SelectionDAGISel.cpp revision 50d2b1ac029d63500ea9b9347561b1454fa6ed6a
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/Statistic.h"
50#include <algorithm>
51using namespace llvm;
52
53STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
54STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
55
56static cl::opt<bool>
57EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
58          cl::desc("Enable verbose messages in the \"fast\" "
59                   "instruction selector"));
60static cl::opt<bool>
61EnableFastISelAbort("fast-isel-abort", cl::Hidden,
62          cl::desc("Enable abort calls when \"fast\" instruction fails"));
63
64#ifndef NDEBUG
65static cl::opt<bool>
66ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
67          cl::desc("Pop up a window to show dags before the first "
68                   "dag combine pass"));
69static cl::opt<bool>
70ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
71          cl::desc("Pop up a window to show dags before legalize types"));
72static cl::opt<bool>
73ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
74          cl::desc("Pop up a window to show dags before legalize"));
75static cl::opt<bool>
76ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the second "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before the post legalize types"
82                   " dag combine pass"));
83static cl::opt<bool>
84ViewISelDAGs("view-isel-dags", cl::Hidden,
85          cl::desc("Pop up a window to show isel dags as they are selected"));
86static cl::opt<bool>
87ViewSchedDAGs("view-sched-dags", cl::Hidden,
88          cl::desc("Pop up a window to show sched dags as they are processed"));
89static cl::opt<bool>
90ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
91      cl::desc("Pop up a window to show SUnit dags after they are processed"));
92#else
93static const bool ViewDAGCombine1 = false,
94                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
95                  ViewDAGCombine2 = false,
96                  ViewDAGCombineLT = false,
97                  ViewISelDAGs = false, ViewSchedDAGs = false,
98                  ViewSUnitDAGs = false;
99#endif
100
101//===---------------------------------------------------------------------===//
102///
103/// RegisterScheduler class - Track the registration of instruction schedulers.
104///
105//===---------------------------------------------------------------------===//
106MachinePassRegistry RegisterScheduler::Registry;
107
108//===---------------------------------------------------------------------===//
109///
110/// ISHeuristic command line option for instruction schedulers.
111///
112//===---------------------------------------------------------------------===//
113static cl::opt<RegisterScheduler::FunctionPassCtor, false,
114               RegisterPassParser<RegisterScheduler> >
115ISHeuristic("pre-RA-sched",
116            cl::init(&createDefaultScheduler),
117            cl::desc("Instruction schedulers available (before register"
118                     " allocation):"));
119
120static RegisterScheduler
121defaultListDAGScheduler("default", "Best scheduler for the target",
122                        createDefaultScheduler);
123
124namespace llvm {
125  //===--------------------------------------------------------------------===//
126  /// createDefaultScheduler - This creates an instruction scheduler appropriate
127  /// for the target.
128  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
129                                             CodeGenOpt::Level OptLevel) {
130    const TargetLowering &TLI = IS->getTargetLowering();
131
132    if (OptLevel == CodeGenOpt::None)
133      return createFastDAGScheduler(IS, OptLevel);
134    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
135      return createTDListDAGScheduler(IS, OptLevel);
136    assert(TLI.getSchedulingPreference() ==
137           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
138    return createBURRListDAGScheduler(IS, OptLevel);
139  }
140}
141
142// EmitInstrWithCustomInserter - This method should be implemented by targets
143// that mark instructions with the 'usesCustomInserter' flag.  These
144// instructions are special in various ways, which require special support to
145// insert.  The specified MachineInstr is created but not inserted into any
146// basic blocks, and this method is called to expand it into a sequence of
147// instructions, potentially also creating new basic blocks and control flow.
148// When new basic blocks are inserted and the edges from MBB to its successors
149// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
150// DenseMap.
151MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
152                                                         MachineBasicBlock *MBB,
153                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
154#ifndef NDEBUG
155  dbgs() << "If a target marks an instruction with "
156          "'usesCustomInserter', it must implement "
157          "TargetLowering::EmitInstrWithCustomInserter!";
158#endif
159  llvm_unreachable(0);
160  return 0;
161}
162
163//===----------------------------------------------------------------------===//
164// SelectionDAGISel code
165//===----------------------------------------------------------------------===//
166
167SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
168  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
169  FuncInfo(new FunctionLoweringInfo(TLI)),
170  CurDAG(new SelectionDAG(tm, *FuncInfo)),
171  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
172  GFI(),
173  OptLevel(OL),
174  DAGSize(0)
175{}
176
177SelectionDAGISel::~SelectionDAGISel() {
178  delete SDB;
179  delete CurDAG;
180  delete FuncInfo;
181}
182
183void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
184  AU.addRequired<AliasAnalysis>();
185  AU.addPreserved<AliasAnalysis>();
186  AU.addRequired<GCModuleInfo>();
187  AU.addPreserved<GCModuleInfo>();
188  MachineFunctionPass::getAnalysisUsage(AU);
189}
190
191bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
192  // Do some sanity-checking on the command-line options.
193  assert((!EnableFastISelVerbose || EnableFastISel) &&
194         "-fast-isel-verbose requires -fast-isel");
195  assert((!EnableFastISelAbort || EnableFastISel) &&
196         "-fast-isel-abort requires -fast-isel");
197
198  const Function &Fn = *mf.getFunction();
199  const TargetInstrInfo &TII = *TM.getInstrInfo();
200  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
201
202  MF = &mf;
203  RegInfo = &MF->getRegInfo();
204  AA = &getAnalysis<AliasAnalysis>();
205  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
206
207  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
208
209  CurDAG->init(*MF);
210  FuncInfo->set(Fn, *MF, EnableFastISel);
211  SDB->init(GFI, *AA);
212
213  SelectAllBasicBlocks(Fn);
214
215  // Release function-specific state. SDB and CurDAG are already cleared
216  // at this point.
217  FuncInfo->clear();
218
219  // If the first basic block in the function has live ins that need to be
220  // copied into vregs, emit the copies into the top of the block before
221  // emitting the code for the block.
222  RegInfo->EmitLiveInCopies(MF->begin(), TRI, TII);
223
224  return true;
225}
226
227/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
228/// attached with this instruction.
229static void SetDebugLoc(const Instruction *I, SelectionDAGBuilder *SDB,
230                        FastISel *FastIS, MachineFunction *MF) {
231  DebugLoc DL = I->getDebugLoc();
232  if (DL.isUnknown()) return;
233
234  SDB->setCurDebugLoc(DL);
235
236  if (FastIS)
237    FastIS->setCurDebugLoc(DL);
238
239  // If the function doesn't have a default debug location yet, set
240  // it. This is a total hack.
241  if (MF->getDefaultDebugLoc().isUnknown())
242    MF->setDefaultDebugLoc(DL);
243}
244
245/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
246static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
247  SDB->setCurDebugLoc(DebugLoc());
248  if (FastIS)
249    FastIS->setCurDebugLoc(DebugLoc());
250}
251
252void SelectionDAGISel::SelectBasicBlock(const BasicBlock *LLVMBB,
253                                        BasicBlock::const_iterator Begin,
254                                        BasicBlock::const_iterator End,
255                                        bool &HadTailCall) {
256  SDB->setCurrentBasicBlock(BB);
257
258  // Lower all of the non-terminator instructions. If a call is emitted
259  // as a tail call, cease emitting nodes for this block. Terminators
260  // are handled below.
261  for (BasicBlock::const_iterator I = Begin;
262       I != End && !SDB->HasTailCall && !isa<TerminatorInst>(I);
263       ++I) {
264    SetDebugLoc(I, SDB, 0, MF);
265    SDB->visit(*I);
266    ResetDebugLoc(SDB, 0);
267  }
268
269  if (!SDB->HasTailCall) {
270    // Ensure that all instructions which are used outside of their defining
271    // blocks are available as virtual registers.  Invoke is handled elsewhere.
272    for (BasicBlock::const_iterator I = Begin; I != End; ++I)
273      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
274        SDB->CopyToExportRegsIfNeeded(I);
275
276    // Handle PHI nodes in successor blocks.
277    if (End == LLVMBB->end()) {
278      HandlePHINodesInSuccessorBlocks(LLVMBB);
279
280      // Lower the terminator after the copies are emitted.
281      SetDebugLoc(LLVMBB->getTerminator(), SDB, 0, MF);
282      SDB->visit(*LLVMBB->getTerminator());
283      ResetDebugLoc(SDB, 0);
284    }
285  }
286
287  // Make sure the root of the DAG is up-to-date.
288  CurDAG->setRoot(SDB->getControlRoot());
289
290  // Final step, emit the lowered DAG as machine code.
291  CodeGenAndEmitDAG();
292  HadTailCall = SDB->HasTailCall;
293  SDB->clear();
294}
295
296namespace {
297/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
298/// nodes from the worklist.
299class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
300  SmallVector<SDNode*, 128> &Worklist;
301  SmallPtrSet<SDNode*, 128> &InWorklist;
302public:
303  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
304                       SmallPtrSet<SDNode*, 128> &inwl)
305    : Worklist(wl), InWorklist(inwl) {}
306
307  void RemoveFromWorklist(SDNode *N) {
308    if (!InWorklist.erase(N)) return;
309
310    SmallVector<SDNode*, 128>::iterator I =
311    std::find(Worklist.begin(), Worklist.end(), N);
312    assert(I != Worklist.end() && "Not in worklist");
313
314    *I = Worklist.back();
315    Worklist.pop_back();
316  }
317
318  virtual void NodeDeleted(SDNode *N, SDNode *E) {
319    RemoveFromWorklist(N);
320  }
321
322  virtual void NodeUpdated(SDNode *N) {
323    // Ignore updates.
324  }
325};
326}
327
328/// TrivialTruncElim - Eliminate some trivial nops that can result from
329/// ShrinkDemandedOps: (trunc (ext n)) -> n.
330static bool TrivialTruncElim(SDValue Op,
331                             TargetLowering::TargetLoweringOpt &TLO) {
332  SDValue N0 = Op.getOperand(0);
333  EVT VT = Op.getValueType();
334  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
335       N0.getOpcode() == ISD::SIGN_EXTEND ||
336       N0.getOpcode() == ISD::ANY_EXTEND) &&
337      N0.getOperand(0).getValueType() == VT) {
338    return TLO.CombineTo(Op, N0.getOperand(0));
339  }
340  return false;
341}
342
343/// ShrinkDemandedOps - A late transformation pass that shrink expressions
344/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
345/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
346void SelectionDAGISel::ShrinkDemandedOps() {
347  SmallVector<SDNode*, 128> Worklist;
348  SmallPtrSet<SDNode*, 128> InWorklist;
349
350  // Add all the dag nodes to the worklist.
