SelectionDAGISel.cpp revision 54075bbea7e70fea6cdb9e5e89b066118c1d314b
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/CFG.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GCMetadata.h"
27#include "llvm/CodeGen/GCStrategy.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/DebugInfo.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/InlineAsm.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/IR/Intrinsics.h"
43#include "llvm/IR/LLVMContext.h"
44#include "llvm/IR/Module.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/Timer.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/Target/TargetInstrInfo.h"
51#include "llvm/Target/TargetIntrinsicInfo.h"
52#include "llvm/Target/TargetLibraryInfo.h"
53#include "llvm/Target/TargetLowering.h"
54#include "llvm/Target/TargetMachine.h"
55#include "llvm/Target/TargetOptions.h"
56#include "llvm/Target/TargetRegisterInfo.h"
57#include "llvm/Target/TargetSubtargetInfo.h"
58#include "llvm/Transforms/Utils/BasicBlockUtils.h"
59#include <algorithm>
60using namespace llvm;
61
62STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
63STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
64STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
65STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
66STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
67STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
68STATISTIC(NumFastIselFailLowerArguments,
69          "Number of entry blocks where fast isel failed to lower arguments");
70
71#ifndef NDEBUG
72static cl::opt<bool>
73EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
74          cl::desc("Enable extra verbose messages in the \"fast\" "
75                   "instruction selector"));
76
77  // Terminators
78STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
79STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
80STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
81STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
82STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
83STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
84STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
85
86  // Standard binary operators...
87STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
88STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
89STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
90STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
91STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
92STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
93STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
94STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
95STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
96STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
97STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
98STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
99
100  // Logical operators...
101STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
102STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
103STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
104
105  // Memory instructions...
106STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
107STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
108STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
109STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
110STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
111STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
112STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
113
114  // Convert instructions...
115STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
116STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
117STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
118STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
119STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
120STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
121STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
122STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
123STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
124STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
125STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
126STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
127
128  // Other instructions...
129STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
130STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
131STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
132STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
133STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
134STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
135STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
136STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
137STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
138STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
139STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
140STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
141STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
142STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
143STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
144#endif
145
146static cl::opt<bool>
147EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
148          cl::desc("Enable verbose messages in the \"fast\" "
149                   "instruction selector"));
150static cl::opt<bool>
151EnableFastISelAbort("fast-isel-abort", cl::Hidden,
152          cl::desc("Enable abort calls when \"fast\" instruction selection "
153                   "fails to lower an instruction"));
154static cl::opt<bool>
155EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
156          cl::desc("Enable abort calls when \"fast\" instruction selection "
157                   "fails to lower a formal argument"));
158
159static cl::opt<bool>
160UseMBPI("use-mbpi",
161        cl::desc("use Machine Branch Probability Info"),
162        cl::init(true), cl::Hidden);
163
164#ifndef NDEBUG
165static cl::opt<bool>
166ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
167          cl::desc("Pop up a window to show dags before the first "
168                   "dag combine pass"));
169static cl::opt<bool>
170ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
171          cl::desc("Pop up a window to show dags before legalize types"));
172static cl::opt<bool>
173ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
174          cl::desc("Pop up a window to show dags before legalize"));
175static cl::opt<bool>
176ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
177          cl::desc("Pop up a window to show dags before the second "
178                   "dag combine pass"));
179static cl::opt<bool>
180ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
181          cl::desc("Pop up a window to show dags before the post legalize types"
182                   " dag combine pass"));
183static cl::opt<bool>
184ViewISelDAGs("view-isel-dags", cl::Hidden,
185          cl::desc("Pop up a window to show isel dags as they are selected"));
186static cl::opt<bool>
187ViewSchedDAGs("view-sched-dags", cl::Hidden,
188          cl::desc("Pop up a window to show sched dags as they are processed"));
189static cl::opt<bool>
190ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
191      cl::desc("Pop up a window to show SUnit dags after they are processed"));
192#else
193static const bool ViewDAGCombine1 = false,
194                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
195                  ViewDAGCombine2 = false,
196                  ViewDAGCombineLT = false,
197                  ViewISelDAGs = false, ViewSchedDAGs = false,
198                  ViewSUnitDAGs = false;
199#endif
200
201//===---------------------------------------------------------------------===//
202///
203/// RegisterScheduler class - Track the registration of instruction schedulers.
204///
205//===---------------------------------------------------------------------===//
206MachinePassRegistry RegisterScheduler::Registry;
207
208//===---------------------------------------------------------------------===//
209///
210/// ISHeuristic command line option for instruction schedulers.
211///
212//===---------------------------------------------------------------------===//
213static cl::opt<RegisterScheduler::FunctionPassCtor, false,
214               RegisterPassParser<RegisterScheduler> >
215ISHeuristic("pre-RA-sched",
216            cl::init(&createDefaultScheduler),
217            cl::desc("Instruction schedulers available (before register"
218                     " allocation):"));
219
220static RegisterScheduler
221defaultListDAGScheduler("default", "Best scheduler for the target",
222                        createDefaultScheduler);
223
224namespace llvm {
225  //===--------------------------------------------------------------------===//
226  /// createDefaultScheduler - This creates an instruction scheduler appropriate
227  /// for the target.
228  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
229                                             CodeGenOpt::Level OptLevel) {
230    const TargetLowering *TLI = IS->getTargetLowering();
231    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
232
233    if (OptLevel == CodeGenOpt::None || ST.useMachineScheduler() ||
234        TLI->getSchedulingPreference() == Sched::Source)
235      return createSourceListDAGScheduler(IS, OptLevel);
236    if (TLI->getSchedulingPreference() == Sched::RegPressure)
237      return createBURRListDAGScheduler(IS, OptLevel);
238    if (TLI->getSchedulingPreference() == Sched::Hybrid)
239      return createHybridListDAGScheduler(IS, OptLevel);
240    if (TLI->getSchedulingPreference() == Sched::VLIW)
241      return createVLIWDAGScheduler(IS, OptLevel);
242    assert(TLI->getSchedulingPreference() == Sched::ILP &&
243           "Unknown sched type!");
244    return createILPListDAGScheduler(IS, OptLevel);
245  }
246}
247
248// EmitInstrWithCustomInserter - This method should be implemented by targets
249// that mark instructions with the 'usesCustomInserter' flag.  These
250// instructions are special in various ways, which require special support to
251// insert.  The specified MachineInstr is created but not inserted into any
252// basic blocks, and this method is called to expand it into a sequence of
253// instructions, potentially also creating new basic blocks and control flow.
254// When new basic blocks are inserted and the edges from MBB to its successors
255// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
256// DenseMap.
257MachineBasicBlock *
258TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
259                                            MachineBasicBlock *MBB) const {
260#ifndef NDEBUG
261  dbgs() << "If a target marks an instruction with "
262          "'usesCustomInserter', it must implement "
263          "TargetLowering::EmitInstrWithCustomInserter!";
264#endif
265  llvm_unreachable(0);
266}
267
268void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
269                                                   SDNode *Node) const {
270  assert(!MI->hasPostISelHook() &&
271         "If a target marks an instruction with 'hasPostISelHook', "
272         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
273}
274
275//===----------------------------------------------------------------------===//
276// SelectionDAGISel code
277//===----------------------------------------------------------------------===//
278
279SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
280                                   CodeGenOpt::Level OL) :
281  MachineFunctionPass(ID), TM(tm),
282  FuncInfo(new FunctionLoweringInfo(TM)),
283  CurDAG(new SelectionDAG(tm, OL)),
284  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
285  GFI(),
286  OptLevel(OL),
287  DAGSize(0) {
288    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
289    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
290    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
291    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
292  }
293
294SelectionDAGISel::~SelectionDAGISel() {
295  delete SDB;
296  delete CurDAG;
297  delete FuncInfo;
298}
299
300void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
301  AU.addRequired<AliasAnalysis>();
302  AU.addPreserved<AliasAnalysis>();
303  AU.addRequired<GCModuleInfo>();
304  AU.addPreserved<GCModuleInfo>();
305  AU.addRequired<TargetLibraryInfo>();
306  if (UseMBPI && OptLevel != CodeGenOpt::None)
307    AU.addRequired<BranchProbabilityInfo>();
308  MachineFunctionPass::getAnalysisUsage(AU);
309}
310
311/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
312/// may trap on it.  In this case we have to split the edge so that the path
313/// through the predecessor block that doesn't go to the phi block doesn't
314/// execute the possibly trapping instruction.
315///
316/// This is required for correctness, so it must be done at -O0.
317///
318static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
319  // Loop for blocks with phi nodes.
320  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
321    PHINode *PN = dyn_cast<PHINode>(BB->begin());
322    if (PN == 0) continue;
323
324  ReprocessBlock:
325    // For each block with a PHI node, check to see if any of the input values
326    // are potentially trapping constant expressions.  Constant expressions are
327    // the only potentially trapping value that can occur as the argument to a
328    // PHI.
329    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
330      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
331        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
332        if (CE == 0 || !CE->canTrap()) continue;
333
334        // The only case we have to worry about is when the edge is critical.
335        // Since this block has a PHI Node, we assume it has multiple input
336        // edges: check to see if the pred has multiple successors.
337        BasicBlock *Pred = PN->getIncomingBlock(i);
338        if (Pred->getTerminator()->getNumSuccessors() == 1)
339          continue;
340
341        // Okay, we have to split this edge.
342        SplitCriticalEdge(Pred->getTerminator(),
343                          GetSuccessorNumber(Pred, BB), SDISel, true);
344        goto ReprocessBlock;
345      }
346  }
347}
348
349bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
350  // Do some sanity-checking on the command-line options.
351  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
352         "-fast-isel-verbose requires -fast-isel");
353  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
354         "-fast-isel-abort requires -fast-isel");
355
356  const Function &Fn = *mf.getFunction();
357  const TargetInstrInfo &TII = *TM.getInstrInfo();
358  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
359
360  MF = &mf;
361  RegInfo = &MF->getRegInfo();
362  AA = &getAnalysis<AliasAnalysis>();
363  LibInfo = &getAnalysis<TargetLibraryInfo>();
364  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
365  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
366
367  TargetSubtargetInfo &ST =
368    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
369  ST.resetSubtargetFeatures(MF);
370  TM.resetTargetOptions(MF);
371
372  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
373
374  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
375
376  CurDAG->init(*MF, TTI);
377  FuncInfo->set(Fn, *MF);
378
379  if (UseMBPI && OptLevel != CodeGenOpt::None)
380    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
381  else
382    FuncInfo->BPI = 0;
383
384  SDB->init(GFI, *AA, LibInfo);
385
386  MF->setHasMSInlineAsm(false);
387  SelectAllBasicBlocks(Fn);
388
389  // If the first basic block in the function has live ins that need to be
390  // copied into vregs, emit the copies into the top of the block before
391  // emitting the code for the block.
392  MachineBasicBlock *EntryMBB = MF->begin();
393  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
394
395  DenseMap<unsigned, unsigned> LiveInMap;
396  if (!FuncInfo->ArgDbgValues.empty())
397    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
398           E = RegInfo->livein_end(); LI != E; ++LI)
399      if (LI->second)
400        LiveInMap.insert(std::make_pair(LI->first, LI->second));
401
402  // Insert DBG_VALUE instructions for function arguments to the entry block.
403  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
404    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
405    bool hasFI = MI->getOperand(0).isFI();
406    unsigned Reg = hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
407    if (TargetRegisterInfo::isPhysicalRegister(Reg))
408      EntryMBB->insert(EntryMBB->begin(), MI);
409    else {
410      MachineInstr *Def = RegInfo->getVRegDef(Reg);
411      if (Def) {
412        MachineBasicBlock::iterator InsertPos = Def;
413        // FIXME: VR def may not be in entry block.
414        Def->getParent()->insert(llvm::next(InsertPos), MI);
415      } else
416        DEBUG(dbgs() << "Dropping debug info for dead vreg"
417              << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
418    }
419
420    // If Reg is live-in then update debug info to track its copy in a vreg.
421    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
422    if (LDI != LiveInMap.end()) {
423      assert(!hasFI && "There's no handling of frame pointer updating here yet "
424                       "- add if needed");
425      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
426      MachineBasicBlock::iterator InsertPos = Def;
427      const MDNode *Variable =
428        MI->getOperand(MI->getNumOperands()-1).getMetadata();
429      bool IsIndirect = MI->isIndirectDebugValue();
430      unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
431      // Def is never a terminator here, so it is ok to increment InsertPos.
