SelectionDAGISel.cpp revision 4f8e6669676759f830877d3f777ad967663a97e8
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionAnalysis.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/CodeGen/DwarfWriter.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/Timer.h"
58#include "llvm/Support/raw_ostream.h"
59#include "llvm/ADT/Statistic.h"
60#include <algorithm>
61using namespace llvm;
62
63STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
64
65static cl::opt<bool>
66EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
67          cl::desc("Enable verbose messages in the \"fast\" "
68                   "instruction selector"));
69static cl::opt<bool>
70EnableFastISelAbort("fast-isel-abort", cl::Hidden,
71          cl::desc("Enable abort calls when \"fast\" instruction fails"));
72static cl::opt<bool>
73SchedLiveInCopies("schedule-livein-copies", cl::Hidden,
74                  cl::desc("Schedule copies of livein registers"),
75                  cl::init(false));
76
77#ifndef NDEBUG
78static cl::opt<bool>
79ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
80          cl::desc("Pop up a window to show dags before the first "
81                   "dag combine pass"));
82static cl::opt<bool>
83ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize types"));
85static cl::opt<bool>
86ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before legalize"));
88static cl::opt<bool>
89ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
90          cl::desc("Pop up a window to show dags before the second "
91                   "dag combine pass"));
92static cl::opt<bool>
93ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
94          cl::desc("Pop up a window to show dags before the post legalize types"
95                   " dag combine pass"));
96static cl::opt<bool>
97ViewISelDAGs("view-isel-dags", cl::Hidden,
98          cl::desc("Pop up a window to show isel dags as they are selected"));
99static cl::opt<bool>
100ViewSchedDAGs("view-sched-dags", cl::Hidden,
101          cl::desc("Pop up a window to show sched dags as they are processed"));
102static cl::opt<bool>
103ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
104      cl::desc("Pop up a window to show SUnit dags after they are processed"));
105#else
106static const bool ViewDAGCombine1 = false,
107                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
108                  ViewDAGCombine2 = false,
109                  ViewDAGCombineLT = false,
110                  ViewISelDAGs = false, ViewSchedDAGs = false,
111                  ViewSUnitDAGs = false;
112#endif
113
114//===---------------------------------------------------------------------===//
115///
116/// RegisterScheduler class - Track the registration of instruction schedulers.
117///
118//===---------------------------------------------------------------------===//
119MachinePassRegistry RegisterScheduler::Registry;
120
121//===---------------------------------------------------------------------===//
122///
123/// ISHeuristic command line option for instruction schedulers.
124///
125//===---------------------------------------------------------------------===//
126static cl::opt<RegisterScheduler::FunctionPassCtor, false,
127               RegisterPassParser<RegisterScheduler> >
128ISHeuristic("pre-RA-sched",
129            cl::init(&createDefaultScheduler),
130            cl::desc("Instruction schedulers available (before register"
131                     " allocation):"));
132
133static RegisterScheduler
134defaultListDAGScheduler("default", "Best scheduler for the target",
135                        createDefaultScheduler);
136
137namespace llvm {
138  //===--------------------------------------------------------------------===//
139  /// createDefaultScheduler - This creates an instruction scheduler appropriate
140  /// for the target.
141  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
142                                             CodeGenOpt::Level OptLevel) {
143    const TargetLowering &TLI = IS->getTargetLowering();
144
145    if (OptLevel == CodeGenOpt::None)
146      return createFastDAGScheduler(IS, OptLevel);
147    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
148      return createTDListDAGScheduler(IS, OptLevel);
149    assert(TLI.getSchedulingPreference() ==
150           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
151    return createBURRListDAGScheduler(IS, OptLevel);
152  }
153}
154
155// EmitInstrWithCustomInserter - This method should be implemented by targets
156// that mark instructions with the 'usesCustomInserter' flag.  These
157// instructions are special in various ways, which require special support to
158// insert.  The specified MachineInstr is created but not inserted into any
159// basic blocks, and this method is called to expand it into a sequence of
160// instructions, potentially also creating new basic blocks and control flow.
161// When new basic blocks are inserted and the edges from MBB to its successors
162// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
163// DenseMap.
164MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
165                                                         MachineBasicBlock *MBB,
166                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
167#ifndef NDEBUG
168  dbgs() << "If a target marks an instruction with "
169          "'usesCustomInserter', it must implement "
170          "TargetLowering::EmitInstrWithCustomInserter!";
171#endif
172  llvm_unreachable(0);
173  return 0;
174}
175
176/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
177/// physical register has only a single copy use, then coalesced the copy
178/// if possible.
179static void EmitLiveInCopy(MachineBasicBlock *MBB,
180                           MachineBasicBlock::iterator &InsertPos,
181                           unsigned VirtReg, unsigned PhysReg,
182                           const TargetRegisterClass *RC,
183                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
184                           const MachineRegisterInfo &MRI,
185                           const TargetRegisterInfo &TRI,
186                           const TargetInstrInfo &TII) {
187  unsigned NumUses = 0;
188  MachineInstr *UseMI = NULL;
189  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
190         UE = MRI.use_end(); UI != UE; ++UI) {
191    UseMI = &*UI;
192    if (++NumUses > 1)
193      break;
194  }
195
196  // If the number of uses is not one, or the use is not a move instruction,
197  // don't coalesce. Also, only coalesce away a virtual register to virtual
198  // register copy.
199  bool Coalesced = false;
200  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
201  if (NumUses == 1 &&
202      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
203      TargetRegisterInfo::isVirtualRegister(DstReg)) {
204    VirtReg = DstReg;
205    Coalesced = true;
206  }
207
208  // Now find an ideal location to insert the copy.
209  MachineBasicBlock::iterator Pos = InsertPos;
210  while (Pos != MBB->begin()) {
211    MachineInstr *PrevMI = prior(Pos);
212    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
213    // copyRegToReg might emit multiple instructions to do a copy.
214    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
215    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
216      // This is what the BB looks like right now:
217      // r1024 = mov r0
218      // ...
219      // r1    = mov r1024
220      //
221      // We want to insert "r1025 = mov r1". Inserting this copy below the
222      // move to r1024 makes it impossible for that move to be coalesced.
223      //
224      // r1025 = mov r1
225      // r1024 = mov r0
226      // ...
227      // r1    = mov 1024
228      // r2    = mov 1025
229      break; // Woot! Found a good location.
230    --Pos;
231  }
232
233  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
234  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
235  (void) Emitted;
236
237  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
238  if (Coalesced) {
239    if (&*InsertPos == UseMI) ++InsertPos;
240    MBB->erase(UseMI);
241  }
242}
243
244/// EmitLiveInCopies - If this is the first basic block in the function,
245/// and if it has live ins that need to be copied into vregs, emit the
246/// copies into the block.
247static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
248                             const MachineRegisterInfo &MRI,
249                             const TargetRegisterInfo &TRI,
250                             const TargetInstrInfo &TII) {
251  if (SchedLiveInCopies) {
252    // Emit the copies at a heuristically-determined location in the block.
253    DenseMap<MachineInstr*, unsigned> CopyRegMap;
254    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
255    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
256           E = MRI.livein_end(); LI != E; ++LI)
257      if (LI->second) {
258        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
259        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
260                       RC, CopyRegMap, MRI, TRI, TII);
261      }
262  } else {
263    // Emit the copies into the top of the block.
264    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
265           E = MRI.livein_end(); LI != E; ++LI)
266      if (LI->second) {
267        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
268        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
269                                        LI->second, LI->first, RC, RC);
270        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
271        (void) Emitted;
272      }
273  }
274}
275
276//===----------------------------------------------------------------------===//
277// SelectionDAGISel code
278//===----------------------------------------------------------------------===//
279
280SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
281  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
282  FuncInfo(new FunctionLoweringInfo(TLI)),
283  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
284  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
285  GFI(),
286  OptLevel(OL),
287  DAGSize(0)
288{}
289
290SelectionDAGISel::~SelectionDAGISel() {
291  delete SDB;
292  delete CurDAG;
293  delete FuncInfo;
294}
295
296unsigned SelectionDAGISel::MakeReg(EVT VT) {
297  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
298}
299
300void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
301  AU.addRequired<AliasAnalysis>();
302  AU.addPreserved<AliasAnalysis>();
303  AU.addRequired<GCModuleInfo>();
304  AU.addPreserved<GCModuleInfo>();
305  AU.addRequired<DwarfWriter>();
306  AU.addPreserved<DwarfWriter>();
307  MachineFunctionPass::getAnalysisUsage(AU);
308}
309
310bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
311  Function &Fn = *mf.getFunction();
312
313  // Do some sanity-checking on the command-line options.
314  assert((!EnableFastISelVerbose || EnableFastISel) &&
315         "-fast-isel-verbose requires -fast-isel");
316  assert((!EnableFastISelAbort || EnableFastISel) &&
317         "-fast-isel-abort requires -fast-isel");
318
319  // Get alias analysis for load/store combining.
320  AA = &getAnalysis<AliasAnalysis>();
321
322  MF = &mf;
323  const TargetInstrInfo &TII = *TM.getInstrInfo();
324  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
325
326  if (Fn.hasGC())
327    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
328  else
329    GFI = 0;
330  RegInfo = &MF->getRegInfo();
331  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
332
333  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
334  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
335  CurDAG->init(*MF, MMI, DW);
336  FuncInfo->set(Fn, *MF, EnableFastISel);
337  SDB->init(GFI, *AA);
338
339  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
340    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
341      // Mark landing pad.
342      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
343
344  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
345
346  // If the first basic block in the function has live ins that need to be
347  // copied into vregs, emit the copies into the top of the block before
348  // emitting the code for the block.
349  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
350
351  // Add function live-ins to entry block live-in set.
352  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
353         E = RegInfo->livein_end(); I != E; ++I)
354    MF->begin()->addLiveIn(I->first);
355
356#ifndef NDEBUG
357  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
358         "Not all catch info was assigned to a landing pad!");
359#endif
360
361  FuncInfo->clear();
362
363  return true;
364}
365
366/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
367/// attached with this instruction.
368static void SetDebugLoc(unsigned MDDbgKind, Instruction *I,
369                        SelectionDAGBuilder *SDB,
370                        FastISel *FastIS, MachineFunction *MF) {
371  if (isa<DbgInfoIntrinsic>(I)) return;
372
373  if (MDNode *Dbg = I->getMetadata(MDDbgKind)) {
374    DILocation DILoc(Dbg);
375    DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo());
376
377    SDB->setCurDebugLoc(Loc);
378
379    if (FastIS)
380      FastIS->setCurDebugLoc(Loc);
381
382    // If the function doesn't have a default debug location yet, set
383    // it. This is kind of a hack.
384    if (MF->getDefaultDebugLoc().isUnknown())
385      MF->setDefaultDebugLoc(Loc);
386  }
387}
388
389/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
390static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
391  SDB->setCurDebugLoc(DebugLoc::getUnknownLoc());
392  if (FastIS)
393    FastIS->setCurDebugLoc(DebugLoc::getUnknownLoc());
394}
395
396void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
397                                        BasicBlock::iterator Begin,
398                                        BasicBlock::iterator End,
399                                        bool &HadTailCall) {
400  SDB->setCurrentBasicBlock(BB);
401  unsigned MDDbgKind = LLVMBB->getContext().getMDKindID("dbg");
402
403  // Lower all of the non-terminator instructions. If a call is emitted
404  // as a tail call, cease emitting nodes for this block.
