectorInst>(I))
735        break;
736
737    if (I == E)
738      // No catch info found - try to extract some from the successor.
739      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
740  }
741}
742
743void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
744  // Initialize the Fast-ISel state, if needed.
745  FastISel *FastIS = 0;
746  if (EnableFastISel)
747    FastIS = TLI.createFastISel(*MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
748                                FuncInfo->StaticAllocaMap
749#ifndef NDEBUG
750                                , FuncInfo->CatchInfoLost
751#endif
752                                );
753
754  // Iterate over all basic blocks in the function.
755  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
756    const BasicBlock *LLVMBB = &*I;
757    BB = FuncInfo->MBBMap[LLVMBB];
758
759    BasicBlock::const_iterator const Begin = LLVMBB->begin();
760    BasicBlock::const_iterator const End = LLVMBB->end();
761    BasicBlock::const_iterator BI = Begin;
762
763    // Lower any arguments needed in this block if this is the entry block.
764    bool SuppressFastISel = false;
765    if (LLVMBB == &Fn.getEntryBlock()) {
766      LowerArguments(LLVMBB);
767
768      // If any of the arguments has the byval attribute, forgo
769      // fast-isel in the entry block.
770      if (FastIS) {
771        unsigned j = 1;
772        for (Function::const_arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
773             I != E; ++I, ++j)
774          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
775            if (EnableFastISelVerbose || EnableFastISelAbort)
776              dbgs() << "FastISel skips entry block due to byval argument\n";
777            SuppressFastISel = true;
778            break;
779          }
780      }
781    }
782
783    // Setup an EH landing-pad block.
784    if (BB->isLandingPad())
785      PrepareEHLandingPad(BB);
786
787    // Before doing SelectionDAG ISel, see if FastISel has been requested.
788    if (FastIS && !SuppressFastISel) {
789      // Emit code for any incoming arguments. This must happen before
790      // beginning FastISel on the entry block.
791      if (LLVMBB == &Fn.getEntryBlock()) {
792        CurDAG->setRoot(SDB->getControlRoot());
793        CodeGenAndEmitDAG();
794        SDB->clear();
795      }
796      FastIS->startNewBlock(BB);
797      // Do FastISel on as many instructions as possible.
798      for (; BI != End; ++BI) {
799        // Just before the terminator instruction, insert instructions to
800        // feed PHI nodes in successor blocks.
801        if (isa<TerminatorInst>(BI))
802          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
803            ++NumFastIselFailures;
804            ResetDebugLoc(SDB, FastIS);
805            if (EnableFastISelVerbose || EnableFastISelAbort) {
806              dbgs() << "FastISel miss: ";
807              BI->dump();
808            }
809            assert(!EnableFastISelAbort &&
810                   "FastISel didn't handle a PHI in a successor");
811            break;
812          }
813
814        SetDebugLoc(BI, SDB, FastIS, MF);
815
816        // Try to select the instruction with FastISel.
817        if (FastIS->SelectInstruction(BI)) {
818          ResetDebugLoc(SDB, FastIS);
819          continue;
820        }
821
822        // Clear out the debug location so that it doesn't carry over to
823        // unrelated instructions.
824        ResetDebugLoc(SDB, FastIS);
825
826        // Then handle certain instructions as single-LLVM-Instruction blocks.
827        if (isa<CallInst>(BI)) {
828          ++NumFastIselFailures;
829          if (EnableFastISelVerbose || EnableFastISelAbort) {
830            dbgs() << "FastISel missed call: ";
831            BI->dump();
832          }
833
834          if (!BI->getType()->isVoidTy() && !BI->use_empty()) {
835            unsigned &R = FuncInfo->ValueMap[BI];
836            if (!R)
837              R = FuncInfo->CreateRegForValue(BI);
838          }
839
840          bool HadTailCall = false;
841          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
842
843          // If the call was emitted as a tail call, we're done with the block.
844          if (HadTailCall) {
845            BI = End;
846            break;
847          }
848
849          // If the instruction was codegen'd with multiple blocks,
850          // inform the FastISel object where to resume inserting.
851          FastIS->setCurrentBlock(BB);
852          continue;
853        }
854
855        // Otherwise, give up on FastISel for the rest of the block.
856        // For now, be a little lenient about non-branch terminators.
857        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
858          ++NumFastIselFailures;
859          if (EnableFastISelVerbose || EnableFastISelAbort) {
860            dbgs() << "FastISel miss: ";
861            BI->dump();
862          }
863          if (EnableFastISelAbort)
864            // The "fast" selector couldn't handle something and bailed.
865            // For the purpose of debugging, just abort.
866            llvm_unreachable("FastISel didn't select the entire block");
867        }
868        break;
869      }
870    }
871
872    // Run SelectionDAG instruction selection on the remainder of the block
873    // not handled by FastISel. If FastISel is not run, this is the entire
874    // block.
875    if (BI != End) {
876      bool HadTailCall;
877      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
878    }
879
880    FinishBasicBlock();
881  }
882
883  delete FastIS;
884}
885
886void
887SelectionDAGISel::FinishBasicBlock() {
888
889  DEBUG(dbgs() << "Target-post-processed machine code:\n");
890  DEBUG(BB->dump());
891
892  DEBUG(dbgs() << "Total amount of phi nodes to update: "
893               << SDB->PHINodesToUpdate.size() << "\n");
894  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
895          dbgs() << "Node " << i << " : ("
896                 << SDB->PHINodesToUpdate[i].first
897                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
898
899  // Next, now that we know what the last MBB the LLVM BB expanded is, update
900  // PHI nodes in successors.
901  if (SDB->SwitchCases.empty() &&
902      SDB->JTCases.empty() &&
903      SDB->BitTestCases.empty()) {
904    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
905      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
906      assert(PHI->isPHI() &&
907             "This is not a machine PHI node that we are updating!");
908      if (!BB->isSuccessor(PHI->getParent()))
909        continue;
910      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
911                                                false));
912      PHI->addOperand(MachineOperand::CreateMBB(BB));
913    }
914    SDB->PHINodesToUpdate.clear();
915    return;
916  }
917
918  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
919    // Lower header first, if it wasn't already lowered
920    if (!SDB->BitTestCases[i].Emitted) {
921      // Set the current basic block to the mbb we wish to insert the code into
922      BB = SDB->BitTestCases[i].Parent;
923      // Emit the code
924      SDB->visitBitTestHeader(SDB->BitTestCases[i], BB);
925      CurDAG->setRoot(SDB->getRoot());
926      CodeGenAndEmitDAG();
927      SDB->clear();
928    }
929
930    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
931      // Set the current basic block to the mbb we wish to insert the code into
932      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
933      // Emit the code
934      if (j+1 != ej)
935        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
936                              SDB->BitTestCases[i].Reg,
937                              SDB->BitTestCases[i].Cases[j],
938                              BB);
939      else
940        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
941                              SDB->BitTestCases[i].Reg,
942                              SDB->BitTestCases[i].Cases[j],
943                              BB);
944
945
946      CurDAG->setRoot(SDB->getRoot());
947      CodeGenAndEmitDAG();
948      SDB->clear();
949    }
950
951    // Update PHI Nodes
952    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
953      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
954      MachineBasicBlock *PHIBB = PHI->getParent();
955      assert(PHI->isPHI() &&
956             "This is not a machine PHI node that we are updating!");
957      // This is "default" BB. We have two jumps to it. From "header" BB and
958      // from last "case" BB.
959      if (PHIBB == SDB->BitTestCases[i].Default) {
960        PHI->addOperand(MachineOperand::
961                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
962        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
963        PHI->addOperand(MachineOperand::
964                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
965        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
966                                                  back().ThisBB));
967      }
968      // One of "cases" BB.
