SelectionDAGISel.cpp revision 5f32330dcddd37e71a86a617b56661d396f6ff3a
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/Compiler.h"
48#include <algorithm>
49using namespace llvm;
50
51#ifndef NDEBUG
52static cl::opt<bool>
53ViewISelDAGs("view-isel-dags", cl::Hidden,
54          cl::desc("Pop up a window to show isel dags as they are selected"));
55static cl::opt<bool>
56ViewSchedDAGs("view-sched-dags", cl::Hidden,
57          cl::desc("Pop up a window to show sched dags as they are processed"));
58static cl::opt<bool>
59ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
60      cl::desc("Pop up a window to show SUnit dags after they are processed"));
61#else
62static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
63#endif
64
65//===---------------------------------------------------------------------===//
66///
67/// RegisterScheduler class - Track the registration of instruction schedulers.
68///
69//===---------------------------------------------------------------------===//
70MachinePassRegistry RegisterScheduler::Registry;
71
72//===---------------------------------------------------------------------===//
73///
74/// ISHeuristic command line option for instruction schedulers.
75///
76//===---------------------------------------------------------------------===//
77namespace {
78  cl::opt<RegisterScheduler::FunctionPassCtor, false,
79          RegisterPassParser<RegisterScheduler> >
80  ISHeuristic("pre-RA-sched",
81              cl::init(&createDefaultScheduler),
82              cl::desc("Instruction schedulers available (before register"
83                       " allocation):"));
84
85  static RegisterScheduler
86  defaultListDAGScheduler("default", "  Best scheduler for the target",
87                          createDefaultScheduler);
88} // namespace
89
90namespace { struct SDISelAsmOperandInfo; }
91
92namespace {
93  /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
94  /// MVT::ValueTypes that represent all the individual underlying
95  /// non-aggregate types that comprise it.
96  static void ComputeValueVTs(const TargetLowering &TLI,
97                              const Type *Ty,
98                              SmallVectorImpl<MVT::ValueType> &ValueVTs) {
99    // Given a struct type, recursively traverse the elements.
100    if (const StructType *STy = dyn_cast<StructType>(Ty)) {
101      for (StructType::element_iterator EI = STy->element_begin(),
102                                        EB = STy->element_end();
103          EI != EB; ++EI)
104        ComputeValueVTs(TLI, *EI, ValueVTs);
105      return;
106    }
107    // Given an array type, recursively traverse the elements.
108    if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
109      const Type *EltTy = ATy->getElementType();
110      for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
111        ComputeValueVTs(TLI, EltTy, ValueVTs);
112      return;
113    }
114    // Base case: we can get an MVT::ValueType for this LLVM IR type.
115    MVT::ValueType VT = TLI.getValueType(Ty);
116    ValueVTs.push_back(VT);
117  }
118
119  /// RegsForValue - This struct represents the physical registers that a
120  /// particular value is assigned and the type information about the value.
121  /// This is needed because values can be promoted into larger registers and
122  /// expanded into multiple smaller registers than the value.
123  struct VISIBILITY_HIDDEN RegsForValue {
124    /// TLI - The TargetLowering object.
125    const TargetLowering *TLI;
126
127    /// Regs - This list holds the register (for legal and promoted values)
128    /// or register set (for expanded values) that the value should be assigned
129    /// to.
130    std::vector<unsigned> Regs;
131
132    /// RegVTs - The value types of the registers. This is the same size
133    /// as ValueVTs; every register contributing to a given value must
134    /// have the same type. When Regs contains all virtual registers, the
135    /// contents of RegVTs is redundant with TLI's getRegisterType member
136    /// function, however when Regs contains physical registers, it is
137    /// necessary to have a separate record of the types.
138    ///
139    SmallVector<MVT::ValueType, 4> RegVTs;
140
141    /// ValueVTs - The value types of the values, which may be promoted
142    /// or synthesized from one or more registers.
