SelectionDAGISel.cpp revision 518bb53485df640d7b7e3f6b0544099020c42aa7
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionAnalysis.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/CodeGen/DwarfWriter.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/Timer.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62static cl::opt<bool>
63EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
64          cl::desc("Enable verbose messages in the \"fast\" "
65                   "instruction selector"));
66static cl::opt<bool>
67EnableFastISelAbort("fast-isel-abort", cl::Hidden,
68          cl::desc("Enable abort calls when \"fast\" instruction fails"));
69static cl::opt<bool>
70SchedLiveInCopies("schedule-livein-copies", cl::Hidden,
71                  cl::desc("Schedule copies of livein registers"),
72                  cl::init(false));
73
74#ifndef NDEBUG
75static cl::opt<bool>
76ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the first "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before legalize types"));
82static cl::opt<bool>
83ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize"));
85static cl::opt<bool>
86ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before the second "
88                   "dag combine pass"));
89static cl::opt<bool>
90ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
91          cl::desc("Pop up a window to show dags before the post legalize types"
92                   " dag combine pass"));
93static cl::opt<bool>
94ViewISelDAGs("view-isel-dags", cl::Hidden,
95          cl::desc("Pop up a window to show isel dags as they are selected"));
96static cl::opt<bool>
97ViewSchedDAGs("view-sched-dags", cl::Hidden,
98          cl::desc("Pop up a window to show sched dags as they are processed"));
99static cl::opt<bool>
100ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
101      cl::desc("Pop up a window to show SUnit dags after they are processed"));
102#else
103static const bool ViewDAGCombine1 = false,
104                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
105                  ViewDAGCombine2 = false,
106                  ViewDAGCombineLT = false,
107                  ViewISelDAGs = false, ViewSchedDAGs = false,
108                  ViewSUnitDAGs = false;
109#endif
110
111//===---------------------------------------------------------------------===//
112///
113/// RegisterScheduler class - Track the registration of instruction schedulers.
114///
115//===---------------------------------------------------------------------===//
116MachinePassRegistry RegisterScheduler::Registry;
117
118//===---------------------------------------------------------------------===//
119///
120/// ISHeuristic command line option for instruction schedulers.
121///
122//===---------------------------------------------------------------------===//
123static cl::opt<RegisterScheduler::FunctionPassCtor, false,
124               RegisterPassParser<RegisterScheduler> >
125ISHeuristic("pre-RA-sched",
126            cl::init(&createDefaultScheduler),
127            cl::desc("Instruction schedulers available (before register"
128                     " allocation):"));
129
130static RegisterScheduler
131defaultListDAGScheduler("default", "Best scheduler for the target",
132                        createDefaultScheduler);
133
134namespace llvm {
135  //===--------------------------------------------------------------------===//
136  /// createDefaultScheduler - This creates an instruction scheduler appropriate
137  /// for the target.
138  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
139                                             CodeGenOpt::Level OptLevel) {
140    const TargetLowering &TLI = IS->getTargetLowering();
141
142    if (OptLevel == CodeGenOpt::None)
143      return createFastDAGScheduler(IS, OptLevel);
144    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
145      return createTDListDAGScheduler(IS, OptLevel);
146    assert(TLI.getSchedulingPreference() ==
147           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
148    return createBURRListDAGScheduler(IS, OptLevel);
149  }
150}
151
152// EmitInstrWithCustomInserter - This method should be implemented by targets
153// that mark instructions with the 'usesCustomInserter' flag.  These
154// instructions are special in various ways, which require special support to
155// insert.  The specified MachineInstr is created but not inserted into any
156// basic blocks, and this method is called to expand it into a sequence of
157// instructions, potentially also creating new basic blocks and control flow.
158// When new basic blocks are inserted and the edges from MBB to its successors
159// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
160// DenseMap.
161MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
162                                                         MachineBasicBlock *MBB,
163                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
164#ifndef NDEBUG
165  dbgs() << "If a target marks an instruction with "
166          "'usesCustomInserter', it must implement "
167          "TargetLowering::EmitInstrWithCustomInserter!";
168#endif
169  llvm_unreachable(0);
170  return 0;
171}
172
173/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
174/// physical register has only a single copy use, then coalesced the copy
175/// if possible.
176static void EmitLiveInCopy(MachineBasicBlock *MBB,
177                           MachineBasicBlock::iterator &InsertPos,
178                           unsigned VirtReg, unsigned PhysReg,
179                           const TargetRegisterClass *RC,
180                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
181                           const MachineRegisterInfo &MRI,
182                           const TargetRegisterInfo &TRI,
183                           const TargetInstrInfo &TII) {
184  unsigned NumUses = 0;
185  MachineInstr *UseMI = NULL;
186  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
187         UE = MRI.use_end(); UI != UE; ++UI) {
188    UseMI = &*UI;
189    if (++NumUses > 1)
190      break;
191  }
192
193  // If the number of uses is not one, or the use is not a move instruction,
194  // don't coalesce. Also, only coalesce away a virtual register to virtual
195  // register copy.
196  bool Coalesced = false;
197  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
198  if (NumUses == 1 &&
199      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
200      TargetRegisterInfo::isVirtualRegister(DstReg)) {
201    VirtReg = DstReg;
202    Coalesced = true;
203  }
204
205  // Now find an ideal location to insert the copy.
206  MachineBasicBlock::iterator Pos = InsertPos;
207  while (Pos != MBB->begin()) {
208    MachineInstr *PrevMI = prior(Pos);
209    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
210    // copyRegToReg might emit multiple instructions to do a copy.
211    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
212    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
213      // This is what the BB looks like right now:
214      // r1024 = mov r0
215      // ...
