SelectionDAGISel.cpp revision 4ef10867499aa146cd819c78d8d37a8353d4f0ff
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Instructions.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/CodeGen/IntrinsicLowering.h"
25#include "llvm/CodeGen/MachineDebugInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/SelectionDAG.h"
30#include "llvm/CodeGen/SSARegMap.h"
31#include "llvm/Target/MRegisterInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetFrameInfo.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Transforms/Utils/BasicBlockUtils.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/Debug.h"
41#include <map>
42#include <iostream>
43using namespace llvm;
44
45#ifndef NDEBUG
46static cl::opt<bool>
47ViewISelDAGs("view-isel-dags", cl::Hidden,
48          cl::desc("Pop up a window to show isel dags as they are selected"));
49static cl::opt<bool>
50ViewSchedDAGs("view-sched-dags", cl::Hidden,
51          cl::desc("Pop up a window to show sched dags as they are processed"));
52#else
53static const bool ViewISelDAGs = 0;
54static const bool ViewSchedDAGs = 0;
55#endif
56
57namespace {
58  cl::opt<SchedHeuristics>
59  ISHeuristic(
60    "sched",
61    cl::desc("Choose scheduling style"),
62    cl::init(noScheduling),
63    cl::values(
64      clEnumValN(noScheduling, "none",
65                 "No scheduling: breath first sequencing"),
66      clEnumValN(simpleScheduling, "simple",
67                 "Simple two pass scheduling: minimize critical path "
68                 "and maximize processor utilization"),
69      clEnumValN(simpleNoItinScheduling, "simple-noitin",
70                 "Simple two pass scheduling: Same as simple "
71                 "except using generic latency"),
72      clEnumValEnd));
73} // namespace
74
75
76namespace llvm {
77  //===--------------------------------------------------------------------===//
78  /// FunctionLoweringInfo - This contains information that is global to a
79  /// function that is used when lowering a region of the function.
80  class FunctionLoweringInfo {
81  public:
82    TargetLowering &TLI;
83    Function &Fn;
84    MachineFunction &MF;
85    SSARegMap *RegMap;
86
87    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
88
89    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
90    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
91
92    /// ValueMap - Since we emit code for the function a basic block at a time,
93    /// we must remember which virtual registers hold the values for
94    /// cross-basic-block values.
95    std::map<const Value*, unsigned> ValueMap;
96
97    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
98    /// the entry block.  This allows the allocas to be efficiently referenced
99    /// anywhere in the function.
100    std::map<const AllocaInst*, int> StaticAllocaMap;
101
102    unsigned MakeReg(MVT::ValueType VT) {
103      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
104    }
105
106    unsigned CreateRegForValue(const Value *V) {
107      MVT::ValueType VT = TLI.getValueType(V->getType());
108      // The common case is that we will only create one register for this
109      // value.  If we have that case, create and return the virtual register.
110      unsigned NV = TLI.getNumElements(VT);
111      if (NV == 1) {
112        // If we are promoting this value, pick the next largest supported type.
113        return MakeReg(TLI.getTypeToTransformTo(VT));
114      }
115
116      // If this value is represented with multiple target registers, make sure
117      // to create enough consequtive registers of the right (smaller) type.
118      unsigned NT = VT-1;  // Find the type to use.
119      while (TLI.getNumElements((MVT::ValueType)NT) != 1)
120        --NT;
121
122      unsigned R = MakeReg((MVT::ValueType)NT);
123      for (unsigned i = 1; i != NV; ++i)
124        MakeReg((MVT::ValueType)NT);
125      return R;
126    }
127
128    unsigned InitializeRegForValue(const Value *V) {
129      unsigned &R = ValueMap[V];
130      assert(R == 0 && "Already initialized this value register!");
131      return R = CreateRegForValue(V);
132    }
133  };
134}
135
136/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
137/// PHI nodes or outside of the basic block that defines it.
138static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
139  if (isa<PHINode>(I)) return true;
140  BasicBlock *BB = I->getParent();
141  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
142    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
143      return true;
144  return false;
145}
146
147/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
148/// entry block, return true.
149static bool isOnlyUsedInEntryBlock(Argument *A) {
150  BasicBlock *Entry = A->getParent()->begin();
151  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
152    if (cast<Instruction>(*UI)->getParent() != Entry)
153      return false;  // Use not in entry block.
154  return true;
155}
156
157FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
158                                           Function &fn, MachineFunction &mf)
159    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
160
161  // Create a vreg for each argument register that is not dead and is used
162  // outside of the entry block for the function.
163  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
164       AI != E; ++AI)
165    if (!isOnlyUsedInEntryBlock(AI))
166      InitializeRegForValue(AI);
167
168  // Initialize the mapping of values to registers.  This is only set up for
169  // instruction values that are used outside of the block that defines
170  // them.
171  Function::iterator BB = Fn.begin(), EB = Fn.end();
172  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
173    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
174      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
175        const Type *Ty = AI->getAllocatedType();
176        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
177        unsigned Align =
178          std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
179                   AI->getAlignment());
180
181        // If the alignment of the value is smaller than the size of the value,
182        // and if the size of the value is particularly small (<= 8 bytes),
183        // round up to the size of the value for potentially better performance.
184        //
185        // FIXME: This could be made better with a preferred alignment hook in
186        // TargetData.  It serves primarily to 8-byte align doubles for X86.
187        if (Align < TySize && TySize <= 8) Align = TySize;
188        TySize *= CUI->getValue();   // Get total allocated size.
189        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
190        StaticAllocaMap[AI] =
191          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
192      }
193
194  for (; BB != EB; ++BB)
195    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
196      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
197        if (!isa<AllocaInst>(I) ||
198            !StaticAllocaMap.count(cast<AllocaInst>(I)))
199          InitializeRegForValue(I);
200
201  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
202  // also creates the initial PHI MachineInstrs, though none of the input
203  // operands are populated.
204  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
205    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
206    MBBMap[BB] = MBB;
207    MF.getBasicBlockList().push_back(MBB);
208
209    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
210    // appropriate.
211    PHINode *PN;
212    for (BasicBlock::iterator I = BB->begin();
213         (PN = dyn_cast<PHINode>(I)); ++I)
214      if (!PN->use_empty()) {
215        unsigned NumElements =
216          TLI.getNumElements(TLI.getValueType(PN->getType()));
217        unsigned PHIReg = ValueMap[PN];
218        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
219        for (unsigned i = 0; i != NumElements; ++i)
220          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
221      }
222  }
223}
224
225
226
227//===----------------------------------------------------------------------===//
228/// SelectionDAGLowering - This is the common target-independent lowering
229/// implementation that is parameterized by a TargetLowering object.
230/// Also, targets can overload any lowering method.
231///
232namespace llvm {
233class SelectionDAGLowering {
234  MachineBasicBlock *CurMBB;
235
236  std::map<const Value*, SDOperand> NodeMap;
237
238  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
239  /// them up and then emit token factor nodes when possible.  This allows us to
240  /// get simple disambiguation between loads without worrying about alias
241  /// analysis.
242  std::vector<SDOperand> PendingLoads;
243
244public:
245  // TLI - This is information that describes the available target features we
246  // need for lowering.  This indicates when operations are unavailable,
247  // implemented with a libcall, etc.
248  TargetLowering &TLI;
249  SelectionDAG &DAG;
250  const TargetData &TD;
251
252  /// FuncInfo - Information about the function as a whole.
253  ///
254  FunctionLoweringInfo &FuncInfo;
255
256  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
257                       FunctionLoweringInfo &funcinfo)
258    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
259      FuncInfo(funcinfo) {
260  }
261
262  /// getRoot - Return the current virtual root of the Selection DAG.