405  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
406    SetDebugLoc(MDDbgKind, I, SDB, 0, MF);
407
408    if (!isa<TerminatorInst>(I)) {
409      SDB->visit(*I);
410
411      // Set the current debug location back to "unknown" so that it doesn't
412      // spuriously apply to subsequent instructions.
413      ResetDebugLoc(SDB, 0);
414    }
415  }
416
417  if (!SDB->HasTailCall) {
418    // Ensure that all instructions which are used outside of their defining
419    // blocks are available as virtual registers.  Invoke is handled elsewhere.
420    for (BasicBlock::iterator I = Begin; I != End; ++I)
421      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
422        SDB->CopyToExportRegsIfNeeded(I);
423
424    // Handle PHI nodes in successor blocks.
425    if (End == LLVMBB->end()) {
426      HandlePHINodesInSuccessorBlocks(LLVMBB);
427
428      // Lower the terminator after the copies are emitted.
429      SetDebugLoc(MDDbgKind, LLVMBB->getTerminator(), SDB, 0, MF);
430      SDB->visit(*LLVMBB->getTerminator());
431      ResetDebugLoc(SDB, 0);
432    }
433  }
434
435  // Make sure the root of the DAG is up-to-date.
436  CurDAG->setRoot(SDB->getControlRoot());
437
438  // Final step, emit the lowered DAG as machine code.
439  CodeGenAndEmitDAG();
440  HadTailCall = SDB->HasTailCall;
441  SDB->clear();
442}
443
444namespace {
445/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
446/// nodes from the worklist.
447class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
448  SmallVector<SDNode*, 128> &Worklist;
449public:
450  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl) : Worklist(wl) {}
451
452  virtual void NodeDeleted(SDNode *N, SDNode *E) {
453    Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
454                   Worklist.end());
455  }
456
457  virtual void NodeUpdated(SDNode *N) {
458    // Ignore updates.
459  }
460};
461}
462
463/// TrivialTruncElim - Eliminate some trivial nops that can result from
464/// ShrinkDemandedOps: (trunc (ext n)) -> n.
465static bool TrivialTruncElim(SDValue Op,
466                             TargetLowering::TargetLoweringOpt &TLO) {
467  SDValue N0 = Op.getOperand(0);
468  EVT VT = Op.getValueType();
469  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
470       N0.getOpcode() == ISD::SIGN_EXTEND ||
471       N0.getOpcode() == ISD::ANY_EXTEND) &&
472      N0.getOperand(0).getValueType() == VT) {
473    return TLO.CombineTo(Op, N0.getOperand(0));
474  }
475  return false;
476}
477
478/// ShrinkDemandedOps - A late transformation pass that shrink expressions
479/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
480/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
481void SelectionDAGISel::ShrinkDemandedOps() {
482  SmallVector<SDNode*, 128> Worklist;
483
484  // Add all the dag nodes to the worklist.
485  Worklist.reserve(CurDAG->allnodes_size());
486  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
487       E = CurDAG->allnodes_end(); I != E; ++I)
488    Worklist.push_back(I);
489
490  APInt Mask;
491  APInt KnownZero;
492  APInt KnownOne;
493
494  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
495  while (!Worklist.empty()) {
496    SDNode *N = Worklist.pop_back_val();
497
498    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
499      CurDAG->DeleteNode(N);
500      continue;
501    }
502
503    // Run ShrinkDemandedOp on scalar binary operations.
504    if (N->getNumValues() == 1 &&
505        N->getValueType(0).isSimple() && N->getValueType(0).isInteger()) {
506      unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
507      APInt Demanded = APInt::getAllOnesValue(BitWidth);
508      APInt KnownZero, KnownOne;
509      if (TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
510                                   KnownZero, KnownOne, TLO) ||
511          (N->getOpcode() == ISD::TRUNCATE &&
512           TrivialTruncElim(SDValue(N, 0), TLO))) {
513        // Revisit the node.
514        Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
515                       Worklist.end());
516        Worklist.push_back(N);
517
518        // Replace the old value with the new one.
519        DEBUG(errs() << "\nReplacing ";
520              TLO.Old.getNode()->dump(CurDAG);
521              errs() << "\nWith: ";
522              TLO.New.getNode()->dump(CurDAG);
523              errs() << '\n');
524
525        Worklist.push_back(TLO.New.getNode());
526
527        SDOPsWorkListRemover DeadNodes(Worklist);
528        CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
529
530        if (TLO.Old.getNode()->use_empty()) {
531          for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
532               i != e; ++i) {
533            SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
534            if (OpNode->hasOneUse()) {
535              Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
536                                         OpNode), Worklist.end());
537              Worklist.push_back(OpNode);
538            }
539          }
540
541          Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
542                                     TLO.Old.getNode()), Worklist.end());
543          CurDAG->DeleteNode(TLO.Old.getNode());
544        }
545      }
546    }
547  }
548}
549
550void SelectionDAGISel::ComputeLiveOutVRegInfo() {
551  SmallPtrSet<SDNode*, 128> VisitedNodes;
552  SmallVector<SDNode*, 128> Worklist;
553
554  Worklist.push_back(CurDAG->getRoot().getNode());
555
556  APInt Mask;
557  APInt KnownZero;
558  APInt KnownOne;
559
560  do {
561    SDNode *N = Worklist.pop_back_val();
562
563    // If we've already seen this node, ignore it.
564    if (!VisitedNodes.insert(N))
565      continue;
566
567    // Otherwise, add all chain operands to the worklist.
568    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
569      if (N->getOperand(i).getValueType() == MVT::Other)
570        Worklist.push_back(N->getOperand(i).getNode());
571
572    // If this is a CopyToReg with a vreg dest, process it.
573    if (N->getOpcode() != ISD::CopyToReg)
574      continue;
575
576    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
577    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
578      continue;
579
580    // Ignore non-scalar or non-integer values.
581    SDValue Src = N->getOperand(2);
582    EVT SrcVT = Src.getValueType();
583    if (!SrcVT.isInteger() || SrcVT.isVector())
584      continue;
585
586    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
587    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
588    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
589
590    // Only install this information if it tells us something.
591    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
592      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
593      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
594        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
595      FunctionLoweringInfo::LiveOutInfo &LOI =
596        FuncInfo->LiveOutRegInfo[DestReg];
597      LOI.NumSignBits = NumSignBits;
598      LOI.KnownOne = KnownOne;
599      LOI.KnownZero = KnownZero;
600    }
601  } while (!Worklist.empty());
602}
603
604void SelectionDAGISel::CodeGenAndEmitDAG() {
605  std::string GroupName;
606  if (TimePassesIsEnabled)
607    GroupName = "Instruction Selection and Scheduling";
608  std::string BlockName;
609  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
610      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
611      ViewSUnitDAGs)
612    BlockName = MF->getFunction()->getNameStr() + ":" +
613                BB->getBasicBlock()->getNameStr();
614
615  DEBUG(dbgs() << "Initial selection DAG:\n");
616  DEBUG(CurDAG->dump());
617
618  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
619
620  // Run the DAG combiner in pre-legalize mode.
621  if (TimePassesIsEnabled) {
622    NamedRegionTimer T("DAG Combining 1", GroupName);
623    CurDAG->Combine(Unrestricted, *AA, OptLevel);
624  } else {
625    CurDAG->Combine(Unrestricted, *AA, OptLevel);
626  }
627
628  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
629  DEBUG(CurDAG->dump());
630
631  // Second step, hack on the DAG until it only uses operations and types that
632  // the target supports.
633  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
634                                               BlockName);
635
636  bool Changed;
637  if (TimePassesIsEnabled) {
638    NamedRegionTimer T("Type Legalization", GroupName);
639    Changed = CurDAG->LegalizeTypes();
640  } else {
641    Changed = CurDAG->LegalizeTypes();
642  }
643
644  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
645  DEBUG(CurDAG->dump());
646
647  if (Changed) {
648    if (ViewDAGCombineLT)
649      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
650
651    // Run the DAG combiner in post-type-legalize mode.
652    if (TimePassesIsEnabled) {
653      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
654      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
655    } else {
656      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
657    }
658
659    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
660    DEBUG(CurDAG->dump());
661  }
662
663  if (TimePassesIsEnabled) {
664    NamedRegionTimer T("Vector Legalization", GroupName);
665    Changed = CurDAG->LegalizeVectors();
666  } else {
667    Changed = CurDAG->LegalizeVectors();
668  }
669
670  if (Changed) {
671    if (TimePassesIsEnabled) {
672      NamedRegionTimer T("Type Legalization 2", GroupName);
673      CurDAG->LegalizeTypes();
674    } else {
675      CurDAG->LegalizeTypes();
676    }
677
678    if (ViewDAGCombineLT)
679      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
680
681    // Run the DAG combiner in post-type-legalize mode.
682    if (TimePassesIsEnabled) {
683      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
684      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
685    } else {
686      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
687    }
688
689    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
690    DEBUG(CurDAG->dump());
691  }
692
693  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
694
695  if (TimePassesIsEnabled) {
696    NamedRegionTimer T("DAG Legalization", GroupName);
697    CurDAG->Legalize(OptLevel);
698  } else {
699    CurDAG->Legalize(OptLevel);
700  }
701
702  DEBUG(dbgs() << "Legalized selection DAG:\n");
703  DEBUG(CurDAG->dump());
704
705  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
706
707  // Run the DAG combiner in post-legalize mode.
708  if (TimePassesIsEnabled) {
709    NamedRegionTimer T("DAG Combining 2", GroupName);
710    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
711  } else {
712    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
713  }
714
715  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
716  DEBUG(CurDAG->dump());
717
718  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
719
720  if (OptLevel != CodeGenOpt::None) {
721    ShrinkDemandedOps();
722    ComputeLiveOutVRegInfo();
723  }
724
725  // Third, instruction select all of the operations to machine code, adding the
726  // code to the MachineBasicBlock.
727  if (TimePassesIsEnabled) {
728    NamedRegionTimer T("Instruction Selection", GroupName);
729    DoInstructionSelection();
730  } else {
731    DoInstructionSelection();
732  }
733
734  DEBUG(dbgs() << "Selected selection DAG:\n");
735  DEBUG(CurDAG->dump());
736
737  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
738
739  // Schedule machine code.
740  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
741  if (TimePassesIsEnabled) {
742    NamedRegionTimer T("Instruction Scheduling", GroupName);
743    Scheduler->Run(CurDAG, BB, BB->end());
744  } else {
745    Scheduler->Run(CurDAG, BB, BB->end());
746  }
747
748  if (ViewSUnitDAGs) Scheduler->viewGraph();
749
750  // Emit machine code to BB.  This can change 'BB' to the last block being
751  // inserted into.