216      // r1    = mov r1024
217      //
218      // We want to insert "r1025 = mov r1". Inserting this copy below the
219      // move to r1024 makes it impossible for that move to be coalesced.
220      //
221      // r1025 = mov r1
222      // r1024 = mov r0
223      // ...
224      // r1    = mov 1024
225      // r2    = mov 1025
226      break; // Woot! Found a good location.
227    --Pos;
228  }
229
230  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
231  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
232  (void) Emitted;
233
234  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
235  if (Coalesced) {
236    if (&*InsertPos == UseMI) ++InsertPos;
237    MBB->erase(UseMI);
238  }
239}
240
241/// EmitLiveInCopies - If this is the first basic block in the function,
242/// and if it has live ins that need to be copied into vregs, emit the
243/// copies into the block.
244static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
245                             const MachineRegisterInfo &MRI,
246                             const TargetRegisterInfo &TRI,
247                             const TargetInstrInfo &TII) {
248  if (SchedLiveInCopies) {
249    // Emit the copies at a heuristically-determined location in the block.
250    DenseMap<MachineInstr*, unsigned> CopyRegMap;
251    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
252    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
253           E = MRI.livein_end(); LI != E; ++LI)
254      if (LI->second) {
255        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
256        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
257                       RC, CopyRegMap, MRI, TRI, TII);
258      }
259  } else {
260    // Emit the copies into the top of the block.
261    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
262           E = MRI.livein_end(); LI != E; ++LI)
263      if (LI->second) {
264        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
265        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
266                                        LI->second, LI->first, RC, RC);
267        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
268        (void) Emitted;
269      }
270  }
271}
272
273//===----------------------------------------------------------------------===//
274// SelectionDAGISel code
275//===----------------------------------------------------------------------===//
276
277SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
278  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
279  FuncInfo(new FunctionLoweringInfo(TLI)),
280  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
281  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
282  GFI(),
283  OptLevel(OL),
284  DAGSize(0)
285{}
286
287SelectionDAGISel::~SelectionDAGISel() {
288  delete SDB;
289  delete CurDAG;
290  delete FuncInfo;
291}
292
293unsigned SelectionDAGISel::MakeReg(EVT VT) {
294  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
295}
296
297void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
298  AU.addRequired<AliasAnalysis>();
299  AU.addPreserved<AliasAnalysis>();
300  AU.addRequired<GCModuleInfo>();
301  AU.addPreserved<GCModuleInfo>();
302  AU.addRequired<DwarfWriter>();
303  AU.addPreserved<DwarfWriter>();
304  MachineFunctionPass::getAnalysisUsage(AU);
305}
306
307bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
308  Function &Fn = *mf.getFunction();
309
310  // Do some sanity-checking on the command-line options.
311  assert((!EnableFastISelVerbose || EnableFastISel) &&
312         "-fast-isel-verbose requires -fast-isel");
313  assert((!EnableFastISelAbort || EnableFastISel) &&
314         "-fast-isel-abort requires -fast-isel");
315
316  // Get alias analysis for load/store combining.
317  AA = &getAnalysis<AliasAnalysis>();
318
319  MF = &mf;
320  const TargetInstrInfo &TII = *TM.getInstrInfo();
321  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
322
323  if (Fn.hasGC())
324    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
325  else
326    GFI = 0;
327  RegInfo = &MF->getRegInfo();
328  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
329
330  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
331  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
332  CurDAG->init(*MF, MMI, DW);
333  FuncInfo->set(Fn, *MF, EnableFastISel);
334  SDB->init(GFI, *AA);
335
336  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
337    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
338      // Mark landing pad.
339      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
340
341  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
342
343  // If the first basic block in the function has live ins that need to be
344  // copied into vregs, emit the copies into the top of the block before
345  // emitting the code for the block.
346  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
347
348  // Add function live-ins to entry block live-in set.
349  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
350         E = RegInfo->livein_end(); I != E; ++I)
351    MF->begin()->addLiveIn(I->first);
352
353#ifndef NDEBUG
354  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
355         "Not all catch info was assigned to a landing pad!");
356#endif
357
358  FuncInfo->clear();
359
360  return true;
361}
362
363/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
364/// attached with this instruction.
365static void SetDebugLoc(unsigned MDDbgKind, Instruction *I,
366                        SelectionDAGBuilder *SDB,
367                        FastISel *FastIS, MachineFunction *MF) {
368  if (isa<DbgInfoIntrinsic>(I)) return;
369
370  if (MDNode *Dbg = I->getMetadata(MDDbgKind)) {
371    DILocation DILoc(Dbg);
372    DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo());
373
374    SDB->setCurDebugLoc(Loc);
375
376    if (FastIS)
377      FastIS->setCurDebugLoc(Loc);
378
379    // If the function doesn't have a default debug location yet, set
380    // it. This is kind of a hack.
381    if (MF->getDefaultDebugLoc().isUnknown())
382      MF->setDefaultDebugLoc(Loc);
383  }
384}
385
386/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
387static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
388  SDB->setCurDebugLoc(DebugLoc::getUnknownLoc());
389  if (FastIS)
390    FastIS->setCurDebugLoc(DebugLoc::getUnknownLoc());
391}
392
393void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
394                                        BasicBlock::iterator Begin,
395                                        BasicBlock::iterator End,
396                                        bool &HadTailCall) {
397  SDB->setCurrentBasicBlock(BB);
398  unsigned MDDbgKind = LLVMBB->getContext().getMDKindID("dbg");
399
400  // Lower all of the non-terminator instructions. If a call is emitted
401  // as a tail call, cease emitting nodes for this block.
402  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
403    SetDebugLoc(MDDbgKind, I, SDB, 0, MF);
404
405    if (!isa<TerminatorInst>(I)) {
406      SDB->visit(*I);
407
408      // Set the current debug location back to "unknown" so that it doesn't
409      // spuriously apply to subsequent instructions.