351  Worklist.reserve(CurDAG->allnodes_size());
352  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
353       E = CurDAG->allnodes_end(); I != E; ++I) {
354    Worklist.push_back(I);
355    InWorklist.insert(I);
356  }
357
358  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true, true, true);
359  while (!Worklist.empty()) {
360    SDNode *N = Worklist.pop_back_val();
361    InWorklist.erase(N);
362
363    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
364      // Deleting this node may make its operands dead, add them to the worklist
365      // if they aren't already there.
366      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
367        if (InWorklist.insert(N->getOperand(i).getNode()))
368          Worklist.push_back(N->getOperand(i).getNode());
369
370      CurDAG->DeleteNode(N);
371      continue;
372    }
373
374    // Run ShrinkDemandedOp on scalar binary operations.
375    if (N->getNumValues() != 1 ||
376        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
377      continue;
378
379    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
380    APInt Demanded = APInt::getAllOnesValue(BitWidth);
381    APInt KnownZero, KnownOne;
382    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
383                                  KnownZero, KnownOne, TLO) &&
384        (N->getOpcode() != ISD::TRUNCATE ||
385         !TrivialTruncElim(SDValue(N, 0), TLO)))
386      continue;
387
388    // Revisit the node.
389    assert(!InWorklist.count(N) && "Already in worklist");
390    Worklist.push_back(N);
391    InWorklist.insert(N);
392
393    // Replace the old value with the new one.
394    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
395          TLO.Old.getNode()->dump(CurDAG);
396          errs() << "\nWith: ";
397          TLO.New.getNode()->dump(CurDAG);
398          errs() << '\n');
399
400    if (InWorklist.insert(TLO.New.getNode()))
401      Worklist.push_back(TLO.New.getNode());
402
403    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
404    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
405
406    if (!TLO.Old.getNode()->use_empty()) continue;
407
408    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
409         i != e; ++i) {
410      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
411      if (OpNode->hasOneUse()) {
412        // Add OpNode to the end of the list to revisit.
413        DeadNodes.RemoveFromWorklist(OpNode);
414        Worklist.push_back(OpNode);
415        InWorklist.insert(OpNode);
416      }
417    }
418
419    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
420    CurDAG->DeleteNode(TLO.Old.getNode());
421  }
422}
423
424void SelectionDAGISel::ComputeLiveOutVRegInfo() {
425  SmallPtrSet<SDNode*, 128> VisitedNodes;
426  SmallVector<SDNode*, 128> Worklist;
427
428  Worklist.push_back(CurDAG->getRoot().getNode());
429
430  APInt Mask;
431  APInt KnownZero;
432  APInt KnownOne;
433
434  do {
435    SDNode *N = Worklist.pop_back_val();
436
437    // If we've already seen this node, ignore it.
438    if (!VisitedNodes.insert(N))
439      continue;
440
441    // Otherwise, add all chain operands to the worklist.
442    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
443      if (N->getOperand(i).getValueType() == MVT::Other)
444        Worklist.push_back(N->getOperand(i).getNode());
445
446    // If this is a CopyToReg with a vreg dest, process it.
447    if (N->getOpcode() != ISD::CopyToReg)
448      continue;
449
450    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
451    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
452      continue;
453
454    // Ignore non-scalar or non-integer values.
455    SDValue Src = N->getOperand(2);
456    EVT SrcVT = Src.getValueType();
457    if (!SrcVT.isInteger() || SrcVT.isVector())
458      continue;
459
460    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
461    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
462    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
463
464    // Only install this information if it tells us something.
465    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
466      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
467      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
468        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
469      FunctionLoweringInfo::LiveOutInfo &LOI =
470        FuncInfo->LiveOutRegInfo[DestReg];
471      LOI.NumSignBits = NumSignBits;
472      LOI.KnownOne = KnownOne;
473      LOI.KnownZero = KnownZero;
474    }
475  } while (!Worklist.empty());
476}
477
478void SelectionDAGISel::CodeGenAndEmitDAG() {
479  std::string GroupName;
480  if (TimePassesIsEnabled)
481    GroupName = "Instruction Selection and Scheduling";
482  std::string BlockName;
483  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
484      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
485      ViewSUnitDAGs)
486    BlockName = MF->getFunction()->getNameStr() + ":" +
487                BB->getBasicBlock()->getNameStr();
488
489  DEBUG(dbgs() << "Initial selection DAG:\n");
490  DEBUG(CurDAG->dump());
491
492  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
493
494  // Run the DAG combiner in pre-legalize mode.
495  if (TimePassesIsEnabled) {
496    NamedRegionTimer T("DAG Combining 1", GroupName);
497    CurDAG->Combine(Unrestricted, *AA, OptLevel);
498  } else {
499    CurDAG->Combine(Unrestricted, *AA, OptLevel);
500  }
501
502  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
503  DEBUG(CurDAG->dump());
504
505  // Second step, hack on the DAG until it only uses operations and types that
506  // the target supports.
507  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
508                                               BlockName);
509
510  bool Changed;
511  if (TimePassesIsEnabled) {
512    NamedRegionTimer T("Type Legalization", GroupName);
513    Changed = CurDAG->LegalizeTypes();
514  } else {
515    Changed = CurDAG->LegalizeTypes();
516  }
517
518  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
519  DEBUG(CurDAG->dump());
520
521  if (Changed) {
522    if (ViewDAGCombineLT)
523      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
524
525    // Run the DAG combiner in post-type-legalize mode.
526    if (TimePassesIsEnabled) {
527      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
528      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
529    } else {
530      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
531    }
532
533    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
534    DEBUG(CurDAG->dump());
535  }
536
537  if (TimePassesIsEnabled) {
538    NamedRegionTimer T("Vector Legalization", GroupName);
539    Changed = CurDAG->LegalizeVectors();
540  } else {
541    Changed = CurDAG->LegalizeVectors();
542  }
543
544  if (Changed) {
545    if (TimePassesIsEnabled) {
546      NamedRegionTimer T("Type Legalization 2", GroupName);
547      CurDAG->LegalizeTypes();
548    } else {
549      CurDAG->LegalizeTypes();
550    }
551
552    if (ViewDAGCombineLT)
553      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
554
555    // Run the DAG combiner in post-type-legalize mode.
556    if (TimePassesIsEnabled) {
557      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
558      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
559    } else {
560      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
561    }
562
563    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
564    DEBUG(CurDAG->dump());
565  }
566
567  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
568
569  if (TimePassesIsEnabled) {
570    NamedRegionTimer T("DAG Legalization", GroupName);
571    CurDAG->Legalize(OptLevel);
572  } else {
573    CurDAG->Legalize(OptLevel);
574  }
575
576  DEBUG(dbgs() << "Legalized selection DAG:\n");
577  DEBUG(CurDAG->dump());
578
579  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
580
581  // Run the DAG combiner in post-legalize mode.
582  if (TimePassesIsEnabled) {
583    NamedRegionTimer T("DAG Combining 2", GroupName);
584    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
585  } else {
586    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
587  }
588
589  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
590  DEBUG(CurDAG->dump());
591
592  if (OptLevel != CodeGenOpt::None) {
593    ShrinkDemandedOps();
594    ComputeLiveOutVRegInfo();
595  }
596
597  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
598
599  // Third, instruction select all of the operations to machine code, adding the
600  // code to the MachineBasicBlock.
601  if (TimePassesIsEnabled) {
602    NamedRegionTimer T("Instruction Selection", GroupName);
603    DoInstructionSelection();
604  } else {
605    DoInstructionSelection();
606  }
607
608  DEBUG(dbgs() << "Selected selection DAG:\n");
609  DEBUG(CurDAG->dump());
610
611  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
612
613  // Schedule machine code.
614  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
615  if (TimePassesIsEnabled) {
616    NamedRegionTimer T("Instruction Scheduling", GroupName);
617    Scheduler->Run(CurDAG, BB, BB->end());
618  } else {
619    Scheduler->Run(CurDAG, BB, BB->end());
620  }
621
622  if (ViewSUnitDAGs) Scheduler->viewGraph();
623
624  // Emit machine code to BB.  This can change 'BB' to the last block being
625  // inserted into.
626  if (TimePassesIsEnabled) {
627    NamedRegionTimer T("Instruction Creation", GroupName);
628    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
629  } else {
630    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
631  }
632
633  // Free the scheduler state.
634  if (TimePassesIsEnabled) {
635    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
636    delete Scheduler;
637  } else {
638    delete Scheduler;
639  }
640
641  DEBUG(dbgs() << "Selected machine code:\n");
642  DEBUG(BB->dump());
643}
644
645void SelectionDAGISel::DoInstructionSelection() {
646  DEBUG(errs() << "===== Instruction selection begins:\n");
647
648  PreprocessISelDAG();
649
650  // Select target instructions for the DAG.
651  {
652    // Number all nodes with a topological order and set DAGSize.
653    DAGSize = CurDAG->AssignTopologicalOrder();
654
655    // Create a dummy node (which is not added to allnodes), that adds
656    // a reference to the root node, preventing it from being deleted,
657    // and tracking any changes of the root.
658    HandleSDNode Dummy(CurDAG->getRoot());
659    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
660    ++ISelPosition;
661
662    // The AllNodes list is now topological-sorted. Visit the
663    // nodes by starting at the end of the list (the root of the
664    // graph) and preceding back toward the beginning (the entry
665    // node).
666    while (ISelPosition != CurDAG->allnodes_begin()) {
667      SDNode *Node = --ISelPosition;
668      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
669      // but there are currently some corner cases that it misses. Also, this
670      // makes it theoretically possible to disable the DAGCombiner.
671      if (Node->use_empty())
672        continue;
673
674      SDNode *ResNode = Select(Node);
675
676      // FIXME: This is pretty gross.  'Select' should be changed to not return
677      // anything at all and this code should be nuked with a tactical strike.
678
679      // If node should not be replaced, continue with the next one.
680      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
681        continue;
682      // Replace node.
683      if (ResNode)
684        ReplaceUses(Node, ResNode);
685
686      // If after the replacement this node is not used any more,
687      // remove this dead node.
688      if (Node->use_empty()) { // Don't delete EntryToken, etc.
689        ISelUpdater ISU(ISelPosition);
690        CurDAG->RemoveDeadNode(Node, &ISU);
691      }
692    }
693
694    CurDAG->setRoot(Dummy.getValue());
695  }
696  DEBUG(errs() << "===== Instruction selection ends:\n");
697
698  PostprocessISelDAG();
699}
700
701/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
702/// do other setup for EH landing-pad blocks.
703void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
704  // Add a label to mark the beginning of the landing pad.  Deletion of the
705  // landing pad can thus be detected via the MachineModuleInfo.
