SelectionDAGISel.cpp revision 5bd0767a040eae0d8f153c46238849e64e166018
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/TargetTransformInfo.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/FunctionLoweringInfo.h"
25#include "llvm/CodeGen/GCMetadata.h"
26#include "llvm/CodeGen/GCStrategy.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
33#include "llvm/CodeGen/SchedulerRegistry.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/DebugInfo.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/InlineAsm.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/Intrinsics.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/IR/Module.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLibraryInfo.h"
52#include "llvm/Target/TargetLowering.h"
53#include "llvm/Target/TargetMachine.h"
54#include "llvm/Target/TargetOptions.h"
55#include "llvm/Target/TargetRegisterInfo.h"
56#include "llvm/Target/TargetSubtargetInfo.h"
57#include "llvm/Transforms/Utils/BasicBlockUtils.h"
58#include <algorithm>
59using namespace llvm;
60
61STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
62STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
63STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
64STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
65STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
66STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
67STATISTIC(NumFastIselFailLowerArguments,
68          "Number of entry blocks where fast isel failed to lower arguments");
69
70#ifndef NDEBUG
71static cl::opt<bool>
72EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
73          cl::desc("Enable extra verbose messages in the \"fast\" "
74                   "instruction selector"));
75
76  // Terminators
77STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
78STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
79STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
80STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
81STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
82STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
83STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
84
85  // Standard binary operators...
86STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
87STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
88STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
89STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
90STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
91STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
92STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
93STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
94STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
95STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
96STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
97STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
98
99  // Logical operators...
100STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
101STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
102STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
103
104  // Memory instructions...
105STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
106STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
107STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
108STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
109STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
110STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
111STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
112
113  // Convert instructions...
114STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
115STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
116STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
117STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
118STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
119STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
120STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
121STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
122STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
123STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
124STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
125STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
126
127  // Other instructions...
128STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
129STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
130STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
131STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
132STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
133STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
134STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
135STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
136STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
137STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
138STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
139STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
140STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
141STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
142STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
143#endif
144
145static cl::opt<bool>
146EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
147          cl::desc("Enable verbose messages in the \"fast\" "
148                   "instruction selector"));
149static cl::opt<bool>
150EnableFastISelAbort("fast-isel-abort", cl::Hidden,
151          cl::desc("Enable abort calls when \"fast\" instruction selection "
152                   "fails to lower an instruction"));
153static cl::opt<bool>
154EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
155          cl::desc("Enable abort calls when \"fast\" instruction selection "
156                   "fails to lower a formal argument"));
157
158static cl::opt<bool>
159UseMBPI("use-mbpi",
160        cl::desc("use Machine Branch Probability Info"),
161        cl::init(true), cl::Hidden);
162
163#ifndef NDEBUG
164static cl::opt<bool>
165ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
166          cl::desc("Pop up a window to show dags before the first "
167                   "dag combine pass"));
168static cl::opt<bool>
169ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
170          cl::desc("Pop up a window to show dags before legalize types"));
171static cl::opt<bool>
172ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
173          cl::desc("Pop up a window to show dags before legalize"));
174static cl::opt<bool>
175ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
176          cl::desc("Pop up a window to show dags before the second "
177                   "dag combine pass"));
178static cl::opt<bool>
179ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
180          cl::desc("Pop up a window to show dags before the post legalize types"
181                   " dag combine pass"));
182static cl::opt<bool>
183ViewISelDAGs("view-isel-dags", cl::Hidden,
184          cl::desc("Pop up a window to show isel dags as they are selected"));
185static cl::opt<bool>
186ViewSchedDAGs("view-sched-dags", cl::Hidden,
187          cl::desc("Pop up a window to show sched dags as they are processed"));
188static cl::opt<bool>
189ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
190      cl::desc("Pop up a window to show SUnit dags after they are processed"));
191#else
192static const bool ViewDAGCombine1 = false,
193                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
194                  ViewDAGCombine2 = false,
195                  ViewDAGCombineLT = false,
196                  ViewISelDAGs = false, ViewSchedDAGs = false,
197                  ViewSUnitDAGs = false;
198#endif
199
200//===---------------------------------------------------------------------===//
201///
202/// RegisterScheduler class - Track the registration of instruction schedulers.
203///
204//===---------------------------------------------------------------------===//
205MachinePassRegistry RegisterScheduler::Registry;
206
207//===---------------------------------------------------------------------===//
208///
209/// ISHeuristic command line option for instruction schedulers.
210///
211//===---------------------------------------------------------------------===//
212static cl::opt<RegisterScheduler::FunctionPassCtor, false,
213               RegisterPassParser<RegisterScheduler> >
214ISHeuristic("pre-RA-sched",
215            cl::init(&createDefaultScheduler),
216            cl::desc("Instruction schedulers available (before register"
217                     " allocation):"));
218
219static RegisterScheduler
220defaultListDAGScheduler("default", "Best scheduler for the target",
221                        createDefaultScheduler);
222
223namespace llvm {
224  //===--------------------------------------------------------------------===//
225  /// createDefaultScheduler - This creates an instruction scheduler appropriate
226  /// for the target.
227  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
228                                             CodeGenOpt::Level OptLevel) {
229    const TargetLowering &TLI = IS->getTargetLowering();
230    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
231
232    if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() ||
233        TLI.getSchedulingPreference() == Sched::Source)
234      return createSourceListDAGScheduler(IS, OptLevel);
235    if (TLI.getSchedulingPreference() == Sched::RegPressure)
236      return createBURRListDAGScheduler(IS, OptLevel);
237    if (TLI.getSchedulingPreference() == Sched::Hybrid)
238      return createHybridListDAGScheduler(IS, OptLevel);
239    if (TLI.getSchedulingPreference() == Sched::VLIW)
240      return createVLIWDAGScheduler(IS, OptLevel);
241    assert(TLI.getSchedulingPreference() == Sched::ILP &&
242           "Unknown sched type!");
243    return createILPListDAGScheduler(IS, OptLevel);
244  }
245}
246
247// EmitInstrWithCustomInserter - This method should be implemented by targets
248// that mark instructions with the 'usesCustomInserter' flag.  These
249// instructions are special in various ways, which require special support to
250// insert.  The specified MachineInstr is created but not inserted into any
251// basic blocks, and this method is called to expand it into a sequence of
252// instructions, potentially also creating new basic blocks and control flow.
253// When new basic blocks are inserted and the edges from MBB to its successors
254// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
255// DenseMap.
256MachineBasicBlock *
257TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
258                                            MachineBasicBlock *MBB) const {
259#ifndef NDEBUG
260  dbgs() << "If a target marks an instruction with "
261          "'usesCustomInserter', it must implement "
262          "TargetLowering::EmitInstrWithCustomInserter!";
263#endif
264  llvm_unreachable(0);
265}
266
267void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
268                                                   SDNode *Node) const {
269  assert(!MI->hasPostISelHook() &&
270         "If a target marks an instruction with 'hasPostISelHook', "
271         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
272}
273
274//===----------------------------------------------------------------------===//
275// SelectionDAGISel code
276//===----------------------------------------------------------------------===//
277
278SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
279                                   CodeGenOpt::Level OL) :
280  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
281  FuncInfo(new FunctionLoweringInfo(TLI)),
282  CurDAG(new SelectionDAG(tm, OL)),
283  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
284  GFI(),
285  OptLevel(OL),
286  DAGSize(0) {
287    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
288    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
289    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
290    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
291  }
292
293SelectionDAGISel::~SelectionDAGISel() {
294  delete SDB;
295  delete CurDAG;
296  delete FuncInfo;
297}
298
299void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
300  AU.addRequired<AliasAnalysis>();
301  AU.addPreserved<AliasAnalysis>();
302  AU.addRequired<GCModuleInfo>();
303  AU.addPreserved<GCModuleInfo>();
304  AU.addRequired<TargetLibraryInfo>();
305  if (UseMBPI && OptLevel != CodeGenOpt::None)
306    AU.addRequired<BranchProbabilityInfo>();
307  MachineFunctionPass::getAnalysisUsage(AU);
308}
309
310/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
311/// may trap on it.  In this case we have to split the edge so that the path
312/// through the predecessor block that doesn't go to the phi block doesn't
313/// execute the possibly trapping instruction.
314///
315/// This is required for correctness, so it must be done at -O0.
316///
317static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
318  // Loop for blocks with phi nodes.
319  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
320    PHINode *PN = dyn_cast<PHINode>(BB->begin());
321    if (PN == 0) continue;
322
323  ReprocessBlock:
324    // For each block with a PHI node, check to see if any of the input values
325    // are potentially trapping constant expressions.  Constant expressions are
326    // the only potentially trapping value that can occur as the argument to a
327    // PHI.
328    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
329      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
330        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
331        if (CE == 0 || !CE->canTrap()) continue;
332
333        // The only case we have to worry about is when the edge is critical.
334        // Since this block has a PHI Node, we assume it has multiple input
335        // edges: check to see if the pred has multiple successors.
336        BasicBlock *Pred = PN->getIncomingBlock(i);
337        if (Pred->getTerminator()->getNumSuccessors() == 1)
338          continue;
339
340        // Okay, we have to split this edge.
341        SplitCriticalEdge(Pred->getTerminator(),
342                          GetSuccessorNumber(Pred, BB), SDISel, true);
343        goto ReprocessBlock;
344      }
345  }
346}
347
348bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
349  // Do some sanity-checking on the command-line options.
350  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
351         "-fast-isel-verbose requires -fast-isel");
352  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
353         "-fast-isel-abort requires -fast-isel");
354
355  const Function &Fn = *mf.getFunction();
356  const TargetInstrInfo &TII = *TM.getInstrInfo();
357  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
358
359  MF = &mf;
360  RegInfo = &MF->getRegInfo();
361  AA = &getAnalysis<AliasAnalysis>();
362  LibInfo = &getAnalysis<TargetLibraryInfo>();
363  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
364  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
365
366  TargetSubtargetInfo &ST =
367    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
368  ST.resetSubtargetFeatures(MF);
369  TM.resetTargetOptions(MF);
370
371  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
372
373  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
374
375  CurDAG->init(*MF, TTI);
376  FuncInfo->set(Fn, *MF);
377
378  if (UseMBPI && OptLevel != CodeGenOpt::None)
379    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
380  else
381    FuncInfo->BPI = 0;
382
383  SDB->init(GFI, *AA, LibInfo);
384
385  MF->setHasMSInlineAsm(false);
386  SelectAllBasicBlocks(Fn);
387
388  // If the first basic block in the function has live ins that need to be
389  // copied into vregs, emit the copies into the top of the block before
390  // emitting the code for the block.
391  MachineBasicBlock *EntryMBB = MF->begin();
392  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
393
394  DenseMap<unsigned, unsigned> LiveInMap;
395  if (!FuncInfo->ArgDbgValues.empty())
396    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
397           E = RegInfo->livein_end(); LI != E; ++LI)
398      if (LI->second)
399        LiveInMap.insert(std::make_pair(LI->first, LI->second));
400
401  // Insert DBG_VALUE instructions for function arguments to the entry block.
402  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
403    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
404    unsigned Reg = MI->getOperand(0).getReg();
405    if (TargetRegisterInfo::isPhysicalRegister(Reg))
406      EntryMBB->insert(EntryMBB->begin(), MI);
407    else {
408      MachineInstr *Def = RegInfo->getVRegDef(Reg);
409      MachineBasicBlock::iterator InsertPos = Def;
410      // FIXME: VR def may not be in entry block.
411      Def->getParent()->insert(llvm::next(InsertPos), MI);
412    }
413
414    // If Reg is live-in then update debug info to track its copy in a vreg.