410      ResetDebugLoc(SDB, 0);
411    }
412  }
413
414  if (!SDB->HasTailCall) {
415    // Ensure that all instructions which are used outside of their defining
416    // blocks are available as virtual registers.  Invoke is handled elsewhere.
417    for (BasicBlock::iterator I = Begin; I != End; ++I)
418      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
419        SDB->CopyToExportRegsIfNeeded(I);
420
421    // Handle PHI nodes in successor blocks.
422    if (End == LLVMBB->end()) {
423      HandlePHINodesInSuccessorBlocks(LLVMBB);
424
425      // Lower the terminator after the copies are emitted.
426      SetDebugLoc(MDDbgKind, LLVMBB->getTerminator(), SDB, 0, MF);
427      SDB->visit(*LLVMBB->getTerminator());
428      ResetDebugLoc(SDB, 0);
429    }
430  }
431
432  // Make sure the root of the DAG is up-to-date.
433  CurDAG->setRoot(SDB->getControlRoot());
434
435  // Final step, emit the lowered DAG as machine code.
436  CodeGenAndEmitDAG();
437  HadTailCall = SDB->HasTailCall;
438  SDB->clear();
439}
440
441namespace {
442/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
443/// nodes from the worklist.
444class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
445  SmallVector<SDNode*, 128> &Worklist;
446public:
447  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl) : Worklist(wl) {}
448
449  virtual void NodeDeleted(SDNode *N, SDNode *E) {
450    Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
451                   Worklist.end());
452  }
453
454  virtual void NodeUpdated(SDNode *N) {
455    // Ignore updates.
456  }
457};
458}
459
460/// ShrinkDemandedOps - A late transformation pass that shrink expressions
461/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
462/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
463void SelectionDAGISel::ShrinkDemandedOps() {
464  SmallVector<SDNode*, 128> Worklist;
465
466  // Add all the dag nodes to the worklist.
467  Worklist.reserve(CurDAG->allnodes_size());
468  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
469       E = CurDAG->allnodes_end(); I != E; ++I)
470    Worklist.push_back(I);
471
472  APInt Mask;
473  APInt KnownZero;
474  APInt KnownOne;
475
476  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
477  while (!Worklist.empty()) {
478    SDNode *N = Worklist.pop_back_val();
479
480    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
481      CurDAG->DeleteNode(N);
482      continue;
483    }
484
485    // Run ShrinkDemandedOp on scalar binary operations.
486    if (N->getNumValues() == 1 &&
487        N->getValueType(0).isSimple() && N->getValueType(0).isInteger()) {
488      unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
489      APInt Demanded = APInt::getAllOnesValue(BitWidth);
490      APInt KnownZero, KnownOne;
491      if (TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
492                                   KnownZero, KnownOne, TLO)) {
493        // Revisit the node.
494        Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
495                       Worklist.end());
496        Worklist.push_back(N);
497
498        // Replace the old value with the new one.
499        DEBUG(errs() << "\nReplacing ";
500              TLO.Old.getNode()->dump(CurDAG);
501              errs() << "\nWith: ";
502              TLO.New.getNode()->dump(CurDAG);
503              errs() << '\n');
504
505        Worklist.push_back(TLO.New.getNode());
506
507        SDOPsWorkListRemover DeadNodes(Worklist);
508        CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
509
510        if (TLO.Old.getNode()->use_empty()) {
511          for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
512               i != e; ++i) {
513            SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
514            if (OpNode->hasOneUse()) {
515              Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
516                                         OpNode), Worklist.end());
517              Worklist.push_back(OpNode);
518            }
519          }
520
521          Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
522                                     TLO.Old.getNode()), Worklist.end());
523          CurDAG->DeleteNode(TLO.Old.getNode());
524        }
525      }
526    }
527  }
528}
529
530void SelectionDAGISel::ComputeLiveOutVRegInfo() {
531  SmallPtrSet<SDNode*, 128> VisitedNodes;
532  SmallVector<SDNode*, 128> Worklist;
533
534  Worklist.push_back(CurDAG->getRoot().getNode());
535
536  APInt Mask;
537  APInt KnownZero;
538  APInt KnownOne;
539
540  do {
541    SDNode *N = Worklist.pop_back_val();
542
543    // If we've already seen this node, ignore it.
544    if (!VisitedNodes.insert(N))
545      continue;
546
547    // Otherwise, add all chain operands to the worklist.
548    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
549      if (N->getOperand(i).getValueType() == MVT::Other)
550        Worklist.push_back(N->getOperand(i).getNode());
551
552    // If this is a CopyToReg with a vreg dest, process it.
553    if (N->getOpcode() != ISD::CopyToReg)
554      continue;
555
556    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
557    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
558      continue;
559
560    // Ignore non-scalar or non-integer values.
561    SDValue Src = N->getOperand(2);
562    EVT SrcVT = Src.getValueType();
563    if (!SrcVT.isInteger() || SrcVT.isVector())
564      continue;
565
566    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
567    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
568    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
569
570    // Only install this information if it tells us something.
571    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
572      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
573      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
574        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
575      FunctionLoweringInfo::LiveOutInfo &LOI =
576        FuncInfo->LiveOutRegInfo[DestReg];
577      LOI.NumSignBits = NumSignBits;
578      LOI.KnownOne = KnownOne;
579      LOI.KnownZero = KnownZero;
580    }
581  } while (!Worklist.empty());
582}
583
584void SelectionDAGISel::CodeGenAndEmitDAG() {
585  std::string GroupName;
586  if (TimePassesIsEnabled)
587    GroupName = "Instruction Selection and Scheduling";
588  std::string BlockName;
589  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
590      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
591      ViewSUnitDAGs)
592    BlockName = MF->getFunction()->getNameStr() + ":" +
593                BB->getBasicBlock()->getNameStr();
594
595  DEBUG(dbgs() << "Initial selection DAG:\n");
596  DEBUG(CurDAG->dump());
597
598  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
599
600  // Run the DAG combiner in pre-legalize mode.
