SelectionDAGISel.cpp revision 532dc2e1f2473b16b48566c1cbc9eefe94a4e58e
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61//===---------------------------------------------------------------------===//
62///
63/// RegisterScheduler class - Track the registration of instruction schedulers.
64///
65//===---------------------------------------------------------------------===//
66MachinePassRegistry RegisterScheduler::Registry;
67
68//===---------------------------------------------------------------------===//
69///
70/// ISHeuristic command line option for instruction schedulers.
71///
72//===---------------------------------------------------------------------===//
73namespace {
74  cl::opt<RegisterScheduler::FunctionPassCtor, false,
75          RegisterPassParser<RegisterScheduler> >
76  ISHeuristic("sched",
77              cl::init(&createDefaultScheduler),
78              cl::desc("Instruction schedulers available:"));
79
80  static RegisterScheduler
81  defaultListDAGScheduler("default", "  Best scheduler for the target",
82                          createDefaultScheduler);
83} // namespace
84
85namespace { struct AsmOperandInfo; }
86
87namespace {
88  /// RegsForValue - This struct represents the physical registers that a
89  /// particular value is assigned and the type information about the value.
90  /// This is needed because values can be promoted into larger registers and
91  /// expanded into multiple smaller registers than the value.
92  struct VISIBILITY_HIDDEN RegsForValue {
93    /// Regs - This list holds the register (for legal and promoted values)
94    /// or register set (for expanded values) that the value should be assigned
95    /// to.
96    std::vector<unsigned> Regs;
97
98    /// RegVT - The value type of each register.
99    ///
100    MVT::ValueType RegVT;
101
102    /// ValueVT - The value type of the LLVM value, which may be promoted from
103    /// RegVT or made from merging the two expanded parts.
104    MVT::ValueType ValueVT;
105
106    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
107
108    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
109      : RegVT(regvt), ValueVT(valuevt) {
110        Regs.push_back(Reg);
111    }
112    RegsForValue(const std::vector<unsigned> &regs,
113                 MVT::ValueType regvt, MVT::ValueType valuevt)
114      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
115    }
116
117    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
118    /// this value and returns the result as a ValueVT value.  This uses
119    /// Chain/Flag as the input and updates them for the output Chain/Flag.
120    /// If the Flag pointer is NULL, no flag is used.
121    SDOperand getCopyFromRegs(SelectionDAG &DAG,
122                              SDOperand &Chain, SDOperand *Flag) const;
123
124    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
125    /// specified value into the registers specified by this object.  This uses
126    /// Chain/Flag as the input and updates them for the output Chain/Flag.
127    /// If the Flag pointer is NULL, no flag is used.
128    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
129                       SDOperand &Chain, SDOperand *Flag) const;
130
131    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
132    /// operand list.  This adds the code marker and includes the number of
133    /// values added into it.
134    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
135                              std::vector<SDOperand> &Ops) const;
136  };
137}
138
139namespace llvm {
140  //===--------------------------------------------------------------------===//
141  /// createDefaultScheduler - This creates an instruction scheduler appropriate
142  /// for the target.
143  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
144                                      SelectionDAG *DAG,
145                                      MachineBasicBlock *BB) {
146    TargetLowering &TLI = IS->getTargetLowering();
147
148    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
149      return createTDListDAGScheduler(IS, DAG, BB);
150    } else {
151      assert(TLI.getSchedulingPreference() ==
152           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
153      return createBURRListDAGScheduler(IS, DAG, BB);
154    }
155  }
156
157
158  //===--------------------------------------------------------------------===//
159  /// FunctionLoweringInfo - This contains information that is global to a
160  /// function that is used when lowering a region of the function.
161  class FunctionLoweringInfo {
162  public:
163    TargetLowering &TLI;
164    Function &Fn;
165    MachineFunction &MF;
166    SSARegMap *RegMap;
167
168    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
169
170    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
171    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
172
173    /// ValueMap - Since we emit code for the function a basic block at a time,
174    /// we must remember which virtual registers hold the values for
175    /// cross-basic-block values.
176    DenseMap<const Value*, unsigned> ValueMap;
177
178    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
179    /// the entry block.  This allows the allocas to be efficiently referenced
180    /// anywhere in the function.
181    std::map<const AllocaInst*, int> StaticAllocaMap;
182
183#ifndef NDEBUG
184    SmallSet<Instruction*, 8> CatchInfoLost;
185    SmallSet<Instruction*, 8> CatchInfoFound;
186#endif
187
188    unsigned MakeReg(MVT::ValueType VT) {
189      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
190    }
191
192    /// isExportedInst - Return true if the specified value is an instruction
193    /// exported from its block.
194    bool isExportedInst(const Value *V) {
195      return ValueMap.count(V);
196    }
197
198    unsigned CreateRegForValue(const Value *V);
199
200    unsigned InitializeRegForValue(const Value *V) {
201      unsigned &R = ValueMap[V];
202      assert(R == 0 && "Already initialized this value register!");
203      return R = CreateRegForValue(V);
204    }
205  };
206}
207
208/// isSelector - Return true if this instruction is a call to the
209/// eh.selector intrinsic.
210static bool isSelector(Instruction *I) {
211  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
212    return II->getIntrinsicID() == Intrinsic::eh_selector;
213  return false;
214}
215
216/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
217/// PHI nodes or outside of the basic block that defines it, or used by a
218/// switch instruction, which may expand to multiple basic blocks.
219static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
220  if (isa<PHINode>(I)) return true;
221  BasicBlock *BB = I->getParent();
222  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
223    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
224        // FIXME: Remove switchinst special case.
225        isa<SwitchInst>(*UI))
226      return true;
227  return false;
228}
229
230/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
231/// entry block, return true.  This includes arguments used by switches, since
232/// the switch may expand into multiple basic blocks.
233static bool isOnlyUsedInEntryBlock(Argument *A) {
234  BasicBlock *Entry = A->getParent()->begin();
235  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
236    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
237      return false;  // Use not in entry block.
238  return true;
239}
240
241FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
242                                           Function &fn, MachineFunction &mf)
243    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
244
245  // Create a vreg for each argument register that is not dead and is used
246  // outside of the entry block for the function.
247  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
248       AI != E; ++AI)
249    if (!isOnlyUsedInEntryBlock(AI))
250      InitializeRegForValue(AI);
251
252  // Initialize the mapping of values to registers.  This is only set up for
253  // instruction values that are used outside of the block that defines
254  // them.
255  Function::iterator BB = Fn.begin(), EB = Fn.end();
256  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
257    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
258      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
259        const Type *Ty = AI->getAllocatedType();
260        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
261        unsigned Align =
262          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
263                   AI->getAlignment());
264
265        TySize *= CUI->getZExtValue();   // Get total allocated size.
266        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
267        StaticAllocaMap[AI] =
268          MF.getFrameInfo()->CreateStackObject(TySize, Align);
269      }
270
271  for (; BB != EB; ++BB)
272    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
273      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
274        if (!isa<AllocaInst>(I) ||
275            !StaticAllocaMap.count(cast<AllocaInst>(I)))
276          InitializeRegForValue(I);
277
278  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
279  // also creates the initial PHI MachineInstrs, though none of the input
280  // operands are populated.
281  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
282    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
283    MBBMap[BB] = MBB;
284    MF.getBasicBlockList().push_back(MBB);
285
286    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
287    // appropriate.
288    PHINode *PN;
289    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
290      if (PN->use_empty()) continue;
291
292      MVT::ValueType VT = TLI.getValueType(PN->getType());
293      unsigned NumRegisters = TLI.getNumRegisters(VT);
294      unsigned PHIReg = ValueMap[PN];
295      assert(PHIReg && "PHI node does not have an assigned virtual register!");
296      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
297      for (unsigned i = 0; i != NumRegisters; ++i)
298        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
299    }
300  }
301}
302
303/// CreateRegForValue - Allocate the appropriate number of virtual registers of
304/// the correctly promoted or expanded types.  Assign these registers
305/// consecutive vreg numbers and return the first assigned number.
306unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
307  MVT::ValueType VT = TLI.getValueType(V->getType());
308
309  unsigned NumRegisters = TLI.getNumRegisters(VT);
310  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
311
312  unsigned R = MakeReg(RegisterVT);
313  for (unsigned i = 1; i != NumRegisters; ++i)
314    MakeReg(RegisterVT);
315
316  return R;
317}
318
319//===----------------------------------------------------------------------===//
320/// SelectionDAGLowering - This is the common target-independent lowering
321/// implementation that is parameterized by a TargetLowering object.
322/// Also, targets can overload any lowering method.
323///
324namespace llvm {
325class SelectionDAGLowering {
326  MachineBasicBlock *CurMBB;
327
328  DenseMap<const Value*, SDOperand> NodeMap;
329
330  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
331  /// them up and then emit token factor nodes when possible.  This allows us to
332  /// get simple disambiguation between loads without worrying about alias
333  /// analysis.
334  std::vector<SDOperand> PendingLoads;
335
336  /// Case - A struct to record the Value for a switch case, and the
337  /// case's target basic block.
338  struct Case {
339    Constant* Low;
340    Constant* High;
341    MachineBasicBlock* BB;
342
343    Case() : Low(0), High(0), BB(0) { }
344    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
345      Low(low), High(high), BB(bb) { }
346    uint64_t size() const {
347      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
348      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
349      return (rHigh - rLow + 1ULL);
350    }
351  };
352
353  struct CaseBits {
354    uint64_t Mask;
355    MachineBasicBlock* BB;
356    unsigned Bits;
357
358    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
359      Mask(mask), BB(bb), Bits(bits) { }
360  };
361
362  typedef std::vector<Case>           CaseVector;
363  typedef std::vector<CaseBits>       CaseBitsVector;
364  typedef CaseVector::iterator        CaseItr;
365  typedef std::pair<CaseItr, CaseItr> CaseRange;
366
367  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
368  /// of conditional branches.
369  struct CaseRec {
370    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
371    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
372
373    /// CaseBB - The MBB in which to emit the compare and branch
374    MachineBasicBlock *CaseBB;
375    /// LT, GE - If nonzero, we know the current case value must be less-than or
376    /// greater-than-or-equal-to these Constants.
377    Constant *LT;
378    Constant *GE;
379    /// Range - A pair of iterators representing the range of case values to be
380    /// processed at this point in the binary search tree.
381    CaseRange Range;
382  };
383
384  typedef std::vector<CaseRec> CaseRecVector;
385
386  /// The comparison function for sorting the switch case values in the vector.
387  /// WARNING: Case ranges should be disjoint!
388  struct CaseCmp {
389    bool operator () (const Case& C1, const Case& C2) {
390      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
391      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
392      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
393      return CI1->getValue().slt(CI2->getValue());
394    }
395  };
396
397  struct CaseBitsCmp {
398    bool operator () (const CaseBits& C1, const CaseBits& C2) {
399      return C1.Bits > C2.Bits;
400    }
401  };
402
403  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
404
405public:
406  // TLI - This is information that describes the available target features we
407  // need for lowering.  This indicates when operations are unavailable,
408  // implemented with a libcall, etc.
409  TargetLowering &TLI;
410  SelectionDAG &DAG;
411  const TargetData *TD;
412
413  /// SwitchCases - Vector of CaseBlock structures used to communicate
414  /// SwitchInst code generation information.
415  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
416  /// JTCases - Vector of JumpTable structures used to communicate
417  /// SwitchInst code generation information.
418  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
419  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
420
421  /// FuncInfo - Information about the function as a whole.
422  ///
423  FunctionLoweringInfo &FuncInfo;
424
425  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
426                       FunctionLoweringInfo &funcinfo)
427    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
428      FuncInfo(funcinfo) {
429  }
430
431  /// getRoot - Return the current virtual root of the Selection DAG.
432  ///
433  SDOperand getRoot() {
434    if (PendingLoads.empty())
435      return DAG.getRoot();
436
437    if (PendingLoads.size() == 1) {
438      SDOperand Root = PendingLoads[0];
439      DAG.setRoot(Root);
440      PendingLoads.clear();
441      return Root;
442    }
443
444    // Otherwise, we have to make a token factor node.
445    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
446                                 &PendingLoads[0], PendingLoads.size());
447    PendingLoads.clear();
448    DAG.setRoot(Root);
449    return Root;
450  }
451
452  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
453
454  void visit(Instruction &I) { visit(I.getOpcode(), I); }
455
456  void visit(unsigned Opcode, User &I) {
457    // Note: this doesn't use InstVisitor, because it has to work with
458    // ConstantExpr's in addition to instructions.
459    switch (Opcode) {
460    default: assert(0 && "Unknown instruction type encountered!");
461             abort();
462      // Build the switch statement using the Instruction.def file.
463#define HANDLE_INST(NUM, OPCODE, CLASS) \
464    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
465#include "llvm/Instruction.def"
466    }
467  }
468
469  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
470
471  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
472                        const Value *SV, SDOperand Root,
473                        bool isVolatile, unsigned Alignment);
474
475  SDOperand getIntPtrConstant(uint64_t Val) {
476    return DAG.getConstant(Val, TLI.getPointerTy());
477  }
478
479  SDOperand getValue(const Value *V);
480
481  void setValue(const Value *V, SDOperand NewN) {
482    SDOperand &N = NodeMap[V];
483    assert(N.Val == 0 && "Already set a value for this node!");
484    N = NewN;
485  }
486
487  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
488                            std::set<unsigned> &OutputRegs,
489                            std::set<unsigned> &InputRegs);
490
491  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
492                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
493                            unsigned Opc);
494  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
495  void ExportFromCurrentBlock(Value *V);
496  void LowerCallTo(Instruction &I,
497                   const Type *CalledValueTy, unsigned CallingConv,
498                   bool IsTailCall, SDOperand Callee, unsigned OpIdx,
499                   MachineBasicBlock *LandingPad = NULL);
500
501  // Terminator instructions.
502  void visitRet(ReturnInst &I);
503  void visitBr(BranchInst &I);
504  void visitSwitch(SwitchInst &I);
505  void visitUnreachable(UnreachableInst &I) { /* noop */ }
506
507  // Helpers for visitSwitch
508  bool handleSmallSwitchRange(CaseRec& CR,
509                              CaseRecVector& WorkList,
510                              Value* SV,
511                              MachineBasicBlock* Default);
512  bool handleJTSwitchCase(CaseRec& CR,
513                          CaseRecVector& WorkList,
514                          Value* SV,
515                          MachineBasicBlock* Default);
516  bool handleBTSplitSwitchCase(CaseRec& CR,
517                               CaseRecVector& WorkList,
518                               Value* SV,
519                               MachineBasicBlock* Default);
520  bool handleBitTestsSwitchCase(CaseRec& CR,
521                                CaseRecVector& WorkList,
522                                Value* SV,
523                                MachineBasicBlock* Default);
524  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
525  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
526  void visitBitTestCase(MachineBasicBlock* NextMBB,
527                        unsigned Reg,
528                        SelectionDAGISel::BitTestCase &B);
529  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
530  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
531                            SelectionDAGISel::JumpTableHeader &JTH);
532
533  // These all get lowered before this pass.
534  void visitInvoke(InvokeInst &I);
535  void visitUnwind(UnwindInst &I);
536
537  void visitBinary(User &I, unsigned OpCode);
538  void visitShift(User &I, unsigned Opcode);
539  void visitAdd(User &I) {
540    if (I.getType()->isFPOrFPVector())
541      visitBinary(I, ISD::FADD);
542    else
543      visitBinary(I, ISD::ADD);
544  }
545  void visitSub(User &I);
546  void visitMul(User &I) {
547    if (I.getType()->isFPOrFPVector())
548      visitBinary(I, ISD::FMUL);
549    else
550      visitBinary(I, ISD::MUL);
551  }
552  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
553  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
554  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
555  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
556  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
557  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
558  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
559  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
560  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
561  void visitShl (User &I) { visitShift(I, ISD::SHL); }
562  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
563  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
564  void visitICmp(User &I);
565  void visitFCmp(User &I);
566  // Visit the conversion instructions
567  void visitTrunc(User &I);
568  void visitZExt(User &I);
569  void visitSExt(User &I);
570  void visitFPTrunc(User &I);
571  void visitFPExt(User &I);
572  void visitFPToUI(User &I);
573  void visitFPToSI(User &I);
574  void visitUIToFP(User &I);
575  void visitSIToFP(User &I);
576  void visitPtrToInt(User &I);
577  void visitIntToPtr(User &I);
578  void visitBitCast(User &I);
579
580  void visitExtractElement(User &I);
581  void visitInsertElement(User &I);
582  void visitShuffleVector(User &I);
583
584  void visitGetElementPtr(User &I);
585  void visitSelect(User &I);
586
587  void visitMalloc(MallocInst &I);
588  void visitFree(FreeInst &I);
589  void visitAlloca(AllocaInst &I);
590  void visitLoad(LoadInst &I);
591  void visitStore(StoreInst &I);
592  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
593  void visitCall(CallInst &I);
594  void visitInlineAsm(CallInst &I);
595  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
596  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
597
598  void visitVAStart(CallInst &I);
599  void visitVAArg(VAArgInst &I);
600  void visitVAEnd(CallInst &I);
601  void visitVACopy(CallInst &I);
602
603  void visitMemIntrinsic(CallInst &I, unsigned Op);
604
605  void visitUserOp1(Instruction &I) {
606    assert(0 && "UserOp1 should not exist at instruction selection time!");
607    abort();
608  }
609  void visitUserOp2(Instruction &I) {
610    assert(0 && "UserOp2 should not exist at instruction selection time!");
611    abort();
612  }
613};
614} // end namespace llvm
615
616
617/// getCopyFromParts - Create a value that contains the
618/// specified legal parts combined into the value they represent.
619static SDOperand getCopyFromParts(SelectionDAG &DAG,
620                                  const SDOperand *Parts,
621                                  unsigned NumParts,
622                                  MVT::ValueType PartVT,
623                                  MVT::ValueType ValueVT,
624                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
625  if (!MVT::isVector(ValueVT) || NumParts == 1) {
626    SDOperand Val = Parts[0];
627
628    // If the value was expanded, copy from the top part.
629    if (NumParts > 1) {
630      assert(NumParts == 2 &&
631             "Cannot expand to more than 2 elts yet!");
632      SDOperand Hi = Parts[1];
633      if (!DAG.getTargetLoweringInfo().isLittleEndian())
634        std::swap(Val, Hi);
635      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
636    }
637
638    // Otherwise, if the value was promoted or extended, truncate it to the
639    // appropriate type.
640    if (PartVT == ValueVT)
641      return Val;
642
643    if (MVT::isVector(PartVT)) {
644      assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
645      return DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
646    }
647
648    if (MVT::isInteger(PartVT) &&
649        MVT::isInteger(ValueVT)) {
650      if (ValueVT < PartVT) {
651        // For a truncate, see if we have any information to
652        // indicate whether the truncated bits will always be
653        // zero or sign-extension.