415    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
416    if (LDI != LiveInMap.end()) {
417      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
418      MachineBasicBlock::iterator InsertPos = Def;
419      const MDNode *Variable =
420        MI->getOperand(MI->getNumOperands()-1).getMetadata();
421      unsigned Offset = MI->getOperand(1).getImm();
422      // Def is never a terminator here, so it is ok to increment InsertPos.
423      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
424              TII.get(TargetOpcode::DBG_VALUE))
425        .addReg(LDI->second, RegState::Debug)
426        .addImm(Offset).addMetadata(Variable);
427
428      // If this vreg is directly copied into an exported register then
429      // that COPY instructions also need DBG_VALUE, if it is the only
430      // user of LDI->second.
431      MachineInstr *CopyUseMI = NULL;
432      for (MachineRegisterInfo::use_iterator
433             UI = RegInfo->use_begin(LDI->second);
434           MachineInstr *UseMI = UI.skipInstruction();) {
435        if (UseMI->isDebugValue()) continue;
436        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
437          CopyUseMI = UseMI; continue;
438        }
439        // Otherwise this is another use or second copy use.
440        CopyUseMI = NULL; break;
441      }
442      if (CopyUseMI) {
443        MachineInstr *NewMI =
444          BuildMI(*MF, CopyUseMI->getDebugLoc(),
445                  TII.get(TargetOpcode::DBG_VALUE))
446          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
447          .addImm(Offset).addMetadata(Variable);
448        MachineBasicBlock::iterator Pos = CopyUseMI;
449        EntryMBB->insertAfter(Pos, NewMI);
450      }
451    }
452  }
453
454  // Determine if there are any calls in this machine function.
455  MachineFrameInfo *MFI = MF->getFrameInfo();
456  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
457       ++I) {
458
459    if (MFI->hasCalls() && MF->hasMSInlineAsm())
460      break;
461
462    const MachineBasicBlock *MBB = I;
463    for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
464         II != IE; ++II) {
465      const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
466      if ((MCID.isCall() && !MCID.isReturn()) ||
467          II->isStackAligningInlineAsm()) {
468        MFI->setHasCalls(true);
469      }
470      if (II->isMSInlineAsm()) {
471        MF->setHasMSInlineAsm(true);
472      }
473    }
474  }
475
476  // Determine if there is a call to setjmp in the machine function.
477  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
478
479  // Replace forward-declared registers with the registers containing
480  // the desired value.
481  MachineRegisterInfo &MRI = MF->getRegInfo();
482  for (DenseMap<unsigned, unsigned>::iterator
483       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
484       I != E; ++I) {
485    unsigned From = I->first;
486    unsigned To = I->second;
487    // If To is also scheduled to be replaced, find what its ultimate
488    // replacement is.
489    for (;;) {
490      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
491      if (J == E) break;
492      To = J->second;
493    }
494    // Replace it.
495    MRI.replaceRegWith(From, To);
496  }
497
498  // Freeze the set of reserved registers now that MachineFrameInfo has been
499  // set up. All the information required by getReservedRegs() should be
500  // available now.
501  MRI.freezeReservedRegs(*MF);
502
503  // Release function-specific state. SDB and CurDAG are already cleared
504  // at this point.
505  FuncInfo->clear();
506
507  return true;
508}
509
510void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
511                                        BasicBlock::const_iterator End,
512                                        bool &HadTailCall) {
513  // Lower all of the non-terminator instructions. If a call is emitted
514  // as a tail call, cease emitting nodes for this block. Terminators
515  // are handled below.
516  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
517    SDB->visit(*I);
518
519  // Make sure the root of the DAG is up-to-date.
520  CurDAG->setRoot(SDB->getControlRoot());
521  HadTailCall = SDB->HasTailCall;
522  SDB->clear();
523
524  // Final step, emit the lowered DAG as machine code.
525  CodeGenAndEmitDAG();
526}
527
528void SelectionDAGISel::ComputeLiveOutVRegInfo() {
529  SmallPtrSet<SDNode*, 128> VisitedNodes;
530  SmallVector<SDNode*, 128> Worklist;
531
532  Worklist.push_back(CurDAG->getRoot().getNode());
533
534  APInt KnownZero;
535  APInt KnownOne;
536
537  do {
538    SDNode *N = Worklist.pop_back_val();
539
540    // If we've already seen this node, ignore it.
541    if (!VisitedNodes.insert(N))
542      continue;
543
544    // Otherwise, add all chain operands to the worklist.
545    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
546      if (N->getOperand(i).getValueType() == MVT::Other)
547        Worklist.push_back(N->getOperand(i).getNode());
548
549    // If this is a CopyToReg with a vreg dest, process it.
550    if (N->getOpcode() != ISD::CopyToReg)
551      continue;
552
553    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
554    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
555      continue;
556
557    // Ignore non-scalar or non-integer values.
558    SDValue Src = N->getOperand(2);
559    EVT SrcVT = Src.getValueType();
560    if (!SrcVT.isInteger() || SrcVT.isVector())
561      continue;
562
563    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
564    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
565    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
566  } while (!Worklist.empty());
567}
568
569void SelectionDAGISel::CodeGenAndEmitDAG() {
570  std::string GroupName;
571  if (TimePassesIsEnabled)
572    GroupName = "Instruction Selection and Scheduling";
573  std::string BlockName;
574  int BlockNumber = -1;
575  (void)BlockNumber;
576#ifdef NDEBUG
577  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
578      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
579      ViewSUnitDAGs)
580#endif
581  {
582    BlockNumber = FuncInfo->MBB->getNumber();
583    BlockName = MF->getName().str() + ":" +
584                FuncInfo->MBB->getBasicBlock()->getName().str();
585  }
586  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
587        << " '" << BlockName << "'\n"; CurDAG->dump());
588
589  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
590
591  // Run the DAG combiner in pre-legalize mode.
592  {
593    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
594    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
595  }
596
597  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
598        << " '" << BlockName << "'\n"; CurDAG->dump());
599
600  // Second step, hack on the DAG until it only uses operations and types that
601  // the target supports.
602  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
603                                               BlockName);
604
605  bool Changed;
606  {
607    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
608    Changed = CurDAG->LegalizeTypes();
609  }
610
611  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
612        << " '" << BlockName << "'\n"; CurDAG->dump());
613
614  if (Changed) {
615    if (ViewDAGCombineLT)
616      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
617
618    // Run the DAG combiner in post-type-legalize mode.
619    {
620      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
621                         TimePassesIsEnabled);
622      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
623    }
624
625    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
626          << " '" << BlockName << "'\n"; CurDAG->dump());
627  }
628
629  {
630    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
631    Changed = CurDAG->LegalizeVectors();
632  }
633
634  if (Changed) {
635    {
636      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
637      CurDAG->LegalizeTypes();
638    }
639
640    if (ViewDAGCombineLT)
641      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
642
643    // Run the DAG combiner in post-type-legalize mode.
644    {
645      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
646                         TimePassesIsEnabled);
647      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
648    }
649
650    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
651          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
652  }
653
654  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
655
656  {
657    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
658    CurDAG->Legalize();
659  }
660
661  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
662        << " '" << BlockName << "'\n"; CurDAG->dump());
663
664  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
665
666  // Run the DAG combiner in post-legalize mode.
667  {
668    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
669    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
670  }
671
672  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
673        << " '" << BlockName << "'\n"; CurDAG->dump());
674
675  if (OptLevel != CodeGenOpt::None)
676    ComputeLiveOutVRegInfo();
677
678  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
679
680  // Third, instruction select all of the operations to machine code, adding the
681  // code to the MachineBasicBlock.
682  {
683    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
684    DoInstructionSelection();
685  }
686
687  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
688        << " '" << BlockName << "'\n"; CurDAG->dump());
689
690  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
691
692  // Schedule machine code.
693  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
694  {
695    NamedRegionTimer T("Instruction Scheduling", GroupName,
696                       TimePassesIsEnabled);
697    Scheduler->Run(CurDAG, FuncInfo->MBB);
698  }
699
700  if (ViewSUnitDAGs) Scheduler->viewGraph();
701
702  // Emit machine code to BB.  This can change 'BB' to the last block being
703  // inserted into.
704  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
705  {
706    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
707
708    // FuncInfo->InsertPt is passed by reference and set to the end of the
709    // scheduled instructions.
710    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
711  }
712
713  // If the block was split, make sure we update any references that are used to
714  // update PHI nodes later on.
715  if (FirstMBB != LastMBB)
716    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
717
718  // Free the scheduler state.
719  {
720    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
721                       TimePassesIsEnabled);
722    delete Scheduler;
723  }
724
725  // Free the SelectionDAG state, now that we're finished with it.
726  CurDAG->clear();
727}
728
729namespace {
730/// ISelUpdater - helper class to handle updates of the instruction selection
731/// graph.
732class ISelUpdater : public SelectionDAG::DAGUpdateListener {
733  SelectionDAG::allnodes_iterator &ISelPosition;
734public:
735  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
736    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
737
738  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
739  /// deleted is the current ISelPosition node, update ISelPosition.
740  ///
741  virtual void NodeDeleted(SDNode *N, SDNode *E) {
742    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
743      ++ISelPosition;
744  }
745};
746} // end anonymous namespace
747
748void SelectionDAGISel::DoInstructionSelection() {
749  DEBUG(errs() << "===== Instruction selection begins: BB#"
750        << FuncInfo->MBB->getNumber()
751        << " '" << FuncInfo->MBB->getName() << "'\n");
752
753  PreprocessISelDAG();
754
755  // Select target instructions for the DAG.
756  {
757    // Number all nodes with a topological order and set DAGSize.
758    DAGSize = CurDAG->AssignTopologicalOrder();
759
760    // Create a dummy node (which is not added to allnodes), that adds
761    // a reference to the root node, preventing it from being deleted,
762    // and tracking any changes of the root.
763    HandleSDNode Dummy(CurDAG->getRoot());
764    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
765    ++ISelPosition;
766
767    // Make sure that ISelPosition gets properly updated when nodes are deleted
768    // in calls made from this function.
769    ISelUpdater ISU(*CurDAG, ISelPosition);
770
771    // The AllNodes list is now topological-sorted. Visit the
772    // nodes by starting at the end of the list (the root of the
773    // graph) and preceding back toward the beginning (the entry
774    // node).
775    while (ISelPosition != CurDAG->allnodes_begin()) {
776      SDNode *Node = --ISelPosition;
777      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
778      // but there are currently some corner cases that it misses. Also, this
779      // makes it theoretically possible to disable the DAGCombiner.
780      if (Node->use_empty())
781        continue;
782
783      SDNode *ResNode = Select(Node);
784
785      // FIXME: This is pretty gross.  'Select' should be changed to not return
786      // anything at all and this code should be nuked with a tactical strike.
787
788      // If node should not be replaced, continue with the next one.
789      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
790        continue;
791      // Replace node.
792      if (ResNode) {
793        // Propagate ordering
794        CurDAG->AssignOrdering(ResNode, CurDAG->GetOrdering(Node));
795
796        ReplaceUses(Node, ResNode);
797      }
798
799      // If after the replacement this node is not used any more,
800      // remove this dead node.
801      if (Node->use_empty()) // Don't delete EntryToken, etc.
802        CurDAG->RemoveDeadNode(Node);
803    }
804
805    CurDAG->setRoot(Dummy.getValue());
806  }
807
808  DEBUG(errs() << "===== Instruction selection ends:\n");
809
810  PostprocessISelDAG();
811}
812
813/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
814/// do other setup for EH landing-pad blocks.
815void SelectionDAGISel::PrepareEHLandingPad() {
816  MachineBasicBlock *MBB = FuncInfo->MBB;
817
818  // Add a label to mark the beginning of the landing pad.  Deletion of the
819  // landing pad can thus be detected via the MachineModuleInfo.
820  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
821
822  // Assign the call site to the landing pad's begin label.
823  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
824
825  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
826  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
827    .addSym(Label);
828
829  // Mark exception register as live in.
830  unsigned Reg = TLI.getExceptionPointerRegister();
831  if (Reg) MBB->addLiveIn(Reg);
832
833  // Mark exception selector register as live in.