601  if (TimePassesIsEnabled) {
602    NamedRegionTimer T("DAG Combining 1", GroupName);
603    CurDAG->Combine(Unrestricted, *AA, OptLevel);
604  } else {
605    CurDAG->Combine(Unrestricted, *AA, OptLevel);
606  }
607
608  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
609  DEBUG(CurDAG->dump());
610
611  // Second step, hack on the DAG until it only uses operations and types that
612  // the target supports.
613  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
614                                               BlockName);
615
616  bool Changed;
617  if (TimePassesIsEnabled) {
618    NamedRegionTimer T("Type Legalization", GroupName);
619    Changed = CurDAG->LegalizeTypes();
620  } else {
621    Changed = CurDAG->LegalizeTypes();
622  }
623
624  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
625  DEBUG(CurDAG->dump());
626
627  if (Changed) {
628    if (ViewDAGCombineLT)
629      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
630
631    // Run the DAG combiner in post-type-legalize mode.
632    if (TimePassesIsEnabled) {
633      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
634      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
635    } else {
636      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
637    }
638
639    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
640    DEBUG(CurDAG->dump());
641  }
642
643  if (TimePassesIsEnabled) {
644    NamedRegionTimer T("Vector Legalization", GroupName);
645    Changed = CurDAG->LegalizeVectors();
646  } else {
647    Changed = CurDAG->LegalizeVectors();
648  }
649
650  if (Changed) {
651    if (TimePassesIsEnabled) {
652      NamedRegionTimer T("Type Legalization 2", GroupName);
653      CurDAG->LegalizeTypes();
654    } else {
655      CurDAG->LegalizeTypes();
656    }
657
658    if (ViewDAGCombineLT)
659      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
660
661    // Run the DAG combiner in post-type-legalize mode.
662    if (TimePassesIsEnabled) {
663      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
664      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
665    } else {
666      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
667    }
668
669    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
670    DEBUG(CurDAG->dump());
671  }
672
673  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
674
675  if (TimePassesIsEnabled) {
676    NamedRegionTimer T("DAG Legalization", GroupName);
677    CurDAG->Legalize(OptLevel);
678  } else {
679    CurDAG->Legalize(OptLevel);
680  }
681
682  DEBUG(dbgs() << "Legalized selection DAG:\n");
683  DEBUG(CurDAG->dump());
684
685  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
686
687  // Run the DAG combiner in post-legalize mode.
688  if (TimePassesIsEnabled) {
689    NamedRegionTimer T("DAG Combining 2", GroupName);
690    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
691  } else {
692    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
693  }
694
695  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
696  DEBUG(CurDAG->dump());
697
698  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
699
700  if (OptLevel != CodeGenOpt::None) {
701    ShrinkDemandedOps();
702    ComputeLiveOutVRegInfo();
703  }
704
705  // Third, instruction select all of the operations to machine code, adding the
706  // code to the MachineBasicBlock.
707  if (TimePassesIsEnabled) {
708    NamedRegionTimer T("Instruction Selection", GroupName);
709    InstructionSelect();
710  } else {
711    InstructionSelect();
712  }
713
714  DEBUG(dbgs() << "Selected selection DAG:\n");
715  DEBUG(CurDAG->dump());
716
717  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
718
719  // Schedule machine code.
720  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
721  if (TimePassesIsEnabled) {
722    NamedRegionTimer T("Instruction Scheduling", GroupName);
723    Scheduler->Run(CurDAG, BB, BB->end());
724  } else {
725    Scheduler->Run(CurDAG, BB, BB->end());
726  }
727
728  if (ViewSUnitDAGs) Scheduler->viewGraph();
729
730  // Emit machine code to BB.  This can change 'BB' to the last block being
731  // inserted into.
732  if (TimePassesIsEnabled) {
733    NamedRegionTimer T("Instruction Creation", GroupName);
734    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
735  } else {
736    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
737  }
738
739  // Free the scheduler state.
740  if (TimePassesIsEnabled) {
741    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
742    delete Scheduler;
743  } else {
744    delete Scheduler;
745  }
746
747  DEBUG(dbgs() << "Selected machine code:\n");
748  DEBUG(BB->dump());
749}
750
751void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
752                                            MachineFunction &MF,
753                                            MachineModuleInfo *MMI,
754                                            DwarfWriter *DW,
755                                            const TargetInstrInfo &TII) {
756  // Initialize the Fast-ISel state, if needed.
757  FastISel *FastIS = 0;
758  if (EnableFastISel)
759    FastIS = TLI.createFastISel(MF, MMI, DW,
760                                FuncInfo->ValueMap,
761                                FuncInfo->MBBMap,
762                                FuncInfo->StaticAllocaMap
763#ifndef NDEBUG
764                                , FuncInfo->CatchInfoLost
765#endif
766                                );
767
768  unsigned MDDbgKind = Fn.getContext().getMDKindID("dbg");
769
770  // Iterate over all basic blocks in the function.
771  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
772    BasicBlock *LLVMBB = &*I;
773    BB = FuncInfo->MBBMap[LLVMBB];
774
775    BasicBlock::iterator const Begin = LLVMBB->begin();
776    BasicBlock::iterator const End = LLVMBB->end();
777    BasicBlock::iterator BI = Begin;
778
779    // Lower any arguments needed in this block if this is the entry block.