969      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
970           j != ej; ++j) {
971        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
972        if (cBB->isSuccessor(PHIBB)) {
973          PHI->addOperand(MachineOperand::
974                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
975          PHI->addOperand(MachineOperand::CreateMBB(cBB));
976        }
977      }
978    }
979  }
980  SDB->BitTestCases.clear();
981
982  // If the JumpTable record is filled in, then we need to emit a jump table.
983  // Updating the PHI nodes is tricky in this case, since we need to determine
984  // whether the PHI is a successor of the range check MBB or the jump table MBB
985  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
986    // Lower header first, if it wasn't already lowered
987    if (!SDB->JTCases[i].first.Emitted) {
988      // Set the current basic block to the mbb we wish to insert the code into
989      BB = SDB->JTCases[i].first.HeaderBB;
990      // Emit the code
991      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
992                                BB);
993      CurDAG->setRoot(SDB->getRoot());
994      CodeGenAndEmitDAG();
995      SDB->clear();
996    }
997
998    // Set the current basic block to the mbb we wish to insert the code into
999    BB = SDB->JTCases[i].second.MBB;
1000    // Emit the code
1001    SDB->visitJumpTable(SDB->JTCases[i].second);
1002    CurDAG->setRoot(SDB->getRoot());
1003    CodeGenAndEmitDAG();
1004    SDB->clear();
1005
1006    // Update PHI Nodes
1007    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1008      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1009      MachineBasicBlock *PHIBB = PHI->getParent();
1010      assert(PHI->isPHI() &&
1011             "This is not a machine PHI node that we are updating!");
1012      // "default" BB. We can go there only from header BB.
1013      if (PHIBB == SDB->JTCases[i].second.Default) {
1014        PHI->addOperand
1015          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1016        PHI->addOperand
1017          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1018      }
1019      // JT BB. Just iterate over successors here
1020      if (BB->isSuccessor(PHIBB)) {
1021        PHI->addOperand
1022          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1023        PHI->addOperand(MachineOperand::CreateMBB(BB));
1024      }
1025    }
1026  }
1027  SDB->JTCases.clear();
1028
1029  // If the switch block involved a branch to one of the actual successors, we
1030  // need to update PHI nodes in that block.
1031  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1032    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1033    assert(PHI->isPHI() &&
1034           "This is not a machine PHI node that we are updating!");
1035    if (BB->isSuccessor(PHI->getParent())) {
1036      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1037                                                false));
1038      PHI->addOperand(MachineOperand::CreateMBB(BB));
1039    }
1040  }
1041
1042  // If we generated any switch lowering information, build and codegen any
1043  // additional DAGs necessary.
1044  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1045    // Set the current basic block to the mbb we wish to insert the code into
1046    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1047
1048    // Emit the code
1049    SDB->visitSwitchCase(SDB->SwitchCases[i], BB);
1050    CurDAG->setRoot(SDB->getRoot());
1051    CodeGenAndEmitDAG();
1052
1053    // Handle any PHI nodes in successors of this chunk, as if we were coming
1054    // from the original BB before switch expansion.  Note that PHI nodes can
1055    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1056    // handle them the right number of times.
1057    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1058      // If new BB's are created during scheduling, the edges may have been
1059      // updated. That is, the edge from ThisBB to BB may have been split and
1060      // BB's predecessor is now another block.
1061      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1062        SDB->EdgeMapping.find(BB);
1063      if (EI != SDB->EdgeMapping.end())
1064        ThisBB = EI->second;
1065
1066      // BB may have been removed from the CFG if a branch was constant folded.
1067      if (ThisBB->isSuccessor(BB)) {
1068        for (MachineBasicBlock::iterator Phi = BB->begin();
1069             Phi != BB->end() && Phi->isPHI();
1070             ++Phi) {
1071          // This value for this PHI node is recorded in PHINodesToUpdate.
1072          for (unsigned pn = 0; ; ++pn) {
1073            assert(pn != SDB->PHINodesToUpdate.size() &&
1074                   "Didn't find PHI entry!");
1075            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1076              Phi->addOperand(MachineOperand::
1077                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1078                                        false));
1079              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1080              break;
1081            }
1082          }
1083        }
1084      }
1085
1086      // Don't process RHS if same block as LHS.
1087      if (BB == SDB->SwitchCases[i].FalseBB)
1088        SDB->SwitchCases[i].FalseBB = 0;
1089
1090      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1091      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1092      SDB->SwitchCases[i].FalseBB = 0;
1093    }
1094    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1095    SDB->clear();
1096  }
1097  SDB->SwitchCases.clear();
1098
1099  SDB->PHINodesToUpdate.clear();
1100}
1101
1102
1103/// Create the scheduler. If a specific scheduler was specified
1104/// via the SchedulerRegistry, use it, otherwise select the
1105/// one preferred by the target.
1106///
1107ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1108  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1109
1110  if (!Ctor) {
1111    Ctor = ISHeuristic;
1112    RegisterScheduler::setDefault(Ctor);
1113  }
1114
1115  return Ctor(this, OptLevel);
1116}
1117
1118ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1119  return new ScheduleHazardRecognizer();
1120}
1121
1122//===----------------------------------------------------------------------===//
1123// Helper functions used by the generated instruction selector.
1124//===----------------------------------------------------------------------===//
1125// Calls to these methods are generated by tblgen.
1126
1127/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1128/// the dag combiner simplified the 255, we still want to match.  RHS is the
1129/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1130/// specified in the .td file (e.g. 255).
1131bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1132                                    int64_t DesiredMaskS) const {
1133  const APInt &ActualMask = RHS->getAPIntValue();
1134  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1135
1136  // If the actual mask exactly matches, success!
1137  if (ActualMask == DesiredMask)
1138    return true;
1139
1140  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1141  if (ActualMask.intersects(~DesiredMask))
1142    return false;
1143
1144  // Otherwise, the DAG Combiner may have proven that the value coming in is
1145  // either already zero or is not demanded.  Check for known zero input bits.
1146  APInt NeededMask = DesiredMask & ~ActualMask;
1147  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1148    return true;
1149
1150  // TODO: check to see if missing bits are just not demanded.
1151
1152  // Otherwise, this pattern doesn't match.
1153  return false;
1154}
1155
1156/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1157/// the dag combiner simplified the 255, we still want to match.  RHS is the
1158/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1159/// specified in the .td file (e.g. 255).
1160bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1161                                   int64_t DesiredMaskS) const {
1162  const APInt &ActualMask = RHS->getAPIntValue();
1163  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1164
1165  // If the actual mask exactly matches, success!
1166  if (ActualMask == DesiredMask)
1167    return true;
1168
1169  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1170  if (ActualMask.intersects(~DesiredMask))
1171    return false;
1172
1173  // Otherwise, the DAG Combiner may have proven that the value coming in is
1174  // either already zero or is not demanded.  Check for known zero input bits.
1175  APInt NeededMask = DesiredMask & ~ActualMask;
1176
1177  APInt KnownZero, KnownOne;
1178  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1179
1180  // If all the missing bits in the or are already known to be set, match!
1181  if ((NeededMask & KnownOne) == NeededMask)
1182    return true;
1183
1184  // TODO: check to see if missing bits are just not demanded.
1185
1186  // Otherwise, this pattern doesn't match.
1187  return false;
1188}
1189
1190
1191/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1192/// by tblgen.  Others should not call it.
1193void SelectionDAGISel::
1194SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1195  std::vector<SDValue> InOps;
1196  std::swap(InOps, Ops);
1197
1198  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1199  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1200  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1201
1202  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1203  if (InOps[e-1].getValueType() == MVT::Flag)
1204    --e;  // Don't process a flag operand if it is here.
1205
1206  while (i != e) {
1207    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1208    if (!InlineAsm::isMemKind(Flags)) {
1209      // Just skip over this operand, copying the operands verbatim.
1210      Ops.insert(Ops.end(), InOps.begin()+i,
1211                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1212      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1213    } else {
1214      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1215             "Memory operand with multiple values?");
1216      // Otherwise, this is a memory operand.  Ask the target to select it.