263  ///
264  SDOperand getRoot() {
265    if (PendingLoads.empty())
266      return DAG.getRoot();
267
268    if (PendingLoads.size() == 1) {
269      SDOperand Root = PendingLoads[0];
270      DAG.setRoot(Root);
271      PendingLoads.clear();
272      return Root;
273    }
274
275    // Otherwise, we have to make a token factor node.
276    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
277    PendingLoads.clear();
278    DAG.setRoot(Root);
279    return Root;
280  }
281
282  void visit(Instruction &I) { visit(I.getOpcode(), I); }
283
284  void visit(unsigned Opcode, User &I) {
285    switch (Opcode) {
286    default: assert(0 && "Unknown instruction type encountered!");
287             abort();
288      // Build the switch statement using the Instruction.def file.
289#define HANDLE_INST(NUM, OPCODE, CLASS) \
290    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
291#include "llvm/Instruction.def"
292    }
293  }
294
295  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
296
297
298  SDOperand getIntPtrConstant(uint64_t Val) {
299    return DAG.getConstant(Val, TLI.getPointerTy());
300  }
301
302  SDOperand getValue(const Value *V) {
303    SDOperand &N = NodeMap[V];
304    if (N.Val) return N;
305
306    const Type *VTy = V->getType();
307    MVT::ValueType VT = TLI.getValueType(VTy);
308    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
309      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
310        visit(CE->getOpcode(), *CE);
311        assert(N.Val && "visit didn't populate the ValueMap!");
312        return N;
313      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
314        return N = DAG.getGlobalAddress(GV, VT);
315      } else if (isa<ConstantPointerNull>(C)) {
316        return N = DAG.getConstant(0, TLI.getPointerTy());
317      } else if (isa<UndefValue>(C)) {
318        return N = DAG.getNode(ISD::UNDEF, VT);
319      } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
320        return N = DAG.getConstantFP(CFP->getValue(), VT);
321      } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
322        unsigned NumElements = PTy->getNumElements();
323        MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
324        MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
325
326        // Now that we know the number and type of the elements, push a
327        // Constant or ConstantFP node onto the ops list for each element of
328        // the packed constant.
329        std::vector<SDOperand> Ops;
330        if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
331          if (MVT::isFloatingPoint(PVT)) {
332            for (unsigned i = 0; i != NumElements; ++i) {
333              const ConstantFP *El = cast<ConstantFP>(CP->getOperand(i));
334              Ops.push_back(DAG.getConstantFP(El->getValue(), PVT));
335            }
336          } else {
337            for (unsigned i = 0; i != NumElements; ++i) {
338              const ConstantIntegral *El =
339                cast<ConstantIntegral>(CP->getOperand(i));
340              Ops.push_back(DAG.getConstant(El->getRawValue(), PVT));
341            }
342          }
343        } else {
344          assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
345          SDOperand Op;
346          if (MVT::isFloatingPoint(PVT))
347            Op = DAG.getConstantFP(0, PVT);
348          else
349            Op = DAG.getConstant(0, PVT);
350          Ops.assign(NumElements, Op);
351        }
352
353        // Handle the case where we have a 1-element vector, in which
354        // case we want to immediately turn it into a scalar constant.
355        if (Ops.size() == 1) {
356          return N = Ops[0];
357        } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
358          return N = DAG.getNode(ISD::ConstantVec, TVT, Ops);
359        } else {
360          // If the packed type isn't legal, then create a ConstantVec node with
361          // generic Vector type instead.
362          return N = DAG.getNode(ISD::ConstantVec, MVT::Vector, Ops);
363        }
364      } else {
365        // Canonicalize all constant ints to be unsigned.
366        return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
367      }
368
369    if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
370      std::map<const AllocaInst*, int>::iterator SI =
371        FuncInfo.StaticAllocaMap.find(AI);
372      if (SI != FuncInfo.StaticAllocaMap.end())
373        return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
374    }
375
376    std::map<const Value*, unsigned>::const_iterator VMI =
377      FuncInfo.ValueMap.find(V);
378    assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
379
380    unsigned InReg = VMI->second;
381
382    // If this type is not legal, make it so now.
383    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
384
385    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
386    if (DestVT < VT) {
387      // Source must be expanded.  This input value is actually coming from the
388      // register pair VMI->second and VMI->second+1.
389      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
390                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
391    } else {
392      if (DestVT > VT) { // Promotion case
393        if (MVT::isFloatingPoint(VT))
394          N = DAG.getNode(ISD::FP_ROUND, VT, N);
395        else
396          N = DAG.getNode(ISD::TRUNCATE, VT, N);
397      }
398    }
399
400    return N;
401  }
402
403  const SDOperand &setValue(const Value *V, SDOperand NewN) {
404    SDOperand &N = NodeMap[V];
405    assert(N.Val == 0 && "Already set a value for this node!");
406    return N = NewN;
407  }
408
409  // Terminator instructions.
410  void visitRet(ReturnInst &I);
411  void visitBr(BranchInst &I);
412  void visitUnreachable(UnreachableInst &I) { /* noop */ }
413
414  // These all get lowered before this pass.
415  void visitExtractElement(ExtractElementInst &I) { assert(0 && "TODO"); }
416  void visitInsertElement(InsertElementInst &I) { assert(0 && "TODO"); }
417  void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
418  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
419  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
420
421  //
422  void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
423  void visitShift(User &I, unsigned Opcode);
424  void visitAdd(User &I) {
425    visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD);
426  }
427  void visitSub(User &I);
428  void visitMul(User &I) {
429    visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL);
430  }
431  void visitDiv(User &I) {
432    const Type *Ty = I.getType();
433    visitBinary(I, Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV, 0);
434  }
435  void visitRem(User &I) {
436    const Type *Ty = I.getType();
437    visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
438  }
439  void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, 0); }
440  void visitOr (User &I) { visitBinary(I, ISD::OR,  0, 0); }
441  void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, 0); }
442  void visitShl(User &I) { visitShift(I, ISD::SHL); }
443  void visitShr(User &I) {
444    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
445  }
446
447  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
448  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
449  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
450  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
451  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
452  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
453  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
454
455  void visitGetElementPtr(User &I);
456  void visitCast(User &I);
457  void visitSelect(User &I);
458  //
459
460  void visitMalloc(MallocInst &I);
461  void visitFree(FreeInst &I);
462  void visitAlloca(AllocaInst &I);
463  void visitLoad(LoadInst &I);
464  void visitStore(StoreInst &I);
465  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
466  void visitCall(CallInst &I);
467  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
468
469  void visitVAStart(CallInst &I);
470  void visitVAArg(VAArgInst &I);
471  void visitVAEnd(CallInst &I);
472  void visitVACopy(CallInst &I);
473  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
474
475  void visitMemIntrinsic(CallInst &I, unsigned Op);
476
477  void visitUserOp1(Instruction &I) {
478    assert(0 && "UserOp1 should not exist at instruction selection time!");
479    abort();
480  }
481  void visitUserOp2(Instruction &I) {
482    assert(0 && "UserOp2 should not exist at instruction selection time!");
483    abort();
484  }
485};
486} // end namespace llvm
487
488void SelectionDAGLowering::visitRet(ReturnInst &I) {
489  if (I.getNumOperands() == 0) {
490    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
491    return;
492  }
493
494  SDOperand Op1 = getValue(I.getOperand(0));
495  MVT::ValueType TmpVT;
496
497  switch (Op1.getValueType()) {
498  default: assert(0 && "Unknown value type!");
499  case MVT::i1:
500  case MVT::i8:
501  case MVT::i16:
502  case MVT::i32:
503    // If this is a machine where 32-bits is legal or expanded, promote to
504    // 32-bits, otherwise, promote to 64-bits.