654        if (AssertOp != ISD::DELETED_NODE)
655          Val = DAG.getNode(AssertOp, PartVT, Val,
656                            DAG.getValueType(ValueVT));
657        return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
658      } else {
659        return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
660      }
661    }
662
663    if (MVT::isFloatingPoint(PartVT) &&
664        MVT::isFloatingPoint(ValueVT))
665      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
666
667    if (MVT::getSizeInBits(PartVT) ==
668        MVT::getSizeInBits(ValueVT))
669      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
670
671    assert(0 && "Unknown mismatch!");
672  }
673
674  // Handle a multi-element vector.
675  MVT::ValueType IntermediateVT, RegisterVT;
676  unsigned NumIntermediates;
677  unsigned NumRegs =
678    DAG.getTargetLoweringInfo()
679      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
680                              RegisterVT);
681
682  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
683  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
684  assert(RegisterVT == Parts[0].getValueType() &&
685         "Part type doesn't match part!");
686
687  // Assemble the parts into intermediate operands.
688  SmallVector<SDOperand, 8> Ops(NumIntermediates);
689  if (NumIntermediates == NumParts) {
690    // If the register was not expanded, truncate or copy the value,
691    // as appropriate.
692    for (unsigned i = 0; i != NumParts; ++i)
693      Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
694                                PartVT, IntermediateVT);
695  } else if (NumParts > 0) {
696    // If the intermediate type was expanded, build the intermediate operands
697    // from the parts.
698    assert(NumIntermediates % NumParts == 0 &&
699           "Must expand into a divisible number of parts!");
700    unsigned Factor = NumIntermediates / NumParts;
701    for (unsigned i = 0; i != NumIntermediates; ++i)
702      Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
703                                PartVT, IntermediateVT);
704  }
705
706  // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
707  // operands.
708  return DAG.getNode(MVT::isVector(IntermediateVT) ?
709                       ISD::CONCAT_VECTORS :
710                       ISD::BUILD_VECTOR,
711                     ValueVT, &Ops[0], NumParts);
712}
713
714/// getCopyToParts - Create a series of nodes that contain the
715/// specified value split into legal parts.
716static void getCopyToParts(SelectionDAG &DAG,
717                           SDOperand Val,
718                           SDOperand *Parts,
719                           unsigned NumParts,
720                           MVT::ValueType PartVT) {
721  MVT::ValueType ValueVT = Val.getValueType();
722
723  if (!MVT::isVector(ValueVT) || NumParts == 1) {
724    // If the value was expanded, copy from the parts.
725    if (NumParts > 1) {
726      for (unsigned i = 0; i != NumParts; ++i)
727        Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
728                               DAG.getConstant(i, MVT::i32));
729      if (!DAG.getTargetLoweringInfo().isLittleEndian())
730        std::reverse(Parts, Parts + NumParts);
731      return;
732    }
733
734    // If there is a single part and the types differ, this must be
735    // a promotion.
736    if (PartVT != ValueVT) {
737      if (MVT::isVector(PartVT)) {
738        assert(MVT::isVector(ValueVT) &&
739               "Not a vector-vector cast?");
740        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
741      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
742        if (PartVT < ValueVT)
743          Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
744        else
745          Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
746      } else if (MVT::isFloatingPoint(PartVT) &&
747                 MVT::isFloatingPoint(ValueVT)) {
748        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
749      } else if (MVT::getSizeInBits(PartVT) ==
750                 MVT::getSizeInBits(ValueVT)) {
751        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
752      } else {
753        assert(0 && "Unknown mismatch!");
754      }
755    }
756    Parts[0] = Val;
757    return;
758  }
759
760  // Handle a multi-element vector.
761  MVT::ValueType IntermediateVT, RegisterVT;
762  unsigned NumIntermediates;
763  unsigned NumRegs =
764    DAG.getTargetLoweringInfo()
765      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
766                              RegisterVT);
767  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
768
769  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
770  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
771
772  // Split the vector into intermediate operands.
773  SmallVector<SDOperand, 8> Ops(NumIntermediates);
774  for (unsigned i = 0; i != NumIntermediates; ++i)
775    if (MVT::isVector(IntermediateVT))
776      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
777                           IntermediateVT, Val,
778                           DAG.getConstant(i * (NumElements / NumIntermediates),
779                                           MVT::i32));
780    else
781      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
782                           IntermediateVT, Val,
783                           DAG.getConstant(i, MVT::i32));
784
785  // Split the intermediate operands into legal parts.
786  if (NumParts == NumIntermediates) {
787    // If the register was not expanded, promote or copy the value,
788    // as appropriate.
789    for (unsigned i = 0; i != NumParts; ++i)
790      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
791  } else if (NumParts > 0) {
792    // If the intermediate type was expanded, split each the value into
793    // legal parts.
794    assert(NumParts % NumIntermediates == 0 &&
795           "Must expand into a divisible number of parts!");
796    unsigned Factor = NumParts / NumIntermediates;
797    for (unsigned i = 0; i != NumIntermediates; ++i)
798      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
799  }
800}
801
802
803SDOperand SelectionDAGLowering::getValue(const Value *V) {
804  SDOperand &N = NodeMap[V];
805  if (N.Val) return N;
806
807  const Type *VTy = V->getType();
808  MVT::ValueType VT = TLI.getValueType(VTy);
809  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
810    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
811      visit(CE->getOpcode(), *CE);
812      SDOperand N1 = NodeMap[V];
813      assert(N1.Val && "visit didn't populate the ValueMap!");
814      return N1;
815    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
816      return N = DAG.getGlobalAddress(GV, VT);
817    } else if (isa<ConstantPointerNull>(C)) {
818      return N = DAG.getConstant(0, TLI.getPointerTy());
819    } else if (isa<UndefValue>(C)) {
820      if (!isa<VectorType>(VTy))
821        return N = DAG.getNode(ISD::UNDEF, VT);
822
823      // Create a BUILD_VECTOR of undef nodes.
824      const VectorType *PTy = cast<VectorType>(VTy);
825      unsigned NumElements = PTy->getNumElements();
826      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
827
828      SmallVector<SDOperand, 8> Ops;
829      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
830
831      // Create a VConstant node with generic Vector type.
832      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
833      return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
834                             &Ops[0], Ops.size());
835    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
836      return N = DAG.getConstantFP(CFP->getValue(), VT);
837    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
838      unsigned NumElements = PTy->getNumElements();
839      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
840
841      // Now that we know the number and type of the elements, push a
842      // Constant or ConstantFP node onto the ops list for each element of
843      // the packed constant.
844      SmallVector<SDOperand, 8> Ops;
845      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
846        for (unsigned i = 0; i != NumElements; ++i)
847          Ops.push_back(getValue(CP->getOperand(i)));
848      } else {
849        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
850        SDOperand Op;
851        if (MVT::isFloatingPoint(PVT))
852          Op = DAG.getConstantFP(0, PVT);
853        else
854          Op = DAG.getConstant(0, PVT);
855        Ops.assign(NumElements, Op);
856      }
857
858      // Create a BUILD_VECTOR node.
859      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
860      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
861                                      Ops.size());
862    } else {
863      // Canonicalize all constant ints to be unsigned.
864      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
865    }
866  }
867
868  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
869    std::map<const AllocaInst*, int>::iterator SI =
870    FuncInfo.StaticAllocaMap.find(AI);
871    if (SI != FuncInfo.StaticAllocaMap.end())
872      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
873  }
874
875  unsigned InReg = FuncInfo.ValueMap[V];
876  assert(InReg && "Value not in map!");
877
878  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
879  unsigned NumRegs = TLI.getNumRegisters(VT);
880
881  std::vector<unsigned> Regs(NumRegs);
882  for (unsigned i = 0; i != NumRegs; ++i)
883    Regs[i] = InReg + i;
884
885  RegsForValue RFV(Regs, RegisterVT, VT);
886  SDOperand Chain = DAG.getEntryNode();
887
888  return RFV.getCopyFromRegs(DAG, Chain, NULL);
889}
890
891
892void SelectionDAGLowering::visitRet(ReturnInst &I) {
893  if (I.getNumOperands() == 0) {
894    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
895    return;
896  }
897  SmallVector<SDOperand, 8> NewValues;
898  NewValues.push_back(getRoot());
899  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
900    SDOperand RetOp = getValue(I.getOperand(i));
901
902    // If this is an integer return value, we need to promote it ourselves to
903    // the full width of a register, since getCopyToParts and Legalize will use
904    // ANY_EXTEND rather than sign/zero.
905    // FIXME: C calling convention requires the return type to be promoted to
906    // at least 32-bit. But this is not necessary for non-C calling conventions.
907    if (MVT::isInteger(RetOp.getValueType()) &&
908        RetOp.getValueType() < MVT::i64) {
909      MVT::ValueType TmpVT;
910      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
911        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
912      else
913        TmpVT = MVT::i32;
914      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
915      const ParamAttrsList *Attrs = FTy->getParamAttrs();
916      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
917      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt))
918        ExtendKind = ISD::SIGN_EXTEND;
919      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt))
920        ExtendKind = ISD::ZERO_EXTEND;
921      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
922      NewValues.push_back(RetOp);
923      NewValues.push_back(DAG.getConstant(false, MVT::i32));
924    } else {
925      MVT::ValueType VT = RetOp.getValueType();
926      unsigned NumParts = TLI.getNumRegisters(VT);
927      MVT::ValueType PartVT = TLI.getRegisterType(VT);
928      SmallVector<SDOperand, 4> Parts(NumParts);
929      getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT);
930      for (unsigned i = 0; i < NumParts; ++i) {
931        NewValues.push_back(Parts[i]);
932        NewValues.push_back(DAG.getConstant(false, MVT::i32));
933      }
934    }
935  }
936  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
937                          &NewValues[0], NewValues.size()));
938}
939
940/// ExportFromCurrentBlock - If this condition isn't known to be exported from
941/// the current basic block, add it to ValueMap now so that we'll get a
942/// CopyTo/FromReg.
943void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
944  // No need to export constants.
945  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
946
947  // Already exported?
948  if (FuncInfo.isExportedInst(V)) return;
949
950  unsigned Reg = FuncInfo.InitializeRegForValue(V);
951  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
952}
953
954bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
955                                                    const BasicBlock *FromBB) {
956  // The operands of the setcc have to be in this block.  We don't know
957  // how to export them from some other block.
958  if (Instruction *VI = dyn_cast<Instruction>(V)) {
959    // Can export from current BB.
960    if (VI->getParent() == FromBB)
961      return true;
962
963    // Is already exported, noop.
964    return FuncInfo.isExportedInst(V);
965  }
966
967  // If this is an argument, we can export it if the BB is the entry block or
968  // if it is already exported.
969  if (isa<Argument>(V)) {
970    if (FromBB == &FromBB->getParent()->getEntryBlock())
971      return true;
972
973    // Otherwise, can only export this if it is already exported.
974    return FuncInfo.isExportedInst(V);
975  }
976
977  // Otherwise, constants can always be exported.
978  return true;
979}
980
981static bool InBlock(const Value *V, const BasicBlock *BB) {
982  if (const Instruction *I = dyn_cast<Instruction>(V))
983    return I->getParent() == BB;
984  return true;
985}
986
987/// FindMergedConditions - If Cond is an expression like
988void SelectionDAGLowering::FindMergedConditions(Value *Cond,
989                                                MachineBasicBlock *TBB,
990                                                MachineBasicBlock *FBB,
991                                                MachineBasicBlock *CurBB,
992                                                unsigned Opc) {
993  // If this node is not part of the or/and tree, emit it as a branch.
994  Instruction *BOp = dyn_cast<Instruction>(Cond);
995
996  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
997      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
998      BOp->getParent() != CurBB->getBasicBlock() ||
999      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1000      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1001    const BasicBlock *BB = CurBB->getBasicBlock();
1002
1003    // If the leaf of the tree is a comparison, merge the condition into
1004    // the caseblock.
1005    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1006        // The operands of the cmp have to be in this block.  We don't know
1007        // how to export them from some other block.  If this is the first block
1008        // of the sequence, no exporting is needed.
1009        (CurBB == CurMBB ||
1010         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1011          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1012      BOp = cast<Instruction>(Cond);
1013      ISD::CondCode Condition;
1014      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1015        switch (IC->getPredicate()) {
1016        default: assert(0 && "Unknown icmp predicate opcode!");
1017        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1018        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1019        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1020        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1021        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1022        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1023        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1024        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1025        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1026        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1027        }
1028      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1029        ISD::CondCode FPC, FOC;
1030        switch (FC->getPredicate()) {
1031        default: assert(0 && "Unknown fcmp predicate opcode!");
1032        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1033        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1034        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1035        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1036        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1037        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1038        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1039        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1040        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1041        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1042        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1043        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1044        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1045        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1046        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1047        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1048        }
1049        if (FiniteOnlyFPMath())
1050          Condition = FOC;
1051        else
1052          Condition = FPC;
1053      } else {
1054        Condition = ISD::SETEQ; // silence warning.
1055        assert(0 && "Unknown compare instruction");
1056      }
1057
1058      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1059                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1060      SwitchCases.push_back(CB);
1061      return;
1062    }
1063
1064    // Create a CaseBlock record representing this branch.
1065    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1066                                   NULL, TBB, FBB, CurBB);
1067    SwitchCases.push_back(CB);
1068    return;
1069  }
1070
1071
1072  //  Create TmpBB after CurBB.
1073  MachineFunction::iterator BBI = CurBB;
1074  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1075  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1076
1077  if (Opc == Instruction::Or) {
1078    // Codegen X | Y as:
1079    //   jmp_if_X TBB
1080    //   jmp TmpBB
1081    // TmpBB:
1082    //   jmp_if_Y TBB
1083    //   jmp FBB
1084    //
1085
1086    // Emit the LHS condition.
1087    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1088
1089    // Emit the RHS condition into TmpBB.
1090    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1091  } else {
1092    assert(Opc == Instruction::And && "Unknown merge op!");
1093    // Codegen X & Y as:
1094    //   jmp_if_X TmpBB
1095    //   jmp FBB
1096    // TmpBB:
1097    //   jmp_if_Y TBB
1098    //   jmp FBB
1099    //
1100    //  This requires creation of TmpBB after CurBB.
1101
1102    // Emit the LHS condition.
1103    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1104
1105    // Emit the RHS condition into TmpBB.
1106    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1107  }
1108}
1109
1110/// If the set of cases should be emitted as a series of branches, return true.
1111/// If we should emit this as a bunch of and/or'd together conditions, return
1112/// false.
1113static bool
1114ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1115  if (Cases.size() != 2) return true;
1116
1117  // If this is two comparisons of the same values or'd or and'd together, they
1118  // will get folded into a single comparison, so don't emit two blocks.
1119  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1120       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1121      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1122       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1123    return false;
1124  }
1125
1126  return true;
1127}
1128
1129void SelectionDAGLowering::visitBr(BranchInst &I) {
1130  // Update machine-CFG edges.
1131  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1132
1133  // Figure out which block is immediately after the current one.
1134  MachineBasicBlock *NextBlock = 0;
1135  MachineFunction::iterator BBI = CurMBB;
1136  if (++BBI != CurMBB->getParent()->end())
1137    NextBlock = BBI;
1138
1139  if (I.isUnconditional()) {
1140    // If this is not a fall-through branch, emit the branch.
1141    if (Succ0MBB != NextBlock)
1142      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1143                              DAG.getBasicBlock(Succ0MBB)));
1144
1145    // Update machine-CFG edges.
1146    CurMBB->addSuccessor(Succ0MBB);
1147
1148    return;
1149  }
1150
1151  // If this condition is one of the special cases we handle, do special stuff
1152  // now.
1153  Value *CondVal = I.getCondition();
1154  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1155
1156  // If this is a series of conditions that are or'd or and'd together, emit
1157  // this as a sequence of branches instead of setcc's with and/or operations.
1158  // For example, instead of something like:
1159  //     cmp A, B
1160  //     C = seteq
1161  //     cmp D, E
1162  //     F = setle
1163  //     or C, F
1164  //     jnz foo
1165  // Emit:
1166  //     cmp A, B
1167  //     je foo
1168  //     cmp D, E
1169  //     jle foo
1170  //
1171  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1172    if (BOp->hasOneUse() &&
1173        (BOp->getOpcode() == Instruction::And ||
1174         BOp->getOpcode() == Instruction::Or)) {
1175      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1176      // If the compares in later blocks need to use values not currently
1177      // exported from this block, export them now.  This block should always
1178      // be the first entry.
1179      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1180
1181      // Allow some cases to be rejected.
1182      if (ShouldEmitAsBranches(SwitchCases)) {
1183        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1184          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1185          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1186        }
1187
1188        // Emit the branch for this block.
1189        visitSwitchCase(SwitchCases[0]);
1190        SwitchCases.erase(SwitchCases.begin());
1191        return;
1192      }
1193
1194      // Okay, we decided not to do this, remove any inserted MBB's and clear
1195      // SwitchCases.
1196      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1197        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1198
1199      SwitchCases.clear();
1200    }
1201  }
1202
1203  // Create a CaseBlock record representing this branch.
1204  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1205                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1206  // Use visitSwitchCase to actually insert the fast branch sequence for this
1207  // cond branch.
1208  visitSwitchCase(CB);
1209}
1210
1211/// visitSwitchCase - Emits the necessary code to represent a single node in
1212/// the binary search tree resulting from lowering a switch instruction.
1213void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1214  SDOperand Cond;
1215  SDOperand CondLHS = getValue(CB.CmpLHS);
1216
1217  // Build the setcc now.
1218  if (CB.CmpMHS == NULL) {
1219    // Fold "(X == true)" to X and "(X == false)" to !X to
1220    // handle common cases produced by branch lowering.
1221    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1222      Cond = CondLHS;
1223    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1224      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1225      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1226    } else
1227      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1228  } else {
1229    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1230
1231    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1232    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1233
1234    SDOperand CmpOp = getValue(CB.CmpMHS);
1235    MVT::ValueType VT = CmpOp.getValueType();
1236
1237    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1238      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1239    } else {
1240      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1241      Cond = DAG.getSetCC(MVT::i1, SUB,
1242                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1243    }
1244
1245  }
1246
1247  // Set NextBlock to be the MBB immediately after the current one, if any.
1248  // This is used to avoid emitting unnecessary branches to the next block.
1249  MachineBasicBlock *NextBlock = 0;
1250  MachineFunction::iterator BBI = CurMBB;
1251  if (++BBI != CurMBB->getParent()->end())
1252    NextBlock = BBI;
1253
1254  // If the lhs block is the next block, invert the condition so that we can
1255  // fall through to the lhs instead of the rhs block.