1217      std::vector<SDValue> SelOps;
1218      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1219        report_fatal_error("Could not match memory address.  Inline asm"
1220                           " failure!");
1221
1222      // Add this to the output node.
1223      unsigned NewFlags =
1224        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1225      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1226      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1227      i += 2;
1228    }
1229  }
1230
1231  // Add the flag input back if present.
1232  if (e != InOps.size())
1233    Ops.push_back(InOps.back());
1234}
1235
1236/// findFlagUse - Return use of EVT::Flag value produced by the specified
1237/// SDNode.
1238///
1239static SDNode *findFlagUse(SDNode *N) {
1240  unsigned FlagResNo = N->getNumValues()-1;
1241  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1242    SDUse &Use = I.getUse();
1243    if (Use.getResNo() == FlagResNo)
1244      return Use.getUser();
1245  }
1246  return NULL;
1247}
1248
1249/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1250/// This function recursively traverses up the operand chain, ignoring
1251/// certain nodes.
1252static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1253                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1254                          bool IgnoreChains) {
1255  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1256  // greater than all of its (recursive) operands.  If we scan to a point where
1257  // 'use' is smaller than the node we're scanning for, then we know we will
1258  // never find it.
1259  //
1260  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1261  // happen because we scan down to newly selected nodes in the case of flag
1262  // uses.
1263  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1264    return false;
1265
1266  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1267  // won't fail if we scan it again.
1268  if (!Visited.insert(Use))
1269    return false;
1270
1271  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1272    // Ignore chain uses, they are validated by HandleMergeInputChains.
1273    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1274      continue;
1275
1276    SDNode *N = Use->getOperand(i).getNode();
1277    if (N == Def) {
1278      if (Use == ImmedUse || Use == Root)
1279        continue;  // We are not looking for immediate use.
1280      assert(N != Root);
1281      return true;
1282    }
1283
1284    // Traverse up the operand chain.
1285    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1286      return true;
1287  }
1288  return false;
1289}
1290
1291/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1292/// operand node N of U during instruction selection that starts at Root.
1293bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1294                                          SDNode *Root) const {
1295  if (OptLevel == CodeGenOpt::None) return false;
1296  return N.hasOneUse();
1297}
1298
1299/// IsLegalToFold - Returns true if the specific operand node N of
1300/// U can be folded during instruction selection that starts at Root.
1301bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1302                                     CodeGenOpt::Level OptLevel,
1303                                     bool IgnoreChains) {
1304  if (OptLevel == CodeGenOpt::None) return false;
1305
1306  // If Root use can somehow reach N through a path that that doesn't contain
1307  // U then folding N would create a cycle. e.g. In the following
1308  // diagram, Root can reach N through X. If N is folded into into Root, then
1309  // X is both a predecessor and a successor of U.
1310  //
1311  //          [N*]           //
1312  //         ^   ^           //
1313  //        /     \          //
1314  //      [U*]    [X]?       //
1315  //        ^     ^          //
1316  //         \   /           //
1317  //          \ /            //
1318  //         [Root*]         //
1319  //
1320  // * indicates nodes to be folded together.
1321  //
1322  // If Root produces a flag, then it gets (even more) interesting. Since it
1323  // will be "glued" together with its flag use in the scheduler, we need to
1324  // check if it might reach N.
1325  //
1326  //          [N*]           //
1327  //         ^   ^           //
1328  //        /     \          //
1329  //      [U*]    [X]?       //
1330  //        ^       ^        //
1331  //         \       \       //
1332  //          \      |       //
1333  //         [Root*] |       //
1334  //          ^      |       //
1335  //          f      |       //
1336  //          |      /       //
1337  //         [Y]    /        //
1338  //           ^   /         //
1339  //           f  /          //
1340  //           | /           //
1341  //          [FU]           //
1342  //
1343  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1344  // (call it Fold), then X is a predecessor of FU and a successor of
1345  // Fold. But since Fold and FU are flagged together, this will create
1346  // a cycle in the scheduling graph.
1347
1348  // If the node has flags, walk down the graph to the "lowest" node in the
1349  // flagged set.
1350  EVT VT = Root->getValueType(Root->getNumValues()-1);
1351  while (VT == MVT::Flag) {
1352    SDNode *FU = findFlagUse(Root);
1353    if (FU == NULL)
1354      break;
1355    Root = FU;
1356    VT = Root->getValueType(Root->getNumValues()-1);
1357
1358    // If our query node has a flag result with a use, we've walked up it.  If
1359    // the user (which has already been selected) has a chain or indirectly uses
1360    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1361    // this, we cannot ignore chains in this predicate.
1362    IgnoreChains = false;
1363  }
1364
1365
1366  SmallPtrSet<SDNode*, 16> Visited;
1367  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1368}
1369
1370SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1371  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1372  SelectInlineAsmMemoryOperands(Ops);
1373
1374  std::vector<EVT> VTs;
1375  VTs.push_back(MVT::Other);
1376  VTs.push_back(MVT::Flag);
1377  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1378                                VTs, &Ops[0], Ops.size());
1379  New->setNodeId(-1);
1380  return New.getNode();
1381}
1382
1383SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1384  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1385}
1386
1387/// GetVBR - decode a vbr encoding whose top bit is set.
1388ALWAYS_INLINE static uint64_t
1389GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1390  assert(Val >= 128 && "Not a VBR");
1391  Val &= 127;  // Remove first vbr bit.
1392
1393  unsigned Shift = 7;
1394  uint64_t NextBits;
1395  do {
1396    NextBits = MatcherTable[Idx++];
1397    Val |= (NextBits&127) << Shift;
1398    Shift += 7;
1399  } while (NextBits & 128);
1400
1401  return Val;
1402}
1403
1404
1405/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1406/// interior flag and chain results to use the new flag and chain results.
1407void SelectionDAGISel::
1408UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1409                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1410                     SDValue InputFlag,
1411                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1412                     bool isMorphNodeTo) {
1413  SmallVector<SDNode*, 4> NowDeadNodes;
1414
1415  ISelUpdater ISU(ISelPosition);
1416
1417  // Now that all the normal results are replaced, we replace the chain and
1418  // flag results if present.
1419  if (!ChainNodesMatched.empty()) {
1420    assert(InputChain.getNode() != 0 &&
1421           "Matched input chains but didn't produce a chain");
1422    // Loop over all of the nodes we matched that produced a chain result.
1423    // Replace all the chain results with the final chain we ended up with.
1424    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1425      SDNode *ChainNode = ChainNodesMatched[i];
1426
1427      // If this node was already deleted, don't look at it.
1428      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1429        continue;
1430
1431      // Don't replace the results of the root node if we're doing a
1432      // MorphNodeTo.
1433      if (ChainNode == NodeToMatch && isMorphNodeTo)
1434        continue;
1435
1436      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1437      if (ChainVal.getValueType() == MVT::Flag)
1438        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1439      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1440      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1441
1442      // If the node became dead and we haven't already seen it, delete it.
1443      if (ChainNode->use_empty() &&
1444          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1445        NowDeadNodes.push_back(ChainNode);
1446    }
1447  }
1448
1449  // If the result produces a flag, update any flag results in the matched
1450  // pattern with the flag result.
1451  if (InputFlag.getNode() != 0) {
1452    // Handle any interior nodes explicitly marked.
1453    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1454      SDNode *FRN = FlagResultNodesMatched[i];
1455
1456      // If this node was already deleted, don't look at it.
1457      if (FRN->getOpcode() == ISD::DELETED_NODE)
1458        continue;
1459
1460      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1461             "Doesn't have a flag result");
1462      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1463                                        InputFlag, &ISU);
1464
1465      // If the node became dead and we haven't already seen it, delete it.