706  MCSymbol *Label = MF->getMMI().addLandingPad(BB);
707
708  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
709  BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
710
711  // Mark exception register as live in.
712  unsigned Reg = TLI.getExceptionAddressRegister();
713  if (Reg) BB->addLiveIn(Reg);
714
715  // Mark exception selector register as live in.
716  Reg = TLI.getExceptionSelectorRegister();
717  if (Reg) BB->addLiveIn(Reg);
718
719  // FIXME: Hack around an exception handling flaw (PR1508): the personality
720  // function and list of typeids logically belong to the invoke (or, if you
721  // like, the basic block containing the invoke), and need to be associated
722  // with it in the dwarf exception handling tables.  Currently however the
723  // information is provided by an intrinsic (eh.selector) that can be moved
724  // to unexpected places by the optimizers: if the unwind edge is critical,
725  // then breaking it can result in the intrinsics being in the successor of
726  // the landing pad, not the landing pad itself.  This results
727  // in exceptions not being caught because no typeids are associated with
728  // the invoke.  This may not be the only way things can go wrong, but it
729  // is the only way we try to work around for the moment.
730  const BasicBlock *LLVMBB = BB->getBasicBlock();
731  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
732
733  if (Br && Br->isUnconditional()) { // Critical edge?
734    BasicBlock::const_iterator I, E;
735    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
736      if (isa<EHSelectorInst>(I))
737        break;
738
739    if (I == E)
740      // No catch info found - try to extract some from the successor.
741      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
742  }
743}
744
745void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
746  // Initialize the Fast-ISel state, if needed.
747  FastISel *FastIS = 0;
748  if (EnableFastISel)
749    FastIS = TLI.createFastISel(*MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
750                                FuncInfo->StaticAllocaMap
751#ifndef NDEBUG
752                                , FuncInfo->CatchInfoLost
753#endif
754                                );
755
756  // Iterate over all basic blocks in the function.
757  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
758    const BasicBlock *LLVMBB = &*I;
759    BB = FuncInfo->MBBMap[LLVMBB];
760
761    BasicBlock::const_iterator const Begin = LLVMBB->begin();
762    BasicBlock::const_iterator const End = LLVMBB->end();
763    BasicBlock::const_iterator BI = Begin;
764
765    // Lower any arguments needed in this block if this is the entry block.
766    bool SuppressFastISel = false;
767    if (LLVMBB == &Fn.getEntryBlock()) {
768      LowerArguments(LLVMBB);
769
770      // If any of the arguments has the byval attribute, forgo
771      // fast-isel in the entry block.
772      if (FastIS) {
773        unsigned j = 1;
774        for (Function::const_arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
775             I != E; ++I, ++j)
776          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
777            if (EnableFastISelVerbose || EnableFastISelAbort)
778              dbgs() << "FastISel skips entry block due to byval argument\n";
779            SuppressFastISel = true;
780            break;
781          }
782      }
783    }
784
785    // Setup an EH landing-pad block.
786    if (BB->isLandingPad())
787      PrepareEHLandingPad(BB);
788
789    // Before doing SelectionDAG ISel, see if FastISel has been requested.
790    if (FastIS && !SuppressFastISel) {
791      // Emit code for any incoming arguments. This must happen before
792      // beginning FastISel on the entry block.
793      if (LLVMBB == &Fn.getEntryBlock()) {
794        CurDAG->setRoot(SDB->getControlRoot());
795        CodeGenAndEmitDAG();
796        SDB->clear();
797      }
798      FastIS->startNewBlock(BB);
799      // Do FastISel on as many instructions as possible.
800      for (; BI != End; ++BI) {
801        // Just before the terminator instruction, insert instructions to
802        // feed PHI nodes in successor blocks.
803        if (isa<TerminatorInst>(BI))
804          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
805            ++NumFastIselFailures;
806            ResetDebugLoc(SDB, FastIS);
807            if (EnableFastISelVerbose || EnableFastISelAbort) {
808              dbgs() << "FastISel miss: ";
809              BI->dump();
810            }
811            assert(!EnableFastISelAbort &&
812                   "FastISel didn't handle a PHI in a successor");
813            break;
814          }
815
816        SetDebugLoc(BI, SDB, FastIS, MF);
817
818        // Try to select the instruction with FastISel.
819        if (FastIS->SelectInstruction(BI)) {
820          ResetDebugLoc(SDB, FastIS);
821          continue;
822        }
823
824        // Clear out the debug location so that it doesn't carry over to
825        // unrelated instructions.
826        ResetDebugLoc(SDB, FastIS);
827
828        // Then handle certain instructions as single-LLVM-Instruction blocks.
829        if (isa<CallInst>(BI)) {
830          ++NumFastIselFailures;
831          if (EnableFastISelVerbose || EnableFastISelAbort) {
832            dbgs() << "FastISel missed call: ";
833            BI->dump();
834          }
835
836          if (!BI->getType()->isVoidTy() && !BI->use_empty()) {
837            unsigned &R = FuncInfo->ValueMap[BI];
838            if (!R)
839              R = FuncInfo->CreateRegForValue(BI);
840          }
841
842          bool HadTailCall = false;
843          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
844
845          // If the call was emitted as a tail call, we're done with the block.
846          if (HadTailCall) {
847            BI = End;
848            break;
849          }
850
851          // If the instruction was codegen'd with multiple blocks,
852          // inform the FastISel object where to resume inserting.
853          FastIS->setCurrentBlock(BB);
854          continue;
855        }
856
857        // Otherwise, give up on FastISel for the rest of the block.
858        // For now, be a little lenient about non-branch terminators.
859        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
860          ++NumFastIselFailures;
861          if (EnableFastISelVerbose || EnableFastISelAbort) {
862            dbgs() << "FastISel miss: ";
863            BI->dump();
864          }
865          if (EnableFastISelAbort)
866            // The "fast" selector couldn't handle something and bailed.
867            // For the purpose of debugging, just abort.
868            llvm_unreachable("FastISel didn't select the entire block");
869        }
870        break;
871      }
872    }
873
874    // Run SelectionDAG instruction selection on the remainder of the block
875    // not handled by FastISel. If FastISel is not run, this is the entire
876    // block.
877    if (BI != End) {
878      bool HadTailCall;
879      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
880    }
881
882    FinishBasicBlock();
883  }
884
885  delete FastIS;
886}
887
888void
889SelectionDAGISel::FinishBasicBlock() {
890
891  DEBUG(dbgs() << "Target-post-processed machine code:\n");
892  DEBUG(BB->dump());
893
894  DEBUG(dbgs() << "Total amount of phi nodes to update: "
895               << SDB->PHINodesToUpdate.size() << "\n");
896  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
897          dbgs() << "Node " << i << " : ("
898                 << SDB->PHINodesToUpdate[i].first
899                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
900
901  // Next, now that we know what the last MBB the LLVM BB expanded is, update
902  // PHI nodes in successors.
903  if (SDB->SwitchCases.empty() &&
904      SDB->JTCases.empty() &&
905      SDB->BitTestCases.empty()) {
906    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
907      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
908      assert(PHI->isPHI() &&
909             "This is not a machine PHI node that we are updating!");
910      if (!BB->isSuccessor(PHI->getParent()))
911        continue;
912      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
913                                                false));
914      PHI->addOperand(MachineOperand::CreateMBB(BB));
915    }
916    SDB->PHINodesToUpdate.clear();
917    return;
918  }
919
920  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
921    // Lower header first, if it wasn't already lowered
922    if (!SDB->BitTestCases[i].Emitted) {
923      // Set the current basic block to the mbb we wish to insert the code into
924      BB = SDB->BitTestCases[i].Parent;
925      SDB->setCurrentBasicBlock(BB);
926      // Emit the code
927      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
928      CurDAG->setRoot(SDB->getRoot());
929      CodeGenAndEmitDAG();
930      SDB->clear();
931    }
932
933    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
934      // Set the current basic block to the mbb we wish to insert the code into
935      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
936      SDB->setCurrentBasicBlock(BB);
937      // Emit the code
938      if (j+1 != ej)
939        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
940                              SDB->BitTestCases[i].Reg,
941                              SDB->BitTestCases[i].Cases[j]);
942      else
943        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
944                              SDB->BitTestCases[i].Reg,
945                              SDB->BitTestCases[i].Cases[j]);
946
947
948      CurDAG->setRoot(SDB->getRoot());
949      CodeGenAndEmitDAG();
950      SDB->clear();
951    }
952
953    // Update PHI Nodes
954    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
955      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
956      MachineBasicBlock *PHIBB = PHI->getParent();
957      assert(PHI->isPHI() &&
958             "This is not a machine PHI node that we are updating!");
959      // This is "default" BB. We have two jumps to it. From "header" BB and
960      // from last "case" BB.
961      if (PHIBB == SDB->BitTestCases[i].Default) {
962        PHI->addOperand(MachineOperand::
963                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
964        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
965        PHI->addOperand(MachineOperand::
966                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
967        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
968                                                  back().ThisBB));
969      }
970      // One of "cases" BB.
971      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
972           j != ej; ++j) {
973        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
974        if (cBB->isSuccessor(PHIBB)) {
975          PHI->addOperand(MachineOperand::
976                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
977          PHI->addOperand(MachineOperand::CreateMBB(cBB));
978        }
979      }
980    }
981  }
982  SDB->BitTestCases.clear();
983
984  // If the JumpTable record is filled in, then we need to emit a jump table.
985  // Updating the PHI nodes is tricky in this case, since we need to determine
986  // whether the PHI is a successor of the range check MBB or the jump table MBB
987  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
988    // Lower header first, if it wasn't already lowered
989    if (!SDB->JTCases[i].first.Emitted) {
990      // Set the current basic block to the mbb we wish to insert the code into
991      BB = SDB->JTCases[i].first.HeaderBB;
992      SDB->setCurrentBasicBlock(BB);
993      // Emit the code
994      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
995      CurDAG->setRoot(SDB->getRoot());
996      CodeGenAndEmitDAG();
997      SDB->clear();
998    }
999
1000    // Set the current basic block to the mbb we wish to insert the code into
1001    BB = SDB->JTCases[i].second.MBB;
1002    SDB->setCurrentBasicBlock(BB);
1003    // Emit the code
1004    SDB->visitJumpTable(SDB->JTCases[i].second);
1005    CurDAG->setRoot(SDB->getRoot());
1006    CodeGenAndEmitDAG();
1007    SDB->clear();
1008
1009    // Update PHI Nodes
1010    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1011      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1012      MachineBasicBlock *PHIBB = PHI->getParent();
1013      assert(PHI->isPHI() &&
1014             "This is not a machine PHI node that we are updating!");
1015      // "default" BB. We can go there only from header BB.