752  if (TimePassesIsEnabled) {
753    NamedRegionTimer T("Instruction Creation", GroupName);
754    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
755  } else {
756    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
757  }
758
759  // Free the scheduler state.
760  if (TimePassesIsEnabled) {
761    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
762    delete Scheduler;
763  } else {
764    delete Scheduler;
765  }
766
767  DEBUG(dbgs() << "Selected machine code:\n");
768  DEBUG(BB->dump());
769}
770
771void SelectionDAGISel::DoInstructionSelection() {
772  DEBUG(errs() << "===== Instruction selection begins:\n");
773
774  PreprocessISelDAG();
775
776  // Select target instructions for the DAG.
777  {
778    // Number all nodes with a topological order and set DAGSize.
779    DAGSize = CurDAG->AssignTopologicalOrder();
780
781    // Create a dummy node (which is not added to allnodes), that adds
782    // a reference to the root node, preventing it from being deleted,
783    // and tracking any changes of the root.
784    HandleSDNode Dummy(CurDAG->getRoot());
785    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
786    ++ISelPosition;
787
788    // The AllNodes list is now topological-sorted. Visit the
789    // nodes by starting at the end of the list (the root of the
790    // graph) and preceding back toward the beginning (the entry
791    // node).
792    while (ISelPosition != CurDAG->allnodes_begin()) {
793      SDNode *Node = --ISelPosition;
794      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
795      // but there are currently some corner cases that it misses. Also, this
796      // makes it theoretically possible to disable the DAGCombiner.
797      if (Node->use_empty())
798        continue;
799
800      SDNode *ResNode = Select(Node);
801
802      // FIXME: This is pretty gross.  'Select' should be changed to not return
803      // anything at all and this code should be nuked with a tactical strike.
804
805      // If node should not be replaced, continue with the next one.
806      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
807        continue;
808      // Replace node.
809      if (ResNode)
810        ReplaceUses(Node, ResNode);
811
812      // If after the replacement this node is not used any more,
813      // remove this dead node.
814      if (Node->use_empty()) { // Don't delete EntryToken, etc.
815        ISelUpdater ISU(ISelPosition);
816        CurDAG->RemoveDeadNode(Node, &ISU);
817      }
818    }
819
820    CurDAG->setRoot(Dummy.getValue());
821  }
822  DEBUG(errs() << "===== Instruction selection ends:\n");
823
824  PostprocessISelDAG();
825
826  // FIXME: This shouldn't be needed, remove it.
827  CurDAG->RemoveDeadNodes();
828}
829
830
831void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
832                                            MachineFunction &MF,
833                                            MachineModuleInfo *MMI,
834                                            DwarfWriter *DW,
835                                            const TargetInstrInfo &TII) {
836  // Initialize the Fast-ISel state, if needed.
837  FastISel *FastIS = 0;
838  if (EnableFastISel)
839    FastIS = TLI.createFastISel(MF, MMI, DW,
840                                FuncInfo->ValueMap,
841                                FuncInfo->MBBMap,
842                                FuncInfo->StaticAllocaMap
843#ifndef NDEBUG
844                                , FuncInfo->CatchInfoLost
845#endif
846                                );
847
848  unsigned MDDbgKind = Fn.getContext().getMDKindID("dbg");
849
850  // Iterate over all basic blocks in the function.
851  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
852    BasicBlock *LLVMBB = &*I;
853    BB = FuncInfo->MBBMap[LLVMBB];
854
855    BasicBlock::iterator const Begin = LLVMBB->begin();
856    BasicBlock::iterator const End = LLVMBB->end();
857    BasicBlock::iterator BI = Begin;
858
859    // Lower any arguments needed in this block if this is the entry block.
860    bool SuppressFastISel = false;
861    if (LLVMBB == &Fn.getEntryBlock()) {
862      LowerArguments(LLVMBB);
863
864      // If any of the arguments has the byval attribute, forgo
865      // fast-isel in the entry block.
866      if (FastIS) {
867        unsigned j = 1;
868        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
869             I != E; ++I, ++j)
870          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
871            if (EnableFastISelVerbose || EnableFastISelAbort)
872              dbgs() << "FastISel skips entry block due to byval argument\n";
873            SuppressFastISel = true;
874            break;
875          }
876      }
877    }
878
879    if (MMI && BB->isLandingPad()) {
880      // Add a label to mark the beginning of the landing pad.  Deletion of the
881      // landing pad can thus be detected via the MachineModuleInfo.
882      unsigned LabelID = MMI->addLandingPad(BB);
883
884      const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL);
885      BuildMI(BB, SDB->getCurDebugLoc(), II).addImm(LabelID);
886
887      // Mark exception register as live in.
888      unsigned Reg = TLI.getExceptionAddressRegister();
889      if (Reg) BB->addLiveIn(Reg);
890
891      // Mark exception selector register as live in.
892      Reg = TLI.getExceptionSelectorRegister();
893      if (Reg) BB->addLiveIn(Reg);
894
895      // FIXME: Hack around an exception handling flaw (PR1508): the personality
896      // function and list of typeids logically belong to the invoke (or, if you
897      // like, the basic block containing the invoke), and need to be associated
898      // with it in the dwarf exception handling tables.  Currently however the
899      // information is provided by an intrinsic (eh.selector) that can be moved
900      // to unexpected places by the optimizers: if the unwind edge is critical,
901      // then breaking it can result in the intrinsics being in the successor of
902      // the landing pad, not the landing pad itself.  This results
903      // in exceptions not being caught because no typeids are associated with
904      // the invoke.  This may not be the only way things can go wrong, but it
905      // is the only way we try to work around for the moment.
906      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
907
908      if (Br && Br->isUnconditional()) { // Critical edge?
909        BasicBlock::iterator I, E;
910        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
911          if (isa<EHSelectorInst>(I))
912            break;
913
914        if (I == E)
915          // No catch info found - try to extract some from the successor.
916          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
917      }
918    }
919
920    // Before doing SelectionDAG ISel, see if FastISel has been requested.
921    if (FastIS && !SuppressFastISel) {
922      // Emit code for any incoming arguments. This must happen before
923      // beginning FastISel on the entry block.
924      if (LLVMBB == &Fn.getEntryBlock()) {
925        CurDAG->setRoot(SDB->getControlRoot());
926        CodeGenAndEmitDAG();
927        SDB->clear();
928      }
929      FastIS->startNewBlock(BB);
930      // Do FastISel on as many instructions as possible.
931      for (; BI != End; ++BI) {
932        // Just before the terminator instruction, insert instructions to
933        // feed PHI nodes in successor blocks.
934        if (isa<TerminatorInst>(BI))
935          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
936            ++NumFastIselFailures;
937            ResetDebugLoc(SDB, FastIS);
938            if (EnableFastISelVerbose || EnableFastISelAbort) {
939              dbgs() << "FastISel miss: ";
940              BI->dump();
941            }
942            assert(!EnableFastISelAbort &&
943                   "FastISel didn't handle a PHI in a successor");
944            break;
945          }
946
947        SetDebugLoc(MDDbgKind, BI, SDB, FastIS, &MF);
948
949        // Try to select the instruction with FastISel.
950        if (FastIS->SelectInstruction(BI)) {
951          ResetDebugLoc(SDB, FastIS);
952          continue;
953        }
954
955        // Clear out the debug location so that it doesn't carry over to
956        // unrelated instructions.
957        ResetDebugLoc(SDB, FastIS);
958
959        // Then handle certain instructions as single-LLVM-Instruction blocks.
960        if (isa<CallInst>(BI)) {
961          ++NumFastIselFailures;
962          if (EnableFastISelVerbose || EnableFastISelAbort) {
963            dbgs() << "FastISel missed call: ";
964            BI->dump();
965          }
966
967          if (!BI->getType()->isVoidTy()) {
968            unsigned &R = FuncInfo->ValueMap[BI];
969            if (!R)
970              R = FuncInfo->CreateRegForValue(BI);
971          }
972
973          bool HadTailCall = false;
974          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
975
976          // If the call was emitted as a tail call, we're done with the block.
977          if (HadTailCall) {
978            BI = End;
979            break;
980          }
981
982          // If the instruction was codegen'd with multiple blocks,
983          // inform the FastISel object where to resume inserting.
984          FastIS->setCurrentBlock(BB);
985          continue;
986        }
987
988        // Otherwise, give up on FastISel for the rest of the block.
989        // For now, be a little lenient about non-branch terminators.
990        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
991          ++NumFastIselFailures;
992          if (EnableFastISelVerbose || EnableFastISelAbort) {
993            dbgs() << "FastISel miss: ";
994            BI->dump();
995          }
996          if (EnableFastISelAbort)
997            // The "fast" selector couldn't handle something and bailed.
998            // For the purpose of debugging, just abort.
999            llvm_unreachable("FastISel didn't select the entire block");
1000        }
1001        break;
1002      }
1003    }
1004
1005    // Run SelectionDAG instruction selection on the remainder of the block
1006    // not handled by FastISel. If FastISel is not run, this is the entire
1007    // block.
1008    if (BI != End) {
1009      bool HadTailCall;
1010      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
1011    }
1012
1013    FinishBasicBlock();
1014  }
1015
1016  delete FastIS;
1017}
1018
1019void
1020SelectionDAGISel::FinishBasicBlock() {
1021
1022  DEBUG(dbgs() << "Target-post-processed machine code:\n");
1023  DEBUG(BB->dump());
1024
1025  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1026               << SDB->PHINodesToUpdate.size() << "\n");
1027  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
1028          dbgs() << "Node " << i << " : ("
1029                 << SDB->PHINodesToUpdate[i].first
1030                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
1031
1032  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1033  // PHI nodes in successors.
1034  if (SDB->SwitchCases.empty() &&
1035      SDB->JTCases.empty() &&
1036      SDB->BitTestCases.empty()) {
1037    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1038      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1039      assert(PHI->isPHI() &&
1040             "This is not a machine PHI node that we are updating!");
1041      if (!BB->isSuccessor(PHI->getParent()))
1042        continue;
1043      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1044                                                false));
1045      PHI->addOperand(MachineOperand::CreateMBB(BB));
1046    }
1047    SDB->PHINodesToUpdate.clear();
1048    return;
1049  }
1050
1051  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1052    // Lower header first, if it wasn't already lowered
1053    if (!SDB->BitTestCases[i].Emitted) {
1054      // Set the current basic block to the mbb we wish to insert the code into
1055      BB = SDB->BitTestCases[i].Parent;
1056      SDB->setCurrentBasicBlock(BB);
1057      // Emit the code
1058      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
1059      CurDAG->setRoot(SDB->getRoot());
1060      CodeGenAndEmitDAG();
1061      SDB->clear();
1062    }
1063
1064    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1065      // Set the current basic block to the mbb we wish to insert the code into
1066      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
1067      SDB->setCurrentBasicBlock(BB);
1068      // Emit the code
1069      if (j+1 != ej)
1070        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
1071                              SDB->BitTestCases[i].Reg,
1072                              SDB->BitTestCases[i].Cases[j]);
1073      else
1074        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
1075                              SDB->BitTestCases[i].Reg,
1076                              SDB->BitTestCases[i].Cases[j]);
1077
1078
1079      CurDAG->setRoot(SDB->getRoot());
1080      CodeGenAndEmitDAG();
1081      SDB->clear();
1082    }
1083
1084    // Update PHI Nodes
1085    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1086      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1087      MachineBasicBlock *PHIBB = PHI->getParent();
1088      assert(PHI->isPHI() &&
1089             "This is not a machine PHI node that we are updating!");
1090      // This is "default" BB. We have two jumps to it. From "header" BB and
1091      // from last "case" BB.
