SelectionDAGISel.cpp revision 51eaa86758338d5935c0eff0469c418b1256aba7
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61//===---------------------------------------------------------------------===//
62///
63/// RegisterScheduler class - Track the registration of instruction schedulers.
64///
65//===---------------------------------------------------------------------===//
66MachinePassRegistry RegisterScheduler::Registry;
67
68//===---------------------------------------------------------------------===//
69///
70/// ISHeuristic command line option for instruction schedulers.
71///
72//===---------------------------------------------------------------------===//
73namespace {
74  cl::opt<RegisterScheduler::FunctionPassCtor, false,
75          RegisterPassParser<RegisterScheduler> >
76  ISHeuristic("sched",
77              cl::init(&createDefaultScheduler),
78              cl::desc("Instruction schedulers available:"));
79
80  static RegisterScheduler
81  defaultListDAGScheduler("default", "  Best scheduler for the target",
82                          createDefaultScheduler);
83} // namespace
84
85namespace { struct AsmOperandInfo; }
86
87namespace {
88  /// RegsForValue - This struct represents the physical registers that a
89  /// particular value is assigned and the type information about the value.
90  /// This is needed because values can be promoted into larger registers and
91  /// expanded into multiple smaller registers than the value.
92  struct VISIBILITY_HIDDEN RegsForValue {
93    /// Regs - This list hold the register (for legal and promoted values)
94    /// or register set (for expanded values) that the value should be assigned
95    /// to.
96    std::vector<unsigned> Regs;
97
98    /// RegVT - The value type of each register.
99    ///
100    MVT::ValueType RegVT;
101
102    /// ValueVT - The value type of the LLVM value, which may be promoted from
103    /// RegVT or made from merging the two expanded parts.
104    MVT::ValueType ValueVT;
105
106    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
107
108    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
109      : RegVT(regvt), ValueVT(valuevt) {
110        Regs.push_back(Reg);
111    }
112    RegsForValue(const std::vector<unsigned> &regs,
113                 MVT::ValueType regvt, MVT::ValueType valuevt)
114      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
115    }
116
117    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
118    /// this value and returns the result as a ValueVT value.  This uses
119    /// Chain/Flag as the input and updates them for the output Chain/Flag.
120    SDOperand getCopyFromRegs(SelectionDAG &DAG,
121                              SDOperand &Chain, SDOperand &Flag) const;
122
123    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
124    /// specified value into the registers specified by this object.  This uses
125    /// Chain/Flag as the input and updates them for the output Chain/Flag.
126    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
127                       SDOperand &Chain, SDOperand &Flag,
128                       MVT::ValueType PtrVT) const;
129
130    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
131    /// operand list.  This adds the code marker and includes the number of
132    /// values added into it.
133    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
134                              std::vector<SDOperand> &Ops) const;
135  };
136}
137
138namespace llvm {
139  //===--------------------------------------------------------------------===//
140  /// createDefaultScheduler - This creates an instruction scheduler appropriate
141  /// for the target.
142  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
143                                      SelectionDAG *DAG,
144                                      MachineBasicBlock *BB) {
145    TargetLowering &TLI = IS->getTargetLowering();
146
147    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
148      return createTDListDAGScheduler(IS, DAG, BB);
149    } else {
150      assert(TLI.getSchedulingPreference() ==
151           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
152      return createBURRListDAGScheduler(IS, DAG, BB);
153    }
154  }
155
156
157  //===--------------------------------------------------------------------===//
158  /// FunctionLoweringInfo - This contains information that is global to a
159  /// function that is used when lowering a region of the function.
160  class FunctionLoweringInfo {
161  public:
162    TargetLowering &TLI;
163    Function &Fn;
164    MachineFunction &MF;
165    SSARegMap *RegMap;
166
167    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
168
169    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
170    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
171
172    /// ValueMap - Since we emit code for the function a basic block at a time,
173    /// we must remember which virtual registers hold the values for
174    /// cross-basic-block values.
175    DenseMap<const Value*, unsigned> ValueMap;
176
177    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
178    /// the entry block.  This allows the allocas to be efficiently referenced
179    /// anywhere in the function.
180    std::map<const AllocaInst*, int> StaticAllocaMap;
181
182    unsigned MakeReg(MVT::ValueType VT) {
183      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
184    }
185
186    /// isExportedInst - Return true if the specified value is an instruction
187    /// exported from its block.
188    bool isExportedInst(const Value *V) {
189      return ValueMap.count(V);
190    }
191
192    unsigned CreateRegForValue(const Value *V);
193
194    unsigned InitializeRegForValue(const Value *V) {
195      unsigned &R = ValueMap[V];
196      assert(R == 0 && "Already initialized this value register!");
197      return R = CreateRegForValue(V);
198    }
199  };
200}
201
202/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
203/// PHI nodes or outside of the basic block that defines it, or used by a
204/// switch instruction, which may expand to multiple basic blocks.
205static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
206  if (isa<PHINode>(I)) return true;
207  BasicBlock *BB = I->getParent();
208  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
209    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
210        // FIXME: Remove switchinst special case.
211        isa<SwitchInst>(*UI))
212      return true;
213  return false;
214}
215
216/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
217/// entry block, return true.  This includes arguments used by switches, since
218/// the switch may expand into multiple basic blocks.
219static bool isOnlyUsedInEntryBlock(Argument *A) {
220  BasicBlock *Entry = A->getParent()->begin();
221  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
222    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
223      return false;  // Use not in entry block.
224  return true;
225}
226
227FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
228                                           Function &fn, MachineFunction &mf)
229    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
230
231  // Create a vreg for each argument register that is not dead and is used
232  // outside of the entry block for the function.
233  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
234       AI != E; ++AI)
235    if (!isOnlyUsedInEntryBlock(AI))
236      InitializeRegForValue(AI);
237
238  // Initialize the mapping of values to registers.  This is only set up for
239  // instruction values that are used outside of the block that defines
240  // them.
241  Function::iterator BB = Fn.begin(), EB = Fn.end();
242  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
243    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
244      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
245        const Type *Ty = AI->getAllocatedType();
246        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
247        unsigned Align =
248          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
249                   AI->getAlignment());
250
251        TySize *= CUI->getZExtValue();   // Get total allocated size.
252        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
253        StaticAllocaMap[AI] =
254          MF.getFrameInfo()->CreateStackObject(TySize, Align);
255      }
256
257  for (; BB != EB; ++BB)
258    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
259      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
260        if (!isa<AllocaInst>(I) ||
261            !StaticAllocaMap.count(cast<AllocaInst>(I)))
262          InitializeRegForValue(I);
263
264  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
265  // also creates the initial PHI MachineInstrs, though none of the input
266  // operands are populated.
267  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
268    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
269    MBBMap[BB] = MBB;
270    MF.getBasicBlockList().push_back(MBB);
271
272    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
273    // appropriate.
274    PHINode *PN;
275    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
276      if (PN->use_empty()) continue;
277
278      MVT::ValueType VT = TLI.getValueType(PN->getType());
279      unsigned NumElements;
280      if (VT != MVT::Vector)
281        NumElements = TLI.getNumElements(VT);
282      else {
283        MVT::ValueType VT1,VT2;
284        NumElements =
285          TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
286                                     VT1, VT2);
287      }
288      unsigned PHIReg = ValueMap[PN];
289      assert(PHIReg && "PHI node does not have an assigned virtual register!");
290      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
291      for (unsigned i = 0; i != NumElements; ++i)
292        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
293    }
294  }
295}
296
297/// CreateRegForValue - Allocate the appropriate number of virtual registers of
298/// the correctly promoted or expanded types.  Assign these registers
299/// consecutive vreg numbers and return the first assigned number.
300unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
301  MVT::ValueType VT = TLI.getValueType(V->getType());
302
303  // The number of multiples of registers that we need, to, e.g., split up
304  // a <2 x int64> -> 4 x i32 registers.
305  unsigned NumVectorRegs = 1;
306
307  // If this is a vector type, figure out what type it will decompose into
308  // and how many of the elements it will use.
309  if (VT == MVT::Vector) {
310    const VectorType *PTy = cast<VectorType>(V->getType());
311    unsigned NumElts = PTy->getNumElements();
312    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
313    MVT::ValueType VecTy = MVT::getVectorType(EltTy, NumElts);
314
315    // Divide the input until we get to a supported size.  This will always
316    // end with a scalar if the target doesn't support vectors.
317    while (NumElts > 1 && !TLI.isTypeLegal(VecTy)) {
318      NumElts >>= 1;
319      NumVectorRegs <<= 1;
320      VecTy = MVT::getVectorType(EltTy, NumElts);
321    }
322
323    // Check that VecTy isn't a 1-element vector.
324    if (NumElts == 1 && VecTy == MVT::Other)
325      VT = EltTy;
326    else
327      VT = VecTy;
328  }
329
330  // The common case is that we will only create one register for this
331  // value.  If we have that case, create and return the virtual register.
332  unsigned NV = TLI.getNumElements(VT);
333  if (NV == 1) {
334    // If we are promoting this value, pick the next largest supported type.
335    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
336    unsigned Reg = MakeReg(PromotedType);
337    // If this is a vector of supported or promoted types (e.g. 4 x i16),
338    // create all of the registers.
339    for (unsigned i = 1; i != NumVectorRegs; ++i)
340      MakeReg(PromotedType);
341    return Reg;
342  }
343
344  // If this value is represented with multiple target registers, make sure
345  // to create enough consecutive registers of the right (smaller) type.
346  VT = TLI.getTypeToExpandTo(VT);
347  unsigned R = MakeReg(VT);
348  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
349    MakeReg(VT);
350  return R;
351}
352
353//===----------------------------------------------------------------------===//
354/// SelectionDAGLowering - This is the common target-independent lowering
355/// implementation that is parameterized by a TargetLowering object.
356/// Also, targets can overload any lowering method.
357///
358namespace llvm {
359class SelectionDAGLowering {
360  MachineBasicBlock *CurMBB;
361
362  DenseMap<const Value*, SDOperand> NodeMap;
363
364  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
365  /// them up and then emit token factor nodes when possible.  This allows us to
366  /// get simple disambiguation between loads without worrying about alias
367  /// analysis.
368  std::vector<SDOperand> PendingLoads;
369
370  /// Case - A struct to record the Value for a switch case, and the
371  /// case's target basic block.
372  struct Case {
373    Constant* Low;
374    Constant* High;
375    MachineBasicBlock* BB;
376
377    Case() : Low(0), High(0), BB(0) { }
378    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
379      Low(low), High(high), BB(bb) { }
380    uint64_t size() const {
381      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
382      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
383      return (rHigh - rLow + 1ULL);
384    }
385  };
386
387  struct CaseBits {
388    uint64_t Mask;
389    MachineBasicBlock* BB;
390    unsigned Bits;
391
392    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
393      Mask(mask), BB(bb), Bits(bits) { }
394  };
395
396  typedef std::vector<Case>           CaseVector;
397  typedef std::vector<CaseBits>       CaseBitsVector;
398  typedef CaseVector::iterator        CaseItr;
399  typedef std::pair<CaseItr, CaseItr> CaseRange;
400
401  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
402  /// of conditional branches.
403  struct CaseRec {
404    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
405    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
406
407    /// CaseBB - The MBB in which to emit the compare and branch
408    MachineBasicBlock *CaseBB;
409    /// LT, GE - If nonzero, we know the current case value must be less-than or
410    /// greater-than-or-equal-to these Constants.
411    Constant *LT;
412    Constant *GE;
413    /// Range - A pair of iterators representing the range of case values to be
414    /// processed at this point in the binary search tree.
415    CaseRange Range;
416  };
417
418  typedef std::vector<CaseRec> CaseRecVector;
419
420  /// The comparison function for sorting the switch case values in the vector.
421  /// WARNING: Case ranges should be disjoint!
422  struct CaseCmp {
423    bool operator () (const Case& C1, const Case& C2) {
424      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
425      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
426      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
427      return CI1->getValue().slt(CI2->getValue());
428    }
429  };
430
431  struct CaseBitsCmp {
432    bool operator () (const CaseBits& C1, const CaseBits& C2) {
433      return C1.Bits > C2.Bits;
434    }
435  };
436
437  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
438
439public:
440  // TLI - This is information that describes the available target features we
441  // need for lowering.  This indicates when operations are unavailable,
442  // implemented with a libcall, etc.
443  TargetLowering &TLI;
444  SelectionDAG &DAG;
445  const TargetData *TD;
446
447  /// SwitchCases - Vector of CaseBlock structures used to communicate
448  /// SwitchInst code generation information.
449  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
450  /// JTCases - Vector of JumpTable structures used to communicate
451  /// SwitchInst code generation information.
452  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
453  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
454
455  /// FuncInfo - Information about the function as a whole.
456  ///
457  FunctionLoweringInfo &FuncInfo;
458
459  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
460                       FunctionLoweringInfo &funcinfo)
461    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
462      FuncInfo(funcinfo) {
463  }
464
465  /// getRoot - Return the current virtual root of the Selection DAG.
466  ///
467  SDOperand getRoot() {
468    if (PendingLoads.empty())
469      return DAG.getRoot();
470
471    if (PendingLoads.size() == 1) {
472      SDOperand Root = PendingLoads[0];
473      DAG.setRoot(Root);
474      PendingLoads.clear();
475      return Root;
476    }
477
478    // Otherwise, we have to make a token factor node.
479    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
480                                 &PendingLoads[0], PendingLoads.size());
481    PendingLoads.clear();
482    DAG.setRoot(Root);
483    return Root;
484  }
485
486  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
487
488  void visit(Instruction &I) { visit(I.getOpcode(), I); }
489
490  void visit(unsigned Opcode, User &I) {
491    // Note: this doesn't use InstVisitor, because it has to work with
492    // ConstantExpr's in addition to instructions.
493    switch (Opcode) {
494    default: assert(0 && "Unknown instruction type encountered!");
495             abort();
496      // Build the switch statement using the Instruction.def file.
497#define HANDLE_INST(NUM, OPCODE, CLASS) \
498    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
499#include "llvm/Instruction.def"
500    }
501  }
502
503  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
504
505  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
506                        const Value *SV, SDOperand Root,
507                        bool isVolatile, unsigned Alignment);
508
509  SDOperand getIntPtrConstant(uint64_t Val) {
510    return DAG.getConstant(Val, TLI.getPointerTy());
511  }
512
513  SDOperand getValue(const Value *V);
514
515  void setValue(const Value *V, SDOperand NewN) {
516    SDOperand &N = NodeMap[V];
517    assert(N.Val == 0 && "Already set a value for this node!");
518    N = NewN;
519  }
520
521  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
522                            std::set<unsigned> &OutputRegs,
523                            std::set<unsigned> &InputRegs);
524
525  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
526                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
527                            unsigned Opc);
528  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
529  void ExportFromCurrentBlock(Value *V);
530  void LowerCallTo(Instruction &I,
531                   const Type *CalledValueTy, unsigned CallingConv,
532                   bool IsTailCall, SDOperand Callee, unsigned OpIdx,
533                   MachineBasicBlock *LandingPad = NULL);
534
535  // Terminator instructions.
536  void visitRet(ReturnInst &I);
537  void visitBr(BranchInst &I);
538  void visitSwitch(SwitchInst &I);
539  void visitUnreachable(UnreachableInst &I) { /* noop */ }
540
541  // Helpers for visitSwitch
542  bool handleSmallSwitchRange(CaseRec& CR,
543                              CaseRecVector& WorkList,
544                              Value* SV,
545                              MachineBasicBlock* Default);
546  bool handleJTSwitchCase(CaseRec& CR,
547                          CaseRecVector& WorkList,
548                          Value* SV,
549                          MachineBasicBlock* Default);
550  bool handleBTSplitSwitchCase(CaseRec& CR,
551                               CaseRecVector& WorkList,
552                               Value* SV,
553                               MachineBasicBlock* Default);
554  bool handleBitTestsSwitchCase(CaseRec& CR,
555                                CaseRecVector& WorkList,
556                                Value* SV,
557                                MachineBasicBlock* Default);
558  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
559  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
560  void visitBitTestCase(MachineBasicBlock* NextMBB,
561                        unsigned Reg,
562                        SelectionDAGISel::BitTestCase &B);
563  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
564  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
565                            SelectionDAGISel::JumpTableHeader &JTH);
566
567  // These all get lowered before this pass.
568  void visitInvoke(InvokeInst &I);
569  void visitUnwind(UnwindInst &I);
570
571  void visitScalarBinary(User &I, unsigned OpCode);
572  void visitVectorBinary(User &I, unsigned OpCode);
573  void visitEitherBinary(User &I, unsigned ScalarOp, unsigned VectorOp);
574  void visitShift(User &I, unsigned Opcode);
575  void visitAdd(User &I) {
576    if (isa<VectorType>(I.getType()))
577      visitVectorBinary(I, ISD::VADD);
578    else if (I.getType()->isFloatingPoint())
579      visitScalarBinary(I, ISD::FADD);
580    else
581      visitScalarBinary(I, ISD::ADD);
582  }
583  void visitSub(User &I);
584  void visitMul(User &I) {
585    if (isa<VectorType>(I.getType()))
586      visitVectorBinary(I, ISD::VMUL);
587    else if (I.getType()->isFloatingPoint())
588      visitScalarBinary(I, ISD::FMUL);
589    else
590      visitScalarBinary(I, ISD::MUL);
591  }
592  void visitURem(User &I) { visitScalarBinary(I, ISD::UREM); }
593  void visitSRem(User &I) { visitScalarBinary(I, ISD::SREM); }
594  void visitFRem(User &I) { visitScalarBinary(I, ISD::FREM); }
595  void visitUDiv(User &I) { visitEitherBinary(I, ISD::UDIV, ISD::VUDIV); }
596  void visitSDiv(User &I) { visitEitherBinary(I, ISD::SDIV, ISD::VSDIV); }
597  void visitFDiv(User &I) { visitEitherBinary(I, ISD::FDIV, ISD::VSDIV); }
598  void visitAnd (User &I) { visitEitherBinary(I, ISD::AND,  ISD::VAND ); }
599  void visitOr  (User &I) { visitEitherBinary(I, ISD::OR,   ISD::VOR  ); }
600  void visitXor (User &I) { visitEitherBinary(I, ISD::XOR,  ISD::VXOR ); }
601  void visitShl (User &I) { visitShift(I, ISD::SHL); }
602  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
603  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
604  void visitICmp(User &I);
605  void visitFCmp(User &I);
606  // Visit the conversion instructions
607  void visitTrunc(User &I);
608  void visitZExt(User &I);
609  void visitSExt(User &I);
610  void visitFPTrunc(User &I);
611  void visitFPExt(User &I);
612  void visitFPToUI(User &I);
613  void visitFPToSI(User &I);
614  void visitUIToFP(User &I);
615  void visitSIToFP(User &I);
616  void visitPtrToInt(User &I);
617  void visitIntToPtr(User &I);
618  void visitBitCast(User &I);
619
620  void visitExtractElement(User &I);
621  void visitInsertElement(User &I);
622  void visitShuffleVector(User &I);
623
624  void visitGetElementPtr(User &I);
625  void visitSelect(User &I);
626
627  void visitMalloc(MallocInst &I);
628  void visitFree(FreeInst &I);
629  void visitAlloca(AllocaInst &I);
630  void visitLoad(LoadInst &I);
631  void visitStore(StoreInst &I);
632  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
633  void visitCall(CallInst &I);
634  void visitInlineAsm(CallInst &I);
635  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
636  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
637
638  void visitVAStart(CallInst &I);
639  void visitVAArg(VAArgInst &I);
640  void visitVAEnd(CallInst &I);
641  void visitVACopy(CallInst &I);
642
643  void visitMemIntrinsic(CallInst &I, unsigned Op);
644
645  void visitUserOp1(Instruction &I) {
646    assert(0 && "UserOp1 should not exist at instruction selection time!");
647    abort();
648  }
649  void visitUserOp2(Instruction &I) {
650    assert(0 && "UserOp2 should not exist at instruction selection time!");
651    abort();
652  }
653};
654} // end namespace llvm
655
656SDOperand SelectionDAGLowering::getValue(const Value *V) {
657  SDOperand &N = NodeMap[V];
658  if (N.Val) return N;
659
660  const Type *VTy = V->getType();
661  MVT::ValueType VT = TLI.getValueType(VTy);
662  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
663    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
664      visit(CE->getOpcode(), *CE);
665      SDOperand N1 = NodeMap[V];
666      assert(N1.Val && "visit didn't populate the ValueMap!");
667      return N1;
668    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
669      return N = DAG.getGlobalAddress(GV, VT);
670    } else if (isa<ConstantPointerNull>(C)) {
671      return N = DAG.getConstant(0, TLI.getPointerTy());
672    } else if (isa<UndefValue>(C)) {
673      if (!isa<VectorType>(VTy))
674        return N = DAG.getNode(ISD::UNDEF, VT);
675
676      // Create a VBUILD_VECTOR of undef nodes.