505    if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
506      TmpVT = TLI.getTypeToTransformTo(MVT::i32);
507    else
508      TmpVT = MVT::i32;
509
510    // Extend integer types to result type.
511    if (I.getOperand(0)->getType()->isSigned())
512      Op1 = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, Op1);
513    else
514      Op1 = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, Op1);
515    break;
516  case MVT::f32:
517    // If this is a machine where f32 is promoted to f64, do so now.
518    if (TLI.getTypeAction(MVT::f32) == TargetLowering::Promote)
519      Op1 = DAG.getNode(ISD::FP_EXTEND, TLI.getTypeToTransformTo(MVT::f32),Op1);
520    break;
521  case MVT::i64:
522  case MVT::f64:
523    break; // No extension needed!
524  }
525  // Allow targets to lower this further to meet ABI requirements
526  DAG.setRoot(TLI.LowerReturnTo(getRoot(), Op1, DAG));
527}
528
529void SelectionDAGLowering::visitBr(BranchInst &I) {
530  // Update machine-CFG edges.
531  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
532
533  // Figure out which block is immediately after the current one.
534  MachineBasicBlock *NextBlock = 0;
535  MachineFunction::iterator BBI = CurMBB;
536  if (++BBI != CurMBB->getParent()->end())
537    NextBlock = BBI;
538
539  if (I.isUnconditional()) {
540    // If this is not a fall-through branch, emit the branch.
541    if (Succ0MBB != NextBlock)
542      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
543                              DAG.getBasicBlock(Succ0MBB)));
544  } else {
545    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
546
547    SDOperand Cond = getValue(I.getCondition());
548    if (Succ1MBB == NextBlock) {
549      // If the condition is false, fall through.  This means we should branch
550      // if the condition is true to Succ #0.
551      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
552                              Cond, DAG.getBasicBlock(Succ0MBB)));
553    } else if (Succ0MBB == NextBlock) {
554      // If the condition is true, fall through.  This means we should branch if
555      // the condition is false to Succ #1.  Invert the condition first.
556      SDOperand True = DAG.getConstant(1, Cond.getValueType());
557      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
558      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
559                              Cond, DAG.getBasicBlock(Succ1MBB)));
560    } else {
561      std::vector<SDOperand> Ops;
562      Ops.push_back(getRoot());
563      Ops.push_back(Cond);
564      Ops.push_back(DAG.getBasicBlock(Succ0MBB));
565      Ops.push_back(DAG.getBasicBlock(Succ1MBB));
566      DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops));
567    }
568  }
569}
570
571void SelectionDAGLowering::visitSub(User &I) {
572  // -0.0 - X --> fneg
573  if (I.getType()->isFloatingPoint()) {
574    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
575      if (CFP->isExactlyValue(-0.0)) {
576        SDOperand Op2 = getValue(I.getOperand(1));
577        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
578        return;
579      }
580  }
581  visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
582}
583
584void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp,
585                                       unsigned VecOp) {
586  const Type *Ty = I.getType();
587  SDOperand Op1 = getValue(I.getOperand(0));
588  SDOperand Op2 = getValue(I.getOperand(1));
589
590  if (Ty->isIntegral()) {
591    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
592  } else if (Ty->isFloatingPoint()) {
593    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
594  } else {
595    const PackedType *PTy = cast<PackedType>(Ty);
596    unsigned NumElements = PTy->getNumElements();
597    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
598    MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
599
600    // Immediately scalarize packed types containing only one element, so that
601    // the Legalize pass does not have to deal with them.  Similarly, if the
602    // abstract vector is going to turn into one that the target natively
603    // supports, generate that type now so that Legalize doesn't have to deal
604    // with that either.  These steps ensure that Legalize only has to handle
605    // vector types in its Expand case.
606    unsigned Opc = MVT::isFloatingPoint(PVT) ? FPOp : IntOp;
607    if (NumElements == 1) {
608      setValue(&I, DAG.getNode(Opc, PVT, Op1, Op2));
609    } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
610      setValue(&I, DAG.getNode(Opc, TVT, Op1, Op2));
611    } else {
612      SDOperand Num = DAG.getConstant(NumElements, MVT::i32);
613      SDOperand Typ = DAG.getValueType(PVT);
614      setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
615    }
616  }
617}
618
619void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
620  SDOperand Op1 = getValue(I.getOperand(0));
621  SDOperand Op2 = getValue(I.getOperand(1));
622
623  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
624
625  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
626}
627
628void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
629                                      ISD::CondCode UnsignedOpcode) {
630  SDOperand Op1 = getValue(I.getOperand(0));
631  SDOperand Op2 = getValue(I.getOperand(1));
632  ISD::CondCode Opcode = SignedOpcode;
633  if (I.getOperand(0)->getType()->isUnsigned())
634    Opcode = UnsignedOpcode;
635  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
636}
637
638void SelectionDAGLowering::visitSelect(User &I) {
639  SDOperand Cond     = getValue(I.getOperand(0));
640  SDOperand TrueVal  = getValue(I.getOperand(1));
641  SDOperand FalseVal = getValue(I.getOperand(2));
642  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
643                           TrueVal, FalseVal));
644}
645
646void SelectionDAGLowering::visitCast(User &I) {
647  SDOperand N = getValue(I.getOperand(0));
648  MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
649  MVT::ValueType DestTy = TLI.getValueType(I.getType());
650
651  if (N.getValueType() == DestTy) {
652    setValue(&I, N);  // noop cast.
653  } else if (DestTy == MVT::i1) {
654    // Cast to bool is a comparison against zero, not truncation to zero.
655    SDOperand Zero = isInteger(SrcTy) ? DAG.getConstant(0, N.getValueType()) :
656                                       DAG.getConstantFP(0.0, N.getValueType());
657    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
658  } else if (isInteger(SrcTy)) {
659    if (isInteger(DestTy)) {        // Int -> Int cast
660      if (DestTy < SrcTy)   // Truncating cast?
661        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
662      else if (I.getOperand(0)->getType()->isSigned())
663        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
664      else
665        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
666    } else {                        // Int -> FP cast
667      if (I.getOperand(0)->getType()->isSigned())
668        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
669      else
670        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
671    }
672  } else {
673    assert(isFloatingPoint(SrcTy) && "Unknown value type!");
674    if (isFloatingPoint(DestTy)) {  // FP -> FP cast
675      if (DestTy < SrcTy)   // Rounding cast?
676        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
677      else
678        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
679    } else {                        // FP -> Int cast.
680      if (I.getType()->isSigned())
681        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
682      else
683        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
684    }
685  }
686}
687
688void SelectionDAGLowering::visitGetElementPtr(User &I) {
689  SDOperand N = getValue(I.getOperand(0));
690  const Type *Ty = I.getOperand(0)->getType();
691  const Type *UIntPtrTy = TD.getIntPtrType();
692
693  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
694       OI != E; ++OI) {
695    Value *Idx = *OI;
696    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
697      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
698      if (Field) {
699        // N = N + Offset
700        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
701        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
702                        getIntPtrConstant(Offset));
703      }
704      Ty = StTy->getElementType(Field);
705    } else {
706      Ty = cast<SequentialType>(Ty)->getElementType();
707
708      // If this is a constant subscript, handle it quickly.