834  Reg = TLI.getExceptionSelectorRegister();
835  if (Reg) MBB->addLiveIn(Reg);
836}
837
838/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
839/// load into the specified FoldInst.  Note that we could have a sequence where
840/// multiple LLVM IR instructions are folded into the same machineinstr.  For
841/// example we could have:
842///   A: x = load i32 *P
843///   B: y = icmp A, 42
844///   C: br y, ...
845///
846/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
847/// any other folded instructions) because it is between A and C.
848///
849/// If we succeed in folding the load into the operation, return true.
850///
851bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
852                                             const Instruction *FoldInst,
853                                             FastISel *FastIS) {
854  // We know that the load has a single use, but don't know what it is.  If it
855  // isn't one of the folded instructions, then we can't succeed here.  Handle
856  // this by scanning the single-use users of the load until we get to FoldInst.
857  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
858
859  const Instruction *TheUser = LI->use_back();
860  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
861         // Stay in the right block.
862         TheUser->getParent() == FoldInst->getParent() &&
863         --MaxUsers) {  // Don't scan too far.
864    // If there are multiple or no uses of this instruction, then bail out.
865    if (!TheUser->hasOneUse())
866      return false;
867
868    TheUser = TheUser->use_back();
869  }
870
871  // If we didn't find the fold instruction, then we failed to collapse the
872  // sequence.
873  if (TheUser != FoldInst)
874    return false;
875
876  // Don't try to fold volatile loads.  Target has to deal with alignment
877  // constraints.
878  if (LI->isVolatile()) return false;
879
880  // Figure out which vreg this is going into.  If there is no assigned vreg yet
881  // then there actually was no reference to it.  Perhaps the load is referenced
882  // by a dead instruction.
883  unsigned LoadReg = FastIS->getRegForValue(LI);
884  if (LoadReg == 0)
885    return false;
886
887  // Check to see what the uses of this vreg are.  If it has no uses, or more
888  // than one use (at the machine instr level) then we can't fold it.
889  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
890  if (RI == RegInfo->reg_end())
891    return false;
892
893  // See if there is exactly one use of the vreg.  If there are multiple uses,
894  // then the instruction got lowered to multiple machine instructions or the
895  // use of the loaded value ended up being multiple operands of the result, in
896  // either case, we can't fold this.
897  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
898  if (PostRI != RegInfo->reg_end())
899    return false;
900
901  assert(RI.getOperand().isUse() &&
902         "The only use of the vreg must be a use, we haven't emitted the def!");
903
904  MachineInstr *User = &*RI;
905
906  // Set the insertion point properly.  Folding the load can cause generation of
907  // other random instructions (like sign extends) for addressing modes, make
908  // sure they get inserted in a logical place before the new instruction.
909  FuncInfo->InsertPt = User;
910  FuncInfo->MBB = User->getParent();
911
912  // Ask the target to try folding the load.
913  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
914}
915
916/// isFoldedOrDeadInstruction - Return true if the specified instruction is
917/// side-effect free and is either dead or folded into a generated instruction.
918/// Return false if it needs to be emitted.
919static bool isFoldedOrDeadInstruction(const Instruction *I,
920                                      FunctionLoweringInfo *FuncInfo) {
921  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
922         !isa<TerminatorInst>(I) && // Terminators aren't folded.
923         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
924         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
925         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
926}
927
928#ifndef NDEBUG
929// Collect per Instruction statistics for fast-isel misses.  Only those
930// instructions that cause the bail are accounted for.  It does not account for
931// instructions higher in the block.  Thus, summing the per instructions stats
932// will not add up to what is reported by NumFastIselFailures.
933static void collectFailStats(const Instruction *I) {
934  switch (I->getOpcode()) {
935  default: assert (0 && "<Invalid operator> ");
936
937  // Terminators
938  case Instruction::Ret:         NumFastIselFailRet++; return;
939  case Instruction::Br:          NumFastIselFailBr++; return;
940  case Instruction::Switch:      NumFastIselFailSwitch++; return;
941  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
942  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
943  case Instruction::Resume:      NumFastIselFailResume++; return;
944  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
945
946  // Standard binary operators...
947  case Instruction::Add:  NumFastIselFailAdd++; return;
948  case Instruction::FAdd: NumFastIselFailFAdd++; return;
949  case Instruction::Sub:  NumFastIselFailSub++; return;
950  case Instruction::FSub: NumFastIselFailFSub++; return;
951  case Instruction::Mul:  NumFastIselFailMul++; return;
952  case Instruction::FMul: NumFastIselFailFMul++; return;
953  case Instruction::UDiv: NumFastIselFailUDiv++; return;
954  case Instruction::SDiv: NumFastIselFailSDiv++; return;
955  case Instruction::FDiv: NumFastIselFailFDiv++; return;
956  case Instruction::URem: NumFastIselFailURem++; return;
957  case Instruction::SRem: NumFastIselFailSRem++; return;
958  case Instruction::FRem: NumFastIselFailFRem++; return;
959
960  // Logical operators...
961  case Instruction::And: NumFastIselFailAnd++; return;
962  case Instruction::Or:  NumFastIselFailOr++; return;
963  case Instruction::Xor: NumFastIselFailXor++; return;
964
965  // Memory instructions...
966  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
967  case Instruction::Load:          NumFastIselFailLoad++; return;
968  case Instruction::Store:         NumFastIselFailStore++; return;
969  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
970  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
971  case Instruction::Fence:         NumFastIselFailFence++; return;
972  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
973
974  // Convert instructions...
975  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
976  case Instruction::ZExt:     NumFastIselFailZExt++; return;
977  case Instruction::SExt:     NumFastIselFailSExt++; return;
978  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
979  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
980  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
981  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
982  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
983  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
984  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
985  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
986  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
987
988  // Other instructions...
989  case Instruction::ICmp:           NumFastIselFailICmp++; return;
990  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
991  case Instruction::PHI:            NumFastIselFailPHI++; return;
992  case Instruction::Select:         NumFastIselFailSelect++; return;
993  case Instruction::Call:           NumFastIselFailCall++; return;
994  case Instruction::Shl:            NumFastIselFailShl++; return;
995  case Instruction::LShr:           NumFastIselFailLShr++; return;
996  case Instruction::AShr:           NumFastIselFailAShr++; return;
997  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
998  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
999  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
1000  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
1001  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
1002  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
1003  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
1004  }
1005}
1006#endif
1007
1008void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1009  // Initialize the Fast-ISel state, if needed.
1010  FastISel *FastIS = 0;
1011  if (TM.Options.EnableFastISel)
1012    FastIS = TLI.createFastISel(*FuncInfo, LibInfo);
1013
1014  // Iterate over all basic blocks in the function.
1015  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1016  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
1017       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
1018    const BasicBlock *LLVMBB = *I;
1019
1020    if (OptLevel != CodeGenOpt::None) {
1021      bool AllPredsVisited = true;
1022      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1023           PI != PE; ++PI) {
1024        if (!FuncInfo->VisitedBBs.count(*PI)) {
1025          AllPredsVisited = false;
1026          break;
1027        }
1028      }
1029
1030      if (AllPredsVisited) {
1031        for (BasicBlock::const_iterator I = LLVMBB->begin();
1032             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1033          FuncInfo->ComputePHILiveOutRegInfo(PN);
1034      } else {
1035        for (BasicBlock::const_iterator I = LLVMBB->begin();
1036             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1037          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
1038      }
1039
1040      FuncInfo->VisitedBBs.insert(LLVMBB);
1041    }
1042
1043    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
1044    BasicBlock::const_iterator const End = LLVMBB->end();
1045    BasicBlock::const_iterator BI = End;
1046
1047    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1048    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1049
1050    // Setup an EH landing-pad block.
1051    if (FuncInfo->MBB->isLandingPad())
1052      PrepareEHLandingPad();
1053
1054    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1055    if (FastIS) {
1056      FastIS->startNewBlock();
1057
1058      // Emit code for any incoming arguments. This must happen before
1059      // beginning FastISel on the entry block.
1060      if (LLVMBB == &Fn.getEntryBlock()) {
1061        ++NumEntryBlocks;
1062
1063        // Lower any arguments needed in this block if this is the entry block.
1064        if (!FastIS->LowerArguments()) {
1065          // Fast isel failed to lower these arguments
1066          ++NumFastIselFailLowerArguments;
1067          if (EnableFastISelAbortArgs)
1068            llvm_unreachable("FastISel didn't lower all arguments");
1069
1070          // Use SelectionDAG argument lowering
1071          LowerArguments(Fn);
1072          CurDAG->setRoot(SDB->getControlRoot());
1073          SDB->clear();
1074          CodeGenAndEmitDAG();
1075        }
1076
1077        // If we inserted any instructions at the beginning, make a note of
1078        // where they are, so we can be sure to emit subsequent instructions
1079        // after them.
1080        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1081          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1082        else
1083          FastIS->setLastLocalValue(0);
1084      }
1085
1086      unsigned NumFastIselRemaining = std::distance(Begin, End);
1087      // Do FastISel on as many instructions as possible.
1088      for (; BI != Begin; --BI) {
1089        const Instruction *Inst = llvm::prior(BI);
1090
1091        // If we no longer require this instruction, skip it.
1092        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1093          --NumFastIselRemaining;
1094          continue;
1095        }
1096
1097        // Bottom-up: reset the insert pos at the top, after any local-value
1098        // instructions.
1099        FastIS->recomputeInsertPt();
1100
1101        // Try to select the instruction with FastISel.
1102        if (FastIS->SelectInstruction(Inst)) {
1103          --NumFastIselRemaining;
1104          ++NumFastIselSuccess;
1105          // If fast isel succeeded, skip over all the folded instructions, and
1106          // then see if there is a load right before the selected instructions.
1107          // Try to fold the load if so.
1108          const Instruction *BeforeInst = Inst;
1109          while (BeforeInst != Begin) {
1110            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1111            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1112              break;
1113          }
1114          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1115              BeforeInst->hasOneUse() &&
1116              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) {
1117            // If we succeeded, don't re-select the load.
1118            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1119            --NumFastIselRemaining;
1120            ++NumFastIselSuccess;
1121          }
1122          continue;
1123        }
1124
1125#ifndef NDEBUG
1126        if (EnableFastISelVerbose2)
1127          collectFailStats(Inst);
1128#endif
1129
1130        // Then handle certain instructions as single-LLVM-Instruction blocks.
1131        if (isa<CallInst>(Inst)) {
1132
1133          if (EnableFastISelVerbose || EnableFastISelAbort) {
1134            dbgs() << "FastISel missed call: ";
1135            Inst->dump();
1136          }
1137
1138          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1139            unsigned &R = FuncInfo->ValueMap[Inst];
1140            if (!R)
1141              R = FuncInfo->CreateRegs(Inst->getType());
1142          }
1143
1144          bool HadTailCall = false;
1145          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1146          SelectBasicBlock(Inst, BI, HadTailCall);
1147
1148          // If the call was emitted as a tail call, we're done with the block.
1149          // We also need to delete any previously emitted instructions.
1150          if (HadTailCall) {
1151            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1152            --BI;
1153            break;
1154          }
1155
1156          // Recompute NumFastIselRemaining as Selection DAG instruction
1157          // selection may have handled the call, input args, etc.
1158          unsigned RemainingNow = std::distance(Begin, BI);
1159          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1160          NumFastIselRemaining = RemainingNow;
1161          continue;
1162        }
1163
1164        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1165          // Don't abort, and use a different message for terminator misses.
1166          NumFastIselFailures += NumFastIselRemaining;
1167          if (EnableFastISelVerbose || EnableFastISelAbort) {
1168            dbgs() << "FastISel missed terminator: ";
1169            Inst->dump();
1170          }
1171        } else {
1172          NumFastIselFailures += NumFastIselRemaining;
1173          if (EnableFastISelVerbose || EnableFastISelAbort) {
1174            dbgs() << "FastISel miss: ";
1175            Inst->dump();
1176          }
1177          if (EnableFastISelAbort)
1178            // The "fast" selector couldn't handle something and bailed.