1092      if (PHIBB == SDB->BitTestCases[i].Default) {
1093        PHI->addOperand(MachineOperand::
1094                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1095        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1096        PHI->addOperand(MachineOperand::
1097                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1098        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1099                                                  back().ThisBB));
1100      }
1101      // One of "cases" BB.
1102      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1103           j != ej; ++j) {
1104        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1105        if (cBB->isSuccessor(PHIBB)) {
1106          PHI->addOperand(MachineOperand::
1107                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1108          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1109        }
1110      }
1111    }
1112  }
1113  SDB->BitTestCases.clear();
1114
1115  // If the JumpTable record is filled in, then we need to emit a jump table.
1116  // Updating the PHI nodes is tricky in this case, since we need to determine
1117  // whether the PHI is a successor of the range check MBB or the jump table MBB
1118  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1119    // Lower header first, if it wasn't already lowered
1120    if (!SDB->JTCases[i].first.Emitted) {
1121      // Set the current basic block to the mbb we wish to insert the code into
1122      BB = SDB->JTCases[i].first.HeaderBB;
1123      SDB->setCurrentBasicBlock(BB);
1124      // Emit the code
1125      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
1126      CurDAG->setRoot(SDB->getRoot());
1127      CodeGenAndEmitDAG();
1128      SDB->clear();
1129    }
1130
1131    // Set the current basic block to the mbb we wish to insert the code into
1132    BB = SDB->JTCases[i].second.MBB;
1133    SDB->setCurrentBasicBlock(BB);
1134    // Emit the code
1135    SDB->visitJumpTable(SDB->JTCases[i].second);
1136    CurDAG->setRoot(SDB->getRoot());
1137    CodeGenAndEmitDAG();
1138    SDB->clear();
1139
1140    // Update PHI Nodes
1141    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1142      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1143      MachineBasicBlock *PHIBB = PHI->getParent();
1144      assert(PHI->isPHI() &&
1145             "This is not a machine PHI node that we are updating!");
1146      // "default" BB. We can go there only from header BB.
1147      if (PHIBB == SDB->JTCases[i].second.Default) {
1148        PHI->addOperand
1149          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1150        PHI->addOperand
1151          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1152      }
1153      // JT BB. Just iterate over successors here
1154      if (BB->isSuccessor(PHIBB)) {
1155        PHI->addOperand
1156          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1157        PHI->addOperand(MachineOperand::CreateMBB(BB));
1158      }
1159    }
1160  }
1161  SDB->JTCases.clear();
1162
1163  // If the switch block involved a branch to one of the actual successors, we
1164  // need to update PHI nodes in that block.
1165  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1166    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1167    assert(PHI->isPHI() &&
1168           "This is not a machine PHI node that we are updating!");
1169    if (BB->isSuccessor(PHI->getParent())) {
1170      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1171                                                false));
1172      PHI->addOperand(MachineOperand::CreateMBB(BB));
1173    }
1174  }
1175
1176  // If we generated any switch lowering information, build and codegen any
1177  // additional DAGs necessary.
1178  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1179    // Set the current basic block to the mbb we wish to insert the code into
1180    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1181    SDB->setCurrentBasicBlock(BB);
1182
1183    // Emit the code
1184    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1185    CurDAG->setRoot(SDB->getRoot());
1186    CodeGenAndEmitDAG();
1187
1188    // Handle any PHI nodes in successors of this chunk, as if we were coming
1189    // from the original BB before switch expansion.  Note that PHI nodes can
1190    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1191    // handle them the right number of times.
1192    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1193      // If new BB's are created during scheduling, the edges may have been
1194      // updated. That is, the edge from ThisBB to BB may have been split and
1195      // BB's predecessor is now another block.
1196      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1197        SDB->EdgeMapping.find(BB);
1198      if (EI != SDB->EdgeMapping.end())
1199        ThisBB = EI->second;
1200
1201      // BB may have been removed from the CFG if a branch was constant folded.
1202      if (ThisBB->isSuccessor(BB)) {
1203        for (MachineBasicBlock::iterator Phi = BB->begin();
1204             Phi != BB->end() && Phi->isPHI();
1205             ++Phi) {
1206          // This value for this PHI node is recorded in PHINodesToUpdate.
1207          for (unsigned pn = 0; ; ++pn) {
1208            assert(pn != SDB->PHINodesToUpdate.size() &&
1209                   "Didn't find PHI entry!");
1210            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1211              Phi->addOperand(MachineOperand::
1212                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1213                                        false));
1214              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1215              break;
1216            }
1217          }
1218        }
1219      }
1220
1221      // Don't process RHS if same block as LHS.
1222      if (BB == SDB->SwitchCases[i].FalseBB)
1223        SDB->SwitchCases[i].FalseBB = 0;
1224
1225      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1226      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1227      SDB->SwitchCases[i].FalseBB = 0;
1228    }
1229    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1230    SDB->clear();
1231  }
1232  SDB->SwitchCases.clear();
1233
1234  SDB->PHINodesToUpdate.clear();
1235}
1236
1237
1238/// Create the scheduler. If a specific scheduler was specified
1239/// via the SchedulerRegistry, use it, otherwise select the
1240/// one preferred by the target.
1241///
1242ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1243  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1244
1245  if (!Ctor) {
1246    Ctor = ISHeuristic;
1247    RegisterScheduler::setDefault(Ctor);
1248  }
1249
1250  return Ctor(this, OptLevel);
1251}
1252
1253ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1254  return new ScheduleHazardRecognizer();
1255}
1256
1257//===----------------------------------------------------------------------===//
1258// Helper functions used by the generated instruction selector.
1259//===----------------------------------------------------------------------===//
1260// Calls to these methods are generated by tblgen.
1261
1262/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1263/// the dag combiner simplified the 255, we still want to match.  RHS is the
1264/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1265/// specified in the .td file (e.g. 255).
1266bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1267                                    int64_t DesiredMaskS) const {
1268  const APInt &ActualMask = RHS->getAPIntValue();
1269  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1270
1271  // If the actual mask exactly matches, success!
1272  if (ActualMask == DesiredMask)
1273    return true;
1274
1275  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1276  if (ActualMask.intersects(~DesiredMask))
1277    return false;
1278
1279  // Otherwise, the DAG Combiner may have proven that the value coming in is
1280  // either already zero or is not demanded.  Check for known zero input bits.
1281  APInt NeededMask = DesiredMask & ~ActualMask;
1282  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1283    return true;
1284
1285  // TODO: check to see if missing bits are just not demanded.
1286
1287  // Otherwise, this pattern doesn't match.
1288  return false;
1289}
1290
1291/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1292/// the dag combiner simplified the 255, we still want to match.  RHS is the
1293/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1294/// specified in the .td file (e.g. 255).
1295bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1296                                   int64_t DesiredMaskS) const {
1297  const APInt &ActualMask = RHS->getAPIntValue();
1298  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1299
1300  // If the actual mask exactly matches, success!
1301  if (ActualMask == DesiredMask)
1302    return true;
1303
1304  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1305  if (ActualMask.intersects(~DesiredMask))
1306    return false;
1307
1308  // Otherwise, the DAG Combiner may have proven that the value coming in is
1309  // either already zero or is not demanded.  Check for known zero input bits.
1310  APInt NeededMask = DesiredMask & ~ActualMask;
1311
1312  APInt KnownZero, KnownOne;
1313  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1314
1315  // If all the missing bits in the or are already known to be set, match!
1316  if ((NeededMask & KnownOne) == NeededMask)
1317    return true;
1318
1319  // TODO: check to see if missing bits are just not demanded.
1320
1321  // Otherwise, this pattern doesn't match.
1322  return false;
1323}
1324
1325
1326/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1327/// by tblgen.  Others should not call it.
1328void SelectionDAGISel::
1329SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1330  std::vector<SDValue> InOps;
1331  std::swap(InOps, Ops);
1332
1333  Ops.push_back(InOps[0]);  // input chain.
1334  Ops.push_back(InOps[1]);  // input asm string.
1335
1336  unsigned i = 2, e = InOps.size();
1337  if (InOps[e-1].getValueType() == MVT::Flag)
1338    --e;  // Don't process a flag operand if it is here.
1339
1340  while (i != e) {
1341    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1342    if ((Flags & 7) != 4 /*MEM*/) {
1343      // Just skip over this operand, copying the operands verbatim.
1344      Ops.insert(Ops.end(), InOps.begin()+i,
1345                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1346      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1347    } else {
1348      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1349             "Memory operand with multiple values?");
1350      // Otherwise, this is a memory operand.  Ask the target to select it.
1351      std::vector<SDValue> SelOps;
1352      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1353        llvm_report_error("Could not match memory address.  Inline asm"
1354                          " failure!");
1355      }
1356
1357      // Add this to the output node.
1358      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1359                                              MVT::i32));
1360      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1361      i += 2;
1362    }
1363  }
1364
1365  // Add the flag input back if present.
1366  if (e != InOps.size())
1367    Ops.push_back(InOps.back());
1368}
1369
1370/// findFlagUse - Return use of EVT::Flag value produced by the specified
1371/// SDNode.
1372///
1373static SDNode *findFlagUse(SDNode *N) {
1374  unsigned FlagResNo = N->getNumValues()-1;
1375  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1376    SDUse &Use = I.getUse();
1377    if (Use.getResNo() == FlagResNo)
1378      return Use.getUser();
1379  }
1380  return NULL;
1381}
1382
1383/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1384/// This function recursively traverses up the operand chain, ignoring
1385/// certain nodes.
1386static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1387                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1388                          bool IgnoreChains) {
1389  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1390  // greater than all of its (recursive) operands.  If we scan to a point where
1391  // 'use' is smaller than the node we're scanning for, then we know we will
1392  // never find it.
1393  //
1394  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1395  // happen because we scan down to newly selected nodes in the case of flag
1396  // uses.
1397  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1398    return false;
1399
1400  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1401  // won't fail if we scan it again.
1402  if (!Visited.insert(Use))
1403    return false;
1404
1405  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1406    // Ignore chain uses, they are validated by HandleMergeInputChains.
1407    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1408      continue;
1409
1410    SDNode *N = Use->getOperand(i).getNode();
1411    if (N == Def) {
1412      if (Use == ImmedUse || Use == Root)
1413        continue;  // We are not looking for immediate use.
1414      assert(N != Root);
1415      return true;
1416    }
1417
1418    // Traverse up the operand chain.
1419    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1420      return true;
1421  }
1422  return false;
1423}
1424
1425/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1426/// operand node N of U during instruction selection that starts at Root.