709      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
710        if (CI->getRawValue() == 0) continue;
711
712        uint64_t Offs;
713        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
714          Offs = (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
715        else
716          Offs = TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
717        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
718        continue;
719      }
720
721      // N = N + Idx * ElementSize;
722      uint64_t ElementSize = TD.getTypeSize(Ty);
723      SDOperand IdxN = getValue(Idx);
724
725      // If the index is smaller or larger than intptr_t, truncate or extend
726      // it.
727      if (IdxN.getValueType() < N.getValueType()) {
728        if (Idx->getType()->isSigned())
729          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
730        else
731          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
732      } else if (IdxN.getValueType() > N.getValueType())
733        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
734
735      // If this is a multiply by a power of two, turn it into a shl
736      // immediately.  This is a very common case.
737      if (isPowerOf2_64(ElementSize)) {
738        unsigned Amt = Log2_64(ElementSize);
739        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
740                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
741        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
742        continue;
743      }
744
745      SDOperand Scale = getIntPtrConstant(ElementSize);
746      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
747      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
748    }
749  }
750  setValue(&I, N);
751}
752
753void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
754  // If this is a fixed sized alloca in the entry block of the function,
755  // allocate it statically on the stack.
756  if (FuncInfo.StaticAllocaMap.count(&I))
757    return;   // getValue will auto-populate this.
758
759  const Type *Ty = I.getAllocatedType();
760  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
761  unsigned Align = std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
762                            I.getAlignment());
763
764  SDOperand AllocSize = getValue(I.getArraySize());
765  MVT::ValueType IntPtr = TLI.getPointerTy();
766  if (IntPtr < AllocSize.getValueType())
767    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
768  else if (IntPtr > AllocSize.getValueType())
769    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
770
771  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
772                          getIntPtrConstant(TySize));
773
774  // Handle alignment.  If the requested alignment is less than or equal to the
775  // stack alignment, ignore it and round the size of the allocation up to the
776  // stack alignment size.  If the size is greater than the stack alignment, we
777  // note this in the DYNAMIC_STACKALLOC node.
778  unsigned StackAlign =
779    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
780  if (Align <= StackAlign) {
781    Align = 0;
782    // Add SA-1 to the size.
783    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
784                            getIntPtrConstant(StackAlign-1));
785    // Mask out the low bits for alignment purposes.
786    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
787                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
788  }
789
790  std::vector<MVT::ValueType> VTs;
791  VTs.push_back(AllocSize.getValueType());
792  VTs.push_back(MVT::Other);
793  std::vector<SDOperand> Ops;
794  Ops.push_back(getRoot());
795  Ops.push_back(AllocSize);
796  Ops.push_back(getIntPtrConstant(Align));
797  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
798  DAG.setRoot(setValue(&I, DSA).getValue(1));
799
800  // Inform the Frame Information that we have just allocated a variable-sized
801  // object.
802  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
803}
804
805/// getStringValue - Turn an LLVM constant pointer that eventually points to a
806/// global into a string value.  Return an empty string if we can't do it.
807///
808static std::string getStringValue(Value *V, unsigned Offset = 0) {
809  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
810    if (GV->hasInitializer() && isa<ConstantArray>(GV->getInitializer())) {
811      ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
812      if (Init->isString()) {
813        std::string Result = Init->getAsString();
814        if (Offset < Result.size()) {
815          // If we are pointing INTO The string, erase the beginning...
816          Result.erase(Result.begin(), Result.begin()+Offset);
817
818          // Take off the null terminator, and any string fragments after it.
819          std::string::size_type NullPos = Result.find_first_of((char)0);
820          if (NullPos != std::string::npos)
821            Result.erase(Result.begin()+NullPos, Result.end());
822          return Result;
823        }
824      }
825    }
826  } else if (Constant *C = dyn_cast<Constant>(V)) {
827    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
828      return getStringValue(GV, Offset);
829    else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
830      if (CE->getOpcode() == Instruction::GetElementPtr) {
831        // Turn a gep into the specified offset.
832        if (CE->getNumOperands() == 3 &&
833            cast<Constant>(CE->getOperand(1))->isNullValue() &&
834            isa<ConstantInt>(CE->getOperand(2))) {
835          return getStringValue(CE->getOperand(0),
836                   Offset+cast<ConstantInt>(CE->getOperand(2))->getRawValue());
837        }
838      }
839    }
840  }
841  return "";
842}
843
844void SelectionDAGLowering::visitLoad(LoadInst &I) {
845  SDOperand Ptr = getValue(I.getOperand(0));
846
847  SDOperand Root;
848  if (I.isVolatile())
849    Root = getRoot();
850  else {
851    // Do not serialize non-volatile loads against each other.
852    Root = DAG.getRoot();
853  }
854
855  const Type *Ty = I.getType();
856  SDOperand L;
857
858  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
859    unsigned NumElements = PTy->getNumElements();
860    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
861    MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
862
863    // Immediately scalarize packed types containing only one element, so that
864    // the Legalize pass does not have to deal with them.
865    if (NumElements == 1) {
866      L = DAG.getLoad(PVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0)));
867    } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
868      L = DAG.getLoad(TVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0)));
869    } else {
870      L = DAG.getVecLoad(NumElements, PVT, Root, Ptr,
871                         DAG.getSrcValue(I.getOperand(0)));
872    }
873  } else {
874    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr,
875                    DAG.getSrcValue(I.getOperand(0)));
876  }
877  setValue(&I, L);
878
879  if (I.isVolatile())
880    DAG.setRoot(L.getValue(1));
881  else
882    PendingLoads.push_back(L.getValue(1));
883}
884
885
886void SelectionDAGLowering::visitStore(StoreInst &I) {
887  Value *SrcV = I.getOperand(0);
888  SDOperand Src = getValue(SrcV);
889  SDOperand Ptr = getValue(I.getOperand(1));
890  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
891                          DAG.getSrcValue(I.getOperand(1))));
892}
893
894/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
895/// we want to emit this as a call to a named external function, return the name
896/// otherwise lower it and return null.
897const char *
898SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
899  switch (Intrinsic) {
900  case Intrinsic::vastart:  visitVAStart(I); return 0;
901  case Intrinsic::vaend:    visitVAEnd(I); return 0;
902  case Intrinsic::vacopy:   visitVACopy(I); return 0;
903  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
904  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
905  case Intrinsic::setjmp:
906    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
907    break;
908  case Intrinsic::longjmp:
909    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
910    break;
911  case Intrinsic::memcpy:  visitMemIntrinsic(I, ISD::MEMCPY); return 0;
912  case Intrinsic::memset:  visitMemIntrinsic(I, ISD::MEMSET); return 0;
913  case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return 0;
914
915  case Intrinsic::readport:
916  case Intrinsic::readio: {
917    std::vector<MVT::ValueType> VTs;
918    VTs.push_back(TLI.getValueType(I.getType()));
919    VTs.push_back(MVT::Other);
920    std::vector<SDOperand> Ops;
921    Ops.push_back(getRoot());
922    Ops.push_back(getValue(I.getOperand(1)));
923    SDOperand Tmp = DAG.getNode(Intrinsic == Intrinsic::readport ?
924                                ISD::READPORT : ISD::READIO, VTs, Ops);
925
926    setValue(&I, Tmp);
927    DAG.setRoot(Tmp.getValue(1));
928    return 0;
929  }
930  case Intrinsic::writeport:
931  case Intrinsic::writeio:
932    DAG.setRoot(DAG.getNode(Intrinsic == Intrinsic::writeport ?
933                            ISD::WRITEPORT : ISD::WRITEIO, MVT::Other,
934                            getRoot(), getValue(I.getOperand(1)),
935                            getValue(I.getOperand(2))));
936    return 0;
937
938  case Intrinsic::dbg_stoppoint: {
939    if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
940      return "llvm_debugger_stop";
941
942    std::string fname = "<unknown>";
943    std::vector<SDOperand> Ops;
944
945    // Input Chain
946    Ops.push_back(getRoot());
947
948    // line number
949    Ops.push_back(getValue(I.getOperand(2)));
950
951    // column
952    Ops.push_back(getValue(I.getOperand(3)));
953
954    // filename/working dir
955    // Pull the filename out of the the compilation unit.