143    SmallVector<MVT::ValueType, 4> ValueVTs;
144
145    RegsForValue() : TLI(0) {}
146
147    RegsForValue(const TargetLowering &tli,
148                 unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
149      : TLI(&tli), Regs(1, Reg), RegVTs(1, regvt), ValueVTs(1, valuevt) {}
150    RegsForValue(const TargetLowering &tli,
151                 const std::vector<unsigned> &regs,
152                 MVT::ValueType regvt, MVT::ValueType valuevt)
153      : TLI(&tli), Regs(regs), RegVTs(1, regvt), ValueVTs(1, valuevt) {}
154    RegsForValue(const TargetLowering &tli,
155                 const std::vector<unsigned> &regs,
156                 const SmallVector<MVT::ValueType, 4> &regvts,
157                 const SmallVector<MVT::ValueType, 4> &valuevts)
158      : TLI(&tli), Regs(regs), RegVTs(regvts), ValueVTs(valuevts) {}
159    RegsForValue(const TargetLowering &tli,
160                 unsigned Reg, const Type *Ty) : TLI(&tli) {
161      ComputeValueVTs(tli, Ty, ValueVTs);
162
163      for (unsigned Value = 0; Value != ValueVTs.size(); ++Value) {
164        MVT::ValueType ValueVT = ValueVTs[Value];
165        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
166        MVT::ValueType RegisterVT = TLI->getRegisterType(ValueVT);
167        for (unsigned i = 0; i != NumRegs; ++i)
168          Regs.push_back(Reg + i);
169        RegVTs.push_back(RegisterVT);
170        Reg += NumRegs;
171      }
172    }
173
174    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
175    /// this value and returns the result as a ValueVTs value.  This uses
176    /// Chain/Flag as the input and updates them for the output Chain/Flag.
177    /// If the Flag pointer is NULL, no flag is used.
178    SDOperand getCopyFromRegs(SelectionDAG &DAG,
179                              SDOperand &Chain, SDOperand *Flag) const;
180
181    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
182    /// specified value into the registers specified by this object.  This uses
183    /// Chain/Flag as the input and updates them for the output Chain/Flag.
184    /// If the Flag pointer is NULL, no flag is used.
185    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
186                       SDOperand &Chain, SDOperand *Flag) const;
187
188    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
189    /// operand list.  This adds the code marker and includes the number of
190    /// values added into it.
191    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
192                              std::vector<SDOperand> &Ops) const;
193  };
194}
195
196namespace llvm {
197  //===--------------------------------------------------------------------===//
198  /// createDefaultScheduler - This creates an instruction scheduler appropriate
199  /// for the target.
200  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
201                                      SelectionDAG *DAG,
202                                      MachineBasicBlock *BB) {
203    TargetLowering &TLI = IS->getTargetLowering();
204
205    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
206      return createTDListDAGScheduler(IS, DAG, BB);
207    } else {
208      assert(TLI.getSchedulingPreference() ==
209           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
210      return createBURRListDAGScheduler(IS, DAG, BB);
211    }
212  }
213
214
215  //===--------------------------------------------------------------------===//
216  /// FunctionLoweringInfo - This contains information that is global to a
217  /// function that is used when lowering a region of the function.
218  class FunctionLoweringInfo {
219  public:
220    TargetLowering &TLI;
221    Function &Fn;
222    MachineFunction &MF;
223    MachineRegisterInfo &RegInfo;
224
225    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
226
227    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
228    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
229
230    /// ValueMap - Since we emit code for the function a basic block at a time,
231    /// we must remember which virtual registers hold the values for
232    /// cross-basic-block values.
233    DenseMap<const Value*, unsigned> ValueMap;
234
235    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
236    /// the entry block.  This allows the allocas to be efficiently referenced
237    /// anywhere in the function.