677      const VectorType *PTy = cast<VectorType>(VTy);
678      unsigned NumElements = PTy->getNumElements();
679      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
680
681      SmallVector<SDOperand, 8> Ops;
682      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
683
684      // Create a VConstant node with generic Vector type.
685      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
686      Ops.push_back(DAG.getValueType(PVT));
687      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
688                             &Ops[0], Ops.size());
689    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
690      return N = DAG.getConstantFP(CFP->getValue(), VT);
691    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
692      unsigned NumElements = PTy->getNumElements();
693      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
694
695      // Now that we know the number and type of the elements, push a
696      // Constant or ConstantFP node onto the ops list for each element of
697      // the packed constant.
698      SmallVector<SDOperand, 8> Ops;
699      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
700        for (unsigned i = 0; i != NumElements; ++i)
701          Ops.push_back(getValue(CP->getOperand(i)));
702      } else {
703        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
704        SDOperand Op;
705        if (MVT::isFloatingPoint(PVT))
706          Op = DAG.getConstantFP(0, PVT);
707        else
708          Op = DAG.getConstant(0, PVT);
709        Ops.assign(NumElements, Op);
710      }
711
712      // Create a VBUILD_VECTOR node with generic Vector type.
713      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
714      Ops.push_back(DAG.getValueType(PVT));
715      return NodeMap[V] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0],
716                                      Ops.size());
717    } else {
718      // Canonicalize all constant ints to be unsigned.
719      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
720    }
721  }
722
723  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
724    std::map<const AllocaInst*, int>::iterator SI =
725    FuncInfo.StaticAllocaMap.find(AI);
726    if (SI != FuncInfo.StaticAllocaMap.end())
727      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
728  }
729
730  unsigned InReg = FuncInfo.ValueMap[V];
731  assert(InReg && "Value not in map!");
732
733  // If this type is not legal, make it so now.
734  if (VT != MVT::Vector) {
735    if (TLI.getTypeAction(VT) == TargetLowering::Expand) {
736      // Source must be expanded.  This input value is actually coming from the
737      // register pair InReg and InReg+1.
738      MVT::ValueType DestVT = TLI.getTypeToExpandTo(VT);
739      unsigned NumVals = TLI.getNumElements(VT);
740      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
741      if (NumVals == 1)
742        N = DAG.getNode(ISD::BIT_CONVERT, VT, N);
743      else {
744        assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
745        N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
746                       DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
747      }
748    } else {
749      MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
750      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
751      if (TLI.getTypeAction(VT) == TargetLowering::Promote) // Promotion case
752        N = MVT::isFloatingPoint(VT)
753          ? DAG.getNode(ISD::FP_ROUND, VT, N)
754          : DAG.getNode(ISD::TRUNCATE, VT, N);
755    }
756  } else {
757    // Otherwise, if this is a vector, make it available as a generic vector
758    // here.
759    MVT::ValueType PTyElementVT, PTyLegalElementVT;
760    const VectorType *PTy = cast<VectorType>(VTy);
761    unsigned NE = TLI.getVectorTypeBreakdown(PTy, PTyElementVT,
762                                             PTyLegalElementVT);
763
764    // Build a VBUILD_VECTOR or VCONCAT_VECTORS with the input registers.
765    SmallVector<SDOperand, 8> Ops;
766    if (PTyElementVT == PTyLegalElementVT) {
767      // If the value types are legal, just VBUILD the CopyFromReg nodes.
768      for (unsigned i = 0; i != NE; ++i)
769        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
770                                         PTyElementVT));
771    } else if (PTyElementVT < PTyLegalElementVT) {
772      // If the register was promoted, use TRUNCATE or FP_ROUND as appropriate.
773      for (unsigned i = 0; i != NE; ++i) {
774        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
775                                          PTyLegalElementVT);
776        if (MVT::isFloatingPoint(PTyElementVT))
777          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
778        else
779          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
780        Ops.push_back(Op);
781      }
782    } else {
783      // If the register was expanded, use BUILD_PAIR.
784      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
785      for (unsigned i = 0; i != NE; ++i) {
786        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
787                                           PTyLegalElementVT);
788        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
789                                           PTyLegalElementVT);
790        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, PTyElementVT, Op0, Op1));
791      }
792    }
793
794    if (MVT::isVector(PTyElementVT)) {
795      Ops.push_back(DAG.getConstant(NE * MVT::getVectorNumElements(PTyElementVT), MVT::i32));
796      Ops.push_back(DAG.getValueType(MVT::getVectorElementType(PTyElementVT)));
797      N = DAG.getNode(ISD::VCONCAT_VECTORS, MVT::Vector, &Ops[0], Ops.size());
798    } else {
799      Ops.push_back(DAG.getConstant(NE, MVT::i32));
800      Ops.push_back(DAG.getValueType(PTyElementVT));
801      N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
802    }
803  }
804
805  return N;
806}
807
808
809void SelectionDAGLowering::visitRet(ReturnInst &I) {
810  if (I.getNumOperands() == 0) {
811    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
812    return;
813  }
814  SmallVector<SDOperand, 8> NewValues;
815  NewValues.push_back(getRoot());
816  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
817    SDOperand RetOp = getValue(I.getOperand(i));
818
819    // If this is an integer return value, we need to promote it ourselves to
820    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
821    // than sign/zero.
822    // FIXME: C calling convention requires the return type to be promoted to
823    // at least 32-bit. But this is not necessary for non-C calling conventions.
824    if (MVT::isInteger(RetOp.getValueType()) &&
825        RetOp.getValueType() < MVT::i64) {
826      MVT::ValueType TmpVT;
827      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
828        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
829      else
830        TmpVT = MVT::i32;
831      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
832      const ParamAttrsList *Attrs = FTy->getParamAttrs();
833      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
834      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt))
835        ExtendKind = ISD::SIGN_EXTEND;
836      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt))
837        ExtendKind = ISD::ZERO_EXTEND;
838      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
839    }
840    NewValues.push_back(RetOp);
841    NewValues.push_back(DAG.getConstant(false, MVT::i32));
842  }
843  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
844                          &NewValues[0], NewValues.size()));
845}
846
847/// ExportFromCurrentBlock - If this condition isn't known to be exported from
848/// the current basic block, add it to ValueMap now so that we'll get a
849/// CopyTo/FromReg.
850void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
851  // No need to export constants.
852  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
853
854  // Already exported?
855  if (FuncInfo.isExportedInst(V)) return;
856
857  unsigned Reg = FuncInfo.InitializeRegForValue(V);
858  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
859}
860
861bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
862                                                    const BasicBlock *FromBB) {
863  // The operands of the setcc have to be in this block.  We don't know
864  // how to export them from some other block.
865  if (Instruction *VI = dyn_cast<Instruction>(V)) {
866    // Can export from current BB.
867    if (VI->getParent() == FromBB)
868      return true;
869
870    // Is already exported, noop.
871    return FuncInfo.isExportedInst(V);
872  }
873
874  // If this is an argument, we can export it if the BB is the entry block or
875  // if it is already exported.
876  if (isa<Argument>(V)) {
877    if (FromBB == &FromBB->getParent()->getEntryBlock())
878      return true;
879
880    // Otherwise, can only export this if it is already exported.
881    return FuncInfo.isExportedInst(V);
882  }
883
884  // Otherwise, constants can always be exported.
885  return true;
886}
887
888static bool InBlock(const Value *V, const BasicBlock *BB) {
889  if (const Instruction *I = dyn_cast<Instruction>(V))
890    return I->getParent() == BB;
891  return true;
892}
893
894/// FindMergedConditions - If Cond is an expression like
895void SelectionDAGLowering::FindMergedConditions(Value *Cond,
896                                                MachineBasicBlock *TBB,
897                                                MachineBasicBlock *FBB,
898                                                MachineBasicBlock *CurBB,
899                                                unsigned Opc) {
900  // If this node is not part of the or/and tree, emit it as a branch.
901  Instruction *BOp = dyn_cast<Instruction>(Cond);
902
903  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
904      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
905      BOp->getParent() != CurBB->getBasicBlock() ||
906      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
907      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
908    const BasicBlock *BB = CurBB->getBasicBlock();
909
910    // If the leaf of the tree is a comparison, merge the condition into
911    // the caseblock.
912    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
913        // The operands of the cmp have to be in this block.  We don't know
914        // how to export them from some other block.  If this is the first block
915        // of the sequence, no exporting is needed.
916        (CurBB == CurMBB ||
917         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
918          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
919      BOp = cast<Instruction>(Cond);
920      ISD::CondCode Condition;
921      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
922        switch (IC->getPredicate()) {
923        default: assert(0 && "Unknown icmp predicate opcode!");
924        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
925        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
926        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
927        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
928        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
929        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
930        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
931        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
932        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
933        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
934        }
935      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
936        ISD::CondCode FPC, FOC;
937        switch (FC->getPredicate()) {
938        default: assert(0 && "Unknown fcmp predicate opcode!");
939        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
940        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
941        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
942        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
943        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
944        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
945        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
946        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
947        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
948        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
949        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
950        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
951        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
952        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
953        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
954        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
955        }
956        if (FiniteOnlyFPMath())
957          Condition = FOC;
958        else
959          Condition = FPC;
960      } else {
961        Condition = ISD::SETEQ; // silence warning.
962        assert(0 && "Unknown compare instruction");
963      }
964
965      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
966                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
967      SwitchCases.push_back(CB);
968      return;
969    }
970
971    // Create a CaseBlock record representing this branch.
972    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
973                                   NULL, TBB, FBB, CurBB);
974    SwitchCases.push_back(CB);
975    return;
976  }
977
978
979  //  Create TmpBB after CurBB.
980  MachineFunction::iterator BBI = CurBB;
981  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
982  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
983
984  if (Opc == Instruction::Or) {
985    // Codegen X | Y as:
986    //   jmp_if_X TBB
987    //   jmp TmpBB
988    // TmpBB:
989    //   jmp_if_Y TBB
990    //   jmp FBB
991    //
992
993    // Emit the LHS condition.
994    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
995
996    // Emit the RHS condition into TmpBB.
997    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
998  } else {
999    assert(Opc == Instruction::And && "Unknown merge op!");
1000    // Codegen X & Y as:
1001    //   jmp_if_X TmpBB
1002    //   jmp FBB
1003    // TmpBB:
1004    //   jmp_if_Y TBB
1005    //   jmp FBB
1006    //
1007    //  This requires creation of TmpBB after CurBB.
1008
1009    // Emit the LHS condition.
1010    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1011
1012    // Emit the RHS condition into TmpBB.
1013    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1014  }
1015}
1016
1017/// If the set of cases should be emitted as a series of branches, return true.
1018/// If we should emit this as a bunch of and/or'd together conditions, return
1019/// false.
1020static bool
1021ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1022  if (Cases.size() != 2) return true;
1023
1024  // If this is two comparisons of the same values or'd or and'd together, they
1025  // will get folded into a single comparison, so don't emit two blocks.
1026  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1027       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1028      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1029       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1030    return false;
1031  }
1032
1033  return true;
1034}
1035
1036void SelectionDAGLowering::visitBr(BranchInst &I) {
1037  // Update machine-CFG edges.
1038  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1039
1040  // Figure out which block is immediately after the current one.
1041  MachineBasicBlock *NextBlock = 0;
1042  MachineFunction::iterator BBI = CurMBB;
1043  if (++BBI != CurMBB->getParent()->end())
1044    NextBlock = BBI;
1045
1046  if (I.isUnconditional()) {
1047    // If this is not a fall-through branch, emit the branch.
1048    if (Succ0MBB != NextBlock)
1049      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1050                              DAG.getBasicBlock(Succ0MBB)));
1051
1052    // Update machine-CFG edges.
1053    CurMBB->addSuccessor(Succ0MBB);
1054
1055    return;
1056  }
1057
1058  // If this condition is one of the special cases we handle, do special stuff
1059  // now.
1060  Value *CondVal = I.getCondition();
1061  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1062
1063  // If this is a series of conditions that are or'd or and'd together, emit
1064  // this as a sequence of branches instead of setcc's with and/or operations.
1065  // For example, instead of something like:
1066  //     cmp A, B
1067  //     C = seteq
1068  //     cmp D, E
1069  //     F = setle
1070  //     or C, F
1071  //     jnz foo
1072  // Emit:
1073  //     cmp A, B
1074  //     je foo
1075  //     cmp D, E
1076  //     jle foo
1077  //
1078  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1079    if (BOp->hasOneUse() &&
1080        (BOp->getOpcode() == Instruction::And ||
1081         BOp->getOpcode() == Instruction::Or)) {
1082      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1083      // If the compares in later blocks need to use values not currently
1084      // exported from this block, export them now.  This block should always
1085      // be the first entry.
1086      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1087
1088      // Allow some cases to be rejected.
1089      if (ShouldEmitAsBranches(SwitchCases)) {
1090        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1091          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1092          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1093        }
1094
1095        // Emit the branch for this block.
1096        visitSwitchCase(SwitchCases[0]);
1097        SwitchCases.erase(SwitchCases.begin());
1098        return;
1099      }
1100
1101      // Okay, we decided not to do this, remove any inserted MBB's and clear
1102      // SwitchCases.
1103      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1104        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1105
1106      SwitchCases.clear();
1107    }
1108  }
1109
1110  // Create a CaseBlock record representing this branch.
1111  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1112                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1113  // Use visitSwitchCase to actually insert the fast branch sequence for this
1114  // cond branch.
1115  visitSwitchCase(CB);
1116}
1117
1118/// visitSwitchCase - Emits the necessary code to represent a single node in
1119/// the binary search tree resulting from lowering a switch instruction.
1120void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1121  SDOperand Cond;
1122  SDOperand CondLHS = getValue(CB.CmpLHS);
1123
1124  // Build the setcc now.
1125  if (CB.CmpMHS == NULL) {
1126    // Fold "(X == true)" to X and "(X == false)" to !X to
1127    // handle common cases produced by branch lowering.
1128    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1129      Cond = CondLHS;
1130    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1131      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1132      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1133    } else
1134      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1135  } else {
1136    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1137
1138    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1139    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1140
1141    SDOperand CmpOp = getValue(CB.CmpMHS);
1142    MVT::ValueType VT = CmpOp.getValueType();
1143
1144    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1145      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1146    } else {
1147      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1148      Cond = DAG.getSetCC(MVT::i1, SUB,
1149                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1150    }
1151
1152  }
1153
1154  // Set NextBlock to be the MBB immediately after the current one, if any.
1155  // This is used to avoid emitting unnecessary branches to the next block.
1156  MachineBasicBlock *NextBlock = 0;
1157  MachineFunction::iterator BBI = CurMBB;
1158  if (++BBI != CurMBB->getParent()->end())
1159    NextBlock = BBI;
1160
1161  // If the lhs block is the next block, invert the condition so that we can
1162  // fall through to the lhs instead of the rhs block.
1163  if (CB.TrueBB == NextBlock) {
1164    std::swap(CB.TrueBB, CB.FalseBB);
1165    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1166    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1167  }
1168  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1169                                 DAG.getBasicBlock(CB.TrueBB));
1170  if (CB.FalseBB == NextBlock)
1171    DAG.setRoot(BrCond);
1172  else
1173    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1174                            DAG.getBasicBlock(CB.FalseBB)));
1175  // Update successor info
1176  CurMBB->addSuccessor(CB.TrueBB);
1177  CurMBB->addSuccessor(CB.FalseBB);
1178}
1179
1180/// visitJumpTable - Emit JumpTable node in the current MBB
1181void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1182  // Emit the code for the jump table
1183  assert(JT.Reg != -1U && "Should lower JT Header first!");
1184  MVT::ValueType PTy = TLI.getPointerTy();
1185  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1186  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1187  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1188                          Table, Index));
1189  return;
1190}
1191
1192/// visitJumpTableHeader - This function emits necessary code to produce index
1193/// in the JumpTable from switch case.
1194void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1195                                         SelectionDAGISel::JumpTableHeader &JTH) {
1196  // Subtract the lowest switch case value from the value being switched on
1197  // and conditional branch to default mbb if the result is greater than the
1198  // difference between smallest and largest cases.
1199  SDOperand SwitchOp = getValue(JTH.SValue);
1200  MVT::ValueType VT = SwitchOp.getValueType();
1201  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1202                              DAG.getConstant(JTH.First, VT));
1203
1204  // The SDNode we just created, which holds the value being switched on
1205  // minus the the smallest case value, needs to be copied to a virtual
1206  // register so it can be used as an index into the jump table in a
1207  // subsequent basic block.  This value may be smaller or larger than the
1208  // target's pointer type, and therefore require extension or truncating.
1209  if (VT > TLI.getPointerTy())
1210    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1211  else
1212    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1213
1214  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1215  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1216  JT.Reg = JumpTableReg;
1217
1218  // Emit the range check for the jump table, and branch to the default
1219  // block for the switch statement if the value being switched on exceeds
1220  // the largest case in the switch.
1221  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1222                               DAG.getConstant(JTH.Last-JTH.First,VT),
1223                               ISD::SETUGT);
1224
1225  // Set NextBlock to be the MBB immediately after the current one, if any.
1226  // This is used to avoid emitting unnecessary branches to the next block.
1227  MachineBasicBlock *NextBlock = 0;
1228  MachineFunction::iterator BBI = CurMBB;
1229  if (++BBI != CurMBB->getParent()->end())
1230    NextBlock = BBI;
1231
1232  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1233                                 DAG.getBasicBlock(JT.Default));
1234
1235  if (JT.MBB == NextBlock)
1236    DAG.setRoot(BrCond);
1237  else
1238    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1239                            DAG.getBasicBlock(JT.MBB)));
1240
1241  return;
1242}
1243
1244/// visitBitTestHeader - This function emits necessary code to produce value
1245/// suitable for "bit tests"
1246void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1247  // Subtract the minimum value
1248  SDOperand SwitchOp = getValue(B.SValue);
1249  MVT::ValueType VT = SwitchOp.getValueType();
1250  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1251                              DAG.getConstant(B.First, VT));
1252
1253  // Check range
1254  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1255                                    DAG.getConstant(B.Range, VT),
1256                                    ISD::SETUGT);
1257
1258  SDOperand ShiftOp;
1259  if (VT > TLI.getShiftAmountTy())
1260    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1261  else
1262    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1263
1264  // Make desired shift
1265  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1266                                    DAG.getConstant(1, TLI.getPointerTy()),
1267                                    ShiftOp);
1268
1269  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1270  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1271  B.Reg = SwitchReg;
1272
1273  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1274                                  DAG.getBasicBlock(B.Default));
1275
1276  // Set NextBlock to be the MBB immediately after the current one, if any.
1277  // This is used to avoid emitting unnecessary branches to the next block.
1278  MachineBasicBlock *NextBlock = 0;
1279  MachineFunction::iterator BBI = CurMBB;
1280  if (++BBI != CurMBB->getParent()->end())
1281    NextBlock = BBI;
1282
1283  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1284  if (MBB == NextBlock)
1285    DAG.setRoot(BrRange);
1286  else
1287    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1288                            DAG.getBasicBlock(MBB)));
1289
1290  CurMBB->addSuccessor(B.Default);
1291  CurMBB->addSuccessor(MBB);
1292
1293  return;
1294}
1295
1296/// visitBitTestCase - this function produces one "bit test"
1297void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1298                                            unsigned Reg,
1299                                            SelectionDAGISel::BitTestCase &B) {
1300  // Emit bit tests and jumps
1301  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1302
1303  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1304                                SwitchVal,
1305                                DAG.getConstant(B.Mask,
1306                                                TLI.getPointerTy()));
1307  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1308                                  DAG.getConstant(0, TLI.getPointerTy()),
1309                                  ISD::SETNE);
1310  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1311                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1312
1313  // Set NextBlock to be the MBB immediately after the current one, if any.