1256  if (CB.TrueBB == NextBlock) {
1257    std::swap(CB.TrueBB, CB.FalseBB);
1258    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1259    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1260  }
1261  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1262                                 DAG.getBasicBlock(CB.TrueBB));
1263  if (CB.FalseBB == NextBlock)
1264    DAG.setRoot(BrCond);
1265  else
1266    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1267                            DAG.getBasicBlock(CB.FalseBB)));
1268  // Update successor info
1269  CurMBB->addSuccessor(CB.TrueBB);
1270  CurMBB->addSuccessor(CB.FalseBB);
1271}
1272
1273/// visitJumpTable - Emit JumpTable node in the current MBB
1274void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1275  // Emit the code for the jump table
1276  assert(JT.Reg != -1U && "Should lower JT Header first!");
1277  MVT::ValueType PTy = TLI.getPointerTy();
1278  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1279  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1280  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1281                          Table, Index));
1282  return;
1283}
1284
1285/// visitJumpTableHeader - This function emits necessary code to produce index
1286/// in the JumpTable from switch case.
1287void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1288                                         SelectionDAGISel::JumpTableHeader &JTH) {
1289  // Subtract the lowest switch case value from the value being switched on
1290  // and conditional branch to default mbb if the result is greater than the
1291  // difference between smallest and largest cases.
1292  SDOperand SwitchOp = getValue(JTH.SValue);
1293  MVT::ValueType VT = SwitchOp.getValueType();
1294  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1295                              DAG.getConstant(JTH.First, VT));
1296
1297  // The SDNode we just created, which holds the value being switched on
1298  // minus the the smallest case value, needs to be copied to a virtual
1299  // register so it can be used as an index into the jump table in a
1300  // subsequent basic block.  This value may be smaller or larger than the
1301  // target's pointer type, and therefore require extension or truncating.
1302  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1303    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1304  else
1305    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1306
1307  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1308  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1309  JT.Reg = JumpTableReg;
1310
1311  // Emit the range check for the jump table, and branch to the default
1312  // block for the switch statement if the value being switched on exceeds
1313  // the largest case in the switch.
1314  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1315                               DAG.getConstant(JTH.Last-JTH.First,VT),
1316                               ISD::SETUGT);
1317
1318  // Set NextBlock to be the MBB immediately after the current one, if any.
1319  // This is used to avoid emitting unnecessary branches to the next block.
1320  MachineBasicBlock *NextBlock = 0;
1321  MachineFunction::iterator BBI = CurMBB;
1322  if (++BBI != CurMBB->getParent()->end())
1323    NextBlock = BBI;
1324
1325  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1326                                 DAG.getBasicBlock(JT.Default));
1327
1328  if (JT.MBB == NextBlock)
1329    DAG.setRoot(BrCond);
1330  else
1331    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1332                            DAG.getBasicBlock(JT.MBB)));
1333
1334  return;
1335}
1336
1337/// visitBitTestHeader - This function emits necessary code to produce value
1338/// suitable for "bit tests"
1339void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1340  // Subtract the minimum value
1341  SDOperand SwitchOp = getValue(B.SValue);
1342  MVT::ValueType VT = SwitchOp.getValueType();
1343  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1344                              DAG.getConstant(B.First, VT));
1345
1346  // Check range
1347  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1348                                    DAG.getConstant(B.Range, VT),
1349                                    ISD::SETUGT);
1350
1351  SDOperand ShiftOp;
1352  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1353    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1354  else
1355    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1356
1357  // Make desired shift
1358  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1359                                    DAG.getConstant(1, TLI.getPointerTy()),
1360                                    ShiftOp);
1361
1362  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1363  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1364  B.Reg = SwitchReg;
1365
1366  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1367                                  DAG.getBasicBlock(B.Default));
1368
1369  // Set NextBlock to be the MBB immediately after the current one, if any.
1370  // This is used to avoid emitting unnecessary branches to the next block.
1371  MachineBasicBlock *NextBlock = 0;
1372  MachineFunction::iterator BBI = CurMBB;
1373  if (++BBI != CurMBB->getParent()->end())
1374    NextBlock = BBI;
1375
1376  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1377  if (MBB == NextBlock)
1378    DAG.setRoot(BrRange);
1379  else
1380    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1381                            DAG.getBasicBlock(MBB)));
1382
1383  CurMBB->addSuccessor(B.Default);
1384  CurMBB->addSuccessor(MBB);
1385
1386  return;
1387}
1388
1389/// visitBitTestCase - this function produces one "bit test"
1390void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1391                                            unsigned Reg,
1392                                            SelectionDAGISel::BitTestCase &B) {
1393  // Emit bit tests and jumps
1394  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1395
1396  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1397                                SwitchVal,
1398                                DAG.getConstant(B.Mask,
1399                                                TLI.getPointerTy()));
1400  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1401                                  DAG.getConstant(0, TLI.getPointerTy()),
1402                                  ISD::SETNE);
1403  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1404                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1405
1406  // Set NextBlock to be the MBB immediately after the current one, if any.
1407  // This is used to avoid emitting unnecessary branches to the next block.
1408  MachineBasicBlock *NextBlock = 0;
1409  MachineFunction::iterator BBI = CurMBB;
1410  if (++BBI != CurMBB->getParent()->end())
1411    NextBlock = BBI;
1412
1413  if (NextMBB == NextBlock)
1414    DAG.setRoot(BrAnd);
1415  else
1416    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1417                            DAG.getBasicBlock(NextMBB)));
1418
1419  CurMBB->addSuccessor(B.TargetBB);
1420  CurMBB->addSuccessor(NextMBB);
1421
1422  return;
1423}
1424
1425void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1426  // Retrieve successors.
1427  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1428  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1429
1430  LowerCallTo(I, I.getCalledValue()->getType(),
1431              I.getCallingConv(),
1432              false,
1433              getValue(I.getOperand(0)),
1434              3, LandingPad);
1435
1436  // If the value of the invoke is used outside of its defining block, make it
1437  // available as a virtual register.
1438  if (!I.use_empty()) {
1439    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1440    if (VMI != FuncInfo.ValueMap.end())
1441      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1442  }
1443
1444  // Drop into normal successor.
1445  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1446                          DAG.getBasicBlock(Return)));
1447
1448  // Update successor info
1449  CurMBB->addSuccessor(Return);
1450  CurMBB->addSuccessor(LandingPad);
1451}
1452
1453void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1454}
1455
1456/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1457/// small case ranges).
1458bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1459                                                  CaseRecVector& WorkList,
1460                                                  Value* SV,
1461                                                  MachineBasicBlock* Default) {
1462  Case& BackCase  = *(CR.Range.second-1);
1463
1464  // Size is the number of Cases represented by this range.
1465  unsigned Size = CR.Range.second - CR.Range.first;
1466  if (Size > 3)
1467    return false;
1468
1469  // Get the MachineFunction which holds the current MBB.  This is used when
1470  // inserting any additional MBBs necessary to represent the switch.
1471  MachineFunction *CurMF = CurMBB->getParent();
1472
1473  // Figure out which block is immediately after the current one.
1474  MachineBasicBlock *NextBlock = 0;
1475  MachineFunction::iterator BBI = CR.CaseBB;
1476
1477  if (++BBI != CurMBB->getParent()->end())
1478    NextBlock = BBI;
1479
1480  // TODO: If any two of the cases has the same destination, and if one value
1481  // is the same as the other, but has one bit unset that the other has set,
1482  // use bit manipulation to do two compares at once.  For example:
1483  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1484
1485  // Rearrange the case blocks so that the last one falls through if possible.
1486  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1487    // The last case block won't fall through into 'NextBlock' if we emit the
1488    // branches in this order.  See if rearranging a case value would help.
1489    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1490      if (I->BB == NextBlock) {
1491        std::swap(*I, BackCase);
1492        break;
1493      }
1494    }
1495  }
1496
1497  // Create a CaseBlock record representing a conditional branch to
1498  // the Case's target mbb if the value being switched on SV is equal
1499  // to C.
1500  MachineBasicBlock *CurBlock = CR.CaseBB;
1501  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1502    MachineBasicBlock *FallThrough;
1503    if (I != E-1) {
1504      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1505      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1506    } else {
1507      // If the last case doesn't match, go to the default block.
1508      FallThrough = Default;
1509    }
1510
1511    Value *RHS, *LHS, *MHS;
1512    ISD::CondCode CC;
1513    if (I->High == I->Low) {
1514      // This is just small small case range :) containing exactly 1 case
1515      CC = ISD::SETEQ;
1516      LHS = SV; RHS = I->High; MHS = NULL;
1517    } else {
1518      CC = ISD::SETLE;
1519      LHS = I->Low; MHS = SV; RHS = I->High;
1520    }
1521    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1522                                   I->BB, FallThrough, CurBlock);
1523
1524    // If emitting the first comparison, just call visitSwitchCase to emit the
1525    // code into the current block.  Otherwise, push the CaseBlock onto the
1526    // vector to be later processed by SDISel, and insert the node's MBB
1527    // before the next MBB.
1528    if (CurBlock == CurMBB)
1529      visitSwitchCase(CB);
1530    else
1531      SwitchCases.push_back(CB);
1532
1533    CurBlock = FallThrough;
1534  }
1535
1536  return true;
1537}
1538
1539static inline bool areJTsAllowed(const TargetLowering &TLI) {
1540  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1541          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1542}
1543
1544/// handleJTSwitchCase - Emit jumptable for current switch case range
1545bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1546                                              CaseRecVector& WorkList,
1547                                              Value* SV,
1548                                              MachineBasicBlock* Default) {
1549  Case& FrontCase = *CR.Range.first;
1550  Case& BackCase  = *(CR.Range.second-1);
1551
1552  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1553  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1554
1555  uint64_t TSize = 0;
1556  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1557       I!=E; ++I)
1558    TSize += I->size();
1559
1560  if (!areJTsAllowed(TLI) || TSize <= 3)
1561    return false;
1562
1563  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1564  if (Density < 0.4)
1565    return false;
1566
1567  DOUT << "Lowering jump table\n"
1568       << "First entry: " << First << ". Last entry: " << Last << "\n"
1569       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1570
1571  // Get the MachineFunction which holds the current MBB.  This is used when
1572  // inserting any additional MBBs necessary to represent the switch.
1573  MachineFunction *CurMF = CurMBB->getParent();
1574
1575  // Figure out which block is immediately after the current one.
1576  MachineBasicBlock *NextBlock = 0;
1577  MachineFunction::iterator BBI = CR.CaseBB;
1578
1579  if (++BBI != CurMBB->getParent()->end())
1580    NextBlock = BBI;
1581
1582  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1583
1584  // Create a new basic block to hold the code for loading the address
1585  // of the jump table, and jumping to it.  Update successor information;
1586  // we will either branch to the default case for the switch, or the jump
1587  // table.
1588  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1589  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1590  CR.CaseBB->addSuccessor(Default);
1591  CR.CaseBB->addSuccessor(JumpTableBB);
1592
1593  // Build a vector of destination BBs, corresponding to each target
1594  // of the jump table. If the value of the jump table slot corresponds to
1595  // a case statement, push the case's BB onto the vector, otherwise, push
1596  // the default BB.
1597  std::vector<MachineBasicBlock*> DestBBs;
1598  int64_t TEI = First;
1599  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1600    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1601    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1602
1603    if ((Low <= TEI) && (TEI <= High)) {
1604      DestBBs.push_back(I->BB);
1605      if (TEI==High)
1606        ++I;
1607    } else {
1608      DestBBs.push_back(Default);
1609    }
1610  }
1611
1612  // Update successor info. Add one edge to each unique successor.
1613  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1614  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1615         E = DestBBs.end(); I != E; ++I) {
1616    if (!SuccsHandled[(*I)->getNumber()]) {
1617      SuccsHandled[(*I)->getNumber()] = true;
1618      JumpTableBB->addSuccessor(*I);
1619    }
1620  }
1621
1622  // Create a jump table index for this jump table, or return an existing
1623  // one.
1624  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1625
1626  // Set the jump table information so that we can codegen it as a second
1627  // MachineBasicBlock
1628  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1629  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1630                                        (CR.CaseBB == CurMBB));
1631  if (CR.CaseBB == CurMBB)
1632    visitJumpTableHeader(JT, JTH);
1633
1634  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1635
1636  return true;
1637}
1638
1639/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1640/// 2 subtrees.
1641bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1642                                                   CaseRecVector& WorkList,
1643                                                   Value* SV,
1644                                                   MachineBasicBlock* Default) {
1645  // Get the MachineFunction which holds the current MBB.  This is used when
1646  // inserting any additional MBBs necessary to represent the switch.
1647  MachineFunction *CurMF = CurMBB->getParent();
1648
1649  // Figure out which block is immediately after the current one.
1650  MachineBasicBlock *NextBlock = 0;
1651  MachineFunction::iterator BBI = CR.CaseBB;
1652
1653  if (++BBI != CurMBB->getParent()->end())
1654    NextBlock = BBI;
1655
1656  Case& FrontCase = *CR.Range.first;
1657  Case& BackCase  = *(CR.Range.second-1);
1658  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1659
1660  // Size is the number of Cases represented by this range.
1661  unsigned Size = CR.Range.second - CR.Range.first;
1662
1663  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1664  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1665  double FMetric = 0;
1666  CaseItr Pivot = CR.Range.first + Size/2;
1667
1668  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1669  // (heuristically) allow us to emit JumpTable's later.
1670  uint64_t TSize = 0;
1671  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1672       I!=E; ++I)
1673    TSize += I->size();
1674
1675  uint64_t LSize = FrontCase.size();
1676  uint64_t RSize = TSize-LSize;
1677  DOUT << "Selecting best pivot: \n"
1678       << "First: " << First << ", Last: " << Last <<"\n"
1679       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1680  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1681       J!=E; ++I, ++J) {
1682    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1683    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1684    assert((RBegin-LEnd>=1) && "Invalid case distance");
1685    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1686    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1687    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1688    // Should always split in some non-trivial place
1689    DOUT <<"=>Step\n"
1690         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1691         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1692         << "Metric: " << Metric << "\n";
1693    if (FMetric < Metric) {
1694      Pivot = J;
1695      FMetric = Metric;
1696      DOUT << "Current metric set to: " << FMetric << "\n";
1697    }
1698
1699    LSize += J->size();
1700    RSize -= J->size();
1701  }
1702  if (areJTsAllowed(TLI)) {
1703    // If our case is dense we *really* should handle it earlier!
1704    assert((FMetric > 0) && "Should handle dense range earlier!");
1705  } else {
1706    Pivot = CR.Range.first + Size/2;
1707  }
1708
1709  CaseRange LHSR(CR.Range.first, Pivot);
1710  CaseRange RHSR(Pivot, CR.Range.second);
1711  Constant *C = Pivot->Low;
1712  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1713
1714  // We know that we branch to the LHS if the Value being switched on is
1715  // less than the Pivot value, C.  We use this to optimize our binary
1716  // tree a bit, by recognizing that if SV is greater than or equal to the
1717  // LHS's Case Value, and that Case Value is exactly one less than the
1718  // Pivot's Value, then we can branch directly to the LHS's Target,
1719  // rather than creating a leaf node for it.
1720  if ((LHSR.second - LHSR.first) == 1 &&
1721      LHSR.first->High == CR.GE &&
1722      cast<ConstantInt>(C)->getSExtValue() ==
1723      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1724    TrueBB = LHSR.first->BB;
1725  } else {
1726    TrueBB = new MachineBasicBlock(LLVMBB);
1727    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1728    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1729  }
1730
1731  // Similar to the optimization above, if the Value being switched on is
1732  // known to be less than the Constant CR.LT, and the current Case Value
1733  // is CR.LT - 1, then we can branch directly to the target block for
1734  // the current Case Value, rather than emitting a RHS leaf node for it.
1735  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1736      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1737      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1738    FalseBB = RHSR.first->BB;
1739  } else {
1740    FalseBB = new MachineBasicBlock(LLVMBB);
1741    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1742    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1743  }
1744
1745  // Create a CaseBlock record representing a conditional branch to
1746  // the LHS node if the value being switched on SV is less than C.
1747  // Otherwise, branch to LHS.
1748  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1749                                 TrueBB, FalseBB, CR.CaseBB);
1750
1751  if (CR.CaseBB == CurMBB)
1752    visitSwitchCase(CB);
1753  else
1754    SwitchCases.push_back(CB);
1755
1756  return true;
1757}
1758
1759/// handleBitTestsSwitchCase - if current case range has few destination and
1760/// range span less, than machine word bitwidth, encode case range into series
1761/// of masks and emit bit tests with these masks.
1762bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1763                                                    CaseRecVector& WorkList,
1764                                                    Value* SV,
1765                                                    MachineBasicBlock* Default){
1766  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1767
1768  Case& FrontCase = *CR.Range.first;
1769  Case& BackCase  = *(CR.Range.second-1);
1770
1771  // Get the MachineFunction which holds the current MBB.  This is used when
1772  // inserting any additional MBBs necessary to represent the switch.
1773  MachineFunction *CurMF = CurMBB->getParent();
1774
1775  unsigned numCmps = 0;
1776  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1777       I!=E; ++I) {
1778    // Single case counts one, case range - two.
1779    if (I->Low == I->High)
1780      numCmps +=1;
1781    else
1782      numCmps +=2;
1783  }
1784
1785  // Count unique destinations
1786  SmallSet<MachineBasicBlock*, 4> Dests;
1787  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1788    Dests.insert(I->BB);
1789    if (Dests.size() > 3)
1790      // Don't bother the code below, if there are too much unique destinations
1791      return false;
1792  }
1793  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1794       << "Total number of comparisons: " << numCmps << "\n";
1795
1796  // Compute span of values.
1797  Constant* minValue = FrontCase.Low;
1798  Constant* maxValue = BackCase.High;
1799  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1800                   cast<ConstantInt>(minValue)->getSExtValue();
1801  DOUT << "Compare range: " << range << "\n"
1802       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1803       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1804
1805  if (range>=IntPtrBits ||
1806      (!(Dests.size() == 1 && numCmps >= 3) &&
1807       !(Dests.size() == 2 && numCmps >= 5) &&
1808       !(Dests.size() >= 3 && numCmps >= 6)))
1809    return false;
1810
1811  DOUT << "Emitting bit tests\n";
1812  int64_t lowBound = 0;
1813
1814  // Optimize the case where all the case values fit in a
1815  // word without having to subtract minValue. In this case,
1816  // we can optimize away the subtraction.
1817  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1818      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1819    range = cast<ConstantInt>(maxValue)->getSExtValue();
1820  } else {
1821    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1822  }
1823
1824  CaseBitsVector CasesBits;
1825  unsigned i, count = 0;
1826
1827  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1828    MachineBasicBlock* Dest = I->BB;
1829    for (i = 0; i < count; ++i)
1830      if (Dest == CasesBits[i].BB)
1831        break;
1832
1833    if (i == count) {
1834      assert((count < 3) && "Too much destinations to test!");
1835      CasesBits.push_back(CaseBits(0, Dest, 0));
1836      count++;
1837    }
1838
1839    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1840    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1841
1842    for (uint64_t j = lo; j <= hi; j++) {
1843      CasesBits[i].Mask |=  1ULL << j;
1844      CasesBits[i].Bits++;
1845    }
1846
1847  }
1848  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1849
1850  SelectionDAGISel::BitTestInfo BTC;
1851
1852  // Figure out which block is immediately after the current one.