432      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
433              TII.get(TargetOpcode::DBG_VALUE),
434              IsIndirect,
435              LDI->second, Offset, Variable);
436
437      // If this vreg is directly copied into an exported register then
438      // that COPY instructions also need DBG_VALUE, if it is the only
439      // user of LDI->second.
440      MachineInstr *CopyUseMI = NULL;
441      for (MachineRegisterInfo::use_iterator
442             UI = RegInfo->use_begin(LDI->second);
443           MachineInstr *UseMI = UI.skipInstruction();) {
444        if (UseMI->isDebugValue()) continue;
445        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
446          CopyUseMI = UseMI; continue;
447        }
448        // Otherwise this is another use or second copy use.
449        CopyUseMI = NULL; break;
450      }
451      if (CopyUseMI) {
452        MachineInstr *NewMI =
453          BuildMI(*MF, CopyUseMI->getDebugLoc(),
454                  TII.get(TargetOpcode::DBG_VALUE),
455                  IsIndirect,
456                  CopyUseMI->getOperand(0).getReg(),
457                  Offset, Variable);
458        MachineBasicBlock::iterator Pos = CopyUseMI;
459        EntryMBB->insertAfter(Pos, NewMI);
460      }
461    }
462  }
463
464  // Determine if there are any calls in this machine function.
465  MachineFrameInfo *MFI = MF->getFrameInfo();
466  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
467       ++I) {
468
469    if (MFI->hasCalls() && MF->hasMSInlineAsm())
470      break;
471
472    const MachineBasicBlock *MBB = I;
473    for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
474         II != IE; ++II) {
475      const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
476      if ((MCID.isCall() && !MCID.isReturn()) ||
477          II->isStackAligningInlineAsm()) {
478        MFI->setHasCalls(true);
479      }
480      if (II->isMSInlineAsm()) {
481        MF->setHasMSInlineAsm(true);
482      }
483    }
484  }
485
486  // Determine if there is a call to setjmp in the machine function.
487  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
488
489  // Replace forward-declared registers with the registers containing
490  // the desired value.
491  MachineRegisterInfo &MRI = MF->getRegInfo();
492  for (DenseMap<unsigned, unsigned>::iterator
493       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
494       I != E; ++I) {
495    unsigned From = I->first;
496    unsigned To = I->second;
497    // If To is also scheduled to be replaced, find what its ultimate
498    // replacement is.
499    for (;;) {
500      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
501      if (J == E) break;
502      To = J->second;
503    }
504    // Make sure the new register has a sufficiently constrained register class.
505    if (TargetRegisterInfo::isVirtualRegister(From) &&
506        TargetRegisterInfo::isVirtualRegister(To))
507      MRI.constrainRegClass(To, MRI.getRegClass(From));
508    // Replace it.
509    MRI.replaceRegWith(From, To);
510  }
511
512  // Freeze the set of reserved registers now that MachineFrameInfo has been
513  // set up. All the information required by getReservedRegs() should be
514  // available now.
515  MRI.freezeReservedRegs(*MF);
516
517  // Release function-specific state. SDB and CurDAG are already cleared
518  // at this point.
519  FuncInfo->clear();
520
521  return true;
522}
523
524void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
525                                        BasicBlock::const_iterator End,
526                                        bool &HadTailCall) {
527  // Lower all of the non-terminator instructions. If a call is emitted
528  // as a tail call, cease emitting nodes for this block. Terminators
529  // are handled below.
530  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
531    SDB->visit(*I);
532
533  // Make sure the root of the DAG is up-to-date.
534  CurDAG->setRoot(SDB->getControlRoot());
535  HadTailCall = SDB->HasTailCall;
536  SDB->clear();
537
538  // Final step, emit the lowered DAG as machine code.
539  CodeGenAndEmitDAG();
540}
541
542void SelectionDAGISel::ComputeLiveOutVRegInfo() {
543  SmallPtrSet<SDNode*, 128> VisitedNodes;
544  SmallVector<SDNode*, 128> Worklist;
545
546  Worklist.push_back(CurDAG->getRoot().getNode());
547
548  APInt KnownZero;
549  APInt KnownOne;
550
551  do {
552    SDNode *N = Worklist.pop_back_val();
553
554    // If we've already seen this node, ignore it.
555    if (!VisitedNodes.insert(N))
556      continue;
557
558    // Otherwise, add all chain operands to the worklist.
559    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
560      if (N->getOperand(i).getValueType() == MVT::Other)
561        Worklist.push_back(N->getOperand(i).getNode());
562
563    // If this is a CopyToReg with a vreg dest, process it.
564    if (N->getOpcode() != ISD::CopyToReg)
565      continue;
566
567    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
568    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
569      continue;
570
571    // Ignore non-scalar or non-integer values.
572    SDValue Src = N->getOperand(2);
573    EVT SrcVT = Src.getValueType();
574    if (!SrcVT.isInteger() || SrcVT.isVector())
575      continue;
576
577    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
578    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
579    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
580  } while (!Worklist.empty());
581}
582
583void SelectionDAGISel::CodeGenAndEmitDAG() {
584  std::string GroupName;
585  if (TimePassesIsEnabled)
586    GroupName = "Instruction Selection and Scheduling";
587  std::string BlockName;
588  int BlockNumber = -1;
589  (void)BlockNumber;
590#ifdef NDEBUG
591  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
592      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
593      ViewSUnitDAGs)
594#endif
595  {
596    BlockNumber = FuncInfo->MBB->getNumber();
597    BlockName = MF->getName().str() + ":" +
598                FuncInfo->MBB->getBasicBlock()->getName().str();
599  }
600  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
601        << " '" << BlockName << "'\n"; CurDAG->dump());
602
603  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
604
605  // Run the DAG combiner in pre-legalize mode.
606  {
607    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
608    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
609  }
610
611  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
612        << " '" << BlockName << "'\n"; CurDAG->dump());
613
614  // Second step, hack on the DAG until it only uses operations and types that
615  // the target supports.
616  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
617                                               BlockName);
618
619  bool Changed;
620  {
621    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
622    Changed = CurDAG->LegalizeTypes();
623  }
624
625  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
626        << " '" << BlockName << "'\n"; CurDAG->dump());
627
628  if (Changed) {
629    if (ViewDAGCombineLT)
630      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
631
632    // Run the DAG combiner in post-type-legalize mode.
633    {
634      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
635                         TimePassesIsEnabled);
636      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
637    }
638
639    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
640          << " '" << BlockName << "'\n"; CurDAG->dump());
641
642  }
643
644  {
645    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
646    Changed = CurDAG->LegalizeVectors();
647  }
648
649  if (Changed) {
650    {
651      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
652      CurDAG->LegalizeTypes();
653    }
654
655    if (ViewDAGCombineLT)
656      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
657
658    // Run the DAG combiner in post-type-legalize mode.
659    {
660      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
661                         TimePassesIsEnabled);
662      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
663    }
664
665    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
666          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
667  }
668
669  CurDAG->NewNodesMustHaveLegalTypes = true;
670
671  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
672
673  {
674    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
675    CurDAG->Legalize();
676  }
677
678  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
679        << " '" << BlockName << "'\n"; CurDAG->dump());
680
681  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
682
683  // Run the DAG combiner in post-legalize mode.
684  {
685    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
686    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
687  }
688
689  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
690        << " '" << BlockName << "'\n"; CurDAG->dump());
691
692  if (OptLevel != CodeGenOpt::None)
693    ComputeLiveOutVRegInfo();
694
695  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
696
697  // Third, instruction select all of the operations to machine code, adding the
698  // code to the MachineBasicBlock.
699  {
700    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
701    DoInstructionSelection();
702  }
703
704  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
705        << " '" << BlockName << "'\n"; CurDAG->dump());
706
707  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
708
709  // Schedule machine code.
710  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
711  {
712    NamedRegionTimer T("Instruction Scheduling", GroupName,
713                       TimePassesIsEnabled);
714    Scheduler->Run(CurDAG, FuncInfo->MBB);
715  }
716
717  if (ViewSUnitDAGs) Scheduler->viewGraph();
718
719  // Emit machine code to BB.  This can change 'BB' to the last block being
720  // inserted into.
721  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
722  {
723    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
724
725    // FuncInfo->InsertPt is passed by reference and set to the end of the
726    // scheduled instructions.
727    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
728  }
729
730  // If the block was split, make sure we update any references that are used to
731  // update PHI nodes later on.
732  if (FirstMBB != LastMBB)
733    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
734
735  // Free the scheduler state.
736  {
737    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
738                       TimePassesIsEnabled);
739    delete Scheduler;
740  }
741
742  // Free the SelectionDAG state, now that we're finished with it.
743  CurDAG->clear();
744}
745
746namespace {
747/// ISelUpdater - helper class to handle updates of the instruction selection
748/// graph.
749class ISelUpdater : public SelectionDAG::DAGUpdateListener {
750  SelectionDAG::allnodes_iterator &ISelPosition;
751public:
752  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
753    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
754
755  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
756  /// deleted is the current ISelPosition node, update ISelPosition.
757  ///
758  virtual void NodeDeleted(SDNode *N, SDNode *E) {
759    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
760      ++ISelPosition;
761  }
762};
763} // end anonymous namespace
764
765void SelectionDAGISel::DoInstructionSelection() {
766  DEBUG(dbgs() << "===== Instruction selection begins: BB#"
767        << FuncInfo->MBB->getNumber()
768        << " '" << FuncInfo->MBB->getName() << "'\n");
769
770  PreprocessISelDAG();
771
772  // Select target instructions for the DAG.
773  {
774    // Number all nodes with a topological order and set DAGSize.
775    DAGSize = CurDAG->AssignTopologicalOrder();
776
777    // Create a dummy node (which is not added to allnodes), that adds
778    // a reference to the root node, preventing it from being deleted,
779    // and tracking any changes of the root.
780    HandleSDNode Dummy(CurDAG->getRoot());
781    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
782    ++ISelPosition;
783
784    // Make sure that ISelPosition gets properly updated when nodes are deleted
785    // in calls made from this function.
786    ISelUpdater ISU(*CurDAG, ISelPosition);
787
788    // The AllNodes list is now topological-sorted. Visit the
789    // nodes by starting at the end of the list (the root of the
790    // graph) and preceding back toward the beginning (the entry
791    // node).
792    while (ISelPosition != CurDAG->allnodes_begin()) {
793      SDNode *Node = --ISelPosition;
794      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
795      // but there are currently some corner cases that it misses. Also, this
796      // makes it theoretically possible to disable the DAGCombiner.
797      if (Node->use_empty())
798        continue;
799
800      SDNode *ResNode = Select(Node);
801
802      // FIXME: This is pretty gross.  'Select' should be changed to not return
803      // anything at all and this code should be nuked with a tactical strike.
804
805      // If node should not be replaced, continue with the next one.
806      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
807        continue;
808      // Replace node.
809      if (ResNode) {
810        ReplaceUses(Node, ResNode);
811      }
812
813      // If after the replacement this node is not used any more,
814      // remove this dead node.
815      if (Node->use_empty()) // Don't delete EntryToken, etc.
816        CurDAG->RemoveDeadNode(Node);
817    }
818
819    CurDAG->setRoot(Dummy.getValue());
820  }
821
822  DEBUG(dbgs() << "===== Instruction selection ends:\n");
823
824  PostprocessISelDAG();
825}
826
827/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
828/// do other setup for EH landing-pad blocks.
829void SelectionDAGISel::PrepareEHLandingPad() {
830  MachineBasicBlock *MBB = FuncInfo->MBB;
831
832  // Add a label to mark the beginning of the landing pad.  Deletion of the
833  // landing pad can thus be detected via the MachineModuleInfo.
834  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
835
836  // Assign the call site to the landing pad's begin label.
837  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
838
839  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
840  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
841    .addSym(Label);
842
843  // Mark exception register as live in.
844  const TargetLowering *TLI = getTargetLowering();
845  const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy());
846  if (unsigned Reg = TLI->getExceptionPointerRegister())
847    FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
848
849  // Mark exception selector register as live in.
850  if (unsigned Reg = TLI->getExceptionSelectorRegister())
851    FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
852}
853
854/// isFoldedOrDeadInstruction - Return true if the specified instruction is
855/// side-effect free and is either dead or folded into a generated instruction.
856/// Return false if it needs to be emitted.
857static bool isFoldedOrDeadInstruction(const Instruction *I,
858                                      FunctionLoweringInfo *FuncInfo) {
859  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
860         !isa<TerminatorInst>(I) && // Terminators aren't folded.