1427bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1428                                          SDNode *Root) const {
1429  if (OptLevel == CodeGenOpt::None) return false;
1430  return N.hasOneUse();
1431}
1432
1433/// IsLegalToFold - Returns true if the specific operand node N of
1434/// U can be folded during instruction selection that starts at Root.
1435bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1436                                     bool IgnoreChains) const {
1437  if (OptLevel == CodeGenOpt::None) return false;
1438
1439  // If Root use can somehow reach N through a path that that doesn't contain
1440  // U then folding N would create a cycle. e.g. In the following
1441  // diagram, Root can reach N through X. If N is folded into into Root, then
1442  // X is both a predecessor and a successor of U.
1443  //
1444  //          [N*]           //
1445  //         ^   ^           //
1446  //        /     \          //
1447  //      [U*]    [X]?       //
1448  //        ^     ^          //
1449  //         \   /           //
1450  //          \ /            //
1451  //         [Root*]         //
1452  //
1453  // * indicates nodes to be folded together.
1454  //
1455  // If Root produces a flag, then it gets (even more) interesting. Since it
1456  // will be "glued" together with its flag use in the scheduler, we need to
1457  // check if it might reach N.
1458  //
1459  //          [N*]           //
1460  //         ^   ^           //
1461  //        /     \          //
1462  //      [U*]    [X]?       //
1463  //        ^       ^        //
1464  //         \       \       //
1465  //          \      |       //
1466  //         [Root*] |       //
1467  //          ^      |       //
1468  //          f      |       //
1469  //          |      /       //
1470  //         [Y]    /        //
1471  //           ^   /         //
1472  //           f  /          //
1473  //           | /           //
1474  //          [FU]           //
1475  //
1476  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1477  // (call it Fold), then X is a predecessor of FU and a successor of
1478  // Fold. But since Fold and FU are flagged together, this will create
1479  // a cycle in the scheduling graph.
1480
1481  // If the node has flags, walk down the graph to the "lowest" node in the
1482  // flagged set.
1483  EVT VT = Root->getValueType(Root->getNumValues()-1);
1484  while (VT == MVT::Flag) {
1485    SDNode *FU = findFlagUse(Root);
1486    if (FU == NULL)
1487      break;
1488    Root = FU;
1489    VT = Root->getValueType(Root->getNumValues()-1);
1490
1491    // If our query node has a flag result with a use, we've walked up it.  If
1492    // the user (which has already been selected) has a chain or indirectly uses
1493    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1494    // this, we cannot ignore chains in this predicate.
1495    IgnoreChains = false;
1496  }
1497
1498
1499  SmallPtrSet<SDNode*, 16> Visited;
1500  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1501}
1502
1503SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1504  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1505  SelectInlineAsmMemoryOperands(Ops);
1506
1507  std::vector<EVT> VTs;
1508  VTs.push_back(MVT::Other);
1509  VTs.push_back(MVT::Flag);
1510  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1511                                VTs, &Ops[0], Ops.size());
1512  New->setNodeId(-1);
1513  return New.getNode();
1514}
1515
1516SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1517  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1518}
1519
1520SDNode *SelectionDAGISel::Select_EH_LABEL(SDNode *N) {
1521  SDValue Chain = N->getOperand(0);
1522  unsigned C = cast<LabelSDNode>(N)->getLabelID();
1523  SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);
1524  return CurDAG->SelectNodeTo(N, TargetOpcode::EH_LABEL,
1525                              MVT::Other, Tmp, Chain);
1526}
1527
1528/// GetVBR - decode a vbr encoding whose top bit is set.
1529ALWAYS_INLINE static uint64_t
1530GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1531  assert(Val >= 128 && "Not a VBR");
1532  Val &= 127;  // Remove first vbr bit.
1533
1534  unsigned Shift = 7;
1535  uint64_t NextBits;
1536  do {
1537    NextBits = MatcherTable[Idx++];
1538    Val |= (NextBits&127) << Shift;
1539    Shift += 7;
1540  } while (NextBits & 128);
1541
1542  return Val;
1543}
1544
1545
1546/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1547/// interior flag and chain results to use the new flag and chain results.
1548void SelectionDAGISel::
1549UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1550                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1551                     SDValue InputFlag,
1552                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1553                     bool isMorphNodeTo) {
1554  SmallVector<SDNode*, 4> NowDeadNodes;
1555
1556  ISelUpdater ISU(ISelPosition);
1557
1558  // Now that all the normal results are replaced, we replace the chain and
1559  // flag results if present.
1560  if (!ChainNodesMatched.empty()) {
1561    assert(InputChain.getNode() != 0 &&
1562           "Matched input chains but didn't produce a chain");
1563    // Loop over all of the nodes we matched that produced a chain result.
1564    // Replace all the chain results with the final chain we ended up with.
1565    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1566      SDNode *ChainNode = ChainNodesMatched[i];
1567
1568      // If this node was already deleted, don't look at it.
1569      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1570        continue;
1571
1572      // Don't replace the results of the root node if we're doing a
1573      // MorphNodeTo.
1574      if (ChainNode == NodeToMatch && isMorphNodeTo)
1575        continue;
1576
1577      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1578      if (ChainVal.getValueType() == MVT::Flag)
1579        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1580      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1581      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1582
1583      // If the node became dead, delete it.
1584      if (ChainNode->use_empty())
1585        NowDeadNodes.push_back(ChainNode);
1586    }
1587  }
1588
1589  // If the result produces a flag, update any flag results in the matched
1590  // pattern with the flag result.
1591  if (InputFlag.getNode() != 0) {
1592    // Handle any interior nodes explicitly marked.
1593    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1594      SDNode *FRN = FlagResultNodesMatched[i];
1595
1596      // If this node was already deleted, don't look at it.
1597      if (FRN->getOpcode() == ISD::DELETED_NODE)
1598        continue;
1599
1600      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1601             "Doesn't have a flag result");
1602      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1603                                        InputFlag, &ISU);
1604
1605      // If the node became dead, delete it.
1606      if (FRN->use_empty())
1607        NowDeadNodes.push_back(FRN);
1608    }
1609  }
1610
1611  if (!NowDeadNodes.empty())
1612    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1613
1614  DEBUG(errs() << "ISEL: Match complete!\n");
1615}
1616
1617enum ChainResult {
1618  CR_Simple,
1619  CR_InducesCycle,
1620  CR_LeadsToInteriorNode
1621};
1622
1623/// WalkChainUsers - Walk down the users of the specified chained node that is
1624/// part of the pattern we're matching, looking at all of the users we find.
1625/// This determines whether something is an interior node, whether we have a
1626/// non-pattern node in between two pattern nodes (which prevent folding because
1627/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1628/// between pattern nodes (in which case the TF becomes part of the pattern).
1629///
1630/// The walk we do here is guaranteed to be small because we quickly get down to
1631/// already selected nodes "below" us.
1632static ChainResult
1633WalkChainUsers(SDNode *ChainedNode,
1634               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1635               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1636  ChainResult Result = CR_Simple;
1637
1638  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1639         E = ChainedNode->use_end(); UI != E; ++UI) {
1640    // Make sure the use is of the chain, not some other value we produce.
1641    if (UI.getUse().getValueType() != MVT::Other) continue;
1642
1643    SDNode *User = *UI;
1644
1645    // If we see an already-selected machine node, then we've gone beyond the
1646    // pattern that we're selecting down into the already selected chunk of the
1647    // DAG.
1648    if (User->isMachineOpcode() ||
1649        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1650      continue;
1651
1652    if (User->getOpcode() == ISD::CopyToReg ||
1653        User->getOpcode() == ISD::CopyFromReg ||
1654        User->getOpcode() == ISD::INLINEASM) {
1655      // If their node ID got reset to -1 then they've already been selected.
1656      // Treat them like a MachineOpcode.
1657      if (User->getNodeId() == -1)
1658        continue;
1659    }
1660
1661    // If we have a TokenFactor, we handle it specially.
1662    if (User->getOpcode() != ISD::TokenFactor) {
1663      // If the node isn't a token factor and isn't part of our pattern, then it
1664      // must be a random chained node in between two nodes we're selecting.
1665      // This happens when we have something like:
1666      //   x = load ptr
1667      //   call
1668      //   y = x+4
1669      //   store y -> ptr
1670      // Because we structurally match the load/store as a read/modify/write,
1671      // but the call is chained between them.  We cannot fold in this case
1672      // because it would induce a cycle in the graph.
1673      if (!std::count(ChainedNodesInPattern.begin(),
1674                      ChainedNodesInPattern.end(), User))
1675        return CR_InducesCycle;
1676
1677      // Otherwise we found a node that is part of our pattern.  For example in:
1678      //   x = load ptr
1679      //   y = x+4
1680      //   store y -> ptr
1681      // This would happen when we're scanning down from the load and see the
1682      // store as a user.  Record that there is a use of ChainedNode that is
1683      // part of the pattern and keep scanning uses.
1684      Result = CR_LeadsToInteriorNode;
1685      InteriorChainedNodes.push_back(User);
1686      continue;
1687    }
1688
1689    // If we found a TokenFactor, there are two cases to consider: first if the
1690    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1691    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1692    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1693    //     [Load chain]
1694    //         ^
1695    //         |
1696    //       [Load]
1697    //       ^    ^
1698    //       |    \                    DAG's like cheese
1699    //      /       \                       do you?
1700    //     /         |
1701    // [TokenFactor] [Op]
1702    //     ^          ^
1703    //     |          |
1704    //      \        /
1705    //       \      /
1706    //       [Store]
1707    //
1708    // In this case, the TokenFactor becomes part of our match and we rewrite it
1709    // as a new TokenFactor.
1710    //
1711    // To distinguish these two cases, do a recursive walk down the uses.
1712    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1713    case CR_Simple:
1714      // If the uses of the TokenFactor are just already-selected nodes, ignore
1715      // it, it is "below" our pattern.
1716      continue;
1717    case CR_InducesCycle:
1718      // If the uses of the TokenFactor lead to nodes that are not part of our
1719      // pattern that are not selected, folding would turn this into a cycle,
1720      // bail out now.
1721      return CR_InducesCycle;
1722    case CR_LeadsToInteriorNode:
1723      break;  // Otherwise, keep processing.
1724    }
1725
1726    // Okay, we know we're in the interesting interior case.  The TokenFactor
1727    // is now going to be considered part of the pattern so that we rewrite its
1728    // uses (it may have uses that are not part of the pattern) with the
1729    // ultimate chain result of the generated code.  We will also add its chain
1730    // inputs as inputs to the ultimate TokenFactor we create.
1731    Result = CR_LeadsToInteriorNode;
1732    ChainedNodesInPattern.push_back(User);
1733    InteriorChainedNodes.push_back(User);
1734    continue;
1735  }
1736
1737  return Result;
1738}
1739
1740/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1741/// operation for when the pattern matched at least one node with a chains.  The
1742/// input vector contains a list of all of the chained nodes that we match.  We
1743/// must determine if this is a valid thing to cover (i.e. matching it won't
1744/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1745/// be used as the input node chain for the generated nodes.