1016      if (PHIBB == SDB->JTCases[i].second.Default) {
1017        PHI->addOperand
1018          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1019        PHI->addOperand
1020          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1021      }
1022      // JT BB. Just iterate over successors here
1023      if (BB->isSuccessor(PHIBB)) {
1024        PHI->addOperand
1025          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1026        PHI->addOperand(MachineOperand::CreateMBB(BB));
1027      }
1028    }
1029  }
1030  SDB->JTCases.clear();
1031
1032  // If the switch block involved a branch to one of the actual successors, we
1033  // need to update PHI nodes in that block.
1034  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1035    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1036    assert(PHI->isPHI() &&
1037           "This is not a machine PHI node that we are updating!");
1038    if (BB->isSuccessor(PHI->getParent())) {
1039      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1040                                                false));
1041      PHI->addOperand(MachineOperand::CreateMBB(BB));
1042    }
1043  }
1044
1045  // If we generated any switch lowering information, build and codegen any
1046  // additional DAGs necessary.
1047  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1048    // Set the current basic block to the mbb we wish to insert the code into
1049    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1050    SDB->setCurrentBasicBlock(BB);
1051
1052    // Emit the code
1053    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1054    CurDAG->setRoot(SDB->getRoot());
1055    CodeGenAndEmitDAG();
1056
1057    // Handle any PHI nodes in successors of this chunk, as if we were coming
1058    // from the original BB before switch expansion.  Note that PHI nodes can
1059    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1060    // handle them the right number of times.
1061    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1062      // If new BB's are created during scheduling, the edges may have been
1063      // updated. That is, the edge from ThisBB to BB may have been split and
1064      // BB's predecessor is now another block.
1065      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1066        SDB->EdgeMapping.find(BB);
1067      if (EI != SDB->EdgeMapping.end())
1068        ThisBB = EI->second;
1069
1070      // BB may have been removed from the CFG if a branch was constant folded.
1071      if (ThisBB->isSuccessor(BB)) {
1072        for (MachineBasicBlock::iterator Phi = BB->begin();
1073             Phi != BB->end() && Phi->isPHI();
1074             ++Phi) {
1075          // This value for this PHI node is recorded in PHINodesToUpdate.
1076          for (unsigned pn = 0; ; ++pn) {
1077            assert(pn != SDB->PHINodesToUpdate.size() &&
1078                   "Didn't find PHI entry!");
1079            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1080              Phi->addOperand(MachineOperand::
1081                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1082                                        false));
1083              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1084              break;
1085            }
1086          }
1087        }
1088      }
1089
1090      // Don't process RHS if same block as LHS.
1091      if (BB == SDB->SwitchCases[i].FalseBB)
1092        SDB->SwitchCases[i].FalseBB = 0;
1093
1094      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1095      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1096      SDB->SwitchCases[i].FalseBB = 0;
1097    }
1098    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1099    SDB->clear();
1100  }
1101  SDB->SwitchCases.clear();
1102
1103  SDB->PHINodesToUpdate.clear();
1104}
1105
1106
1107/// Create the scheduler. If a specific scheduler was specified
1108/// via the SchedulerRegistry, use it, otherwise select the
1109/// one preferred by the target.
1110///
1111ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1112  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1113
1114  if (!Ctor) {
1115    Ctor = ISHeuristic;
1116    RegisterScheduler::setDefault(Ctor);
1117  }
1118
1119  return Ctor(this, OptLevel);
1120}
1121
1122ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1123  return new ScheduleHazardRecognizer();
1124}
1125
1126//===----------------------------------------------------------------------===//
1127// Helper functions used by the generated instruction selector.
1128//===----------------------------------------------------------------------===//
1129// Calls to these methods are generated by tblgen.
1130
1131/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1132/// the dag combiner simplified the 255, we still want to match.  RHS is the
1133/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1134/// specified in the .td file (e.g. 255).
1135bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1136                                    int64_t DesiredMaskS) const {
1137  const APInt &ActualMask = RHS->getAPIntValue();
1138  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1139
1140  // If the actual mask exactly matches, success!
1141  if (ActualMask == DesiredMask)
1142    return true;
1143
1144  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1145  if (ActualMask.intersects(~DesiredMask))
1146    return false;
1147
1148  // Otherwise, the DAG Combiner may have proven that the value coming in is
1149  // either already zero or is not demanded.  Check for known zero input bits.
1150  APInt NeededMask = DesiredMask & ~ActualMask;
1151  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1152    return true;
1153
1154  // TODO: check to see if missing bits are just not demanded.
1155
1156  // Otherwise, this pattern doesn't match.
1157  return false;
1158}
1159
1160/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1161/// the dag combiner simplified the 255, we still want to match.  RHS is the
1162/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1163/// specified in the .td file (e.g. 255).
1164bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1165                                   int64_t DesiredMaskS) const {
1166  const APInt &ActualMask = RHS->getAPIntValue();
1167  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1168
1169  // If the actual mask exactly matches, success!
1170  if (ActualMask == DesiredMask)
1171    return true;
1172
1173  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1174  if (ActualMask.intersects(~DesiredMask))
1175    return false;
1176
1177  // Otherwise, the DAG Combiner may have proven that the value coming in is
1178  // either already zero or is not demanded.  Check for known zero input bits.
1179  APInt NeededMask = DesiredMask & ~ActualMask;
1180
1181  APInt KnownZero, KnownOne;
1182  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1183
1184  // If all the missing bits in the or are already known to be set, match!
1185  if ((NeededMask & KnownOne) == NeededMask)
1186    return true;
1187
1188  // TODO: check to see if missing bits are just not demanded.
1189
1190  // Otherwise, this pattern doesn't match.
1191  return false;
1192}
1193
1194
1195/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1196/// by tblgen.  Others should not call it.
1197void SelectionDAGISel::
1198SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1199  std::vector<SDValue> InOps;
1200  std::swap(InOps, Ops);
1201
1202  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1203  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1204  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1205
1206  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1207  if (InOps[e-1].getValueType() == MVT::Flag)
1208    --e;  // Don't process a flag operand if it is here.
1209
1210  while (i != e) {
1211    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1212    if (!InlineAsm::isMemKind(Flags)) {
1213      // Just skip over this operand, copying the operands verbatim.
1214      Ops.insert(Ops.end(), InOps.begin()+i,
1215                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1216      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1217    } else {
1218      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1219             "Memory operand with multiple values?");
1220      // Otherwise, this is a memory operand.  Ask the target to select it.
1221      std::vector<SDValue> SelOps;
1222      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1223        report_fatal_error("Could not match memory address.  Inline asm"
1224                           " failure!");
1225
1226      // Add this to the output node.
1227      unsigned NewFlags =
1228        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1229      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1230      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1231      i += 2;
1232    }
1233  }
1234
1235  // Add the flag input back if present.
1236  if (e != InOps.size())
1237    Ops.push_back(InOps.back());
1238}
1239
1240/// findFlagUse - Return use of EVT::Flag value produced by the specified
1241/// SDNode.
1242///
1243static SDNode *findFlagUse(SDNode *N) {
1244  unsigned FlagResNo = N->getNumValues()-1;
1245  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1246    SDUse &Use = I.getUse();
1247    if (Use.getResNo() == FlagResNo)
1248      return Use.getUser();
1249  }
1250  return NULL;
1251}
1252
1253/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1254/// This function recursively traverses up the operand chain, ignoring
1255/// certain nodes.
1256static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1257                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1258                          bool IgnoreChains) {
1259  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1260  // greater than all of its (recursive) operands.  If we scan to a point where
1261  // 'use' is smaller than the node we're scanning for, then we know we will
1262  // never find it.
1263  //
1264  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1265  // happen because we scan down to newly selected nodes in the case of flag
1266  // uses.
1267  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1268    return false;
1269
1270  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1271  // won't fail if we scan it again.
1272  if (!Visited.insert(Use))
1273    return false;
1274
1275  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1276    // Ignore chain uses, they are validated by HandleMergeInputChains.
1277    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1278      continue;
1279
1280    SDNode *N = Use->getOperand(i).getNode();
1281    if (N == Def) {
1282      if (Use == ImmedUse || Use == Root)
1283        continue;  // We are not looking for immediate use.
1284      assert(N != Root);
1285      return true;
1286    }
1287
1288    // Traverse up the operand chain.
1289    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1290      return true;
1291  }
1292  return false;
1293}
1294
1295/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1296/// operand node N of U during instruction selection that starts at Root.
1297bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1298                                          SDNode *Root) const {
1299  if (OptLevel == CodeGenOpt::None) return false;
1300  return N.hasOneUse();
1301}
1302
1303/// IsLegalToFold - Returns true if the specific operand node N of
1304/// U can be folded during instruction selection that starts at Root.
1305bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1306                                     CodeGenOpt::Level OptLevel,
1307                                     bool IgnoreChains) {
1308  if (OptLevel == CodeGenOpt::None) return false;
1309
1310  // If Root use can somehow reach N through a path that that doesn't contain
1311  // U then folding N would create a cycle. e.g. In the following
1312  // diagram, Root can reach N through X. If N is folded into into Root, then
1313  // X is both a predecessor and a successor of U.
1314  //
1315  //          [N*]           //
1316  //         ^   ^           //
1317  //        /     \          //
1318  //      [U*]    [X]?       //
1319  //        ^     ^          //
1320  //         \   /           //
1321  //          \ /            //
1322  //         [Root*]         //
1323  //
1324  // * indicates nodes to be folded together.
1325  //
1326  // If Root produces a flag, then it gets (even more) interesting. Since it
1327  // will be "glued" together with its flag use in the scheduler, we need to
1328  // check if it might reach N.
1329  //
1330  //          [N*]           //
1331  //         ^   ^           //
1332  //        /     \          //
1333  //      [U*]    [X]?       //
1334  //        ^       ^        //
1335  //         \       \       //
1336  //          \      |       //
1337  //         [Root*] |       //
1338  //          ^      |       //
1339  //          f      |       //
1340  //          |      /       //
1341  //         [Y]    /        //
1342  //           ^   /         //
1343  //           f  /          //
1344  //           | /           //
1345  //          [FU]           //
1346  //
1347  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1348  // (call it Fold), then X is a predecessor of FU and a successor of
1349  // Fold. But since Fold and FU are flagged together, this will create
1350  // a cycle in the scheduling graph.
1351
1352  // If the node has flags, walk down the graph to the "lowest" node in the
1353  // flagged set.
1354  EVT VT = Root->getValueType(Root->getNumValues()-1);
1355  while (VT == MVT::Flag) {
1356    SDNode *FU = findFlagUse(Root);
1357    if (FU == NULL)
1358      break;
1359    Root = FU;
1360    VT = Root->getValueType(Root->getNumValues()-1);
1361
1362    // If our query node has a flag result with a use, we've walked up it.  If
1363    // the user (which has already been selected) has a chain or indirectly uses
1364    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1365    // this, we cannot ignore chains in this predicate.