861         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
862         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
863         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
864}
865
866#ifndef NDEBUG
867// Collect per Instruction statistics for fast-isel misses.  Only those
868// instructions that cause the bail are accounted for.  It does not account for
869// instructions higher in the block.  Thus, summing the per instructions stats
870// will not add up to what is reported by NumFastIselFailures.
871static void collectFailStats(const Instruction *I) {
872  switch (I->getOpcode()) {
873  default: assert (0 && "<Invalid operator> ");
874
875  // Terminators
876  case Instruction::Ret:         NumFastIselFailRet++; return;
877  case Instruction::Br:          NumFastIselFailBr++; return;
878  case Instruction::Switch:      NumFastIselFailSwitch++; return;
879  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
880  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
881  case Instruction::Resume:      NumFastIselFailResume++; return;
882  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
883
884  // Standard binary operators...
885  case Instruction::Add:  NumFastIselFailAdd++; return;
886  case Instruction::FAdd: NumFastIselFailFAdd++; return;
887  case Instruction::Sub:  NumFastIselFailSub++; return;
888  case Instruction::FSub: NumFastIselFailFSub++; return;
889  case Instruction::Mul:  NumFastIselFailMul++; return;
890  case Instruction::FMul: NumFastIselFailFMul++; return;
891  case Instruction::UDiv: NumFastIselFailUDiv++; return;
892  case Instruction::SDiv: NumFastIselFailSDiv++; return;
893  case Instruction::FDiv: NumFastIselFailFDiv++; return;
894  case Instruction::URem: NumFastIselFailURem++; return;
895  case Instruction::SRem: NumFastIselFailSRem++; return;
896  case Instruction::FRem: NumFastIselFailFRem++; return;
897
898  // Logical operators...
899  case Instruction::And: NumFastIselFailAnd++; return;
900  case Instruction::Or:  NumFastIselFailOr++; return;
901  case Instruction::Xor: NumFastIselFailXor++; return;
902
903  // Memory instructions...
904  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
905  case Instruction::Load:          NumFastIselFailLoad++; return;
906  case Instruction::Store:         NumFastIselFailStore++; return;
907  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
908  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
909  case Instruction::Fence:         NumFastIselFailFence++; return;
910  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
911
912  // Convert instructions...
913  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
914  case Instruction::ZExt:     NumFastIselFailZExt++; return;
915  case Instruction::SExt:     NumFastIselFailSExt++; return;
916  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
917  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
918  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
919  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
920  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
921  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
922  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
923  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
924  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
925
926  // Other instructions...
927  case Instruction::ICmp:           NumFastIselFailICmp++; return;
928  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
929  case Instruction::PHI:            NumFastIselFailPHI++; return;
930  case Instruction::Select:         NumFastIselFailSelect++; return;
931  case Instruction::Call:           NumFastIselFailCall++; return;
932  case Instruction::Shl:            NumFastIselFailShl++; return;
933  case Instruction::LShr:           NumFastIselFailLShr++; return;
934  case Instruction::AShr:           NumFastIselFailAShr++; return;
935  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
936  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
937  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
938  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
939  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
940  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
941  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
942  }
943}
944#endif
945
946void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
947  // Initialize the Fast-ISel state, if needed.
948  FastISel *FastIS = 0;
949  if (TM.Options.EnableFastISel)
950    FastIS = getTargetLowering()->createFastISel(*FuncInfo, LibInfo);
951
952  // Iterate over all basic blocks in the function.
953  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
954  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
955       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
956    const BasicBlock *LLVMBB = *I;
957
958    if (OptLevel != CodeGenOpt::None) {
959      bool AllPredsVisited = true;
960      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
961           PI != PE; ++PI) {
962        if (!FuncInfo->VisitedBBs.count(*PI)) {
963          AllPredsVisited = false;
964          break;
965        }
966      }
967
968      if (AllPredsVisited) {
969        for (BasicBlock::const_iterator I = LLVMBB->begin();
970             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
971          FuncInfo->ComputePHILiveOutRegInfo(PN);
972      } else {
973        for (BasicBlock::const_iterator I = LLVMBB->begin();
974             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
975          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
976      }
977
978      FuncInfo->VisitedBBs.insert(LLVMBB);
979    }
980
981    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
982    BasicBlock::const_iterator const End = LLVMBB->end();
983    BasicBlock::const_iterator BI = End;
984
985    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
986    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
987
988    // Setup an EH landing-pad block.
989    FuncInfo->ExceptionPointerVirtReg = 0;
990    FuncInfo->ExceptionSelectorVirtReg = 0;
991    if (FuncInfo->MBB->isLandingPad())
992      PrepareEHLandingPad();
993
994    // Before doing SelectionDAG ISel, see if FastISel has been requested.
995    if (FastIS) {
996      FastIS->startNewBlock();
997
998      // Emit code for any incoming arguments. This must happen before
999      // beginning FastISel on the entry block.
1000      if (LLVMBB == &Fn.getEntryBlock()) {
1001        ++NumEntryBlocks;
1002
1003        // Lower any arguments needed in this block if this is the entry block.
1004        if (!FastIS->LowerArguments()) {
1005          // Fast isel failed to lower these arguments
1006          ++NumFastIselFailLowerArguments;
1007          if (EnableFastISelAbortArgs)
1008            llvm_unreachable("FastISel didn't lower all arguments");
1009
1010          // Use SelectionDAG argument lowering
1011          LowerArguments(Fn);
1012          CurDAG->setRoot(SDB->getControlRoot());
1013          SDB->clear();
1014          CodeGenAndEmitDAG();
1015        }
1016
1017        // If we inserted any instructions at the beginning, make a note of
1018        // where they are, so we can be sure to emit subsequent instructions
1019        // after them.
1020        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1021          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1022        else
1023          FastIS->setLastLocalValue(0);
1024      }
1025
1026      unsigned NumFastIselRemaining = std::distance(Begin, End);
1027      // Do FastISel on as many instructions as possible.
1028      for (; BI != Begin; --BI) {
1029        const Instruction *Inst = llvm::prior(BI);
1030
1031        // If we no longer require this instruction, skip it.
1032        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1033          --NumFastIselRemaining;
1034          continue;
1035        }
1036
1037        // Bottom-up: reset the insert pos at the top, after any local-value
1038        // instructions.
1039        FastIS->recomputeInsertPt();
1040
1041        // Try to select the instruction with FastISel.
1042        if (FastIS->SelectInstruction(Inst)) {
1043          --NumFastIselRemaining;
1044          ++NumFastIselSuccess;
1045          // If fast isel succeeded, skip over all the folded instructions, and
1046          // then see if there is a load right before the selected instructions.
1047          // Try to fold the load if so.
1048          const Instruction *BeforeInst = Inst;
1049          while (BeforeInst != Begin) {
1050            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1051            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1052              break;
1053          }
1054          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1055              BeforeInst->hasOneUse() &&
1056              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1057            // If we succeeded, don't re-select the load.
1058            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1059            --NumFastIselRemaining;
1060            ++NumFastIselSuccess;
1061          }
1062          continue;
1063        }
1064
1065#ifndef NDEBUG
1066        if (EnableFastISelVerbose2)
1067          collectFailStats(Inst);
1068#endif
1069
1070        // Then handle certain instructions as single-LLVM-Instruction blocks.
1071        if (isa<CallInst>(Inst)) {
1072
1073          if (EnableFastISelVerbose || EnableFastISelAbort) {
1074            dbgs() << "FastISel missed call: ";
1075            Inst->dump();
1076          }
1077
1078          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1079            unsigned &R = FuncInfo->ValueMap[Inst];
1080            if (!R)
1081              R = FuncInfo->CreateRegs(Inst->getType());
1082          }
1083
1084          bool HadTailCall = false;
1085          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1086          SelectBasicBlock(Inst, BI, HadTailCall);
1087
1088          // If the call was emitted as a tail call, we're done with the block.
1089          // We also need to delete any previously emitted instructions.
1090          if (HadTailCall) {
1091            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1092            --BI;
1093            break;
1094          }
1095
1096          // Recompute NumFastIselRemaining as Selection DAG instruction
1097          // selection may have handled the call, input args, etc.
1098          unsigned RemainingNow = std::distance(Begin, BI);
1099          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1100          NumFastIselRemaining = RemainingNow;
1101          continue;
1102        }
1103
1104        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1105          // Don't abort, and use a different message for terminator misses.
1106          NumFastIselFailures += NumFastIselRemaining;
1107          if (EnableFastISelVerbose || EnableFastISelAbort) {
1108            dbgs() << "FastISel missed terminator: ";
1109            Inst->dump();
1110          }
1111        } else {
1112          NumFastIselFailures += NumFastIselRemaining;
1113          if (EnableFastISelVerbose || EnableFastISelAbort) {
1114            dbgs() << "FastISel miss: ";
1115            Inst->dump();
1116          }
1117          if (EnableFastISelAbort)
1118            // The "fast" selector couldn't handle something and bailed.
1119            // For the purpose of debugging, just abort.
1120            llvm_unreachable("FastISel didn't select the entire block");
1121        }
1122        break;
1123      }
1124
1125      FastIS->recomputeInsertPt();
1126    } else {
1127      // Lower any arguments needed in this block if this is the entry block.
1128      if (LLVMBB == &Fn.getEntryBlock()) {
1129        ++NumEntryBlocks;
1130        LowerArguments(Fn);
1131      }
1132    }
1133
1134    if (Begin != BI)
1135      ++NumDAGBlocks;
1136    else
1137      ++NumFastIselBlocks;
1138
1139    if (Begin != BI) {
1140      // Run SelectionDAG instruction selection on the remainder of the block
1141      // not handled by FastISel. If FastISel is not run, this is the entire
1142      // block.
1143      bool HadTailCall;
1144      SelectBasicBlock(Begin, BI, HadTailCall);
1145    }
1146
1147    FinishBasicBlock();
1148    FuncInfo->PHINodesToUpdate.clear();
1149  }
1150
1151  delete FastIS;
1152  SDB->clearDanglingDebugInfo();
1153  SDB->SPDescriptor.resetPerFunctionState();
1154}
1155
1156/// Given that the input MI is before a partial terminator sequence TSeq, return
1157/// true if M + TSeq also a partial terminator sequence.
1158///
1159/// A Terminator sequence is a sequence of MachineInstrs which at this point in
1160/// lowering copy vregs into physical registers, which are then passed into
1161/// terminator instructors so we can satisfy ABI constraints. A partial
1162/// terminator sequence is an improper subset of a terminator sequence (i.e. it
1163/// may be the whole terminator sequence).
1164static bool MIIsInTerminatorSequence(const MachineInstr *MI) {
1165  // If we do not have a copy or an implicit def, we return true if and only if
1166  // MI is a debug value.
1167  if (!MI->isCopy() && !MI->isImplicitDef())
1168    // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1169    // physical registers if there is debug info associated with the terminator
1170    // of our mbb. We want to include said debug info in our terminator
1171    // sequence, so we return true in that case.
1172    return MI->isDebugValue();
1173
1174  // We have left the terminator sequence if we are not doing one of the
1175  // following:
1176  //
1177  // 1. Copying a vreg into a physical register.
1178  // 2. Copying a vreg into a vreg.
1179  // 3. Defining a register via an implicit def.
1180
1181  // OPI should always be a register definition...
1182  MachineInstr::const_mop_iterator OPI = MI->operands_begin();
1183  if (!OPI->isReg() || !OPI->isDef())
1184    return false;
1185
1186  // Defining any register via an implicit def is always ok.
1187  if (MI->isImplicitDef())
1188    return true;
1189
1190  // Grab the copy source...
1191  MachineInstr::const_mop_iterator OPI2 = OPI;
1192  ++OPI2;
1193  assert(OPI2 != MI->operands_end()
1194         && "Should have a copy implying we should have 2 arguments.");
1195
1196  // Make sure that the copy dest is not a vreg when the copy source is a
1197  // physical register.
1198  if (!OPI2->isReg() ||
1199      (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1200       TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1201    return false;
1202
1203  return true;
1204}
1205
1206/// Find the split point at which to splice the end of BB into its success stack
1207/// protector check machine basic block.
1208///
1209/// On many platforms, due to ABI constraints, terminators, even before register
1210/// allocation, use physical registers. This creates an issue for us since
1211/// physical registers at this point can not travel across basic
1212/// blocks. Luckily, selectiondag always moves physical registers into vregs
1213/// when they enter functions and moves them through a sequence of copies back
1214/// into the physical registers right before the terminator creating a
1215/// ``Terminator Sequence''. This function is searching for the beginning of the
1216/// terminator sequence so that we can ensure that we splice off not just the
1217/// terminator, but additionally the copies that move the vregs into the
1218/// physical registers.