1314  // This is used to avoid emitting unnecessary branches to the next block.
1315  MachineBasicBlock *NextBlock = 0;
1316  MachineFunction::iterator BBI = CurMBB;
1317  if (++BBI != CurMBB->getParent()->end())
1318    NextBlock = BBI;
1319
1320  if (NextMBB == NextBlock)
1321    DAG.setRoot(BrAnd);
1322  else
1323    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1324                            DAG.getBasicBlock(NextMBB)));
1325
1326  CurMBB->addSuccessor(B.TargetBB);
1327  CurMBB->addSuccessor(NextMBB);
1328
1329  return;
1330}
1331
1332void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1333  // Retrieve successors.
1334  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1335  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1336
1337  LowerCallTo(I, I.getCalledValue()->getType(),
1338              I.getCallingConv(),
1339              false,
1340              getValue(I.getOperand(0)),
1341              3, LandingPad);
1342
1343  // If the value of the invoke is used outside of its defining block, make it
1344  // available as a virtual register.
1345  if (!I.use_empty()) {
1346    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1347    if (VMI != FuncInfo.ValueMap.end())
1348      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1349  }
1350
1351  // Drop into normal successor.
1352  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1353                          DAG.getBasicBlock(Return)));
1354
1355  // Update successor info
1356  CurMBB->addSuccessor(Return);
1357  CurMBB->addSuccessor(LandingPad);
1358}
1359
1360void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1361}
1362
1363/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1364/// small case ranges).
1365bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1366                                                  CaseRecVector& WorkList,
1367                                                  Value* SV,
1368                                                  MachineBasicBlock* Default) {
1369  Case& BackCase  = *(CR.Range.second-1);
1370
1371  // Size is the number of Cases represented by this range.
1372  unsigned Size = CR.Range.second - CR.Range.first;
1373  if (Size > 3)
1374    return false;
1375
1376  // Get the MachineFunction which holds the current MBB.  This is used when
1377  // inserting any additional MBBs necessary to represent the switch.
1378  MachineFunction *CurMF = CurMBB->getParent();
1379
1380  // Figure out which block is immediately after the current one.
1381  MachineBasicBlock *NextBlock = 0;
1382  MachineFunction::iterator BBI = CR.CaseBB;
1383
1384  if (++BBI != CurMBB->getParent()->end())
1385    NextBlock = BBI;
1386
1387  // TODO: If any two of the cases has the same destination, and if one value
1388  // is the same as the other, but has one bit unset that the other has set,
1389  // use bit manipulation to do two compares at once.  For example:
1390  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1391
1392  // Rearrange the case blocks so that the last one falls through if possible.
1393  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1394    // The last case block won't fall through into 'NextBlock' if we emit the
1395    // branches in this order.  See if rearranging a case value would help.
1396    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1397      if (I->BB == NextBlock) {
1398        std::swap(*I, BackCase);
1399        break;
1400      }
1401    }
1402  }
1403
1404  // Create a CaseBlock record representing a conditional branch to
1405  // the Case's target mbb if the value being switched on SV is equal
1406  // to C.
1407  MachineBasicBlock *CurBlock = CR.CaseBB;
1408  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1409    MachineBasicBlock *FallThrough;
1410    if (I != E-1) {
1411      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1412      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1413    } else {
1414      // If the last case doesn't match, go to the default block.
1415      FallThrough = Default;
1416    }
1417
1418    Value *RHS, *LHS, *MHS;
1419    ISD::CondCode CC;
1420    if (I->High == I->Low) {
1421      // This is just small small case range :) containing exactly 1 case
1422      CC = ISD::SETEQ;
1423      LHS = SV; RHS = I->High; MHS = NULL;
1424    } else {
1425      CC = ISD::SETLE;
1426      LHS = I->Low; MHS = SV; RHS = I->High;
1427    }
1428    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1429                                   I->BB, FallThrough, CurBlock);
1430
1431    // If emitting the first comparison, just call visitSwitchCase to emit the
1432    // code into the current block.  Otherwise, push the CaseBlock onto the
1433    // vector to be later processed by SDISel, and insert the node's MBB
1434    // before the next MBB.
1435    if (CurBlock == CurMBB)
1436      visitSwitchCase(CB);
1437    else
1438      SwitchCases.push_back(CB);
1439
1440    CurBlock = FallThrough;
1441  }
1442
1443  return true;
1444}
1445
1446static inline bool areJTsAllowed(const TargetLowering &TLI) {
1447  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1448          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1449}
1450
1451/// handleJTSwitchCase - Emit jumptable for current switch case range
1452bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1453                                              CaseRecVector& WorkList,
1454                                              Value* SV,
1455                                              MachineBasicBlock* Default) {
1456  Case& FrontCase = *CR.Range.first;
1457  Case& BackCase  = *(CR.Range.second-1);
1458
1459  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1460  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1461
1462  uint64_t TSize = 0;
1463  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1464       I!=E; ++I)
1465    TSize += I->size();
1466
1467  if (!areJTsAllowed(TLI) || TSize <= 3)
1468    return false;
1469
1470  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1471  if (Density < 0.4)
1472    return false;
1473
1474  DOUT << "Lowering jump table\n"
1475       << "First entry: " << First << ". Last entry: " << Last << "\n"
1476       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1477
1478  // Get the MachineFunction which holds the current MBB.  This is used when
1479  // inserting any additional MBBs necessary to represent the switch.
1480  MachineFunction *CurMF = CurMBB->getParent();
1481
1482  // Figure out which block is immediately after the current one.
1483  MachineBasicBlock *NextBlock = 0;
1484  MachineFunction::iterator BBI = CR.CaseBB;
1485
1486  if (++BBI != CurMBB->getParent()->end())
1487    NextBlock = BBI;
1488
1489  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1490
1491  // Create a new basic block to hold the code for loading the address
1492  // of the jump table, and jumping to it.  Update successor information;
1493  // we will either branch to the default case for the switch, or the jump
1494  // table.
1495  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1496  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1497  CR.CaseBB->addSuccessor(Default);
1498  CR.CaseBB->addSuccessor(JumpTableBB);
1499
1500  // Build a vector of destination BBs, corresponding to each target
1501  // of the jump table. If the value of the jump table slot corresponds to
1502  // a case statement, push the case's BB onto the vector, otherwise, push
1503  // the default BB.
1504  std::vector<MachineBasicBlock*> DestBBs;
1505  int64_t TEI = First;
1506  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1507    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1508    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1509
1510    if ((Low <= TEI) && (TEI <= High)) {
1511      DestBBs.push_back(I->BB);
1512      if (TEI==High)
1513        ++I;
1514    } else {
1515      DestBBs.push_back(Default);
1516    }
1517  }
1518
1519  // Update successor info. Add one edge to each unique successor.
1520  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1521  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1522         E = DestBBs.end(); I != E; ++I) {
1523    if (!SuccsHandled[(*I)->getNumber()]) {
1524      SuccsHandled[(*I)->getNumber()] = true;
1525      JumpTableBB->addSuccessor(*I);
1526    }
1527  }
1528
1529  // Create a jump table index for this jump table, or return an existing
1530  // one.
1531  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1532
1533  // Set the jump table information so that we can codegen it as a second
1534  // MachineBasicBlock
1535  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1536  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1537                                        (CR.CaseBB == CurMBB));
1538  if (CR.CaseBB == CurMBB)
1539    visitJumpTableHeader(JT, JTH);
1540
1541  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1542
1543  return true;
1544}
1545
1546/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1547/// 2 subtrees.
1548bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1549                                                   CaseRecVector& WorkList,
1550                                                   Value* SV,
1551                                                   MachineBasicBlock* Default) {
1552  // Get the MachineFunction which holds the current MBB.  This is used when
1553  // inserting any additional MBBs necessary to represent the switch.
1554  MachineFunction *CurMF = CurMBB->getParent();
1555
1556  // Figure out which block is immediately after the current one.
1557  MachineBasicBlock *NextBlock = 0;
1558  MachineFunction::iterator BBI = CR.CaseBB;
1559
1560  if (++BBI != CurMBB->getParent()->end())
1561    NextBlock = BBI;
1562
1563  Case& FrontCase = *CR.Range.first;
1564  Case& BackCase  = *(CR.Range.second-1);
1565  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1566
1567  // Size is the number of Cases represented by this range.
1568  unsigned Size = CR.Range.second - CR.Range.first;
1569
1570  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1571  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1572  double FMetric = 0;
1573  CaseItr Pivot = CR.Range.first + Size/2;
1574
1575  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1576  // (heuristically) allow us to emit JumpTable's later.
1577  uint64_t TSize = 0;
1578  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1579       I!=E; ++I)
1580    TSize += I->size();
1581
1582  uint64_t LSize = FrontCase.size();
1583  uint64_t RSize = TSize-LSize;
1584  DOUT << "Selecting best pivot: \n"
1585       << "First: " << First << ", Last: " << Last <<"\n"
1586       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1587  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1588       J!=E; ++I, ++J) {
1589    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1590    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1591    assert((RBegin-LEnd>=1) && "Invalid case distance");
1592    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1593    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1594    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1595    // Should always split in some non-trivial place
1596    DOUT <<"=>Step\n"
1597         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1598         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1599         << "Metric: " << Metric << "\n";
1600    if (FMetric < Metric) {
1601      Pivot = J;
1602      FMetric = Metric;
1603      DOUT << "Current metric set to: " << FMetric << "\n";
1604    }
1605
1606    LSize += J->size();
1607    RSize -= J->size();
1608  }
1609  if (areJTsAllowed(TLI)) {
1610    // If our case is dense we *really* should handle it earlier!
1611    assert((FMetric > 0) && "Should handle dense range earlier!");
1612  } else {
1613    Pivot = CR.Range.first + Size/2;
1614  }
1615
1616  CaseRange LHSR(CR.Range.first, Pivot);
1617  CaseRange RHSR(Pivot, CR.Range.second);
1618  Constant *C = Pivot->Low;
1619  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1620
1621  // We know that we branch to the LHS if the Value being switched on is
1622  // less than the Pivot value, C.  We use this to optimize our binary
1623  // tree a bit, by recognizing that if SV is greater than or equal to the
1624  // LHS's Case Value, and that Case Value is exactly one less than the
1625  // Pivot's Value, then we can branch directly to the LHS's Target,
1626  // rather than creating a leaf node for it.
1627  if ((LHSR.second - LHSR.first) == 1 &&
1628      LHSR.first->High == CR.GE &&
1629      cast<ConstantInt>(C)->getSExtValue() ==
1630      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1631    TrueBB = LHSR.first->BB;
1632  } else {
1633    TrueBB = new MachineBasicBlock(LLVMBB);
1634    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1635    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1636  }
1637
1638  // Similar to the optimization above, if the Value being switched on is
1639  // known to be less than the Constant CR.LT, and the current Case Value
1640  // is CR.LT - 1, then we can branch directly to the target block for
1641  // the current Case Value, rather than emitting a RHS leaf node for it.
1642  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1643      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1644      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1645    FalseBB = RHSR.first->BB;
1646  } else {
1647    FalseBB = new MachineBasicBlock(LLVMBB);
1648    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1649    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1650  }
1651
1652  // Create a CaseBlock record representing a conditional branch to
1653  // the LHS node if the value being switched on SV is less than C.
1654  // Otherwise, branch to LHS.
1655  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1656                                 TrueBB, FalseBB, CR.CaseBB);
1657
1658  if (CR.CaseBB == CurMBB)
1659    visitSwitchCase(CB);
1660  else
1661    SwitchCases.push_back(CB);
1662
1663  return true;
1664}
1665
1666/// handleBitTestsSwitchCase - if current case range has few destination and
1667/// range span less, than machine word bitwidth, encode case range into series
1668/// of masks and emit bit tests with these masks.
1669bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1670                                                    CaseRecVector& WorkList,
1671                                                    Value* SV,
1672                                                    MachineBasicBlock* Default){
1673  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1674
1675  Case& FrontCase = *CR.Range.first;
1676  Case& BackCase  = *(CR.Range.second-1);
1677
1678  // Get the MachineFunction which holds the current MBB.  This is used when
1679  // inserting any additional MBBs necessary to represent the switch.
1680  MachineFunction *CurMF = CurMBB->getParent();
1681
1682  unsigned numCmps = 0;
1683  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1684       I!=E; ++I) {
1685    // Single case counts one, case range - two.
1686    if (I->Low == I->High)
1687      numCmps +=1;
1688    else
1689      numCmps +=2;
1690  }
1691
1692  // Count unique destinations
1693  SmallSet<MachineBasicBlock*, 4> Dests;
1694  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1695    Dests.insert(I->BB);
1696    if (Dests.size() > 3)
1697      // Don't bother the code below, if there are too much unique destinations
1698      return false;
1699  }
1700  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1701       << "Total number of comparisons: " << numCmps << "\n";
1702
1703  // Compute span of values.
1704  Constant* minValue = FrontCase.Low;
1705  Constant* maxValue = BackCase.High;
1706  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1707                   cast<ConstantInt>(minValue)->getSExtValue();
1708  DOUT << "Compare range: " << range << "\n"
1709       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1710       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1711
1712  if (range>=IntPtrBits ||
1713      (!(Dests.size() == 1 && numCmps >= 3) &&
1714       !(Dests.size() == 2 && numCmps >= 5) &&
1715       !(Dests.size() >= 3 && numCmps >= 6)))
1716    return false;
1717
1718  DOUT << "Emitting bit tests\n";
1719  int64_t lowBound = 0;
1720
1721  // Optimize the case where all the case values fit in a
1722  // word without having to subtract minValue. In this case,
1723  // we can optimize away the subtraction.
1724  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1725      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1726    range = cast<ConstantInt>(maxValue)->getSExtValue();
1727  } else {
1728    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1729  }
1730
1731  CaseBitsVector CasesBits;
1732  unsigned i, count = 0;
1733
1734  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1735    MachineBasicBlock* Dest = I->BB;
1736    for (i = 0; i < count; ++i)
1737      if (Dest == CasesBits[i].BB)
1738        break;
1739
1740    if (i == count) {
1741      assert((count < 3) && "Too much destinations to test!");
1742      CasesBits.push_back(CaseBits(0, Dest, 0));
1743      count++;
1744    }
1745
1746    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1747    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1748
1749    for (uint64_t j = lo; j <= hi; j++) {
1750      CasesBits[i].Mask |=  1ULL << j;
1751      CasesBits[i].Bits++;
1752    }
1753
1754  }
1755  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1756
1757  SelectionDAGISel::BitTestInfo BTC;
1758
1759  // Figure out which block is immediately after the current one.
1760  MachineFunction::iterator BBI = CR.CaseBB;
1761  ++BBI;
1762
1763  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1764
1765  DOUT << "Cases:\n";
1766  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1767    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1768         << ", BB: " << CasesBits[i].BB << "\n";
1769
1770    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1771    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1772    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1773                                                CaseBB,
1774                                                CasesBits[i].BB));
1775  }
1776
1777  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1778                                     -1U, (CR.CaseBB == CurMBB),
1779                                     CR.CaseBB, Default, BTC);
1780
1781  if (CR.CaseBB == CurMBB)
1782    visitBitTestHeader(BTB);
1783
1784  BitTestCases.push_back(BTB);
1785
1786  return true;
1787}
1788
1789
1790// Clusterify - Transform simple list of Cases into list of CaseRange's
1791unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1792                                          const SwitchInst& SI) {
1793  unsigned numCmps = 0;
1794
1795  // Start with "simple" cases
1796  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1797    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1798    Cases.push_back(Case(SI.getSuccessorValue(i),
1799                         SI.getSuccessorValue(i),
1800                         SMBB));
1801  }
1802  sort(Cases.begin(), Cases.end(), CaseCmp());
1803
1804  // Merge case into clusters
1805  if (Cases.size()>=2)
1806    for (CaseItr I=Cases.begin(), J=++(Cases.begin()), E=Cases.end(); J!=E; ) {
1807      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1808      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1809      MachineBasicBlock* nextBB = J->BB;
1810      MachineBasicBlock* currentBB = I->BB;
1811
1812      // If the two neighboring cases go to the same destination, merge them
1813      // into a single case.
1814      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1815        I->High = J->High;
1816        J = Cases.erase(J);
1817      } else {
1818        I = J++;
1819      }
1820    }
1821
1822  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1823    if (I->Low != I->High)
1824      // A range counts double, since it requires two compares.
1825      ++numCmps;
1826  }
1827
1828  return numCmps;
1829}
1830
1831void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1832  // Figure out which block is immediately after the current one.
1833  MachineBasicBlock *NextBlock = 0;
1834  MachineFunction::iterator BBI = CurMBB;
1835
1836  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1837
1838  // If there is only the default destination, branch to it if it is not the
1839  // next basic block.  Otherwise, just fall through.
1840  if (SI.getNumOperands() == 2) {
1841    // Update machine-CFG edges.
1842
1843    // If this is not a fall-through branch, emit the branch.
1844    if (Default != NextBlock)
1845      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1846                              DAG.getBasicBlock(Default)));
1847
1848    CurMBB->addSuccessor(Default);
1849    return;
1850  }
1851
1852  // If there are any non-default case statements, create a vector of Cases
1853  // representing each one, and sort the vector so that we can efficiently
1854  // create a binary search tree from them.
1855  CaseVector Cases;
1856  unsigned numCmps = Clusterify(Cases, SI);
1857  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1858       << ". Total compares: " << numCmps << "\n";
1859
1860  // Get the Value to be switched on and default basic blocks, which will be
1861  // inserted into CaseBlock records, representing basic blocks in the binary
1862  // search tree.
1863  Value *SV = SI.getOperand(0);
1864
1865  // Push the initial CaseRec onto the worklist
1866  CaseRecVector WorkList;
1867  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1868
1869  while (!WorkList.empty()) {
1870    // Grab a record representing a case range to process off the worklist
1871    CaseRec CR = WorkList.back();
1872    WorkList.pop_back();
1873
1874    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1875      continue;
1876
1877    // If the range has few cases (two or less) emit a series of specific
1878    // tests.
1879    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1880      continue;
1881
1882    // If the switch has more than 5 blocks, and at least 40% dense, and the
1883    // target supports indirect branches, then emit a jump table rather than
1884    // lowering the switch to a binary tree of conditional branches.