1466      if (FRN->use_empty() &&
1467          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1468        NowDeadNodes.push_back(FRN);
1469    }
1470  }
1471
1472  if (!NowDeadNodes.empty())
1473    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1474
1475  DEBUG(errs() << "ISEL: Match complete!\n");
1476}
1477
1478enum ChainResult {
1479  CR_Simple,
1480  CR_InducesCycle,
1481  CR_LeadsToInteriorNode
1482};
1483
1484/// WalkChainUsers - Walk down the users of the specified chained node that is
1485/// part of the pattern we're matching, looking at all of the users we find.
1486/// This determines whether something is an interior node, whether we have a
1487/// non-pattern node in between two pattern nodes (which prevent folding because
1488/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1489/// between pattern nodes (in which case the TF becomes part of the pattern).
1490///
1491/// The walk we do here is guaranteed to be small because we quickly get down to
1492/// already selected nodes "below" us.
1493static ChainResult
1494WalkChainUsers(SDNode *ChainedNode,
1495               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1496               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1497  ChainResult Result = CR_Simple;
1498
1499  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1500         E = ChainedNode->use_end(); UI != E; ++UI) {
1501    // Make sure the use is of the chain, not some other value we produce.
1502    if (UI.getUse().getValueType() != MVT::Other) continue;
1503
1504    SDNode *User = *UI;
1505
1506    // If we see an already-selected machine node, then we've gone beyond the
1507    // pattern that we're selecting down into the already selected chunk of the
1508    // DAG.
1509    if (User->isMachineOpcode() ||
1510        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1511      continue;
1512
1513    if (User->getOpcode() == ISD::CopyToReg ||
1514        User->getOpcode() == ISD::CopyFromReg ||
1515        User->getOpcode() == ISD::INLINEASM ||
1516        User->getOpcode() == ISD::EH_LABEL) {
1517      // If their node ID got reset to -1 then they've already been selected.
1518      // Treat them like a MachineOpcode.
1519      if (User->getNodeId() == -1)
1520        continue;
1521    }
1522
1523    // If we have a TokenFactor, we handle it specially.
1524    if (User->getOpcode() != ISD::TokenFactor) {
1525      // If the node isn't a token factor and isn't part of our pattern, then it
1526      // must be a random chained node in between two nodes we're selecting.
1527      // This happens when we have something like:
1528      //   x = load ptr
1529      //   call
1530      //   y = x+4
1531      //   store y -> ptr
1532      // Because we structurally match the load/store as a read/modify/write,
1533      // but the call is chained between them.  We cannot fold in this case
1534      // because it would induce a cycle in the graph.
1535      if (!std::count(ChainedNodesInPattern.begin(),
1536                      ChainedNodesInPattern.end(), User))
1537        return CR_InducesCycle;
1538
1539      // Otherwise we found a node that is part of our pattern.  For example in:
1540      //   x = load ptr
1541      //   y = x+4
1542      //   store y -> ptr
1543      // This would happen when we're scanning down from the load and see the
1544      // store as a user.  Record that there is a use of ChainedNode that is
1545      // part of the pattern and keep scanning uses.
1546      Result = CR_LeadsToInteriorNode;
1547      InteriorChainedNodes.push_back(User);
1548      continue;
1549    }
1550
1551    // If we found a TokenFactor, there are two cases to consider: first if the
1552    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1553    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1554    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1555    //     [Load chain]
1556    //         ^
1557    //         |
1558    //       [Load]
1559    //       ^    ^
1560    //       |    \                    DAG's like cheese
1561    //      /       \                       do you?
1562    //     /         |
1563    // [TokenFactor] [Op]
1564    //     ^          ^
1565    //     |          |
1566    //      \        /
1567    //       \      /
1568    //       [Store]
1569    //
1570    // In this case, the TokenFactor becomes part of our match and we rewrite it
1571    // as a new TokenFactor.
1572    //
1573    // To distinguish these two cases, do a recursive walk down the uses.
1574    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1575    case CR_Simple:
1576      // If the uses of the TokenFactor are just already-selected nodes, ignore
1577      // it, it is "below" our pattern.
1578      continue;
1579    case CR_InducesCycle:
1580      // If the uses of the TokenFactor lead to nodes that are not part of our
1581      // pattern that are not selected, folding would turn this into a cycle,
1582      // bail out now.
1583      return CR_InducesCycle;
1584    case CR_LeadsToInteriorNode:
1585      break;  // Otherwise, keep processing.
1586    }
1587
1588    // Okay, we know we're in the interesting interior case.  The TokenFactor
1589    // is now going to be considered part of the pattern so that we rewrite its
1590    // uses (it may have uses that are not part of the pattern) with the
1591    // ultimate chain result of the generated code.  We will also add its chain
1592    // inputs as inputs to the ultimate TokenFactor we create.
1593    Result = CR_LeadsToInteriorNode;
1594    ChainedNodesInPattern.push_back(User);
1595    InteriorChainedNodes.push_back(User);
1596    continue;
1597  }
1598
1599  return Result;
1600}
1601
1602/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1603/// operation for when the pattern matched at least one node with a chains.  The
1604/// input vector contains a list of all of the chained nodes that we match.  We
1605/// must determine if this is a valid thing to cover (i.e. matching it won't
1606/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1607/// be used as the input node chain for the generated nodes.
1608static SDValue
1609HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1610                       SelectionDAG *CurDAG) {
1611  // Walk all of the chained nodes we've matched, recursively scanning down the
1612  // users of the chain result. This adds any TokenFactor nodes that are caught
1613  // in between chained nodes to the chained and interior nodes list.
1614  SmallVector<SDNode*, 3> InteriorChainedNodes;
1615  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1616    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1617                       InteriorChainedNodes) == CR_InducesCycle)
1618      return SDValue(); // Would induce a cycle.
1619  }
1620
1621  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1622  // that we are interested in.  Form our input TokenFactor node.
1623  SmallVector<SDValue, 3> InputChains;
1624  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1625    // Add the input chain of this node to the InputChains list (which will be
1626    // the operands of the generated TokenFactor) if it's not an interior node.
1627    SDNode *N = ChainNodesMatched[i];
1628    if (N->getOpcode() != ISD::TokenFactor) {
1629      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1630        continue;
1631
1632      // Otherwise, add the input chain.
1633      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1634      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1635      InputChains.push_back(InChain);
1636      continue;
1637    }
1638
1639    // If we have a token factor, we want to add all inputs of the token factor
1640    // that are not part of the pattern we're matching.
1641    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1642      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1643                      N->getOperand(op).getNode()))
1644        InputChains.push_back(N->getOperand(op));
1645    }
1646  }
1647
1648  SDValue Res;
1649  if (InputChains.size() == 1)
1650    return InputChains[0];
1651  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1652                         MVT::Other, &InputChains[0], InputChains.size());
1653}
1654
1655/// MorphNode - Handle morphing a node in place for the selector.
1656SDNode *SelectionDAGISel::
1657MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1658          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1659  // It is possible we're using MorphNodeTo to replace a node with no
1660  // normal results with one that has a normal result (or we could be
1661  // adding a chain) and the input could have flags and chains as well.
1662  // In this case we need to shift the operands down.
1663  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1664  // than the old isel though.
1665  int OldFlagResultNo = -1, OldChainResultNo = -1;
1666
1667  unsigned NTMNumResults = Node->getNumValues();
1668  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1669    OldFlagResultNo = NTMNumResults-1;
1670    if (NTMNumResults != 1 &&
1671        Node->getValueType(NTMNumResults-2) == MVT::Other)
1672      OldChainResultNo = NTMNumResults-2;
1673  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1674    OldChainResultNo = NTMNumResults-1;
1675
1676  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1677  // that this deletes operands of the old node that become dead.
1678  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1679
1680  // MorphNodeTo can operate in two ways: if an existing node with the
1681  // specified operands exists, it can just return it.  Otherwise, it
1682  // updates the node in place to have the requested operands.
1683  if (Res == Node) {
1684    // If we updated the node in place, reset the node ID.  To the isel,
1685    // this should be just like a newly allocated machine node.