780    bool SuppressFastISel = false;
781    if (LLVMBB == &Fn.getEntryBlock()) {
782      LowerArguments(LLVMBB);
783
784      // If any of the arguments has the byval attribute, forgo
785      // fast-isel in the entry block.
786      if (FastIS) {
787        unsigned j = 1;
788        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
789             I != E; ++I, ++j)
790          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
791            if (EnableFastISelVerbose || EnableFastISelAbort)
792              dbgs() << "FastISel skips entry block due to byval argument\n";
793            SuppressFastISel = true;
794            break;
795          }
796      }
797    }
798
799    if (MMI && BB->isLandingPad()) {
800      // Add a label to mark the beginning of the landing pad.  Deletion of the
801      // landing pad can thus be detected via the MachineModuleInfo.
802      unsigned LabelID = MMI->addLandingPad(BB);
803
804      const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL);
805      BuildMI(BB, SDB->getCurDebugLoc(), II).addImm(LabelID);
806
807      // Mark exception register as live in.
808      unsigned Reg = TLI.getExceptionAddressRegister();
809      if (Reg) BB->addLiveIn(Reg);
810
811      // Mark exception selector register as live in.
812      Reg = TLI.getExceptionSelectorRegister();
813      if (Reg) BB->addLiveIn(Reg);
814
815      // FIXME: Hack around an exception handling flaw (PR1508): the personality
816      // function and list of typeids logically belong to the invoke (or, if you
817      // like, the basic block containing the invoke), and need to be associated
818      // with it in the dwarf exception handling tables.  Currently however the
819      // information is provided by an intrinsic (eh.selector) that can be moved
820      // to unexpected places by the optimizers: if the unwind edge is critical,
821      // then breaking it can result in the intrinsics being in the successor of
822      // the landing pad, not the landing pad itself.  This results
823      // in exceptions not being caught because no typeids are associated with
824      // the invoke.  This may not be the only way things can go wrong, but it
825      // is the only way we try to work around for the moment.
826      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
827
828      if (Br && Br->isUnconditional()) { // Critical edge?
829        BasicBlock::iterator I, E;
830        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
831          if (isa<EHSelectorInst>(I))
832            break;
833
834        if (I == E)
835          // No catch info found - try to extract some from the successor.
836          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
837      }
838    }
839
840    // Before doing SelectionDAG ISel, see if FastISel has been requested.
841    if (FastIS && !SuppressFastISel) {
842      // Emit code for any incoming arguments. This must happen before
843      // beginning FastISel on the entry block.
844      if (LLVMBB == &Fn.getEntryBlock()) {
845        CurDAG->setRoot(SDB->getControlRoot());
846        CodeGenAndEmitDAG();
847        SDB->clear();
848      }
849      FastIS->startNewBlock(BB);
850      // Do FastISel on as many instructions as possible.
851      for (; BI != End; ++BI) {
852        // Just before the terminator instruction, insert instructions to
853        // feed PHI nodes in successor blocks.
854        if (isa<TerminatorInst>(BI))
855          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
856            ResetDebugLoc(SDB, FastIS);
857            if (EnableFastISelVerbose || EnableFastISelAbort) {
858              dbgs() << "FastISel miss: ";
859              BI->dump();
860            }
861            assert(!EnableFastISelAbort &&
862                   "FastISel didn't handle a PHI in a successor");
863            break;
864          }
865
866        SetDebugLoc(MDDbgKind, BI, SDB, FastIS, &MF);
867
868        // Try to select the instruction with FastISel.
869        if (FastIS->SelectInstruction(BI)) {
870          ResetDebugLoc(SDB, FastIS);
871          continue;
872        }
873
874        // Clear out the debug location so that it doesn't carry over to
875        // unrelated instructions.
876        ResetDebugLoc(SDB, FastIS);
877
878        // Then handle certain instructions as single-LLVM-Instruction blocks.
879        if (isa<CallInst>(BI)) {
880          if (EnableFastISelVerbose || EnableFastISelAbort) {
881            dbgs() << "FastISel missed call: ";
882            BI->dump();
883          }
884
885          if (!BI->getType()->isVoidTy()) {
886            unsigned &R = FuncInfo->ValueMap[BI];
887            if (!R)
888              R = FuncInfo->CreateRegForValue(BI);
889          }
890
891          bool HadTailCall = false;
892          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
893
894          // If the call was emitted as a tail call, we're done with the block.
895          if (HadTailCall) {
896            BI = End;
897            break;
898          }
899
900          // If the instruction was codegen'd with multiple blocks,
901          // inform the FastISel object where to resume inserting.
902          FastIS->setCurrentBlock(BB);
903          continue;
904        }
905
906        // Otherwise, give up on FastISel for the rest of the block.
907        // For now, be a little lenient about non-branch terminators.
908        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
909          if (EnableFastISelVerbose || EnableFastISelAbort) {
910            dbgs() << "FastISel miss: ";
911            BI->dump();
912          }
913          if (EnableFastISelAbort)
914            // The "fast" selector couldn't handle something and bailed.
915            // For the purpose of debugging, just abort.
916            llvm_unreachable("FastISel didn't select the entire block");
917        }
918        break;
919      }
920    }
921
922    // Run SelectionDAG instruction selection on the remainder of the block
923    // not handled by FastISel. If FastISel is not run, this is the entire
924    // block.
925    if (BI != End) {
926      bool HadTailCall;
927      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
928    }
929
930    FinishBasicBlock();
931  }
932
933  delete FastIS;
934}
935
936void
937SelectionDAGISel::FinishBasicBlock() {
938
939  DEBUG(dbgs() << "Target-post-processed machine code:\n");
940  DEBUG(BB->dump());
941
942  DEBUG(dbgs() << "Total amount of phi nodes to update: "
943               << SDB->PHINodesToUpdate.size() << "\n");
944  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
945          dbgs() << "Node " << i << " : ("
946                 << SDB->PHINodesToUpdate[i].first
947                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
948
949  // Next, now that we know what the last MBB the LLVM BB expanded is, update
950  // PHI nodes in successors.