1885    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1886      continue;
1887
1888    // Emit binary tree. We need to pick a pivot, and push left and right ranges
1889    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
1890    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
1891  }
1892}
1893
1894
1895void SelectionDAGLowering::visitSub(User &I) {
1896  // -0.0 - X --> fneg
1897  const Type *Ty = I.getType();
1898  if (isa<VectorType>(Ty)) {
1899    visitVectorBinary(I, ISD::VSUB);
1900  } else if (Ty->isFloatingPoint()) {
1901    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1902      if (CFP->isExactlyValue(-0.0)) {
1903        SDOperand Op2 = getValue(I.getOperand(1));
1904        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1905        return;
1906      }
1907    visitScalarBinary(I, ISD::FSUB);
1908  } else
1909    visitScalarBinary(I, ISD::SUB);
1910}
1911
1912void SelectionDAGLowering::visitScalarBinary(User &I, unsigned OpCode) {
1913  SDOperand Op1 = getValue(I.getOperand(0));
1914  SDOperand Op2 = getValue(I.getOperand(1));
1915
1916  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
1917}
1918
1919void
1920SelectionDAGLowering::visitVectorBinary(User &I, unsigned OpCode) {
1921  assert(isa<VectorType>(I.getType()));
1922  const VectorType *Ty = cast<VectorType>(I.getType());
1923  SDOperand Typ = DAG.getValueType(TLI.getValueType(Ty->getElementType()));
1924
1925  setValue(&I, DAG.getNode(OpCode, MVT::Vector,
1926                           getValue(I.getOperand(0)),
1927                           getValue(I.getOperand(1)),
1928                           DAG.getConstant(Ty->getNumElements(), MVT::i32),
1929                           Typ));
1930}
1931
1932void SelectionDAGLowering::visitEitherBinary(User &I, unsigned ScalarOp,
1933                                             unsigned VectorOp) {
1934  if (isa<VectorType>(I.getType()))
1935    visitVectorBinary(I, VectorOp);
1936  else
1937    visitScalarBinary(I, ScalarOp);
1938}
1939
1940void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1941  SDOperand Op1 = getValue(I.getOperand(0));
1942  SDOperand Op2 = getValue(I.getOperand(1));
1943
1944  if (TLI.getShiftAmountTy() < Op2.getValueType())
1945    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
1946  else if (TLI.getShiftAmountTy() > Op2.getValueType())
1947    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1948
1949  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1950}
1951
1952void SelectionDAGLowering::visitICmp(User &I) {
1953  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
1954  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
1955    predicate = IC->getPredicate();
1956  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
1957    predicate = ICmpInst::Predicate(IC->getPredicate());
1958  SDOperand Op1 = getValue(I.getOperand(0));
1959  SDOperand Op2 = getValue(I.getOperand(1));
1960  ISD::CondCode Opcode;
1961  switch (predicate) {
1962    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
1963    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
1964    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
1965    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
1966    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
1967    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
1968    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
1969    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
1970    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
1971    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
1972    default:
1973      assert(!"Invalid ICmp predicate value");
1974      Opcode = ISD::SETEQ;
1975      break;
1976  }
1977  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1978}
1979
1980void SelectionDAGLowering::visitFCmp(User &I) {
1981  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
1982  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
1983    predicate = FC->getPredicate();
1984  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
1985    predicate = FCmpInst::Predicate(FC->getPredicate());
1986  SDOperand Op1 = getValue(I.getOperand(0));
1987  SDOperand Op2 = getValue(I.getOperand(1));
1988  ISD::CondCode Condition, FOC, FPC;
1989  switch (predicate) {
1990    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1991    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1992    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1993    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1994    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1995    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1996    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1997    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1998    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1999    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2000    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2001    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2002    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2003    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2004    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2005    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2006    default:
2007      assert(!"Invalid FCmp predicate value");
2008      FOC = FPC = ISD::SETFALSE;
2009      break;
2010  }
2011  if (FiniteOnlyFPMath())
2012    Condition = FOC;
2013  else
2014    Condition = FPC;
2015  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2016}
2017
2018void SelectionDAGLowering::visitSelect(User &I) {
2019  SDOperand Cond     = getValue(I.getOperand(0));
2020  SDOperand TrueVal  = getValue(I.getOperand(1));
2021  SDOperand FalseVal = getValue(I.getOperand(2));
2022  if (!isa<VectorType>(I.getType())) {
2023    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2024                             TrueVal, FalseVal));
2025  } else {
2026    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
2027                             *(TrueVal.Val->op_end()-2),
2028                             *(TrueVal.Val->op_end()-1)));
2029  }
2030}
2031
2032
2033void SelectionDAGLowering::visitTrunc(User &I) {
2034  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2035  SDOperand N = getValue(I.getOperand(0));
2036  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2037  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2038}
2039
2040void SelectionDAGLowering::visitZExt(User &I) {
2041  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2042  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2043  SDOperand N = getValue(I.getOperand(0));
2044  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2045  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2046}
2047
2048void SelectionDAGLowering::visitSExt(User &I) {
2049  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2050  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2051  SDOperand N = getValue(I.getOperand(0));
2052  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2053  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2054}
2055
2056void SelectionDAGLowering::visitFPTrunc(User &I) {
2057  // FPTrunc is never a no-op cast, no need to check
2058  SDOperand N = getValue(I.getOperand(0));
2059  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2060  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2061}
2062
2063void SelectionDAGLowering::visitFPExt(User &I){
2064  // FPTrunc is never a no-op cast, no need to check
2065  SDOperand N = getValue(I.getOperand(0));
2066  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2067  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2068}
2069
2070void SelectionDAGLowering::visitFPToUI(User &I) {
2071  // FPToUI is never a no-op cast, no need to check
2072  SDOperand N = getValue(I.getOperand(0));
2073  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2074  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2075}
2076
2077void SelectionDAGLowering::visitFPToSI(User &I) {
2078  // FPToSI is never a no-op cast, no need to check
2079  SDOperand N = getValue(I.getOperand(0));
2080  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2081  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2082}
2083
2084void SelectionDAGLowering::visitUIToFP(User &I) {
2085  // UIToFP is never a no-op cast, no need to check
2086  SDOperand N = getValue(I.getOperand(0));
2087  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2088  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2089}
2090
2091void SelectionDAGLowering::visitSIToFP(User &I){
2092  // UIToFP is never a no-op cast, no need to check
2093  SDOperand N = getValue(I.getOperand(0));
2094  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2095  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2096}
2097
2098void SelectionDAGLowering::visitPtrToInt(User &I) {
2099  // What to do depends on the size of the integer and the size of the pointer.
2100  // We can either truncate, zero extend, or no-op, accordingly.
2101  SDOperand N = getValue(I.getOperand(0));
2102  MVT::ValueType SrcVT = N.getValueType();
2103  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2104  SDOperand Result;
2105  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2106    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2107  else
2108    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2109    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2110  setValue(&I, Result);
2111}
2112
2113void SelectionDAGLowering::visitIntToPtr(User &I) {
2114  // What to do depends on the size of the integer and the size of the pointer.
2115  // We can either truncate, zero extend, or no-op, accordingly.
2116  SDOperand N = getValue(I.getOperand(0));
2117  MVT::ValueType SrcVT = N.getValueType();
2118  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2119  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2120    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2121  else
2122    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2123    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2124}
2125
2126void SelectionDAGLowering::visitBitCast(User &I) {
2127  SDOperand N = getValue(I.getOperand(0));
2128  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2129  if (DestVT == MVT::Vector) {
2130    // This is a cast to a vector from something else.
2131    // Get information about the output vector.
2132    const VectorType *DestTy = cast<VectorType>(I.getType());
2133    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2134    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
2135                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
2136                             DAG.getValueType(EltVT)));
2137    return;
2138  }
2139  MVT::ValueType SrcVT = N.getValueType();
2140  if (SrcVT == MVT::Vector) {
2141    // This is a cast from a vctor to something else.
2142    // Get information about the input vector.
2143    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
2144    return;
2145  }
2146
2147  // BitCast assures us that source and destination are the same size so this
2148  // is either a BIT_CONVERT or a no-op.
2149  if (DestVT != N.getValueType())
2150    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2151  else
2152    setValue(&I, N); // noop cast.
2153}
2154
2155void SelectionDAGLowering::visitInsertElement(User &I) {
2156  SDOperand InVec = getValue(I.getOperand(0));
2157  SDOperand InVal = getValue(I.getOperand(1));
2158  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2159                                getValue(I.getOperand(2)));
2160
2161  SDOperand Num = *(InVec.Val->op_end()-2);
2162  SDOperand Typ = *(InVec.Val->op_end()-1);
2163  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
2164                           InVec, InVal, InIdx, Num, Typ));
2165}
2166
2167void SelectionDAGLowering::visitExtractElement(User &I) {
2168  SDOperand InVec = getValue(I.getOperand(0));
2169  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2170                                getValue(I.getOperand(1)));
2171  SDOperand Typ = *(InVec.Val->op_end()-1);
2172  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
2173                           TLI.getValueType(I.getType()), InVec, InIdx));
2174}
2175
2176void SelectionDAGLowering::visitShuffleVector(User &I) {
2177  SDOperand V1   = getValue(I.getOperand(0));
2178  SDOperand V2   = getValue(I.getOperand(1));
2179  SDOperand Mask = getValue(I.getOperand(2));
2180
2181  SDOperand Num = *(V1.Val->op_end()-2);
2182  SDOperand Typ = *(V2.Val->op_end()-1);
2183  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
2184                           V1, V2, Mask, Num, Typ));
2185}
2186
2187
2188void SelectionDAGLowering::visitGetElementPtr(User &I) {
2189  SDOperand N = getValue(I.getOperand(0));
2190  const Type *Ty = I.getOperand(0)->getType();
2191
2192  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2193       OI != E; ++OI) {
2194    Value *Idx = *OI;
2195    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2196      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2197      if (Field) {
2198        // N = N + Offset
2199        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2200        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2201                        getIntPtrConstant(Offset));
2202      }
2203      Ty = StTy->getElementType(Field);
2204    } else {
2205      Ty = cast<SequentialType>(Ty)->getElementType();
2206
2207      // If this is a constant subscript, handle it quickly.
2208      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2209        if (CI->getZExtValue() == 0) continue;
2210        uint64_t Offs =
2211            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2212        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2213        continue;
2214      }
2215
2216      // N = N + Idx * ElementSize;
2217      uint64_t ElementSize = TD->getTypeSize(Ty);
2218      SDOperand IdxN = getValue(Idx);
2219
2220      // If the index is smaller or larger than intptr_t, truncate or extend
2221      // it.
2222      if (IdxN.getValueType() < N.getValueType()) {
2223        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2224      } else if (IdxN.getValueType() > N.getValueType())
2225        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2226
2227      // If this is a multiply by a power of two, turn it into a shl
2228      // immediately.  This is a very common case.
2229      if (isPowerOf2_64(ElementSize)) {
2230        unsigned Amt = Log2_64(ElementSize);
2231        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2232                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2233        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2234        continue;
2235      }
2236
2237      SDOperand Scale = getIntPtrConstant(ElementSize);
2238      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2239      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2240    }
2241  }
2242  setValue(&I, N);
2243}
2244
2245void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2246  // If this is a fixed sized alloca in the entry block of the function,
2247  // allocate it statically on the stack.
2248  if (FuncInfo.StaticAllocaMap.count(&I))
2249    return;   // getValue will auto-populate this.
2250
2251  const Type *Ty = I.getAllocatedType();
2252  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
2253  unsigned Align =
2254    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2255             I.getAlignment());
2256
2257  SDOperand AllocSize = getValue(I.getArraySize());
2258  MVT::ValueType IntPtr = TLI.getPointerTy();
2259  if (IntPtr < AllocSize.getValueType())
2260    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2261  else if (IntPtr > AllocSize.getValueType())
2262    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2263
2264  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2265                          getIntPtrConstant(TySize));
2266
2267  // Handle alignment.  If the requested alignment is less than or equal to the
2268  // stack alignment, ignore it and round the size of the allocation up to the
2269  // stack alignment size.  If the size is greater than the stack alignment, we
2270  // note this in the DYNAMIC_STACKALLOC node.
2271  unsigned StackAlign =
2272    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2273  if (Align <= StackAlign) {
2274    Align = 0;
2275    // Add SA-1 to the size.
2276    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2277                            getIntPtrConstant(StackAlign-1));
2278    // Mask out the low bits for alignment purposes.
2279    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2280                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2281  }
2282
2283  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2284  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2285                                                    MVT::Other);
2286  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2287  setValue(&I, DSA);
2288  DAG.setRoot(DSA.getValue(1));
2289
2290  // Inform the Frame Information that we have just allocated a variable-sized
2291  // object.
2292  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2293}
2294
2295void SelectionDAGLowering::visitLoad(LoadInst &I) {
2296  SDOperand Ptr = getValue(I.getOperand(0));
2297
2298  SDOperand Root;
2299  if (I.isVolatile())
2300    Root = getRoot();
2301  else {
2302    // Do not serialize non-volatile loads against each other.
2303    Root = DAG.getRoot();
2304  }
2305
2306  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2307                           Root, I.isVolatile(), I.getAlignment()));
2308}
2309
2310SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2311                                            const Value *SV, SDOperand Root,
2312                                            bool isVolatile,
2313                                            unsigned Alignment) {
2314  SDOperand L;
2315  if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
2316    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
2317    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
2318                       DAG.getSrcValue(SV));
2319  } else {
2320    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2321                    isVolatile, Alignment);
2322  }
2323
2324  if (isVolatile)
2325    DAG.setRoot(L.getValue(1));
2326  else
2327    PendingLoads.push_back(L.getValue(1));
2328
2329  return L;
2330}
2331
2332
2333void SelectionDAGLowering::visitStore(StoreInst &I) {
2334  Value *SrcV = I.getOperand(0);
2335  SDOperand Src = getValue(SrcV);
2336  SDOperand Ptr = getValue(I.getOperand(1));
2337  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2338                           I.isVolatile(), I.getAlignment()));
2339}
2340
2341/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2342/// access memory and has no other side effects at all.
2343static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2344#define GET_NO_MEMORY_INTRINSICS
2345#include "llvm/Intrinsics.gen"
2346#undef GET_NO_MEMORY_INTRINSICS
2347  return false;
2348}
2349
2350// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2351// have any side-effects or if it only reads memory.
2352static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2353#define GET_SIDE_EFFECT_INFO
2354#include "llvm/Intrinsics.gen"
2355#undef GET_SIDE_EFFECT_INFO
2356  return false;
2357}
2358
2359/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2360/// node.
2361void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2362                                                unsigned Intrinsic) {
2363  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2364  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2365
2366  // Build the operand list.
2367  SmallVector<SDOperand, 8> Ops;
2368  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2369    if (OnlyLoad) {
2370      // We don't need to serialize loads against other loads.
2371      Ops.push_back(DAG.getRoot());
2372    } else {
2373      Ops.push_back(getRoot());
2374    }
2375  }
2376
2377  // Add the intrinsic ID as an integer operand.
2378  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2379
2380  // Add all operands of the call to the operand list.
2381  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2382    SDOperand Op = getValue(I.getOperand(i));
2383
2384    // If this is a vector type, force it to the right vector type.
2385    if (Op.getValueType() == MVT::Vector) {
2386      const VectorType *OpTy = cast<VectorType>(I.getOperand(i)->getType());
2387      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
2388
2389      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
2390      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
2391      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
2392    }
2393
2394    assert(TLI.isTypeLegal(Op.getValueType()) &&
2395           "Intrinsic uses a non-legal type?");
2396    Ops.push_back(Op);
2397  }
2398
2399  std::vector<MVT::ValueType> VTs;
2400  if (I.getType() != Type::VoidTy) {
2401    MVT::ValueType VT = TLI.getValueType(I.getType());
2402    if (VT == MVT::Vector) {
2403      const VectorType *DestTy = cast<VectorType>(I.getType());
2404      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2405
2406      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2407      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2408    }
2409
2410    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2411    VTs.push_back(VT);
2412  }
2413  if (HasChain)
2414    VTs.push_back(MVT::Other);
2415
2416  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2417
2418  // Create the node.
2419  SDOperand Result;
2420  if (!HasChain)
2421    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2422                         &Ops[0], Ops.size());
2423  else if (I.getType() != Type::VoidTy)
2424    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2425                         &Ops[0], Ops.size());
2426  else
2427    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2428                         &Ops[0], Ops.size());
2429
2430  if (HasChain) {
2431    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2432    if (OnlyLoad)
2433      PendingLoads.push_back(Chain);
2434    else
2435      DAG.setRoot(Chain);
2436  }
2437  if (I.getType() != Type::VoidTy) {
2438    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2439      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
2440      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
2441                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
2442                           DAG.getValueType(EVT));
2443    }
2444    setValue(&I, Result);
2445  }
2446}
2447
2448/// ExtractGlobalVariable - If C is a global variable, or a bitcast of one
2449/// (possibly constant folded), return it.  Otherwise return NULL.
2450static GlobalVariable *ExtractGlobalVariable (Constant *C) {
2451  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2452    return GV;
2453  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2454    if (CE->getOpcode() == Instruction::BitCast)
2455      return dyn_cast<GlobalVariable>(CE->getOperand(0));
2456    else if (CE->getOpcode() == Instruction::GetElementPtr) {
2457      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2458        if (!CE->getOperand(i)->isNullValue())
2459          return NULL;
2460      return dyn_cast<GlobalVariable>(CE->getOperand(0));
2461    }
2462  }
2463  return NULL;
2464}
2465
2466/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2467/// we want to emit this as a call to a named external function, return the name
2468/// otherwise lower it and return null.
2469const char *
2470SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2471  switch (Intrinsic) {
2472  default:
2473    // By default, turn this into a target intrinsic node.
2474    visitTargetIntrinsic(I, Intrinsic);
2475    return 0;
2476  case Intrinsic::vastart:  visitVAStart(I); return 0;
2477  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2478  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2479  case Intrinsic::returnaddress:
2480    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2481                             getValue(I.getOperand(1))));
2482    return 0;
2483  case Intrinsic::frameaddress:
2484    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2485                             getValue(I.getOperand(1))));
2486    return 0;
2487  case Intrinsic::setjmp:
2488    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2489    break;
2490  case Intrinsic::longjmp:
2491    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2492    break;
2493  case Intrinsic::memcpy_i32:
2494  case Intrinsic::memcpy_i64:
2495    visitMemIntrinsic(I, ISD::MEMCPY);
2496    return 0;
2497  case Intrinsic::memset_i32:
2498  case Intrinsic::memset_i64:
2499    visitMemIntrinsic(I, ISD::MEMSET);
2500    return 0;
2501  case Intrinsic::memmove_i32:
2502  case Intrinsic::memmove_i64:
2503    visitMemIntrinsic(I, ISD::MEMMOVE);
2504    return 0;
2505
2506  case Intrinsic::dbg_stoppoint: {
2507    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2508    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2509    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2510      SDOperand Ops[5];
2511
2512      Ops[0] = getRoot();
2513      Ops[1] = getValue(SPI.getLineValue());
2514      Ops[2] = getValue(SPI.getColumnValue());
2515
2516      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2517      assert(DD && "Not a debug information descriptor");
2518      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2519
2520      Ops[3] = DAG.getString(CompileUnit->getFileName());
2521      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2522
2523      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2524    }
2525
2526    return 0;
2527  }
2528  case Intrinsic::dbg_region_start: {
2529    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2530    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2531    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2532      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2533      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2534                              DAG.getConstant(LabelID, MVT::i32)));
2535    }
2536
2537    return 0;
2538  }
2539  case Intrinsic::dbg_region_end: {
2540    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2541    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2542    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2543      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2544      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2545                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2546    }
2547
2548    return 0;
2549  }
2550  case Intrinsic::dbg_func_start: {
2551    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2552    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2553    if (MMI && FSI.getSubprogram() &&
2554        MMI->Verify(FSI.getSubprogram())) {
2555      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2556      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2557                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2558    }
2559
2560    return 0;
2561  }
2562  case Intrinsic::dbg_declare: {
2563    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2564    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2565    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2566      SDOperand AddressOp  = getValue(DI.getAddress());
2567      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2568        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2569    }
2570
2571    return 0;
2572  }
2573
2574  case Intrinsic::eh_exception: {
2575    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2576
2577    if (ExceptionHandling && MMI) {
2578      // Mark exception register as live in.
2579      unsigned Reg = TLI.getExceptionAddressRegister();
2580      if (Reg) CurMBB->addLiveIn(Reg);
2581
2582      // Insert the EXCEPTIONADDR instruction.
2583      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2584      SDOperand Ops[1];
2585      Ops[0] = DAG.getRoot();
2586      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2587      setValue(&I, Op);
2588      DAG.setRoot(Op.getValue(1));
2589    } else {
2590      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2591    }
2592    return 0;
2593  }
2594
2595  case Intrinsic::eh_selector:
2596  case Intrinsic::eh_filter:{
2597    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2598
2599    if (ExceptionHandling && MMI) {
2600      // Inform the MachineModuleInfo of the personality for this landing pad.
2601      ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(2));
2602      assert(CE && CE->getOpcode() == Instruction::BitCast &&
2603             isa<Function>(CE->getOperand(0)) &&
2604             "Personality should be a function");
2605      MMI->addPersonality(CurMBB, cast<Function>(CE->getOperand(0)));
2606
2607      // Gather all the type infos for this landing pad and pass them along to
2608      // MachineModuleInfo.