1686    Res->setNodeId(-1);
1687  }
1688
1689  unsigned ResNumResults = Res->getNumValues();
1690  // Move the flag if needed.
1691  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1692      (unsigned)OldFlagResultNo != ResNumResults-1)
1693    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1694                                      SDValue(Res, ResNumResults-1));
1695
1696  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1697  --ResNumResults;
1698
1699  // Move the chain reference if needed.
1700  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1701      (unsigned)OldChainResultNo != ResNumResults-1)
1702    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1703                                      SDValue(Res, ResNumResults-1));
1704
1705  // Otherwise, no replacement happened because the node already exists. Replace
1706  // Uses of the old node with the new one.
1707  if (Res != Node)
1708    CurDAG->ReplaceAllUsesWith(Node, Res);
1709
1710  return Res;
1711}
1712
1713/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1714ALWAYS_INLINE static bool
1715CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1716          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1717  // Accept if it is exactly the same as a previously recorded node.
1718  unsigned RecNo = MatcherTable[MatcherIndex++];
1719  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1720  return N == RecordedNodes[RecNo];
1721}
1722
1723/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1724ALWAYS_INLINE static bool
1725CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1726                      SelectionDAGISel &SDISel) {
1727  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1728}
1729
1730/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1731ALWAYS_INLINE static bool
1732CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1733                   SelectionDAGISel &SDISel, SDNode *N) {
1734  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1735}
1736
1737ALWAYS_INLINE static bool
1738CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1739            SDNode *N) {
1740  uint16_t Opc = MatcherTable[MatcherIndex++];
1741  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1742  return N->getOpcode() == Opc;
1743}
1744
1745ALWAYS_INLINE static bool
1746CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1747          SDValue N, const TargetLowering &TLI) {
1748  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1749  if (N.getValueType() == VT) return true;
1750
1751  // Handle the case when VT is iPTR.
1752  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1753}
1754
1755ALWAYS_INLINE static bool
1756CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1757               SDValue N, const TargetLowering &TLI,
1758               unsigned ChildNo) {
1759  if (ChildNo >= N.getNumOperands())
1760    return false;  // Match fails if out of range child #.
1761  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1762}
1763
1764
1765ALWAYS_INLINE static bool
1766CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1767              SDValue N) {
1768  return cast<CondCodeSDNode>(N)->get() ==
1769      (ISD::CondCode)MatcherTable[MatcherIndex++];
1770}
1771
1772ALWAYS_INLINE static bool
1773CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1774               SDValue N, const TargetLowering &TLI) {
1775  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1776  if (cast<VTSDNode>(N)->getVT() == VT)
1777    return true;
1778
1779  // Handle the case when VT is iPTR.
1780  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1781}
1782
1783ALWAYS_INLINE static bool
1784CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1785             SDValue N) {
1786  int64_t Val = MatcherTable[MatcherIndex++];
1787  if (Val & 128)
1788    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1789
1790  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1791  return C != 0 && C->getSExtValue() == Val;
1792}
1793
1794ALWAYS_INLINE static bool
1795CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1796            SDValue N, SelectionDAGISel &SDISel) {
1797  int64_t Val = MatcherTable[MatcherIndex++];
1798  if (Val & 128)
1799    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1800
1801  if (N->getOpcode() != ISD::AND) return false;
1802
1803  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1804  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1805}
1806
1807ALWAYS_INLINE static bool
1808CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1809           SDValue N, SelectionDAGISel &SDISel) {
1810  int64_t Val = MatcherTable[MatcherIndex++];
1811  if (Val & 128)
1812    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1813
1814  if (N->getOpcode() != ISD::OR) return false;
1815
1816  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1817  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1818}
1819
1820/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1821/// scope, evaluate the current node.  If the current predicate is known to
1822/// fail, set Result=true and return anything.  If the current predicate is
1823/// known to pass, set Result=false and return the MatcherIndex to continue
1824/// with.  If the current predicate is unknown, set Result=false and return the
1825/// MatcherIndex to continue with.
1826static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1827                                       unsigned Index, SDValue N,
1828                                       bool &Result, SelectionDAGISel &SDISel,
1829                                       SmallVectorImpl<SDValue> &RecordedNodes){
1830  switch (Table[Index++]) {
1831  default:
1832    Result = false;
1833    return Index-1;  // Could not evaluate this predicate.
1834  case SelectionDAGISel::OPC_CheckSame:
1835    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1836    return Index;
1837  case SelectionDAGISel::OPC_CheckPatternPredicate:
1838    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1839    return Index;
1840  case SelectionDAGISel::OPC_CheckPredicate:
1841    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1842    return Index;
1843  case SelectionDAGISel::OPC_CheckOpcode:
1844    Result = !::CheckOpcode(Table, Index, N.getNode());
1845    return Index;
1846  case SelectionDAGISel::OPC_CheckType:
1847    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1848    return Index;
1849  case SelectionDAGISel::OPC_CheckChild0Type:
1850  case SelectionDAGISel::OPC_CheckChild1Type:
1851  case SelectionDAGISel::OPC_CheckChild2Type:
1852  case SelectionDAGISel::OPC_CheckChild3Type:
1853  case SelectionDAGISel::OPC_CheckChild4Type:
1854  case SelectionDAGISel::OPC_CheckChild5Type:
1855  case SelectionDAGISel::OPC_CheckChild6Type:
1856  case SelectionDAGISel::OPC_CheckChild7Type:
1857    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1858                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1859    return Index;
1860  case SelectionDAGISel::OPC_CheckCondCode:
1861    Result = !::CheckCondCode(Table, Index, N);
1862    return Index;
1863  case SelectionDAGISel::OPC_CheckValueType:
1864    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1865    return Index;
1866  case SelectionDAGISel::OPC_CheckInteger:
1867    Result = !::CheckInteger(Table, Index, N);
1868    return Index;
1869  case SelectionDAGISel::OPC_CheckAndImm:
1870    Result = !::CheckAndImm(Table, Index, N, SDISel);
1871    return Index;
1872  case SelectionDAGISel::OPC_CheckOrImm:
1873    Result = !::CheckOrImm(Table, Index, N, SDISel);
1874    return Index;
1875  }
1876}
1877
1878namespace {
1879
1880struct MatchScope {
1881  /// FailIndex - If this match fails, this is the index to continue with.
1882  unsigned FailIndex;
1883
1884  /// NodeStack - The node stack when the scope was formed.
1885  SmallVector<SDValue, 4> NodeStack;
1886
1887  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1888  unsigned NumRecordedNodes;
1889
1890  /// NumMatchedMemRefs - The number of matched memref entries.
1891  unsigned NumMatchedMemRefs;
1892
1893  /// InputChain/InputFlag - The current chain/flag
1894  SDValue InputChain, InputFlag;
1895
1896  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1897  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1898};
1899
1900}
1901
1902SDNode *SelectionDAGISel::
1903SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1904                 unsigned TableSize) {
1905  // FIXME: Should these even be selected?  Handle these cases in the caller?
1906  switch (NodeToMatch->getOpcode()) {
1907  default:
1908    break;
1909  case ISD::EntryToken:       // These nodes remain the same.
1910  case ISD::BasicBlock:
1911  case ISD::Register:
1912  //case ISD::VALUETYPE:
1913  //case ISD::CONDCODE:
1914  case ISD::HANDLENODE:
1915  case ISD::MDNODE_SDNODE:
1916  case ISD::TargetConstant:
1917  case ISD::TargetConstantFP:
1918  case ISD::TargetConstantPool:
1919  case ISD::TargetFrameIndex:
1920  case ISD::TargetExternalSymbol:
1921  case ISD::TargetBlockAddress:
1922  case ISD::TargetJumpTable:
1923  case ISD::TargetGlobalTLSAddress:
1924  case ISD::TargetGlobalAddress:
1925  case ISD::TokenFactor:
1926  case ISD::CopyFromReg:
1927  case ISD::CopyToReg:
1928  case ISD::EH_LABEL:
1929    NodeToMatch->setNodeId(-1); // Mark selected.
1930    return 0;
1931  case ISD::AssertSext:
1932  case ISD::AssertZext:
1933    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1934                                      NodeToMatch->getOperand(0));
1935    return 0;
1936  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1937  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1938  }
1939
1940  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1941
1942  // Set up the node stack with NodeToMatch as the only node on the stack.