1853  MachineFunction::iterator BBI = CR.CaseBB;
1854  ++BBI;
1855
1856  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1857
1858  DOUT << "Cases:\n";
1859  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1860    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1861         << ", BB: " << CasesBits[i].BB << "\n";
1862
1863    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1864    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1865    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1866                                                CaseBB,
1867                                                CasesBits[i].BB));
1868  }
1869
1870  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1871                                     -1U, (CR.CaseBB == CurMBB),
1872                                     CR.CaseBB, Default, BTC);
1873
1874  if (CR.CaseBB == CurMBB)
1875    visitBitTestHeader(BTB);
1876
1877  BitTestCases.push_back(BTB);
1878
1879  return true;
1880}
1881
1882
1883// Clusterify - Transform simple list of Cases into list of CaseRange's
1884unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1885                                          const SwitchInst& SI) {
1886  unsigned numCmps = 0;
1887
1888  // Start with "simple" cases
1889  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1890    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1891    Cases.push_back(Case(SI.getSuccessorValue(i),
1892                         SI.getSuccessorValue(i),
1893                         SMBB));
1894  }
1895  sort(Cases.begin(), Cases.end(), CaseCmp());
1896
1897  // Merge case into clusters
1898  if (Cases.size()>=2)
1899    // Must recompute end() each iteration because it may be
1900    // invalidated by erase if we hold on to it
1901    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
1902      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1903      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1904      MachineBasicBlock* nextBB = J->BB;
1905      MachineBasicBlock* currentBB = I->BB;
1906
1907      // If the two neighboring cases go to the same destination, merge them
1908      // into a single case.
1909      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1910        I->High = J->High;
1911        J = Cases.erase(J);
1912      } else {
1913        I = J++;
1914      }
1915    }
1916
1917  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1918    if (I->Low != I->High)
1919      // A range counts double, since it requires two compares.
1920      ++numCmps;
1921  }
1922
1923  return numCmps;
1924}
1925
1926void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1927  // Figure out which block is immediately after the current one.
1928  MachineBasicBlock *NextBlock = 0;
1929  MachineFunction::iterator BBI = CurMBB;
1930
1931  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1932
1933  // If there is only the default destination, branch to it if it is not the
1934  // next basic block.  Otherwise, just fall through.
1935  if (SI.getNumOperands() == 2) {
1936    // Update machine-CFG edges.
1937
1938    // If this is not a fall-through branch, emit the branch.
1939    if (Default != NextBlock)
1940      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1941                              DAG.getBasicBlock(Default)));
1942
1943    CurMBB->addSuccessor(Default);
1944    return;
1945  }
1946
1947  // If there are any non-default case statements, create a vector of Cases
1948  // representing each one, and sort the vector so that we can efficiently
1949  // create a binary search tree from them.
1950  CaseVector Cases;
1951  unsigned numCmps = Clusterify(Cases, SI);
1952  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1953       << ". Total compares: " << numCmps << "\n";
1954
1955  // Get the Value to be switched on and default basic blocks, which will be
1956  // inserted into CaseBlock records, representing basic blocks in the binary
1957  // search tree.
1958  Value *SV = SI.getOperand(0);
1959
1960  // Push the initial CaseRec onto the worklist
1961  CaseRecVector WorkList;
1962  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1963
1964  while (!WorkList.empty()) {
1965    // Grab a record representing a case range to process off the worklist
1966    CaseRec CR = WorkList.back();
1967    WorkList.pop_back();
1968
1969    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1970      continue;
1971
1972    // If the range has few cases (two or less) emit a series of specific
1973    // tests.
1974    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1975      continue;
1976
1977    // If the switch has more than 5 blocks, and at least 40% dense, and the
1978    // target supports indirect branches, then emit a jump table rather than
1979    // lowering the switch to a binary tree of conditional branches.
1980    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1981      continue;
1982
1983    // Emit binary tree. We need to pick a pivot, and push left and right ranges
1984    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
1985    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
1986  }
1987}
1988
1989
1990void SelectionDAGLowering::visitSub(User &I) {
1991  // -0.0 - X --> fneg
1992  const Type *Ty = I.getType();
1993  if (isa<VectorType>(Ty)) {
1994    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
1995      const VectorType *DestTy = cast<VectorType>(I.getType());
1996      const Type *ElTy = DestTy->getElementType();
1997      if (ElTy->isFloatingPoint()) {
1998        unsigned VL = DestTy->getNumElements();
1999        std::vector<Constant*> NZ(VL, ConstantFP::get(ElTy, -0.0));
2000        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2001        if (CV == CNZ) {
2002          SDOperand Op2 = getValue(I.getOperand(1));
2003          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2004          return;
2005        }
2006      }
2007    }
2008  }
2009  if (Ty->isFloatingPoint()) {
2010    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2011      if (CFP->isExactlyValue(-0.0)) {
2012        SDOperand Op2 = getValue(I.getOperand(1));
2013        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2014        return;
2015      }
2016  }
2017
2018  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2019}
2020
2021void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2022  SDOperand Op1 = getValue(I.getOperand(0));
2023  SDOperand Op2 = getValue(I.getOperand(1));
2024
2025  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2026}
2027
2028void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2029  SDOperand Op1 = getValue(I.getOperand(0));
2030  SDOperand Op2 = getValue(I.getOperand(1));
2031
2032  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2033      MVT::getSizeInBits(Op2.getValueType()))
2034    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2035  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2036    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2037
2038  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2039}
2040
2041void SelectionDAGLowering::visitICmp(User &I) {
2042  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2043  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2044    predicate = IC->getPredicate();
2045  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2046    predicate = ICmpInst::Predicate(IC->getPredicate());
2047  SDOperand Op1 = getValue(I.getOperand(0));
2048  SDOperand Op2 = getValue(I.getOperand(1));
2049  ISD::CondCode Opcode;
2050  switch (predicate) {
2051    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2052    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2053    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2054    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2055    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2056    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2057    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2058    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2059    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2060    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2061    default:
2062      assert(!"Invalid ICmp predicate value");
2063      Opcode = ISD::SETEQ;
2064      break;
2065  }
2066  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2067}
2068
2069void SelectionDAGLowering::visitFCmp(User &I) {
2070  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2071  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2072    predicate = FC->getPredicate();
2073  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2074    predicate = FCmpInst::Predicate(FC->getPredicate());
2075  SDOperand Op1 = getValue(I.getOperand(0));
2076  SDOperand Op2 = getValue(I.getOperand(1));
2077  ISD::CondCode Condition, FOC, FPC;
2078  switch (predicate) {
2079    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2080    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2081    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2082    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2083    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2084    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2085    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2086    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2087    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2088    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2089    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2090    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2091    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2092    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2093    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2094    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2095    default:
2096      assert(!"Invalid FCmp predicate value");
2097      FOC = FPC = ISD::SETFALSE;
2098      break;
2099  }
2100  if (FiniteOnlyFPMath())
2101    Condition = FOC;
2102  else
2103    Condition = FPC;
2104  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2105}
2106
2107void SelectionDAGLowering::visitSelect(User &I) {
2108  SDOperand Cond     = getValue(I.getOperand(0));
2109  SDOperand TrueVal  = getValue(I.getOperand(1));
2110  SDOperand FalseVal = getValue(I.getOperand(2));
2111  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2112                           TrueVal, FalseVal));
2113}
2114
2115
2116void SelectionDAGLowering::visitTrunc(User &I) {
2117  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2118  SDOperand N = getValue(I.getOperand(0));
2119  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2120  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2121}
2122
2123void SelectionDAGLowering::visitZExt(User &I) {
2124  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2125  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2126  SDOperand N = getValue(I.getOperand(0));
2127  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2128  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2129}
2130
2131void SelectionDAGLowering::visitSExt(User &I) {
2132  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2133  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2134  SDOperand N = getValue(I.getOperand(0));
2135  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2136  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2137}
2138
2139void SelectionDAGLowering::visitFPTrunc(User &I) {
2140  // FPTrunc is never a no-op cast, no need to check
2141  SDOperand N = getValue(I.getOperand(0));
2142  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2143  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2144}
2145
2146void SelectionDAGLowering::visitFPExt(User &I){
2147  // FPTrunc is never a no-op cast, no need to check
2148  SDOperand N = getValue(I.getOperand(0));
2149  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2150  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2151}
2152
2153void SelectionDAGLowering::visitFPToUI(User &I) {
2154  // FPToUI is never a no-op cast, no need to check
2155  SDOperand N = getValue(I.getOperand(0));
2156  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2157  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2158}
2159
2160void SelectionDAGLowering::visitFPToSI(User &I) {
2161  // FPToSI is never a no-op cast, no need to check
2162  SDOperand N = getValue(I.getOperand(0));
2163  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2164  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2165}
2166
2167void SelectionDAGLowering::visitUIToFP(User &I) {
2168  // UIToFP is never a no-op cast, no need to check
2169  SDOperand N = getValue(I.getOperand(0));
2170  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2171  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2172}
2173
2174void SelectionDAGLowering::visitSIToFP(User &I){
2175  // UIToFP is never a no-op cast, no need to check
2176  SDOperand N = getValue(I.getOperand(0));
2177  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2178  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2179}
2180
2181void SelectionDAGLowering::visitPtrToInt(User &I) {
2182  // What to do depends on the size of the integer and the size of the pointer.
2183  // We can either truncate, zero extend, or no-op, accordingly.
2184  SDOperand N = getValue(I.getOperand(0));
2185  MVT::ValueType SrcVT = N.getValueType();
2186  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2187  SDOperand Result;
2188  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2189    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2190  else
2191    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2192    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2193  setValue(&I, Result);
2194}
2195
2196void SelectionDAGLowering::visitIntToPtr(User &I) {
2197  // What to do depends on the size of the integer and the size of the pointer.
2198  // We can either truncate, zero extend, or no-op, accordingly.
2199  SDOperand N = getValue(I.getOperand(0));
2200  MVT::ValueType SrcVT = N.getValueType();
2201  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2202  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2203    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2204  else
2205    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2206    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2207}
2208
2209void SelectionDAGLowering::visitBitCast(User &I) {
2210  SDOperand N = getValue(I.getOperand(0));
2211  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2212
2213  // BitCast assures us that source and destination are the same size so this
2214  // is either a BIT_CONVERT or a no-op.
2215  if (DestVT != N.getValueType())
2216    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2217  else
2218    setValue(&I, N); // noop cast.
2219}
2220
2221void SelectionDAGLowering::visitInsertElement(User &I) {
2222  SDOperand InVec = getValue(I.getOperand(0));
2223  SDOperand InVal = getValue(I.getOperand(1));
2224  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2225                                getValue(I.getOperand(2)));
2226
2227  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2228                           TLI.getValueType(I.getType()),
2229                           InVec, InVal, InIdx));
2230}
2231
2232void SelectionDAGLowering::visitExtractElement(User &I) {
2233  SDOperand InVec = getValue(I.getOperand(0));
2234  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2235                                getValue(I.getOperand(1)));
2236  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2237                           TLI.getValueType(I.getType()), InVec, InIdx));
2238}
2239
2240void SelectionDAGLowering::visitShuffleVector(User &I) {
2241  SDOperand V1   = getValue(I.getOperand(0));
2242  SDOperand V2   = getValue(I.getOperand(1));
2243  SDOperand Mask = getValue(I.getOperand(2));
2244
2245  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2246                           TLI.getValueType(I.getType()),
2247                           V1, V2, Mask));
2248}
2249
2250
2251void SelectionDAGLowering::visitGetElementPtr(User &I) {
2252  SDOperand N = getValue(I.getOperand(0));
2253  const Type *Ty = I.getOperand(0)->getType();
2254
2255  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2256       OI != E; ++OI) {
2257    Value *Idx = *OI;
2258    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2259      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2260      if (Field) {
2261        // N = N + Offset
2262        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2263        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2264                        getIntPtrConstant(Offset));
2265      }
2266      Ty = StTy->getElementType(Field);
2267    } else {
2268      Ty = cast<SequentialType>(Ty)->getElementType();
2269
2270      // If this is a constant subscript, handle it quickly.
2271      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2272        if (CI->getZExtValue() == 0) continue;
2273        uint64_t Offs =
2274            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2275        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2276        continue;
2277      }
2278
2279      // N = N + Idx * ElementSize;
2280      uint64_t ElementSize = TD->getTypeSize(Ty);
2281      SDOperand IdxN = getValue(Idx);
2282
2283      // If the index is smaller or larger than intptr_t, truncate or extend
2284      // it.
2285      if (IdxN.getValueType() < N.getValueType()) {
2286        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2287      } else if (IdxN.getValueType() > N.getValueType())
2288        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2289
2290      // If this is a multiply by a power of two, turn it into a shl
2291      // immediately.  This is a very common case.
2292      if (isPowerOf2_64(ElementSize)) {
2293        unsigned Amt = Log2_64(ElementSize);
2294        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2295                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2296        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2297        continue;
2298      }
2299
2300      SDOperand Scale = getIntPtrConstant(ElementSize);
2301      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2302      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2303    }
2304  }
2305  setValue(&I, N);
2306}
2307
2308void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2309  // If this is a fixed sized alloca in the entry block of the function,
2310  // allocate it statically on the stack.
2311  if (FuncInfo.StaticAllocaMap.count(&I))
2312    return;   // getValue will auto-populate this.
2313
2314  const Type *Ty = I.getAllocatedType();
2315  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
2316  unsigned Align =
2317    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2318             I.getAlignment());
2319
2320  SDOperand AllocSize = getValue(I.getArraySize());
2321  MVT::ValueType IntPtr = TLI.getPointerTy();
2322  if (IntPtr < AllocSize.getValueType())
2323    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2324  else if (IntPtr > AllocSize.getValueType())
2325    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2326
2327  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2328                          getIntPtrConstant(TySize));
2329
2330  // Handle alignment.  If the requested alignment is less than or equal to the
2331  // stack alignment, ignore it and round the size of the allocation up to the
2332  // stack alignment size.  If the size is greater than the stack alignment, we
2333  // note this in the DYNAMIC_STACKALLOC node.
2334  unsigned StackAlign =
2335    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2336  if (Align <= StackAlign) {
2337    Align = 0;
2338    // Add SA-1 to the size.
2339    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2340                            getIntPtrConstant(StackAlign-1));
2341    // Mask out the low bits for alignment purposes.
2342    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2343                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2344  }
2345
2346  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2347  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2348                                                    MVT::Other);
2349  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2350  setValue(&I, DSA);
2351  DAG.setRoot(DSA.getValue(1));
2352
2353  // Inform the Frame Information that we have just allocated a variable-sized
2354  // object.
2355  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2356}
2357
2358void SelectionDAGLowering::visitLoad(LoadInst &I) {
2359  SDOperand Ptr = getValue(I.getOperand(0));
2360
2361  SDOperand Root;
2362  if (I.isVolatile())
2363    Root = getRoot();
2364  else {
2365    // Do not serialize non-volatile loads against each other.
2366    Root = DAG.getRoot();
2367  }
2368
2369  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2370                           Root, I.isVolatile(), I.getAlignment()));
2371}
2372
2373SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2374                                            const Value *SV, SDOperand Root,
2375                                            bool isVolatile,
2376                                            unsigned Alignment) {
2377  SDOperand L =
2378    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2379                isVolatile, Alignment);
2380
2381  if (isVolatile)
2382    DAG.setRoot(L.getValue(1));
2383  else
2384    PendingLoads.push_back(L.getValue(1));
2385
2386  return L;
2387}
2388
2389
2390void SelectionDAGLowering::visitStore(StoreInst &I) {
2391  Value *SrcV = I.getOperand(0);
2392  SDOperand Src = getValue(SrcV);
2393  SDOperand Ptr = getValue(I.getOperand(1));
2394  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2395                           I.isVolatile(), I.getAlignment()));
2396}
2397
2398/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2399/// access memory and has no other side effects at all.
2400static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2401#define GET_NO_MEMORY_INTRINSICS
2402#include "llvm/Intrinsics.gen"
2403#undef GET_NO_MEMORY_INTRINSICS
2404  return false;
2405}
2406
2407// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2408// have any side-effects or if it only reads memory.
2409static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2410#define GET_SIDE_EFFECT_INFO
2411#include "llvm/Intrinsics.gen"
2412#undef GET_SIDE_EFFECT_INFO
2413  return false;
2414}
2415
2416/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2417/// node.
2418void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2419                                                unsigned Intrinsic) {
2420  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2421  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2422
2423  // Build the operand list.
2424  SmallVector<SDOperand, 8> Ops;
2425  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2426    if (OnlyLoad) {
2427      // We don't need to serialize loads against other loads.
2428      Ops.push_back(DAG.getRoot());
2429    } else {
2430      Ops.push_back(getRoot());
2431    }
2432  }
2433
2434  // Add the intrinsic ID as an integer operand.
2435  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2436
2437  // Add all operands of the call to the operand list.
2438  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2439    SDOperand Op = getValue(I.getOperand(i));
2440    assert(TLI.isTypeLegal(Op.getValueType()) &&
2441           "Intrinsic uses a non-legal type?");
2442    Ops.push_back(Op);
2443  }
2444
2445  std::vector<MVT::ValueType> VTs;
2446  if (I.getType() != Type::VoidTy) {
2447    MVT::ValueType VT = TLI.getValueType(I.getType());
2448    if (MVT::isVector(VT)) {
2449      const VectorType *DestTy = cast<VectorType>(I.getType());
2450      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2451
2452      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2453      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2454    }
2455
2456    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2457    VTs.push_back(VT);
2458  }
2459  if (HasChain)
2460    VTs.push_back(MVT::Other);
2461
2462  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2463
2464  // Create the node.
2465  SDOperand Result;
2466  if (!HasChain)
2467    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2468                         &Ops[0], Ops.size());
2469  else if (I.getType() != Type::VoidTy)
2470    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2471                         &Ops[0], Ops.size());
2472  else
2473    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2474                         &Ops[0], Ops.size());
2475
2476  if (HasChain) {
2477    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2478    if (OnlyLoad)
2479      PendingLoads.push_back(Chain);
2480    else
2481      DAG.setRoot(Chain);
2482  }
2483  if (I.getType() != Type::VoidTy) {
2484    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2485      MVT::ValueType VT = TLI.getValueType(PTy);
2486      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2487    }
2488    setValue(&I, Result);
2489  }
2490}
2491
2492/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2493static GlobalVariable *ExtractTypeInfo (Value *V) {
2494  V = IntrinsicInst::StripPointerCasts(V);
2495  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2496  assert (GV || isa<ConstantPointerNull>(V) &&
2497          "TypeInfo must be a global variable or NULL");
2498  return GV;
2499}
2500
2501/// addCatchInfo - Extract the personality and type infos from an eh.selector
2502/// call, and add them to the specified machine basic block.