2609      std::vector<GlobalVariable *> TyInfo;
2610      for (unsigned i = 3, N = I.getNumOperands(); i < N; ++i) {
2611        Constant *C = cast<Constant>(I.getOperand(i));
2612        GlobalVariable *GV = ExtractGlobalVariable(C);
2613        assert (GV || isa<ConstantPointerNull>(C) &&
2614                "TypeInfo must be a global variable or NULL");
2615        TyInfo.push_back(GV);
2616      }
2617      if (Intrinsic == Intrinsic::eh_filter)
2618        MMI->addFilterTypeInfo(CurMBB, TyInfo);
2619      else
2620        MMI->addCatchTypeInfo(CurMBB, TyInfo);
2621
2622      // Mark exception selector register as live in.
2623      unsigned Reg = TLI.getExceptionSelectorRegister();
2624      if (Reg) CurMBB->addLiveIn(Reg);
2625
2626      // Insert the EHSELECTION instruction.
2627      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2628      SDOperand Ops[2];
2629      Ops[0] = getValue(I.getOperand(1));
2630      Ops[1] = getRoot();
2631      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2632      setValue(&I, Op);
2633      DAG.setRoot(Op.getValue(1));
2634    } else {
2635      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2636    }
2637
2638    return 0;
2639  }
2640
2641  case Intrinsic::eh_typeid_for: {
2642    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2643
2644    if (MMI) {
2645      // Find the type id for the given typeinfo.
2646      Constant *C = cast<Constant>(I.getOperand(1));
2647      GlobalVariable *GV = ExtractGlobalVariable(C);
2648      assert (GV || isa<ConstantPointerNull>(C) &&
2649              "TypeInfo must be a global variable or NULL");
2650
2651      unsigned TypeID = MMI->getTypeIDFor(GV);
2652      setValue(&I, DAG.getConstant(TypeID, MVT::i32));
2653    } else {
2654      setValue(&I, DAG.getConstant(0, MVT::i32));
2655    }
2656
2657    return 0;
2658  }
2659
2660  case Intrinsic::sqrt_f32:
2661  case Intrinsic::sqrt_f64:
2662    setValue(&I, DAG.getNode(ISD::FSQRT,
2663                             getValue(I.getOperand(1)).getValueType(),
2664                             getValue(I.getOperand(1))));
2665    return 0;
2666  case Intrinsic::powi_f32:
2667  case Intrinsic::powi_f64:
2668    setValue(&I, DAG.getNode(ISD::FPOWI,
2669                             getValue(I.getOperand(1)).getValueType(),
2670                             getValue(I.getOperand(1)),
2671                             getValue(I.getOperand(2))));
2672    return 0;
2673  case Intrinsic::pcmarker: {
2674    SDOperand Tmp = getValue(I.getOperand(1));
2675    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2676    return 0;
2677  }
2678  case Intrinsic::readcyclecounter: {
2679    SDOperand Op = getRoot();
2680    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2681                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2682                                &Op, 1);
2683    setValue(&I, Tmp);
2684    DAG.setRoot(Tmp.getValue(1));
2685    return 0;
2686  }
2687  case Intrinsic::part_select: {
2688    // Currently not implemented: just abort
2689    assert(0 && "part_select intrinsic not implemented");
2690    abort();
2691  }
2692  case Intrinsic::part_set: {
2693    // Currently not implemented: just abort
2694    assert(0 && "part_set intrinsic not implemented");
2695    abort();
2696  }
2697  case Intrinsic::bswap:
2698    setValue(&I, DAG.getNode(ISD::BSWAP,
2699                             getValue(I.getOperand(1)).getValueType(),
2700                             getValue(I.getOperand(1))));
2701    return 0;
2702  case Intrinsic::cttz: {
2703    SDOperand Arg = getValue(I.getOperand(1));
2704    MVT::ValueType Ty = Arg.getValueType();
2705    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2706    if (Ty < MVT::i32)
2707      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2708    else if (Ty > MVT::i32)
2709      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2710    setValue(&I, result);
2711    return 0;
2712  }
2713  case Intrinsic::ctlz: {
2714    SDOperand Arg = getValue(I.getOperand(1));
2715    MVT::ValueType Ty = Arg.getValueType();
2716    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2717    if (Ty < MVT::i32)
2718      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2719    else if (Ty > MVT::i32)
2720      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2721    setValue(&I, result);
2722    return 0;
2723  }
2724  case Intrinsic::ctpop: {
2725    SDOperand Arg = getValue(I.getOperand(1));
2726    MVT::ValueType Ty = Arg.getValueType();
2727    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2728    if (Ty < MVT::i32)
2729      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2730    else if (Ty > MVT::i32)
2731      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2732    setValue(&I, result);
2733    return 0;
2734  }
2735  case Intrinsic::stacksave: {
2736    SDOperand Op = getRoot();
2737    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2738              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2739    setValue(&I, Tmp);
2740    DAG.setRoot(Tmp.getValue(1));
2741    return 0;
2742  }
2743  case Intrinsic::stackrestore: {
2744    SDOperand Tmp = getValue(I.getOperand(1));
2745    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2746    return 0;
2747  }
2748  case Intrinsic::prefetch:
2749    // FIXME: Currently discarding prefetches.
2750    return 0;
2751  }
2752}
2753
2754
2755void SelectionDAGLowering::LowerCallTo(Instruction &I,
2756                                       const Type *CalledValueTy,
2757                                       unsigned CallingConv,
2758                                       bool IsTailCall,
2759                                       SDOperand Callee, unsigned OpIdx,
2760                                       MachineBasicBlock *LandingPad) {
2761  const PointerType *PT = cast<PointerType>(CalledValueTy);
2762  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2763  const ParamAttrsList *Attrs = FTy->getParamAttrs();
2764  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2765  unsigned BeginLabel = 0, EndLabel = 0;
2766
2767  TargetLowering::ArgListTy Args;
2768  TargetLowering::ArgListEntry Entry;
2769  Args.reserve(I.getNumOperands());
2770  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2771    Value *Arg = I.getOperand(i);
2772    SDOperand ArgNode = getValue(Arg);
2773    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2774
2775    unsigned attrInd = i - OpIdx + 1;
2776    Entry.isSExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
2777    Entry.isZExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
2778    Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
2779    Entry.isSRet  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
2780    Args.push_back(Entry);
2781  }
2782
2783  if (ExceptionHandling && MMI) {
2784    // Insert a label before the invoke call to mark the try range.  This can be
2785    // used to detect deletion of the invoke via the MachineModuleInfo.
2786    BeginLabel = MMI->NextLabelID();
2787    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2788                            DAG.getConstant(BeginLabel, MVT::i32)));
2789  }
2790
2791  std::pair<SDOperand,SDOperand> Result =
2792    TLI.LowerCallTo(getRoot(), I.getType(),
2793                    Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2794                    FTy->isVarArg(), CallingConv, IsTailCall,
2795                    Callee, Args, DAG);
2796  if (I.getType() != Type::VoidTy)
2797    setValue(&I, Result.first);
2798  DAG.setRoot(Result.second);
2799
2800  if (ExceptionHandling && MMI) {
2801    // Insert a label at the end of the invoke call to mark the try range.  This
2802    // can be used to detect deletion of the invoke via the MachineModuleInfo.
2803    EndLabel = MMI->NextLabelID();
2804    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2805                            DAG.getConstant(EndLabel, MVT::i32)));
2806
2807    // Inform MachineModuleInfo of range.
2808    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2809  }
2810}
2811
2812
2813void SelectionDAGLowering::visitCall(CallInst &I) {
2814  const char *RenameFn = 0;
2815  if (Function *F = I.getCalledFunction()) {
2816    if (F->isDeclaration())
2817      if (unsigned IID = F->getIntrinsicID()) {
2818        RenameFn = visitIntrinsicCall(I, IID);
2819        if (!RenameFn)
2820          return;
2821      } else {    // Not an LLVM intrinsic.
2822        const std::string &Name = F->getName();
2823        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2824          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2825              I.getOperand(1)->getType()->isFloatingPoint() &&
2826              I.getType() == I.getOperand(1)->getType() &&
2827              I.getType() == I.getOperand(2)->getType()) {
2828            SDOperand LHS = getValue(I.getOperand(1));
2829            SDOperand RHS = getValue(I.getOperand(2));
2830            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2831                                     LHS, RHS));
2832            return;
2833          }
2834        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2835          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2836              I.getOperand(1)->getType()->isFloatingPoint() &&
2837              I.getType() == I.getOperand(1)->getType()) {
2838            SDOperand Tmp = getValue(I.getOperand(1));
2839            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2840            return;
2841          }
2842        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2843          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2844              I.getOperand(1)->getType()->isFloatingPoint() &&
2845              I.getType() == I.getOperand(1)->getType()) {
2846            SDOperand Tmp = getValue(I.getOperand(1));
2847            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2848            return;
2849          }
2850        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2851          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2852              I.getOperand(1)->getType()->isFloatingPoint() &&
2853              I.getType() == I.getOperand(1)->getType()) {
2854            SDOperand Tmp = getValue(I.getOperand(1));
2855            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2856            return;
2857          }
2858        }
2859      }
2860  } else if (isa<InlineAsm>(I.getOperand(0))) {
2861    visitInlineAsm(I);
2862    return;
2863  }
2864
2865  SDOperand Callee;
2866  if (!RenameFn)
2867    Callee = getValue(I.getOperand(0));
2868  else
2869    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2870
2871  LowerCallTo(I, I.getCalledValue()->getType(),
2872              I.getCallingConv(),
2873              I.isTailCall(),
2874              Callee,
2875              1);
2876}
2877
2878
2879SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2880                                        SDOperand &Chain, SDOperand &Flag)const{
2881  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
2882  Chain = Val.getValue(1);
2883  Flag  = Val.getValue(2);
2884
2885  // If the result was expanded, copy from the top part.
2886  if (Regs.size() > 1) {
2887    assert(Regs.size() == 2 &&
2888           "Cannot expand to more than 2 elts yet!");
2889    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
2890    Chain = Hi.getValue(1);
2891    Flag  = Hi.getValue(2);
2892    if (DAG.getTargetLoweringInfo().isLittleEndian())
2893      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
2894    else
2895      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
2896  }
2897
2898  // Otherwise, if the return value was promoted or extended, truncate it to the
2899  // appropriate type.
2900  if (RegVT == ValueVT)
2901    return Val;
2902
2903  if (MVT::isVector(RegVT)) {
2904    assert(ValueVT == MVT::Vector && "Unknown vector conversion!");
2905    return DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Val,
2906                       DAG.getConstant(MVT::getVectorNumElements(RegVT),
2907                                       MVT::i32),
2908                       DAG.getValueType(MVT::getVectorElementType(RegVT)));
2909  }
2910
2911  if (MVT::isInteger(RegVT)) {
2912    if (ValueVT < RegVT)
2913      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
2914    else
2915      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
2916  }
2917
2918  assert(MVT::isFloatingPoint(RegVT) && MVT::isFloatingPoint(ValueVT));
2919  return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
2920}
2921
2922/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2923/// specified value into the registers specified by this object.  This uses
2924/// Chain/Flag as the input and updates them for the output Chain/Flag.
2925void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2926                                 SDOperand &Chain, SDOperand &Flag,
2927                                 MVT::ValueType PtrVT) const {
2928  if (Regs.size() == 1) {
2929    // If there is a single register and the types differ, this must be
2930    // a promotion.
2931    if (RegVT != ValueVT) {
2932      if (MVT::isVector(RegVT)) {
2933        assert(Val.getValueType() == MVT::Vector &&"Not a vector-vector cast?");
2934        Val = DAG.getNode(ISD::VBIT_CONVERT, RegVT, Val);
2935      } else if (MVT::isInteger(RegVT) && MVT::isInteger(Val.getValueType())) {
2936        if (RegVT < ValueVT)
2937          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
2938        else
2939          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
2940      } else if (MVT::isFloatingPoint(RegVT) &&
2941                 MVT::isFloatingPoint(Val.getValueType())) {
2942        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
2943      } else if (MVT::getSizeInBits(RegVT) ==
2944                 MVT::getSizeInBits(Val.getValueType())) {
2945        Val = DAG.getNode(ISD::BIT_CONVERT, RegVT, Val);
2946      } else {
2947        assert(0 && "Unknown mismatch!");
2948      }
2949    }
2950    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
2951    Flag = Chain.getValue(1);
2952  } else {
2953    std::vector<unsigned> R(Regs);
2954    if (!DAG.getTargetLoweringInfo().isLittleEndian())
2955      std::reverse(R.begin(), R.end());
2956
2957    for (unsigned i = 0, e = R.size(); i != e; ++i) {
2958      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
2959                                   DAG.getConstant(i, PtrVT));
2960      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
2961      Flag = Chain.getValue(1);
2962    }
2963  }
2964}
2965
2966/// AddInlineAsmOperands - Add this value to the specified inlineasm node
2967/// operand list.  This adds the code marker and includes the number of
2968/// values added into it.
2969void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
2970                                        std::vector<SDOperand> &Ops) const {
2971  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
2972  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
2973  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
2974    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
2975}
2976
2977/// isAllocatableRegister - If the specified register is safe to allocate,
2978/// i.e. it isn't a stack pointer or some other special register, return the
2979/// register class for the register.  Otherwise, return null.
2980static const TargetRegisterClass *
2981isAllocatableRegister(unsigned Reg, MachineFunction &MF,
2982                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
2983  MVT::ValueType FoundVT = MVT::Other;
2984  const TargetRegisterClass *FoundRC = 0;
2985  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
2986       E = MRI->regclass_end(); RCI != E; ++RCI) {
2987    MVT::ValueType ThisVT = MVT::Other;
2988
2989    const TargetRegisterClass *RC = *RCI;
2990    // If none of the the value types for this register class are valid, we
2991    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2992    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2993         I != E; ++I) {
2994      if (TLI.isTypeLegal(*I)) {
2995        // If we have already found this register in a different register class,
2996        // choose the one with the largest VT specified.  For example, on
2997        // PowerPC, we favor f64 register classes over f32.
2998        if (FoundVT == MVT::Other ||
2999            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3000          ThisVT = *I;
3001          break;
3002        }
3003      }
3004    }
3005
3006    if (ThisVT == MVT::Other) continue;
3007
3008    // NOTE: This isn't ideal.  In particular, this might allocate the
3009    // frame pointer in functions that need it (due to them not being taken
3010    // out of allocation, because a variable sized allocation hasn't been seen
3011    // yet).  This is a slight code pessimization, but should still work.
3012    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3013         E = RC->allocation_order_end(MF); I != E; ++I)
3014      if (*I == Reg) {
3015        // We found a matching register class.  Keep looking at others in case
3016        // we find one with larger registers that this physreg is also in.
3017        FoundRC = RC;
3018        FoundVT = ThisVT;
3019        break;
3020      }
3021  }
3022  return FoundRC;
3023}
3024
3025
3026namespace {
3027/// AsmOperandInfo - This contains information for each constraint that we are
3028/// lowering.
3029struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3030  /// ConstraintCode - This contains the actual string for the code, like "m".
3031  std::string ConstraintCode;
3032
3033  /// ConstraintType - Information about the constraint code, e.g. Register,
3034  /// RegisterClass, Memory, Other, Unknown.
3035  TargetLowering::ConstraintType ConstraintType;
3036
3037  /// CallOperand/CallOperandval - If this is the result output operand or a
3038  /// clobber, this is null, otherwise it is the incoming operand to the
3039  /// CallInst.  This gets modified as the asm is processed.
3040  SDOperand CallOperand;
3041  Value *CallOperandVal;
3042
3043  /// ConstraintVT - The ValueType for the operand value.
3044  MVT::ValueType ConstraintVT;
3045
3046  /// AssignedRegs - If this is a register or register class operand, this
3047  /// contains the set of register corresponding to the operand.
3048  RegsForValue AssignedRegs;
3049
3050  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3051    : InlineAsm::ConstraintInfo(info),
3052      ConstraintType(TargetLowering::C_Unknown),
3053      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3054  }
3055
3056  void ComputeConstraintToUse(const TargetLowering &TLI);
3057
3058  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3059  /// busy in OutputRegs/InputRegs.
3060  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3061                         std::set<unsigned> &OutputRegs,
3062                         std::set<unsigned> &InputRegs) const {
3063     if (isOutReg)
3064       OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3065     if (isInReg)
3066       InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3067   }
3068};
3069} // end anon namespace.
3070
3071/// getConstraintGenerality - Return an integer indicating how general CT is.
3072static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3073  switch (CT) {
3074    default: assert(0 && "Unknown constraint type!");
3075    case TargetLowering::C_Other:
3076    case TargetLowering::C_Unknown:
3077      return 0;
3078    case TargetLowering::C_Register:
3079      return 1;
3080    case TargetLowering::C_RegisterClass:
3081      return 2;
3082    case TargetLowering::C_Memory:
3083      return 3;
3084  }
3085}
3086
3087void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3088  assert(!Codes.empty() && "Must have at least one constraint");
3089
3090  std::string *Current = &Codes[0];
3091  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3092  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3093    ConstraintCode = *Current;
3094    ConstraintType = CurType;
3095    return;
3096  }
3097
3098  unsigned CurGenerality = getConstraintGenerality(CurType);
3099
3100  // If we have multiple constraints, try to pick the most general one ahead
3101  // of time.  This isn't a wonderful solution, but handles common cases.
3102  for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3103    TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3104    unsigned ThisGenerality = getConstraintGenerality(ThisType);
3105    if (ThisGenerality > CurGenerality) {
3106      // This constraint letter is more general than the previous one,
3107      // use it.
3108      CurType = ThisType;
3109      Current = &Codes[j];
3110      CurGenerality = ThisGenerality;
3111    }
3112  }
3113
3114  ConstraintCode = *Current;
3115  ConstraintType = CurType;
3116}
3117
3118
3119void SelectionDAGLowering::
3120GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3121                     std::set<unsigned> &OutputRegs,
3122                     std::set<unsigned> &InputRegs) {
3123  // Compute whether this value requires an input register, an output register,
3124  // or both.
3125  bool isOutReg = false;
3126  bool isInReg = false;
3127  switch (OpInfo.Type) {
3128  case InlineAsm::isOutput:
3129    isOutReg = true;
3130
3131    // If this is an early-clobber output, or if there is an input
3132    // constraint that matches this, we need to reserve the input register
3133    // so no other inputs allocate to it.
3134    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3135    break;
3136  case InlineAsm::isInput:
3137    isInReg = true;
3138    isOutReg = false;
3139    break;
3140  case InlineAsm::isClobber:
3141    isOutReg = true;
3142    isInReg = true;
3143    break;
3144  }
3145
3146
3147  MachineFunction &MF = DAG.getMachineFunction();
3148  std::vector<unsigned> Regs;
3149
3150  // If this is a constraint for a single physreg, or a constraint for a
3151  // register class, find it.
3152  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3153    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3154                                     OpInfo.ConstraintVT);
3155
3156  unsigned NumRegs = 1;
3157  if (OpInfo.ConstraintVT != MVT::Other)
3158    NumRegs = TLI.getNumElements(OpInfo.ConstraintVT);
3159  MVT::ValueType RegVT;
3160  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3161
3162
3163  // If this is a constraint for a specific physical register, like {r17},
3164  // assign it now.
3165  if (PhysReg.first) {
3166    if (OpInfo.ConstraintVT == MVT::Other)
3167      ValueVT = *PhysReg.second->vt_begin();
3168
3169    // Get the actual register value type.  This is important, because the user
3170    // may have asked for (e.g.) the AX register in i32 type.  We need to
3171    // remember that AX is actually i16 to get the right extension.
3172    RegVT = *PhysReg.second->vt_begin();
3173
3174    // This is a explicit reference to a physical register.
3175    Regs.push_back(PhysReg.first);
3176
3177    // If this is an expanded reference, add the rest of the regs to Regs.
3178    if (NumRegs != 1) {
3179      TargetRegisterClass::iterator I = PhysReg.second->begin();
3180      TargetRegisterClass::iterator E = PhysReg.second->end();
3181      for (; *I != PhysReg.first; ++I)
3182        assert(I != E && "Didn't find reg!");
3183
3184      // Already added the first reg.
3185      --NumRegs; ++I;
3186      for (; NumRegs; --NumRegs, ++I) {
3187        assert(I != E && "Ran out of registers to allocate!");
3188        Regs.push_back(*I);
3189      }
3190    }
3191    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3192    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3193    return;
3194  }
3195
3196  // Otherwise, if this was a reference to an LLVM register class, create vregs
3197  // for this reference.