1366    IgnoreChains = false;
1367  }
1368
1369
1370  SmallPtrSet<SDNode*, 16> Visited;
1371  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1372}
1373
1374SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1375  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1376  SelectInlineAsmMemoryOperands(Ops);
1377
1378  std::vector<EVT> VTs;
1379  VTs.push_back(MVT::Other);
1380  VTs.push_back(MVT::Flag);
1381  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1382                                VTs, &Ops[0], Ops.size());
1383  New->setNodeId(-1);
1384  return New.getNode();
1385}
1386
1387SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1388  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1389}
1390
1391/// GetVBR - decode a vbr encoding whose top bit is set.
1392ALWAYS_INLINE static uint64_t
1393GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1394  assert(Val >= 128 && "Not a VBR");
1395  Val &= 127;  // Remove first vbr bit.
1396
1397  unsigned Shift = 7;
1398  uint64_t NextBits;
1399  do {
1400    NextBits = MatcherTable[Idx++];
1401    Val |= (NextBits&127) << Shift;
1402    Shift += 7;
1403  } while (NextBits & 128);
1404
1405  return Val;
1406}
1407
1408
1409/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1410/// interior flag and chain results to use the new flag and chain results.
1411void SelectionDAGISel::
1412UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1413                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1414                     SDValue InputFlag,
1415                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1416                     bool isMorphNodeTo) {
1417  SmallVector<SDNode*, 4> NowDeadNodes;
1418
1419  ISelUpdater ISU(ISelPosition);
1420
1421  // Now that all the normal results are replaced, we replace the chain and
1422  // flag results if present.
1423  if (!ChainNodesMatched.empty()) {
1424    assert(InputChain.getNode() != 0 &&
1425           "Matched input chains but didn't produce a chain");
1426    // Loop over all of the nodes we matched that produced a chain result.
1427    // Replace all the chain results with the final chain we ended up with.
1428    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1429      SDNode *ChainNode = ChainNodesMatched[i];
1430
1431      // If this node was already deleted, don't look at it.
1432      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1433        continue;
1434
1435      // Don't replace the results of the root node if we're doing a
1436      // MorphNodeTo.
1437      if (ChainNode == NodeToMatch && isMorphNodeTo)
1438        continue;
1439
1440      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1441      if (ChainVal.getValueType() == MVT::Flag)
1442        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1443      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1444      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1445
1446      // If the node became dead and we haven't already seen it, delete it.
1447      if (ChainNode->use_empty() &&
1448          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1449        NowDeadNodes.push_back(ChainNode);
1450    }
1451  }
1452
1453  // If the result produces a flag, update any flag results in the matched
1454  // pattern with the flag result.
1455  if (InputFlag.getNode() != 0) {
1456    // Handle any interior nodes explicitly marked.
1457    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1458      SDNode *FRN = FlagResultNodesMatched[i];
1459
1460      // If this node was already deleted, don't look at it.
1461      if (FRN->getOpcode() == ISD::DELETED_NODE)
1462        continue;
1463
1464      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1465             "Doesn't have a flag result");
1466      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1467                                        InputFlag, &ISU);
1468
1469      // If the node became dead and we haven't already seen it, delete it.
1470      if (FRN->use_empty() &&
1471          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1472        NowDeadNodes.push_back(FRN);
1473    }
1474  }
1475
1476  if (!NowDeadNodes.empty())
1477    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1478
1479  DEBUG(errs() << "ISEL: Match complete!\n");
1480}
1481
1482enum ChainResult {
1483  CR_Simple,
1484  CR_InducesCycle,
1485  CR_LeadsToInteriorNode
1486};
1487
1488/// WalkChainUsers - Walk down the users of the specified chained node that is
1489/// part of the pattern we're matching, looking at all of the users we find.
1490/// This determines whether something is an interior node, whether we have a
1491/// non-pattern node in between two pattern nodes (which prevent folding because
1492/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1493/// between pattern nodes (in which case the TF becomes part of the pattern).
1494///
1495/// The walk we do here is guaranteed to be small because we quickly get down to
1496/// already selected nodes "below" us.
1497static ChainResult
1498WalkChainUsers(SDNode *ChainedNode,
1499               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1500               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1501  ChainResult Result = CR_Simple;
1502
1503  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1504         E = ChainedNode->use_end(); UI != E; ++UI) {
1505    // Make sure the use is of the chain, not some other value we produce.
1506    if (UI.getUse().getValueType() != MVT::Other) continue;
1507
1508    SDNode *User = *UI;
1509
1510    // If we see an already-selected machine node, then we've gone beyond the
1511    // pattern that we're selecting down into the already selected chunk of the
1512    // DAG.
1513    if (User->isMachineOpcode() ||
1514        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1515      continue;
1516
1517    if (User->getOpcode() == ISD::CopyToReg ||
1518        User->getOpcode() == ISD::CopyFromReg ||
1519        User->getOpcode() == ISD::INLINEASM ||
1520        User->getOpcode() == ISD::EH_LABEL) {
1521      // If their node ID got reset to -1 then they've already been selected.
1522      // Treat them like a MachineOpcode.
1523      if (User->getNodeId() == -1)
1524        continue;
1525    }
1526
1527    // If we have a TokenFactor, we handle it specially.
1528    if (User->getOpcode() != ISD::TokenFactor) {
1529      // If the node isn't a token factor and isn't part of our pattern, then it
1530      // must be a random chained node in between two nodes we're selecting.
1531      // This happens when we have something like:
1532      //   x = load ptr
1533      //   call
1534      //   y = x+4
1535      //   store y -> ptr
1536      // Because we structurally match the load/store as a read/modify/write,
1537      // but the call is chained between them.  We cannot fold in this case
1538      // because it would induce a cycle in the graph.
1539      if (!std::count(ChainedNodesInPattern.begin(),
1540                      ChainedNodesInPattern.end(), User))
1541        return CR_InducesCycle;
1542
1543      // Otherwise we found a node that is part of our pattern.  For example in:
1544      //   x = load ptr
1545      //   y = x+4
1546      //   store y -> ptr
1547      // This would happen when we're scanning down from the load and see the
1548      // store as a user.  Record that there is a use of ChainedNode that is
1549      // part of the pattern and keep scanning uses.
1550      Result = CR_LeadsToInteriorNode;
1551      InteriorChainedNodes.push_back(User);
1552      continue;
1553    }
1554
1555    // If we found a TokenFactor, there are two cases to consider: first if the
1556    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1557    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1558    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1559    //     [Load chain]
1560    //         ^
1561    //         |
1562    //       [Load]
1563    //       ^    ^
1564    //       |    \                    DAG's like cheese
1565    //      /       \                       do you?
1566    //     /         |
1567    // [TokenFactor] [Op]
1568    //     ^          ^
1569    //     |          |
1570    //      \        /
1571    //       \      /
1572    //       [Store]
1573    //
1574    // In this case, the TokenFactor becomes part of our match and we rewrite it
1575    // as a new TokenFactor.
1576    //
1577    // To distinguish these two cases, do a recursive walk down the uses.
1578    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1579    case CR_Simple:
1580      // If the uses of the TokenFactor are just already-selected nodes, ignore
1581      // it, it is "below" our pattern.
1582      continue;
1583    case CR_InducesCycle:
1584      // If the uses of the TokenFactor lead to nodes that are not part of our
1585      // pattern that are not selected, folding would turn this into a cycle,
1586      // bail out now.
1587      return CR_InducesCycle;
1588    case CR_LeadsToInteriorNode:
1589      break;  // Otherwise, keep processing.
1590    }
1591
1592    // Okay, we know we're in the interesting interior case.  The TokenFactor
1593    // is now going to be considered part of the pattern so that we rewrite its
1594    // uses (it may have uses that are not part of the pattern) with the
1595    // ultimate chain result of the generated code.  We will also add its chain
1596    // inputs as inputs to the ultimate TokenFactor we create.
1597    Result = CR_LeadsToInteriorNode;
1598    ChainedNodesInPattern.push_back(User);
1599    InteriorChainedNodes.push_back(User);
1600    continue;
1601  }
1602
1603  return Result;
1604}
1605
1606/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1607/// operation for when the pattern matched at least one node with a chains.  The
1608/// input vector contains a list of all of the chained nodes that we match.  We
1609/// must determine if this is a valid thing to cover (i.e. matching it won't
1610/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1611/// be used as the input node chain for the generated nodes.
1612static SDValue
1613HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1614                       SelectionDAG *CurDAG) {
1615  // Walk all of the chained nodes we've matched, recursively scanning down the
1616  // users of the chain result. This adds any TokenFactor nodes that are caught
1617  // in between chained nodes to the chained and interior nodes list.
1618  SmallVector<SDNode*, 3> InteriorChainedNodes;
1619  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1620    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1621                       InteriorChainedNodes) == CR_InducesCycle)
1622      return SDValue(); // Would induce a cycle.
1623  }
1624
1625  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1626  // that we are interested in.  Form our input TokenFactor node.
1627  SmallVector<SDValue, 3> InputChains;
1628  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1629    // Add the input chain of this node to the InputChains list (which will be
1630    // the operands of the generated TokenFactor) if it's not an interior node.
1631    SDNode *N = ChainNodesMatched[i];
1632    if (N->getOpcode() != ISD::TokenFactor) {
1633      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1634        continue;
1635
1636      // Otherwise, add the input chain.
1637      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1638      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1639      InputChains.push_back(InChain);
1640      continue;
1641    }
1642
1643    // If we have a token factor, we want to add all inputs of the token factor
1644    // that are not part of the pattern we're matching.
1645    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1646      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1647                      N->getOperand(op).getNode()))
1648        InputChains.push_back(N->getOperand(op));
1649    }
1650  }
1651
1652  SDValue Res;
1653  if (InputChains.size() == 1)
1654    return InputChains[0];
1655  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1656                         MVT::Other, &InputChains[0], InputChains.size());
1657}
1658
1659/// MorphNode - Handle morphing a node in place for the selector.
1660SDNode *SelectionDAGISel::
1661MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1662          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1663  // It is possible we're using MorphNodeTo to replace a node with no
1664  // normal results with one that has a normal result (or we could be
1665  // adding a chain) and the input could have flags and chains as well.
1666  // In this case we need to shift the operands down.
1667  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1668  // than the old isel though.