1746static SDValue
1747HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1748                       SelectionDAG *CurDAG) {
1749  // Walk all of the chained nodes we've matched, recursively scanning down the
1750  // users of the chain result. This adds any TokenFactor nodes that are caught
1751  // in between chained nodes to the chained and interior nodes list.
1752  SmallVector<SDNode*, 3> InteriorChainedNodes;
1753  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1754    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1755                       InteriorChainedNodes) == CR_InducesCycle)
1756      return SDValue(); // Would induce a cycle.
1757  }
1758
1759  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1760  // that we are interested in.  Form our input TokenFactor node.
1761  SmallVector<SDValue, 3> InputChains;
1762  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1763    // Add the input chain of this node to the InputChains list (which will be
1764    // the operands of the generated TokenFactor) if it's not an interior node.
1765    SDNode *N = ChainNodesMatched[i];
1766    if (N->getOpcode() != ISD::TokenFactor) {
1767      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1768        continue;
1769
1770      // Otherwise, add the input chain.
1771      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1772      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1773      InputChains.push_back(InChain);
1774      continue;
1775    }
1776
1777    // If we have a token factor, we want to add all inputs of the token factor
1778    // that are not part of the pattern we're matching.
1779    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1780      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1781                      N->getOperand(op).getNode()))
1782        InputChains.push_back(N->getOperand(op));
1783    }
1784  }
1785
1786  SDValue Res;
1787  if (InputChains.size() == 1)
1788    return InputChains[0];
1789  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1790                         MVT::Other, &InputChains[0], InputChains.size());
1791}
1792
1793/// MorphNode - Handle morphing a node in place for the selector.
1794SDNode *SelectionDAGISel::
1795MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1796          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1797  // It is possible we're using MorphNodeTo to replace a node with no
1798  // normal results with one that has a normal result (or we could be
1799  // adding a chain) and the input could have flags and chains as well.
1800  // In this case we need to shifting the operands down.
1801  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1802  // than the old isel though.  We should sink this into MorphNodeTo.
1803  int OldFlagResultNo = -1, OldChainResultNo = -1;
1804
1805  unsigned NTMNumResults = Node->getNumValues();
1806  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1807    OldFlagResultNo = NTMNumResults-1;
1808    if (NTMNumResults != 1 &&
1809        Node->getValueType(NTMNumResults-2) == MVT::Other)
1810      OldChainResultNo = NTMNumResults-2;
1811  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1812    OldChainResultNo = NTMNumResults-1;
1813
1814  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1815  // that this deletes operands of the old node that become dead.
1816  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1817
1818  // MorphNodeTo can operate in two ways: if an existing node with the
1819  // specified operands exists, it can just return it.  Otherwise, it
1820  // updates the node in place to have the requested operands.
1821  if (Res == Node) {
1822    // If we updated the node in place, reset the node ID.  To the isel,
1823    // this should be just like a newly allocated machine node.
1824    Res->setNodeId(-1);
1825  }
1826
1827  unsigned ResNumResults = Res->getNumValues();
1828  // Move the flag if needed.
1829  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1830      (unsigned)OldFlagResultNo != ResNumResults-1)
1831    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1832                                      SDValue(Res, ResNumResults-1));
1833
1834  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1835  --ResNumResults;
1836
1837  // Move the chain reference if needed.
1838  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1839      (unsigned)OldChainResultNo != ResNumResults-1)
1840    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1841                                      SDValue(Res, ResNumResults-1));
1842
1843  // Otherwise, no replacement happened because the node already exists. Replace
1844  // Uses of the old node with the new one.
1845  if (Res != Node)
1846    CurDAG->ReplaceAllUsesWith(Node, Res);
1847
1848  return Res;
1849}
1850
1851/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1852ALWAYS_INLINE static bool
1853CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1854          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1855  // Accept if it is exactly the same as a previously recorded node.
1856  unsigned RecNo = MatcherTable[MatcherIndex++];
1857  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1858  return N == RecordedNodes[RecNo];
1859}
1860
1861/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1862ALWAYS_INLINE static bool
1863CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1864                      SelectionDAGISel &SDISel) {
1865  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1866}
1867
1868/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1869ALWAYS_INLINE static bool
1870CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1871                   SelectionDAGISel &SDISel, SDNode *N) {
1872  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1873}
1874
1875ALWAYS_INLINE static bool
1876CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1877            SDNode *N) {
1878  return N->getOpcode() == MatcherTable[MatcherIndex++];
1879}
1880
1881ALWAYS_INLINE static bool
1882CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1883          SDValue N, const TargetLowering &TLI) {
1884  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1885  if (N.getValueType() == VT) return true;
1886
1887  // Handle the case when VT is iPTR.
1888  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1889}
1890
1891ALWAYS_INLINE static bool
1892CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1893               SDValue N, const TargetLowering &TLI,
1894               unsigned ChildNo) {
1895  if (ChildNo >= N.getNumOperands())
1896    return false;  // Match fails if out of range child #.
1897  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1898}
1899
1900
1901ALWAYS_INLINE static bool
1902CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1903              SDValue N) {
1904  return cast<CondCodeSDNode>(N)->get() ==
1905      (ISD::CondCode)MatcherTable[MatcherIndex++];
1906}
1907
1908ALWAYS_INLINE static bool
1909CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1910               SDValue N, const TargetLowering &TLI) {
1911  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1912  if (cast<VTSDNode>(N)->getVT() == VT)
1913    return true;
1914
1915  // Handle the case when VT is iPTR.
1916  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1917}
1918
1919ALWAYS_INLINE static bool
1920CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1921             SDValue N) {
1922  int64_t Val = MatcherTable[MatcherIndex++];
1923  if (Val & 128)
1924    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1925
1926  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1927  return C != 0 && C->getSExtValue() == Val;
1928}
1929
1930ALWAYS_INLINE static bool
1931CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1932            SDValue N, SelectionDAGISel &SDISel) {
1933  int64_t Val = MatcherTable[MatcherIndex++];
1934  if (Val & 128)
1935    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1936
1937  if (N->getOpcode() != ISD::AND) return false;
1938
1939  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1940  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1941}
1942
1943ALWAYS_INLINE static bool
1944CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1945           SDValue N, SelectionDAGISel &SDISel) {
1946  int64_t Val = MatcherTable[MatcherIndex++];
1947  if (Val & 128)
1948    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1949
1950  if (N->getOpcode() != ISD::OR) return false;
1951
1952  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1953  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1954}
1955
1956/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1957/// scope, evaluate the current node.  If the current predicate is known to
1958/// fail, set Result=true and return anything.  If the current predicate is
1959/// known to pass, set Result=false and return the MatcherIndex to continue
1960/// with.  If the current predicate is unknown, set Result=false and return the
1961/// MatcherIndex to continue with.
1962static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1963                                       unsigned Index, SDValue N,
1964                                       bool &Result, SelectionDAGISel &SDISel,
1965                                       SmallVectorImpl<SDValue> &RecordedNodes){
1966  switch (Table[Index++]) {
1967  default:
1968    Result = false;
1969    return Index-1;  // Could not evaluate this predicate.
1970  case SelectionDAGISel::OPC_CheckSame:
1971    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1972    return Index;
1973  case SelectionDAGISel::OPC_CheckPatternPredicate:
1974    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1975    return Index;
1976  case SelectionDAGISel::OPC_CheckPredicate:
1977    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1978    return Index;
1979  case SelectionDAGISel::OPC_CheckOpcode:
1980    Result = !::CheckOpcode(Table, Index, N.getNode());
1981    return Index;
1982  case SelectionDAGISel::OPC_CheckType:
1983    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1984    return Index;
1985  case SelectionDAGISel::OPC_CheckChild0Type:
1986  case SelectionDAGISel::OPC_CheckChild1Type:
1987  case SelectionDAGISel::OPC_CheckChild2Type:
1988  case SelectionDAGISel::OPC_CheckChild3Type:
1989  case SelectionDAGISel::OPC_CheckChild4Type:
1990  case SelectionDAGISel::OPC_CheckChild5Type:
1991  case SelectionDAGISel::OPC_CheckChild6Type:
1992  case SelectionDAGISel::OPC_CheckChild7Type:
1993    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1994                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1995    return Index;
1996  case SelectionDAGISel::OPC_CheckCondCode:
1997    Result = !::CheckCondCode(Table, Index, N);
1998    return Index;
1999  case SelectionDAGISel::OPC_CheckValueType:
2000    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2001    return Index;
2002  case SelectionDAGISel::OPC_CheckInteger:
2003    Result = !::CheckInteger(Table, Index, N);
2004    return Index;
2005  case SelectionDAGISel::OPC_CheckAndImm:
2006    Result = !::CheckAndImm(Table, Index, N, SDISel);
2007    return Index;
2008  case SelectionDAGISel::OPC_CheckOrImm:
2009    Result = !::CheckOrImm(Table, Index, N, SDISel);
2010    return Index;
2011  }
2012}
2013
2014
2015struct MatchScope {
2016  /// FailIndex - If this match fails, this is the index to continue with.
2017  unsigned FailIndex;
2018
2019  /// NodeStack - The node stack when the scope was formed.
2020  SmallVector<SDValue, 4> NodeStack;
2021
2022  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2023  unsigned NumRecordedNodes;
2024
2025  /// NumMatchedMemRefs - The number of matched memref entries.
2026  unsigned NumMatchedMemRefs;
2027
2028  /// InputChain/InputFlag - The current chain/flag
2029  SDValue InputChain, InputFlag;
2030
2031  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2032  bool HasChainNodesMatched, HasFlagResultNodesMatched;
2033};
2034
2035SDNode *SelectionDAGISel::
2036SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2037                 unsigned TableSize) {
2038  // FIXME: Should these even be selected?  Handle these cases in the caller?
2039  switch (NodeToMatch->getOpcode()) {
2040  default:
2041    break;
2042  case ISD::EntryToken:       // These nodes remain the same.
2043  case ISD::BasicBlock:
2044  case ISD::Register:
2045  case ISD::HANDLENODE:
2046  case ISD::TargetConstant:
2047  case ISD::TargetConstantFP:
2048  case ISD::TargetConstantPool:
2049  case ISD::TargetFrameIndex:
2050  case ISD::TargetExternalSymbol:
2051  case ISD::TargetBlockAddress:
2052  case ISD::TargetJumpTable:
2053  case ISD::TargetGlobalTLSAddress:
2054  case ISD::TargetGlobalAddress:
2055  case ISD::TokenFactor:
2056  case ISD::CopyFromReg:
2057  case ISD::CopyToReg:
2058    NodeToMatch->setNodeId(-1); // Mark selected.
2059    return 0;
2060  case ISD::AssertSext:
2061  case ISD::AssertZext:
2062    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2063                                      NodeToMatch->getOperand(0));
2064    return 0;
2065  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2066  case ISD::EH_LABEL:  return Select_EH_LABEL(NodeToMatch);
2067  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2068  }
2069
2070  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2071
2072  // Set up the node stack with NodeToMatch as the only node on the stack.