3198  std::vector<unsigned> RegClassRegs;
3199  if (PhysReg.second) {
3200    // If this is an early clobber or tied register, our regalloc doesn't know
3201    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3202    // and let the regalloc do the right thing.
3203    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3204        // If there is some other early clobber and this is an input register,
3205        // then we are forced to pre-allocate the input reg so it doesn't
3206        // conflict with the earlyclobber.
3207        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3208      RegVT = *PhysReg.second->vt_begin();
3209
3210      if (OpInfo.ConstraintVT == MVT::Other)
3211        ValueVT = RegVT;
3212
3213      // Create the appropriate number of virtual registers.
3214      SSARegMap *RegMap = MF.getSSARegMap();
3215      for (; NumRegs; --NumRegs)
3216        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3217
3218      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3219      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3220      return;
3221    }
3222
3223    // Otherwise, we can't allocate it.  Let the code below figure out how to
3224    // maintain these constraints.
3225    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3226
3227  } else {
3228    // This is a reference to a register class that doesn't directly correspond
3229    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3230    // registers from the class.
3231    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3232                                                         OpInfo.ConstraintVT);
3233  }
3234
3235  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3236  unsigned NumAllocated = 0;
3237  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3238    unsigned Reg = RegClassRegs[i];
3239    // See if this register is available.
3240    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3241        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3242      // Make sure we find consecutive registers.
3243      NumAllocated = 0;
3244      continue;
3245    }
3246
3247    // Check to see if this register is allocatable (i.e. don't give out the
3248    // stack pointer).
3249    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3250    if (!RC) {
3251      // Make sure we find consecutive registers.
3252      NumAllocated = 0;
3253      continue;
3254    }
3255
3256    // Okay, this register is good, we can use it.
3257    ++NumAllocated;
3258
3259    // If we allocated enough consecutive registers, succeed.
3260    if (NumAllocated == NumRegs) {
3261      unsigned RegStart = (i-NumAllocated)+1;
3262      unsigned RegEnd   = i+1;
3263      // Mark all of the allocated registers used.
3264      for (unsigned i = RegStart; i != RegEnd; ++i)
3265        Regs.push_back(RegClassRegs[i]);
3266
3267      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3268                                         OpInfo.ConstraintVT);
3269      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3270      return;
3271    }
3272  }
3273
3274  // Otherwise, we couldn't allocate enough registers for this.
3275  return;
3276}
3277
3278
3279/// visitInlineAsm - Handle a call to an InlineAsm object.
3280///
3281void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
3282  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
3283
3284  /// ConstraintOperands - Information about all of the constraints.
3285  std::vector<AsmOperandInfo> ConstraintOperands;
3286
3287  SDOperand Chain = getRoot();
3288  SDOperand Flag;
3289
3290  std::set<unsigned> OutputRegs, InputRegs;
3291
3292  // Do a prepass over the constraints, canonicalizing them, and building up the
3293  // ConstraintOperands list.
3294  std::vector<InlineAsm::ConstraintInfo>
3295    ConstraintInfos = IA->ParseConstraints();
3296
3297  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3298  // constraint.  If so, we can't let the register allocator allocate any input
3299  // registers, because it will not know to avoid the earlyclobbered output reg.
3300  bool SawEarlyClobber = false;
3301
3302  unsigned OpNo = 1;   // OpNo - The operand of the CallInst.
3303  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3304    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3305    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3306
3307    MVT::ValueType OpVT = MVT::Other;
3308
3309    // Compute the value type for each operand.
3310    switch (OpInfo.Type) {
3311    case InlineAsm::isOutput:
3312      if (!OpInfo.isIndirect) {
3313        // The return value of the call is this value.  As such, there is no
3314        // corresponding argument.
3315        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3316        OpVT = TLI.getValueType(I.getType());
3317      } else {
3318        OpInfo.CallOperandVal = I.getOperand(OpNo++);
3319      }
3320      break;
3321    case InlineAsm::isInput:
3322      OpInfo.CallOperandVal = I.getOperand(OpNo++);
3323      break;
3324    case InlineAsm::isClobber:
3325      // Nothing to do.
3326      break;
3327    }
3328
3329    // If this is an input or an indirect output, process the call argument.
3330    if (OpInfo.CallOperandVal) {
3331      OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3332      const Type *OpTy = OpInfo.CallOperandVal->getType();
3333      // If this is an indirect operand, the operand is a pointer to the
3334      // accessed type.
3335      if (OpInfo.isIndirect)
3336        OpTy = cast<PointerType>(OpTy)->getElementType();
3337
3338      // If OpTy is not a first-class value, it may be a struct/union that we
3339      // can tile with integers.
3340      if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3341        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3342        switch (BitSize) {
3343        default: break;
3344        case 1:
3345        case 8:
3346        case 16:
3347        case 32:
3348        case 64:
3349          OpTy = IntegerType::get(BitSize);
3350          break;
3351        }
3352      }
3353
3354      OpVT = TLI.getValueType(OpTy, true);
3355    }
3356
3357    OpInfo.ConstraintVT = OpVT;
3358
3359    // Compute the constraint code and ConstraintType to use.
3360    OpInfo.ComputeConstraintToUse(TLI);
3361
3362    // Keep track of whether we see an earlyclobber.
3363    SawEarlyClobber |= OpInfo.isEarlyClobber;
3364
3365    // If this is a memory input, and if the operand is not indirect, do what we
3366    // need to to provide an address for the memory input.
3367    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3368        !OpInfo.isIndirect) {
3369      assert(OpInfo.Type == InlineAsm::isInput &&
3370             "Can only indirectify direct input operands!");
3371
3372      // Memory operands really want the address of the value.  If we don't have
3373      // an indirect input, put it in the constpool if we can, otherwise spill
3374      // it to a stack slot.
3375
3376      // If the operand is a float, integer, or vector constant, spill to a
3377      // constant pool entry to get its address.
3378      Value *OpVal = OpInfo.CallOperandVal;
3379      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3380          isa<ConstantVector>(OpVal)) {
3381        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3382                                                 TLI.getPointerTy());
3383      } else {
3384        // Otherwise, create a stack slot and emit a store to it before the
3385        // asm.
3386        const Type *Ty = OpVal->getType();
3387        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
3388        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3389        MachineFunction &MF = DAG.getMachineFunction();
3390        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3391        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3392        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3393        OpInfo.CallOperand = StackSlot;
3394      }
3395
3396      // There is no longer a Value* corresponding to this operand.
3397      OpInfo.CallOperandVal = 0;
3398      // It is now an indirect operand.
3399      OpInfo.isIndirect = true;
3400    }
3401
3402    // If this constraint is for a specific register, allocate it before
3403    // anything else.
3404    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3405      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3406  }
3407  ConstraintInfos.clear();
3408
3409
3410  // Second pass - Loop over all of the operands, assigning virtual or physregs
3411  // to registerclass operands.
3412  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3413    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3414
3415    // C_Register operands have already been allocated, Other/Memory don't need
3416    // to be.
3417    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3418      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3419  }
3420
3421  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3422  std::vector<SDOperand> AsmNodeOperands;
3423  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3424  AsmNodeOperands.push_back(
3425          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3426
3427
3428  // Loop over all of the inputs, copying the operand values into the
3429  // appropriate registers and processing the output regs.
3430  RegsForValue RetValRegs;
3431
3432  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3433  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3434
3435  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3436    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3437
3438    switch (OpInfo.Type) {
3439    case InlineAsm::isOutput: {
3440      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3441          OpInfo.ConstraintType != TargetLowering::C_Register) {
3442        // Memory output, or 'other' output (e.g. 'X' constraint).
3443        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3444
3445        // Add information to the INLINEASM node to know about this output.
3446        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3447        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3448                                                        TLI.getPointerTy()));
3449        AsmNodeOperands.push_back(OpInfo.CallOperand);
3450        break;
3451      }
3452
3453      // Otherwise, this is a register or register class output.
3454
3455      // Copy the output from the appropriate register.  Find a register that
3456      // we can use.
3457      if (OpInfo.AssignedRegs.Regs.empty()) {
3458        cerr << "Couldn't allocate output reg for contraint '"
3459             << OpInfo.ConstraintCode << "'!\n";
3460        exit(1);
3461      }
3462
3463      if (!OpInfo.isIndirect) {
3464        // This is the result value of the call.
3465        assert(RetValRegs.Regs.empty() &&
3466               "Cannot have multiple output constraints yet!");
3467        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3468        RetValRegs = OpInfo.AssignedRegs;
3469      } else {
3470        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3471                                                      OpInfo.CallOperandVal));
3472      }
3473
3474      // Add information to the INLINEASM node to know that this register is
3475      // set.
3476      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3477                                               AsmNodeOperands);
3478      break;
3479    }
3480    case InlineAsm::isInput: {
3481      SDOperand InOperandVal = OpInfo.CallOperand;
3482
3483      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3484        // If this is required to match an output register we have already set,
3485        // just use its register.
3486        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3487
3488        // Scan until we find the definition we already emitted of this operand.
3489        // When we find it, create a RegsForValue operand.
3490        unsigned CurOp = 2;  // The first operand.
3491        for (; OperandNo; --OperandNo) {
3492          // Advance to the next operand.
3493          unsigned NumOps =
3494            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3495          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3496                  (NumOps & 7) == 4 /*MEM*/) &&
3497                 "Skipped past definitions?");
3498          CurOp += (NumOps>>3)+1;
3499        }
3500
3501        unsigned NumOps =
3502          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3503        if ((NumOps & 7) == 2 /*REGDEF*/) {
3504          // Add NumOps>>3 registers to MatchedRegs.
3505          RegsForValue MatchedRegs;
3506          MatchedRegs.ValueVT = InOperandVal.getValueType();
3507          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3508          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3509            unsigned Reg =
3510              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3511            MatchedRegs.Regs.push_back(Reg);
3512          }
3513
3514          // Use the produced MatchedRegs object to
3515          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
3516                                    TLI.getPointerTy());
3517          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3518          break;
3519        } else {
3520          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3521          assert(0 && "matching constraints for memory operands unimp");
3522        }
3523      }
3524
3525      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3526        assert(!OpInfo.isIndirect &&
3527               "Don't know how to handle indirect other inputs yet!");
3528
3529        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
3530                                                       OpInfo.ConstraintCode[0],
3531                                                       DAG);
3532        if (!InOperandVal.Val) {
3533          cerr << "Invalid operand for inline asm constraint '"
3534               << OpInfo.ConstraintCode << "'!\n";
3535          exit(1);
3536        }
3537
3538        // Add information to the INLINEASM node to know about this input.
3539        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
3540        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3541                                                        TLI.getPointerTy()));
3542        AsmNodeOperands.push_back(InOperandVal);
3543        break;
3544      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3545        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3546        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3547               "Memory operands expect pointer values");
3548
3549        // Add information to the INLINEASM node to know about this input.
3550        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3551        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3552                                                        TLI.getPointerTy()));
3553        AsmNodeOperands.push_back(InOperandVal);
3554        break;
3555      }
3556
3557      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3558              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3559             "Unknown constraint type!");
3560      assert(!OpInfo.isIndirect &&
3561             "Don't know how to handle indirect register inputs yet!");
3562
3563      // Copy the input into the appropriate registers.
3564      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3565             "Couldn't allocate input reg!");
3566
3567      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
3568                                        TLI.getPointerTy());
3569
3570      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3571                                               AsmNodeOperands);
3572      break;
3573    }
3574    case InlineAsm::isClobber: {
3575      // Add the clobbered value to the operand list, so that the register
3576      // allocator is aware that the physreg got clobbered.
3577      if (!OpInfo.AssignedRegs.Regs.empty())
3578        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3579                                                 AsmNodeOperands);
3580      break;
3581    }
3582    }
3583  }
3584
3585  // Finish up input operands.
3586  AsmNodeOperands[0] = Chain;
3587  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3588
3589  Chain = DAG.getNode(ISD::INLINEASM,
3590                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3591                      &AsmNodeOperands[0], AsmNodeOperands.size());
3592  Flag = Chain.getValue(1);
3593
3594  // If this asm returns a register value, copy the result from that register
3595  // and set it as the value of the call.
3596  if (!RetValRegs.Regs.empty()) {
3597    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, Flag);
3598
3599    // If the result of the inline asm is a vector, it may have the wrong
3600    // width/num elts.  Make sure to convert it to the right type with
3601    // vbit_convert.
3602    if (Val.getValueType() == MVT::Vector) {
3603      const VectorType *VTy = cast<VectorType>(I.getType());
3604      unsigned DesiredNumElts = VTy->getNumElements();
3605      MVT::ValueType DesiredEltVT = TLI.getValueType(VTy->getElementType());
3606
3607      Val = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Val,
3608                        DAG.getConstant(DesiredNumElts, MVT::i32),
3609                        DAG.getValueType(DesiredEltVT));
3610    }
3611
3612    setValue(&I, Val);
3613  }
3614
3615  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3616
3617  // Process indirect outputs, first output all of the flagged copies out of
3618  // physregs.
3619  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3620    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3621    Value *Ptr = IndirectStoresToEmit[i].second;
3622    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
3623    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3624  }
3625
3626  // Emit the non-flagged stores from the physregs.
3627  SmallVector<SDOperand, 8> OutChains;
3628  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3629    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3630                                    getValue(StoresToEmit[i].second),
3631                                    StoresToEmit[i].second, 0));
3632  if (!OutChains.empty())
3633    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3634                        &OutChains[0], OutChains.size());
3635  DAG.setRoot(Chain);
3636}
3637
3638
3639void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3640  SDOperand Src = getValue(I.getOperand(0));
3641
3642  MVT::ValueType IntPtr = TLI.getPointerTy();
3643
3644  if (IntPtr < Src.getValueType())
3645    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3646  else if (IntPtr > Src.getValueType())
3647    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3648
3649  // Scale the source by the type size.
3650  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
3651  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3652                    Src, getIntPtrConstant(ElementSize));
3653
3654  TargetLowering::ArgListTy Args;
3655  TargetLowering::ArgListEntry Entry;
3656  Entry.Node = Src;
3657  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3658  Args.push_back(Entry);
3659
3660  std::pair<SDOperand,SDOperand> Result =
3661    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3662                    DAG.getExternalSymbol("malloc", IntPtr),
3663                    Args, DAG);
3664  setValue(&I, Result.first);  // Pointers always fit in registers
3665  DAG.setRoot(Result.second);
3666}
3667
3668void SelectionDAGLowering::visitFree(FreeInst &I) {
3669  TargetLowering::ArgListTy Args;
3670  TargetLowering::ArgListEntry Entry;
3671  Entry.Node = getValue(I.getOperand(0));
3672  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3673  Args.push_back(Entry);
3674  MVT::ValueType IntPtr = TLI.getPointerTy();
3675  std::pair<SDOperand,SDOperand> Result =
3676    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3677                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3678  DAG.setRoot(Result.second);
3679}
3680
3681// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3682// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3683// instructions are special in various ways, which require special support to
3684// insert.  The specified MachineInstr is created but not inserted into any
3685// basic blocks, and the scheduler passes ownership of it to this method.
3686MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3687                                                       MachineBasicBlock *MBB) {
3688  cerr << "If a target marks an instruction with "
3689       << "'usesCustomDAGSchedInserter', it must implement "
3690       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3691  abort();
3692  return 0;
3693}
3694
3695void SelectionDAGLowering::visitVAStart(CallInst &I) {
3696  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3697                          getValue(I.getOperand(1)),
3698                          DAG.getSrcValue(I.getOperand(1))));
3699}
3700
3701void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3702  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3703                             getValue(I.getOperand(0)),
3704                             DAG.getSrcValue(I.getOperand(0)));
3705  setValue(&I, V);
3706  DAG.setRoot(V.getValue(1));
3707}
3708
3709void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3710  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3711                          getValue(I.getOperand(1)),
3712                          DAG.getSrcValue(I.getOperand(1))));
3713}
3714
3715void SelectionDAGLowering::visitVACopy(CallInst &I) {
3716  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3717                          getValue(I.getOperand(1)),
3718                          getValue(I.getOperand(2)),
3719                          DAG.getSrcValue(I.getOperand(1)),
3720                          DAG.getSrcValue(I.getOperand(2))));
3721}
3722
3723/// ExpandScalarFormalArgs - Recursively expand the formal_argument node, either
3724/// bit_convert it or join a pair of them with a BUILD_PAIR when appropriate.
3725static SDOperand ExpandScalarFormalArgs(MVT::ValueType VT, SDNode *Arg,
3726                                        unsigned &i, SelectionDAG &DAG,
3727                                        TargetLowering &TLI) {
3728  if (TLI.getTypeAction(VT) != TargetLowering::Expand)
3729    return SDOperand(Arg, i++);
3730
3731  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3732  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3733  if (NumVals == 1) {
3734    return DAG.getNode(ISD::BIT_CONVERT, VT,
3735                       ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI));
3736  } else if (NumVals == 2) {
3737    SDOperand Lo = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
3738    SDOperand Hi = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
3739    if (!TLI.isLittleEndian())
3740      std::swap(Lo, Hi);
3741    return DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
3742  } else {
3743    // Value scalarized into many values.  Unimp for now.
3744    assert(0 && "Cannot expand i64 -> i16 yet!");
3745  }
3746  return SDOperand();
3747}
3748
3749/// TargetLowering::LowerArguments - This is the default LowerArguments
3750/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3751/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3752/// integrated into SDISel.
3753std::vector<SDOperand>
3754TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3755  const FunctionType *FTy = F.getFunctionType();
3756  const ParamAttrsList *Attrs = FTy->getParamAttrs();
3757  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3758  std::vector<SDOperand> Ops;
3759  Ops.push_back(DAG.getRoot());
3760  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3761  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3762
3763  // Add one result value for each formal argument.
3764  std::vector<MVT::ValueType> RetVals;
3765  unsigned j = 1;
3766  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3767       I != E; ++I, ++j) {
3768    MVT::ValueType VT = getValueType(I->getType());
3769    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3770    unsigned OriginalAlignment =
3771      getTargetData()->getABITypeAlignment(I->getType());
3772
3773    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3774    // that is zero extended!
3775    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt))
3776      Flags &= ~(ISD::ParamFlags::SExt);
3777    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt))
3778      Flags |= ISD::ParamFlags::SExt;
3779    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg))
3780      Flags |= ISD::ParamFlags::InReg;
3781    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet))
3782      Flags |= ISD::ParamFlags::StructReturn;
3783    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3784
3785    switch (getTypeAction(VT)) {
3786    default: assert(0 && "Unknown type action!");
3787    case Legal:
3788      RetVals.push_back(VT);
3789      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3790      break;
3791    case Promote:
3792      RetVals.push_back(getTypeToTransformTo(VT));
3793      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3794      break;
3795    case Expand:
3796      if (VT != MVT::Vector) {
3797        // If this is a large integer, it needs to be broken up into small
3798        // integers.  Figure out what the destination type is and how many small
3799        // integers it turns into.
3800        MVT::ValueType NVT = getTypeToExpandTo(VT);
3801        unsigned NumVals = getNumElements(VT);
3802        for (unsigned i = 0; i != NumVals; ++i) {
3803          RetVals.push_back(NVT);
3804          // if it isn't first piece, alignment must be 1
3805          if (i > 0)
3806            Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3807              (1 << ISD::ParamFlags::OrigAlignmentOffs);
3808          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3809        }
3810      } else {
3811        // Otherwise, this is a vector type.  We only support legal vectors
3812        // right now.
3813        unsigned NumElems = cast<VectorType>(I->getType())->getNumElements();
3814        const Type *EltTy = cast<VectorType>(I->getType())->getElementType();
3815
3816        // Figure out if there is a Packed type corresponding to this Vector
3817        // type.  If so, convert to the vector type.
3818        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3819        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3820          RetVals.push_back(TVT);
3821          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3822        } else {
3823          assert(0 && "Don't support illegal by-val vector arguments yet!");
3824        }
3825      }
3826      break;
3827    }
3828  }
3829
3830  RetVals.push_back(MVT::Other);
3831
3832  // Create the node.
3833  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3834                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3835                               &Ops[0], Ops.size()).Val;
3836
3837  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
3838
3839  // Set up the return result vector.