2503static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2504                         MachineBasicBlock *MBB) {
2505  // Inform the MachineModuleInfo of the personality for this landing pad.
2506  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2507  assert(CE->getOpcode() == Instruction::BitCast &&
2508         isa<Function>(CE->getOperand(0)) &&
2509         "Personality should be a function");
2510  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2511
2512  // Gather all the type infos for this landing pad and pass them along to
2513  // MachineModuleInfo.
2514  std::vector<GlobalVariable *> TyInfo;
2515  unsigned N = I.getNumOperands();
2516
2517  for (unsigned i = N - 1; i > 2; --i) {
2518    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2519      unsigned FilterLength = CI->getZExtValue();
2520      unsigned FirstCatch = i + FilterLength + 1;
2521      assert (FirstCatch <= N && "Invalid filter length");
2522
2523      if (FirstCatch < N) {
2524        TyInfo.reserve(N - FirstCatch);
2525        for (unsigned j = FirstCatch; j < N; ++j)
2526          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2527        MMI->addCatchTypeInfo(MBB, TyInfo);
2528        TyInfo.clear();
2529      }
2530
2531      TyInfo.reserve(FilterLength);
2532      for (unsigned j = i + 1; j < FirstCatch; ++j)
2533        TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2534      MMI->addFilterTypeInfo(MBB, TyInfo);
2535      TyInfo.clear();
2536
2537      N = i;
2538    }
2539  }
2540
2541  if (N > 3) {
2542    TyInfo.reserve(N - 3);
2543    for (unsigned j = 3; j < N; ++j)
2544      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2545    MMI->addCatchTypeInfo(MBB, TyInfo);
2546  }
2547}
2548
2549/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2550/// we want to emit this as a call to a named external function, return the name
2551/// otherwise lower it and return null.
2552const char *
2553SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2554  switch (Intrinsic) {
2555  default:
2556    // By default, turn this into a target intrinsic node.
2557    visitTargetIntrinsic(I, Intrinsic);
2558    return 0;
2559  case Intrinsic::vastart:  visitVAStart(I); return 0;
2560  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2561  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2562  case Intrinsic::returnaddress:
2563    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2564                             getValue(I.getOperand(1))));
2565    return 0;
2566  case Intrinsic::frameaddress:
2567    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2568                             getValue(I.getOperand(1))));
2569    return 0;
2570  case Intrinsic::setjmp:
2571    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2572    break;
2573  case Intrinsic::longjmp:
2574    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2575    break;
2576  case Intrinsic::memcpy_i32:
2577  case Intrinsic::memcpy_i64:
2578    visitMemIntrinsic(I, ISD::MEMCPY);
2579    return 0;
2580  case Intrinsic::memset_i32:
2581  case Intrinsic::memset_i64:
2582    visitMemIntrinsic(I, ISD::MEMSET);
2583    return 0;
2584  case Intrinsic::memmove_i32:
2585  case Intrinsic::memmove_i64:
2586    visitMemIntrinsic(I, ISD::MEMMOVE);
2587    return 0;
2588
2589  case Intrinsic::dbg_stoppoint: {
2590    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2591    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2592    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2593      SDOperand Ops[5];
2594
2595      Ops[0] = getRoot();
2596      Ops[1] = getValue(SPI.getLineValue());
2597      Ops[2] = getValue(SPI.getColumnValue());
2598
2599      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2600      assert(DD && "Not a debug information descriptor");
2601      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2602
2603      Ops[3] = DAG.getString(CompileUnit->getFileName());
2604      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2605
2606      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2607    }
2608
2609    return 0;
2610  }
2611  case Intrinsic::dbg_region_start: {
2612    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2613    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2614    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2615      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2616      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2617                              DAG.getConstant(LabelID, MVT::i32)));
2618    }
2619
2620    return 0;
2621  }
2622  case Intrinsic::dbg_region_end: {
2623    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2624    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2625    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2626      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2627      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2628                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2629    }
2630
2631    return 0;
2632  }
2633  case Intrinsic::dbg_func_start: {
2634    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2635    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2636    if (MMI && FSI.getSubprogram() &&
2637        MMI->Verify(FSI.getSubprogram())) {
2638      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2639      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2640                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2641    }
2642
2643    return 0;
2644  }
2645  case Intrinsic::dbg_declare: {
2646    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2647    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2648    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2649      SDOperand AddressOp  = getValue(DI.getAddress());
2650      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2651        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2652    }
2653
2654    return 0;
2655  }
2656
2657  case Intrinsic::eh_exception: {
2658    if (ExceptionHandling) {
2659      if (!CurMBB->isLandingPad()) {
2660        // FIXME: Mark exception register as live in.  Hack for PR1508.
2661        unsigned Reg = TLI.getExceptionAddressRegister();
2662        if (Reg) CurMBB->addLiveIn(Reg);
2663      }
2664      // Insert the EXCEPTIONADDR instruction.
2665      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2666      SDOperand Ops[1];
2667      Ops[0] = DAG.getRoot();
2668      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2669      setValue(&I, Op);
2670      DAG.setRoot(Op.getValue(1));
2671    } else {
2672      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2673    }
2674    return 0;
2675  }
2676
2677  case Intrinsic::eh_selector:{
2678    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2679
2680    if (ExceptionHandling && MMI) {
2681      if (CurMBB->isLandingPad())
2682        addCatchInfo(I, MMI, CurMBB);
2683      else {
2684#ifndef NDEBUG
2685        FuncInfo.CatchInfoLost.insert(&I);
2686#endif
2687        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
2688        unsigned Reg = TLI.getExceptionSelectorRegister();
2689        if (Reg) CurMBB->addLiveIn(Reg);
2690      }
2691
2692      // Insert the EHSELECTION instruction.
2693      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2694      SDOperand Ops[2];
2695      Ops[0] = getValue(I.getOperand(1));
2696      Ops[1] = getRoot();
2697      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2698      setValue(&I, Op);
2699      DAG.setRoot(Op.getValue(1));
2700    } else {
2701      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2702    }
2703
2704    return 0;
2705  }
2706
2707  case Intrinsic::eh_typeid_for: {
2708    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2709
2710    if (MMI) {
2711      // Find the type id for the given typeinfo.
2712      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2713
2714      unsigned TypeID = MMI->getTypeIDFor(GV);
2715      setValue(&I, DAG.getConstant(TypeID, MVT::i32));
2716    } else {
2717      // Return something different to eh_selector.
2718      setValue(&I, DAG.getConstant(1, MVT::i32));
2719    }
2720
2721    return 0;
2722  }
2723
2724  case Intrinsic::sqrt_f32:
2725  case Intrinsic::sqrt_f64:
2726    setValue(&I, DAG.getNode(ISD::FSQRT,
2727                             getValue(I.getOperand(1)).getValueType(),
2728                             getValue(I.getOperand(1))));
2729    return 0;
2730  case Intrinsic::powi_f32:
2731  case Intrinsic::powi_f64:
2732    setValue(&I, DAG.getNode(ISD::FPOWI,
2733                             getValue(I.getOperand(1)).getValueType(),
2734                             getValue(I.getOperand(1)),
2735                             getValue(I.getOperand(2))));
2736    return 0;
2737  case Intrinsic::pcmarker: {
2738    SDOperand Tmp = getValue(I.getOperand(1));
2739    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2740    return 0;
2741  }
2742  case Intrinsic::readcyclecounter: {
2743    SDOperand Op = getRoot();
2744    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2745                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2746                                &Op, 1);
2747    setValue(&I, Tmp);
2748    DAG.setRoot(Tmp.getValue(1));
2749    return 0;
2750  }
2751  case Intrinsic::part_select: {
2752    // Currently not implemented: just abort
2753    assert(0 && "part_select intrinsic not implemented");
2754    abort();
2755  }
2756  case Intrinsic::part_set: {
2757    // Currently not implemented: just abort
2758    assert(0 && "part_set intrinsic not implemented");
2759    abort();
2760  }
2761  case Intrinsic::bswap:
2762    setValue(&I, DAG.getNode(ISD::BSWAP,
2763                             getValue(I.getOperand(1)).getValueType(),
2764                             getValue(I.getOperand(1))));
2765    return 0;
2766  case Intrinsic::cttz: {
2767    SDOperand Arg = getValue(I.getOperand(1));
2768    MVT::ValueType Ty = Arg.getValueType();
2769    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2770    if (Ty < MVT::i32)
2771      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2772    else if (Ty > MVT::i32)
2773      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2774    setValue(&I, result);
2775    return 0;
2776  }
2777  case Intrinsic::ctlz: {
2778    SDOperand Arg = getValue(I.getOperand(1));
2779    MVT::ValueType Ty = Arg.getValueType();
2780    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2781    if (Ty < MVT::i32)
2782      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2783    else if (Ty > MVT::i32)
2784      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2785    setValue(&I, result);
2786    return 0;
2787  }
2788  case Intrinsic::ctpop: {
2789    SDOperand Arg = getValue(I.getOperand(1));
2790    MVT::ValueType Ty = Arg.getValueType();
2791    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2792    if (Ty < MVT::i32)
2793      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2794    else if (Ty > MVT::i32)
2795      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2796    setValue(&I, result);
2797    return 0;
2798  }
2799  case Intrinsic::stacksave: {
2800    SDOperand Op = getRoot();
2801    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2802              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2803    setValue(&I, Tmp);
2804    DAG.setRoot(Tmp.getValue(1));
2805    return 0;
2806  }
2807  case Intrinsic::stackrestore: {
2808    SDOperand Tmp = getValue(I.getOperand(1));
2809    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2810    return 0;
2811  }
2812  case Intrinsic::prefetch:
2813    // FIXME: Currently discarding prefetches.
2814    return 0;
2815
2816  case Intrinsic::var_annotation:
2817    // Discard annotate attributes
2818    return 0;
2819  }
2820}
2821
2822
2823void SelectionDAGLowering::LowerCallTo(Instruction &I,
2824                                       const Type *CalledValueTy,
2825                                       unsigned CallingConv,
2826                                       bool IsTailCall,
2827                                       SDOperand Callee, unsigned OpIdx,
2828                                       MachineBasicBlock *LandingPad) {
2829  const PointerType *PT = cast<PointerType>(CalledValueTy);
2830  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2831  const ParamAttrsList *Attrs = FTy->getParamAttrs();
2832  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2833  unsigned BeginLabel = 0, EndLabel = 0;
2834
2835  TargetLowering::ArgListTy Args;
2836  TargetLowering::ArgListEntry Entry;
2837  Args.reserve(I.getNumOperands());
2838  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2839    Value *Arg = I.getOperand(i);
2840    SDOperand ArgNode = getValue(Arg);
2841    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2842
2843    unsigned attrInd = i - OpIdx + 1;
2844    Entry.isSExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
2845    Entry.isZExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
2846    Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
2847    Entry.isSRet  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
2848    Args.push_back(Entry);
2849  }
2850
2851  if (ExceptionHandling && MMI) {
2852    // Insert a label before the invoke call to mark the try range.  This can be
2853    // used to detect deletion of the invoke via the MachineModuleInfo.
2854    BeginLabel = MMI->NextLabelID();
2855    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2856                            DAG.getConstant(BeginLabel, MVT::i32)));
2857  }
2858
2859  std::pair<SDOperand,SDOperand> Result =
2860    TLI.LowerCallTo(getRoot(), I.getType(),
2861                    Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2862                    FTy->isVarArg(), CallingConv, IsTailCall,
2863                    Callee, Args, DAG);
2864  if (I.getType() != Type::VoidTy)
2865    setValue(&I, Result.first);
2866  DAG.setRoot(Result.second);
2867
2868  if (ExceptionHandling && MMI) {
2869    // Insert a label at the end of the invoke call to mark the try range.  This
2870    // can be used to detect deletion of the invoke via the MachineModuleInfo.
2871    EndLabel = MMI->NextLabelID();
2872    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2873                            DAG.getConstant(EndLabel, MVT::i32)));
2874
2875    // Inform MachineModuleInfo of range.
2876    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2877  }
2878}
2879
2880
2881void SelectionDAGLowering::visitCall(CallInst &I) {
2882  const char *RenameFn = 0;
2883  if (Function *F = I.getCalledFunction()) {
2884    if (F->isDeclaration())
2885      if (unsigned IID = F->getIntrinsicID()) {
2886        RenameFn = visitIntrinsicCall(I, IID);
2887        if (!RenameFn)
2888          return;
2889      } else {    // Not an LLVM intrinsic.
2890        const std::string &Name = F->getName();
2891        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2892          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2893              I.getOperand(1)->getType()->isFloatingPoint() &&
2894              I.getType() == I.getOperand(1)->getType() &&
2895              I.getType() == I.getOperand(2)->getType()) {
2896            SDOperand LHS = getValue(I.getOperand(1));
2897            SDOperand RHS = getValue(I.getOperand(2));
2898            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2899                                     LHS, RHS));
2900            return;
2901          }
2902        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2903          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2904              I.getOperand(1)->getType()->isFloatingPoint() &&
2905              I.getType() == I.getOperand(1)->getType()) {
2906            SDOperand Tmp = getValue(I.getOperand(1));
2907            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2908            return;
2909          }
2910        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2911          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2912              I.getOperand(1)->getType()->isFloatingPoint() &&
2913              I.getType() == I.getOperand(1)->getType()) {
2914            SDOperand Tmp = getValue(I.getOperand(1));
2915            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2916            return;
2917          }
2918        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2919          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2920              I.getOperand(1)->getType()->isFloatingPoint() &&
2921              I.getType() == I.getOperand(1)->getType()) {
2922            SDOperand Tmp = getValue(I.getOperand(1));
2923            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2924            return;
2925          }
2926        }
2927      }
2928  } else if (isa<InlineAsm>(I.getOperand(0))) {
2929    visitInlineAsm(I);
2930    return;
2931  }
2932
2933  SDOperand Callee;
2934  if (!RenameFn)
2935    Callee = getValue(I.getOperand(0));
2936  else
2937    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2938
2939  LowerCallTo(I, I.getCalledValue()->getType(),
2940              I.getCallingConv(),
2941              I.isTailCall(),
2942              Callee,
2943              1);
2944}
2945
2946
2947/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
2948/// this value and returns the result as a ValueVT value.  This uses
2949/// Chain/Flag as the input and updates them for the output Chain/Flag.
2950/// If the Flag pointer is NULL, no flag is used.
2951SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2952                                        SDOperand &Chain, SDOperand *Flag)const{
2953  // Copy the legal parts from the registers.
2954  unsigned NumParts = Regs.size();
2955  SmallVector<SDOperand, 8> Parts(NumParts);
2956  for (unsigned i = 0; i != NumParts; ++i) {
2957    SDOperand Part = Flag ?
2958                     DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
2959                     DAG.getCopyFromReg(Chain, Regs[i], RegVT);
2960    Chain = Part.getValue(1);
2961    if (Flag)
2962      *Flag = Part.getValue(2);
2963    Parts[i] = Part;
2964  }
2965
2966  // Assemble the legal parts into the final value.
2967  return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
2968}
2969
2970/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2971/// specified value into the registers specified by this object.  This uses
2972/// Chain/Flag as the input and updates them for the output Chain/Flag.
2973/// If the Flag pointer is NULL, no flag is used.
2974void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2975                                 SDOperand &Chain, SDOperand *Flag) const {
2976  // Get the list of the values's legal parts.
2977  unsigned NumParts = Regs.size();
2978  SmallVector<SDOperand, 8> Parts(NumParts);
2979  getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
2980
2981  // Copy the parts into the registers.
2982  for (unsigned i = 0; i != NumParts; ++i) {
2983    SDOperand Part = Flag ?
2984                     DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
2985                     DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
2986    Chain = Part.getValue(0);
2987    if (Flag)
2988      *Flag = Part.getValue(1);
2989  }
2990}
2991
2992/// AddInlineAsmOperands - Add this value to the specified inlineasm node
2993/// operand list.  This adds the code marker and includes the number of
2994/// values added into it.
2995void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
2996                                        std::vector<SDOperand> &Ops) const {
2997  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
2998  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
2999  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3000    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3001}
3002
3003/// isAllocatableRegister - If the specified register is safe to allocate,
3004/// i.e. it isn't a stack pointer or some other special register, return the
3005/// register class for the register.  Otherwise, return null.
3006static const TargetRegisterClass *
3007isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3008                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
3009  MVT::ValueType FoundVT = MVT::Other;
3010  const TargetRegisterClass *FoundRC = 0;
3011  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3012       E = MRI->regclass_end(); RCI != E; ++RCI) {
3013    MVT::ValueType ThisVT = MVT::Other;
3014
3015    const TargetRegisterClass *RC = *RCI;
3016    // If none of the the value types for this register class are valid, we
3017    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3018    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3019         I != E; ++I) {
3020      if (TLI.isTypeLegal(*I)) {
3021        // If we have already found this register in a different register class,
3022        // choose the one with the largest VT specified.  For example, on
3023        // PowerPC, we favor f64 register classes over f32.
3024        if (FoundVT == MVT::Other ||
3025            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3026          ThisVT = *I;
3027          break;
3028        }
3029      }
3030    }
3031
3032    if (ThisVT == MVT::Other) continue;
3033
3034    // NOTE: This isn't ideal.  In particular, this might allocate the
3035    // frame pointer in functions that need it (due to them not being taken
3036    // out of allocation, because a variable sized allocation hasn't been seen
3037    // yet).  This is a slight code pessimization, but should still work.
3038    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3039         E = RC->allocation_order_end(MF); I != E; ++I)
3040      if (*I == Reg) {
3041        // We found a matching register class.  Keep looking at others in case
3042        // we find one with larger registers that this physreg is also in.
3043        FoundRC = RC;
3044        FoundVT = ThisVT;
3045        break;
3046      }
3047  }
3048  return FoundRC;
3049}
3050
3051
3052namespace {
3053/// AsmOperandInfo - This contains information for each constraint that we are
3054/// lowering.
3055struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3056  /// ConstraintCode - This contains the actual string for the code, like "m".
3057  std::string ConstraintCode;
3058
3059  /// ConstraintType - Information about the constraint code, e.g. Register,
3060  /// RegisterClass, Memory, Other, Unknown.
3061  TargetLowering::ConstraintType ConstraintType;
3062
3063  /// CallOperand/CallOperandval - If this is the result output operand or a
3064  /// clobber, this is null, otherwise it is the incoming operand to the
3065  /// CallInst.  This gets modified as the asm is processed.