951  if (SDB->SwitchCases.empty() &&
952      SDB->JTCases.empty() &&
953      SDB->BitTestCases.empty()) {
954    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
955      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
956      assert(PHI->isPHI() &&
957             "This is not a machine PHI node that we are updating!");
958      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
959                                                false));
960      PHI->addOperand(MachineOperand::CreateMBB(BB));
961    }
962    SDB->PHINodesToUpdate.clear();
963    return;
964  }
965
966  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
967    // Lower header first, if it wasn't already lowered
968    if (!SDB->BitTestCases[i].Emitted) {
969      // Set the current basic block to the mbb we wish to insert the code into
970      BB = SDB->BitTestCases[i].Parent;
971      SDB->setCurrentBasicBlock(BB);
972      // Emit the code
973      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
974      CurDAG->setRoot(SDB->getRoot());
975      CodeGenAndEmitDAG();
976      SDB->clear();
977    }
978
979    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
980      // Set the current basic block to the mbb we wish to insert the code into
981      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
982      SDB->setCurrentBasicBlock(BB);
983      // Emit the code
984      if (j+1 != ej)
985        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
986                              SDB->BitTestCases[i].Reg,
987                              SDB->BitTestCases[i].Cases[j]);
988      else
989        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
990                              SDB->BitTestCases[i].Reg,
991                              SDB->BitTestCases[i].Cases[j]);
992
993
994      CurDAG->setRoot(SDB->getRoot());
995      CodeGenAndEmitDAG();
996      SDB->clear();
997    }
998
999    // Update PHI Nodes
1000    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1001      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1002      MachineBasicBlock *PHIBB = PHI->getParent();
1003      assert(PHI->isPHI() &&
1004             "This is not a machine PHI node that we are updating!");
1005      // This is "default" BB. We have two jumps to it. From "header" BB and
1006      // from last "case" BB.
1007      if (PHIBB == SDB->BitTestCases[i].Default) {
1008        PHI->addOperand(MachineOperand::
1009                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1010        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1011        PHI->addOperand(MachineOperand::
1012                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1013        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1014                                                  back().ThisBB));
1015      }
1016      // One of "cases" BB.
1017      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1018           j != ej; ++j) {
1019        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1020        if (cBB->isSuccessor(PHIBB)) {
1021          PHI->addOperand(MachineOperand::
1022                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1023          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1024        }
1025      }
1026    }
1027  }
1028  SDB->BitTestCases.clear();
1029
1030  // If the JumpTable record is filled in, then we need to emit a jump table.
1031  // Updating the PHI nodes is tricky in this case, since we need to determine
1032  // whether the PHI is a successor of the range check MBB or the jump table MBB
1033  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1034    // Lower header first, if it wasn't already lowered
1035    if (!SDB->JTCases[i].first.Emitted) {
1036      // Set the current basic block to the mbb we wish to insert the code into
1037      BB = SDB->JTCases[i].first.HeaderBB;
1038      SDB->setCurrentBasicBlock(BB);
1039      // Emit the code
1040      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
1041      CurDAG->setRoot(SDB->getRoot());
1042      CodeGenAndEmitDAG();
1043      SDB->clear();
1044    }
1045
1046    // Set the current basic block to the mbb we wish to insert the code into
1047    BB = SDB->JTCases[i].second.MBB;
1048    SDB->setCurrentBasicBlock(BB);
1049    // Emit the code
1050    SDB->visitJumpTable(SDB->JTCases[i].second);
1051    CurDAG->setRoot(SDB->getRoot());
1052    CodeGenAndEmitDAG();
1053    SDB->clear();
1054
1055    // Update PHI Nodes
1056    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1057      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1058      MachineBasicBlock *PHIBB = PHI->getParent();
1059      assert(PHI->isPHI() &&
1060             "This is not a machine PHI node that we are updating!");
1061      // "default" BB. We can go there only from header BB.
1062      if (PHIBB == SDB->JTCases[i].second.Default) {
1063        PHI->addOperand
1064          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1065        PHI->addOperand
1066          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1067      }
1068      // JT BB. Just iterate over successors here
1069      if (BB->isSuccessor(PHIBB)) {
1070        PHI->addOperand
1071          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1072        PHI->addOperand(MachineOperand::CreateMBB(BB));
1073      }
1074    }
1075  }
1076  SDB->JTCases.clear();
1077
1078  // If the switch block involved a branch to one of the actual successors, we
1079  // need to update PHI nodes in that block.
1080  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1081    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1082    assert(PHI->isPHI() &&
1083           "This is not a machine PHI node that we are updating!");
1084    if (BB->isSuccessor(PHI->getParent())) {
1085      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1086                                                false));
1087      PHI->addOperand(MachineOperand::CreateMBB(BB));
1088    }
1089  }
1090
1091  // If we generated any switch lowering information, build and codegen any
1092  // additional DAGs necessary.
1093  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1094    // Set the current basic block to the mbb we wish to insert the code into
1095    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1096    SDB->setCurrentBasicBlock(BB);
1097
1098    // Emit the code
1099    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1100    CurDAG->setRoot(SDB->getRoot());
1101    CodeGenAndEmitDAG();
1102
1103    // Handle any PHI nodes in successors of this chunk, as if we were coming
1104    // from the original BB before switch expansion.  Note that PHI nodes can
1105    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1106    // handle them the right number of times.
1107    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1108      // If new BB's are created during scheduling, the edges may have been
1109      // updated. That is, the edge from ThisBB to BB may have been split and
1110      // BB's predecessor is now another block.