3840  Ops.clear();
3841  unsigned i = 0;
3842  unsigned Idx = 1;
3843  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3844      ++I, ++Idx) {
3845    MVT::ValueType VT = getValueType(I->getType());
3846
3847    switch (getTypeAction(VT)) {
3848    default: assert(0 && "Unknown type action!");
3849    case Legal:
3850      Ops.push_back(SDOperand(Result, i++));
3851      break;
3852    case Promote: {
3853      SDOperand Op(Result, i++);
3854      if (MVT::isInteger(VT)) {
3855        if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt))
3856          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3857                           DAG.getValueType(VT));
3858        else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt))
3859          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3860                           DAG.getValueType(VT));
3861        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3862      } else {
3863        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3864        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3865      }
3866      Ops.push_back(Op);
3867      break;
3868    }
3869    case Expand:
3870      if (VT != MVT::Vector) {
3871        // If this is a large integer or a floating point node that needs to be
3872        // expanded, it needs to be reassembled from small integers.  Figure out
3873        // what the source elt type is and how many small integers it is.
3874        Ops.push_back(ExpandScalarFormalArgs(VT, Result, i, DAG, *this));
3875      } else {
3876        // Otherwise, this is a vector type.  We only support legal vectors
3877        // right now.
3878        const VectorType *PTy = cast<VectorType>(I->getType());
3879        unsigned NumElems = PTy->getNumElements();
3880        const Type *EltTy = PTy->getElementType();
3881
3882        // Figure out if there is a Packed type corresponding to this Vector
3883        // type.  If so, convert to the vector type.
3884        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3885        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3886          SDOperand N = SDOperand(Result, i++);
3887          // Handle copies from generic vectors to registers.
3888          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
3889                          DAG.getConstant(NumElems, MVT::i32),
3890                          DAG.getValueType(getValueType(EltTy)));
3891          Ops.push_back(N);
3892        } else {
3893          assert(0 && "Don't support illegal by-val vector arguments yet!");
3894          abort();
3895        }
3896      }
3897      break;
3898    }
3899  }
3900  return Ops;
3901}
3902
3903
3904/// ExpandScalarCallArgs - Recursively expand call argument node by
3905/// bit_converting it or extract a pair of elements from the larger  node.
3906static void ExpandScalarCallArgs(MVT::ValueType VT, SDOperand Arg,
3907                                 unsigned Flags,
3908                                 SmallVector<SDOperand, 32> &Ops,
3909                                 SelectionDAG &DAG,
3910                                 TargetLowering &TLI,
3911                                 bool isFirst = true) {
3912
3913  if (TLI.getTypeAction(VT) != TargetLowering::Expand) {
3914    // if it isn't first piece, alignment must be 1
3915    if (!isFirst)
3916      Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3917        (1 << ISD::ParamFlags::OrigAlignmentOffs);
3918    Ops.push_back(Arg);
3919    Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3920    return;
3921  }
3922
3923  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3924  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3925  if (NumVals == 1) {
3926    Arg = DAG.getNode(ISD::BIT_CONVERT, EVT, Arg);
3927    ExpandScalarCallArgs(EVT, Arg, Flags, Ops, DAG, TLI, isFirst);
3928  } else if (NumVals == 2) {
3929    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3930                               DAG.getConstant(0, TLI.getPointerTy()));
3931    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3932                               DAG.getConstant(1, TLI.getPointerTy()));
3933    if (!TLI.isLittleEndian())
3934      std::swap(Lo, Hi);
3935    ExpandScalarCallArgs(EVT, Lo, Flags, Ops, DAG, TLI, isFirst);
3936    ExpandScalarCallArgs(EVT, Hi, Flags, Ops, DAG, TLI, false);
3937  } else {
3938    // Value scalarized into many values.  Unimp for now.
3939    assert(0 && "Cannot expand i64 -> i16 yet!");
3940  }
3941}
3942
3943/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3944/// implementation, which just inserts an ISD::CALL node, which is later custom
3945/// lowered by the target to something concrete.  FIXME: When all targets are
3946/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3947std::pair<SDOperand, SDOperand>
3948TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3949                            bool RetTyIsSigned, bool isVarArg,
3950                            unsigned CallingConv, bool isTailCall,
3951                            SDOperand Callee,
3952                            ArgListTy &Args, SelectionDAG &DAG) {
3953  SmallVector<SDOperand, 32> Ops;
3954  Ops.push_back(Chain);   // Op#0 - Chain
3955  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3956  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3957  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3958  Ops.push_back(Callee);
3959
3960  // Handle all of the outgoing arguments.
3961  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3962    MVT::ValueType VT = getValueType(Args[i].Ty);
3963    SDOperand Op = Args[i].Node;
3964    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3965    unsigned OriginalAlignment =
3966      getTargetData()->getABITypeAlignment(Args[i].Ty);
3967
3968    if (Args[i].isSExt)
3969      Flags |= ISD::ParamFlags::SExt;
3970    if (Args[i].isZExt)
3971      Flags |= ISD::ParamFlags::ZExt;
3972    if (Args[i].isInReg)
3973      Flags |= ISD::ParamFlags::InReg;
3974    if (Args[i].isSRet)
3975      Flags |= ISD::ParamFlags::StructReturn;
3976    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
3977
3978    switch (getTypeAction(VT)) {
3979    default: assert(0 && "Unknown type action!");
3980    case Legal:
3981      Ops.push_back(Op);
3982      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3983      break;
3984    case Promote:
3985      if (MVT::isInteger(VT)) {
3986        unsigned ExtOp;
3987        if (Args[i].isSExt)
3988          ExtOp = ISD::SIGN_EXTEND;
3989        else if (Args[i].isZExt)
3990          ExtOp = ISD::ZERO_EXTEND;
3991        else
3992          ExtOp = ISD::ANY_EXTEND;
3993        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3994      } else {
3995        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3996        // A true promotion would change the size of the argument.
3997        // Instead, pretend this is an int.  If FP objects are not
3998        // passed the same as ints, the original type should be Legal
3999        // and we should not get here.
4000        Op = DAG.getNode(ISD::BIT_CONVERT,
4001                         VT==MVT::f32 ? MVT::i32 :
4002                         (VT==MVT::f64 ? MVT::i64 :
4003                          MVT::Other),
4004                         Op);
4005      }
4006      Ops.push_back(Op);
4007      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4008      break;
4009    case Expand:
4010      if (VT != MVT::Vector) {
4011        // If this is a large integer, it needs to be broken down into small
4012        // integers.  Figure out what the source elt type is and how many small
4013        // integers it is.
4014        ExpandScalarCallArgs(VT, Op, Flags, Ops, DAG, *this);
4015      } else {
4016        // Otherwise, this is a vector type.  We only support legal vectors
4017        // right now.
4018        const VectorType *PTy = cast<VectorType>(Args[i].Ty);
4019        unsigned NumElems = PTy->getNumElements();
4020        const Type *EltTy = PTy->getElementType();
4021
4022        // Figure out if there is a Packed type corresponding to this Vector
4023        // type.  If so, convert to the vector type.
4024        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
4025        if (TVT != MVT::Other && isTypeLegal(TVT)) {
4026          // Insert a VBIT_CONVERT of the MVT::Vector type to the vector type.
4027          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
4028          Ops.push_back(Op);
4029          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4030        } else {
4031          assert(0 && "Don't support illegal by-val vector call args yet!");
4032          abort();
4033        }
4034      }
4035      break;
4036    }
4037  }
4038
4039  // Figure out the result value types.
4040  SmallVector<MVT::ValueType, 4> RetTys;
4041
4042  if (RetTy != Type::VoidTy) {
4043    MVT::ValueType VT = getValueType(RetTy);
4044    switch (getTypeAction(VT)) {
4045    default: assert(0 && "Unknown type action!");
4046    case Legal:
4047      RetTys.push_back(VT);
4048      break;
4049    case Promote:
4050      RetTys.push_back(getTypeToTransformTo(VT));
4051      break;
4052    case Expand:
4053      if (VT != MVT::Vector) {
4054        // If this is a large integer, it needs to be reassembled from small
4055        // integers.  Figure out what the source elt type is and how many small
4056        // integers it is.
4057        MVT::ValueType NVT = getTypeToExpandTo(VT);
4058        unsigned NumVals = getNumElements(VT);
4059        for (unsigned i = 0; i != NumVals; ++i)
4060          RetTys.push_back(NVT);
4061      } else {
4062        // Otherwise, this is a vector type.  We only support legal vectors
4063        // right now.
4064        const VectorType *PTy = cast<VectorType>(RetTy);
4065        unsigned NumElems = PTy->getNumElements();
4066        const Type *EltTy = PTy->getElementType();
4067
4068        // Figure out if there is a Packed type corresponding to this Vector
4069        // type.  If so, convert to the vector type.
4070        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
4071        if (TVT != MVT::Other && isTypeLegal(TVT)) {
4072          RetTys.push_back(TVT);
4073        } else {
4074          assert(0 && "Don't support illegal by-val vector call results yet!");
4075          abort();
4076        }
4077      }
4078    }
4079  }
4080
4081  RetTys.push_back(MVT::Other);  // Always has a chain.
4082
4083  // Finally, create the CALL node.
4084  SDOperand Res = DAG.getNode(ISD::CALL,
4085                              DAG.getVTList(&RetTys[0], RetTys.size()),
4086                              &Ops[0], Ops.size());
4087
4088  // This returns a pair of operands.  The first element is the
4089  // return value for the function (if RetTy is not VoidTy).  The second
4090  // element is the outgoing token chain.
4091  SDOperand ResVal;
4092  if (RetTys.size() != 1) {
4093    MVT::ValueType VT = getValueType(RetTy);
4094    if (RetTys.size() == 2) {
4095      ResVal = Res;
4096
4097      // If this value was promoted, truncate it down.
4098      if (ResVal.getValueType() != VT) {
4099        if (VT == MVT::Vector) {
4100          // Insert a VBIT_CONVERT to convert from the packed result type to the
4101          // MVT::Vector type.
4102          unsigned NumElems = cast<VectorType>(RetTy)->getNumElements();
4103          const Type *EltTy = cast<VectorType>(RetTy)->getElementType();
4104
4105          // Figure out if there is a Packed type corresponding to this Vector
4106          // type.  If so, convert to the vector type.
4107          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy),NumElems);
4108          if (TVT != MVT::Other && isTypeLegal(TVT)) {
4109            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
4110            // "N x PTyElementVT" MVT::Vector type.
4111            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
4112                                 DAG.getConstant(NumElems, MVT::i32),
4113                                 DAG.getValueType(getValueType(EltTy)));
4114          } else {
4115            abort();
4116          }
4117        } else if (MVT::isInteger(VT)) {
4118          unsigned AssertOp = ISD::AssertSext;
4119          if (!RetTyIsSigned)
4120            AssertOp = ISD::AssertZext;
4121          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
4122                               DAG.getValueType(VT));
4123          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
4124        } else {
4125          assert(MVT::isFloatingPoint(VT));
4126          if (getTypeAction(VT) == Expand)
4127            ResVal = DAG.getNode(ISD::BIT_CONVERT, VT, ResVal);
4128          else
4129            ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
4130        }
4131      }
4132    } else if (RetTys.size() == 3) {
4133      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
4134                           Res.getValue(0), Res.getValue(1));
4135
4136    } else {
4137      assert(0 && "Case not handled yet!");
4138    }
4139  }
4140
4141  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
4142}
4143
4144SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4145  assert(0 && "LowerOperation not implemented for this target!");
4146  abort();
4147  return SDOperand();
4148}
4149
4150SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4151                                                 SelectionDAG &DAG) {
4152  assert(0 && "CustomPromoteOperation not implemented for this target!");
4153  abort();
4154  return SDOperand();
4155}
4156
4157/// getMemsetValue - Vectorized representation of the memset value
4158/// operand.
4159static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4160                                SelectionDAG &DAG) {
4161  MVT::ValueType CurVT = VT;
4162  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4163    uint64_t Val   = C->getValue() & 255;
4164    unsigned Shift = 8;
4165    while (CurVT != MVT::i8) {
4166      Val = (Val << Shift) | Val;
4167      Shift <<= 1;
4168      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4169    }
4170    return DAG.getConstant(Val, VT);
4171  } else {
4172    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4173    unsigned Shift = 8;
4174    while (CurVT != MVT::i8) {
4175      Value =
4176        DAG.getNode(ISD::OR, VT,
4177                    DAG.getNode(ISD::SHL, VT, Value,
4178                                DAG.getConstant(Shift, MVT::i8)), Value);
4179      Shift <<= 1;
4180      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4181    }
4182
4183    return Value;
4184  }
4185}
4186
4187/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4188/// used when a memcpy is turned into a memset when the source is a constant
4189/// string ptr.
4190static SDOperand getMemsetStringVal(MVT::ValueType VT,
4191                                    SelectionDAG &DAG, TargetLowering &TLI,
4192                                    std::string &Str, unsigned Offset) {
4193  uint64_t Val = 0;
4194  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4195  if (TLI.isLittleEndian())
4196    Offset = Offset + MSB - 1;
4197  for (unsigned i = 0; i != MSB; ++i) {
4198    Val = (Val << 8) | (unsigned char)Str[Offset];
4199    Offset += TLI.isLittleEndian() ? -1 : 1;
4200  }
4201  return DAG.getConstant(Val, VT);
4202}
4203
4204/// getMemBasePlusOffset - Returns base and offset node for the
4205static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4206                                      SelectionDAG &DAG, TargetLowering &TLI) {
4207  MVT::ValueType VT = Base.getValueType();
4208  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4209}
4210
4211/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4212/// to replace the memset / memcpy is below the threshold. It also returns the
4213/// types of the sequence of  memory ops to perform memset / memcpy.
4214static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4215                                     unsigned Limit, uint64_t Size,
4216                                     unsigned Align, TargetLowering &TLI) {
4217  MVT::ValueType VT;
4218
4219  if (TLI.allowsUnalignedMemoryAccesses()) {
4220    VT = MVT::i64;
4221  } else {
4222    switch (Align & 7) {
4223    case 0:
4224      VT = MVT::i64;
4225      break;
4226    case 4:
4227      VT = MVT::i32;
4228      break;
4229    case 2:
4230      VT = MVT::i16;
4231      break;
4232    default:
4233      VT = MVT::i8;
4234      break;
4235    }
4236  }
4237
4238  MVT::ValueType LVT = MVT::i64;
4239  while (!TLI.isTypeLegal(LVT))
4240    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4241  assert(MVT::isInteger(LVT));
4242
4243  if (VT > LVT)
4244    VT = LVT;
4245
4246  unsigned NumMemOps = 0;
4247  while (Size != 0) {
4248    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4249    while (VTSize > Size) {
4250      VT = (MVT::ValueType)((unsigned)VT - 1);
4251      VTSize >>= 1;
4252    }
4253    assert(MVT::isInteger(VT));
4254
4255    if (++NumMemOps > Limit)
4256      return false;
4257    MemOps.push_back(VT);
4258    Size -= VTSize;
4259  }
4260
4261  return true;
4262}
4263
4264void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4265  SDOperand Op1 = getValue(I.getOperand(1));
4266  SDOperand Op2 = getValue(I.getOperand(2));
4267  SDOperand Op3 = getValue(I.getOperand(3));
4268  SDOperand Op4 = getValue(I.getOperand(4));
4269  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4270  if (Align == 0) Align = 1;
4271
4272  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4273    std::vector<MVT::ValueType> MemOps;
4274
4275    // Expand memset / memcpy to a series of load / store ops
4276    // if the size operand falls below a certain threshold.
4277    SmallVector<SDOperand, 8> OutChains;
4278    switch (Op) {
4279    default: break;  // Do nothing for now.
4280    case ISD::MEMSET: {
4281      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4282                                   Size->getValue(), Align, TLI)) {
4283        unsigned NumMemOps = MemOps.size();
4284        unsigned Offset = 0;
4285        for (unsigned i = 0; i < NumMemOps; i++) {
4286          MVT::ValueType VT = MemOps[i];
4287          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4288          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4289          SDOperand Store = DAG.getStore(getRoot(), Value,
4290                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4291                                         I.getOperand(1), Offset);
4292          OutChains.push_back(Store);
4293          Offset += VTSize;
4294        }
4295      }
4296      break;
4297    }
4298    case ISD::MEMCPY: {
4299      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4300                                   Size->getValue(), Align, TLI)) {
4301        unsigned NumMemOps = MemOps.size();
4302        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4303        GlobalAddressSDNode *G = NULL;
4304        std::string Str;
4305        bool CopyFromStr = false;
4306
4307        if (Op2.getOpcode() == ISD::GlobalAddress)
4308          G = cast<GlobalAddressSDNode>(Op2);
4309        else if (Op2.getOpcode() == ISD::ADD &&
4310                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4311                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4312          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4313          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4314        }
4315        if (G) {
4316          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4317          if (GV && GV->isConstant()) {
4318            Str = GV->getStringValue(false);
4319            if (!Str.empty()) {
4320              CopyFromStr = true;
4321              SrcOff += SrcDelta;
4322            }
4323          }
4324        }
4325
4326        for (unsigned i = 0; i < NumMemOps; i++) {
4327          MVT::ValueType VT = MemOps[i];
4328          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4329          SDOperand Value, Chain, Store;
4330
4331          if (CopyFromStr) {
4332            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4333            Chain = getRoot();
4334            Store =
4335              DAG.getStore(Chain, Value,
4336                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4337                           I.getOperand(1), DstOff);
4338          } else {
4339            Value = DAG.getLoad(VT, getRoot(),
4340                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4341                        I.getOperand(2), SrcOff);
4342            Chain = Value.getValue(1);
4343            Store =
4344              DAG.getStore(Chain, Value,
4345                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4346                           I.getOperand(1), DstOff);
4347          }
4348          OutChains.push_back(Store);
4349          SrcOff += VTSize;
4350          DstOff += VTSize;
4351        }
4352      }
4353      break;
4354    }
4355    }
4356
4357    if (!OutChains.empty()) {
4358      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4359                  &OutChains[0], OutChains.size()));
4360      return;
4361    }
4362  }
4363
4364  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
4365}
4366
4367//===----------------------------------------------------------------------===//
4368// SelectionDAGISel code
4369//===----------------------------------------------------------------------===//
4370
4371unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4372  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4373}
4374
4375void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4376  AU.addRequired<AliasAnalysis>();
4377  AU.setPreservesAll();
4378}
4379
4380
4381
4382bool SelectionDAGISel::runOnFunction(Function &Fn) {
4383  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4384  RegMap = MF.getSSARegMap();
4385  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4386
4387  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4388
4389  if (ExceptionHandling)
4390    for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4391      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4392        // Mark landing pad.
4393        FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4394
4395  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4396    SelectBasicBlock(I, MF, FuncInfo);
4397
4398  // Add function live-ins to entry block live-in set.
4399  BasicBlock *EntryBB = &Fn.getEntryBlock();
4400  BB = FuncInfo.MBBMap[EntryBB];
4401  if (!MF.livein_empty())
4402    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4403           E = MF.livein_end(); I != E; ++I)
4404      BB->addLiveIn(I->first);
4405
4406  return true;
4407}
4408
4409SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4410                                                           unsigned Reg) {
4411  SDOperand Op = getValue(V);
4412  assert((Op.getOpcode() != ISD::CopyFromReg ||
4413          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4414         "Copy from a reg to the same reg!");
4415
4416  // If this type is not legal, we must make sure to not create an invalid
4417  // register use.
4418  MVT::ValueType SrcVT = Op.getValueType();
4419  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
4420  if (SrcVT == DestVT) {
4421    return DAG.getCopyToReg(getRoot(), Reg, Op);
4422  } else if (SrcVT == MVT::Vector) {
4423    // Handle copies from generic vectors to registers.
4424    MVT::ValueType PTyElementVT, PTyLegalElementVT;
4425    unsigned NE = TLI.getVectorTypeBreakdown(cast<VectorType>(V->getType()),
4426                                             PTyElementVT, PTyLegalElementVT);
4427    uint64_t SrcVL = cast<ConstantSDNode>(*(Op.Val->op_end()-2))->getValue();
4428
4429    // Loop over all of the elements of the resultant vector,
4430    // VEXTRACT_VECTOR_ELT'ing or VEXTRACT_SUBVECTOR'ing them, converting them
4431    // to PTyLegalElementVT, then copying them into output registers.