3066  SDOperand CallOperand;
3067  Value *CallOperandVal;
3068
3069  /// ConstraintVT - The ValueType for the operand value.
3070  MVT::ValueType ConstraintVT;
3071
3072  /// AssignedRegs - If this is a register or register class operand, this
3073  /// contains the set of register corresponding to the operand.
3074  RegsForValue AssignedRegs;
3075
3076  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3077    : InlineAsm::ConstraintInfo(info),
3078      ConstraintType(TargetLowering::C_Unknown),
3079      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3080  }
3081
3082  void ComputeConstraintToUse(const TargetLowering &TLI);
3083
3084  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3085  /// busy in OutputRegs/InputRegs.
3086  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3087                         std::set<unsigned> &OutputRegs,
3088                         std::set<unsigned> &InputRegs) const {
3089     if (isOutReg)
3090       OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3091     if (isInReg)
3092       InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3093   }
3094};
3095} // end anon namespace.
3096
3097/// getConstraintGenerality - Return an integer indicating how general CT is.
3098static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3099  switch (CT) {
3100    default: assert(0 && "Unknown constraint type!");
3101    case TargetLowering::C_Other:
3102    case TargetLowering::C_Unknown:
3103      return 0;
3104    case TargetLowering::C_Register:
3105      return 1;
3106    case TargetLowering::C_RegisterClass:
3107      return 2;
3108    case TargetLowering::C_Memory:
3109      return 3;
3110  }
3111}
3112
3113void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3114  assert(!Codes.empty() && "Must have at least one constraint");
3115
3116  std::string *Current = &Codes[0];
3117  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3118  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3119    ConstraintCode = *Current;
3120    ConstraintType = CurType;
3121    return;
3122  }
3123
3124  unsigned CurGenerality = getConstraintGenerality(CurType);
3125
3126  // If we have multiple constraints, try to pick the most general one ahead
3127  // of time.  This isn't a wonderful solution, but handles common cases.
3128  for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3129    TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3130    unsigned ThisGenerality = getConstraintGenerality(ThisType);
3131    if (ThisGenerality > CurGenerality) {
3132      // This constraint letter is more general than the previous one,
3133      // use it.
3134      CurType = ThisType;
3135      Current = &Codes[j];
3136      CurGenerality = ThisGenerality;
3137    }
3138  }
3139
3140  ConstraintCode = *Current;
3141  ConstraintType = CurType;
3142}
3143
3144
3145void SelectionDAGLowering::
3146GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3147                     std::set<unsigned> &OutputRegs,
3148                     std::set<unsigned> &InputRegs) {
3149  // Compute whether this value requires an input register, an output register,
3150  // or both.
3151  bool isOutReg = false;
3152  bool isInReg = false;
3153  switch (OpInfo.Type) {
3154  case InlineAsm::isOutput:
3155    isOutReg = true;
3156
3157    // If this is an early-clobber output, or if there is an input
3158    // constraint that matches this, we need to reserve the input register
3159    // so no other inputs allocate to it.
3160    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3161    break;
3162  case InlineAsm::isInput:
3163    isInReg = true;
3164    isOutReg = false;
3165    break;
3166  case InlineAsm::isClobber:
3167    isOutReg = true;
3168    isInReg = true;
3169    break;
3170  }
3171
3172
3173  MachineFunction &MF = DAG.getMachineFunction();
3174  std::vector<unsigned> Regs;
3175
3176  // If this is a constraint for a single physreg, or a constraint for a
3177  // register class, find it.
3178  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3179    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3180                                     OpInfo.ConstraintVT);
3181
3182  unsigned NumRegs = 1;
3183  if (OpInfo.ConstraintVT != MVT::Other)
3184    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3185  MVT::ValueType RegVT;
3186  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3187
3188
3189  // If this is a constraint for a specific physical register, like {r17},
3190  // assign it now.
3191  if (PhysReg.first) {
3192    if (OpInfo.ConstraintVT == MVT::Other)
3193      ValueVT = *PhysReg.second->vt_begin();
3194
3195    // Get the actual register value type.  This is important, because the user
3196    // may have asked for (e.g.) the AX register in i32 type.  We need to
3197    // remember that AX is actually i16 to get the right extension.
3198    RegVT = *PhysReg.second->vt_begin();
3199
3200    // This is a explicit reference to a physical register.
3201    Regs.push_back(PhysReg.first);
3202
3203    // If this is an expanded reference, add the rest of the regs to Regs.
3204    if (NumRegs != 1) {
3205      TargetRegisterClass::iterator I = PhysReg.second->begin();
3206      TargetRegisterClass::iterator E = PhysReg.second->end();
3207      for (; *I != PhysReg.first; ++I)
3208        assert(I != E && "Didn't find reg!");
3209
3210      // Already added the first reg.
3211      --NumRegs; ++I;
3212      for (; NumRegs; --NumRegs, ++I) {
3213        assert(I != E && "Ran out of registers to allocate!");
3214        Regs.push_back(*I);
3215      }
3216    }
3217    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3218    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3219    return;
3220  }
3221
3222  // Otherwise, if this was a reference to an LLVM register class, create vregs
3223  // for this reference.
3224  std::vector<unsigned> RegClassRegs;
3225  const TargetRegisterClass *RC = PhysReg.second;
3226  if (RC) {
3227    // If this is an early clobber or tied register, our regalloc doesn't know
3228    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3229    // and let the regalloc do the right thing.
3230    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3231        // If there is some other early clobber and this is an input register,
3232        // then we are forced to pre-allocate the input reg so it doesn't
3233        // conflict with the earlyclobber.
3234        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3235      RegVT = *PhysReg.second->vt_begin();
3236
3237      if (OpInfo.ConstraintVT == MVT::Other)
3238        ValueVT = RegVT;
3239
3240      // Create the appropriate number of virtual registers.
3241      SSARegMap *RegMap = MF.getSSARegMap();
3242      for (; NumRegs; --NumRegs)
3243        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3244
3245      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3246      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3247      return;
3248    }
3249
3250    // Otherwise, we can't allocate it.  Let the code below figure out how to
3251    // maintain these constraints.
3252    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3253
3254  } else {
3255    // This is a reference to a register class that doesn't directly correspond
3256    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3257    // registers from the class.
3258    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3259                                                         OpInfo.ConstraintVT);
3260  }
3261
3262  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3263  unsigned NumAllocated = 0;
3264  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3265    unsigned Reg = RegClassRegs[i];
3266    // See if this register is available.
3267    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3268        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3269      // Make sure we find consecutive registers.
3270      NumAllocated = 0;
3271      continue;
3272    }
3273
3274    // Check to see if this register is allocatable (i.e. don't give out the
3275    // stack pointer).
3276    if (RC == 0) {
3277      RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3278      if (!RC) {        // Couldn't allocate this register.
3279        // Reset NumAllocated to make sure we return consecutive registers.
3280        NumAllocated = 0;
3281        continue;
3282      }
3283    }
3284
3285    // Okay, this register is good, we can use it.
3286    ++NumAllocated;
3287
3288    // If we allocated enough consecutive registers, succeed.
3289    if (NumAllocated == NumRegs) {
3290      unsigned RegStart = (i-NumAllocated)+1;
3291      unsigned RegEnd   = i+1;
3292      // Mark all of the allocated registers used.
3293      for (unsigned i = RegStart; i != RegEnd; ++i)
3294        Regs.push_back(RegClassRegs[i]);
3295
3296      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3297                                         OpInfo.ConstraintVT);
3298      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3299      return;
3300    }
3301  }
3302
3303  // Otherwise, we couldn't allocate enough registers for this.
3304  return;
3305}
3306
3307
3308/// visitInlineAsm - Handle a call to an InlineAsm object.
3309///
3310void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
3311  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
3312
3313  /// ConstraintOperands - Information about all of the constraints.
3314  std::vector<AsmOperandInfo> ConstraintOperands;
3315
3316  SDOperand Chain = getRoot();
3317  SDOperand Flag;
3318
3319  std::set<unsigned> OutputRegs, InputRegs;
3320
3321  // Do a prepass over the constraints, canonicalizing them, and building up the
3322  // ConstraintOperands list.
3323  std::vector<InlineAsm::ConstraintInfo>
3324    ConstraintInfos = IA->ParseConstraints();
3325
3326  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3327  // constraint.  If so, we can't let the register allocator allocate any input
3328  // registers, because it will not know to avoid the earlyclobbered output reg.
3329  bool SawEarlyClobber = false;
3330
3331  unsigned OpNo = 1;   // OpNo - The operand of the CallInst.
3332  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3333    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3334    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3335
3336    MVT::ValueType OpVT = MVT::Other;
3337
3338    // Compute the value type for each operand.
3339    switch (OpInfo.Type) {
3340    case InlineAsm::isOutput:
3341      if (!OpInfo.isIndirect) {
3342        // The return value of the call is this value.  As such, there is no
3343        // corresponding argument.
3344        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3345        OpVT = TLI.getValueType(I.getType());
3346      } else {
3347        OpInfo.CallOperandVal = I.getOperand(OpNo++);
3348      }
3349      break;
3350    case InlineAsm::isInput:
3351      OpInfo.CallOperandVal = I.getOperand(OpNo++);
3352      break;
3353    case InlineAsm::isClobber:
3354      // Nothing to do.
3355      break;
3356    }
3357
3358    // If this is an input or an indirect output, process the call argument.
3359    if (OpInfo.CallOperandVal) {
3360      OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3361      const Type *OpTy = OpInfo.CallOperandVal->getType();
3362      // If this is an indirect operand, the operand is a pointer to the
3363      // accessed type.
3364      if (OpInfo.isIndirect)
3365        OpTy = cast<PointerType>(OpTy)->getElementType();
3366
3367      // If OpTy is not a first-class value, it may be a struct/union that we
3368      // can tile with integers.
3369      if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3370        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3371        switch (BitSize) {
3372        default: break;
3373        case 1:
3374        case 8:
3375        case 16:
3376        case 32:
3377        case 64:
3378          OpTy = IntegerType::get(BitSize);
3379          break;
3380        }
3381      }
3382
3383      OpVT = TLI.getValueType(OpTy, true);
3384    }
3385
3386    OpInfo.ConstraintVT = OpVT;
3387
3388    // Compute the constraint code and ConstraintType to use.
3389    OpInfo.ComputeConstraintToUse(TLI);
3390
3391    // Keep track of whether we see an earlyclobber.
3392    SawEarlyClobber |= OpInfo.isEarlyClobber;
3393
3394    // If this is a memory input, and if the operand is not indirect, do what we
3395    // need to to provide an address for the memory input.
3396    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3397        !OpInfo.isIndirect) {
3398      assert(OpInfo.Type == InlineAsm::isInput &&
3399             "Can only indirectify direct input operands!");
3400
3401      // Memory operands really want the address of the value.  If we don't have
3402      // an indirect input, put it in the constpool if we can, otherwise spill
3403      // it to a stack slot.
3404
3405      // If the operand is a float, integer, or vector constant, spill to a
3406      // constant pool entry to get its address.
3407      Value *OpVal = OpInfo.CallOperandVal;
3408      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3409          isa<ConstantVector>(OpVal)) {
3410        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3411                                                 TLI.getPointerTy());
3412      } else {
3413        // Otherwise, create a stack slot and emit a store to it before the
3414        // asm.
3415        const Type *Ty = OpVal->getType();
3416        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
3417        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3418        MachineFunction &MF = DAG.getMachineFunction();
3419        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3420        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3421        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3422        OpInfo.CallOperand = StackSlot;
3423      }
3424
3425      // There is no longer a Value* corresponding to this operand.
3426      OpInfo.CallOperandVal = 0;
3427      // It is now an indirect operand.
3428      OpInfo.isIndirect = true;
3429    }
3430
3431    // If this constraint is for a specific register, allocate it before
3432    // anything else.
3433    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3434      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3435  }
3436  ConstraintInfos.clear();
3437
3438
3439  // Second pass - Loop over all of the operands, assigning virtual or physregs
3440  // to registerclass operands.
3441  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3442    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3443
3444    // C_Register operands have already been allocated, Other/Memory don't need
3445    // to be.
3446    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3447      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3448  }
3449
3450  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3451  std::vector<SDOperand> AsmNodeOperands;
3452  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3453  AsmNodeOperands.push_back(
3454          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3455
3456
3457  // Loop over all of the inputs, copying the operand values into the
3458  // appropriate registers and processing the output regs.
3459  RegsForValue RetValRegs;
3460
3461  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3462  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3463
3464  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3465    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3466
3467    switch (OpInfo.Type) {
3468    case InlineAsm::isOutput: {
3469      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3470          OpInfo.ConstraintType != TargetLowering::C_Register) {
3471        // Memory output, or 'other' output (e.g. 'X' constraint).
3472        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3473
3474        // Add information to the INLINEASM node to know about this output.
3475        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3476        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3477                                                        TLI.getPointerTy()));
3478        AsmNodeOperands.push_back(OpInfo.CallOperand);
3479        break;
3480      }
3481
3482      // Otherwise, this is a register or register class output.
3483
3484      // Copy the output from the appropriate register.  Find a register that
3485      // we can use.
3486      if (OpInfo.AssignedRegs.Regs.empty()) {
3487        cerr << "Couldn't allocate output reg for contraint '"
3488             << OpInfo.ConstraintCode << "'!\n";
3489        exit(1);
3490      }
3491
3492      if (!OpInfo.isIndirect) {
3493        // This is the result value of the call.
3494        assert(RetValRegs.Regs.empty() &&
3495               "Cannot have multiple output constraints yet!");
3496        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3497        RetValRegs = OpInfo.AssignedRegs;
3498      } else {
3499        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3500                                                      OpInfo.CallOperandVal));
3501      }
3502
3503      // Add information to the INLINEASM node to know that this register is
3504      // set.
3505      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3506                                               AsmNodeOperands);
3507      break;
3508    }
3509    case InlineAsm::isInput: {
3510      SDOperand InOperandVal = OpInfo.CallOperand;
3511
3512      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3513        // If this is required to match an output register we have already set,
3514        // just use its register.
3515        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3516
3517        // Scan until we find the definition we already emitted of this operand.
3518        // When we find it, create a RegsForValue operand.
3519        unsigned CurOp = 2;  // The first operand.
3520        for (; OperandNo; --OperandNo) {
3521          // Advance to the next operand.
3522          unsigned NumOps =
3523            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3524          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3525                  (NumOps & 7) == 4 /*MEM*/) &&
3526                 "Skipped past definitions?");
3527          CurOp += (NumOps>>3)+1;
3528        }
3529
3530        unsigned NumOps =
3531          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3532        if ((NumOps & 7) == 2 /*REGDEF*/) {
3533          // Add NumOps>>3 registers to MatchedRegs.
3534          RegsForValue MatchedRegs;
3535          MatchedRegs.ValueVT = InOperandVal.getValueType();
3536          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3537          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3538            unsigned Reg =
3539              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3540            MatchedRegs.Regs.push_back(Reg);
3541          }
3542
3543          // Use the produced MatchedRegs object to
3544          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3545          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3546          break;
3547        } else {
3548          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3549          assert(0 && "matching constraints for memory operands unimp");
3550        }
3551      }
3552
3553      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3554        assert(!OpInfo.isIndirect &&
3555               "Don't know how to handle indirect other inputs yet!");
3556
3557        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
3558                                                       OpInfo.ConstraintCode[0],
3559                                                       DAG);
3560        if (!InOperandVal.Val) {
3561          cerr << "Invalid operand for inline asm constraint '"
3562               << OpInfo.ConstraintCode << "'!\n";
3563          exit(1);
3564        }
3565
3566        // Add information to the INLINEASM node to know about this input.
3567        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
3568        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3569                                                        TLI.getPointerTy()));
3570        AsmNodeOperands.push_back(InOperandVal);
3571        break;
3572      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3573        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3574        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3575               "Memory operands expect pointer values");
3576
3577        // Add information to the INLINEASM node to know about this input.
3578        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3579        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3580                                                        TLI.getPointerTy()));
3581        AsmNodeOperands.push_back(InOperandVal);
3582        break;
3583      }
3584
3585      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3586              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3587             "Unknown constraint type!");
3588      assert(!OpInfo.isIndirect &&
3589             "Don't know how to handle indirect register inputs yet!");
3590
3591      // Copy the input into the appropriate registers.
3592      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3593             "Couldn't allocate input reg!");
3594
3595      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3596
3597      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3598                                               AsmNodeOperands);
3599      break;
3600    }
3601    case InlineAsm::isClobber: {
3602      // Add the clobbered value to the operand list, so that the register
3603      // allocator is aware that the physreg got clobbered.
3604      if (!OpInfo.AssignedRegs.Regs.empty())
3605        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3606                                                 AsmNodeOperands);
3607      break;
3608    }
3609    }
3610  }
3611
3612  // Finish up input operands.
3613  AsmNodeOperands[0] = Chain;
3614  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3615
3616  Chain = DAG.getNode(ISD::INLINEASM,
3617                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3618                      &AsmNodeOperands[0], AsmNodeOperands.size());
3619  Flag = Chain.getValue(1);
3620
3621  // If this asm returns a register value, copy the result from that register
3622  // and set it as the value of the call.
3623  if (!RetValRegs.Regs.empty()) {
3624    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3625
3626    // If the result of the inline asm is a vector, it may have the wrong
3627    // width/num elts.  Make sure to convert it to the right type with
3628    // bit_convert.
3629    if (MVT::isVector(Val.getValueType())) {
3630      const VectorType *VTy = cast<VectorType>(I.getType());
3631      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3632
3633      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3634    }
3635
3636    setValue(&I, Val);
3637  }
3638
3639  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3640
3641  // Process indirect outputs, first output all of the flagged copies out of
3642  // physregs.
3643  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3644    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3645    Value *Ptr = IndirectStoresToEmit[i].second;
3646    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3647    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3648  }
3649
3650  // Emit the non-flagged stores from the physregs.
3651  SmallVector<SDOperand, 8> OutChains;
3652  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3653    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3654                                    getValue(StoresToEmit[i].second),
3655                                    StoresToEmit[i].second, 0));
3656  if (!OutChains.empty())
3657    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3658                        &OutChains[0], OutChains.size());
3659  DAG.setRoot(Chain);
3660}
3661
3662
3663void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3664  SDOperand Src = getValue(I.getOperand(0));
3665
3666  MVT::ValueType IntPtr = TLI.getPointerTy();
3667
3668  if (IntPtr < Src.getValueType())
3669    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3670  else if (IntPtr > Src.getValueType())
3671    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3672
3673  // Scale the source by the type size.