1179            // For the purpose of debugging, just abort.
1180            llvm_unreachable("FastISel didn't select the entire block");
1181        }
1182        break;
1183      }
1184
1185      FastIS->recomputeInsertPt();
1186    } else {
1187      // Lower any arguments needed in this block if this is the entry block.
1188      if (LLVMBB == &Fn.getEntryBlock()) {
1189        ++NumEntryBlocks;
1190        LowerArguments(Fn);
1191      }
1192    }
1193
1194    if (Begin != BI)
1195      ++NumDAGBlocks;
1196    else
1197      ++NumFastIselBlocks;
1198
1199    if (Begin != BI) {
1200      // Run SelectionDAG instruction selection on the remainder of the block
1201      // not handled by FastISel. If FastISel is not run, this is the entire
1202      // block.
1203      bool HadTailCall;
1204      SelectBasicBlock(Begin, BI, HadTailCall);
1205    }
1206
1207    FinishBasicBlock();
1208    FuncInfo->PHINodesToUpdate.clear();
1209  }
1210
1211  delete FastIS;
1212  SDB->clearDanglingDebugInfo();
1213}
1214
1215void
1216SelectionDAGISel::FinishBasicBlock() {
1217
1218  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1219               << FuncInfo->PHINodesToUpdate.size() << "\n";
1220        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1221          dbgs() << "Node " << i << " : ("
1222                 << FuncInfo->PHINodesToUpdate[i].first
1223                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1224
1225  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1226  // PHI nodes in successors.
1227  if (SDB->SwitchCases.empty() &&
1228      SDB->JTCases.empty() &&
1229      SDB->BitTestCases.empty()) {
1230    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1231      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1232      assert(PHI->isPHI() &&
1233             "This is not a machine PHI node that we are updating!");
1234      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1235        continue;
1236      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1237    }
1238    return;
1239  }
1240
1241  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1242    // Lower header first, if it wasn't already lowered
1243    if (!SDB->BitTestCases[i].Emitted) {
1244      // Set the current basic block to the mbb we wish to insert the code into
1245      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1246      FuncInfo->InsertPt = FuncInfo->MBB->end();
1247      // Emit the code
1248      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1249      CurDAG->setRoot(SDB->getRoot());
1250      SDB->clear();
1251      CodeGenAndEmitDAG();
1252    }
1253
1254    uint32_t UnhandledWeight = 0;
1255    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1256      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1257
1258    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1259      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1260      // Set the current basic block to the mbb we wish to insert the code into
1261      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1262      FuncInfo->InsertPt = FuncInfo->MBB->end();
1263      // Emit the code
1264      if (j+1 != ej)
1265        SDB->visitBitTestCase(SDB->BitTestCases[i],
1266                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1267                              UnhandledWeight,
1268                              SDB->BitTestCases[i].Reg,
1269                              SDB->BitTestCases[i].Cases[j],
1270                              FuncInfo->MBB);
1271      else
1272        SDB->visitBitTestCase(SDB->BitTestCases[i],
1273                              SDB->BitTestCases[i].Default,
1274                              UnhandledWeight,
1275                              SDB->BitTestCases[i].Reg,
1276                              SDB->BitTestCases[i].Cases[j],
1277                              FuncInfo->MBB);
1278
1279
1280      CurDAG->setRoot(SDB->getRoot());
1281      SDB->clear();
1282      CodeGenAndEmitDAG();
1283    }
1284
1285    // Update PHI Nodes
1286    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1287         pi != pe; ++pi) {
1288      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1289      MachineBasicBlock *PHIBB = PHI->getParent();
1290      assert(PHI->isPHI() &&
1291             "This is not a machine PHI node that we are updating!");
1292      // This is "default" BB. We have two jumps to it. From "header" BB and
1293      // from last "case" BB.
1294      if (PHIBB == SDB->BitTestCases[i].Default)
1295        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1296           .addMBB(SDB->BitTestCases[i].Parent)
1297           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1298           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1299      // One of "cases" BB.
1300      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1301           j != ej; ++j) {
1302        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1303        if (cBB->isSuccessor(PHIBB))
1304          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1305      }
1306    }
1307  }
1308  SDB->BitTestCases.clear();
1309
1310  // If the JumpTable record is filled in, then we need to emit a jump table.
1311  // Updating the PHI nodes is tricky in this case, since we need to determine
1312  // whether the PHI is a successor of the range check MBB or the jump table MBB
1313  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1314    // Lower header first, if it wasn't already lowered
1315    if (!SDB->JTCases[i].first.Emitted) {
1316      // Set the current basic block to the mbb we wish to insert the code into
1317      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1318      FuncInfo->InsertPt = FuncInfo->MBB->end();
1319      // Emit the code
1320      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1321                                FuncInfo->MBB);
1322      CurDAG->setRoot(SDB->getRoot());
1323      SDB->clear();
1324      CodeGenAndEmitDAG();
1325    }
1326
1327    // Set the current basic block to the mbb we wish to insert the code into
1328    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1329    FuncInfo->InsertPt = FuncInfo->MBB->end();
1330    // Emit the code
1331    SDB->visitJumpTable(SDB->JTCases[i].second);
1332    CurDAG->setRoot(SDB->getRoot());
1333    SDB->clear();
1334    CodeGenAndEmitDAG();
1335
1336    // Update PHI Nodes
1337    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1338         pi != pe; ++pi) {
1339      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1340      MachineBasicBlock *PHIBB = PHI->getParent();
1341      assert(PHI->isPHI() &&
1342             "This is not a machine PHI node that we are updating!");
1343      // "default" BB. We can go there only from header BB.
1344      if (PHIBB == SDB->JTCases[i].second.Default)
1345        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1346           .addMBB(SDB->JTCases[i].first.HeaderBB);
1347      // JT BB. Just iterate over successors here
1348      if (FuncInfo->MBB->isSuccessor(PHIBB))
1349        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1350    }
1351  }
1352  SDB->JTCases.clear();
1353
1354  // If the switch block involved a branch to one of the actual successors, we
1355  // need to update PHI nodes in that block.
1356  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1357    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1358    assert(PHI->isPHI() &&
1359           "This is not a machine PHI node that we are updating!");
1360    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1361      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1362  }
1363
1364  // If we generated any switch lowering information, build and codegen any
1365  // additional DAGs necessary.
1366  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1367    // Set the current basic block to the mbb we wish to insert the code into
1368    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1369    FuncInfo->InsertPt = FuncInfo->MBB->end();
1370
1371    // Determine the unique successors.
1372    SmallVector<MachineBasicBlock *, 2> Succs;
1373    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1374    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1375      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1376
1377    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1378    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1379    CurDAG->setRoot(SDB->getRoot());
1380    SDB->clear();
1381    CodeGenAndEmitDAG();
1382
1383    // Remember the last block, now that any splitting is done, for use in
1384    // populating PHI nodes in successors.
1385    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1386
1387    // Handle any PHI nodes in successors of this chunk, as if we were coming
1388    // from the original BB before switch expansion.  Note that PHI nodes can
1389    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1390    // handle them the right number of times.
1391    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1392      FuncInfo->MBB = Succs[i];
1393      FuncInfo->InsertPt = FuncInfo->MBB->end();
1394      // FuncInfo->MBB may have been removed from the CFG if a branch was
1395      // constant folded.
1396      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1397        for (MachineBasicBlock::iterator
1398             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1399             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1400          MachineInstrBuilder PHI(*MF, MBBI);
1401          // This value for this PHI node is recorded in PHINodesToUpdate.
1402          for (unsigned pn = 0; ; ++pn) {
1403            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1404                   "Didn't find PHI entry!");
1405            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1406              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1407              break;
1408            }
1409          }
1410        }
1411      }
1412    }
1413  }
1414  SDB->SwitchCases.clear();
1415}
1416
1417
1418/// Create the scheduler. If a specific scheduler was specified
1419/// via the SchedulerRegistry, use it, otherwise select the
1420/// one preferred by the target.
1421///
1422ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1423  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1424
1425  if (!Ctor) {
1426    Ctor = ISHeuristic;
1427    RegisterScheduler::setDefault(Ctor);
1428  }
1429
1430  return Ctor(this, OptLevel);
1431}
1432
1433//===----------------------------------------------------------------------===//
1434// Helper functions used by the generated instruction selector.
1435//===----------------------------------------------------------------------===//
1436// Calls to these methods are generated by tblgen.
1437
1438/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1439/// the dag combiner simplified the 255, we still want to match.  RHS is the
1440/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1441/// specified in the .td file (e.g. 255).
1442bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1443                                    int64_t DesiredMaskS) const {
1444  const APInt &ActualMask = RHS->getAPIntValue();
1445  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1446
1447  // If the actual mask exactly matches, success!
1448  if (ActualMask == DesiredMask)
1449    return true;
1450
1451  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1452  if (ActualMask.intersects(~DesiredMask))
1453    return false;
1454
1455  // Otherwise, the DAG Combiner may have proven that the value coming in is
1456  // either already zero or is not demanded.  Check for known zero input bits.
1457  APInt NeededMask = DesiredMask & ~ActualMask;
1458  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1459    return true;
1460
1461  // TODO: check to see if missing bits are just not demanded.
1462
1463  // Otherwise, this pattern doesn't match.
1464  return false;
1465}
1466
1467/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1468/// the dag combiner simplified the 255, we still want to match.  RHS is the
1469/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1470/// specified in the .td file (e.g. 255).
1471bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1472                                   int64_t DesiredMaskS) const {
1473  const APInt &ActualMask = RHS->getAPIntValue();
1474  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1475
1476  // If the actual mask exactly matches, success!
1477  if (ActualMask == DesiredMask)
1478    return true;
1479
1480  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1481  if (ActualMask.intersects(~DesiredMask))
1482    return false;
1483
1484  // Otherwise, the DAG Combiner may have proven that the value coming in is
1485  // either already zero or is not demanded.  Check for known zero input bits.
1486  APInt NeededMask = DesiredMask & ~ActualMask;
1487
1488  APInt KnownZero, KnownOne;
1489  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1490
1491  // If all the missing bits in the or are already known to be set, match!
1492  if ((NeededMask & KnownOne) == NeededMask)
1493    return true;
1494
1495  // TODO: check to see if missing bits are just not demanded.
1496
1497  // Otherwise, this pattern doesn't match.
1498  return false;
1499}
1500
1501
1502/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1503/// by tblgen.  Others should not call it.
1504void SelectionDAGISel::
1505SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1506  std::vector<SDValue> InOps;
1507  std::swap(InOps, Ops);
1508
1509  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1510  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1511  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1512  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1513
1514  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1515  if (InOps[e-1].getValueType() == MVT::Glue)
1516    --e;  // Don't process a glue operand if it is here.
1517
1518  while (i != e) {
1519    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1520    if (!InlineAsm::isMemKind(Flags)) {
1521      // Just skip over this operand, copying the operands verbatim.
1522      Ops.insert(Ops.end(), InOps.begin()+i,
1523                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1524      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1525    } else {
1526      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1527             "Memory operand with multiple values?");
1528      // Otherwise, this is a memory operand.  Ask the target to select it.
1529      std::vector<SDValue> SelOps;
1530      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1531        report_fatal_error("Could not match memory address.  Inline asm"
1532                           " failure!");
1533
1534      // Add this to the output node.
1535      unsigned NewFlags =
1536        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1537      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1538      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1539      i += 2;
1540    }
1541  }
1542
1543  // Add the glue input back if present.
1544  if (e != InOps.size())
1545    Ops.push_back(InOps.back());
1546}
1547
1548/// findGlueUse - Return use of MVT::Glue value produced by the specified
1549/// SDNode.
1550///
1551static SDNode *findGlueUse(SDNode *N) {
1552  unsigned FlagResNo = N->getNumValues()-1;
1553  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1554    SDUse &Use = I.getUse();
1555    if (Use.getResNo() == FlagResNo)
1556      return Use.getUser();
1557  }
1558  return NULL;
1559}
1560
1561/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1562/// This function recursively traverses up the operand chain, ignoring
1563/// certain nodes.