956    const GlobalVariable *cunit = dyn_cast<GlobalVariable>(I.getOperand(4));
957    if (cunit && cunit->hasInitializer()) {
958      if (ConstantStruct *CS =
959            dyn_cast<ConstantStruct>(cunit->getInitializer())) {
960        if (CS->getNumOperands() > 0) {
961          Ops.push_back(DAG.getString(getStringValue(CS->getOperand(3))));
962          Ops.push_back(DAG.getString(getStringValue(CS->getOperand(4))));
963        }
964      }
965    }
966
967    if (Ops.size() == 5)  // Found filename/workingdir.
968      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops));
969    setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
970    return 0;
971  }
972  case Intrinsic::dbg_region_start:
973    if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
974      return "llvm_dbg_region_start";
975    if (I.getType() != Type::VoidTy)
976      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
977    return 0;
978  case Intrinsic::dbg_region_end:
979    if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
980      return "llvm_dbg_region_end";
981    if (I.getType() != Type::VoidTy)
982      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
983    return 0;
984  case Intrinsic::dbg_func_start:
985    if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
986      return "llvm_dbg_subprogram";
987    if (I.getType() != Type::VoidTy)
988      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
989    return 0;
990  case Intrinsic::dbg_declare:
991    if (I.getType() != Type::VoidTy)
992      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
993    return 0;
994
995  case Intrinsic::isunordered_f32:
996  case Intrinsic::isunordered_f64:
997    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
998                              getValue(I.getOperand(2)), ISD::SETUO));
999    return 0;
1000
1001  case Intrinsic::sqrt_f32:
1002  case Intrinsic::sqrt_f64:
1003    setValue(&I, DAG.getNode(ISD::FSQRT,
1004                             getValue(I.getOperand(1)).getValueType(),
1005                             getValue(I.getOperand(1))));
1006    return 0;
1007  case Intrinsic::pcmarker: {
1008    SDOperand Tmp = getValue(I.getOperand(1));
1009    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
1010    return 0;
1011  }
1012  case Intrinsic::readcyclecounter: {
1013    std::vector<MVT::ValueType> VTs;
1014    VTs.push_back(MVT::i64);
1015    VTs.push_back(MVT::Other);
1016    std::vector<SDOperand> Ops;
1017    Ops.push_back(getRoot());
1018    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops);
1019    setValue(&I, Tmp);
1020    DAG.setRoot(Tmp.getValue(1));
1021    return 0;
1022  }
1023  case Intrinsic::bswap_i16:
1024  case Intrinsic::bswap_i32:
1025  case Intrinsic::bswap_i64:
1026    setValue(&I, DAG.getNode(ISD::BSWAP,
1027                             getValue(I.getOperand(1)).getValueType(),
1028                             getValue(I.getOperand(1))));
1029    return 0;
1030  case Intrinsic::cttz_i8:
1031  case Intrinsic::cttz_i16:
1032  case Intrinsic::cttz_i32:
1033  case Intrinsic::cttz_i64:
1034    setValue(&I, DAG.getNode(ISD::CTTZ,
1035                             getValue(I.getOperand(1)).getValueType(),
1036                             getValue(I.getOperand(1))));
1037    return 0;
1038  case Intrinsic::ctlz_i8:
1039  case Intrinsic::ctlz_i16:
1040  case Intrinsic::ctlz_i32:
1041  case Intrinsic::ctlz_i64:
1042    setValue(&I, DAG.getNode(ISD::CTLZ,
1043                             getValue(I.getOperand(1)).getValueType(),
1044                             getValue(I.getOperand(1))));
1045    return 0;
1046  case Intrinsic::ctpop_i8:
1047  case Intrinsic::ctpop_i16:
1048  case Intrinsic::ctpop_i32:
1049  case Intrinsic::ctpop_i64:
1050    setValue(&I, DAG.getNode(ISD::CTPOP,
1051                             getValue(I.getOperand(1)).getValueType(),
1052                             getValue(I.getOperand(1))));
1053    return 0;
1054  case Intrinsic::stacksave: {
1055    std::vector<MVT::ValueType> VTs;
1056    VTs.push_back(TLI.getPointerTy());
1057    VTs.push_back(MVT::Other);
1058    std::vector<SDOperand> Ops;
1059    Ops.push_back(getRoot());
1060    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops);
1061    setValue(&I, Tmp);
1062    DAG.setRoot(Tmp.getValue(1));
1063    return 0;
1064  }
1065  case Intrinsic::stackrestore: {
1066    SDOperand Tmp = getValue(I.getOperand(1));
1067    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
1068    return 0;
1069  }
1070  case Intrinsic::prefetch:
1071    // FIXME: Currently discarding prefetches.
1072    return 0;
1073  default:
1074    std::cerr << I;
1075    assert(0 && "This intrinsic is not implemented yet!");
1076    return 0;
1077  }
1078}
1079
1080
1081void SelectionDAGLowering::visitCall(CallInst &I) {
1082  const char *RenameFn = 0;
1083  if (Function *F = I.getCalledFunction()) {
1084    if (F->isExternal())
1085      if (unsigned IID = F->getIntrinsicID()) {
1086        RenameFn = visitIntrinsicCall(I, IID);
1087        if (!RenameFn)
1088          return;
1089      } else {    // Not an LLVM intrinsic.
1090        const std::string &Name = F->getName();
1091        if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
1092          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1093              I.getOperand(1)->getType()->isFloatingPoint() &&
1094              I.getType() == I.getOperand(1)->getType()) {
1095            SDOperand Tmp = getValue(I.getOperand(1));
1096            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
1097            return;
1098          }
1099        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
1100          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1101              I.getOperand(1)->getType()->isFloatingPoint() &&
1102              I.getType() == I.getOperand(1)->getType() &&
1103              TLI.isOperationLegal(ISD::FSIN,
1104                                 TLI.getValueType(I.getOperand(1)->getType()))) {
1105            SDOperand Tmp = getValue(I.getOperand(1));
1106            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
1107            return;
1108          }
1109        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
1110          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1111              I.getOperand(1)->getType()->isFloatingPoint() &&
1112              I.getType() == I.getOperand(1)->getType() &&
1113              TLI.isOperationLegal(ISD::FCOS,
1114                              TLI.getValueType(I.getOperand(1)->getType()))) {
1115            SDOperand Tmp = getValue(I.getOperand(1));
1116            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
1117            return;
1118          }
1119        }
1120      }
1121  }
1122
1123  SDOperand Callee;
1124  if (!RenameFn)
1125    Callee = getValue(I.getOperand(0));
1126  else
1127    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
1128  std::vector<std::pair<SDOperand, const Type*> > Args;
1129  Args.reserve(I.getNumOperands());
1130  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1131    Value *Arg = I.getOperand(i);
1132    SDOperand ArgNode = getValue(Arg);
1133    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
1134  }
1135
1136  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
1137  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1138
1139  std::pair<SDOperand,SDOperand> Result =
1140    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
1141                    I.isTailCall(), Callee, Args, DAG);
1142  if (I.getType() != Type::VoidTy)
1143    setValue(&I, Result.first);
1144  DAG.setRoot(Result.second);
1145}
1146
1147void SelectionDAGLowering::visitMalloc(MallocInst &I) {
1148  SDOperand Src = getValue(I.getOperand(0));
1149
1150  MVT::ValueType IntPtr = TLI.getPointerTy();
1151
1152  if (IntPtr < Src.getValueType())
1153    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
1154  else if (IntPtr > Src.getValueType())
1155    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
1156
1157  // Scale the source by the type size.