1219static MachineBasicBlock::iterator
1220FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) {
1221  MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1222  //
1223  if (SplitPoint == BB->begin())
1224    return SplitPoint;
1225
1226  MachineBasicBlock::iterator Start = BB->begin();
1227  MachineBasicBlock::iterator Previous = SplitPoint;
1228  --Previous;
1229
1230  while (MIIsInTerminatorSequence(Previous)) {
1231    SplitPoint = Previous;
1232    if (Previous == Start)
1233      break;
1234    --Previous;
1235  }
1236
1237  return SplitPoint;
1238}
1239
1240void
1241SelectionDAGISel::FinishBasicBlock() {
1242
1243  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1244               << FuncInfo->PHINodesToUpdate.size() << "\n";
1245        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1246          dbgs() << "Node " << i << " : ("
1247                 << FuncInfo->PHINodesToUpdate[i].first
1248                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1249
1250  const bool MustUpdatePHINodes = SDB->SwitchCases.empty() &&
1251                                  SDB->JTCases.empty() &&
1252                                  SDB->BitTestCases.empty();
1253
1254  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1255  // PHI nodes in successors.
1256  if (MustUpdatePHINodes) {
1257    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1258      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1259      assert(PHI->isPHI() &&
1260             "This is not a machine PHI node that we are updating!");
1261      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1262        continue;
1263      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1264    }
1265  }
1266
1267  // Handle stack protector.
1268  if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1269    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1270    MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1271
1272    // Find the split point to split the parent mbb. At the same time copy all
1273    // physical registers used in the tail of parent mbb into virtual registers
1274    // before the split point and back into physical registers after the split
1275    // point. This prevents us needing to deal with Live-ins and many other
1276    // register allocation issues caused by us splitting the parent mbb. The
1277    // register allocator will clean up said virtual copies later on.
1278    MachineBasicBlock::iterator SplitPoint =
1279      FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc());
1280
1281    // Splice the terminator of ParentMBB into SuccessMBB.
1282    SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1283                       SplitPoint,
1284                       ParentMBB->end());
1285
1286    // Add compare/jump on neq/jump to the parent BB.
1287    FuncInfo->MBB = ParentMBB;
1288    FuncInfo->InsertPt = ParentMBB->end();
1289    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1290    CurDAG->setRoot(SDB->getRoot());
1291    SDB->clear();
1292    CodeGenAndEmitDAG();
1293
1294    // CodeGen Failure MBB if we have not codegened it yet.
1295    MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1296    if (!FailureMBB->size()) {
1297      FuncInfo->MBB = FailureMBB;
1298      FuncInfo->InsertPt = FailureMBB->end();
1299      SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1300      CurDAG->setRoot(SDB->getRoot());
1301      SDB->clear();
1302      CodeGenAndEmitDAG();
1303    }
1304
1305    // Clear the Per-BB State.
1306    SDB->SPDescriptor.resetPerBBState();
1307  }
1308
1309  // If we updated PHI Nodes, return early.
1310  if (MustUpdatePHINodes)
1311    return;
1312
1313  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1314    // Lower header first, if it wasn't already lowered
1315    if (!SDB->BitTestCases[i].Emitted) {
1316      // Set the current basic block to the mbb we wish to insert the code into
1317      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1318      FuncInfo->InsertPt = FuncInfo->MBB->end();
1319      // Emit the code
1320      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1321      CurDAG->setRoot(SDB->getRoot());
1322      SDB->clear();
1323      CodeGenAndEmitDAG();
1324    }
1325
1326    uint32_t UnhandledWeight = 0;
1327    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1328      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1329
1330    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1331      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1332      // Set the current basic block to the mbb we wish to insert the code into
1333      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1334      FuncInfo->InsertPt = FuncInfo->MBB->end();
1335      // Emit the code
1336      if (j+1 != ej)
1337        SDB->visitBitTestCase(SDB->BitTestCases[i],
1338                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1339                              UnhandledWeight,
1340                              SDB->BitTestCases[i].Reg,
1341                              SDB->BitTestCases[i].Cases[j],
1342                              FuncInfo->MBB);
1343      else
1344        SDB->visitBitTestCase(SDB->BitTestCases[i],
1345                              SDB->BitTestCases[i].Default,
1346                              UnhandledWeight,
1347                              SDB->BitTestCases[i].Reg,
1348                              SDB->BitTestCases[i].Cases[j],
1349                              FuncInfo->MBB);
1350
1351
1352      CurDAG->setRoot(SDB->getRoot());
1353      SDB->clear();
1354      CodeGenAndEmitDAG();
1355    }
1356
1357    // Update PHI Nodes
1358    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1359         pi != pe; ++pi) {
1360      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1361      MachineBasicBlock *PHIBB = PHI->getParent();
1362      assert(PHI->isPHI() &&
1363             "This is not a machine PHI node that we are updating!");
1364      // This is "default" BB. We have two jumps to it. From "header" BB and
1365      // from last "case" BB.
1366      if (PHIBB == SDB->BitTestCases[i].Default)
1367        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1368           .addMBB(SDB->BitTestCases[i].Parent)
1369           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1370           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1371      // One of "cases" BB.
1372      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1373           j != ej; ++j) {
1374        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1375        if (cBB->isSuccessor(PHIBB))
1376          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1377      }
1378    }
1379  }
1380  SDB->BitTestCases.clear();
1381
1382  // If the JumpTable record is filled in, then we need to emit a jump table.
1383  // Updating the PHI nodes is tricky in this case, since we need to determine
1384  // whether the PHI is a successor of the range check MBB or the jump table MBB
1385  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1386    // Lower header first, if it wasn't already lowered
1387    if (!SDB->JTCases[i].first.Emitted) {
1388      // Set the current basic block to the mbb we wish to insert the code into
1389      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1390      FuncInfo->InsertPt = FuncInfo->MBB->end();
1391      // Emit the code
1392      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1393                                FuncInfo->MBB);
1394      CurDAG->setRoot(SDB->getRoot());
1395      SDB->clear();
1396      CodeGenAndEmitDAG();
1397    }
1398
1399    // Set the current basic block to the mbb we wish to insert the code into
1400    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1401    FuncInfo->InsertPt = FuncInfo->MBB->end();
1402    // Emit the code
1403    SDB->visitJumpTable(SDB->JTCases[i].second);
1404    CurDAG->setRoot(SDB->getRoot());
1405    SDB->clear();
1406    CodeGenAndEmitDAG();
1407
1408    // Update PHI Nodes
1409    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1410         pi != pe; ++pi) {
1411      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1412      MachineBasicBlock *PHIBB = PHI->getParent();
1413      assert(PHI->isPHI() &&
1414             "This is not a machine PHI node that we are updating!");
1415      // "default" BB. We can go there only from header BB.
1416      if (PHIBB == SDB->JTCases[i].second.Default)
1417        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1418           .addMBB(SDB->JTCases[i].first.HeaderBB);
1419      // JT BB. Just iterate over successors here
1420      if (FuncInfo->MBB->isSuccessor(PHIBB))
1421        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1422    }
1423  }
1424  SDB->JTCases.clear();
1425
1426  // If the switch block involved a branch to one of the actual successors, we
1427  // need to update PHI nodes in that block.
1428  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1429    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1430    assert(PHI->isPHI() &&
1431           "This is not a machine PHI node that we are updating!");
1432    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1433      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1434  }
1435
1436  // If we generated any switch lowering information, build and codegen any
1437  // additional DAGs necessary.
1438  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1439    // Set the current basic block to the mbb we wish to insert the code into
1440    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1441    FuncInfo->InsertPt = FuncInfo->MBB->end();
1442
1443    // Determine the unique successors.
1444    SmallVector<MachineBasicBlock *, 2> Succs;
1445    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1446    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1447      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1448
1449    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1450    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1451    CurDAG->setRoot(SDB->getRoot());
1452    SDB->clear();
1453    CodeGenAndEmitDAG();
1454
1455    // Remember the last block, now that any splitting is done, for use in
1456    // populating PHI nodes in successors.
1457    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1458
1459    // Handle any PHI nodes in successors of this chunk, as if we were coming
1460    // from the original BB before switch expansion.  Note that PHI nodes can
1461    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1462    // handle them the right number of times.
1463    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1464      FuncInfo->MBB = Succs[i];
1465      FuncInfo->InsertPt = FuncInfo->MBB->end();
1466      // FuncInfo->MBB may have been removed from the CFG if a branch was
1467      // constant folded.
1468      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1469        for (MachineBasicBlock::iterator
1470             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1471             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1472          MachineInstrBuilder PHI(*MF, MBBI);
1473          // This value for this PHI node is recorded in PHINodesToUpdate.
1474          for (unsigned pn = 0; ; ++pn) {
1475            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1476                   "Didn't find PHI entry!");
1477            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1478              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1479              break;
1480            }
1481          }
1482        }
1483      }
1484    }
1485  }
1486  SDB->SwitchCases.clear();
1487}
1488
1489
1490/// Create the scheduler. If a specific scheduler was specified
1491/// via the SchedulerRegistry, use it, otherwise select the
1492/// one preferred by the target.
1493///
1494ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1495  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1496
1497  if (!Ctor) {
1498    Ctor = ISHeuristic;
1499    RegisterScheduler::setDefault(Ctor);
1500  }
1501
1502  return Ctor(this, OptLevel);
1503}
1504
1505//===----------------------------------------------------------------------===//
1506// Helper functions used by the generated instruction selector.
1507//===----------------------------------------------------------------------===//
1508// Calls to these methods are generated by tblgen.
1509
1510/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1511/// the dag combiner simplified the 255, we still want to match.  RHS is the
1512/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1513/// specified in the .td file (e.g. 255).
1514bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1515                                    int64_t DesiredMaskS) const {
1516  const APInt &ActualMask = RHS->getAPIntValue();
1517  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1518
1519  // If the actual mask exactly matches, success!
1520  if (ActualMask == DesiredMask)
1521    return true;
1522
1523  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1524  if (ActualMask.intersects(~DesiredMask))
1525    return false;
1526
1527  // Otherwise, the DAG Combiner may have proven that the value coming in is
1528  // either already zero or is not demanded.  Check for known zero input bits.
1529  APInt NeededMask = DesiredMask & ~ActualMask;
1530  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1531    return true;
1532
1533  // TODO: check to see if missing bits are just not demanded.
1534
1535  // Otherwise, this pattern doesn't match.
1536  return false;
1537}
1538
1539/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1540/// the dag combiner simplified the 255, we still want to match.  RHS is the
1541/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1542/// specified in the .td file (e.g. 255).
1543bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1544                                   int64_t DesiredMaskS) const {
1545  const APInt &ActualMask = RHS->getAPIntValue();
1546  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1547
1548  // If the actual mask exactly matches, success!
1549  if (ActualMask == DesiredMask)
1550    return true;
1551
1552  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1553  if (ActualMask.intersects(~DesiredMask))
1554    return false;
1555
1556  // Otherwise, the DAG Combiner may have proven that the value coming in is
1557  // either already zero or is not demanded.  Check for known zero input bits.
1558  APInt NeededMask = DesiredMask & ~ActualMask;
1559
1560  APInt KnownZero, KnownOne;
1561  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1562
1563  // If all the missing bits in the or are already known to be set, match!
1564  if ((NeededMask & KnownOne) == NeededMask)
1565    return true;
1566
1567  // TODO: check to see if missing bits are just not demanded.
1568
1569  // Otherwise, this pattern doesn't match.
1570  return false;
1571}
1572
1573
1574/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1575/// by tblgen.  Others should not call it.
1576void SelectionDAGISel::
1577SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1578  std::vector<SDValue> InOps;
1579  std::swap(InOps, Ops);
1580
1581  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1582  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1583  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1584  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1585
1586  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1587  if (InOps[e-1].getValueType() == MVT::Glue)
1588    --e;  // Don't process a glue operand if it is here.
1589
1590  while (i != e) {
1591    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1592    if (!InlineAsm::isMemKind(Flags)) {
1593      // Just skip over this operand, copying the operands verbatim.
1594      Ops.insert(Ops.end(), InOps.begin()+i,
1595                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1596      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1597    } else {
1598      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1599             "Memory operand with multiple values?");
1600      // Otherwise, this is a memory operand.  Ask the target to select it.
1601      std::vector<SDValue> SelOps;
1602      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1603        report_fatal_error("Could not match memory address.  Inline asm"
1604                           " failure!");
1605
1606      // Add this to the output node.