1564static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1565                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1566                          bool IgnoreChains) {
1567  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1568  // greater than all of its (recursive) operands.  If we scan to a point where
1569  // 'use' is smaller than the node we're scanning for, then we know we will
1570  // never find it.
1571  //
1572  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1573  // happen because we scan down to newly selected nodes in the case of glue
1574  // uses.
1575  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1576    return false;
1577
1578  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1579  // won't fail if we scan it again.
1580  if (!Visited.insert(Use))
1581    return false;
1582
1583  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1584    // Ignore chain uses, they are validated by HandleMergeInputChains.
1585    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1586      continue;
1587
1588    SDNode *N = Use->getOperand(i).getNode();
1589    if (N == Def) {
1590      if (Use == ImmedUse || Use == Root)
1591        continue;  // We are not looking for immediate use.
1592      assert(N != Root);
1593      return true;
1594    }
1595
1596    // Traverse up the operand chain.
1597    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1598      return true;
1599  }
1600  return false;
1601}
1602
1603/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1604/// operand node N of U during instruction selection that starts at Root.
1605bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1606                                          SDNode *Root) const {
1607  if (OptLevel == CodeGenOpt::None) return false;
1608  return N.hasOneUse();
1609}
1610
1611/// IsLegalToFold - Returns true if the specific operand node N of
1612/// U can be folded during instruction selection that starts at Root.
1613bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1614                                     CodeGenOpt::Level OptLevel,
1615                                     bool IgnoreChains) {
1616  if (OptLevel == CodeGenOpt::None) return false;
1617
1618  // If Root use can somehow reach N through a path that that doesn't contain
1619  // U then folding N would create a cycle. e.g. In the following
1620  // diagram, Root can reach N through X. If N is folded into into Root, then
1621  // X is both a predecessor and a successor of U.
1622  //
1623  //          [N*]           //
1624  //         ^   ^           //
1625  //        /     \          //
1626  //      [U*]    [X]?       //
1627  //        ^     ^          //
1628  //         \   /           //
1629  //          \ /            //
1630  //         [Root*]         //
1631  //
1632  // * indicates nodes to be folded together.
1633  //
1634  // If Root produces glue, then it gets (even more) interesting. Since it
1635  // will be "glued" together with its glue use in the scheduler, we need to
1636  // check if it might reach N.
1637  //
1638  //          [N*]           //
1639  //         ^   ^           //
1640  //        /     \          //
1641  //      [U*]    [X]?       //
1642  //        ^       ^        //
1643  //         \       \       //
1644  //          \      |       //
1645  //         [Root*] |       //
1646  //          ^      |       //
1647  //          f      |       //
1648  //          |      /       //
1649  //         [Y]    /        //
1650  //           ^   /         //
1651  //           f  /          //
1652  //           | /           //
1653  //          [GU]           //
1654  //
1655  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1656  // (call it Fold), then X is a predecessor of GU and a successor of
1657  // Fold. But since Fold and GU are glued together, this will create
1658  // a cycle in the scheduling graph.
1659
1660  // If the node has glue, walk down the graph to the "lowest" node in the
1661  // glueged set.
1662  EVT VT = Root->getValueType(Root->getNumValues()-1);
1663  while (VT == MVT::Glue) {
1664    SDNode *GU = findGlueUse(Root);
1665    if (GU == NULL)
1666      break;
1667    Root = GU;
1668    VT = Root->getValueType(Root->getNumValues()-1);
1669
1670    // If our query node has a glue result with a use, we've walked up it.  If
1671    // the user (which has already been selected) has a chain or indirectly uses
1672    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1673    // this, we cannot ignore chains in this predicate.
1674    IgnoreChains = false;
1675  }
1676
1677
1678  SmallPtrSet<SDNode*, 16> Visited;
1679  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1680}
1681
1682SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1683  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1684  SelectInlineAsmMemoryOperands(Ops);
1685
1686  EVT VTs[] = { MVT::Other, MVT::Glue };
1687  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1688                                VTs, &Ops[0], Ops.size());
1689  New->setNodeId(-1);
1690  return New.getNode();
1691}
1692
1693SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1694  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1695}
1696
1697/// GetVBR - decode a vbr encoding whose top bit is set.
1698LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1699GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1700  assert(Val >= 128 && "Not a VBR");
1701  Val &= 127;  // Remove first vbr bit.
1702
1703  unsigned Shift = 7;
1704  uint64_t NextBits;
1705  do {
1706    NextBits = MatcherTable[Idx++];
1707    Val |= (NextBits&127) << Shift;
1708    Shift += 7;
1709  } while (NextBits & 128);
1710
1711  return Val;
1712}
1713
1714
1715/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1716/// interior glue and chain results to use the new glue and chain results.
1717void SelectionDAGISel::
1718UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1719                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1720                    SDValue InputGlue,
1721                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1722                    bool isMorphNodeTo) {
1723  SmallVector<SDNode*, 4> NowDeadNodes;
1724
1725  // Now that all the normal results are replaced, we replace the chain and
1726  // glue results if present.
1727  if (!ChainNodesMatched.empty()) {
1728    assert(InputChain.getNode() != 0 &&
1729           "Matched input chains but didn't produce a chain");
1730    // Loop over all of the nodes we matched that produced a chain result.
1731    // Replace all the chain results with the final chain we ended up with.
1732    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1733      SDNode *ChainNode = ChainNodesMatched[i];
1734
1735      // If this node was already deleted, don't look at it.
1736      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1737        continue;
1738
1739      // Don't replace the results of the root node if we're doing a
1740      // MorphNodeTo.
1741      if (ChainNode == NodeToMatch && isMorphNodeTo)
1742        continue;
1743
1744      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1745      if (ChainVal.getValueType() == MVT::Glue)
1746        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1747      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1748      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1749
1750      // If the node became dead and we haven't already seen it, delete it.
1751      if (ChainNode->use_empty() &&
1752          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1753        NowDeadNodes.push_back(ChainNode);
1754    }
1755  }
1756
1757  // If the result produces glue, update any glue results in the matched
1758  // pattern with the glue result.
1759  if (InputGlue.getNode() != 0) {
1760    // Handle any interior nodes explicitly marked.
1761    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1762      SDNode *FRN = GlueResultNodesMatched[i];
1763
1764      // If this node was already deleted, don't look at it.
1765      if (FRN->getOpcode() == ISD::DELETED_NODE)
1766        continue;
1767
1768      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1769             "Doesn't have a glue result");
1770      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1771                                        InputGlue);
1772
1773      // If the node became dead and we haven't already seen it, delete it.
1774      if (FRN->use_empty() &&
1775          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1776        NowDeadNodes.push_back(FRN);
1777    }
1778  }
1779
1780  if (!NowDeadNodes.empty())
1781    CurDAG->RemoveDeadNodes(NowDeadNodes);
1782
1783  DEBUG(errs() << "ISEL: Match complete!\n");
1784}
1785
1786enum ChainResult {
1787  CR_Simple,
1788  CR_InducesCycle,
1789  CR_LeadsToInteriorNode
1790};
1791
1792/// WalkChainUsers - Walk down the users of the specified chained node that is
1793/// part of the pattern we're matching, looking at all of the users we find.
1794/// This determines whether something is an interior node, whether we have a
1795/// non-pattern node in between two pattern nodes (which prevent folding because
1796/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1797/// between pattern nodes (in which case the TF becomes part of the pattern).
1798///
1799/// The walk we do here is guaranteed to be small because we quickly get down to
1800/// already selected nodes "below" us.
1801static ChainResult
1802WalkChainUsers(const SDNode *ChainedNode,
1803               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1804               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1805  ChainResult Result = CR_Simple;
1806
1807  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1808         E = ChainedNode->use_end(); UI != E; ++UI) {
1809    // Make sure the use is of the chain, not some other value we produce.
1810    if (UI.getUse().getValueType() != MVT::Other) continue;
1811
1812    SDNode *User = *UI;
1813
1814    // If we see an already-selected machine node, then we've gone beyond the
1815    // pattern that we're selecting down into the already selected chunk of the
1816    // DAG.
1817    if (User->isMachineOpcode() ||
1818        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1819      continue;
1820
1821    unsigned UserOpcode = User->getOpcode();
1822    if (UserOpcode == ISD::CopyToReg ||
1823        UserOpcode == ISD::CopyFromReg ||
1824        UserOpcode == ISD::INLINEASM ||
1825        UserOpcode == ISD::EH_LABEL ||
1826        UserOpcode == ISD::LIFETIME_START ||
1827        UserOpcode == ISD::LIFETIME_END) {
1828      // If their node ID got reset to -1 then they've already been selected.
1829      // Treat them like a MachineOpcode.
1830      if (User->getNodeId() == -1)
1831        continue;
1832    }
1833
1834    // If we have a TokenFactor, we handle it specially.
1835    if (User->getOpcode() != ISD::TokenFactor) {
1836      // If the node isn't a token factor and isn't part of our pattern, then it
1837      // must be a random chained node in between two nodes we're selecting.
1838      // This happens when we have something like:
1839      //   x = load ptr
1840      //   call
1841      //   y = x+4
1842      //   store y -> ptr
1843      // Because we structurally match the load/store as a read/modify/write,
1844      // but the call is chained between them.  We cannot fold in this case
1845      // because it would induce a cycle in the graph.
1846      if (!std::count(ChainedNodesInPattern.begin(),
1847                      ChainedNodesInPattern.end(), User))
1848        return CR_InducesCycle;
1849
1850      // Otherwise we found a node that is part of our pattern.  For example in:
1851      //   x = load ptr
1852      //   y = x+4
1853      //   store y -> ptr
1854      // This would happen when we're scanning down from the load and see the
1855      // store as a user.  Record that there is a use of ChainedNode that is
1856      // part of the pattern and keep scanning uses.
1857      Result = CR_LeadsToInteriorNode;
1858      InteriorChainedNodes.push_back(User);
1859      continue;
1860    }
1861
1862    // If we found a TokenFactor, there are two cases to consider: first if the
1863    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1864    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1865    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1866    //     [Load chain]
1867    //         ^
1868    //         |
1869    //       [Load]
1870    //       ^    ^
1871    //       |    \                    DAG's like cheese
1872    //      /       \                       do you?
1873    //     /         |
1874    // [TokenFactor] [Op]
1875    //     ^          ^
1876    //     |          |
1877    //      \        /
1878    //       \      /
1879    //       [Store]
1880    //
1881    // In this case, the TokenFactor becomes part of our match and we rewrite it
1882    // as a new TokenFactor.
1883    //
1884    // To distinguish these two cases, do a recursive walk down the uses.
1885    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1886    case CR_Simple:
1887      // If the uses of the TokenFactor are just already-selected nodes, ignore
1888      // it, it is "below" our pattern.
1889      continue;
1890    case CR_InducesCycle:
1891      // If the uses of the TokenFactor lead to nodes that are not part of our
1892      // pattern that are not selected, folding would turn this into a cycle,
1893      // bail out now.
1894      return CR_InducesCycle;
1895    case CR_LeadsToInteriorNode:
1896      break;  // Otherwise, keep processing.
1897    }
1898
1899    // Okay, we know we're in the interesting interior case.  The TokenFactor
1900    // is now going to be considered part of the pattern so that we rewrite its
1901    // uses (it may have uses that are not part of the pattern) with the
1902    // ultimate chain result of the generated code.  We will also add its chain
1903    // inputs as inputs to the ultimate TokenFactor we create.
1904    Result = CR_LeadsToInteriorNode;
1905    ChainedNodesInPattern.push_back(User);
1906    InteriorChainedNodes.push_back(User);
1907    continue;
1908  }
1909
1910  return Result;
1911}
1912
1913/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1914/// operation for when the pattern matched at least one node with a chains.  The
1915/// input vector contains a list of all of the chained nodes that we match.  We
1916/// must determine if this is a valid thing to cover (i.e. matching it won't
1917/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1918/// be used as the input node chain for the generated nodes.