1669  int OldFlagResultNo = -1, OldChainResultNo = -1;
1670
1671  unsigned NTMNumResults = Node->getNumValues();
1672  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1673    OldFlagResultNo = NTMNumResults-1;
1674    if (NTMNumResults != 1 &&
1675        Node->getValueType(NTMNumResults-2) == MVT::Other)
1676      OldChainResultNo = NTMNumResults-2;
1677  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1678    OldChainResultNo = NTMNumResults-1;
1679
1680  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1681  // that this deletes operands of the old node that become dead.
1682  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1683
1684  // MorphNodeTo can operate in two ways: if an existing node with the
1685  // specified operands exists, it can just return it.  Otherwise, it
1686  // updates the node in place to have the requested operands.
1687  if (Res == Node) {
1688    // If we updated the node in place, reset the node ID.  To the isel,
1689    // this should be just like a newly allocated machine node.
1690    Res->setNodeId(-1);
1691  }
1692
1693  unsigned ResNumResults = Res->getNumValues();
1694  // Move the flag if needed.
1695  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1696      (unsigned)OldFlagResultNo != ResNumResults-1)
1697    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1698                                      SDValue(Res, ResNumResults-1));
1699
1700  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1701  --ResNumResults;
1702
1703  // Move the chain reference if needed.
1704  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1705      (unsigned)OldChainResultNo != ResNumResults-1)
1706    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1707                                      SDValue(Res, ResNumResults-1));
1708
1709  // Otherwise, no replacement happened because the node already exists. Replace
1710  // Uses of the old node with the new one.
1711  if (Res != Node)
1712    CurDAG->ReplaceAllUsesWith(Node, Res);
1713
1714  return Res;
1715}
1716
1717/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1718ALWAYS_INLINE static bool
1719CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1720          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1721  // Accept if it is exactly the same as a previously recorded node.
1722  unsigned RecNo = MatcherTable[MatcherIndex++];
1723  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1724  return N == RecordedNodes[RecNo];
1725}
1726
1727/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1728ALWAYS_INLINE static bool
1729CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1730                      SelectionDAGISel &SDISel) {
1731  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1732}
1733
1734/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1735ALWAYS_INLINE static bool
1736CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1737                   SelectionDAGISel &SDISel, SDNode *N) {
1738  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1739}
1740
1741ALWAYS_INLINE static bool
1742CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1743            SDNode *N) {
1744  uint16_t Opc = MatcherTable[MatcherIndex++];
1745  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1746  return N->getOpcode() == Opc;
1747}
1748
1749ALWAYS_INLINE static bool
1750CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1751          SDValue N, const TargetLowering &TLI) {
1752  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1753  if (N.getValueType() == VT) return true;
1754
1755  // Handle the case when VT is iPTR.
1756  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1757}
1758
1759ALWAYS_INLINE static bool
1760CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1761               SDValue N, const TargetLowering &TLI,
1762               unsigned ChildNo) {
1763  if (ChildNo >= N.getNumOperands())
1764    return false;  // Match fails if out of range child #.
1765  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1766}
1767
1768
1769ALWAYS_INLINE static bool
1770CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1771              SDValue N) {
1772  return cast<CondCodeSDNode>(N)->get() ==
1773      (ISD::CondCode)MatcherTable[MatcherIndex++];
1774}
1775
1776ALWAYS_INLINE static bool
1777CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1778               SDValue N, const TargetLowering &TLI) {
1779  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1780  if (cast<VTSDNode>(N)->getVT() == VT)
1781    return true;
1782
1783  // Handle the case when VT is iPTR.
1784  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1785}
1786
1787ALWAYS_INLINE static bool
1788CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1789             SDValue N) {
1790  int64_t Val = MatcherTable[MatcherIndex++];
1791  if (Val & 128)
1792    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1793
1794  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1795  return C != 0 && C->getSExtValue() == Val;
1796}
1797
1798ALWAYS_INLINE static bool
1799CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1800            SDValue N, SelectionDAGISel &SDISel) {
1801  int64_t Val = MatcherTable[MatcherIndex++];
1802  if (Val & 128)
1803    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1804
1805  if (N->getOpcode() != ISD::AND) return false;
1806
1807  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1808  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1809}
1810
1811ALWAYS_INLINE static bool
1812CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1813           SDValue N, SelectionDAGISel &SDISel) {
1814  int64_t Val = MatcherTable[MatcherIndex++];
1815  if (Val & 128)
1816    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1817
1818  if (N->getOpcode() != ISD::OR) return false;
1819
1820  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1821  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1822}
1823
1824/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1825/// scope, evaluate the current node.  If the current predicate is known to
1826/// fail, set Result=true and return anything.  If the current predicate is
1827/// known to pass, set Result=false and return the MatcherIndex to continue
1828/// with.  If the current predicate is unknown, set Result=false and return the
1829/// MatcherIndex to continue with.
1830static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1831                                       unsigned Index, SDValue N,
1832                                       bool &Result, SelectionDAGISel &SDISel,
1833                                       SmallVectorImpl<SDValue> &RecordedNodes){
1834  switch (Table[Index++]) {
1835  default:
1836    Result = false;
1837    return Index-1;  // Could not evaluate this predicate.
1838  case SelectionDAGISel::OPC_CheckSame:
1839    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1840    return Index;
1841  case SelectionDAGISel::OPC_CheckPatternPredicate:
1842    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1843    return Index;
1844  case SelectionDAGISel::OPC_CheckPredicate:
1845    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1846    return Index;
1847  case SelectionDAGISel::OPC_CheckOpcode:
1848    Result = !::CheckOpcode(Table, Index, N.getNode());
1849    return Index;
1850  case SelectionDAGISel::OPC_CheckType:
1851    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1852    return Index;
1853  case SelectionDAGISel::OPC_CheckChild0Type:
1854  case SelectionDAGISel::OPC_CheckChild1Type:
1855  case SelectionDAGISel::OPC_CheckChild2Type:
1856  case SelectionDAGISel::OPC_CheckChild3Type:
1857  case SelectionDAGISel::OPC_CheckChild4Type:
1858  case SelectionDAGISel::OPC_CheckChild5Type:
1859  case SelectionDAGISel::OPC_CheckChild6Type:
1860  case SelectionDAGISel::OPC_CheckChild7Type:
1861    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1862                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1863    return Index;
1864  case SelectionDAGISel::OPC_CheckCondCode:
1865    Result = !::CheckCondCode(Table, Index, N);
1866    return Index;
1867  case SelectionDAGISel::OPC_CheckValueType:
1868    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1869    return Index;
1870  case SelectionDAGISel::OPC_CheckInteger:
1871    Result = !::CheckInteger(Table, Index, N);
1872    return Index;
1873  case SelectionDAGISel::OPC_CheckAndImm:
1874    Result = !::CheckAndImm(Table, Index, N, SDISel);
1875    return Index;
1876  case SelectionDAGISel::OPC_CheckOrImm:
1877    Result = !::CheckOrImm(Table, Index, N, SDISel);
1878    return Index;
1879  }
1880}
1881
1882namespace {
1883
1884struct MatchScope {
1885  /// FailIndex - If this match fails, this is the index to continue with.
1886  unsigned FailIndex;
1887
1888  /// NodeStack - The node stack when the scope was formed.
1889  SmallVector<SDValue, 4> NodeStack;
1890
1891  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1892  unsigned NumRecordedNodes;
1893
1894  /// NumMatchedMemRefs - The number of matched memref entries.
1895  unsigned NumMatchedMemRefs;
1896
1897  /// InputChain/InputFlag - The current chain/flag
1898  SDValue InputChain, InputFlag;
1899
1900  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1901  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1902};
1903
1904}
1905
1906SDNode *SelectionDAGISel::
1907SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1908                 unsigned TableSize) {
1909  // FIXME: Should these even be selected?  Handle these cases in the caller?
1910  switch (NodeToMatch->getOpcode()) {
1911  default:
1912    break;
1913  case ISD::EntryToken:       // These nodes remain the same.
1914  case ISD::BasicBlock:
1915  case ISD::Register:
1916  //case ISD::VALUETYPE:
1917  //case ISD::CONDCODE:
1918  case ISD::HANDLENODE:
1919  case ISD::MDNODE_SDNODE:
1920  case ISD::TargetConstant:
1921  case ISD::TargetConstantFP:
1922  case ISD::TargetConstantPool:
1923  case ISD::TargetFrameIndex:
1924  case ISD::TargetExternalSymbol:
1925  case ISD::TargetBlockAddress:
1926  case ISD::TargetJumpTable:
1927  case ISD::TargetGlobalTLSAddress:
1928  case ISD::TargetGlobalAddress:
1929  case ISD::TokenFactor:
1930  case ISD::CopyFromReg:
1931  case ISD::CopyToReg:
1932  case ISD::EH_LABEL:
1933    NodeToMatch->setNodeId(-1); // Mark selected.
1934    return 0;
1935  case ISD::AssertSext:
1936  case ISD::AssertZext:
1937    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1938                                      NodeToMatch->getOperand(0));
1939    return 0;
1940  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1941  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1942  }
1943
1944  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1945
1946  // Set up the node stack with NodeToMatch as the only node on the stack.
1947  SmallVector<SDValue, 8> NodeStack;
1948  SDValue N = SDValue(NodeToMatch, 0);
1949  NodeStack.push_back(N);
1950
1951  // MatchScopes - Scopes used when matching, if a match failure happens, this
1952  // indicates where to continue checking.
1953  SmallVector<MatchScope, 8> MatchScopes;
1954
1955  // RecordedNodes - This is the set of nodes that have been recorded by the
1956  // state machine.
1957  SmallVector<SDValue, 8> RecordedNodes;
1958
1959  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1960  // pattern.
1961  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1962
1963  // These are the current input chain and flag for use when generating nodes.
1964  // Various Emit operations change these.  For example, emitting a copytoreg
1965  // uses and updates these.
1966  SDValue InputChain, InputFlag;
1967
1968  // ChainNodesMatched - If a pattern matches nodes that have input/output
1969  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1970  // which ones they are.  The result is captured into this list so that we can
1971  // update the chain results when the pattern is complete.
1972  SmallVector<SDNode*, 3> ChainNodesMatched;
1973  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1974
1975  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1976        NodeToMatch->dump(CurDAG);
1977        errs() << '\n');
1978
1979  // Determine where to start the interpreter.  Normally we start at opcode #0,
1980  // but if the state machine starts with an OPC_SwitchOpcode, then we
1981  // accelerate the first lookup (which is guaranteed to be hot) with the
1982  // OpcodeOffset table.
1983  unsigned MatcherIndex = 0;
1984
1985  if (!OpcodeOffset.empty()) {
1986    // Already computed the OpcodeOffset table, just index into it.