1607      unsigned NewFlags =
1608        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1609      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1610      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1611      i += 2;
1612    }
1613  }
1614
1615  // Add the glue input back if present.
1616  if (e != InOps.size())
1617    Ops.push_back(InOps.back());
1618}
1619
1620/// findGlueUse - Return use of MVT::Glue value produced by the specified
1621/// SDNode.
1622///
1623static SDNode *findGlueUse(SDNode *N) {
1624  unsigned FlagResNo = N->getNumValues()-1;
1625  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1626    SDUse &Use = I.getUse();
1627    if (Use.getResNo() == FlagResNo)
1628      return Use.getUser();
1629  }
1630  return NULL;
1631}
1632
1633/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1634/// This function recursively traverses up the operand chain, ignoring
1635/// certain nodes.
1636static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1637                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1638                          bool IgnoreChains) {
1639  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1640  // greater than all of its (recursive) operands.  If we scan to a point where
1641  // 'use' is smaller than the node we're scanning for, then we know we will
1642  // never find it.
1643  //
1644  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1645  // happen because we scan down to newly selected nodes in the case of glue
1646  // uses.
1647  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1648    return false;
1649
1650  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1651  // won't fail if we scan it again.
1652  if (!Visited.insert(Use))
1653    return false;
1654
1655  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1656    // Ignore chain uses, they are validated by HandleMergeInputChains.
1657    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1658      continue;
1659
1660    SDNode *N = Use->getOperand(i).getNode();
1661    if (N == Def) {
1662      if (Use == ImmedUse || Use == Root)
1663        continue;  // We are not looking for immediate use.
1664      assert(N != Root);
1665      return true;
1666    }
1667
1668    // Traverse up the operand chain.
1669    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1670      return true;
1671  }
1672  return false;
1673}
1674
1675/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1676/// operand node N of U during instruction selection that starts at Root.
1677bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1678                                          SDNode *Root) const {
1679  if (OptLevel == CodeGenOpt::None) return false;
1680  return N.hasOneUse();
1681}
1682
1683/// IsLegalToFold - Returns true if the specific operand node N of
1684/// U can be folded during instruction selection that starts at Root.
1685bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1686                                     CodeGenOpt::Level OptLevel,
1687                                     bool IgnoreChains) {
1688  if (OptLevel == CodeGenOpt::None) return false;
1689
1690  // If Root use can somehow reach N through a path that that doesn't contain
1691  // U then folding N would create a cycle. e.g. In the following
1692  // diagram, Root can reach N through X. If N is folded into into Root, then
1693  // X is both a predecessor and a successor of U.
1694  //
1695  //          [N*]           //
1696  //         ^   ^           //
1697  //        /     \          //
1698  //      [U*]    [X]?       //
1699  //        ^     ^          //
1700  //         \   /           //
1701  //          \ /            //
1702  //         [Root*]         //
1703  //
1704  // * indicates nodes to be folded together.
1705  //
1706  // If Root produces glue, then it gets (even more) interesting. Since it
1707  // will be "glued" together with its glue use in the scheduler, we need to
1708  // check if it might reach N.
1709  //
1710  //          [N*]           //
1711  //         ^   ^           //
1712  //        /     \          //
1713  //      [U*]    [X]?       //
1714  //        ^       ^        //
1715  //         \       \       //
1716  //          \      |       //
1717  //         [Root*] |       //
1718  //          ^      |       //
1719  //          f      |       //
1720  //          |      /       //
1721  //         [Y]    /        //
1722  //           ^   /         //
1723  //           f  /          //
1724  //           | /           //
1725  //          [GU]           //
1726  //
1727  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1728  // (call it Fold), then X is a predecessor of GU and a successor of
1729  // Fold. But since Fold and GU are glued together, this will create
1730  // a cycle in the scheduling graph.
1731
1732  // If the node has glue, walk down the graph to the "lowest" node in the
1733  // glueged set.
1734  EVT VT = Root->getValueType(Root->getNumValues()-1);
1735  while (VT == MVT::Glue) {
1736    SDNode *GU = findGlueUse(Root);
1737    if (GU == NULL)
1738      break;
1739    Root = GU;
1740    VT = Root->getValueType(Root->getNumValues()-1);
1741
1742    // If our query node has a glue result with a use, we've walked up it.  If
1743    // the user (which has already been selected) has a chain or indirectly uses
1744    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1745    // this, we cannot ignore chains in this predicate.
1746    IgnoreChains = false;
1747  }
1748
1749
1750  SmallPtrSet<SDNode*, 16> Visited;
1751  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1752}
1753
1754SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1755  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1756  SelectInlineAsmMemoryOperands(Ops);
1757
1758  EVT VTs[] = { MVT::Other, MVT::Glue };
1759  SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
1760                                VTs, &Ops[0], Ops.size());
1761  New->setNodeId(-1);
1762  return New.getNode();
1763}
1764
1765SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1766  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1767}
1768
1769/// GetVBR - decode a vbr encoding whose top bit is set.
1770LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1771GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1772  assert(Val >= 128 && "Not a VBR");
1773  Val &= 127;  // Remove first vbr bit.
1774
1775  unsigned Shift = 7;
1776  uint64_t NextBits;
1777  do {
1778    NextBits = MatcherTable[Idx++];
1779    Val |= (NextBits&127) << Shift;
1780    Shift += 7;
1781  } while (NextBits & 128);
1782
1783  return Val;
1784}
1785
1786
1787/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1788/// interior glue and chain results to use the new glue and chain results.
1789void SelectionDAGISel::
1790UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1791                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1792                    SDValue InputGlue,
1793                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1794                    bool isMorphNodeTo) {
1795  SmallVector<SDNode*, 4> NowDeadNodes;
1796
1797  // Now that all the normal results are replaced, we replace the chain and
1798  // glue results if present.
1799  if (!ChainNodesMatched.empty()) {
1800    assert(InputChain.getNode() != 0 &&
1801           "Matched input chains but didn't produce a chain");
1802    // Loop over all of the nodes we matched that produced a chain result.
1803    // Replace all the chain results with the final chain we ended up with.
1804    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1805      SDNode *ChainNode = ChainNodesMatched[i];
1806
1807      // If this node was already deleted, don't look at it.
1808      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1809        continue;
1810
1811      // Don't replace the results of the root node if we're doing a
1812      // MorphNodeTo.
1813      if (ChainNode == NodeToMatch && isMorphNodeTo)
1814        continue;
1815
1816      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1817      if (ChainVal.getValueType() == MVT::Glue)
1818        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1819      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1820      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1821
1822      // If the node became dead and we haven't already seen it, delete it.
1823      if (ChainNode->use_empty() &&
1824          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1825        NowDeadNodes.push_back(ChainNode);
1826    }
1827  }
1828
1829  // If the result produces glue, update any glue results in the matched
1830  // pattern with the glue result.
1831  if (InputGlue.getNode() != 0) {
1832    // Handle any interior nodes explicitly marked.
1833    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1834      SDNode *FRN = GlueResultNodesMatched[i];
1835
1836      // If this node was already deleted, don't look at it.
1837      if (FRN->getOpcode() == ISD::DELETED_NODE)
1838        continue;
1839
1840      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1841             "Doesn't have a glue result");
1842      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1843                                        InputGlue);
1844
1845      // If the node became dead and we haven't already seen it, delete it.
1846      if (FRN->use_empty() &&
1847          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1848        NowDeadNodes.push_back(FRN);
1849    }
1850  }
1851
1852  if (!NowDeadNodes.empty())
1853    CurDAG->RemoveDeadNodes(NowDeadNodes);
1854
1855  DEBUG(dbgs() << "ISEL: Match complete!\n");
1856}
1857
1858enum ChainResult {
1859  CR_Simple,
1860  CR_InducesCycle,
1861  CR_LeadsToInteriorNode
1862};
1863
1864/// WalkChainUsers - Walk down the users of the specified chained node that is
1865/// part of the pattern we're matching, looking at all of the users we find.
1866/// This determines whether something is an interior node, whether we have a
1867/// non-pattern node in between two pattern nodes (which prevent folding because
1868/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1869/// between pattern nodes (in which case the TF becomes part of the pattern).
1870///
1871/// The walk we do here is guaranteed to be small because we quickly get down to
1872/// already selected nodes "below" us.
1873static ChainResult
1874WalkChainUsers(const SDNode *ChainedNode,
1875               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1876               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1877  ChainResult Result = CR_Simple;
1878
1879  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1880         E = ChainedNode->use_end(); UI != E; ++UI) {
1881    // Make sure the use is of the chain, not some other value we produce.
1882    if (UI.getUse().getValueType() != MVT::Other) continue;
1883
1884    SDNode *User = *UI;
1885
1886    if (User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1887      continue;
1888
1889    // If we see an already-selected machine node, then we've gone beyond the
1890    // pattern that we're selecting down into the already selected chunk of the
1891    // DAG.
1892    unsigned UserOpcode = User->getOpcode();
1893    if (User->isMachineOpcode() ||
1894        UserOpcode == ISD::CopyToReg ||
1895        UserOpcode == ISD::CopyFromReg ||
1896        UserOpcode == ISD::INLINEASM ||
1897        UserOpcode == ISD::EH_LABEL ||
1898        UserOpcode == ISD::LIFETIME_START ||
1899        UserOpcode == ISD::LIFETIME_END) {
1900      // If their node ID got reset to -1 then they've already been selected.
1901      // Treat them like a MachineOpcode.
1902      if (User->getNodeId() == -1)
1903        continue;
1904    }
1905
1906    // If we have a TokenFactor, we handle it specially.
1907    if (User->getOpcode() != ISD::TokenFactor) {
1908      // If the node isn't a token factor and isn't part of our pattern, then it
1909      // must be a random chained node in between two nodes we're selecting.
1910      // This happens when we have something like:
1911      //   x = load ptr
1912      //   call
1913      //   y = x+4
1914      //   store y -> ptr
1915      // Because we structurally match the load/store as a read/modify/write,
1916      // but the call is chained between them.  We cannot fold in this case
1917      // because it would induce a cycle in the graph.
1918      if (!std::count(ChainedNodesInPattern.begin(),
1919                      ChainedNodesInPattern.end(), User))
1920        return CR_InducesCycle;
1921
1922      // Otherwise we found a node that is part of our pattern.  For example in:
1923      //   x = load ptr
1924      //   y = x+4
1925      //   store y -> ptr
1926      // This would happen when we're scanning down from the load and see the
1927      // store as a user.  Record that there is a use of ChainedNode that is
1928      // part of the pattern and keep scanning uses.
1929      Result = CR_LeadsToInteriorNode;
1930      InteriorChainedNodes.push_back(User);
1931      continue;
1932    }
1933
1934    // If we found a TokenFactor, there are two cases to consider: first if the
1935    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1936    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1937    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1938    //     [Load chain]
1939    //         ^
1940    //         |
1941    //       [Load]
1942    //       ^    ^
1943    //       |    \                    DAG's like cheese
1944    //      /       \                       do you?
1945    //     /         |
1946    // [TokenFactor] [Op]
1947    //     ^          ^
1948    //     |          |
1949    //      \        /
1950    //       \      /
1951    //       [Store]
1952    //
1953    // In this case, the TokenFactor becomes part of our match and we rewrite it
1954    // as a new TokenFactor.
1955    //
1956    // To distinguish these two cases, do a recursive walk down the uses.
1957    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1958    case CR_Simple:
1959      // If the uses of the TokenFactor are just already-selected nodes, ignore
1960      // it, it is "below" our pattern.
1961      continue;
1962    case CR_InducesCycle:
1963      // If the uses of the TokenFactor lead to nodes that are not part of our
1964      // pattern that are not selected, folding would turn this into a cycle,
1965      // bail out now.
1966      return CR_InducesCycle;
1967    case CR_LeadsToInteriorNode:
1968      break;  // Otherwise, keep processing.
1969    }
1970
1971    // Okay, we know we're in the interesting interior case.  The TokenFactor
1972    // is now going to be considered part of the pattern so that we rewrite its
1973    // uses (it may have uses that are not part of the pattern) with the
1974    // ultimate chain result of the generated code.  We will also add its chain
1975    // inputs as inputs to the ultimate TokenFactor we create.
1976    Result = CR_LeadsToInteriorNode;
1977    ChainedNodesInPattern.push_back(User);
1978    InteriorChainedNodes.push_back(User);
1979    continue;
1980  }
1981
1982  return Result;
1983}
1984
1985/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1986/// operation for when the pattern matched at least one node with a chains.  The
1987/// input vector contains a list of all of the chained nodes that we match.  We
1988/// must determine if this is a valid thing to cover (i.e. matching it won't
1989/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1990/// be used as the input node chain for the generated nodes.