1919static SDValue
1920HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1921                       SelectionDAG *CurDAG) {
1922  // Walk all of the chained nodes we've matched, recursively scanning down the
1923  // users of the chain result. This adds any TokenFactor nodes that are caught
1924  // in between chained nodes to the chained and interior nodes list.
1925  SmallVector<SDNode*, 3> InteriorChainedNodes;
1926  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1927    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1928                       InteriorChainedNodes) == CR_InducesCycle)
1929      return SDValue(); // Would induce a cycle.
1930  }
1931
1932  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1933  // that we are interested in.  Form our input TokenFactor node.
1934  SmallVector<SDValue, 3> InputChains;
1935  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1936    // Add the input chain of this node to the InputChains list (which will be
1937    // the operands of the generated TokenFactor) if it's not an interior node.
1938    SDNode *N = ChainNodesMatched[i];
1939    if (N->getOpcode() != ISD::TokenFactor) {
1940      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1941        continue;
1942
1943      // Otherwise, add the input chain.
1944      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1945      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1946      InputChains.push_back(InChain);
1947      continue;
1948    }
1949
1950    // If we have a token factor, we want to add all inputs of the token factor
1951    // that are not part of the pattern we're matching.
1952    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1953      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1954                      N->getOperand(op).getNode()))
1955        InputChains.push_back(N->getOperand(op));
1956    }
1957  }
1958
1959  SDValue Res;
1960  if (InputChains.size() == 1)
1961    return InputChains[0];
1962  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1963                         MVT::Other, &InputChains[0], InputChains.size());
1964}
1965
1966/// MorphNode - Handle morphing a node in place for the selector.
1967SDNode *SelectionDAGISel::
1968MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1969          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1970  // It is possible we're using MorphNodeTo to replace a node with no
1971  // normal results with one that has a normal result (or we could be
1972  // adding a chain) and the input could have glue and chains as well.
1973  // In this case we need to shift the operands down.
1974  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1975  // than the old isel though.
1976  int OldGlueResultNo = -1, OldChainResultNo = -1;
1977
1978  unsigned NTMNumResults = Node->getNumValues();
1979  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1980    OldGlueResultNo = NTMNumResults-1;
1981    if (NTMNumResults != 1 &&
1982        Node->getValueType(NTMNumResults-2) == MVT::Other)
1983      OldChainResultNo = NTMNumResults-2;
1984  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1985    OldChainResultNo = NTMNumResults-1;
1986
1987  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1988  // that this deletes operands of the old node that become dead.
1989  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1990
1991  // MorphNodeTo can operate in two ways: if an existing node with the
1992  // specified operands exists, it can just return it.  Otherwise, it
1993  // updates the node in place to have the requested operands.
1994  if (Res == Node) {
1995    // If we updated the node in place, reset the node ID.  To the isel,
1996    // this should be just like a newly allocated machine node.
1997    Res->setNodeId(-1);
1998  }
1999
2000  unsigned ResNumResults = Res->getNumValues();
2001  // Move the glue if needed.
2002  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2003      (unsigned)OldGlueResultNo != ResNumResults-1)
2004    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2005                                      SDValue(Res, ResNumResults-1));
2006
2007  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2008    --ResNumResults;
2009
2010  // Move the chain reference if needed.
2011  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2012      (unsigned)OldChainResultNo != ResNumResults-1)
2013    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2014                                      SDValue(Res, ResNumResults-1));
2015
2016  // Otherwise, no replacement happened because the node already exists. Replace
2017  // Uses of the old node with the new one.
2018  if (Res != Node)
2019    CurDAG->ReplaceAllUsesWith(Node, Res);
2020
2021  return Res;
2022}
2023
2024/// CheckSame - Implements OP_CheckSame.
2025LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2026CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2027          SDValue N,
2028          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2029  // Accept if it is exactly the same as a previously recorded node.
2030  unsigned RecNo = MatcherTable[MatcherIndex++];
2031  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2032  return N == RecordedNodes[RecNo].first;
2033}
2034
2035/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2036LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2037CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2038                      const SelectionDAGISel &SDISel) {
2039  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2040}
2041
2042/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2043LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2044CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2045                   const SelectionDAGISel &SDISel, SDNode *N) {
2046  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2047}
2048
2049LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2050CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2051            SDNode *N) {
2052  uint16_t Opc = MatcherTable[MatcherIndex++];
2053  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2054  return N->getOpcode() == Opc;
2055}
2056
2057LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2058CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2059          SDValue N, const TargetLowering &TLI) {
2060  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2061  if (N.getValueType() == VT) return true;
2062
2063  // Handle the case when VT is iPTR.
2064  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
2065}
2066
2067LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2068CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2069               SDValue N, const TargetLowering &TLI,
2070               unsigned ChildNo) {
2071  if (ChildNo >= N.getNumOperands())
2072    return false;  // Match fails if out of range child #.
2073  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2074}
2075
2076
2077LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2078CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2079              SDValue N) {
2080  return cast<CondCodeSDNode>(N)->get() ==
2081      (ISD::CondCode)MatcherTable[MatcherIndex++];
2082}
2083
2084LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2085CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2086               SDValue N, const TargetLowering &TLI) {
2087  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2088  if (cast<VTSDNode>(N)->getVT() == VT)
2089    return true;
2090
2091  // Handle the case when VT is iPTR.
2092  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
2093}
2094
2095LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2096CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2097             SDValue N) {
2098  int64_t Val = MatcherTable[MatcherIndex++];
2099  if (Val & 128)
2100    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2101
2102  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2103  return C != 0 && C->getSExtValue() == Val;
2104}
2105
2106LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2107CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2108            SDValue N, const SelectionDAGISel &SDISel) {
2109  int64_t Val = MatcherTable[MatcherIndex++];
2110  if (Val & 128)
2111    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2112
2113  if (N->getOpcode() != ISD::AND) return false;
2114
2115  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2116  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2117}
2118
2119LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2120CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2121           SDValue N, const SelectionDAGISel &SDISel) {
2122  int64_t Val = MatcherTable[MatcherIndex++];
2123  if (Val & 128)
2124    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2125
2126  if (N->getOpcode() != ISD::OR) return false;
2127
2128  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2129  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2130}
2131
2132/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2133/// scope, evaluate the current node.  If the current predicate is known to
2134/// fail, set Result=true and return anything.  If the current predicate is
2135/// known to pass, set Result=false and return the MatcherIndex to continue
2136/// with.  If the current predicate is unknown, set Result=false and return the
2137/// MatcherIndex to continue with.
2138static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2139                                       unsigned Index, SDValue N,
2140                                       bool &Result,
2141                                       const SelectionDAGISel &SDISel,
2142                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2143  switch (Table[Index++]) {
2144  default:
2145    Result = false;
2146    return Index-1;  // Could not evaluate this predicate.
2147  case SelectionDAGISel::OPC_CheckSame:
2148    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2149    return Index;
2150  case SelectionDAGISel::OPC_CheckPatternPredicate:
2151    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2152    return Index;
2153  case SelectionDAGISel::OPC_CheckPredicate:
2154    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2155    return Index;
2156  case SelectionDAGISel::OPC_CheckOpcode:
2157    Result = !::CheckOpcode(Table, Index, N.getNode());
2158    return Index;
2159  case SelectionDAGISel::OPC_CheckType:
2160    Result = !::CheckType(Table, Index, N, SDISel.TLI);
2161    return Index;
2162  case SelectionDAGISel::OPC_CheckChild0Type:
2163  case SelectionDAGISel::OPC_CheckChild1Type:
2164  case SelectionDAGISel::OPC_CheckChild2Type:
2165  case SelectionDAGISel::OPC_CheckChild3Type:
2166  case SelectionDAGISel::OPC_CheckChild4Type:
2167  case SelectionDAGISel::OPC_CheckChild5Type:
2168  case SelectionDAGISel::OPC_CheckChild6Type:
2169  case SelectionDAGISel::OPC_CheckChild7Type:
2170    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2171                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2172    return Index;
2173  case SelectionDAGISel::OPC_CheckCondCode:
2174    Result = !::CheckCondCode(Table, Index, N);
2175    return Index;
2176  case SelectionDAGISel::OPC_CheckValueType:
2177    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2178    return Index;
2179  case SelectionDAGISel::OPC_CheckInteger:
2180    Result = !::CheckInteger(Table, Index, N);
2181    return Index;
2182  case SelectionDAGISel::OPC_CheckAndImm:
2183    Result = !::CheckAndImm(Table, Index, N, SDISel);
2184    return Index;
2185  case SelectionDAGISel::OPC_CheckOrImm:
2186    Result = !::CheckOrImm(Table, Index, N, SDISel);
2187    return Index;
2188  }
2189}
2190
2191namespace {
2192
2193struct MatchScope {
2194  /// FailIndex - If this match fails, this is the index to continue with.
2195  unsigned FailIndex;
2196
2197  /// NodeStack - The node stack when the scope was formed.
2198  SmallVector<SDValue, 4> NodeStack;
2199
2200  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2201  unsigned NumRecordedNodes;
2202
2203  /// NumMatchedMemRefs - The number of matched memref entries.
2204  unsigned NumMatchedMemRefs;
2205
2206  /// InputChain/InputGlue - The current chain/glue
2207  SDValue InputChain, InputGlue;
2208
2209  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2210  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2211};
2212
2213}
2214
2215SDNode *SelectionDAGISel::
2216SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2217                 unsigned TableSize) {
2218  // FIXME: Should these even be selected?  Handle these cases in the caller?
2219  switch (NodeToMatch->getOpcode()) {
2220  default:
2221    break;
2222  case ISD::EntryToken:       // These nodes remain the same.
2223  case ISD::BasicBlock:
2224  case ISD::Register:
2225  case ISD::RegisterMask:
2226  //case ISD::VALUETYPE:
2227  //case ISD::CONDCODE:
2228  case ISD::HANDLENODE:
2229  case ISD::MDNODE_SDNODE:
2230  case ISD::TargetConstant:
2231  case ISD::TargetConstantFP:
2232  case ISD::TargetConstantPool:
2233  case ISD::TargetFrameIndex:
2234  case ISD::TargetExternalSymbol:
2235  case ISD::TargetBlockAddress:
2236  case ISD::TargetJumpTable:
2237  case ISD::TargetGlobalTLSAddress:
2238  case ISD::TargetGlobalAddress:
2239  case ISD::TokenFactor:
2240  case ISD::CopyFromReg:
2241  case ISD::CopyToReg:
2242  case ISD::EH_LABEL:
2243  case ISD::LIFETIME_START:
2244  case ISD::LIFETIME_END:
2245    NodeToMatch->setNodeId(-1); // Mark selected.
2246    return 0;
2247  case ISD::AssertSext:
2248  case ISD::AssertZext:
2249    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2250                                      NodeToMatch->getOperand(0));
2251    return 0;
2252  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2253  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2254  }
2255
2256  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2257
2258  // Set up the node stack with NodeToMatch as the only node on the stack.
2259  SmallVector<SDValue, 8> NodeStack;
2260  SDValue N = SDValue(NodeToMatch, 0);
2261  NodeStack.push_back(N);
2262
2263  // MatchScopes - Scopes used when matching, if a match failure happens, this
2264  // indicates where to continue checking.
2265  SmallVector<MatchScope, 8> MatchScopes;
2266
2267  // RecordedNodes - This is the set of nodes that have been recorded by the
2268  // state machine.  The second value is the parent of the node, or null if the
2269  // root is recorded.
2270  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2271
2272  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2273  // pattern.
2274  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2275
2276  // These are the current input chain and glue for use when generating nodes.
2277  // Various Emit operations change these.  For example, emitting a copytoreg
2278  // uses and updates these.