3674  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
3675  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3676                    Src, getIntPtrConstant(ElementSize));
3677
3678  TargetLowering::ArgListTy Args;
3679  TargetLowering::ArgListEntry Entry;
3680  Entry.Node = Src;
3681  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3682  Args.push_back(Entry);
3683
3684  std::pair<SDOperand,SDOperand> Result =
3685    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3686                    DAG.getExternalSymbol("malloc", IntPtr),
3687                    Args, DAG);
3688  setValue(&I, Result.first);  // Pointers always fit in registers
3689  DAG.setRoot(Result.second);
3690}
3691
3692void SelectionDAGLowering::visitFree(FreeInst &I) {
3693  TargetLowering::ArgListTy Args;
3694  TargetLowering::ArgListEntry Entry;
3695  Entry.Node = getValue(I.getOperand(0));
3696  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3697  Args.push_back(Entry);
3698  MVT::ValueType IntPtr = TLI.getPointerTy();
3699  std::pair<SDOperand,SDOperand> Result =
3700    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3701                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3702  DAG.setRoot(Result.second);
3703}
3704
3705// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3706// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3707// instructions are special in various ways, which require special support to
3708// insert.  The specified MachineInstr is created but not inserted into any
3709// basic blocks, and the scheduler passes ownership of it to this method.
3710MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3711                                                       MachineBasicBlock *MBB) {
3712  cerr << "If a target marks an instruction with "
3713       << "'usesCustomDAGSchedInserter', it must implement "
3714       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3715  abort();
3716  return 0;
3717}
3718
3719void SelectionDAGLowering::visitVAStart(CallInst &I) {
3720  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3721                          getValue(I.getOperand(1)),
3722                          DAG.getSrcValue(I.getOperand(1))));
3723}
3724
3725void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3726  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3727                             getValue(I.getOperand(0)),
3728                             DAG.getSrcValue(I.getOperand(0)));
3729  setValue(&I, V);
3730  DAG.setRoot(V.getValue(1));
3731}
3732
3733void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3734  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3735                          getValue(I.getOperand(1)),
3736                          DAG.getSrcValue(I.getOperand(1))));
3737}
3738
3739void SelectionDAGLowering::visitVACopy(CallInst &I) {
3740  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3741                          getValue(I.getOperand(1)),
3742                          getValue(I.getOperand(2)),
3743                          DAG.getSrcValue(I.getOperand(1)),
3744                          DAG.getSrcValue(I.getOperand(2))));
3745}
3746
3747/// TargetLowering::LowerArguments - This is the default LowerArguments
3748/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3749/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3750/// integrated into SDISel.
3751std::vector<SDOperand>
3752TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3753  const FunctionType *FTy = F.getFunctionType();
3754  const ParamAttrsList *Attrs = FTy->getParamAttrs();
3755  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3756  std::vector<SDOperand> Ops;
3757  Ops.push_back(DAG.getRoot());
3758  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3759  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3760
3761  // Add one result value for each formal argument.
3762  std::vector<MVT::ValueType> RetVals;
3763  unsigned j = 1;
3764  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3765       I != E; ++I, ++j) {
3766    MVT::ValueType VT = getValueType(I->getType());
3767    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3768    unsigned OriginalAlignment =
3769      getTargetData()->getABITypeAlignment(I->getType());
3770
3771    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3772    // that is zero extended!
3773    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt))
3774      Flags &= ~(ISD::ParamFlags::SExt);
3775    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt))
3776      Flags |= ISD::ParamFlags::SExt;
3777    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg))
3778      Flags |= ISD::ParamFlags::InReg;
3779    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet))
3780      Flags |= ISD::ParamFlags::StructReturn;
3781    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ByVal))
3782      Flags |= ISD::ParamFlags::ByVal;
3783    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3784
3785    switch (getTypeAction(VT)) {
3786    default: assert(0 && "Unknown type action!");
3787    case Legal:
3788      RetVals.push_back(VT);
3789      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3790      break;
3791    case Promote:
3792      RetVals.push_back(getTypeToTransformTo(VT));
3793      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3794      break;
3795    case Expand: {
3796      // If this is an illegal type, it needs to be broken up to fit into
3797      // registers.
3798      MVT::ValueType RegisterVT = getRegisterType(VT);
3799      unsigned NumRegs = getNumRegisters(VT);
3800      for (unsigned i = 0; i != NumRegs; ++i) {
3801        RetVals.push_back(RegisterVT);
3802        // if it isn't first piece, alignment must be 1
3803        if (i > 0)
3804          Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3805            (1 << ISD::ParamFlags::OrigAlignmentOffs);
3806        Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3807      }
3808      break;
3809    }
3810    }
3811  }
3812
3813  RetVals.push_back(MVT::Other);
3814
3815  // Create the node.
3816  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3817                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3818                               &Ops[0], Ops.size()).Val;
3819  unsigned NumArgRegs = Result->getNumValues() - 1;
3820  DAG.setRoot(SDOperand(Result, NumArgRegs));
3821
3822  // Set up the return result vector.
3823  Ops.clear();
3824  unsigned i = 0;
3825  unsigned Idx = 1;
3826  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3827      ++I, ++Idx) {
3828    MVT::ValueType VT = getValueType(I->getType());
3829
3830    switch (getTypeAction(VT)) {
3831    default: assert(0 && "Unknown type action!");
3832    case Legal:
3833      Ops.push_back(SDOperand(Result, i++));
3834      break;
3835    case Promote: {
3836      SDOperand Op(Result, i++);
3837      if (MVT::isInteger(VT)) {
3838        if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt))
3839          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3840                           DAG.getValueType(VT));
3841        else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt))
3842          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3843                           DAG.getValueType(VT));
3844        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3845      } else {
3846        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3847        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3848      }
3849      Ops.push_back(Op);
3850      break;
3851    }
3852    case Expand: {
3853      MVT::ValueType PartVT = getRegisterType(VT);
3854      unsigned NumParts = getNumRegisters(VT);
3855      SmallVector<SDOperand, 4> Parts(NumParts);
3856      for (unsigned j = 0; j != NumParts; ++j)
3857        Parts[j] = SDOperand(Result, i++);
3858      Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
3859      break;
3860    }
3861    }
3862  }
3863  assert(i == NumArgRegs && "Argument register count mismatch!");
3864  return Ops;
3865}
3866
3867
3868/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3869/// implementation, which just inserts an ISD::CALL node, which is later custom
3870/// lowered by the target to something concrete.  FIXME: When all targets are
3871/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3872std::pair<SDOperand, SDOperand>
3873TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3874                            bool RetTyIsSigned, bool isVarArg,
3875                            unsigned CallingConv, bool isTailCall,
3876                            SDOperand Callee,
3877                            ArgListTy &Args, SelectionDAG &DAG) {
3878  SmallVector<SDOperand, 32> Ops;
3879  Ops.push_back(Chain);   // Op#0 - Chain
3880  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3881  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3882  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3883  Ops.push_back(Callee);
3884
3885  // Handle all of the outgoing arguments.
3886  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3887    MVT::ValueType VT = getValueType(Args[i].Ty);
3888    SDOperand Op = Args[i].Node;
3889    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3890    unsigned OriginalAlignment =
3891      getTargetData()->getABITypeAlignment(Args[i].Ty);
3892
3893    if (Args[i].isSExt)
3894      Flags |= ISD::ParamFlags::SExt;
3895    if (Args[i].isZExt)
3896      Flags |= ISD::ParamFlags::ZExt;
3897    if (Args[i].isInReg)
3898      Flags |= ISD::ParamFlags::InReg;
3899    if (Args[i].isSRet)
3900      Flags |= ISD::ParamFlags::StructReturn;
3901    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
3902
3903    switch (getTypeAction(VT)) {
3904    default: assert(0 && "Unknown type action!");
3905    case Legal:
3906      Ops.push_back(Op);
3907      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3908      break;
3909    case Promote:
3910      if (MVT::isInteger(VT)) {
3911        unsigned ExtOp;
3912        if (Args[i].isSExt)
3913          ExtOp = ISD::SIGN_EXTEND;
3914        else if (Args[i].isZExt)
3915          ExtOp = ISD::ZERO_EXTEND;
3916        else
3917          ExtOp = ISD::ANY_EXTEND;
3918        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3919      } else {
3920        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3921        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
3922      }
3923      Ops.push_back(Op);
3924      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3925      break;
3926    case Expand: {
3927      MVT::ValueType PartVT = getRegisterType(VT);
3928      unsigned NumParts = getNumRegisters(VT);
3929      SmallVector<SDOperand, 4> Parts(NumParts);
3930      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
3931      for (unsigned i = 0; i != NumParts; ++i) {
3932        // if it isn't first piece, alignment must be 1
3933        unsigned MyFlags = Flags;
3934        if (i != 0)
3935          MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
3936            (1 << ISD::ParamFlags::OrigAlignmentOffs);
3937
3938        Ops.push_back(Parts[i]);
3939        Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
3940      }
3941      break;
3942    }
3943    }
3944  }
3945
3946  // Figure out the result value types.
3947  MVT::ValueType VT = getValueType(RetTy);
3948  MVT::ValueType RegisterVT = getRegisterType(VT);
3949  unsigned NumRegs = getNumRegisters(VT);
3950  SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
3951  for (unsigned i = 0; i != NumRegs; ++i)
3952    RetTys[i] = RegisterVT;
3953
3954  RetTys.push_back(MVT::Other);  // Always has a chain.
3955
3956  // Create the CALL node.
3957  SDOperand Res = DAG.getNode(ISD::CALL,
3958                              DAG.getVTList(&RetTys[0], NumRegs + 1),
3959                              &Ops[0], Ops.size());
3960  SDOperand Chain = Res.getValue(NumRegs);
3961
3962  // Gather up the call result into a single value.
3963  if (RetTy != Type::VoidTy) {
3964    ISD::NodeType AssertOp = ISD::AssertSext;
3965    if (!RetTyIsSigned)
3966      AssertOp = ISD::AssertZext;
3967    SmallVector<SDOperand, 4> Results(NumRegs);
3968    for (unsigned i = 0; i != NumRegs; ++i)
3969      Results[i] = Res.getValue(i);
3970    Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
3971  }
3972
3973  return std::make_pair(Res, Chain);
3974}
3975
3976SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3977  assert(0 && "LowerOperation not implemented for this target!");
3978  abort();
3979  return SDOperand();
3980}
3981
3982SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
3983                                                 SelectionDAG &DAG) {
3984  assert(0 && "CustomPromoteOperation not implemented for this target!");
3985  abort();
3986  return SDOperand();
3987}
3988
3989/// getMemsetValue - Vectorized representation of the memset value
3990/// operand.
3991static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
3992                                SelectionDAG &DAG) {
3993  MVT::ValueType CurVT = VT;
3994  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3995    uint64_t Val   = C->getValue() & 255;
3996    unsigned Shift = 8;
3997    while (CurVT != MVT::i8) {
3998      Val = (Val << Shift) | Val;
3999      Shift <<= 1;
4000      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4001    }
4002    return DAG.getConstant(Val, VT);
4003  } else {
4004    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4005    unsigned Shift = 8;
4006    while (CurVT != MVT::i8) {
4007      Value =
4008        DAG.getNode(ISD::OR, VT,
4009                    DAG.getNode(ISD::SHL, VT, Value,
4010                                DAG.getConstant(Shift, MVT::i8)), Value);
4011      Shift <<= 1;
4012      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4013    }
4014
4015    return Value;
4016  }
4017}
4018
4019/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4020/// used when a memcpy is turned into a memset when the source is a constant
4021/// string ptr.
4022static SDOperand getMemsetStringVal(MVT::ValueType VT,
4023                                    SelectionDAG &DAG, TargetLowering &TLI,
4024                                    std::string &Str, unsigned Offset) {
4025  uint64_t Val = 0;
4026  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4027  if (TLI.isLittleEndian())
4028    Offset = Offset + MSB - 1;
4029  for (unsigned i = 0; i != MSB; ++i) {
4030    Val = (Val << 8) | (unsigned char)Str[Offset];
4031    Offset += TLI.isLittleEndian() ? -1 : 1;
4032  }
4033  return DAG.getConstant(Val, VT);
4034}
4035
4036/// getMemBasePlusOffset - Returns base and offset node for the
4037static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4038                                      SelectionDAG &DAG, TargetLowering &TLI) {
4039  MVT::ValueType VT = Base.getValueType();
4040  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4041}
4042
4043/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4044/// to replace the memset / memcpy is below the threshold. It also returns the
4045/// types of the sequence of  memory ops to perform memset / memcpy.
4046static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4047                                     unsigned Limit, uint64_t Size,
4048                                     unsigned Align, TargetLowering &TLI) {
4049  MVT::ValueType VT;
4050
4051  if (TLI.allowsUnalignedMemoryAccesses()) {
4052    VT = MVT::i64;
4053  } else {
4054    switch (Align & 7) {
4055    case 0:
4056      VT = MVT::i64;
4057      break;
4058    case 4:
4059      VT = MVT::i32;
4060      break;
4061    case 2:
4062      VT = MVT::i16;
4063      break;
4064    default:
4065      VT = MVT::i8;
4066      break;
4067    }
4068  }
4069
4070  MVT::ValueType LVT = MVT::i64;
4071  while (!TLI.isTypeLegal(LVT))
4072    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4073  assert(MVT::isInteger(LVT));
4074
4075  if (VT > LVT)
4076    VT = LVT;
4077
4078  unsigned NumMemOps = 0;
4079  while (Size != 0) {
4080    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4081    while (VTSize > Size) {
4082      VT = (MVT::ValueType)((unsigned)VT - 1);
4083      VTSize >>= 1;
4084    }
4085    assert(MVT::isInteger(VT));
4086
4087    if (++NumMemOps > Limit)
4088      return false;
4089    MemOps.push_back(VT);
4090    Size -= VTSize;
4091  }
4092
4093  return true;
4094}
4095
4096void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4097  SDOperand Op1 = getValue(I.getOperand(1));
4098  SDOperand Op2 = getValue(I.getOperand(2));
4099  SDOperand Op3 = getValue(I.getOperand(3));
4100  SDOperand Op4 = getValue(I.getOperand(4));
4101  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4102  if (Align == 0) Align = 1;
4103
4104  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4105    std::vector<MVT::ValueType> MemOps;
4106
4107    // Expand memset / memcpy to a series of load / store ops
4108    // if the size operand falls below a certain threshold.
4109    SmallVector<SDOperand, 8> OutChains;
4110    switch (Op) {
4111    default: break;  // Do nothing for now.
4112    case ISD::MEMSET: {
4113      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4114                                   Size->getValue(), Align, TLI)) {
4115        unsigned NumMemOps = MemOps.size();
4116        unsigned Offset = 0;
4117        for (unsigned i = 0; i < NumMemOps; i++) {
4118          MVT::ValueType VT = MemOps[i];
4119          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4120          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4121          SDOperand Store = DAG.getStore(getRoot(), Value,
4122                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4123                                         I.getOperand(1), Offset);
4124          OutChains.push_back(Store);
4125          Offset += VTSize;
4126        }
4127      }
4128      break;
4129    }
4130    case ISD::MEMCPY: {
4131      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4132                                   Size->getValue(), Align, TLI)) {
4133        unsigned NumMemOps = MemOps.size();
4134        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4135        GlobalAddressSDNode *G = NULL;
4136        std::string Str;
4137        bool CopyFromStr = false;
4138
4139        if (Op2.getOpcode() == ISD::GlobalAddress)
4140          G = cast<GlobalAddressSDNode>(Op2);
4141        else if (Op2.getOpcode() == ISD::ADD &&
4142                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4143                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4144          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4145          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4146        }
4147        if (G) {
4148          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4149          if (GV && GV->isConstant()) {
4150            Str = GV->getStringValue(false);
4151            if (!Str.empty()) {
4152              CopyFromStr = true;
4153              SrcOff += SrcDelta;
4154            }
4155          }
4156        }
4157
4158        for (unsigned i = 0; i < NumMemOps; i++) {
4159          MVT::ValueType VT = MemOps[i];
4160          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4161          SDOperand Value, Chain, Store;
4162
4163          if (CopyFromStr) {
4164            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4165            Chain = getRoot();
4166            Store =
4167              DAG.getStore(Chain, Value,
4168                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4169                           I.getOperand(1), DstOff);
4170          } else {
4171            Value = DAG.getLoad(VT, getRoot(),
4172                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4173                        I.getOperand(2), SrcOff);
4174            Chain = Value.getValue(1);
4175            Store =
4176              DAG.getStore(Chain, Value,
4177                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4178                           I.getOperand(1), DstOff);
4179          }
4180          OutChains.push_back(Store);
4181          SrcOff += VTSize;
4182          DstOff += VTSize;
4183        }
4184      }
4185      break;
4186    }
4187    }
4188
4189    if (!OutChains.empty()) {
4190      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4191                  &OutChains[0], OutChains.size()));
4192      return;
4193    }
4194  }
4195
4196  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
4197}
4198
4199//===----------------------------------------------------------------------===//
4200// SelectionDAGISel code
4201//===----------------------------------------------------------------------===//
4202
4203unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4204  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4205}
4206
4207void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4208  AU.addRequired<AliasAnalysis>();
4209  AU.setPreservesAll();
4210}
4211
4212
4213
4214bool SelectionDAGISel::runOnFunction(Function &Fn) {
4215  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4216  RegMap = MF.getSSARegMap();
4217  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4218
4219  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4220
4221  if (ExceptionHandling)
4222    for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4223      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4224        // Mark landing pad.
4225        FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4226
4227  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4228    SelectBasicBlock(I, MF, FuncInfo);
4229
4230  // Add function live-ins to entry block live-in set.
4231  BasicBlock *EntryBB = &Fn.getEntryBlock();
4232  BB = FuncInfo.MBBMap[EntryBB];
4233  if (!MF.livein_empty())
4234    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4235           E = MF.livein_end(); I != E; ++I)
4236      BB->addLiveIn(I->first);
4237
4238#ifndef NDEBUG
4239  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4240         "Not all catch info was assigned to a landing pad!");
4241#endif
4242
4243  return true;
4244}
4245
4246SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4247                                                           unsigned Reg) {
4248  SDOperand Op = getValue(V);
4249  assert((Op.getOpcode() != ISD::CopyFromReg ||
4250          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4251         "Copy from a reg to the same reg!");
4252
4253  MVT::ValueType SrcVT = Op.getValueType();
4254  MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4255  unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4256  SmallVector<SDOperand, 8> Regs(NumRegs);
4257  SmallVector<SDOperand, 8> Chains(NumRegs);
4258
4259  // Copy the value by legal parts into sequential virtual registers.
4260  getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4261  for (unsigned i = 0; i != NumRegs; ++i)
4262    Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4263  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4264}
4265
4266void SelectionDAGISel::
4267LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4268               std::vector<SDOperand> &UnorderedChains) {
4269  // If this is the entry block, emit arguments.