1991static SDValue
1992HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1993                       SelectionDAG *CurDAG) {
1994  // Walk all of the chained nodes we've matched, recursively scanning down the
1995  // users of the chain result. This adds any TokenFactor nodes that are caught
1996  // in between chained nodes to the chained and interior nodes list.
1997  SmallVector<SDNode*, 3> InteriorChainedNodes;
1998  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1999    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
2000                       InteriorChainedNodes) == CR_InducesCycle)
2001      return SDValue(); // Would induce a cycle.
2002  }
2003
2004  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
2005  // that we are interested in.  Form our input TokenFactor node.
2006  SmallVector<SDValue, 3> InputChains;
2007  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2008    // Add the input chain of this node to the InputChains list (which will be
2009    // the operands of the generated TokenFactor) if it's not an interior node.
2010    SDNode *N = ChainNodesMatched[i];
2011    if (N->getOpcode() != ISD::TokenFactor) {
2012      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
2013        continue;
2014
2015      // Otherwise, add the input chain.
2016      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
2017      assert(InChain.getValueType() == MVT::Other && "Not a chain");
2018      InputChains.push_back(InChain);
2019      continue;
2020    }
2021
2022    // If we have a token factor, we want to add all inputs of the token factor
2023    // that are not part of the pattern we're matching.
2024    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
2025      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
2026                      N->getOperand(op).getNode()))
2027        InputChains.push_back(N->getOperand(op));
2028    }
2029  }
2030
2031  if (InputChains.size() == 1)
2032    return InputChains[0];
2033  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2034                         MVT::Other, &InputChains[0], InputChains.size());
2035}
2036
2037/// MorphNode - Handle morphing a node in place for the selector.
2038SDNode *SelectionDAGISel::
2039MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2040          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
2041  // It is possible we're using MorphNodeTo to replace a node with no
2042  // normal results with one that has a normal result (or we could be
2043  // adding a chain) and the input could have glue and chains as well.
2044  // In this case we need to shift the operands down.
2045  // FIXME: This is a horrible hack and broken in obscure cases, no worse
2046  // than the old isel though.
2047  int OldGlueResultNo = -1, OldChainResultNo = -1;
2048
2049  unsigned NTMNumResults = Node->getNumValues();
2050  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2051    OldGlueResultNo = NTMNumResults-1;
2052    if (NTMNumResults != 1 &&
2053        Node->getValueType(NTMNumResults-2) == MVT::Other)
2054      OldChainResultNo = NTMNumResults-2;
2055  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2056    OldChainResultNo = NTMNumResults-1;
2057
2058  // Call the underlying SelectionDAG routine to do the transmogrification. Note
2059  // that this deletes operands of the old node that become dead.
2060  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
2061
2062  // MorphNodeTo can operate in two ways: if an existing node with the
2063  // specified operands exists, it can just return it.  Otherwise, it
2064  // updates the node in place to have the requested operands.
2065  if (Res == Node) {
2066    // If we updated the node in place, reset the node ID.  To the isel,
2067    // this should be just like a newly allocated machine node.
2068    Res->setNodeId(-1);
2069  }
2070
2071  unsigned ResNumResults = Res->getNumValues();
2072  // Move the glue if needed.
2073  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2074      (unsigned)OldGlueResultNo != ResNumResults-1)
2075    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2076                                      SDValue(Res, ResNumResults-1));
2077
2078  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2079    --ResNumResults;
2080
2081  // Move the chain reference if needed.
2082  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2083      (unsigned)OldChainResultNo != ResNumResults-1)
2084    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2085                                      SDValue(Res, ResNumResults-1));
2086
2087  // Otherwise, no replacement happened because the node already exists. Replace
2088  // Uses of the old node with the new one.
2089  if (Res != Node)
2090    CurDAG->ReplaceAllUsesWith(Node, Res);
2091
2092  return Res;
2093}
2094
2095/// CheckSame - Implements OP_CheckSame.
2096LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2097CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2098          SDValue N,
2099          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2100  // Accept if it is exactly the same as a previously recorded node.
2101  unsigned RecNo = MatcherTable[MatcherIndex++];
2102  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2103  return N == RecordedNodes[RecNo].first;
2104}
2105
2106/// CheckChildSame - Implements OP_CheckChildXSame.
2107LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2108CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2109             SDValue N,
2110             const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes,
2111             unsigned ChildNo) {
2112  if (ChildNo >= N.getNumOperands())
2113    return false;  // Match fails if out of range child #.
2114  return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2115                     RecordedNodes);
2116}
2117
2118/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2119LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2120CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2121                      const SelectionDAGISel &SDISel) {
2122  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2123}
2124
2125/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2126LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2127CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2128                   const SelectionDAGISel &SDISel, SDNode *N) {
2129  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2130}
2131
2132LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2133CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2134            SDNode *N) {
2135  uint16_t Opc = MatcherTable[MatcherIndex++];
2136  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2137  return N->getOpcode() == Opc;
2138}
2139
2140LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2141CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2142          SDValue N, const TargetLowering *TLI) {
2143  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2144  if (N.getValueType() == VT) return true;
2145
2146  // Handle the case when VT is iPTR.
2147  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy();
2148}
2149
2150LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2151CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2152               SDValue N, const TargetLowering *TLI,
2153               unsigned ChildNo) {
2154  if (ChildNo >= N.getNumOperands())
2155    return false;  // Match fails if out of range child #.
2156  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2157}
2158
2159LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2160CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2161              SDValue N) {
2162  return cast<CondCodeSDNode>(N)->get() ==
2163      (ISD::CondCode)MatcherTable[MatcherIndex++];
2164}
2165
2166LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2167CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2168               SDValue N, const TargetLowering *TLI) {
2169  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2170  if (cast<VTSDNode>(N)->getVT() == VT)
2171    return true;
2172
2173  // Handle the case when VT is iPTR.
2174  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy();
2175}
2176
2177LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2178CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2179             SDValue N) {
2180  int64_t Val = MatcherTable[MatcherIndex++];
2181  if (Val & 128)
2182    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2183
2184  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2185  return C != 0 && C->getSExtValue() == Val;
2186}
2187
2188LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2189CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2190            SDValue N, const SelectionDAGISel &SDISel) {
2191  int64_t Val = MatcherTable[MatcherIndex++];
2192  if (Val & 128)
2193    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2194
2195  if (N->getOpcode() != ISD::AND) return false;
2196
2197  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2198  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2199}
2200
2201LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2202CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2203           SDValue N, const SelectionDAGISel &SDISel) {
2204  int64_t Val = MatcherTable[MatcherIndex++];
2205  if (Val & 128)
2206    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2207
2208  if (N->getOpcode() != ISD::OR) return false;
2209
2210  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2211  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2212}
2213
2214/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2215/// scope, evaluate the current node.  If the current predicate is known to
2216/// fail, set Result=true and return anything.  If the current predicate is
2217/// known to pass, set Result=false and return the MatcherIndex to continue
2218/// with.  If the current predicate is unknown, set Result=false and return the
2219/// MatcherIndex to continue with.
2220static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2221                                       unsigned Index, SDValue N,
2222                                       bool &Result,
2223                                       const SelectionDAGISel &SDISel,
2224                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2225  switch (Table[Index++]) {
2226  default:
2227    Result = false;
2228    return Index-1;  // Could not evaluate this predicate.
2229  case SelectionDAGISel::OPC_CheckSame:
2230    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2231    return Index;
2232  case SelectionDAGISel::OPC_CheckChild0Same:
2233  case SelectionDAGISel::OPC_CheckChild1Same:
2234  case SelectionDAGISel::OPC_CheckChild2Same:
2235  case SelectionDAGISel::OPC_CheckChild3Same:
2236    Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2237                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2238    return Index;
2239  case SelectionDAGISel::OPC_CheckPatternPredicate:
2240    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2241    return Index;
2242  case SelectionDAGISel::OPC_CheckPredicate:
2243    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2244    return Index;
2245  case SelectionDAGISel::OPC_CheckOpcode:
2246    Result = !::CheckOpcode(Table, Index, N.getNode());
2247    return Index;
2248  case SelectionDAGISel::OPC_CheckType:
2249    Result = !::CheckType(Table, Index, N, SDISel.getTargetLowering());
2250    return Index;
2251  case SelectionDAGISel::OPC_CheckChild0Type:
2252  case SelectionDAGISel::OPC_CheckChild1Type:
2253  case SelectionDAGISel::OPC_CheckChild2Type:
2254  case SelectionDAGISel::OPC_CheckChild3Type:
2255  case SelectionDAGISel::OPC_CheckChild4Type:
2256  case SelectionDAGISel::OPC_CheckChild5Type:
2257  case SelectionDAGISel::OPC_CheckChild6Type:
2258  case SelectionDAGISel::OPC_CheckChild7Type:
2259    Result = !::CheckChildType(Table, Index, N, SDISel.getTargetLowering(),
2260                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2261    return Index;
2262  case SelectionDAGISel::OPC_CheckCondCode:
2263    Result = !::CheckCondCode(Table, Index, N);
2264    return Index;
2265  case SelectionDAGISel::OPC_CheckValueType:
2266    Result = !::CheckValueType(Table, Index, N, SDISel.getTargetLowering());
2267    return Index;
2268  case SelectionDAGISel::OPC_CheckInteger:
2269    Result = !::CheckInteger(Table, Index, N);
2270    return Index;
2271  case SelectionDAGISel::OPC_CheckAndImm:
2272    Result = !::CheckAndImm(Table, Index, N, SDISel);
2273    return Index;
2274  case SelectionDAGISel::OPC_CheckOrImm:
2275    Result = !::CheckOrImm(Table, Index, N, SDISel);
2276    return Index;
2277  }
2278}
2279
2280namespace {
2281
2282struct MatchScope {
2283  /// FailIndex - If this match fails, this is the index to continue with.
2284  unsigned FailIndex;
2285
2286  /// NodeStack - The node stack when the scope was formed.
2287  SmallVector<SDValue, 4> NodeStack;
2288
2289  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2290  unsigned NumRecordedNodes;
2291
2292  /// NumMatchedMemRefs - The number of matched memref entries.
2293  unsigned NumMatchedMemRefs;
2294
2295  /// InputChain/InputGlue - The current chain/glue
2296  SDValue InputChain, InputGlue;
2297
2298  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2299  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2300};
2301
2302}
2303
2304SDNode *SelectionDAGISel::
2305SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2306                 unsigned TableSize) {
2307  // FIXME: Should these even be selected?  Handle these cases in the caller?
2308  switch (NodeToMatch->getOpcode()) {
2309  default:
2310    break;
2311  case ISD::EntryToken:       // These nodes remain the same.
2312  case ISD::BasicBlock:
2313  case ISD::Register:
2314  case ISD::RegisterMask:
2315  //case ISD::VALUETYPE:
2316  //case ISD::CONDCODE:
2317  case ISD::HANDLENODE:
2318  case ISD::MDNODE_SDNODE:
2319  case ISD::TargetConstant:
2320  case ISD::TargetConstantFP:
2321  case ISD::TargetConstantPool:
2322  case ISD::TargetFrameIndex:
2323  case ISD::TargetExternalSymbol:
2324  case ISD::TargetBlockAddress:
2325  case ISD::TargetJumpTable:
2326  case ISD::TargetGlobalTLSAddress:
2327  case ISD::TargetGlobalAddress:
2328  case ISD::TokenFactor:
2329  case ISD::CopyFromReg:
2330  case ISD::CopyToReg:
2331  case ISD::EH_LABEL:
2332  case ISD::LIFETIME_START:
2333  case ISD::LIFETIME_END:
2334    NodeToMatch->setNodeId(-1); // Mark selected.
2335    return 0;
2336  case ISD::AssertSext:
2337  case ISD::AssertZext:
2338    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2339                                      NodeToMatch->getOperand(0));
2340    return 0;
2341  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2342  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2343  }
2344
2345  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2346
2347  // Set up the node stack with NodeToMatch as the only node on the stack.
2348  SmallVector<SDValue, 8> NodeStack;
2349  SDValue N = SDValue(NodeToMatch, 0);
2350  NodeStack.push_back(N);
2351
2352  // MatchScopes - Scopes used when matching, if a match failure happens, this
2353  // indicates where to continue checking.
2354  SmallVector<MatchScope, 8> MatchScopes;
2355
2356  // RecordedNodes - This is the set of nodes that have been recorded by the
2357  // state machine.  The second value is the parent of the node, or null if the
2358  // root is recorded.