2073  SmallVector<SDValue, 8> NodeStack;
2074  SDValue N = SDValue(NodeToMatch, 0);
2075  NodeStack.push_back(N);
2076
2077  // MatchScopes - Scopes used when matching, if a match failure happens, this
2078  // indicates where to continue checking.
2079  SmallVector<MatchScope, 8> MatchScopes;
2080
2081  // RecordedNodes - This is the set of nodes that have been recorded by the
2082  // state machine.
2083  SmallVector<SDValue, 8> RecordedNodes;
2084
2085  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2086  // pattern.
2087  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2088
2089  // These are the current input chain and flag for use when generating nodes.
2090  // Various Emit operations change these.  For example, emitting a copytoreg
2091  // uses and updates these.
2092  SDValue InputChain, InputFlag;
2093
2094  // ChainNodesMatched - If a pattern matches nodes that have input/output
2095  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2096  // which ones they are.  The result is captured into this list so that we can
2097  // update the chain results when the pattern is complete.
2098  SmallVector<SDNode*, 3> ChainNodesMatched;
2099  SmallVector<SDNode*, 3> FlagResultNodesMatched;
2100
2101  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2102        NodeToMatch->dump(CurDAG);
2103        errs() << '\n');
2104
2105  // Determine where to start the interpreter.  Normally we start at opcode #0,
2106  // but if the state machine starts with an OPC_SwitchOpcode, then we
2107  // accelerate the first lookup (which is guaranteed to be hot) with the
2108  // OpcodeOffset table.
2109  unsigned MatcherIndex = 0;
2110
2111  if (!OpcodeOffset.empty()) {
2112    // Already computed the OpcodeOffset table, just index into it.
2113    if (N.getOpcode() < OpcodeOffset.size())
2114      MatcherIndex = OpcodeOffset[N.getOpcode()];
2115    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2116
2117  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2118    // Otherwise, the table isn't computed, but the state machine does start
2119    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2120    // is the first time we're selecting an instruction.
2121    unsigned Idx = 1;
2122    while (1) {
2123      // Get the size of this case.
2124      unsigned CaseSize = MatcherTable[Idx++];
2125      if (CaseSize & 128)
2126        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2127      if (CaseSize == 0) break;
2128
2129      // Get the opcode, add the index to the table.
2130      unsigned Opc = MatcherTable[Idx++];
2131      if (Opc >= OpcodeOffset.size())
2132        OpcodeOffset.resize((Opc+1)*2);
2133      OpcodeOffset[Opc] = Idx;
2134      Idx += CaseSize;
2135    }
2136
2137    // Okay, do the lookup for the first opcode.
2138    if (N.getOpcode() < OpcodeOffset.size())
2139      MatcherIndex = OpcodeOffset[N.getOpcode()];
2140  }
2141
2142  while (1) {
2143    assert(MatcherIndex < TableSize && "Invalid index");
2144    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2145    switch (Opcode) {
2146    case OPC_Scope: {
2147      // Okay, the semantics of this operation are that we should push a scope
2148      // then evaluate the first child.  However, pushing a scope only to have
2149      // the first check fail (which then pops it) is inefficient.  If we can
2150      // determine immediately that the first check (or first several) will
2151      // immediately fail, don't even bother pushing a scope for them.
2152      unsigned FailIndex;
2153
2154      while (1) {
2155        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2156        if (NumToSkip & 128)
2157          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2158        // Found the end of the scope with no match.
2159        if (NumToSkip == 0) {
2160          FailIndex = 0;
2161          break;
2162        }
2163
2164        FailIndex = MatcherIndex+NumToSkip;
2165
2166        // If we can't evaluate this predicate without pushing a scope (e.g. if
2167        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2168        // push the scope and evaluate the full predicate chain.
2169        bool Result;
2170        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2171                                              Result, *this, RecordedNodes);
2172        if (!Result)
2173          break;
2174
2175        DEBUG(errs() << "  Skipped scope entry at index " << MatcherIndex
2176              << " continuing at " << FailIndex << "\n");
2177
2178
2179        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2180        // move to the next case.
2181        MatcherIndex = FailIndex;
2182      }
2183
2184      // If the whole scope failed to match, bail.
2185      if (FailIndex == 0) break;
2186
2187      // Push a MatchScope which indicates where to go if the first child fails
2188      // to match.
2189      MatchScope NewEntry;
2190      NewEntry.FailIndex = FailIndex;
2191      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2192      NewEntry.NumRecordedNodes = RecordedNodes.size();
2193      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2194      NewEntry.InputChain = InputChain;
2195      NewEntry.InputFlag = InputFlag;
2196      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2197      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2198      MatchScopes.push_back(NewEntry);
2199      continue;
2200    }
2201    case OPC_RecordNode:
2202      // Remember this node, it may end up being an operand in the pattern.
2203      RecordedNodes.push_back(N);
2204      continue;
2205
2206    case OPC_RecordChild0: case OPC_RecordChild1:
2207    case OPC_RecordChild2: case OPC_RecordChild3:
2208    case OPC_RecordChild4: case OPC_RecordChild5:
2209    case OPC_RecordChild6: case OPC_RecordChild7: {
2210      unsigned ChildNo = Opcode-OPC_RecordChild0;
2211      if (ChildNo >= N.getNumOperands())
2212        break;  // Match fails if out of range child #.
2213
2214      RecordedNodes.push_back(N->getOperand(ChildNo));
2215      continue;
2216    }
2217    case OPC_RecordMemRef:
2218      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2219      continue;
2220
2221    case OPC_CaptureFlagInput:
2222      // If the current node has an input flag, capture it in InputFlag.
2223      if (N->getNumOperands() != 0 &&
2224          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2225        InputFlag = N->getOperand(N->getNumOperands()-1);
2226      continue;
2227
2228    case OPC_MoveChild: {
2229      unsigned ChildNo = MatcherTable[MatcherIndex++];
2230      if (ChildNo >= N.getNumOperands())
2231        break;  // Match fails if out of range child #.
2232      N = N.getOperand(ChildNo);
2233      NodeStack.push_back(N);
2234      continue;
2235    }
2236
2237    case OPC_MoveParent:
2238      // Pop the current node off the NodeStack.
2239      NodeStack.pop_back();
2240      assert(!NodeStack.empty() && "Node stack imbalance!");
2241      N = NodeStack.back();
2242      continue;
2243
2244    case OPC_CheckSame:
2245      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2246      continue;
2247    case OPC_CheckPatternPredicate:
2248      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2249      continue;
2250    case OPC_CheckPredicate:
2251      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2252                                N.getNode()))
2253        break;
2254      continue;
2255    case OPC_CheckComplexPat: {
2256      unsigned CPNum = MatcherTable[MatcherIndex++];
2257      unsigned RecNo = MatcherTable[MatcherIndex++];
2258      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2259      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2260                               RecordedNodes))
2261        break;
2262      continue;
2263    }
2264    case OPC_CheckOpcode:
2265      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2266      continue;
2267
2268    case OPC_CheckType:
2269      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2270      continue;
2271
2272    case OPC_SwitchOpcode: {
2273      unsigned CurNodeOpcode = N.getOpcode();
2274      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2275      unsigned CaseSize;
2276      while (1) {
2277        // Get the size of this case.
2278        CaseSize = MatcherTable[MatcherIndex++];
2279        if (CaseSize & 128)
2280          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2281        if (CaseSize == 0) break;
2282
2283        // If the opcode matches, then we will execute this case.
2284        if (CurNodeOpcode == MatcherTable[MatcherIndex++])
2285          break;
2286
2287        // Otherwise, skip over this case.
2288        MatcherIndex += CaseSize;
2289      }
2290
2291      // If no cases matched, bail out.
2292      if (CaseSize == 0) break;
2293
2294      // Otherwise, execute the case we found.
2295      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2296                   << " to " << MatcherIndex << "\n");
2297      continue;
2298    }
2299
2300    case OPC_SwitchType: {
2301      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2302      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2303      unsigned CaseSize;
2304      while (1) {
2305        // Get the size of this case.
2306        CaseSize = MatcherTable[MatcherIndex++];
2307        if (CaseSize & 128)
2308          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2309        if (CaseSize == 0) break;
2310
2311        MVT::SimpleValueType CaseVT =
2312          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2313        if (CaseVT == MVT::iPTR)
2314          CaseVT = TLI.getPointerTy().SimpleTy;
2315
2316        // If the VT matches, then we will execute this case.
2317        if (CurNodeVT == CaseVT)
2318          break;
2319
2320        // Otherwise, skip over this case.
2321        MatcherIndex += CaseSize;
2322      }
2323
2324      // If no cases matched, bail out.
2325      if (CaseSize == 0) break;
2326
2327      // Otherwise, execute the case we found.
2328      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2329                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2330      continue;
2331    }
2332    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2333    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2334    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2335    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2336      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2337                            Opcode-OPC_CheckChild0Type))
2338        break;
2339      continue;
2340    case OPC_CheckCondCode:
2341      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2342      continue;
2343    case OPC_CheckValueType:
2344      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2345      continue;
2346    case OPC_CheckInteger:
2347      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2348      continue;
2349    case OPC_CheckAndImm:
2350      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2351      continue;
2352    case OPC_CheckOrImm:
2353      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2354      continue;
2355
2356    case OPC_CheckFoldableChainNode: {
2357      assert(NodeStack.size() != 1 && "No parent node");
2358      // Verify that all intermediate nodes between the root and this one have
2359      // a single use.
2360      bool HasMultipleUses = false;
2361      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2362        if (!NodeStack[i].hasOneUse()) {
2363          HasMultipleUses = true;
2364          break;
2365        }
2366      if (HasMultipleUses) break;
2367
2368      // Check to see that the target thinks this is profitable to fold and that
2369      // we can fold it without inducing cycles in the graph.
2370      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2371                              NodeToMatch) ||
2372          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2373                         NodeToMatch, true/*We validate our own chains*/))
2374        break;
2375
2376      continue;
2377    }
2378    case OPC_EmitInteger: {
2379      MVT::SimpleValueType VT =
2380        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2381      int64_t Val = MatcherTable[MatcherIndex++];
2382      if (Val & 128)
2383        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2384      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2385      continue;
2386    }
2387    case OPC_EmitRegister: {
2388      MVT::SimpleValueType VT =
2389        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2390      unsigned RegNo = MatcherTable[MatcherIndex++];
2391      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2392      continue;
2393    }
2394
2395    case OPC_EmitConvertToTarget:  {
2396      // Convert from IMM/FPIMM to target version.
2397      unsigned RecNo = MatcherTable[MatcherIndex++];
2398      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2399      SDValue Imm = RecordedNodes[RecNo];
2400
2401      if (Imm->getOpcode() == ISD::Constant) {
2402        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2403        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2404      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2405        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2406        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2407      }
2408
2409      RecordedNodes.push_back(Imm);
2410      continue;
2411    }
2412
2413    case OPC_EmitMergeInputChains: {
2414      assert(InputChain.getNode() == 0 &&
2415             "EmitMergeInputChains should be the first chain producing node");
2416      // This node gets a list of nodes we matched in the input that have
2417      // chains.  We want to token factor all of the input chains to these nodes
2418      // together.  However, if any of the input chains is actually one of the
2419      // nodes matched in this pattern, then we have an intra-match reference.