4432    SmallVector<SDOperand, 8> OutChains;
4433    SDOperand Root = getRoot();
4434    for (unsigned i = 0; i != NE; ++i) {
4435      SDOperand Elt = MVT::isVector(PTyElementVT) ?
4436        DAG.getNode(ISD::VEXTRACT_SUBVECTOR, PTyElementVT,
4437                    Op, DAG.getConstant(i * (SrcVL / NE), TLI.getPointerTy())) :
4438        DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
4439                    Op, DAG.getConstant(i, TLI.getPointerTy()));
4440      if (PTyElementVT == PTyLegalElementVT) {
4441        // Elements are legal.
4442        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
4443      } else if (PTyLegalElementVT > PTyElementVT) {
4444        // Elements are promoted.
4445        if (MVT::isFloatingPoint(PTyLegalElementVT))
4446          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
4447        else
4448          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
4449        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
4450      } else {
4451        // Elements are expanded.
4452        // The src value is expanded into multiple registers.
4453        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
4454                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
4455        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
4456                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
4457        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
4458        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
4459      }
4460    }
4461    return DAG.getNode(ISD::TokenFactor, MVT::Other,
4462                       &OutChains[0], OutChains.size());
4463  } else if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) {
4464    // The src value is promoted to the register.
4465    if (MVT::isFloatingPoint(SrcVT))
4466      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
4467    else
4468      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
4469    return DAG.getCopyToReg(getRoot(), Reg, Op);
4470  } else  {
4471    DestVT = TLI.getTypeToExpandTo(SrcVT);
4472    unsigned NumVals = TLI.getNumElements(SrcVT);
4473    if (NumVals == 1)
4474      return DAG.getCopyToReg(getRoot(), Reg,
4475                              DAG.getNode(ISD::BIT_CONVERT, DestVT, Op));
4476    assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
4477    // The src value is expanded into multiple registers.
4478    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
4479                               Op, DAG.getConstant(0, TLI.getPointerTy()));
4480    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
4481                               Op, DAG.getConstant(1, TLI.getPointerTy()));
4482    Op = DAG.getCopyToReg(getRoot(), Reg, Lo);
4483    return DAG.getCopyToReg(Op, Reg+1, Hi);
4484  }
4485}
4486
4487void SelectionDAGISel::
4488LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4489               std::vector<SDOperand> &UnorderedChains) {
4490  // If this is the entry block, emit arguments.
4491  Function &F = *LLVMBB->getParent();
4492  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4493  SDOperand OldRoot = SDL.DAG.getRoot();
4494  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4495
4496  unsigned a = 0;
4497  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4498       AI != E; ++AI, ++a)
4499    if (!AI->use_empty()) {
4500      SDL.setValue(AI, Args[a]);
4501
4502      // If this argument is live outside of the entry block, insert a copy from
4503      // whereever we got it to the vreg that other BB's will reference it as.
4504      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4505      if (VMI != FuncInfo.ValueMap.end()) {
4506        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4507        UnorderedChains.push_back(Copy);
4508      }
4509    }
4510
4511  // Finally, if the target has anything special to do, allow it to do so.
4512  // FIXME: this should insert code into the DAG!
4513  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4514}
4515
4516void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4517       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4518                                         FunctionLoweringInfo &FuncInfo) {
4519  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
4520
4521  std::vector<SDOperand> UnorderedChains;
4522
4523  // Lower any arguments needed in this block if this is the entry block.
4524  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4525    LowerArguments(LLVMBB, SDL, UnorderedChains);
4526
4527  BB = FuncInfo.MBBMap[LLVMBB];
4528  SDL.setCurrentBasicBlock(BB);
4529
4530  if (ExceptionHandling && BB->isLandingPad()) {
4531    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4532
4533    if (MMI) {
4534      // Add a label to mark the beginning of the landing pad.  Deletion of the
4535      // landing pad can thus be detected via the MachineModuleInfo.
4536      unsigned LabelID = MMI->addLandingPad(BB);
4537      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4538                              DAG.getConstant(LabelID, MVT::i32)));
4539    }
4540  }
4541
4542  // Lower all of the non-terminator instructions.
4543  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4544       I != E; ++I)
4545    SDL.visit(*I);
4546
4547  // Ensure that all instructions which are used outside of their defining
4548  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4549  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4550    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4551      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4552      if (VMI != FuncInfo.ValueMap.end())
4553        UnorderedChains.push_back(
4554                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4555    }
4556
4557  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4558  // ensure constants are generated when needed.  Remember the virtual registers
4559  // that need to be added to the Machine PHI nodes as input.  We cannot just
4560  // directly add them, because expansion might result in multiple MBB's for one
4561  // BB.  As such, the start of the BB might correspond to a different MBB than
4562  // the end.
4563  //
4564  TerminatorInst *TI = LLVMBB->getTerminator();
4565
4566  // Emit constants only once even if used by multiple PHI nodes.
4567  std::map<Constant*, unsigned> ConstantsOut;
4568
4569  // Vector bool would be better, but vector<bool> is really slow.
4570  std::vector<unsigned char> SuccsHandled;
4571  if (TI->getNumSuccessors())
4572    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4573
4574  // Check successor nodes PHI nodes that expect a constant to be available from
4575  // this block.
4576  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4577    BasicBlock *SuccBB = TI->getSuccessor(succ);
4578    if (!isa<PHINode>(SuccBB->begin())) continue;
4579    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4580
4581    // If this terminator has multiple identical successors (common for
4582    // switches), only handle each succ once.
4583    unsigned SuccMBBNo = SuccMBB->getNumber();
4584    if (SuccsHandled[SuccMBBNo]) continue;
4585    SuccsHandled[SuccMBBNo] = true;
4586
4587    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4588    PHINode *PN;
4589
4590    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4591    // nodes and Machine PHI nodes, but the incoming operands have not been
4592    // emitted yet.
4593    for (BasicBlock::iterator I = SuccBB->begin();
4594         (PN = dyn_cast<PHINode>(I)); ++I) {
4595      // Ignore dead phi's.
4596      if (PN->use_empty()) continue;
4597
4598      unsigned Reg;
4599      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4600
4601      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4602        unsigned &RegOut = ConstantsOut[C];
4603        if (RegOut == 0) {
4604          RegOut = FuncInfo.CreateRegForValue(C);
4605          UnorderedChains.push_back(
4606                           SDL.CopyValueToVirtualRegister(C, RegOut));
4607        }
4608        Reg = RegOut;
4609      } else {
4610        Reg = FuncInfo.ValueMap[PHIOp];
4611        if (Reg == 0) {
4612          assert(isa<AllocaInst>(PHIOp) &&
4613                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4614                 "Didn't codegen value into a register!??");
4615          Reg = FuncInfo.CreateRegForValue(PHIOp);
4616          UnorderedChains.push_back(
4617                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4618        }
4619      }
4620
4621      // Remember that this register needs to added to the machine PHI node as
4622      // the input for this MBB.
4623      MVT::ValueType VT = TLI.getValueType(PN->getType());
4624      unsigned NumElements;
4625      if (VT != MVT::Vector)
4626        NumElements = TLI.getNumElements(VT);
4627      else {
4628        MVT::ValueType VT1,VT2;
4629        NumElements =
4630          TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
4631                                     VT1, VT2);
4632      }
4633      for (unsigned i = 0, e = NumElements; i != e; ++i)
4634        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4635    }
4636  }
4637  ConstantsOut.clear();
4638
4639  // Turn all of the unordered chains into one factored node.
4640  if (!UnorderedChains.empty()) {
4641    SDOperand Root = SDL.getRoot();
4642    if (Root.getOpcode() != ISD::EntryToken) {
4643      unsigned i = 0, e = UnorderedChains.size();
4644      for (; i != e; ++i) {
4645        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4646        if (UnorderedChains[i].Val->getOperand(0) == Root)
4647          break;  // Don't add the root if we already indirectly depend on it.
4648      }
4649
4650      if (i == e)
4651        UnorderedChains.push_back(Root);
4652    }
4653    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4654                            &UnorderedChains[0], UnorderedChains.size()));
4655  }
4656
4657  // Lower the terminator after the copies are emitted.
4658  SDL.visit(*LLVMBB->getTerminator());
4659
4660  // Copy over any CaseBlock records that may now exist due to SwitchInst
4661  // lowering, as well as any jump table information.
4662  SwitchCases.clear();
4663  SwitchCases = SDL.SwitchCases;
4664  JTCases.clear();
4665  JTCases = SDL.JTCases;
4666  BitTestCases.clear();
4667  BitTestCases = SDL.BitTestCases;
4668
4669  // Make sure the root of the DAG is up-to-date.
4670  DAG.setRoot(SDL.getRoot());
4671}
4672
4673void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4674  // Get alias analysis for load/store combining.
4675  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4676
4677  // Run the DAG combiner in pre-legalize mode.
4678  DAG.Combine(false, AA);
4679
4680  DOUT << "Lowered selection DAG:\n";
4681  DEBUG(DAG.dump());
4682
4683  // Second step, hack on the DAG until it only uses operations and types that
4684  // the target supports.
4685  DAG.Legalize();
4686
4687  DOUT << "Legalized selection DAG:\n";
4688  DEBUG(DAG.dump());
4689
4690  // Run the DAG combiner in post-legalize mode.
4691  DAG.Combine(true, AA);
4692
4693  if (ViewISelDAGs) DAG.viewGraph();
4694
4695  // Third, instruction select all of the operations to machine code, adding the
4696  // code to the MachineBasicBlock.
4697  InstructionSelectBasicBlock(DAG);
4698
4699  DOUT << "Selected machine code:\n";
4700  DEBUG(BB->dump());
4701}
4702
4703void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4704                                        FunctionLoweringInfo &FuncInfo) {
4705  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4706  {
4707    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4708    CurDAG = &DAG;
4709
4710    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4711    // types that are not supported by the target.
4712    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4713
4714    // Second step, emit the lowered DAG as machine code.
4715    CodeGenAndEmitDAG(DAG);
4716  }
4717
4718  DOUT << "Total amount of phi nodes to update: "
4719       << PHINodesToUpdate.size() << "\n";
4720  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4721          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4722               << ", " << PHINodesToUpdate[i].second << ")\n";);
4723
4724  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4725  // PHI nodes in successors.
4726  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4727    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4728      MachineInstr *PHI = PHINodesToUpdate[i].first;
4729      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4730             "This is not a machine PHI node that we are updating!");
4731      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4732      PHI->addMachineBasicBlockOperand(BB);
4733    }
4734    return;
4735  }
4736
4737  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4738    // Lower header first, if it wasn't already lowered
4739    if (!BitTestCases[i].Emitted) {
4740      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4741      CurDAG = &HSDAG;
4742      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4743      // Set the current basic block to the mbb we wish to insert the code into
4744      BB = BitTestCases[i].Parent;
4745      HSDL.setCurrentBasicBlock(BB);
4746      // Emit the code
4747      HSDL.visitBitTestHeader(BitTestCases[i]);
4748      HSDAG.setRoot(HSDL.getRoot());
4749      CodeGenAndEmitDAG(HSDAG);
4750    }
4751
4752    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4753      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4754      CurDAG = &BSDAG;
4755      SelectionDAGLowering BSDL(BSDAG, TLI, FuncInfo);
4756      // Set the current basic block to the mbb we wish to insert the code into
4757      BB = BitTestCases[i].Cases[j].ThisBB;
4758      BSDL.setCurrentBasicBlock(BB);
4759      // Emit the code
4760      if (j+1 != ej)
4761        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4762                              BitTestCases[i].Reg,
4763                              BitTestCases[i].Cases[j]);
4764      else
4765        BSDL.visitBitTestCase(BitTestCases[i].Default,
4766                              BitTestCases[i].Reg,
4767                              BitTestCases[i].Cases[j]);
4768
4769
4770      BSDAG.setRoot(BSDL.getRoot());
4771      CodeGenAndEmitDAG(BSDAG);
4772    }
4773
4774    // Update PHI Nodes
4775    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4776      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4777      MachineBasicBlock *PHIBB = PHI->getParent();
4778      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4779             "This is not a machine PHI node that we are updating!");
4780      // This is "default" BB. We have two jumps to it. From "header" BB and
4781      // from last "case" BB.
4782      if (PHIBB == BitTestCases[i].Default) {
4783        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4784        PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4785        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4786        PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4787      }
4788      // One of "cases" BB.
4789      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4790        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4791        if (cBB->succ_end() !=
4792            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4793          PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4794          PHI->addMachineBasicBlockOperand(cBB);
4795        }
4796      }
4797    }
4798  }
4799
4800  // If the JumpTable record is filled in, then we need to emit a jump table.
4801  // Updating the PHI nodes is tricky in this case, since we need to determine
4802  // whether the PHI is a successor of the range check MBB or the jump table MBB
4803  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4804    // Lower header first, if it wasn't already lowered
4805    if (!JTCases[i].first.Emitted) {
4806      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4807      CurDAG = &HSDAG;
4808      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4809      // Set the current basic block to the mbb we wish to insert the code into
4810      BB = JTCases[i].first.HeaderBB;
4811      HSDL.setCurrentBasicBlock(BB);
4812      // Emit the code
4813      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4814      HSDAG.setRoot(HSDL.getRoot());
4815      CodeGenAndEmitDAG(HSDAG);
4816    }
4817
4818    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4819    CurDAG = &JSDAG;
4820    SelectionDAGLowering JSDL(JSDAG, TLI, FuncInfo);
4821    // Set the current basic block to the mbb we wish to insert the code into
4822    BB = JTCases[i].second.MBB;
4823    JSDL.setCurrentBasicBlock(BB);
4824    // Emit the code
4825    JSDL.visitJumpTable(JTCases[i].second);
4826    JSDAG.setRoot(JSDL.getRoot());
4827    CodeGenAndEmitDAG(JSDAG);
4828
4829    // Update PHI Nodes
4830    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4831      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4832      MachineBasicBlock *PHIBB = PHI->getParent();
4833      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4834             "This is not a machine PHI node that we are updating!");
4835      // "default" BB. We can go there only from header BB.
4836      if (PHIBB == JTCases[i].second.Default) {
4837        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4838        PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4839      }
4840      // JT BB. Just iterate over successors here
4841      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4842        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4843        PHI->addMachineBasicBlockOperand(BB);
4844      }
4845    }
4846  }
4847
4848  // If the switch block involved a branch to one of the actual successors, we
4849  // need to update PHI nodes in that block.
4850  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4851    MachineInstr *PHI = PHINodesToUpdate[i].first;
4852    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4853           "This is not a machine PHI node that we are updating!");
4854    if (BB->isSuccessor(PHI->getParent())) {
4855      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4856      PHI->addMachineBasicBlockOperand(BB);
4857    }
4858  }
4859
4860  // If we generated any switch lowering information, build and codegen any
4861  // additional DAGs necessary.
4862  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4863    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4864    CurDAG = &SDAG;
4865    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4866
4867    // Set the current basic block to the mbb we wish to insert the code into
4868    BB = SwitchCases[i].ThisBB;
4869    SDL.setCurrentBasicBlock(BB);
4870
4871    // Emit the code
4872    SDL.visitSwitchCase(SwitchCases[i]);
4873    SDAG.setRoot(SDL.getRoot());
4874    CodeGenAndEmitDAG(SDAG);
4875
4876    // Handle any PHI nodes in successors of this chunk, as if we were coming
4877    // from the original BB before switch expansion.  Note that PHI nodes can
4878    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4879    // handle them the right number of times.
4880    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4881      for (MachineBasicBlock::iterator Phi = BB->begin();
4882           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4883        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4884        for (unsigned pn = 0; ; ++pn) {
4885          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4886          if (PHINodesToUpdate[pn].first == Phi) {
4887            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4888            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4889            break;
4890          }
4891        }
4892      }
4893
4894      // Don't process RHS if same block as LHS.
4895      if (BB == SwitchCases[i].FalseBB)
4896        SwitchCases[i].FalseBB = 0;
4897
4898      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4899      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4900      SwitchCases[i].FalseBB = 0;
4901    }
4902    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4903  }
4904}
4905
4906
4907//===----------------------------------------------------------------------===//
4908/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4909/// target node in the graph.
4910void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4911  if (ViewSchedDAGs) DAG.viewGraph();
4912
4913  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4914
4915  if (!Ctor) {
4916    Ctor = ISHeuristic;
4917    RegisterScheduler::setDefault(Ctor);
4918  }
4919
4920  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4921  BB = SL->Run();
4922  delete SL;
4923}
4924
4925
4926HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4927  return new HazardRecognizer();
4928}
4929
4930//===----------------------------------------------------------------------===//
4931// Helper functions used by the generated instruction selector.
4932//===----------------------------------------------------------------------===//
4933// Calls to these methods are generated by tblgen.
4934
4935/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4936/// the dag combiner simplified the 255, we still want to match.  RHS is the
4937/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4938/// specified in the .td file (e.g. 255).
4939bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4940                                    int64_t DesiredMaskS) {
4941  uint64_t ActualMask = RHS->getValue();
4942  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4943
4944  // If the actual mask exactly matches, success!
4945  if (ActualMask == DesiredMask)
4946    return true;
4947
4948  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4949  if (ActualMask & ~DesiredMask)
4950    return false;
4951
4952  // Otherwise, the DAG Combiner may have proven that the value coming in is
4953  // either already zero or is not demanded.  Check for known zero input bits.
4954  uint64_t NeededMask = DesiredMask & ~ActualMask;
4955  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
4956    return true;
4957
4958  // TODO: check to see if missing bits are just not demanded.
4959
4960  // Otherwise, this pattern doesn't match.
4961  return false;
4962}
4963
4964/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4965/// the dag combiner simplified the 255, we still want to match.  RHS is the
4966/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4967/// specified in the .td file (e.g. 255).
4968bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4969                                    int64_t DesiredMaskS) {
4970  uint64_t ActualMask = RHS->getValue();
4971  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4972
4973  // If the actual mask exactly matches, success!
4974  if (ActualMask == DesiredMask)
4975    return true;
4976
4977  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4978  if (ActualMask & ~DesiredMask)
4979    return false;
4980
4981  // Otherwise, the DAG Combiner may have proven that the value coming in is
4982  // either already zero or is not demanded.  Check for known zero input bits.
4983  uint64_t NeededMask = DesiredMask & ~ActualMask;
4984
4985  uint64_t KnownZero, KnownOne;
4986  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4987
4988  // If all the missing bits in the or are already known to be set, match!
4989  if ((NeededMask & KnownOne) == NeededMask)
4990    return true;
4991
4992  // TODO: check to see if missing bits are just not demanded.
4993
4994  // Otherwise, this pattern doesn't match.
4995  return false;
4996}
4997
4998
4999/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5000/// by tblgen.  Others should not call it.
5001void SelectionDAGISel::
5002SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5003  std::vector<SDOperand> InOps;
5004  std::swap(InOps, Ops);
5005
5006  Ops.push_back(InOps[0]);  // input chain.
5007  Ops.push_back(InOps[1]);  // input asm string.
5008
5009  unsigned i = 2, e = InOps.size();
5010  if (InOps[e-1].getValueType() == MVT::Flag)
5011    --e;  // Don't process a flag operand if it is here.
5012
5013  while (i != e) {
5014    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5015    if ((Flags & 7) != 4 /*MEM*/) {
5016      // Just skip over this operand, copying the operands verbatim.
5017      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5018      i += (Flags >> 3) + 1;
5019    } else {
5020      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5021      // Otherwise, this is a memory operand.  Ask the target to select it.
5022      std::vector<SDOperand> SelOps;
5023      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5024        cerr << "Could not match memory address.  Inline asm failure!\n";
5025        exit(1);
5026      }
5027
5028      // Add this to the output node.
5029      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5030      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5031                                          IntPtrTy));
5032      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5033      i += 2;
5034    }
5035  }
5036
5037  // Add the flag input back if present.
5038  if (e != InOps.size())
5039    Ops.push_back(InOps.back());
5040}
5041
5042char SelectionDAGISel::ID = 0;
5043