2359  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2360
2361  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2362  // pattern.
2363  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2364
2365  // These are the current input chain and glue for use when generating nodes.
2366  // Various Emit operations change these.  For example, emitting a copytoreg
2367  // uses and updates these.
2368  SDValue InputChain, InputGlue;
2369
2370  // ChainNodesMatched - If a pattern matches nodes that have input/output
2371  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2372  // which ones they are.  The result is captured into this list so that we can
2373  // update the chain results when the pattern is complete.
2374  SmallVector<SDNode*, 3> ChainNodesMatched;
2375  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2376
2377  DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2378        NodeToMatch->dump(CurDAG);
2379        dbgs() << '\n');
2380
2381  // Determine where to start the interpreter.  Normally we start at opcode #0,
2382  // but if the state machine starts with an OPC_SwitchOpcode, then we
2383  // accelerate the first lookup (which is guaranteed to be hot) with the
2384  // OpcodeOffset table.
2385  unsigned MatcherIndex = 0;
2386
2387  if (!OpcodeOffset.empty()) {
2388    // Already computed the OpcodeOffset table, just index into it.
2389    if (N.getOpcode() < OpcodeOffset.size())
2390      MatcherIndex = OpcodeOffset[N.getOpcode()];
2391    DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2392
2393  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2394    // Otherwise, the table isn't computed, but the state machine does start
2395    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2396    // is the first time we're selecting an instruction.
2397    unsigned Idx = 1;
2398    while (1) {
2399      // Get the size of this case.
2400      unsigned CaseSize = MatcherTable[Idx++];
2401      if (CaseSize & 128)
2402        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2403      if (CaseSize == 0) break;
2404
2405      // Get the opcode, add the index to the table.
2406      uint16_t Opc = MatcherTable[Idx++];
2407      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2408      if (Opc >= OpcodeOffset.size())
2409        OpcodeOffset.resize((Opc+1)*2);
2410      OpcodeOffset[Opc] = Idx;
2411      Idx += CaseSize;
2412    }
2413
2414    // Okay, do the lookup for the first opcode.
2415    if (N.getOpcode() < OpcodeOffset.size())
2416      MatcherIndex = OpcodeOffset[N.getOpcode()];
2417  }
2418
2419  while (1) {
2420    assert(MatcherIndex < TableSize && "Invalid index");
2421#ifndef NDEBUG
2422    unsigned CurrentOpcodeIndex = MatcherIndex;
2423#endif
2424    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2425    switch (Opcode) {
2426    case OPC_Scope: {
2427      // Okay, the semantics of this operation are that we should push a scope
2428      // then evaluate the first child.  However, pushing a scope only to have
2429      // the first check fail (which then pops it) is inefficient.  If we can
2430      // determine immediately that the first check (or first several) will
2431      // immediately fail, don't even bother pushing a scope for them.
2432      unsigned FailIndex;
2433
2434      while (1) {
2435        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2436        if (NumToSkip & 128)
2437          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2438        // Found the end of the scope with no match.
2439        if (NumToSkip == 0) {
2440          FailIndex = 0;
2441          break;
2442        }
2443
2444        FailIndex = MatcherIndex+NumToSkip;
2445
2446        unsigned MatcherIndexOfPredicate = MatcherIndex;
2447        (void)MatcherIndexOfPredicate; // silence warning.
2448
2449        // If we can't evaluate this predicate without pushing a scope (e.g. if
2450        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2451        // push the scope and evaluate the full predicate chain.
2452        bool Result;
2453        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2454                                              Result, *this, RecordedNodes);
2455        if (!Result)
2456          break;
2457
2458        DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
2459                     << "index " << MatcherIndexOfPredicate
2460                     << ", continuing at " << FailIndex << "\n");
2461        ++NumDAGIselRetries;
2462
2463        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2464        // move to the next case.
2465        MatcherIndex = FailIndex;
2466      }
2467
2468      // If the whole scope failed to match, bail.
2469      if (FailIndex == 0) break;
2470
2471      // Push a MatchScope which indicates where to go if the first child fails
2472      // to match.
2473      MatchScope NewEntry;
2474      NewEntry.FailIndex = FailIndex;
2475      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2476      NewEntry.NumRecordedNodes = RecordedNodes.size();
2477      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2478      NewEntry.InputChain = InputChain;
2479      NewEntry.InputGlue = InputGlue;
2480      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2481      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2482      MatchScopes.push_back(NewEntry);
2483      continue;
2484    }
2485    case OPC_RecordNode: {
2486      // Remember this node, it may end up being an operand in the pattern.
2487      SDNode *Parent = 0;
2488      if (NodeStack.size() > 1)
2489        Parent = NodeStack[NodeStack.size()-2].getNode();
2490      RecordedNodes.push_back(std::make_pair(N, Parent));
2491      continue;
2492    }
2493
2494    case OPC_RecordChild0: case OPC_RecordChild1:
2495    case OPC_RecordChild2: case OPC_RecordChild3:
2496    case OPC_RecordChild4: case OPC_RecordChild5:
2497    case OPC_RecordChild6: case OPC_RecordChild7: {
2498      unsigned ChildNo = Opcode-OPC_RecordChild0;
2499      if (ChildNo >= N.getNumOperands())
2500        break;  // Match fails if out of range child #.
2501
2502      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2503                                             N.getNode()));
2504      continue;
2505    }
2506    case OPC_RecordMemRef:
2507      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2508      continue;
2509
2510    case OPC_CaptureGlueInput:
2511      // If the current node has an input glue, capture it in InputGlue.
2512      if (N->getNumOperands() != 0 &&
2513          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2514        InputGlue = N->getOperand(N->getNumOperands()-1);
2515      continue;
2516
2517    case OPC_MoveChild: {
2518      unsigned ChildNo = MatcherTable[MatcherIndex++];
2519      if (ChildNo >= N.getNumOperands())
2520        break;  // Match fails if out of range child #.
2521      N = N.getOperand(ChildNo);
2522      NodeStack.push_back(N);
2523      continue;
2524    }
2525
2526    case OPC_MoveParent:
2527      // Pop the current node off the NodeStack.
2528      NodeStack.pop_back();
2529      assert(!NodeStack.empty() && "Node stack imbalance!");
2530      N = NodeStack.back();
2531      continue;
2532
2533    case OPC_CheckSame:
2534      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2535      continue;
2536
2537    case OPC_CheckChild0Same: case OPC_CheckChild1Same:
2538    case OPC_CheckChild2Same: case OPC_CheckChild3Same:
2539      if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
2540                            Opcode-OPC_CheckChild0Same))
2541        break;
2542      continue;
2543
2544    case OPC_CheckPatternPredicate:
2545      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2546      continue;
2547    case OPC_CheckPredicate:
2548      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2549                                N.getNode()))
2550        break;
2551      continue;
2552    case OPC_CheckComplexPat: {
2553      unsigned CPNum = MatcherTable[MatcherIndex++];
2554      unsigned RecNo = MatcherTable[MatcherIndex++];
2555      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2556      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2557                               RecordedNodes[RecNo].first, CPNum,
2558                               RecordedNodes))
2559        break;
2560      continue;
2561    }
2562    case OPC_CheckOpcode:
2563      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2564      continue;
2565
2566    case OPC_CheckType:
2567      if (!::CheckType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2568        break;
2569      continue;
2570
2571    case OPC_SwitchOpcode: {
2572      unsigned CurNodeOpcode = N.getOpcode();
2573      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2574      unsigned CaseSize;
2575      while (1) {
2576        // Get the size of this case.
2577        CaseSize = MatcherTable[MatcherIndex++];
2578        if (CaseSize & 128)
2579          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2580        if (CaseSize == 0) break;
2581
2582        uint16_t Opc = MatcherTable[MatcherIndex++];
2583        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2584
2585        // If the opcode matches, then we will execute this case.
2586        if (CurNodeOpcode == Opc)
2587          break;
2588
2589        // Otherwise, skip over this case.
2590        MatcherIndex += CaseSize;
2591      }
2592
2593      // If no cases matched, bail out.
2594      if (CaseSize == 0) break;
2595
2596      // Otherwise, execute the case we found.
2597      DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
2598                   << " to " << MatcherIndex << "\n");
2599      continue;
2600    }
2601
2602    case OPC_SwitchType: {
2603      MVT CurNodeVT = N.getSimpleValueType();
2604      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2605      unsigned CaseSize;
2606      while (1) {
2607        // Get the size of this case.
2608        CaseSize = MatcherTable[MatcherIndex++];
2609        if (CaseSize & 128)
2610          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2611        if (CaseSize == 0) break;
2612
2613        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2614        if (CaseVT == MVT::iPTR)
2615          CaseVT = getTargetLowering()->getPointerTy();
2616
2617        // If the VT matches, then we will execute this case.
2618        if (CurNodeVT == CaseVT)
2619          break;
2620
2621        // Otherwise, skip over this case.
2622        MatcherIndex += CaseSize;
2623      }
2624
2625      // If no cases matched, bail out.
2626      if (CaseSize == 0) break;
2627
2628      // Otherwise, execute the case we found.
2629      DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2630                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2631      continue;
2632    }
2633    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2634    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2635    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2636    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2637      if (!::CheckChildType(MatcherTable, MatcherIndex, N, getTargetLowering(),
2638                            Opcode-OPC_CheckChild0Type))
2639        break;
2640      continue;
2641    case OPC_CheckCondCode:
2642      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2643      continue;
2644    case OPC_CheckValueType:
2645      if (!::CheckValueType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2646        break;
2647      continue;
2648    case OPC_CheckInteger:
2649      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2650      continue;
2651    case OPC_CheckAndImm:
2652      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2653      continue;
2654    case OPC_CheckOrImm:
2655      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2656      continue;
2657
2658    case OPC_CheckFoldableChainNode: {
2659      assert(NodeStack.size() != 1 && "No parent node");
2660      // Verify that all intermediate nodes between the root and this one have
2661      // a single use.
2662      bool HasMultipleUses = false;
2663      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2664        if (!NodeStack[i].hasOneUse()) {
2665          HasMultipleUses = true;
2666          break;
2667        }
2668      if (HasMultipleUses) break;
2669
2670      // Check to see that the target thinks this is profitable to fold and that
2671      // we can fold it without inducing cycles in the graph.
2672      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2673                              NodeToMatch) ||
2674          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2675                         NodeToMatch, OptLevel,
2676                         true/*We validate our own chains*/))
2677        break;
2678
2679      continue;
2680    }
2681    case OPC_EmitInteger: {
2682      MVT::SimpleValueType VT =
2683        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2684      int64_t Val = MatcherTable[MatcherIndex++];
2685      if (Val & 128)
2686        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2687      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2688                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2689      continue;
2690    }
2691    case OPC_EmitRegister: {
2692      MVT::SimpleValueType VT =
2693        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2694      unsigned RegNo = MatcherTable[MatcherIndex++];
2695      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2696                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2697      continue;
2698    }
2699    case OPC_EmitRegister2: {
2700      // For targets w/ more than 256 register names, the register enum
2701      // values are stored in two bytes in the matcher table (just like
2702      // opcodes).
2703      MVT::SimpleValueType VT =
2704        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2705      unsigned RegNo = MatcherTable[MatcherIndex++];
2706      RegNo |= MatcherTable[MatcherIndex++] << 8;
2707      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2708                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2709      continue;
2710    }
2711
2712    case OPC_EmitConvertToTarget:  {
2713      // Convert from IMM/FPIMM to target version.
2714      unsigned RecNo = MatcherTable[MatcherIndex++];
2715      assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
2716      SDValue Imm = RecordedNodes[RecNo].first;
2717
2718      if (Imm->getOpcode() == ISD::Constant) {
2719        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
2720        Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
2721      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2722        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2723        Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
2724      }
2725
2726      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2727      continue;
2728    }
2729
2730    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2731    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2732      // These are space-optimized forms of OPC_EmitMergeInputChains.
2733      assert(InputChain.getNode() == 0 &&
2734             "EmitMergeInputChains should be the first chain producing node");
2735      assert(ChainNodesMatched.empty() &&
2736             "Should only have one EmitMergeInputChains per match");
2737
2738      // Read all of the chained nodes.
2739      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2740      assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
2741      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2742
2743      // FIXME: What if other value results of the node have uses not matched
2744      // by this pattern?
2745      if (ChainNodesMatched.back() != NodeToMatch &&
2746          !RecordedNodes[RecNo].first.hasOneUse()) {
2747        ChainNodesMatched.clear();
2748        break;
2749      }
2750
2751      // Merge the input chains if they are not intra-pattern references.