1943  SmallVector<SDValue, 8> NodeStack;
1944  SDValue N = SDValue(NodeToMatch, 0);
1945  NodeStack.push_back(N);
1946
1947  // MatchScopes - Scopes used when matching, if a match failure happens, this
1948  // indicates where to continue checking.
1949  SmallVector<MatchScope, 8> MatchScopes;
1950
1951  // RecordedNodes - This is the set of nodes that have been recorded by the
1952  // state machine.
1953  SmallVector<SDValue, 8> RecordedNodes;
1954
1955  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1956  // pattern.
1957  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1958
1959  // These are the current input chain and flag for use when generating nodes.
1960  // Various Emit operations change these.  For example, emitting a copytoreg
1961  // uses and updates these.
1962  SDValue InputChain, InputFlag;
1963
1964  // ChainNodesMatched - If a pattern matches nodes that have input/output
1965  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1966  // which ones they are.  The result is captured into this list so that we can
1967  // update the chain results when the pattern is complete.
1968  SmallVector<SDNode*, 3> ChainNodesMatched;
1969  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1970
1971  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1972        NodeToMatch->dump(CurDAG);
1973        errs() << '\n');
1974
1975  // Determine where to start the interpreter.  Normally we start at opcode #0,
1976  // but if the state machine starts with an OPC_SwitchOpcode, then we
1977  // accelerate the first lookup (which is guaranteed to be hot) with the
1978  // OpcodeOffset table.
1979  unsigned MatcherIndex = 0;
1980
1981  if (!OpcodeOffset.empty()) {
1982    // Already computed the OpcodeOffset table, just index into it.
1983    if (N.getOpcode() < OpcodeOffset.size())
1984      MatcherIndex = OpcodeOffset[N.getOpcode()];
1985    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1986
1987  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1988    // Otherwise, the table isn't computed, but the state machine does start
1989    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1990    // is the first time we're selecting an instruction.
1991    unsigned Idx = 1;
1992    while (1) {
1993      // Get the size of this case.
1994      unsigned CaseSize = MatcherTable[Idx++];
1995      if (CaseSize & 128)
1996        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1997      if (CaseSize == 0) break;
1998
1999      // Get the opcode, add the index to the table.
2000      uint16_t Opc = MatcherTable[Idx++];
2001      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2002      if (Opc >= OpcodeOffset.size())
2003        OpcodeOffset.resize((Opc+1)*2);
2004      OpcodeOffset[Opc] = Idx;
2005      Idx += CaseSize;
2006    }
2007
2008    // Okay, do the lookup for the first opcode.
2009    if (N.getOpcode() < OpcodeOffset.size())
2010      MatcherIndex = OpcodeOffset[N.getOpcode()];
2011  }
2012
2013  while (1) {
2014    assert(MatcherIndex < TableSize && "Invalid index");
2015#ifndef NDEBUG
2016    unsigned CurrentOpcodeIndex = MatcherIndex;
2017#endif
2018    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2019    switch (Opcode) {
2020    case OPC_Scope: {
2021      // Okay, the semantics of this operation are that we should push a scope
2022      // then evaluate the first child.  However, pushing a scope only to have
2023      // the first check fail (which then pops it) is inefficient.  If we can
2024      // determine immediately that the first check (or first several) will
2025      // immediately fail, don't even bother pushing a scope for them.
2026      unsigned FailIndex;
2027
2028      while (1) {
2029        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2030        if (NumToSkip & 128)
2031          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2032        // Found the end of the scope with no match.
2033        if (NumToSkip == 0) {
2034          FailIndex = 0;
2035          break;
2036        }
2037
2038        FailIndex = MatcherIndex+NumToSkip;
2039
2040        unsigned MatcherIndexOfPredicate = MatcherIndex;
2041        (void)MatcherIndexOfPredicate; // silence warning.
2042
2043        // If we can't evaluate this predicate without pushing a scope (e.g. if
2044        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2045        // push the scope and evaluate the full predicate chain.
2046        bool Result;
2047        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2048                                              Result, *this, RecordedNodes);
2049        if (!Result)
2050          break;
2051
2052        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2053                     << "index " << MatcherIndexOfPredicate
2054                     << ", continuing at " << FailIndex << "\n");
2055        ++NumDAGIselRetries;
2056
2057        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2058        // move to the next case.
2059        MatcherIndex = FailIndex;
2060      }
2061
2062      // If the whole scope failed to match, bail.
2063      if (FailIndex == 0) break;
2064
2065      // Push a MatchScope which indicates where to go if the first child fails
2066      // to match.
2067      MatchScope NewEntry;
2068      NewEntry.FailIndex = FailIndex;
2069      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2070      NewEntry.NumRecordedNodes = RecordedNodes.size();
2071      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2072      NewEntry.InputChain = InputChain;
2073      NewEntry.InputFlag = InputFlag;
2074      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2075      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2076      MatchScopes.push_back(NewEntry);
2077      continue;
2078    }
2079    case OPC_RecordNode:
2080      // Remember this node, it may end up being an operand in the pattern.
2081      RecordedNodes.push_back(N);
2082      continue;
2083
2084    case OPC_RecordChild0: case OPC_RecordChild1:
2085    case OPC_RecordChild2: case OPC_RecordChild3:
2086    case OPC_RecordChild4: case OPC_RecordChild5:
2087    case OPC_RecordChild6: case OPC_RecordChild7: {
2088      unsigned ChildNo = Opcode-OPC_RecordChild0;
2089      if (ChildNo >= N.getNumOperands())
2090        break;  // Match fails if out of range child #.
2091
2092      RecordedNodes.push_back(N->getOperand(ChildNo));
2093      continue;
2094    }
2095    case OPC_RecordMemRef:
2096      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2097      continue;
2098
2099    case OPC_CaptureFlagInput:
2100      // If the current node has an input flag, capture it in InputFlag.
2101      if (N->getNumOperands() != 0 &&
2102          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2103        InputFlag = N->getOperand(N->getNumOperands()-1);
2104      continue;
2105
2106    case OPC_MoveChild: {
2107      unsigned ChildNo = MatcherTable[MatcherIndex++];
2108      if (ChildNo >= N.getNumOperands())
2109        break;  // Match fails if out of range child #.
2110      N = N.getOperand(ChildNo);
2111      NodeStack.push_back(N);
2112      continue;
2113    }
2114
2115    case OPC_MoveParent:
2116      // Pop the current node off the NodeStack.
2117      NodeStack.pop_back();
2118      assert(!NodeStack.empty() && "Node stack imbalance!");
2119      N = NodeStack.back();
2120      continue;
2121
2122    case OPC_CheckSame:
2123      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2124      continue;
2125    case OPC_CheckPatternPredicate:
2126      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2127      continue;
2128    case OPC_CheckPredicate:
2129      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2130                                N.getNode()))
2131        break;
2132      continue;
2133    case OPC_CheckComplexPat: {
2134      unsigned CPNum = MatcherTable[MatcherIndex++];
2135      unsigned RecNo = MatcherTable[MatcherIndex++];
2136      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2137      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2138                               RecordedNodes))
2139        break;
2140      continue;
2141    }
2142    case OPC_CheckOpcode:
2143      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2144      continue;
2145
2146    case OPC_CheckType:
2147      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2148      continue;
2149
2150    case OPC_SwitchOpcode: {
2151      unsigned CurNodeOpcode = N.getOpcode();
2152      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2153      unsigned CaseSize;
2154      while (1) {
2155        // Get the size of this case.