4270  Function &F = *LLVMBB->getParent();
4271  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4272  SDOperand OldRoot = SDL.DAG.getRoot();
4273  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4274
4275  unsigned a = 0;
4276  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4277       AI != E; ++AI, ++a)
4278    if (!AI->use_empty()) {
4279      SDL.setValue(AI, Args[a]);
4280
4281      // If this argument is live outside of the entry block, insert a copy from
4282      // whereever we got it to the vreg that other BB's will reference it as.
4283      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4284      if (VMI != FuncInfo.ValueMap.end()) {
4285        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4286        UnorderedChains.push_back(Copy);
4287      }
4288    }
4289
4290  // Finally, if the target has anything special to do, allow it to do so.
4291  // FIXME: this should insert code into the DAG!
4292  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4293}
4294
4295static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4296                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4297  assert(!FLI.MBBMap[SrcBB]->isLandingPad() &&
4298         "Copying catch info out of a landing pad!");
4299  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4300    if (isSelector(I)) {
4301      // Apply the catch info to DestBB.
4302      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4303#ifndef NDEBUG
4304      FLI.CatchInfoFound.insert(I);
4305#endif
4306    }
4307}
4308
4309void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4310       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4311                                         FunctionLoweringInfo &FuncInfo) {
4312  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
4313
4314  std::vector<SDOperand> UnorderedChains;
4315
4316  // Lower any arguments needed in this block if this is the entry block.
4317  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4318    LowerArguments(LLVMBB, SDL, UnorderedChains);
4319
4320  BB = FuncInfo.MBBMap[LLVMBB];
4321  SDL.setCurrentBasicBlock(BB);
4322
4323  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4324
4325  if (ExceptionHandling && MMI && BB->isLandingPad()) {
4326    // Add a label to mark the beginning of the landing pad.  Deletion of the
4327    // landing pad can thus be detected via the MachineModuleInfo.
4328    unsigned LabelID = MMI->addLandingPad(BB);
4329    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4330                            DAG.getConstant(LabelID, MVT::i32)));
4331
4332    // Mark exception register as live in.
4333    unsigned Reg = TLI.getExceptionAddressRegister();
4334    if (Reg) BB->addLiveIn(Reg);
4335
4336    // Mark exception selector register as live in.
4337    Reg = TLI.getExceptionSelectorRegister();
4338    if (Reg) BB->addLiveIn(Reg);
4339
4340    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4341    // function and list of typeids logically belong to the invoke (or, if you
4342    // like, the basic block containing the invoke), and need to be associated
4343    // with it in the dwarf exception handling tables.  Currently however the
4344    // information is provided by an intrinsic (eh.selector) that can be moved
4345    // to unexpected places by the optimizers: if the unwind edge is critical,
4346    // then breaking it can result in the intrinsics being in the successor of
4347    // the landing pad, not the landing pad itself.  This results in exceptions
4348    // not being caught because no typeids are associated with the invoke.
4349    // This may not be the only way things can go wrong, but it is the only way
4350    // we try to work around for the moment.
4351    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4352
4353    if (Br && Br->isUnconditional()) { // Critical edge?
4354      BasicBlock::iterator I, E;
4355      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4356        if (isSelector(I))
4357          break;
4358
4359      if (I == E)
4360        // No catch info found - try to extract some from the successor.
4361        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4362    }
4363  }
4364
4365  // Lower all of the non-terminator instructions.
4366  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4367       I != E; ++I)
4368    SDL.visit(*I);
4369
4370  // Ensure that all instructions which are used outside of their defining
4371  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4372  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4373    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4374      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4375      if (VMI != FuncInfo.ValueMap.end())
4376        UnorderedChains.push_back(
4377                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4378    }
4379
4380  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4381  // ensure constants are generated when needed.  Remember the virtual registers
4382  // that need to be added to the Machine PHI nodes as input.  We cannot just
4383  // directly add them, because expansion might result in multiple MBB's for one
4384  // BB.  As such, the start of the BB might correspond to a different MBB than
4385  // the end.
4386  //
4387  TerminatorInst *TI = LLVMBB->getTerminator();
4388
4389  // Emit constants only once even if used by multiple PHI nodes.
4390  std::map<Constant*, unsigned> ConstantsOut;
4391
4392  // Vector bool would be better, but vector<bool> is really slow.
4393  std::vector<unsigned char> SuccsHandled;
4394  if (TI->getNumSuccessors())
4395    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4396
4397  // Check successor nodes' PHI nodes that expect a constant to be available
4398  // from this block.
4399  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4400    BasicBlock *SuccBB = TI->getSuccessor(succ);
4401    if (!isa<PHINode>(SuccBB->begin())) continue;
4402    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4403
4404    // If this terminator has multiple identical successors (common for
4405    // switches), only handle each succ once.
4406    unsigned SuccMBBNo = SuccMBB->getNumber();
4407    if (SuccsHandled[SuccMBBNo]) continue;
4408    SuccsHandled[SuccMBBNo] = true;
4409
4410    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4411    PHINode *PN;
4412
4413    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4414    // nodes and Machine PHI nodes, but the incoming operands have not been
4415    // emitted yet.
4416    for (BasicBlock::iterator I = SuccBB->begin();
4417         (PN = dyn_cast<PHINode>(I)); ++I) {
4418      // Ignore dead phi's.
4419      if (PN->use_empty()) continue;
4420
4421      unsigned Reg;
4422      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4423
4424      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4425        unsigned &RegOut = ConstantsOut[C];
4426        if (RegOut == 0) {
4427          RegOut = FuncInfo.CreateRegForValue(C);
4428          UnorderedChains.push_back(
4429                           SDL.CopyValueToVirtualRegister(C, RegOut));
4430        }
4431        Reg = RegOut;
4432      } else {
4433        Reg = FuncInfo.ValueMap[PHIOp];
4434        if (Reg == 0) {
4435          assert(isa<AllocaInst>(PHIOp) &&
4436                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4437                 "Didn't codegen value into a register!??");
4438          Reg = FuncInfo.CreateRegForValue(PHIOp);
4439          UnorderedChains.push_back(
4440                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4441        }
4442      }
4443
4444      // Remember that this register needs to added to the machine PHI node as
4445      // the input for this MBB.
4446      MVT::ValueType VT = TLI.getValueType(PN->getType());
4447      unsigned NumRegisters = TLI.getNumRegisters(VT);
4448      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4449        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4450    }
4451  }
4452  ConstantsOut.clear();
4453
4454  // Turn all of the unordered chains into one factored node.
4455  if (!UnorderedChains.empty()) {
4456    SDOperand Root = SDL.getRoot();
4457    if (Root.getOpcode() != ISD::EntryToken) {
4458      unsigned i = 0, e = UnorderedChains.size();
4459      for (; i != e; ++i) {
4460        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4461        if (UnorderedChains[i].Val->getOperand(0) == Root)
4462          break;  // Don't add the root if we already indirectly depend on it.
4463      }
4464
4465      if (i == e)
4466        UnorderedChains.push_back(Root);
4467    }
4468    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4469                            &UnorderedChains[0], UnorderedChains.size()));
4470  }
4471
4472  // Lower the terminator after the copies are emitted.
4473  SDL.visit(*LLVMBB->getTerminator());
4474
4475  // Copy over any CaseBlock records that may now exist due to SwitchInst
4476  // lowering, as well as any jump table information.
4477  SwitchCases.clear();
4478  SwitchCases = SDL.SwitchCases;
4479  JTCases.clear();
4480  JTCases = SDL.JTCases;
4481  BitTestCases.clear();
4482  BitTestCases = SDL.BitTestCases;
4483
4484  // Make sure the root of the DAG is up-to-date.
4485  DAG.setRoot(SDL.getRoot());
4486}
4487
4488void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4489  // Get alias analysis for load/store combining.
4490  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4491
4492  // Run the DAG combiner in pre-legalize mode.
4493  DAG.Combine(false, AA);
4494
4495  DOUT << "Lowered selection DAG:\n";
4496  DEBUG(DAG.dump());
4497
4498  // Second step, hack on the DAG until it only uses operations and types that
4499  // the target supports.
4500  DAG.Legalize();
4501
4502  DOUT << "Legalized selection DAG:\n";
4503  DEBUG(DAG.dump());
4504
4505  // Run the DAG combiner in post-legalize mode.
4506  DAG.Combine(true, AA);
4507
4508  if (ViewISelDAGs) DAG.viewGraph();
4509
4510  // Third, instruction select all of the operations to machine code, adding the
4511  // code to the MachineBasicBlock.
4512  InstructionSelectBasicBlock(DAG);
4513
4514  DOUT << "Selected machine code:\n";
4515  DEBUG(BB->dump());
4516}
4517
4518void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4519                                        FunctionLoweringInfo &FuncInfo) {
4520  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4521  {
4522    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4523    CurDAG = &DAG;
4524
4525    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4526    // types that are not supported by the target.
4527    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4528
4529    // Second step, emit the lowered DAG as machine code.
4530    CodeGenAndEmitDAG(DAG);
4531  }
4532
4533  DOUT << "Total amount of phi nodes to update: "
4534       << PHINodesToUpdate.size() << "\n";
4535  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4536          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4537               << ", " << PHINodesToUpdate[i].second << ")\n";);
4538
4539  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4540  // PHI nodes in successors.
4541  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4542    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4543      MachineInstr *PHI = PHINodesToUpdate[i].first;
4544      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4545             "This is not a machine PHI node that we are updating!");
4546      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4547      PHI->addMachineBasicBlockOperand(BB);
4548    }
4549    return;
4550  }
4551
4552  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4553    // Lower header first, if it wasn't already lowered
4554    if (!BitTestCases[i].Emitted) {
4555      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4556      CurDAG = &HSDAG;
4557      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4558      // Set the current basic block to the mbb we wish to insert the code into
4559      BB = BitTestCases[i].Parent;
4560      HSDL.setCurrentBasicBlock(BB);
4561      // Emit the code
4562      HSDL.visitBitTestHeader(BitTestCases[i]);
4563      HSDAG.setRoot(HSDL.getRoot());
4564      CodeGenAndEmitDAG(HSDAG);
4565    }
4566
4567    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4568      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4569      CurDAG = &BSDAG;
4570      SelectionDAGLowering BSDL(BSDAG, TLI, FuncInfo);
4571      // Set the current basic block to the mbb we wish to insert the code into
4572      BB = BitTestCases[i].Cases[j].ThisBB;
4573      BSDL.setCurrentBasicBlock(BB);
4574      // Emit the code
4575      if (j+1 != ej)
4576        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4577                              BitTestCases[i].Reg,
4578                              BitTestCases[i].Cases[j]);
4579      else
4580        BSDL.visitBitTestCase(BitTestCases[i].Default,
4581                              BitTestCases[i].Reg,
4582                              BitTestCases[i].Cases[j]);
4583
4584
4585      BSDAG.setRoot(BSDL.getRoot());
4586      CodeGenAndEmitDAG(BSDAG);
4587    }
4588
4589    // Update PHI Nodes
4590    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4591      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4592      MachineBasicBlock *PHIBB = PHI->getParent();
4593      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4594             "This is not a machine PHI node that we are updating!");
4595      // This is "default" BB. We have two jumps to it. From "header" BB and
4596      // from last "case" BB.
4597      if (PHIBB == BitTestCases[i].Default) {
4598        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4599        PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4600        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4601        PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4602      }
4603      // One of "cases" BB.
4604      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4605        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4606        if (cBB->succ_end() !=
4607            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4608          PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4609          PHI->addMachineBasicBlockOperand(cBB);
4610        }
4611      }
4612    }
4613  }
4614
4615  // If the JumpTable record is filled in, then we need to emit a jump table.
4616  // Updating the PHI nodes is tricky in this case, since we need to determine
4617  // whether the PHI is a successor of the range check MBB or the jump table MBB
4618  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4619    // Lower header first, if it wasn't already lowered
4620    if (!JTCases[i].first.Emitted) {
4621      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4622      CurDAG = &HSDAG;
4623      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4624      // Set the current basic block to the mbb we wish to insert the code into
4625      BB = JTCases[i].first.HeaderBB;
4626      HSDL.setCurrentBasicBlock(BB);
4627      // Emit the code
4628      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4629      HSDAG.setRoot(HSDL.getRoot());
4630      CodeGenAndEmitDAG(HSDAG);
4631    }
4632
4633    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4634    CurDAG = &JSDAG;
4635    SelectionDAGLowering JSDL(JSDAG, TLI, FuncInfo);
4636    // Set the current basic block to the mbb we wish to insert the code into
4637    BB = JTCases[i].second.MBB;
4638    JSDL.setCurrentBasicBlock(BB);
4639    // Emit the code
4640    JSDL.visitJumpTable(JTCases[i].second);
4641    JSDAG.setRoot(JSDL.getRoot());
4642    CodeGenAndEmitDAG(JSDAG);
4643
4644    // Update PHI Nodes
4645    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4646      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4647      MachineBasicBlock *PHIBB = PHI->getParent();
4648      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4649             "This is not a machine PHI node that we are updating!");
4650      // "default" BB. We can go there only from header BB.
4651      if (PHIBB == JTCases[i].second.Default) {
4652        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4653        PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4654      }
4655      // JT BB. Just iterate over successors here
4656      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4657        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4658        PHI->addMachineBasicBlockOperand(BB);
4659      }
4660    }
4661  }
4662
4663  // If the switch block involved a branch to one of the actual successors, we
4664  // need to update PHI nodes in that block.
4665  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4666    MachineInstr *PHI = PHINodesToUpdate[i].first;
4667    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4668           "This is not a machine PHI node that we are updating!");
4669    if (BB->isSuccessor(PHI->getParent())) {
4670      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4671      PHI->addMachineBasicBlockOperand(BB);
4672    }
4673  }
4674
4675  // If we generated any switch lowering information, build and codegen any
4676  // additional DAGs necessary.
4677  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4678    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4679    CurDAG = &SDAG;
4680    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4681
4682    // Set the current basic block to the mbb we wish to insert the code into
4683    BB = SwitchCases[i].ThisBB;
4684    SDL.setCurrentBasicBlock(BB);
4685
4686    // Emit the code
4687    SDL.visitSwitchCase(SwitchCases[i]);
4688    SDAG.setRoot(SDL.getRoot());
4689    CodeGenAndEmitDAG(SDAG);
4690
4691    // Handle any PHI nodes in successors of this chunk, as if we were coming
4692    // from the original BB before switch expansion.  Note that PHI nodes can
4693    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4694    // handle them the right number of times.
4695    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4696      for (MachineBasicBlock::iterator Phi = BB->begin();
4697           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4698        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4699        for (unsigned pn = 0; ; ++pn) {
4700          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4701          if (PHINodesToUpdate[pn].first == Phi) {
4702            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4703            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4704            break;
4705          }
4706        }
4707      }
4708
4709      // Don't process RHS if same block as LHS.
4710      if (BB == SwitchCases[i].FalseBB)
4711        SwitchCases[i].FalseBB = 0;
4712
4713      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4714      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4715      SwitchCases[i].FalseBB = 0;
4716    }
4717    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4718  }
4719}
4720
4721
4722//===----------------------------------------------------------------------===//
4723/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4724/// target node in the graph.
4725void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4726  if (ViewSchedDAGs) DAG.viewGraph();
4727
4728  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4729
4730  if (!Ctor) {
4731    Ctor = ISHeuristic;
4732    RegisterScheduler::setDefault(Ctor);
4733  }
4734
4735  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4736  BB = SL->Run();
4737  delete SL;
4738}
4739
4740
4741HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4742  return new HazardRecognizer();
4743}
4744
4745//===----------------------------------------------------------------------===//
4746// Helper functions used by the generated instruction selector.
4747//===----------------------------------------------------------------------===//
4748// Calls to these methods are generated by tblgen.
4749
4750/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4751/// the dag combiner simplified the 255, we still want to match.  RHS is the
4752/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4753/// specified in the .td file (e.g. 255).
4754bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4755                                    int64_t DesiredMaskS) {
4756  uint64_t ActualMask = RHS->getValue();
4757  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4758
4759  // If the actual mask exactly matches, success!
4760  if (ActualMask == DesiredMask)
4761    return true;
4762
4763  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4764  if (ActualMask & ~DesiredMask)
4765    return false;
4766
4767  // Otherwise, the DAG Combiner may have proven that the value coming in is
4768  // either already zero or is not demanded.  Check for known zero input bits.
4769  uint64_t NeededMask = DesiredMask & ~ActualMask;
4770  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
4771    return true;
4772
4773  // TODO: check to see if missing bits are just not demanded.
4774
4775  // Otherwise, this pattern doesn't match.
4776  return false;
4777}
4778
4779/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4780/// the dag combiner simplified the 255, we still want to match.  RHS is the
4781/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4782/// specified in the .td file (e.g. 255).
4783bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4784                                    int64_t DesiredMaskS) {
4785  uint64_t ActualMask = RHS->getValue();
4786  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4787
4788  // If the actual mask exactly matches, success!
4789  if (ActualMask == DesiredMask)
4790    return true;
4791
4792  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4793  if (ActualMask & ~DesiredMask)
4794    return false;
4795
4796  // Otherwise, the DAG Combiner may have proven that the value coming in is
4797  // either already zero or is not demanded.  Check for known zero input bits.
4798  uint64_t NeededMask = DesiredMask & ~ActualMask;
4799
4800  uint64_t KnownZero, KnownOne;
4801  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4802
4803  // If all the missing bits in the or are already known to be set, match!
4804  if ((NeededMask & KnownOne) == NeededMask)
4805    return true;
4806
4807  // TODO: check to see if missing bits are just not demanded.
4808
4809  // Otherwise, this pattern doesn't match.
4810  return false;
4811}
4812
4813
4814/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4815/// by tblgen.  Others should not call it.
4816void SelectionDAGISel::
4817SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4818  std::vector<SDOperand> InOps;
4819  std::swap(InOps, Ops);
4820
4821  Ops.push_back(InOps[0]);  // input chain.
4822  Ops.push_back(InOps[1]);  // input asm string.
4823
4824  unsigned i = 2, e = InOps.size();
4825  if (InOps[e-1].getValueType() == MVT::Flag)
4826    --e;  // Don't process a flag operand if it is here.
4827
4828  while (i != e) {
4829    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4830    if ((Flags & 7) != 4 /*MEM*/) {
4831      // Just skip over this operand, copying the operands verbatim.
4832      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4833      i += (Flags >> 3) + 1;
4834    } else {
4835      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4836      // Otherwise, this is a memory operand.  Ask the target to select it.
4837      std::vector<SDOperand> SelOps;
4838      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4839        cerr << "Could not match memory address.  Inline asm failure!\n";
4840        exit(1);
4841      }
4842
4843      // Add this to the output node.
4844      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4845      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4846                                          IntPtrTy));
4847      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4848      i += 2;
4849    }
4850  }
4851
4852  // Add the flag input back if present.
4853  if (e != InOps.size())
4854    Ops.push_back(InOps.back());
4855}
4856
4857char SelectionDAGISel::ID = 0;
4858