1987    if (N.getOpcode() < OpcodeOffset.size())
1988      MatcherIndex = OpcodeOffset[N.getOpcode()];
1989    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1990
1991  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1992    // Otherwise, the table isn't computed, but the state machine does start
1993    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1994    // is the first time we're selecting an instruction.
1995    unsigned Idx = 1;
1996    while (1) {
1997      // Get the size of this case.
1998      unsigned CaseSize = MatcherTable[Idx++];
1999      if (CaseSize & 128)
2000        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2001      if (CaseSize == 0) break;
2002
2003      // Get the opcode, add the index to the table.
2004      uint16_t Opc = MatcherTable[Idx++];
2005      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2006      if (Opc >= OpcodeOffset.size())
2007        OpcodeOffset.resize((Opc+1)*2);
2008      OpcodeOffset[Opc] = Idx;
2009      Idx += CaseSize;
2010    }
2011
2012    // Okay, do the lookup for the first opcode.
2013    if (N.getOpcode() < OpcodeOffset.size())
2014      MatcherIndex = OpcodeOffset[N.getOpcode()];
2015  }
2016
2017  while (1) {
2018    assert(MatcherIndex < TableSize && "Invalid index");
2019#ifndef NDEBUG
2020    unsigned CurrentOpcodeIndex = MatcherIndex;
2021#endif
2022    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2023    switch (Opcode) {
2024    case OPC_Scope: {
2025      // Okay, the semantics of this operation are that we should push a scope
2026      // then evaluate the first child.  However, pushing a scope only to have
2027      // the first check fail (which then pops it) is inefficient.  If we can
2028      // determine immediately that the first check (or first several) will
2029      // immediately fail, don't even bother pushing a scope for them.
2030      unsigned FailIndex;
2031
2032      while (1) {
2033        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2034        if (NumToSkip & 128)
2035          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2036        // Found the end of the scope with no match.
2037        if (NumToSkip == 0) {
2038          FailIndex = 0;
2039          break;
2040        }
2041
2042        FailIndex = MatcherIndex+NumToSkip;
2043
2044        unsigned MatcherIndexOfPredicate = MatcherIndex;
2045        (void)MatcherIndexOfPredicate; // silence warning.
2046
2047        // If we can't evaluate this predicate without pushing a scope (e.g. if
2048        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2049        // push the scope and evaluate the full predicate chain.
2050        bool Result;
2051        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2052                                              Result, *this, RecordedNodes);
2053        if (!Result)
2054          break;
2055
2056        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2057                     << "index " << MatcherIndexOfPredicate
2058                     << ", continuing at " << FailIndex << "\n");
2059        ++NumDAGIselRetries;
2060
2061        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2062        // move to the next case.
2063        MatcherIndex = FailIndex;
2064      }
2065
2066      // If the whole scope failed to match, bail.
2067      if (FailIndex == 0) break;
2068
2069      // Push a MatchScope which indicates where to go if the first child fails
2070      // to match.
2071      MatchScope NewEntry;
2072      NewEntry.FailIndex = FailIndex;
2073      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2074      NewEntry.NumRecordedNodes = RecordedNodes.size();
2075      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2076      NewEntry.InputChain = InputChain;
2077      NewEntry.InputFlag = InputFlag;
2078      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2079      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2080      MatchScopes.push_back(NewEntry);
2081      continue;
2082    }
2083    case OPC_RecordNode:
2084      // Remember this node, it may end up being an operand in the pattern.
2085      RecordedNodes.push_back(N);
2086      continue;
2087
2088    case OPC_RecordChild0: case OPC_RecordChild1:
2089    case OPC_RecordChild2: case OPC_RecordChild3:
2090    case OPC_RecordChild4: case OPC_RecordChild5:
2091    case OPC_RecordChild6: case OPC_RecordChild7: {
2092      unsigned ChildNo = Opcode-OPC_RecordChild0;
2093      if (ChildNo >= N.getNumOperands())
2094        break;  // Match fails if out of range child #.
2095
2096      RecordedNodes.push_back(N->getOperand(ChildNo));
2097      continue;
2098    }
2099    case OPC_RecordMemRef:
2100      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2101      continue;
2102
2103    case OPC_CaptureFlagInput:
2104      // If the current node has an input flag, capture it in InputFlag.
2105      if (N->getNumOperands() != 0 &&
2106          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2107        InputFlag = N->getOperand(N->getNumOperands()-1);
2108      continue;
2109
2110    case OPC_MoveChild: {
2111      unsigned ChildNo = MatcherTable[MatcherIndex++];
2112      if (ChildNo >= N.getNumOperands())
2113        break;  // Match fails if out of range child #.
2114      N = N.getOperand(ChildNo);
2115      NodeStack.push_back(N);
2116      continue;
2117    }
2118
2119    case OPC_MoveParent:
2120      // Pop the current node off the NodeStack.
2121      NodeStack.pop_back();
2122      assert(!NodeStack.empty() && "Node stack imbalance!");
2123      N = NodeStack.back();
2124      continue;
2125
2126    case OPC_CheckSame:
2127      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2128      continue;
2129    case OPC_CheckPatternPredicate:
2130      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2131      continue;
2132    case OPC_CheckPredicate:
2133      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2134                                N.getNode()))
2135        break;
2136      continue;
2137    case OPC_CheckComplexPat: {
2138      unsigned CPNum = MatcherTable[MatcherIndex++];
2139      unsigned RecNo = MatcherTable[MatcherIndex++];
2140      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2141      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2142                               RecordedNodes))
2143        break;
2144      continue;
2145    }
2146    case OPC_CheckOpcode:
2147      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2148      continue;
2149
2150    case OPC_CheckType:
2151      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2152      continue;
2153
2154    case OPC_SwitchOpcode: {
2155      unsigned CurNodeOpcode = N.getOpcode();
2156      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2157      unsigned CaseSize;
2158      while (1) {
2159        // Get the size of this case.
2160        CaseSize = MatcherTable[MatcherIndex++];
2161        if (CaseSize & 128)
2162          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2163        if (CaseSize == 0) break;
2164
2165        uint16_t Opc = MatcherTable[MatcherIndex++];
2166        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2167
2168        // If the opcode matches, then we will execute this case.
2169        if (CurNodeOpcode == Opc)
2170          break;
2171
2172        // Otherwise, skip over this case.
2173        MatcherIndex += CaseSize;
2174      }
2175
2176      // If no cases matched, bail out.
2177      if (CaseSize == 0) break;
2178
2179      // Otherwise, execute the case we found.
2180      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2181                   << " to " << MatcherIndex << "\n");
2182      continue;
2183    }
2184
2185    case OPC_SwitchType: {
2186      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2187      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2188      unsigned CaseSize;
2189      while (1) {
2190        // Get the size of this case.
2191        CaseSize = MatcherTable[MatcherIndex++];
2192        if (CaseSize & 128)
2193          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2194        if (CaseSize == 0) break;
2195
2196        MVT::SimpleValueType CaseVT =
2197          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2198        if (CaseVT == MVT::iPTR)
2199          CaseVT = TLI.getPointerTy().SimpleTy;
2200
2201        // If the VT matches, then we will execute this case.
2202        if (CurNodeVT == CaseVT)
2203          break;
2204
2205        // Otherwise, skip over this case.
2206        MatcherIndex += CaseSize;
2207      }
2208
2209      // If no cases matched, bail out.
2210      if (CaseSize == 0) break;
2211
2212      // Otherwise, execute the case we found.
2213      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2214                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2215      continue;
2216    }
2217    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2218    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2219    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2220    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2221      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2222                            Opcode-OPC_CheckChild0Type))
2223        break;
2224      continue;
2225    case OPC_CheckCondCode:
2226      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2227      continue;
2228    case OPC_CheckValueType:
2229      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2230      continue;
2231    case OPC_CheckInteger:
2232      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2233      continue;
2234    case OPC_CheckAndImm:
2235      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2236      continue;
2237    case OPC_CheckOrImm:
2238      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2239      continue;
2240
2241    case OPC_CheckFoldableChainNode: {
2242      assert(NodeStack.size() != 1 && "No parent node");
2243      // Verify that all intermediate nodes between the root and this one have
2244      // a single use.
2245      bool HasMultipleUses = false;
2246      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2247        if (!NodeStack[i].hasOneUse()) {
2248          HasMultipleUses = true;
2249          break;
2250        }
2251      if (HasMultipleUses) break;
2252
2253      // Check to see that the target thinks this is profitable to fold and that
2254      // we can fold it without inducing cycles in the graph.
2255      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2256                              NodeToMatch) ||
2257          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2258                         NodeToMatch, OptLevel,
2259                         true/*We validate our own chains*/))
2260        break;
2261
2262      continue;
2263    }
2264    case OPC_EmitInteger: {
2265      MVT::SimpleValueType VT =
2266        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2267      int64_t Val = MatcherTable[MatcherIndex++];
2268      if (Val & 128)
2269        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2270      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2271      continue;
2272    }
2273    case OPC_EmitRegister: {
2274      MVT::SimpleValueType VT =
2275        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2276      unsigned RegNo = MatcherTable[MatcherIndex++];
2277      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2278      continue;
2279    }
2280
2281    case OPC_EmitConvertToTarget:  {
2282      // Convert from IMM/FPIMM to target version.
2283      unsigned RecNo = MatcherTable[MatcherIndex++];
2284      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2285      SDValue Imm = RecordedNodes[RecNo];
2286
2287      if (Imm->getOpcode() == ISD::Constant) {
2288        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2289        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2290      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2291        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2292        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2293      }
2294
2295      RecordedNodes.push_back(Imm);
2296      continue;
2297    }
2298
2299    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2300    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2301      // These are space-optimized forms of OPC_EmitMergeInputChains.
2302      assert(InputChain.getNode() == 0 &&
2303             "EmitMergeInputChains should be the first chain producing node");
2304      assert(ChainNodesMatched.empty() &&
2305             "Should only have one EmitMergeInputChains per match");
2306
2307      // Read all of the chained nodes.
2308      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2309      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2310      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2311
2312      // FIXME: What if other value results of the node have uses not matched
2313      // by this pattern?
2314      if (ChainNodesMatched.back() != NodeToMatch &&
2315          !RecordedNodes[RecNo].hasOneUse()) {
2316        ChainNodesMatched.clear();
2317        break;
2318      }
2319
2320      // Merge the input chains if they are not intra-pattern references.
2321      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2322
2323      if (InputChain.getNode() == 0)
2324        break;  // Failed to merge.
2325      continue;
2326    }
2327
2328    case OPC_EmitMergeInputChains: {
2329      assert(InputChain.getNode() == 0 &&
2330             "EmitMergeInputChains should be the first chain producing node");
2331      // This node gets a list of nodes we matched in the input that have
2332      // chains.  We want to token factor all of the input chains to these nodes
2333      // together.  However, if any of the input chains is actually one of the
2334      // nodes matched in this pattern, then we have an intra-match reference.