2752      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2753
2754      if (InputChain.getNode() == 0)
2755        break;  // Failed to merge.
2756      continue;
2757    }
2758
2759    case OPC_EmitMergeInputChains: {
2760      assert(InputChain.getNode() == 0 &&
2761             "EmitMergeInputChains should be the first chain producing node");
2762      // This node gets a list of nodes we matched in the input that have
2763      // chains.  We want to token factor all of the input chains to these nodes
2764      // together.  However, if any of the input chains is actually one of the
2765      // nodes matched in this pattern, then we have an intra-match reference.
2766      // Ignore these because the newly token factored chain should not refer to
2767      // the old nodes.
2768      unsigned NumChains = MatcherTable[MatcherIndex++];
2769      assert(NumChains != 0 && "Can't TF zero chains");
2770
2771      assert(ChainNodesMatched.empty() &&
2772             "Should only have one EmitMergeInputChains per match");
2773
2774      // Read all of the chained nodes.
2775      for (unsigned i = 0; i != NumChains; ++i) {
2776        unsigned RecNo = MatcherTable[MatcherIndex++];
2777        assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
2778        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2779
2780        // FIXME: What if other value results of the node have uses not matched
2781        // by this pattern?
2782        if (ChainNodesMatched.back() != NodeToMatch &&
2783            !RecordedNodes[RecNo].first.hasOneUse()) {
2784          ChainNodesMatched.clear();
2785          break;
2786        }
2787      }
2788
2789      // If the inner loop broke out, the match fails.
2790      if (ChainNodesMatched.empty())
2791        break;
2792
2793      // Merge the input chains if they are not intra-pattern references.
2794      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2795
2796      if (InputChain.getNode() == 0)
2797        break;  // Failed to merge.
2798
2799      continue;
2800    }
2801
2802    case OPC_EmitCopyToReg: {
2803      unsigned RecNo = MatcherTable[MatcherIndex++];
2804      assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
2805      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2806
2807      if (InputChain.getNode() == 0)
2808        InputChain = CurDAG->getEntryNode();
2809
2810      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
2811                                        DestPhysReg, RecordedNodes[RecNo].first,
2812                                        InputGlue);
2813
2814      InputGlue = InputChain.getValue(1);
2815      continue;
2816    }
2817
2818    case OPC_EmitNodeXForm: {
2819      unsigned XFormNo = MatcherTable[MatcherIndex++];
2820      unsigned RecNo = MatcherTable[MatcherIndex++];
2821      assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
2822      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2823      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2824      continue;
2825    }
2826
2827    case OPC_EmitNode:
2828    case OPC_MorphNodeTo: {
2829      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2830      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2831      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2832      // Get the result VT list.
2833      unsigned NumVTs = MatcherTable[MatcherIndex++];
2834      SmallVector<EVT, 4> VTs;
2835      for (unsigned i = 0; i != NumVTs; ++i) {
2836        MVT::SimpleValueType VT =
2837          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2838        if (VT == MVT::iPTR) VT = getTargetLowering()->getPointerTy().SimpleTy;
2839        VTs.push_back(VT);
2840      }
2841
2842      if (EmitNodeInfo & OPFL_Chain)
2843        VTs.push_back(MVT::Other);
2844      if (EmitNodeInfo & OPFL_GlueOutput)
2845        VTs.push_back(MVT::Glue);
2846
2847      // This is hot code, so optimize the two most common cases of 1 and 2
2848      // results.
2849      SDVTList VTList;
2850      if (VTs.size() == 1)
2851        VTList = CurDAG->getVTList(VTs[0]);
2852      else if (VTs.size() == 2)
2853        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2854      else
2855        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2856
2857      // Get the operand list.
2858      unsigned NumOps = MatcherTable[MatcherIndex++];
2859      SmallVector<SDValue, 8> Ops;
2860      for (unsigned i = 0; i != NumOps; ++i) {
2861        unsigned RecNo = MatcherTable[MatcherIndex++];
2862        if (RecNo & 128)
2863          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2864
2865        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2866        Ops.push_back(RecordedNodes[RecNo].first);
2867      }
2868
2869      // If there are variadic operands to add, handle them now.
2870      if (EmitNodeInfo & OPFL_VariadicInfo) {
2871        // Determine the start index to copy from.
2872        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2873        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2874        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2875               "Invalid variadic node");
2876        // Copy all of the variadic operands, not including a potential glue
2877        // input.
2878        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2879             i != e; ++i) {
2880          SDValue V = NodeToMatch->getOperand(i);
2881          if (V.getValueType() == MVT::Glue) break;
2882          Ops.push_back(V);
2883        }
2884      }
2885
2886      // If this has chain/glue inputs, add them.
2887      if (EmitNodeInfo & OPFL_Chain)
2888        Ops.push_back(InputChain);
2889      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2890        Ops.push_back(InputGlue);
2891
2892      // Create the node.
2893      SDNode *Res = 0;
2894      if (Opcode != OPC_MorphNodeTo) {
2895        // If this is a normal EmitNode command, just create the new node and
2896        // add the results to the RecordedNodes list.
2897        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
2898                                     VTList, Ops);
2899
2900        // Add all the non-glue/non-chain results to the RecordedNodes list.
2901        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2902          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2903          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2904                                                             (SDNode*) 0));
2905        }
2906
2907      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2908        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2909                        EmitNodeInfo);
2910      } else {
2911        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2912        // We will visit the equivalent node later.
2913        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2914        return 0;
2915      }
2916
2917      // If the node had chain/glue results, update our notion of the current
2918      // chain and glue.
2919      if (EmitNodeInfo & OPFL_GlueOutput) {
2920        InputGlue = SDValue(Res, VTs.size()-1);
2921        if (EmitNodeInfo & OPFL_Chain)
2922          InputChain = SDValue(Res, VTs.size()-2);
2923      } else if (EmitNodeInfo & OPFL_Chain)
2924        InputChain = SDValue(Res, VTs.size()-1);
2925
2926      // If the OPFL_MemRefs glue is set on this node, slap all of the
2927      // accumulated memrefs onto it.
2928      //
2929      // FIXME: This is vastly incorrect for patterns with multiple outputs
2930      // instructions that access memory and for ComplexPatterns that match
2931      // loads.
2932      if (EmitNodeInfo & OPFL_MemRefs) {
2933        // Only attach load or store memory operands if the generated
2934        // instruction may load or store.
2935        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2936        bool mayLoad = MCID.mayLoad();
2937        bool mayStore = MCID.mayStore();
2938
2939        unsigned NumMemRefs = 0;
2940        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
2941               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2942          if ((*I)->isLoad()) {
2943            if (mayLoad)
2944              ++NumMemRefs;
2945          } else if ((*I)->isStore()) {
2946            if (mayStore)
2947              ++NumMemRefs;
2948          } else {
2949            ++NumMemRefs;
2950          }
2951        }
2952
2953        MachineSDNode::mmo_iterator MemRefs =
2954          MF->allocateMemRefsArray(NumMemRefs);
2955
2956        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2957        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
2958               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2959          if ((*I)->isLoad()) {
2960            if (mayLoad)
2961              *MemRefsPos++ = *I;
2962          } else if ((*I)->isStore()) {
2963            if (mayStore)
2964              *MemRefsPos++ = *I;
2965          } else {
2966            *MemRefsPos++ = *I;
2967          }
2968        }
2969
2970        cast<MachineSDNode>(Res)
2971          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2972      }
2973
2974      DEBUG(dbgs() << "  "
2975                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2976                   << " node: "; Res->dump(CurDAG); dbgs() << "\n");
2977
2978      // If this was a MorphNodeTo then we're completely done!
2979      if (Opcode == OPC_MorphNodeTo) {
2980        // Update chain and glue uses.
2981        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2982                            InputGlue, GlueResultNodesMatched, true);
2983        return Res;
2984      }
2985
2986      continue;
2987    }
2988
2989    case OPC_MarkGlueResults: {
2990      unsigned NumNodes = MatcherTable[MatcherIndex++];
2991
2992      // Read and remember all the glue-result nodes.
2993      for (unsigned i = 0; i != NumNodes; ++i) {
2994        unsigned RecNo = MatcherTable[MatcherIndex++];
2995        if (RecNo & 128)
2996          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2997
2998        assert(RecNo < RecordedNodes.size() && "Invalid MarkGlueResults");
2999        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3000      }
3001      continue;
3002    }
3003
3004    case OPC_CompleteMatch: {
3005      // The match has been completed, and any new nodes (if any) have been
3006      // created.  Patch up references to the matched dag to use the newly
3007      // created nodes.
3008      unsigned NumResults = MatcherTable[MatcherIndex++];
3009
3010      for (unsigned i = 0; i != NumResults; ++i) {
3011        unsigned ResSlot = MatcherTable[MatcherIndex++];
3012        if (ResSlot & 128)
3013          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3014
3015        assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3016        SDValue Res = RecordedNodes[ResSlot].first;
3017
3018        assert(i < NodeToMatch->getNumValues() &&
3019               NodeToMatch->getValueType(i) != MVT::Other &&
3020               NodeToMatch->getValueType(i) != MVT::Glue &&
3021               "Invalid number of results to complete!");
3022        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3023                NodeToMatch->getValueType(i) == MVT::iPTR ||
3024                Res.getValueType() == MVT::iPTR ||
3025                NodeToMatch->getValueType(i).getSizeInBits() ==
3026                    Res.getValueType().getSizeInBits()) &&
3027               "invalid replacement");
3028        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
3029      }
3030
3031      // If the root node defines glue, add it to the glue nodes to update list.
3032      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
3033        GlueResultNodesMatched.push_back(NodeToMatch);
3034
3035      // Update chain and glue uses.
3036      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3037                          InputGlue, GlueResultNodesMatched, false);
3038
3039      assert(NodeToMatch->use_empty() &&
3040             "Didn't replace all uses of the node?");
3041
3042      // FIXME: We just return here, which interacts correctly with SelectRoot
3043      // above.  We should fix this to not return an SDNode* anymore.
3044      return 0;
3045    }
3046    }
3047
3048    // If the code reached this point, then the match failed.  See if there is
3049    // another child to try in the current 'Scope', otherwise pop it until we
3050    // find a case to check.
3051    DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
3052    ++NumDAGIselRetries;
3053    while (1) {
3054      if (MatchScopes.empty()) {
3055        CannotYetSelect(NodeToMatch);
3056        return 0;
3057      }
3058
3059      // Restore the interpreter state back to the point where the scope was
3060      // formed.
3061      MatchScope &LastScope = MatchScopes.back();
3062      RecordedNodes.resize(LastScope.NumRecordedNodes);
3063      NodeStack.clear();
3064      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3065      N = NodeStack.back();
3066
3067      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3068        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3069      MatcherIndex = LastScope.FailIndex;
3070
3071      DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3072
3073      InputChain = LastScope.InputChain;
3074      InputGlue = LastScope.InputGlue;
3075      if (!LastScope.HasChainNodesMatched)
3076        ChainNodesMatched.clear();
3077      if (!LastScope.HasGlueResultNodesMatched)
3078        GlueResultNodesMatched.clear();
3079
3080      // Check to see what the offset is at the new MatcherIndex.  If it is zero
3081      // we have reached the end of this scope, otherwise we have another child
3082      // in the current scope to try.
3083      unsigned NumToSkip = MatcherTable[MatcherIndex++];
3084      if (NumToSkip & 128)
3085        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3086
3087      // If we have another child in this scope to match, update FailIndex and
3088      // try it.
3089      if (NumToSkip != 0) {
3090        LastScope.FailIndex = MatcherIndex+NumToSkip;
3091        break;
3092      }
3093
3094      // End of this scope, pop it and try the next child in the containing
3095      // scope.
3096      MatchScopes.pop_back();
3097    }
3098  }
3099}
3100
3101
3102
3103void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3104  std::string msg;
3105  raw_string_ostream Msg(msg);
3106  Msg << "Cannot select: ";
3107
3108  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3109      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3110      N->getOpcode() != ISD::INTRINSIC_VOID) {
3111    N->printrFull(Msg, CurDAG);
3112    Msg << "\nIn function: " << MF->getName();
3113  } else {
3114    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3115    unsigned iid =
3116      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3117    if (iid < Intrinsic::num_intrinsics)
3118      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3119    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3120      Msg << "target intrinsic %" << TII->getName(iid);
3121    else
3122      Msg << "unknown intrinsic #" << iid;
3123  }
3124  report_fatal_error(Msg.str());
3125}
3126
3127char SelectionDAGISel::ID = 0;
3128