2279  SDValue InputChain, InputGlue;
2280
2281  // ChainNodesMatched - If a pattern matches nodes that have input/output
2282  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2283  // which ones they are.  The result is captured into this list so that we can
2284  // update the chain results when the pattern is complete.
2285  SmallVector<SDNode*, 3> ChainNodesMatched;
2286  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2287
2288  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2289        NodeToMatch->dump(CurDAG);
2290        errs() << '\n');
2291
2292  // Determine where to start the interpreter.  Normally we start at opcode #0,
2293  // but if the state machine starts with an OPC_SwitchOpcode, then we
2294  // accelerate the first lookup (which is guaranteed to be hot) with the
2295  // OpcodeOffset table.
2296  unsigned MatcherIndex = 0;
2297
2298  if (!OpcodeOffset.empty()) {
2299    // Already computed the OpcodeOffset table, just index into it.
2300    if (N.getOpcode() < OpcodeOffset.size())
2301      MatcherIndex = OpcodeOffset[N.getOpcode()];
2302    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2303
2304  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2305    // Otherwise, the table isn't computed, but the state machine does start
2306    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2307    // is the first time we're selecting an instruction.
2308    unsigned Idx = 1;
2309    while (1) {
2310      // Get the size of this case.
2311      unsigned CaseSize = MatcherTable[Idx++];
2312      if (CaseSize & 128)
2313        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2314      if (CaseSize == 0) break;
2315
2316      // Get the opcode, add the index to the table.
2317      uint16_t Opc = MatcherTable[Idx++];
2318      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2319      if (Opc >= OpcodeOffset.size())
2320        OpcodeOffset.resize((Opc+1)*2);
2321      OpcodeOffset[Opc] = Idx;
2322      Idx += CaseSize;
2323    }
2324
2325    // Okay, do the lookup for the first opcode.
2326    if (N.getOpcode() < OpcodeOffset.size())
2327      MatcherIndex = OpcodeOffset[N.getOpcode()];
2328  }
2329
2330  while (1) {
2331    assert(MatcherIndex < TableSize && "Invalid index");
2332#ifndef NDEBUG
2333    unsigned CurrentOpcodeIndex = MatcherIndex;
2334#endif
2335    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2336    switch (Opcode) {
2337    case OPC_Scope: {
2338      // Okay, the semantics of this operation are that we should push a scope
2339      // then evaluate the first child.  However, pushing a scope only to have
2340      // the first check fail (which then pops it) is inefficient.  If we can
2341      // determine immediately that the first check (or first several) will
2342      // immediately fail, don't even bother pushing a scope for them.
2343      unsigned FailIndex;
2344
2345      while (1) {
2346        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2347        if (NumToSkip & 128)
2348          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2349        // Found the end of the scope with no match.
2350        if (NumToSkip == 0) {
2351          FailIndex = 0;
2352          break;
2353        }
2354
2355        FailIndex = MatcherIndex+NumToSkip;
2356
2357        unsigned MatcherIndexOfPredicate = MatcherIndex;
2358        (void)MatcherIndexOfPredicate; // silence warning.
2359
2360        // If we can't evaluate this predicate without pushing a scope (e.g. if
2361        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2362        // push the scope and evaluate the full predicate chain.
2363        bool Result;
2364        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2365                                              Result, *this, RecordedNodes);
2366        if (!Result)
2367          break;
2368
2369        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2370                     << "index " << MatcherIndexOfPredicate
2371                     << ", continuing at " << FailIndex << "\n");
2372        ++NumDAGIselRetries;
2373
2374        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2375        // move to the next case.
2376        MatcherIndex = FailIndex;
2377      }
2378
2379      // If the whole scope failed to match, bail.
2380      if (FailIndex == 0) break;
2381
2382      // Push a MatchScope which indicates where to go if the first child fails
2383      // to match.
2384      MatchScope NewEntry;
2385      NewEntry.FailIndex = FailIndex;
2386      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2387      NewEntry.NumRecordedNodes = RecordedNodes.size();
2388      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2389      NewEntry.InputChain = InputChain;
2390      NewEntry.InputGlue = InputGlue;
2391      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2392      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2393      MatchScopes.push_back(NewEntry);
2394      continue;
2395    }
2396    case OPC_RecordNode: {
2397      // Remember this node, it may end up being an operand in the pattern.
2398      SDNode *Parent = 0;
2399      if (NodeStack.size() > 1)
2400        Parent = NodeStack[NodeStack.size()-2].getNode();
2401      RecordedNodes.push_back(std::make_pair(N, Parent));
2402      continue;
2403    }
2404
2405    case OPC_RecordChild0: case OPC_RecordChild1:
2406    case OPC_RecordChild2: case OPC_RecordChild3:
2407    case OPC_RecordChild4: case OPC_RecordChild5:
2408    case OPC_RecordChild6: case OPC_RecordChild7: {
2409      unsigned ChildNo = Opcode-OPC_RecordChild0;
2410      if (ChildNo >= N.getNumOperands())
2411        break;  // Match fails if out of range child #.
2412
2413      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2414                                             N.getNode()));
2415      continue;
2416    }
2417    case OPC_RecordMemRef:
2418      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2419      continue;
2420
2421    case OPC_CaptureGlueInput:
2422      // If the current node has an input glue, capture it in InputGlue.
2423      if (N->getNumOperands() != 0 &&
2424          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2425        InputGlue = N->getOperand(N->getNumOperands()-1);
2426      continue;
2427
2428    case OPC_MoveChild: {
2429      unsigned ChildNo = MatcherTable[MatcherIndex++];
2430      if (ChildNo >= N.getNumOperands())
2431        break;  // Match fails if out of range child #.
2432      N = N.getOperand(ChildNo);
2433      NodeStack.push_back(N);
2434      continue;
2435    }
2436
2437    case OPC_MoveParent:
2438      // Pop the current node off the NodeStack.
2439      NodeStack.pop_back();
2440      assert(!NodeStack.empty() && "Node stack imbalance!");
2441      N = NodeStack.back();
2442      continue;
2443
2444    case OPC_CheckSame:
2445      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2446      continue;
2447    case OPC_CheckPatternPredicate:
2448      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2449      continue;
2450    case OPC_CheckPredicate:
2451      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2452                                N.getNode()))
2453        break;
2454      continue;
2455    case OPC_CheckComplexPat: {
2456      unsigned CPNum = MatcherTable[MatcherIndex++];
2457      unsigned RecNo = MatcherTable[MatcherIndex++];
2458      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2459      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2460                               RecordedNodes[RecNo].first, CPNum,
2461                               RecordedNodes))
2462        break;
2463      continue;
2464    }
2465    case OPC_CheckOpcode:
2466      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2467      continue;
2468
2469    case OPC_CheckType:
2470      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2471      continue;
2472
2473    case OPC_SwitchOpcode: {
2474      unsigned CurNodeOpcode = N.getOpcode();
2475      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2476      unsigned CaseSize;
2477      while (1) {
2478        // Get the size of this case.
2479        CaseSize = MatcherTable[MatcherIndex++];
2480        if (CaseSize & 128)
2481          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2482        if (CaseSize == 0) break;
2483
2484        uint16_t Opc = MatcherTable[MatcherIndex++];
2485        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2486
2487        // If the opcode matches, then we will execute this case.
2488        if (CurNodeOpcode == Opc)
2489          break;
2490
2491        // Otherwise, skip over this case.
2492        MatcherIndex += CaseSize;
2493      }
2494
2495      // If no cases matched, bail out.
2496      if (CaseSize == 0) break;
2497
2498      // Otherwise, execute the case we found.
2499      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2500                   << " to " << MatcherIndex << "\n");
2501      continue;
2502    }
2503
2504    case OPC_SwitchType: {
2505      MVT CurNodeVT = N.getValueType().getSimpleVT();
2506      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2507      unsigned CaseSize;
2508      while (1) {
2509        // Get the size of this case.
2510        CaseSize = MatcherTable[MatcherIndex++];
2511        if (CaseSize & 128)
2512          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2513        if (CaseSize == 0) break;
2514
2515        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2516        if (CaseVT == MVT::iPTR)
2517          CaseVT = TLI.getPointerTy();
2518
2519        // If the VT matches, then we will execute this case.
2520        if (CurNodeVT == CaseVT)
2521          break;
2522
2523        // Otherwise, skip over this case.
2524        MatcherIndex += CaseSize;
2525      }
2526
2527      // If no cases matched, bail out.
2528      if (CaseSize == 0) break;
2529
2530      // Otherwise, execute the case we found.
2531      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2532                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2533      continue;
2534    }
2535    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2536    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2537    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2538    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2539      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2540                            Opcode-OPC_CheckChild0Type))
2541        break;
2542      continue;
2543    case OPC_CheckCondCode:
2544      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2545      continue;
2546    case OPC_CheckValueType:
2547      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2548      continue;
2549    case OPC_CheckInteger:
2550      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2551      continue;
2552    case OPC_CheckAndImm:
2553      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2554      continue;
2555    case OPC_CheckOrImm:
2556      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2557      continue;
2558
2559    case OPC_CheckFoldableChainNode: {
2560      assert(NodeStack.size() != 1 && "No parent node");
2561      // Verify that all intermediate nodes between the root and this one have
2562      // a single use.
2563      bool HasMultipleUses = false;
2564      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2565        if (!NodeStack[i].hasOneUse()) {
2566          HasMultipleUses = true;
2567          break;
2568        }
2569      if (HasMultipleUses) break;
2570
2571      // Check to see that the target thinks this is profitable to fold and that
2572      // we can fold it without inducing cycles in the graph.
2573      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2574                              NodeToMatch) ||
2575          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2576                         NodeToMatch, OptLevel,
2577                         true/*We validate our own chains*/))
2578        break;
2579
2580      continue;
2581    }
2582    case OPC_EmitInteger: {
2583      MVT::SimpleValueType VT =
2584        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2585      int64_t Val = MatcherTable[MatcherIndex++];
2586      if (Val & 128)
2587        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2588      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2589                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2590      continue;
2591    }
2592    case OPC_EmitRegister: {
2593      MVT::SimpleValueType VT =
2594        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2595      unsigned RegNo = MatcherTable[MatcherIndex++];
2596      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2597                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2598      continue;
2599    }
2600    case OPC_EmitRegister2: {
2601      // For targets w/ more than 256 register names, the register enum
2602      // values are stored in two bytes in the matcher table (just like
2603      // opcodes).
2604      MVT::SimpleValueType VT =
2605        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2606      unsigned RegNo = MatcherTable[MatcherIndex++];
2607      RegNo |= MatcherTable[MatcherIndex++] << 8;
2608      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2609                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2610      continue;
2611    }
2612
2613    case OPC_EmitConvertToTarget:  {
2614      // Convert from IMM/FPIMM to target version.
2615      unsigned RecNo = MatcherTable[MatcherIndex++];
2616      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2617      SDValue Imm = RecordedNodes[RecNo].first;
2618
2619      if (Imm->getOpcode() == ISD::Constant) {
2620        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
2621        Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
2622      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2623        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2624        Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
2625      }
2626
2627      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2628      continue;
2629    }
2630
2631    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2632    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2633      // These are space-optimized forms of OPC_EmitMergeInputChains.
2634      assert(InputChain.getNode() == 0 &&
2635             "EmitMergeInputChains should be the first chain producing node");
2636      assert(ChainNodesMatched.empty() &&
2637             "Should only have one EmitMergeInputChains per match");
2638
2639      // Read all of the chained nodes.
2640      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2641      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2642      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2643
2644      // FIXME: What if other value results of the node have uses not matched
2645      // by this pattern?
2646      if (ChainNodesMatched.back() != NodeToMatch &&
2647          !RecordedNodes[RecNo].first.hasOneUse()) {
2648        ChainNodesMatched.clear();
2649        break;
2650      }
2651
2652      // Merge the input chains if they are not intra-pattern references.
2653      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2654
2655      if (InputChain.getNode() == 0)
2656        break;  // Failed to merge.