1111      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1112        SDB->EdgeMapping.find(BB);
1113      if (EI != SDB->EdgeMapping.end())
1114        ThisBB = EI->second;
1115
1116      // BB may have been removed from the CFG if a branch was constant folded.
1117      if (ThisBB->isSuccessor(BB)) {
1118        for (MachineBasicBlock::iterator Phi = BB->begin();
1119             Phi != BB->end() && Phi->isPHI();
1120             ++Phi) {
1121          // This value for this PHI node is recorded in PHINodesToUpdate.
1122          for (unsigned pn = 0; ; ++pn) {
1123            assert(pn != SDB->PHINodesToUpdate.size() &&
1124                   "Didn't find PHI entry!");
1125            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1126              Phi->addOperand(MachineOperand::
1127                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1128                                        false));
1129              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1130              break;
1131            }
1132          }
1133        }
1134      }
1135
1136      // Don't process RHS if same block as LHS.
1137      if (BB == SDB->SwitchCases[i].FalseBB)
1138        SDB->SwitchCases[i].FalseBB = 0;
1139
1140      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1141      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1142      SDB->SwitchCases[i].FalseBB = 0;
1143    }
1144    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1145    SDB->clear();
1146  }
1147  SDB->SwitchCases.clear();
1148
1149  SDB->PHINodesToUpdate.clear();
1150}
1151
1152
1153/// Create the scheduler. If a specific scheduler was specified
1154/// via the SchedulerRegistry, use it, otherwise select the
1155/// one preferred by the target.
1156///
1157ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1158  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1159
1160  if (!Ctor) {
1161    Ctor = ISHeuristic;
1162    RegisterScheduler::setDefault(Ctor);
1163  }
1164
1165  return Ctor(this, OptLevel);
1166}
1167
1168ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1169  return new ScheduleHazardRecognizer();
1170}
1171
1172//===----------------------------------------------------------------------===//
1173// Helper functions used by the generated instruction selector.
1174//===----------------------------------------------------------------------===//
1175// Calls to these methods are generated by tblgen.
1176
1177/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1178/// the dag combiner simplified the 255, we still want to match.  RHS is the
1179/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1180/// specified in the .td file (e.g. 255).
1181bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1182                                    int64_t DesiredMaskS) const {
1183  const APInt &ActualMask = RHS->getAPIntValue();
1184  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1185
1186  // If the actual mask exactly matches, success!
1187  if (ActualMask == DesiredMask)
1188    return true;
1189
1190  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1191  if (ActualMask.intersects(~DesiredMask))
1192    return false;
1193
1194  // Otherwise, the DAG Combiner may have proven that the value coming in is
1195  // either already zero or is not demanded.  Check for known zero input bits.
1196  APInt NeededMask = DesiredMask & ~ActualMask;
1197  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1198    return true;
1199
1200  // TODO: check to see if missing bits are just not demanded.
1201
1202  // Otherwise, this pattern doesn't match.
1203  return false;
1204}
1205
1206/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1207/// the dag combiner simplified the 255, we still want to match.  RHS is the
1208/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1209/// specified in the .td file (e.g. 255).
1210bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1211                                   int64_t DesiredMaskS) const {
1212  const APInt &ActualMask = RHS->getAPIntValue();
1213  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1214
1215  // If the actual mask exactly matches, success!
1216  if (ActualMask == DesiredMask)
1217    return true;
1218
1219  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1220  if (ActualMask.intersects(~DesiredMask))
1221    return false;
1222
1223  // Otherwise, the DAG Combiner may have proven that the value coming in is
1224  // either already zero or is not demanded.  Check for known zero input bits.
1225  APInt NeededMask = DesiredMask & ~ActualMask;
1226
1227  APInt KnownZero, KnownOne;
1228  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1229
1230  // If all the missing bits in the or are already known to be set, match!
1231  if ((NeededMask & KnownOne) == NeededMask)
1232    return true;
1233
1234  // TODO: check to see if missing bits are just not demanded.
1235
1236  // Otherwise, this pattern doesn't match.
1237  return false;
1238}
1239
1240
1241/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1242/// by tblgen.  Others should not call it.
1243void SelectionDAGISel::
1244SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1245  std::vector<SDValue> InOps;
1246  std::swap(InOps, Ops);
1247
1248  Ops.push_back(InOps[0]);  // input chain.
1249  Ops.push_back(InOps[1]);  // input asm string.
1250
1251  unsigned i = 2, e = InOps.size();
1252  if (InOps[e-1].getValueType() == MVT::Flag)
1253    --e;  // Don't process a flag operand if it is here.
1254
1255  while (i != e) {
1256    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1257    if ((Flags & 7) != 4 /*MEM*/) {
1258      // Just skip over this operand, copying the operands verbatim.
1259      Ops.insert(Ops.end(), InOps.begin()+i,
1260                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1261      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1262    } else {
1263      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1264             "Memory operand with multiple values?");
1265      // Otherwise, this is a memory operand.  Ask the target to select it.
1266      std::vector<SDValue> SelOps;
1267      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1268        llvm_report_error("Could not match memory address.  Inline asm"
1269                          " failure!");
1270      }
1271
1272      // Add this to the output node.
1273      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1274                                              MVT::i32));
1275      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1276      i += 2;
1277    }
1278  }
1279
1280  // Add the flag input back if present.
1281  if (e != InOps.size())
1282    Ops.push_back(InOps.back());
1283}
1284
1285/// findFlagUse - Return use of EVT::Flag value produced by the specified
1286/// SDNode.