1158  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
1159  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
1160                    Src, getIntPtrConstant(ElementSize));
1161
1162  std::vector<std::pair<SDOperand, const Type*> > Args;
1163  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
1164
1165  std::pair<SDOperand,SDOperand> Result =
1166    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
1167                    DAG.getExternalSymbol("malloc", IntPtr),
1168                    Args, DAG);
1169  setValue(&I, Result.first);  // Pointers always fit in registers
1170  DAG.setRoot(Result.second);
1171}
1172
1173void SelectionDAGLowering::visitFree(FreeInst &I) {
1174  std::vector<std::pair<SDOperand, const Type*> > Args;
1175  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
1176                                TLI.getTargetData().getIntPtrType()));
1177  MVT::ValueType IntPtr = TLI.getPointerTy();
1178  std::pair<SDOperand,SDOperand> Result =
1179    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
1180                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
1181  DAG.setRoot(Result.second);
1182}
1183
1184// InsertAtEndOfBasicBlock - This method should be implemented by targets that
1185// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1186// instructions are special in various ways, which require special support to
1187// insert.  The specified MachineInstr is created but not inserted into any
1188// basic blocks, and the scheduler passes ownership of it to this method.
1189MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
1190                                                       MachineBasicBlock *MBB) {
1191  std::cerr << "If a target marks an instruction with "
1192               "'usesCustomDAGSchedInserter', it must implement "
1193               "TargetLowering::InsertAtEndOfBasicBlock!\n";
1194  abort();
1195  return 0;
1196}
1197
1198SDOperand TargetLowering::LowerReturnTo(SDOperand Chain, SDOperand Op,
1199                                        SelectionDAG &DAG) {
1200  return DAG.getNode(ISD::RET, MVT::Other, Chain, Op);
1201}
1202
1203SDOperand TargetLowering::LowerVAStart(SDOperand Chain,
1204                                       SDOperand VAListP, Value *VAListV,
1205                                       SelectionDAG &DAG) {
1206  // We have no sane default behavior, just emit a useful error message and bail
1207  // out.
1208  std::cerr << "Variable arguments handling not implemented on this target!\n";
1209  abort();
1210  return SDOperand();
1211}
1212
1213SDOperand TargetLowering::LowerVAEnd(SDOperand Chain, SDOperand LP, Value *LV,
1214                                     SelectionDAG &DAG) {
1215  // Default to a noop.
1216  return Chain;
1217}
1218
1219SDOperand TargetLowering::LowerVACopy(SDOperand Chain,
1220                                      SDOperand SrcP, Value *SrcV,
1221                                      SDOperand DestP, Value *DestV,
1222                                      SelectionDAG &DAG) {
1223  // Default to copying the input list.
1224  SDOperand Val = DAG.getLoad(getPointerTy(), Chain,
1225                              SrcP, DAG.getSrcValue(SrcV));
1226  SDOperand Result = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
1227                                 Val, DestP, DAG.getSrcValue(DestV));
1228  return Result;
1229}
1230
1231std::pair<SDOperand,SDOperand>
1232TargetLowering::LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
1233                           const Type *ArgTy, SelectionDAG &DAG) {
1234  // We have no sane default behavior, just emit a useful error message and bail
1235  // out.
1236  std::cerr << "Variable arguments handling not implemented on this target!\n";
1237  abort();
1238  return std::make_pair(SDOperand(), SDOperand());
1239}
1240
1241
1242void SelectionDAGLowering::visitVAStart(CallInst &I) {
1243  DAG.setRoot(TLI.LowerVAStart(getRoot(), getValue(I.getOperand(1)),
1244                               I.getOperand(1), DAG));
1245}
1246
1247void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
1248  std::pair<SDOperand,SDOperand> Result =
1249    TLI.LowerVAArg(getRoot(), getValue(I.getOperand(0)), I.getOperand(0),
1250                   I.getType(), DAG);
1251  setValue(&I, Result.first);
1252  DAG.setRoot(Result.second);
1253}
1254
1255void SelectionDAGLowering::visitVAEnd(CallInst &I) {
1256  DAG.setRoot(TLI.LowerVAEnd(getRoot(), getValue(I.getOperand(1)),
1257                             I.getOperand(1), DAG));
1258}
1259
1260void SelectionDAGLowering::visitVACopy(CallInst &I) {
1261  SDOperand Result =
1262    TLI.LowerVACopy(getRoot(), getValue(I.getOperand(2)), I.getOperand(2),
1263                    getValue(I.getOperand(1)), I.getOperand(1), DAG);
1264  DAG.setRoot(Result);
1265}
1266
1267
1268// It is always conservatively correct for llvm.returnaddress and
1269// llvm.frameaddress to return 0.
1270std::pair<SDOperand, SDOperand>
1271TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
1272                                        unsigned Depth, SelectionDAG &DAG) {
1273  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
1274}
1275
1276SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
1277  assert(0 && "LowerOperation not implemented for this target!");
1278  abort();
1279  return SDOperand();
1280}
1281
1282void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
1283  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
1284  std::pair<SDOperand,SDOperand> Result =
1285    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
1286  setValue(&I, Result.first);
1287  DAG.setRoot(Result.second);
1288}
1289
1290void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
1291#if 0
1292  // If the size of the cpy/move/set is constant (known)
1293  if (ConstantUInt* op3 = dyn_cast<ConstantUInt>(I.getOperand(3))) {
1294    uint64_t size = op3->getValue();
1295    switch (Op) {
1296      case ISD::MEMSET:
1297        if (size <= TLI.getMaxStoresPerMemSet()) {
1298          if (ConstantUInt* op4 = dyn_cast<ConstantUInt>(I.getOperand(4))) {
1299        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
1300            uint64_t align = op4.getValue();
1301            while (size > align) {
1302              size -=align;
1303            }
1304  Value *SrcV = I.getOperand(0);
1305  SDOperand Src = getValue(SrcV);
1306  SDOperand Ptr = getValue(I.getOperand(1));
1307  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
1308                          DAG.getSrcValue(I.getOperand(1))));
1309          }
1310          break;
1311        }
1312        break; // don't do this optimization, use a normal memset
1313      case ISD::MEMMOVE:
1314      case ISD::MEMCPY:
1315        break; // FIXME: not implemented yet
1316    }
1317  }
1318#endif
1319
1320  // Non-optimized version
1321  std::vector<SDOperand> Ops;
1322  Ops.push_back(getRoot());
1323  Ops.push_back(getValue(I.getOperand(1)));
1324  Ops.push_back(getValue(I.getOperand(2)));
1325  Ops.push_back(getValue(I.getOperand(3)));
1326  Ops.push_back(getValue(I.getOperand(4)));
1327  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
1328}
1329
1330//===----------------------------------------------------------------------===//
1331// SelectionDAGISel code
1332//===----------------------------------------------------------------------===//
1333
1334unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
1335  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
1336}
1337
1338void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
1339  // FIXME: we only modify the CFG to split critical edges.  This
1340  // updates dom and loop info.
1341}
1342
1343
1344/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
1345/// casting to the type of GEPI.
1346static Value *InsertGEPComputeCode(Value *&V, BasicBlock *BB, Instruction *GEPI,
1347                                   Value *Ptr, Value *PtrOffset) {
1348  if (V) return V;   // Already computed.