2657      continue;
2658    }
2659
2660    case OPC_EmitMergeInputChains: {
2661      assert(InputChain.getNode() == 0 &&
2662             "EmitMergeInputChains should be the first chain producing node");
2663      // This node gets a list of nodes we matched in the input that have
2664      // chains.  We want to token factor all of the input chains to these nodes
2665      // together.  However, if any of the input chains is actually one of the
2666      // nodes matched in this pattern, then we have an intra-match reference.
2667      // Ignore these because the newly token factored chain should not refer to
2668      // the old nodes.
2669      unsigned NumChains = MatcherTable[MatcherIndex++];
2670      assert(NumChains != 0 && "Can't TF zero chains");
2671
2672      assert(ChainNodesMatched.empty() &&
2673             "Should only have one EmitMergeInputChains per match");
2674
2675      // Read all of the chained nodes.
2676      for (unsigned i = 0; i != NumChains; ++i) {
2677        unsigned RecNo = MatcherTable[MatcherIndex++];
2678        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2679        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2680
2681        // FIXME: What if other value results of the node have uses not matched
2682        // by this pattern?
2683        if (ChainNodesMatched.back() != NodeToMatch &&
2684            !RecordedNodes[RecNo].first.hasOneUse()) {
2685          ChainNodesMatched.clear();
2686          break;
2687        }
2688      }
2689
2690      // If the inner loop broke out, the match fails.
2691      if (ChainNodesMatched.empty())
2692        break;
2693
2694      // Merge the input chains if they are not intra-pattern references.
2695      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2696
2697      if (InputChain.getNode() == 0)
2698        break;  // Failed to merge.
2699
2700      continue;
2701    }
2702
2703    case OPC_EmitCopyToReg: {
2704      unsigned RecNo = MatcherTable[MatcherIndex++];
2705      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2706      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2707
2708      if (InputChain.getNode() == 0)
2709        InputChain = CurDAG->getEntryNode();
2710
2711      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2712                                        DestPhysReg, RecordedNodes[RecNo].first,
2713                                        InputGlue);
2714
2715      InputGlue = InputChain.getValue(1);
2716      continue;
2717    }
2718
2719    case OPC_EmitNodeXForm: {
2720      unsigned XFormNo = MatcherTable[MatcherIndex++];
2721      unsigned RecNo = MatcherTable[MatcherIndex++];
2722      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2723      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2724      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2725      continue;
2726    }
2727
2728    case OPC_EmitNode:
2729    case OPC_MorphNodeTo: {
2730      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2731      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2732      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2733      // Get the result VT list.
2734      unsigned NumVTs = MatcherTable[MatcherIndex++];
2735      SmallVector<EVT, 4> VTs;
2736      for (unsigned i = 0; i != NumVTs; ++i) {
2737        MVT::SimpleValueType VT =
2738          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2739        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2740        VTs.push_back(VT);
2741      }
2742
2743      if (EmitNodeInfo & OPFL_Chain)
2744        VTs.push_back(MVT::Other);
2745      if (EmitNodeInfo & OPFL_GlueOutput)
2746        VTs.push_back(MVT::Glue);
2747
2748      // This is hot code, so optimize the two most common cases of 1 and 2
2749      // results.
2750      SDVTList VTList;
2751      if (VTs.size() == 1)
2752        VTList = CurDAG->getVTList(VTs[0]);
2753      else if (VTs.size() == 2)
2754        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2755      else
2756        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2757
2758      // Get the operand list.
2759      unsigned NumOps = MatcherTable[MatcherIndex++];
2760      SmallVector<SDValue, 8> Ops;
2761      for (unsigned i = 0; i != NumOps; ++i) {
2762        unsigned RecNo = MatcherTable[MatcherIndex++];
2763        if (RecNo & 128)
2764          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2765
2766        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2767        Ops.push_back(RecordedNodes[RecNo].first);
2768      }
2769
2770      // If there are variadic operands to add, handle them now.
2771      if (EmitNodeInfo & OPFL_VariadicInfo) {
2772        // Determine the start index to copy from.
2773        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2774        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2775        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2776               "Invalid variadic node");
2777        // Copy all of the variadic operands, not including a potential glue
2778        // input.
2779        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2780             i != e; ++i) {
2781          SDValue V = NodeToMatch->getOperand(i);
2782          if (V.getValueType() == MVT::Glue) break;
2783          Ops.push_back(V);
2784        }
2785      }
2786
2787      // If this has chain/glue inputs, add them.
2788      if (EmitNodeInfo & OPFL_Chain)
2789        Ops.push_back(InputChain);
2790      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2791        Ops.push_back(InputGlue);
2792
2793      // Create the node.
2794      SDNode *Res = 0;
2795      if (Opcode != OPC_MorphNodeTo) {
2796        // If this is a normal EmitNode command, just create the new node and
2797        // add the results to the RecordedNodes list.
2798        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2799                                     VTList, Ops.data(), Ops.size());
2800
2801        // Add all the non-glue/non-chain results to the RecordedNodes list.
2802        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2803          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2804          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2805                                                             (SDNode*) 0));
2806        }
2807
2808      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2809        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2810                        EmitNodeInfo);
2811      } else {
2812        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2813        // We will visit the equivalent node later.
2814        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2815        return 0;
2816      }
2817
2818      // If the node had chain/glue results, update our notion of the current
2819      // chain and glue.
2820      if (EmitNodeInfo & OPFL_GlueOutput) {
2821        InputGlue = SDValue(Res, VTs.size()-1);
2822        if (EmitNodeInfo & OPFL_Chain)
2823          InputChain = SDValue(Res, VTs.size()-2);
2824      } else if (EmitNodeInfo & OPFL_Chain)
2825        InputChain = SDValue(Res, VTs.size()-1);
2826
2827      // If the OPFL_MemRefs glue is set on this node, slap all of the
2828      // accumulated memrefs onto it.
2829      //
2830      // FIXME: This is vastly incorrect for patterns with multiple outputs
2831      // instructions that access memory and for ComplexPatterns that match
2832      // loads.
2833      if (EmitNodeInfo & OPFL_MemRefs) {
2834        // Only attach load or store memory operands if the generated
2835        // instruction may load or store.
2836        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2837        bool mayLoad = MCID.mayLoad();
2838        bool mayStore = MCID.mayStore();
2839
2840        unsigned NumMemRefs = 0;
2841        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2842             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2843          if ((*I)->isLoad()) {
2844            if (mayLoad)
2845              ++NumMemRefs;
2846          } else if ((*I)->isStore()) {
2847            if (mayStore)
2848              ++NumMemRefs;
2849          } else {
2850            ++NumMemRefs;
2851          }
2852        }
2853
2854        MachineSDNode::mmo_iterator MemRefs =
2855          MF->allocateMemRefsArray(NumMemRefs);
2856
2857        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2858        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2859             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2860          if ((*I)->isLoad()) {
2861            if (mayLoad)
2862              *MemRefsPos++ = *I;
2863          } else if ((*I)->isStore()) {
2864            if (mayStore)
2865              *MemRefsPos++ = *I;
2866          } else {
2867            *MemRefsPos++ = *I;
2868          }
2869        }
2870
2871        cast<MachineSDNode>(Res)
2872          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2873      }
2874
2875      DEBUG(errs() << "  "
2876                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2877                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2878
2879      // If this was a MorphNodeTo then we're completely done!
2880      if (Opcode == OPC_MorphNodeTo) {
2881        // Update chain and glue uses.
2882        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2883                            InputGlue, GlueResultNodesMatched, true);
2884        return Res;
2885      }
2886
2887      continue;
2888    }
2889
2890    case OPC_MarkGlueResults: {
2891      unsigned NumNodes = MatcherTable[MatcherIndex++];
2892
2893      // Read and remember all the glue-result nodes.
2894      for (unsigned i = 0; i != NumNodes; ++i) {
2895        unsigned RecNo = MatcherTable[MatcherIndex++];
2896        if (RecNo & 128)
2897          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2898
2899        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2900        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2901      }
2902      continue;
2903    }
2904
2905    case OPC_CompleteMatch: {
2906      // The match has been completed, and any new nodes (if any) have been
2907      // created.  Patch up references to the matched dag to use the newly
2908      // created nodes.
2909      unsigned NumResults = MatcherTable[MatcherIndex++];
2910
2911      for (unsigned i = 0; i != NumResults; ++i) {
2912        unsigned ResSlot = MatcherTable[MatcherIndex++];
2913        if (ResSlot & 128)
2914          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2915
2916        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2917        SDValue Res = RecordedNodes[ResSlot].first;
2918
2919        assert(i < NodeToMatch->getNumValues() &&
2920               NodeToMatch->getValueType(i) != MVT::Other &&
2921               NodeToMatch->getValueType(i) != MVT::Glue &&
2922               "Invalid number of results to complete!");
2923        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2924                NodeToMatch->getValueType(i) == MVT::iPTR ||
2925                Res.getValueType() == MVT::iPTR ||
2926                NodeToMatch->getValueType(i).getSizeInBits() ==
2927                    Res.getValueType().getSizeInBits()) &&
2928               "invalid replacement");
2929        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2930      }
2931
2932      // If the root node defines glue, add it to the glue nodes to update list.
2933      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2934        GlueResultNodesMatched.push_back(NodeToMatch);
2935
2936      // Update chain and glue uses.
2937      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2938                          InputGlue, GlueResultNodesMatched, false);
2939
2940      assert(NodeToMatch->use_empty() &&
2941             "Didn't replace all uses of the node?");
2942
2943      // FIXME: We just return here, which interacts correctly with SelectRoot
2944      // above.  We should fix this to not return an SDNode* anymore.
2945      return 0;
2946    }
2947    }
2948
2949    // If the code reached this point, then the match failed.  See if there is
2950    // another child to try in the current 'Scope', otherwise pop it until we
2951    // find a case to check.
2952    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2953    ++NumDAGIselRetries;
2954    while (1) {
2955      if (MatchScopes.empty()) {
2956        CannotYetSelect(NodeToMatch);
2957        return 0;
2958      }
2959
2960      // Restore the interpreter state back to the point where the scope was
2961      // formed.
2962      MatchScope &LastScope = MatchScopes.back();
2963      RecordedNodes.resize(LastScope.NumRecordedNodes);
2964      NodeStack.clear();
2965      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2966      N = NodeStack.back();
2967
2968      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2969        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2970      MatcherIndex = LastScope.FailIndex;
2971
2972      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2973
2974      InputChain = LastScope.InputChain;
2975      InputGlue = LastScope.InputGlue;
2976      if (!LastScope.HasChainNodesMatched)
2977        ChainNodesMatched.clear();
2978      if (!LastScope.HasGlueResultNodesMatched)
2979        GlueResultNodesMatched.clear();
2980
2981      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2982      // we have reached the end of this scope, otherwise we have another child
2983      // in the current scope to try.
2984      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2985      if (NumToSkip & 128)
2986        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2987
2988      // If we have another child in this scope to match, update FailIndex and
2989      // try it.
2990      if (NumToSkip != 0) {
2991        LastScope.FailIndex = MatcherIndex+NumToSkip;
2992        break;
2993      }
2994
2995      // End of this scope, pop it and try the next child in the containing
2996      // scope.
2997      MatchScopes.pop_back();
2998    }
2999  }
3000}
3001
3002
3003
3004void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3005  std::string msg;
3006  raw_string_ostream Msg(msg);
3007  Msg << "Cannot select: ";
3008
3009  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3010      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3011      N->getOpcode() != ISD::INTRINSIC_VOID) {
3012    N->printrFull(Msg, CurDAG);
3013    Msg << "\nIn function: " << MF->getName();
3014  } else {
3015    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3016    unsigned iid =
3017      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3018    if (iid < Intrinsic::num_intrinsics)
3019      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3020    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3021      Msg << "target intrinsic %" << TII->getName(iid);
3022    else
3023      Msg << "unknown intrinsic #" << iid;
3024  }
3025  report_fatal_error(Msg.str());
3026}
3027
3028char SelectionDAGISel::ID = 0;
3029