2156        CaseSize = MatcherTable[MatcherIndex++];
2157        if (CaseSize & 128)
2158          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2159        if (CaseSize == 0) break;
2160
2161        uint16_t Opc = MatcherTable[MatcherIndex++];
2162        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2163
2164        // If the opcode matches, then we will execute this case.
2165        if (CurNodeOpcode == Opc)
2166          break;
2167
2168        // Otherwise, skip over this case.
2169        MatcherIndex += CaseSize;
2170      }
2171
2172      // If no cases matched, bail out.
2173      if (CaseSize == 0) break;
2174
2175      // Otherwise, execute the case we found.
2176      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2177                   << " to " << MatcherIndex << "\n");
2178      continue;
2179    }
2180
2181    case OPC_SwitchType: {
2182      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2183      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2184      unsigned CaseSize;
2185      while (1) {
2186        // Get the size of this case.
2187        CaseSize = MatcherTable[MatcherIndex++];
2188        if (CaseSize & 128)
2189          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2190        if (CaseSize == 0) break;
2191
2192        MVT::SimpleValueType CaseVT =
2193          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2194        if (CaseVT == MVT::iPTR)
2195          CaseVT = TLI.getPointerTy().SimpleTy;
2196
2197        // If the VT matches, then we will execute this case.
2198        if (CurNodeVT == CaseVT)
2199          break;
2200
2201        // Otherwise, skip over this case.
2202        MatcherIndex += CaseSize;
2203      }
2204
2205      // If no cases matched, bail out.
2206      if (CaseSize == 0) break;
2207
2208      // Otherwise, execute the case we found.
2209      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2210                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2211      continue;
2212    }
2213    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2214    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2215    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2216    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2217      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2218                            Opcode-OPC_CheckChild0Type))
2219        break;
2220      continue;
2221    case OPC_CheckCondCode:
2222      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2223      continue;
2224    case OPC_CheckValueType:
2225      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2226      continue;
2227    case OPC_CheckInteger:
2228      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2229      continue;
2230    case OPC_CheckAndImm:
2231      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2232      continue;
2233    case OPC_CheckOrImm:
2234      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2235      continue;
2236
2237    case OPC_CheckFoldableChainNode: {
2238      assert(NodeStack.size() != 1 && "No parent node");
2239      // Verify that all intermediate nodes between the root and this one have
2240      // a single use.
2241      bool HasMultipleUses = false;
2242      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2243        if (!NodeStack[i].hasOneUse()) {
2244          HasMultipleUses = true;
2245          break;
2246        }
2247      if (HasMultipleUses) break;
2248
2249      // Check to see that the target thinks this is profitable to fold and that
2250      // we can fold it without inducing cycles in the graph.
2251      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2252                              NodeToMatch) ||
2253          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2254                         NodeToMatch, OptLevel,
2255                         true/*We validate our own chains*/))
2256        break;
2257
2258      continue;
2259    }
2260    case OPC_EmitInteger: {
2261      MVT::SimpleValueType VT =
2262        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2263      int64_t Val = MatcherTable[MatcherIndex++];
2264      if (Val & 128)
2265        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2266      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2267      continue;
2268    }
2269    case OPC_EmitRegister: {
2270      MVT::SimpleValueType VT =
2271        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2272      unsigned RegNo = MatcherTable[MatcherIndex++];
2273      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2274      continue;
2275    }
2276
2277    case OPC_EmitConvertToTarget:  {
2278      // Convert from IMM/FPIMM to target version.
2279      unsigned RecNo = MatcherTable[MatcherIndex++];
2280      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2281      SDValue Imm = RecordedNodes[RecNo];
2282
2283      if (Imm->getOpcode() == ISD::Constant) {
2284        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2285        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2286      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2287        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2288        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2289      }
2290
2291      RecordedNodes.push_back(Imm);
2292      continue;
2293    }
2294
2295    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2296    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2297      // These are space-optimized forms of OPC_EmitMergeInputChains.
2298      assert(InputChain.getNode() == 0 &&
2299             "EmitMergeInputChains should be the first chain producing node");
2300      assert(ChainNodesMatched.empty() &&
2301             "Should only have one EmitMergeInputChains per match");
2302
2303      // Read all of the chained nodes.
2304      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2305      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2306      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2307
2308      // FIXME: What if other value results of the node have uses not matched
2309      // by this pattern?
2310      if (ChainNodesMatched.back() != NodeToMatch &&
2311          !RecordedNodes[RecNo].hasOneUse()) {
2312        ChainNodesMatched.clear();
2313        break;
2314      }
2315
2316      // Merge the input chains if they are not intra-pattern references.
2317      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2318
2319      if (InputChain.getNode() == 0)
2320        break;  // Failed to merge.
2321      continue;
2322    }
2323
2324    case OPC_EmitMergeInputChains: {
2325      assert(InputChain.getNode() == 0 &&
2326             "EmitMergeInputChains should be the first chain producing node");
2327      // This node gets a list of nodes we matched in the input that have
2328      // chains.  We want to token factor all of the input chains to these nodes
2329      // together.  However, if any of the input chains is actually one of the
2330      // nodes matched in this pattern, then we have an intra-match reference.
2331      // Ignore these because the newly token factored chain should not refer to
2332      // the old nodes.
2333      unsigned NumChains = MatcherTable[MatcherIndex++];
2334      assert(NumChains != 0 && "Can't TF zero chains");
2335
2336      assert(ChainNodesMatched.empty() &&
2337             "Should only have one EmitMergeInputChains per match");
2338
2339      // Read all of the chained nodes.
2340      for (unsigned i = 0; i != NumChains; ++i) {
2341        unsigned RecNo = MatcherTable[MatcherIndex++];
2342        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2343        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2344
2345        // FIXME: What if other value results of the node have uses not matched
2346        // by this pattern?
2347        if (ChainNodesMatched.back() != NodeToMatch &&
2348            !RecordedNodes[RecNo].hasOneUse()) {
2349          ChainNodesMatched.clear();
2350          break;
2351        }
2352      }
2353
2354      // If the inner loop broke out, the match fails.
2355      if (ChainNodesMatched.empty())
2356        break;
2357
2358      // Merge the input chains if they are not intra-pattern references.
2359      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2360
2361      if (InputChain.getNode() == 0)
2362        break;  // Failed to merge.
2363
2364      continue;
2365    }
2366
2367    case OPC_EmitCopyToReg: {
2368      unsigned RecNo = MatcherTable[MatcherIndex++];
2369      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2370      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2371
2372      if (InputChain.getNode() == 0)
2373        InputChain = CurDAG->getEntryNode();
2374
2375      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2376                                        DestPhysReg, RecordedNodes[RecNo],
2377                                        InputFlag);
2378
2379      InputFlag = InputChain.getValue(1);
2380      continue;
2381    }
2382
2383    case OPC_EmitNodeXForm: {
2384      unsigned XFormNo = MatcherTable[MatcherIndex++];
2385      unsigned RecNo = MatcherTable[MatcherIndex++];
2386      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2387      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2388      continue;
2389    }
2390
2391    case OPC_EmitNode:
2392    case OPC_MorphNodeTo: {
2393      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2394      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2395      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2396      // Get the result VT list.
2397      unsigned NumVTs = MatcherTable[MatcherIndex++];
2398      SmallVector<EVT, 4> VTs;
2399      for (unsigned i = 0; i != NumVTs; ++i) {
2400        MVT::SimpleValueType VT =
2401          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2402        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2403        VTs.push_back(VT);
2404      }
2405
2406      if (EmitNodeInfo & OPFL_Chain)
2407        VTs.push_back(MVT::Other);
2408      if (EmitNodeInfo & OPFL_FlagOutput)
2409        VTs.push_back(MVT::Flag);
2410
2411      // This is hot code, so optimize the two most common cases of 1 and 2
2412      // results.