1349
1350  BasicBlock::iterator InsertPt;
1351  if (BB == GEPI->getParent()) {
1352    // If insert into the GEP's block, insert right after the GEP.
1353    InsertPt = GEPI;
1354    ++InsertPt;
1355  } else {
1356    // Otherwise, insert at the top of BB, after any PHI nodes
1357    InsertPt = BB->begin();
1358    while (isa<PHINode>(InsertPt)) ++InsertPt;
1359  }
1360
1361  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
1362  // BB so that there is only one value live across basic blocks (the cast
1363  // operand).
1364  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
1365    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
1366      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
1367
1368  // Add the offset, cast it to the right type.
1369  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
1370  Ptr = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
1371  return V = Ptr;
1372}
1373
1374
1375/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
1376/// selection, we want to be a bit careful about some things.  In particular, if
1377/// we have a GEP instruction that is used in a different block than it is
1378/// defined, the addressing expression of the GEP cannot be folded into loads or
1379/// stores that use it.  In this case, decompose the GEP and move constant
1380/// indices into blocks that use it.
1381static void OptimizeGEPExpression(GetElementPtrInst *GEPI,
1382                                  const TargetData &TD) {
1383  // If this GEP is only used inside the block it is defined in, there is no
1384  // need to rewrite it.
1385  bool isUsedOutsideDefBB = false;
1386  BasicBlock *DefBB = GEPI->getParent();
1387  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
1388       UI != E; ++UI) {
1389    if (cast<Instruction>(*UI)->getParent() != DefBB) {
1390      isUsedOutsideDefBB = true;
1391      break;
1392    }
1393  }
1394  if (!isUsedOutsideDefBB) return;
1395
1396  // If this GEP has no non-zero constant indices, there is nothing we can do,
1397  // ignore it.
1398  bool hasConstantIndex = false;
1399  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
1400       E = GEPI->op_end(); OI != E; ++OI) {
1401    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI))
1402      if (CI->getRawValue()) {
1403        hasConstantIndex = true;
1404        break;
1405      }
1406  }
1407  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
1408  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0))) return;
1409
1410  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
1411  // constant offset (which we now know is non-zero) and deal with it later.
1412  uint64_t ConstantOffset = 0;
1413  const Type *UIntPtrTy = TD.getIntPtrType();
1414  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
1415  const Type *Ty = GEPI->getOperand(0)->getType();
1416
1417  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
1418       E = GEPI->op_end(); OI != E; ++OI) {
1419    Value *Idx = *OI;
1420    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1421      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
1422      if (Field)
1423        ConstantOffset += TD.getStructLayout(StTy)->MemberOffsets[Field];
1424      Ty = StTy->getElementType(Field);
1425    } else {
1426      Ty = cast<SequentialType>(Ty)->getElementType();
1427
1428      // Handle constant subscripts.
1429      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1430        if (CI->getRawValue() == 0) continue;
1431
1432        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
1433          ConstantOffset += (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
1434        else
1435          ConstantOffset+=TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
1436        continue;
1437      }
1438
1439      // Ptr = Ptr + Idx * ElementSize;
1440
1441      // Cast Idx to UIntPtrTy if needed.
1442      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
1443
1444      uint64_t ElementSize = TD.getTypeSize(Ty);
1445      // Mask off bits that should not be set.
1446      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
1447      Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
1448
1449      // Multiply by the element size and add to the base.
1450      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
1451      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
1452    }
1453  }
1454
1455  // Make sure that the offset fits in uintptr_t.
1456  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
1457  Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
1458
1459  // Okay, we have now emitted all of the variable index parts to the BB that
1460  // the GEP is defined in.  Loop over all of the using instructions, inserting
1461  // an "add Ptr, ConstantOffset" into each block that uses it and update the
1462  // instruction to use the newly computed value, making GEPI dead.  When the
1463  // user is a load or store instruction address, we emit the add into the user
1464  // block, otherwise we use a canonical version right next to the gep (these
1465  // won't be foldable as addresses, so we might as well share the computation).
1466
1467  std::map<BasicBlock*,Value*> InsertedExprs;
1468  while (!GEPI->use_empty()) {
1469    Instruction *User = cast<Instruction>(GEPI->use_back());
1470
1471    // If this use is not foldable into the addressing mode, use a version
1472    // emitted in the GEP block.
1473    Value *NewVal;
1474    if (!isa<LoadInst>(User) &&
1475        (!isa<StoreInst>(User) || User->getOperand(0) == GEPI)) {
1476      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
1477                                    Ptr, PtrOffset);
1478    } else {
1479      // Otherwise, insert the code in the User's block so it can be folded into
1480      // any users in that block.
1481      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
1482                                    User->getParent(), GEPI,
1483                                    Ptr, PtrOffset);
1484    }
1485    User->replaceUsesOfWith(GEPI, NewVal);
1486  }
1487
1488  // Finally, the GEP is dead, remove it.
1489  GEPI->eraseFromParent();
1490}
1491
1492bool SelectionDAGISel::runOnFunction(Function &Fn) {
1493  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
1494  RegMap = MF.getSSARegMap();
1495  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
1496
1497  // First, split all critical edges for PHI nodes with incoming values that are
1498  // constants, this way the load of the constant into a vreg will not be placed
1499  // into MBBs that are used some other way.
1500  //
1501  // In this pass we also look for GEP instructions that are used across basic
1502  // blocks and rewrites them to improve basic-block-at-a-time selection.
1503  //
1504  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
1505    PHINode *PN;
1506    BasicBlock::iterator BBI;
1507    for (BBI = BB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI)
1508      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1509        if (isa<Constant>(PN->getIncomingValue(i)))
1510          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
1511
1512    for (BasicBlock::iterator E = BB->end(); BBI != E; )
1513      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(BBI++))
1514        OptimizeGEPExpression(GEPI, TLI.getTargetData());
1515  }
1516
1517  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
1518
1519  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
1520    SelectBasicBlock(I, MF, FuncInfo);
1521
1522  return true;
1523}
1524
1525
1526SDOperand SelectionDAGISel::
1527CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
1528  SDOperand Op = SDL.getValue(V);
1529  assert((Op.getOpcode() != ISD::CopyFromReg ||
1530          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
1531         "Copy from a reg to the same reg!");
1532
1533  // If this type is not legal, we must make sure to not create an invalid
1534  // register use.
1535  MVT::ValueType SrcVT = Op.getValueType();
1536  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
1537  SelectionDAG &DAG = SDL.DAG;
1538  if (SrcVT == DestVT) {
1539    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
1540  } else if (SrcVT < DestVT) {
1541    // The src value is promoted to the register.
1542    if (MVT::isFloatingPoint(SrcVT))
1543      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
1544    else
1545      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
1546    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
1547  } else  {
1548    // The src value is expanded into multiple registers.
1549    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
1550                               Op, DAG.getConstant(0, MVT::i32));
1551    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
1552                               Op, DAG.getConstant(1, MVT::i32));
1553    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
1554    return DAG.getCopyToReg(Op, Reg+1, Hi);
1555  }
1556}
1557
1558void SelectionDAGISel::
1559LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
1560               std::vector<SDOperand> &UnorderedChains) {
1561  // If this is the entry block, emit arguments.
1562  Function &F = *BB->getParent();
1563  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
1564  SDOperand OldRoot = SDL.DAG.getRoot();
1565  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
1566
1567  unsigned a = 0;
1568  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1569       AI != E; ++AI, ++a)
1570    if (!AI->use_empty()) {
1571      SDL.setValue(AI, Args[a]);
1572
1573      // If this argument is live outside of the entry block, insert a copy from
1574      // whereever we got it to the vreg that other BB's will reference it as.