2420      // Ignore these because the newly token factored chain should not refer to
2421      // the old nodes.
2422      unsigned NumChains = MatcherTable[MatcherIndex++];
2423      assert(NumChains != 0 && "Can't TF zero chains");
2424
2425      assert(ChainNodesMatched.empty() &&
2426             "Should only have one EmitMergeInputChains per match");
2427
2428      // Read all of the chained nodes.
2429      for (unsigned i = 0; i != NumChains; ++i) {
2430        unsigned RecNo = MatcherTable[MatcherIndex++];
2431        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2432        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2433
2434        // FIXME: What if other value results of the node have uses not matched
2435        // by this pattern?
2436        if (ChainNodesMatched.back() != NodeToMatch &&
2437            !RecordedNodes[RecNo].hasOneUse()) {
2438          ChainNodesMatched.clear();
2439          break;
2440        }
2441      }
2442
2443      // If the inner loop broke out, the match fails.
2444      if (ChainNodesMatched.empty())
2445        break;
2446
2447      // Merge the input chains if they are not intra-pattern references.
2448      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2449
2450      if (InputChain.getNode() == 0)
2451        break;  // Failed to merge.
2452
2453      continue;
2454    }
2455
2456    case OPC_EmitCopyToReg: {
2457      unsigned RecNo = MatcherTable[MatcherIndex++];
2458      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2459      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2460
2461      if (InputChain.getNode() == 0)
2462        InputChain = CurDAG->getEntryNode();
2463
2464      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2465                                        DestPhysReg, RecordedNodes[RecNo],
2466                                        InputFlag);
2467
2468      InputFlag = InputChain.getValue(1);
2469      continue;
2470    }
2471
2472    case OPC_EmitNodeXForm: {
2473      unsigned XFormNo = MatcherTable[MatcherIndex++];
2474      unsigned RecNo = MatcherTable[MatcherIndex++];
2475      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2476      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2477      continue;
2478    }
2479
2480    case OPC_EmitNode:
2481    case OPC_MorphNodeTo: {
2482      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2483      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2484      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2485      // Get the result VT list.
2486      unsigned NumVTs = MatcherTable[MatcherIndex++];
2487      SmallVector<EVT, 4> VTs;
2488      for (unsigned i = 0; i != NumVTs; ++i) {
2489        MVT::SimpleValueType VT =
2490          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2491        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2492        VTs.push_back(VT);
2493      }
2494
2495      if (EmitNodeInfo & OPFL_Chain)
2496        VTs.push_back(MVT::Other);
2497      if (EmitNodeInfo & OPFL_FlagOutput)
2498        VTs.push_back(MVT::Flag);
2499
2500      // This is hot code, so optimize the two most common cases of 1 and 2
2501      // results.
2502      SDVTList VTList;
2503      if (VTs.size() == 1)
2504        VTList = CurDAG->getVTList(VTs[0]);
2505      else if (VTs.size() == 2)
2506        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2507      else
2508        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2509
2510      // Get the operand list.
2511      unsigned NumOps = MatcherTable[MatcherIndex++];
2512      SmallVector<SDValue, 8> Ops;
2513      for (unsigned i = 0; i != NumOps; ++i) {
2514        unsigned RecNo = MatcherTable[MatcherIndex++];
2515        if (RecNo & 128)
2516          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2517
2518        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2519        Ops.push_back(RecordedNodes[RecNo]);
2520      }
2521
2522      // If there are variadic operands to add, handle them now.
2523      if (EmitNodeInfo & OPFL_VariadicInfo) {
2524        // Determine the start index to copy from.
2525        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2526        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2527        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2528               "Invalid variadic node");
2529        // Copy all of the variadic operands, not including a potential flag
2530        // input.
2531        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2532             i != e; ++i) {
2533          SDValue V = NodeToMatch->getOperand(i);
2534          if (V.getValueType() == MVT::Flag) break;
2535          Ops.push_back(V);
2536        }
2537      }
2538
2539      // If this has chain/flag inputs, add them.
2540      if (EmitNodeInfo & OPFL_Chain)
2541        Ops.push_back(InputChain);
2542      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2543        Ops.push_back(InputFlag);
2544
2545      // Create the node.
2546      SDNode *Res = 0;
2547      if (Opcode != OPC_MorphNodeTo) {
2548        // If this is a normal EmitNode command, just create the new node and
2549        // add the results to the RecordedNodes list.
2550        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2551                                     VTList, Ops.data(), Ops.size());
2552
2553        // Add all the non-flag/non-chain results to the RecordedNodes list.
2554        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2555          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2556          RecordedNodes.push_back(SDValue(Res, i));
2557        }
2558
2559      } else {
2560        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2561                        EmitNodeInfo);
2562      }
2563
2564      // If the node had chain/flag results, update our notion of the current
2565      // chain and flag.
2566      if (EmitNodeInfo & OPFL_FlagOutput) {
2567        InputFlag = SDValue(Res, VTs.size()-1);
2568        if (EmitNodeInfo & OPFL_Chain)
2569          InputChain = SDValue(Res, VTs.size()-2);
2570      } else if (EmitNodeInfo & OPFL_Chain)
2571        InputChain = SDValue(Res, VTs.size()-1);
2572
2573      // If the OPFL_MemRefs flag is set on this node, slap all of the
2574      // accumulated memrefs onto it.
2575      //
2576      // FIXME: This is vastly incorrect for patterns with multiple outputs
2577      // instructions that access memory and for ComplexPatterns that match
2578      // loads.
2579      if (EmitNodeInfo & OPFL_MemRefs) {
2580        MachineSDNode::mmo_iterator MemRefs =
2581          MF->allocateMemRefsArray(MatchedMemRefs.size());
2582        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2583        cast<MachineSDNode>(Res)
2584          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2585      }
2586
2587      DEBUG(errs() << "  "
2588                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2589                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2590
2591      // If this was a MorphNodeTo then we're completely done!
2592      if (Opcode == OPC_MorphNodeTo) {
2593        // Update chain and flag uses.
2594        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2595                             InputFlag, FlagResultNodesMatched, true);
2596        return Res;
2597      }
2598
2599      continue;
2600    }
2601
2602    case OPC_MarkFlagResults: {
2603      unsigned NumNodes = MatcherTable[MatcherIndex++];
2604
2605      // Read and remember all the flag-result nodes.
2606      for (unsigned i = 0; i != NumNodes; ++i) {
2607        unsigned RecNo = MatcherTable[MatcherIndex++];
2608        if (RecNo & 128)
2609          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2610
2611        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2612        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2613      }
2614      continue;
2615    }
2616
2617    case OPC_CompleteMatch: {
2618      // The match has been completed, and any new nodes (if any) have been
2619      // created.  Patch up references to the matched dag to use the newly
2620      // created nodes.
2621      unsigned NumResults = MatcherTable[MatcherIndex++];
2622
2623      for (unsigned i = 0; i != NumResults; ++i) {
2624        unsigned ResSlot = MatcherTable[MatcherIndex++];
2625        if (ResSlot & 128)
2626          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2627
2628        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2629        SDValue Res = RecordedNodes[ResSlot];
2630
2631        // FIXME2: Eliminate this horrible hack by fixing the 'Gen' program
2632        // after (parallel) on input patterns are removed.  This would also
2633        // allow us to stop encoding #results in OPC_CompleteMatch's table
2634        // entry.
2635        if (NodeToMatch->getNumValues() <= i ||
2636            NodeToMatch->getValueType(i) == MVT::Other ||
2637            NodeToMatch->getValueType(i) == MVT::Flag)
2638          break;
2639        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2640                NodeToMatch->getValueType(i) == MVT::iPTR ||
2641                Res.getValueType() == MVT::iPTR ||
2642                NodeToMatch->getValueType(i).getSizeInBits() ==
2643                    Res.getValueType().getSizeInBits()) &&
2644               "invalid replacement");
2645        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2646      }
2647
2648      // If the root node defines a flag, add it to the flag nodes to update
2649      // list.
2650      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2651        FlagResultNodesMatched.push_back(NodeToMatch);
2652
2653      // Update chain and flag uses.
2654      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2655                           InputFlag, FlagResultNodesMatched, false);
2656
2657      assert(NodeToMatch->use_empty() &&
2658             "Didn't replace all uses of the node?");
2659
2660      // FIXME: We just return here, which interacts correctly with SelectRoot
2661      // above.  We should fix this to not return an SDNode* anymore.
2662      return 0;
2663    }
2664    }
2665
2666    // If the code reached this point, then the match failed.  See if there is
2667    // another child to try in the current 'Scope', otherwise pop it until we
2668    // find a case to check.
2669    while (1) {
2670      if (MatchScopes.empty()) {
2671        CannotYetSelect(NodeToMatch);
2672        return 0;
2673      }
2674
2675      // Restore the interpreter state back to the point where the scope was
2676      // formed.
2677      MatchScope &LastScope = MatchScopes.back();
2678      RecordedNodes.resize(LastScope.NumRecordedNodes);
2679      NodeStack.clear();
2680      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2681      N = NodeStack.back();
2682
2683      DEBUG(errs() << "  Match failed at index " << MatcherIndex
2684                   << " continuing at " << LastScope.FailIndex << "\n");
2685
2686      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2687        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2688      MatcherIndex = LastScope.FailIndex;
2689
2690      InputChain = LastScope.InputChain;
2691      InputFlag = LastScope.InputFlag;
2692      if (!LastScope.HasChainNodesMatched)
2693        ChainNodesMatched.clear();
2694      if (!LastScope.HasFlagResultNodesMatched)
2695        FlagResultNodesMatched.clear();
2696
2697      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2698      // we have reached the end of this scope, otherwise we have another child
2699      // in the current scope to try.
2700      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2701      if (NumToSkip & 128)
2702        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2703
2704      // If we have another child in this scope to match, update FailIndex and
2705      // try it.
2706      if (NumToSkip != 0) {
2707        LastScope.FailIndex = MatcherIndex+NumToSkip;
2708        break;
2709      }
2710
2711      // End of this scope, pop it and try the next child in the containing
2712      // scope.
2713      MatchScopes.pop_back();
2714    }
2715  }
2716}
2717
2718
2719
2720void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2721  std::string msg;
2722  raw_string_ostream Msg(msg);
2723  Msg << "Cannot yet select: ";
2724
2725  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2726      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2727      N->getOpcode() != ISD::INTRINSIC_VOID) {
2728    N->printrFull(Msg, CurDAG);
2729  } else {
2730    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2731    unsigned iid =
2732      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2733    if (iid < Intrinsic::num_intrinsics)
2734      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2735    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2736      Msg << "target intrinsic %" << TII->getName(iid);
2737    else
2738      Msg << "unknown intrinsic #" << iid;
2739  }
2740  llvm_report_error(Msg.str());
2741}
2742
2743char SelectionDAGISel::ID = 0;
2744