2413      SDVTList VTList;
2414      if (VTs.size() == 1)
2415        VTList = CurDAG->getVTList(VTs[0]);
2416      else if (VTs.size() == 2)
2417        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2418      else
2419        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2420
2421      // Get the operand list.
2422      unsigned NumOps = MatcherTable[MatcherIndex++];
2423      SmallVector<SDValue, 8> Ops;
2424      for (unsigned i = 0; i != NumOps; ++i) {
2425        unsigned RecNo = MatcherTable[MatcherIndex++];
2426        if (RecNo & 128)
2427          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2428
2429        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2430        Ops.push_back(RecordedNodes[RecNo]);
2431      }
2432
2433      // If there are variadic operands to add, handle them now.
2434      if (EmitNodeInfo & OPFL_VariadicInfo) {
2435        // Determine the start index to copy from.
2436        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2437        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2438        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2439               "Invalid variadic node");
2440        // Copy all of the variadic operands, not including a potential flag
2441        // input.
2442        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2443             i != e; ++i) {
2444          SDValue V = NodeToMatch->getOperand(i);
2445          if (V.getValueType() == MVT::Flag) break;
2446          Ops.push_back(V);
2447        }
2448      }
2449
2450      // If this has chain/flag inputs, add them.
2451      if (EmitNodeInfo & OPFL_Chain)
2452        Ops.push_back(InputChain);
2453      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2454        Ops.push_back(InputFlag);
2455
2456      // Create the node.
2457      SDNode *Res = 0;
2458      if (Opcode != OPC_MorphNodeTo) {
2459        // If this is a normal EmitNode command, just create the new node and
2460        // add the results to the RecordedNodes list.
2461        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2462                                     VTList, Ops.data(), Ops.size());
2463
2464        // Add all the non-flag/non-chain results to the RecordedNodes list.
2465        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2466          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2467          RecordedNodes.push_back(SDValue(Res, i));
2468        }
2469
2470      } else {
2471        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2472                        EmitNodeInfo);
2473      }
2474
2475      // If the node had chain/flag results, update our notion of the current
2476      // chain and flag.
2477      if (EmitNodeInfo & OPFL_FlagOutput) {
2478        InputFlag = SDValue(Res, VTs.size()-1);
2479        if (EmitNodeInfo & OPFL_Chain)
2480          InputChain = SDValue(Res, VTs.size()-2);
2481      } else if (EmitNodeInfo & OPFL_Chain)
2482        InputChain = SDValue(Res, VTs.size()-1);
2483
2484      // If the OPFL_MemRefs flag is set on this node, slap all of the
2485      // accumulated memrefs onto it.
2486      //
2487      // FIXME: This is vastly incorrect for patterns with multiple outputs
2488      // instructions that access memory and for ComplexPatterns that match
2489      // loads.
2490      if (EmitNodeInfo & OPFL_MemRefs) {
2491        MachineSDNode::mmo_iterator MemRefs =
2492          MF->allocateMemRefsArray(MatchedMemRefs.size());
2493        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2494        cast<MachineSDNode>(Res)
2495          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2496      }
2497
2498      DEBUG(errs() << "  "
2499                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2500                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2501
2502      // If this was a MorphNodeTo then we're completely done!
2503      if (Opcode == OPC_MorphNodeTo) {
2504        // Update chain and flag uses.
2505        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2506                             InputFlag, FlagResultNodesMatched, true);
2507        return Res;
2508      }
2509
2510      continue;
2511    }
2512
2513    case OPC_MarkFlagResults: {
2514      unsigned NumNodes = MatcherTable[MatcherIndex++];
2515
2516      // Read and remember all the flag-result nodes.
2517      for (unsigned i = 0; i != NumNodes; ++i) {
2518        unsigned RecNo = MatcherTable[MatcherIndex++];
2519        if (RecNo & 128)
2520          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2521
2522        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2523        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2524      }
2525      continue;
2526    }
2527
2528    case OPC_CompleteMatch: {
2529      // The match has been completed, and any new nodes (if any) have been
2530      // created.  Patch up references to the matched dag to use the newly
2531      // created nodes.
2532      unsigned NumResults = MatcherTable[MatcherIndex++];
2533
2534      for (unsigned i = 0; i != NumResults; ++i) {
2535        unsigned ResSlot = MatcherTable[MatcherIndex++];
2536        if (ResSlot & 128)
2537          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2538
2539        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2540        SDValue Res = RecordedNodes[ResSlot];
2541
2542        assert(i < NodeToMatch->getNumValues() &&
2543               NodeToMatch->getValueType(i) != MVT::Other &&
2544               NodeToMatch->getValueType(i) != MVT::Flag &&
2545               "Invalid number of results to complete!");
2546        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2547                NodeToMatch->getValueType(i) == MVT::iPTR ||
2548                Res.getValueType() == MVT::iPTR ||
2549                NodeToMatch->getValueType(i).getSizeInBits() ==
2550                    Res.getValueType().getSizeInBits()) &&
2551               "invalid replacement");
2552        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2553      }
2554
2555      // If the root node defines a flag, add it to the flag nodes to update
2556      // list.
2557      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2558        FlagResultNodesMatched.push_back(NodeToMatch);
2559
2560      // Update chain and flag uses.
2561      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2562                           InputFlag, FlagResultNodesMatched, false);
2563
2564      assert(NodeToMatch->use_empty() &&
2565             "Didn't replace all uses of the node?");
2566
2567      // FIXME: We just return here, which interacts correctly with SelectRoot
2568      // above.  We should fix this to not return an SDNode* anymore.
2569      return 0;
2570    }
2571    }
2572
2573    // If the code reached this point, then the match failed.  See if there is
2574    // another child to try in the current 'Scope', otherwise pop it until we
2575    // find a case to check.
2576    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2577    ++NumDAGIselRetries;
2578    while (1) {
2579      if (MatchScopes.empty()) {
2580        CannotYetSelect(NodeToMatch);
2581        return 0;
2582      }
2583
2584      // Restore the interpreter state back to the point where the scope was
2585      // formed.
2586      MatchScope &LastScope = MatchScopes.back();
2587      RecordedNodes.resize(LastScope.NumRecordedNodes);
2588      NodeStack.clear();
2589      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2590      N = NodeStack.back();
2591
2592      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2593        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2594      MatcherIndex = LastScope.FailIndex;
2595
2596      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2597
2598      InputChain = LastScope.InputChain;
2599      InputFlag = LastScope.InputFlag;
2600      if (!LastScope.HasChainNodesMatched)
2601        ChainNodesMatched.clear();
2602      if (!LastScope.HasFlagResultNodesMatched)
2603        FlagResultNodesMatched.clear();
2604
2605      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2606      // we have reached the end of this scope, otherwise we have another child
2607      // in the current scope to try.
2608      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2609      if (NumToSkip & 128)
2610        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2611
2612      // If we have another child in this scope to match, update FailIndex and
2613      // try it.
2614      if (NumToSkip != 0) {
2615        LastScope.FailIndex = MatcherIndex+NumToSkip;
2616        break;
2617      }
2618
2619      // End of this scope, pop it and try the next child in the containing
2620      // scope.
2621      MatchScopes.pop_back();
2622    }
2623  }
2624}
2625
2626
2627
2628void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2629  std::string msg;
2630  raw_string_ostream Msg(msg);
2631  Msg << "Cannot yet select: ";
2632
2633  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2634      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2635      N->getOpcode() != ISD::INTRINSIC_VOID) {
2636    N->printrFull(Msg, CurDAG);
2637  } else {
2638    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2639    unsigned iid =
2640      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2641    if (iid < Intrinsic::num_intrinsics)
2642      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2643    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2644      Msg << "target intrinsic %" << TII->getName(iid);
2645    else
2646      Msg << "unknown intrinsic #" << iid;
2647  }
2648  report_fatal_error(Msg.str());
2649}
2650
2651char SelectionDAGISel::ID = 0;
2652