1575      if (FuncInfo.ValueMap.count(AI)) {
1576        SDOperand Copy =
1577          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
1578        UnorderedChains.push_back(Copy);
1579      }
1580    }
1581
1582  // Next, if the function has live ins that need to be copied into vregs,
1583  // emit the copies now, into the top of the block.
1584  MachineFunction &MF = SDL.DAG.getMachineFunction();
1585  if (MF.livein_begin() != MF.livein_end()) {
1586    SSARegMap *RegMap = MF.getSSARegMap();
1587    const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
1588    for (MachineFunction::livein_iterator LI = MF.livein_begin(),
1589         E = MF.livein_end(); LI != E; ++LI)
1590      if (LI->second)
1591        MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
1592                         LI->first, RegMap->getRegClass(LI->second));
1593  }
1594
1595  // Finally, if the target has anything special to do, allow it to do so.
1596  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
1597}
1598
1599
1600void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
1601       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
1602                                    FunctionLoweringInfo &FuncInfo) {
1603  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
1604
1605  std::vector<SDOperand> UnorderedChains;
1606
1607  // Lower any arguments needed in this block if this is the entry block.
1608  if (LLVMBB == &LLVMBB->getParent()->front())
1609    LowerArguments(LLVMBB, SDL, UnorderedChains);
1610
1611  BB = FuncInfo.MBBMap[LLVMBB];
1612  SDL.setCurrentBasicBlock(BB);
1613
1614  // Lower all of the non-terminator instructions.
1615  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
1616       I != E; ++I)
1617    SDL.visit(*I);
1618
1619  // Ensure that all instructions which are used outside of their defining
1620  // blocks are available as virtual registers.
1621  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
1622    if (!I->use_empty() && !isa<PHINode>(I)) {
1623      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
1624      if (VMI != FuncInfo.ValueMap.end())
1625        UnorderedChains.push_back(
1626                           CopyValueToVirtualRegister(SDL, I, VMI->second));
1627    }
1628
1629  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
1630  // ensure constants are generated when needed.  Remember the virtual registers
1631  // that need to be added to the Machine PHI nodes as input.  We cannot just
1632  // directly add them, because expansion might result in multiple MBB's for one
1633  // BB.  As such, the start of the BB might correspond to a different MBB than
1634  // the end.
1635  //
1636
1637  // Emit constants only once even if used by multiple PHI nodes.
1638  std::map<Constant*, unsigned> ConstantsOut;
1639
1640  // Check successor nodes PHI nodes that expect a constant to be available from
1641  // this block.
1642  TerminatorInst *TI = LLVMBB->getTerminator();
1643  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1644    BasicBlock *SuccBB = TI->getSuccessor(succ);
1645    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
1646    PHINode *PN;
1647
1648    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1649    // nodes and Machine PHI nodes, but the incoming operands have not been
1650    // emitted yet.
1651    for (BasicBlock::iterator I = SuccBB->begin();
1652         (PN = dyn_cast<PHINode>(I)); ++I)
1653      if (!PN->use_empty()) {
1654        unsigned Reg;
1655        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1656        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
1657          unsigned &RegOut = ConstantsOut[C];
1658          if (RegOut == 0) {
1659            RegOut = FuncInfo.CreateRegForValue(C);
1660            UnorderedChains.push_back(
1661                             CopyValueToVirtualRegister(SDL, C, RegOut));
1662          }
1663          Reg = RegOut;
1664        } else {
1665          Reg = FuncInfo.ValueMap[PHIOp];
1666          if (Reg == 0) {
1667            assert(isa<AllocaInst>(PHIOp) &&
1668                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
1669                   "Didn't codegen value into a register!??");
1670            Reg = FuncInfo.CreateRegForValue(PHIOp);
1671            UnorderedChains.push_back(
1672                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
1673          }
1674        }
1675
1676        // Remember that this register needs to added to the machine PHI node as
1677        // the input for this MBB.
1678        unsigned NumElements =
1679          TLI.getNumElements(TLI.getValueType(PN->getType()));
1680        for (unsigned i = 0, e = NumElements; i != e; ++i)
1681          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
1682      }
1683  }
1684  ConstantsOut.clear();
1685
1686  // Turn all of the unordered chains into one factored node.
1687  if (!UnorderedChains.empty()) {
1688    SDOperand Root = SDL.getRoot();
1689    if (Root.getOpcode() != ISD::EntryToken) {
1690      unsigned i = 0, e = UnorderedChains.size();
1691      for (; i != e; ++i) {
1692        assert(UnorderedChains[i].Val->getNumOperands() > 1);
1693        if (UnorderedChains[i].Val->getOperand(0) == Root)
1694          break;  // Don't add the root if we already indirectly depend on it.
1695      }
1696
1697      if (i == e)
1698        UnorderedChains.push_back(Root);
1699    }
1700    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
1701  }
1702
1703  // Lower the terminator after the copies are emitted.
1704  SDL.visit(*LLVMBB->getTerminator());
1705
1706  // Make sure the root of the DAG is up-to-date.
1707  DAG.setRoot(SDL.getRoot());
1708}
1709
1710void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
1711                                        FunctionLoweringInfo &FuncInfo) {
1712  SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
1713  CurDAG = &DAG;
1714  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
1715
1716  // First step, lower LLVM code to some DAG.  This DAG may use operations and
1717  // types that are not supported by the target.
1718  BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
1719
1720  // Run the DAG combiner in pre-legalize mode.
1721  DAG.Combine(false);
1722
1723  DEBUG(std::cerr << "Lowered selection DAG:\n");
1724  DEBUG(DAG.dump());
1725
1726  // Second step, hack on the DAG until it only uses operations and types that
1727  // the target supports.
1728  DAG.Legalize();
1729
1730  DEBUG(std::cerr << "Legalized selection DAG:\n");
1731  DEBUG(DAG.dump());
1732
1733  // Run the DAG combiner in post-legalize mode.
1734  DAG.Combine(true);
1735
1736  if (ViewISelDAGs) DAG.viewGraph();
1737
1738  // Third, instruction select all of the operations to machine code, adding the
1739  // code to the MachineBasicBlock.
1740  InstructionSelectBasicBlock(DAG);
1741
1742  DEBUG(std::cerr << "Selected machine code:\n");
1743  DEBUG(BB->dump());
1744
1745  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1746  // PHI nodes in successors.
1747  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
1748    MachineInstr *PHI = PHINodesToUpdate[i].first;
1749    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
1750           "This is not a machine PHI node that we are updating!");
1751    PHI->addRegOperand(PHINodesToUpdate[i].second);
1752    PHI->addMachineBasicBlockOperand(BB);
1753  }
1754
1755  // Finally, add the CFG edges from the last selected MBB to the successor
1756  // MBBs.
1757  TerminatorInst *TI = LLVMBB->getTerminator();
1758  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1759    MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)];
1760    BB->addSuccessor(Succ0MBB);
1761  }
1762}
1763
1764//===----------------------------------------------------------------------===//
1765/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
1766/// target node in the graph.
1767void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
1768  if (ViewSchedDAGs) DAG.viewGraph();
1769  ScheduleDAG *SL = NULL;
1770
1771  switch (ISHeuristic) {
1772  default: assert(0 && "Unrecognized scheduling heuristic");
1773  case noScheduling:
1774  case simpleScheduling:
1775  case simpleNoItinScheduling:
1776    SL = createSimpleDAGScheduler(ISHeuristic, DAG, BB);
1777    break;
1778  }
1779  BB = SL->Run();
1780}
1781