1287///
1288static SDNode *findFlagUse(SDNode *N) {
1289  unsigned FlagResNo = N->getNumValues()-1;
1290  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1291    SDUse &Use = I.getUse();
1292    if (Use.getResNo() == FlagResNo)
1293      return Use.getUser();
1294  }
1295  return NULL;
1296}
1297
1298/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1299/// This function recursively traverses up the operand chain, ignoring
1300/// certain nodes.
1301static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1302                          SDNode *Root,
1303                          SmallPtrSet<SDNode*, 16> &Visited) {
1304  if (Use->getNodeId() < Def->getNodeId() ||
1305      !Visited.insert(Use))
1306    return false;
1307
1308  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1309    SDNode *N = Use->getOperand(i).getNode();
1310    if (N == Def) {
1311      if (Use == ImmedUse || Use == Root)
1312        continue;  // We are not looking for immediate use.
1313      assert(N != Root);
1314      return true;
1315    }
1316
1317    // Traverse up the operand chain.
1318    if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
1319      return true;
1320  }
1321  return false;
1322}
1323
1324/// isNonImmUse - Start searching from Root up the DAG to check is Def can
1325/// be reached. Return true if that's the case. However, ignore direct uses
1326/// by ImmedUse (which would be U in the example illustrated in
1327/// IsLegalAndProfitableToFold) and by Root (which can happen in the store
1328/// case).
1329/// FIXME: to be really generic, we should allow direct use by any node
1330/// that is being folded. But realisticly since we only fold loads which
1331/// have one non-chain use, we only need to watch out for load/op/store
1332/// and load/op/cmp case where the root (store / cmp) may reach the load via
1333/// its chain operand.
1334static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
1335  SmallPtrSet<SDNode*, 16> Visited;
1336  return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
1337}
1338
1339/// IsLegalAndProfitableToFold - Returns true if the specific operand node N of
1340/// U can be folded during instruction selection that starts at Root and
1341/// folding N is profitable.
1342bool SelectionDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
1343                                                  SDNode *Root) const {
1344  if (OptLevel == CodeGenOpt::None) return false;
1345
1346  // If Root use can somehow reach N through a path that that doesn't contain
1347  // U then folding N would create a cycle. e.g. In the following
1348  // diagram, Root can reach N through X. If N is folded into into Root, then
1349  // X is both a predecessor and a successor of U.
1350  //
1351  //          [N*]           //
1352  //         ^   ^           //
1353  //        /     \          //
1354  //      [U*]    [X]?       //
1355  //        ^     ^          //
1356  //         \   /           //
1357  //          \ /            //
1358  //         [Root*]         //
1359  //
1360  // * indicates nodes to be folded together.
1361  //
1362  // If Root produces a flag, then it gets (even more) interesting. Since it
1363  // will be "glued" together with its flag use in the scheduler, we need to
1364  // check if it might reach N.
1365  //
1366  //          [N*]           //
1367  //         ^   ^           //
1368  //        /     \          //
1369  //      [U*]    [X]?       //
1370  //        ^       ^        //
1371  //         \       \       //
1372  //          \      |       //
1373  //         [Root*] |       //
1374  //          ^      |       //
1375  //          f      |       //
1376  //          |      /       //
1377  //         [Y]    /        //
1378  //           ^   /         //
1379  //           f  /          //
1380  //           | /           //
1381  //          [FU]           //
1382  //
1383  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1384  // (call it Fold), then X is a predecessor of FU and a successor of
1385  // Fold. But since Fold and FU are flagged together, this will create
1386  // a cycle in the scheduling graph.
1387
1388  EVT VT = Root->getValueType(Root->getNumValues()-1);
1389  while (VT == MVT::Flag) {
1390    SDNode *FU = findFlagUse(Root);
1391    if (FU == NULL)
1392      break;
1393    Root = FU;
1394    VT = Root->getValueType(Root->getNumValues()-1);
1395  }
1396
1397  return !isNonImmUse(Root, N, U);
1398}
1399
1400SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1401  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1402  SelectInlineAsmMemoryOperands(Ops);
1403
1404  std::vector<EVT> VTs;
1405  VTs.push_back(MVT::Other);
1406  VTs.push_back(MVT::Flag);
1407  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1408                                VTs, &Ops[0], Ops.size());
1409  return New.getNode();
1410}
1411
1412SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1413  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1414}
1415
1416SDNode *SelectionDAGISel::Select_EH_LABEL(SDNode *N) {
1417  SDValue Chain = N->getOperand(0);
1418  unsigned C = cast<LabelSDNode>(N)->getLabelID();
1419  SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);
1420  return CurDAG->SelectNodeTo(N, TargetOpcode::EH_LABEL,
1421                              MVT::Other, Tmp, Chain);
1422}
1423
1424void SelectionDAGISel::CannotYetSelect(SDNode *N) {
1425  std::string msg;
1426  raw_string_ostream Msg(msg);
1427  Msg << "Cannot yet select: ";
1428  N->printrFull(Msg, CurDAG);
1429  llvm_report_error(Msg.str());
1430}
1431
1432void SelectionDAGISel::CannotYetSelectIntrinsic(SDNode *N) {
1433  dbgs() << "Cannot yet select: ";
1434  unsigned iid =
1435    cast<ConstantSDNode>(N->getOperand(N->getOperand(0).getValueType() ==
1436                                       MVT::Other))->getZExtValue();
1437  if (iid < Intrinsic::num_intrinsics)
1438    llvm_report_error("Cannot yet select: intrinsic %" +
1439                      Intrinsic::getName((Intrinsic::ID)iid));
1440  else if (const TargetIntrinsicInfo *tii = TM.getIntrinsicInfo())
1441    llvm_report_error(Twine("Cannot yet select: target intrinsic %") +
1442                      tii->getName(iid));
1443}
1444
1445char SelectionDAGISel::ID = 0;
1446