2335      // Ignore these because the newly token factored chain should not refer to
2336      // the old nodes.
2337      unsigned NumChains = MatcherTable[MatcherIndex++];
2338      assert(NumChains != 0 && "Can't TF zero chains");
2339
2340      assert(ChainNodesMatched.empty() &&
2341             "Should only have one EmitMergeInputChains per match");
2342
2343      // Read all of the chained nodes.
2344      for (unsigned i = 0; i != NumChains; ++i) {
2345        unsigned RecNo = MatcherTable[MatcherIndex++];
2346        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2347        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2348
2349        // FIXME: What if other value results of the node have uses not matched
2350        // by this pattern?
2351        if (ChainNodesMatched.back() != NodeToMatch &&
2352            !RecordedNodes[RecNo].hasOneUse()) {
2353          ChainNodesMatched.clear();
2354          break;
2355        }
2356      }
2357
2358      // If the inner loop broke out, the match fails.
2359      if (ChainNodesMatched.empty())
2360        break;
2361
2362      // Merge the input chains if they are not intra-pattern references.
2363      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2364
2365      if (InputChain.getNode() == 0)
2366        break;  // Failed to merge.
2367
2368      continue;
2369    }
2370
2371    case OPC_EmitCopyToReg: {
2372      unsigned RecNo = MatcherTable[MatcherIndex++];
2373      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2374      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2375
2376      if (InputChain.getNode() == 0)
2377        InputChain = CurDAG->getEntryNode();
2378
2379      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2380                                        DestPhysReg, RecordedNodes[RecNo],
2381                                        InputFlag);
2382
2383      InputFlag = InputChain.getValue(1);
2384      continue;
2385    }
2386
2387    case OPC_EmitNodeXForm: {
2388      unsigned XFormNo = MatcherTable[MatcherIndex++];
2389      unsigned RecNo = MatcherTable[MatcherIndex++];
2390      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2391      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2392      continue;
2393    }
2394
2395    case OPC_EmitNode:
2396    case OPC_MorphNodeTo: {
2397      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2398      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2399      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2400      // Get the result VT list.
2401      unsigned NumVTs = MatcherTable[MatcherIndex++];
2402      SmallVector<EVT, 4> VTs;
2403      for (unsigned i = 0; i != NumVTs; ++i) {
2404        MVT::SimpleValueType VT =
2405          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2406        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2407        VTs.push_back(VT);
2408      }
2409
2410      if (EmitNodeInfo & OPFL_Chain)
2411        VTs.push_back(MVT::Other);
2412      if (EmitNodeInfo & OPFL_FlagOutput)
2413        VTs.push_back(MVT::Flag);
2414
2415      // This is hot code, so optimize the two most common cases of 1 and 2
2416      // results.
2417      SDVTList VTList;
2418      if (VTs.size() == 1)
2419        VTList = CurDAG->getVTList(VTs[0]);
2420      else if (VTs.size() == 2)
2421        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2422      else
2423        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2424
2425      // Get the operand list.
2426      unsigned NumOps = MatcherTable[MatcherIndex++];
2427      SmallVector<SDValue, 8> Ops;
2428      for (unsigned i = 0; i != NumOps; ++i) {
2429        unsigned RecNo = MatcherTable[MatcherIndex++];
2430        if (RecNo & 128)
2431          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2432
2433        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2434        Ops.push_back(RecordedNodes[RecNo]);
2435      }
2436
2437      // If there are variadic operands to add, handle them now.
2438      if (EmitNodeInfo & OPFL_VariadicInfo) {
2439        // Determine the start index to copy from.
2440        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2441        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2442        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2443               "Invalid variadic node");
2444        // Copy all of the variadic operands, not including a potential flag
2445        // input.
2446        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2447             i != e; ++i) {
2448          SDValue V = NodeToMatch->getOperand(i);
2449          if (V.getValueType() == MVT::Flag) break;
2450          Ops.push_back(V);
2451        }
2452      }
2453
2454      // If this has chain/flag inputs, add them.
2455      if (EmitNodeInfo & OPFL_Chain)
2456        Ops.push_back(InputChain);
2457      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2458        Ops.push_back(InputFlag);
2459
2460      // Create the node.
2461      SDNode *Res = 0;
2462      if (Opcode != OPC_MorphNodeTo) {
2463        // If this is a normal EmitNode command, just create the new node and
2464        // add the results to the RecordedNodes list.
2465        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2466                                     VTList, Ops.data(), Ops.size());
2467
2468        // Add all the non-flag/non-chain results to the RecordedNodes list.
2469        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2470          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2471          RecordedNodes.push_back(SDValue(Res, i));
2472        }
2473
2474      } else {
2475        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2476                        EmitNodeInfo);
2477      }
2478
2479      // If the node had chain/flag results, update our notion of the current
2480      // chain and flag.
2481      if (EmitNodeInfo & OPFL_FlagOutput) {
2482        InputFlag = SDValue(Res, VTs.size()-1);
2483        if (EmitNodeInfo & OPFL_Chain)
2484          InputChain = SDValue(Res, VTs.size()-2);
2485      } else if (EmitNodeInfo & OPFL_Chain)
2486        InputChain = SDValue(Res, VTs.size()-1);
2487
2488      // If the OPFL_MemRefs flag is set on this node, slap all of the
2489      // accumulated memrefs onto it.
2490      //
2491      // FIXME: This is vastly incorrect for patterns with multiple outputs
2492      // instructions that access memory and for ComplexPatterns that match
2493      // loads.
2494      if (EmitNodeInfo & OPFL_MemRefs) {
2495        MachineSDNode::mmo_iterator MemRefs =
2496          MF->allocateMemRefsArray(MatchedMemRefs.size());
2497        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2498        cast<MachineSDNode>(Res)
2499          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2500      }
2501
2502      DEBUG(errs() << "  "
2503                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2504                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2505
2506      // If this was a MorphNodeTo then we're completely done!
2507      if (Opcode == OPC_MorphNodeTo) {
2508        // Update chain and flag uses.
2509        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2510                             InputFlag, FlagResultNodesMatched, true);
2511        return Res;
2512      }
2513
2514      continue;
2515    }
2516
2517    case OPC_MarkFlagResults: {
2518      unsigned NumNodes = MatcherTable[MatcherIndex++];
2519
2520      // Read and remember all the flag-result nodes.
2521      for (unsigned i = 0; i != NumNodes; ++i) {
2522        unsigned RecNo = MatcherTable[MatcherIndex++];
2523        if (RecNo & 128)
2524          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2525
2526        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2527        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2528      }
2529      continue;
2530    }
2531
2532    case OPC_CompleteMatch: {
2533      // The match has been completed, and any new nodes (if any) have been
2534      // created.  Patch up references to the matched dag to use the newly
2535      // created nodes.
2536      unsigned NumResults = MatcherTable[MatcherIndex++];
2537
2538      for (unsigned i = 0; i != NumResults; ++i) {
2539        unsigned ResSlot = MatcherTable[MatcherIndex++];
2540        if (ResSlot & 128)
2541          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2542
2543        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2544        SDValue Res = RecordedNodes[ResSlot];
2545
2546        assert(i < NodeToMatch->getNumValues() &&
2547               NodeToMatch->getValueType(i) != MVT::Other &&
2548               NodeToMatch->getValueType(i) != MVT::Flag &&
2549               "Invalid number of results to complete!");
2550        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2551                NodeToMatch->getValueType(i) == MVT::iPTR ||
2552                Res.getValueType() == MVT::iPTR ||
2553                NodeToMatch->getValueType(i).getSizeInBits() ==
2554                    Res.getValueType().getSizeInBits()) &&
2555               "invalid replacement");
2556        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2557      }
2558
2559      // If the root node defines a flag, add it to the flag nodes to update
2560      // list.
2561      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2562        FlagResultNodesMatched.push_back(NodeToMatch);
2563
2564      // Update chain and flag uses.
2565      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2566                           InputFlag, FlagResultNodesMatched, false);
2567
2568      assert(NodeToMatch->use_empty() &&
2569             "Didn't replace all uses of the node?");
2570
2571      // FIXME: We just return here, which interacts correctly with SelectRoot
2572      // above.  We should fix this to not return an SDNode* anymore.
2573      return 0;
2574    }
2575    }
2576
2577    // If the code reached this point, then the match failed.  See if there is
2578    // another child to try in the current 'Scope', otherwise pop it until we
2579    // find a case to check.
2580    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2581    ++NumDAGIselRetries;
2582    while (1) {
2583      if (MatchScopes.empty()) {
2584        CannotYetSelect(NodeToMatch);
2585        return 0;
2586      }
2587
2588      // Restore the interpreter state back to the point where the scope was
2589      // formed.
2590      MatchScope &LastScope = MatchScopes.back();
2591      RecordedNodes.resize(LastScope.NumRecordedNodes);
2592      NodeStack.clear();
2593      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2594      N = NodeStack.back();
2595
2596      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2597        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2598      MatcherIndex = LastScope.FailIndex;
2599
2600      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2601
2602      InputChain = LastScope.InputChain;
2603      InputFlag = LastScope.InputFlag;
2604      if (!LastScope.HasChainNodesMatched)
2605        ChainNodesMatched.clear();
2606      if (!LastScope.HasFlagResultNodesMatched)
2607        FlagResultNodesMatched.clear();
2608
2609      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2610      // we have reached the end of this scope, otherwise we have another child
2611      // in the current scope to try.
2612      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2613      if (NumToSkip & 128)
2614        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2615
2616      // If we have another child in this scope to match, update FailIndex and
2617      // try it.
2618      if (NumToSkip != 0) {
2619        LastScope.FailIndex = MatcherIndex+NumToSkip;
2620        break;
2621      }
2622
2623      // End of this scope, pop it and try the next child in the containing
2624      // scope.
2625      MatchScopes.pop_back();
2626    }
2627  }
2628}
2629
2630
2631
2632void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2633  std::string msg;
2634  raw_string_ostream Msg(msg);
2635  Msg << "Cannot yet select: ";
2636
2637  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2638      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2639      N->getOpcode() != ISD::INTRINSIC_VOID) {
2640    N->printrFull(Msg, CurDAG);
2641  } else {
2642    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2643    unsigned iid =
2644      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2645    if (iid < Intrinsic::num_intrinsics)
2646      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2647    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2648      Msg << "target intrinsic %" << TII->getName(iid);
2649    else
2650      Msg << "unknown intrinsic #" << iid;
2651  }
2652  report_fatal_error(Msg.str());
2653}
2654
2655char SelectionDAGISel::ID = 0;
2656