238    std::map<const AllocaInst*, int> StaticAllocaMap;
239
240#ifndef NDEBUG
241    SmallSet<Instruction*, 8> CatchInfoLost;
242    SmallSet<Instruction*, 8> CatchInfoFound;
243#endif
244
245    unsigned MakeReg(MVT::ValueType VT) {
246      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
247    }
248
249    /// isExportedInst - Return true if the specified value is an instruction
250    /// exported from its block.
251    bool isExportedInst(const Value *V) {
252      return ValueMap.count(V);
253    }
254
255    unsigned CreateRegForValue(const Value *V);
256
257    unsigned InitializeRegForValue(const Value *V) {
258      unsigned &R = ValueMap[V];
259      assert(R == 0 && "Already initialized this value register!");
260      return R = CreateRegForValue(V);
261    }
262  };
263}
264
265/// isSelector - Return true if this instruction is a call to the
266/// eh.selector intrinsic.
267static bool isSelector(Instruction *I) {
268  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
269    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
270            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
271  return false;
272}
273
274/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
275/// PHI nodes or outside of the basic block that defines it, or used by a
276/// switch or atomic instruction, which may expand to multiple basic blocks.
277static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
278  if (isa<PHINode>(I)) return true;
279  BasicBlock *BB = I->getParent();
280  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
281    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
282        // FIXME: Remove switchinst special case.
283        isa<SwitchInst>(*UI))
284      return true;
285  return false;
286}
287
288/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
289/// entry block, return true.  This includes arguments used by switches, since
290/// the switch may expand into multiple basic blocks.
291static bool isOnlyUsedInEntryBlock(Argument *A) {
292  BasicBlock *Entry = A->getParent()->begin();
293  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
294    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
295      return false;  // Use not in entry block.
296  return true;
297}
298
299FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
300                                           Function &fn, MachineFunction &mf)
301    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
302
303  // Create a vreg for each argument register that is not dead and is used
304  // outside of the entry block for the function.
305  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
306       AI != E; ++AI)
307    if (!isOnlyUsedInEntryBlock(AI))
308      InitializeRegForValue(AI);
309
310  // Initialize the mapping of values to registers.  This is only set up for
311  // instruction values that are used outside of the block that defines
312  // them.
313  Function::iterator BB = Fn.begin(), EB = Fn.end();
314  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
315    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
316      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
317        const Type *Ty = AI->getAllocatedType();
318        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
319        unsigned Align =
320          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
321                   AI->getAlignment());
322
323        TySize *= CUI->getZExtValue();   // Get total allocated size.
324        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
325        StaticAllocaMap[AI] =
326          MF.getFrameInfo()->CreateStackObject(TySize, Align);
327      }
328
329  for (; BB != EB; ++BB)
330    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
331      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
332        if (!isa<AllocaInst>(I) ||
333            !StaticAllocaMap.count(cast<AllocaInst>(I)))
334          InitializeRegForValue(I);
335
336  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
337  // also creates the initial PHI MachineInstrs, though none of the input
338  // operands are populated.
339  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
340    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
341    MBBMap[BB] = MBB;
342    MF.getBasicBlockList().push_back(MBB);
343
344    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
345    // appropriate.
346    PHINode *PN;
347    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
348      if (PN->use_empty()) continue;
349
350      MVT::ValueType VT = TLI.getValueType(PN->getType());
351      unsigned NumRegisters = TLI.getNumRegisters(VT);
352      unsigned PHIReg = ValueMap[PN];
353      assert(PHIReg && "PHI node does not have an assigned virtual register!");
354      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
355      for (unsigned i = 0; i != NumRegisters; ++i)
356        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
357    }
358  }
359}
360
361/// CreateRegForValue - Allocate the appropriate number of virtual registers of
362/// the correctly promoted or expanded types.  Assign these registers
363/// consecutive vreg numbers and return the first assigned number.
364unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
365  const Type *Ty = V->getType();
366  SmallVector<MVT::ValueType, 4> ValueVTs;
367  ComputeValueVTs(TLI, Ty, ValueVTs);
368
369  unsigned FirstReg = 0;
370  for (unsigned Value = 0; Value != ValueVTs.size(); ++Value) {
371    MVT::ValueType ValueVT = ValueVTs[Value];
372    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
373    MVT::ValueType RegisterVT = TLI.getRegisterType(ValueVT);
374
375    for (unsigned i = 0; i != NumRegs; ++i) {
376      unsigned R = MakeReg(RegisterVT);
377      if (!FirstReg) FirstReg = R;
378    }
379  }
380  return FirstReg;
381}
382
383//===----------------------------------------------------------------------===//
384/// SelectionDAGLowering - This is the common target-independent lowering
385/// implementation that is parameterized by a TargetLowering object.
386/// Also, targets can overload any lowering method.
387///
388namespace llvm {
389class SelectionDAGLowering {
390  MachineBasicBlock *CurMBB;
391
392  DenseMap<const Value*, SDOperand> NodeMap;
393
394  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
395  /// them up and then emit token factor nodes when possible.  This allows us to
396  /// get simple disambiguation between loads without worrying about alias
397  /// analysis.
398  std::vector<SDOperand> PendingLoads;
399
400  /// PendingExports - CopyToReg nodes that copy values to virtual registers
401  /// for export to other blocks need to be emitted before any terminator
402  /// instruction, but they have no other ordering requirements. We bunch them
403  /// up and the emit a single tokenfactor for them just before terminator
404  /// instructions.
405  std::vector<SDOperand> PendingExports;
406
407  /// Case - A struct to record the Value for a switch case, and the
408  /// case's target basic block.
409  struct Case {
410    Constant* Low;
411    Constant* High;
412    MachineBasicBlock* BB;
413
414    Case() : Low(0), High(0), BB(0) { }
415    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
416      Low(low), High(high), BB(bb) { }
417    uint64_t size() const {
418      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
419      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
420      return (rHigh - rLow + 1ULL);
421    }
422  };
423
424  struct CaseBits {
425    uint64_t Mask;
426    MachineBasicBlock* BB;
427    unsigned Bits;
428
429    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
430      Mask(mask), BB(bb), Bits(bits) { }
431  };
432
433  typedef std::vector<Case>           CaseVector;
434  typedef std::vector<CaseBits>       CaseBitsVector;
435  typedef CaseVector::iterator        CaseItr;
436  typedef std::pair<CaseItr, CaseItr> CaseRange;
437
438  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
439  /// of conditional branches.
440  struct CaseRec {
441    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
442    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
443
444    /// CaseBB - The MBB in which to emit the compare and branch
445    MachineBasicBlock *CaseBB;
446    /// LT, GE - If nonzero, we know the current case value must be less-than or
447    /// greater-than-or-equal-to these Constants.
448    Constant *LT;
449    Constant *GE;
450    /// Range - A pair of iterators representing the range of case values to be
451    /// processed at this point in the binary search tree.
452    CaseRange Range;
453  };
454
455  typedef std::vector<CaseRec> CaseRecVector;
456
457  /// The comparison function for sorting the switch case values in the vector.
458  /// WARNING: Case ranges should be disjoint!
459  struct CaseCmp {
460    bool operator () (const Case& C1, const Case& C2) {
461      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
462      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
463      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
464      return CI1->getValue().slt(CI2->getValue());
465    }
466  };
467
468  struct CaseBitsCmp {
469    bool operator () (const CaseBits& C1, const CaseBits& C2) {
470      return C1.Bits > C2.Bits;
471    }
472  };
473
474  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
475
476public:
477  // TLI - This is information that describes the available target features we
478  // need for lowering.  This indicates when operations are unavailable,
479  // implemented with a libcall, etc.
480  TargetLowering &TLI;
481  SelectionDAG &DAG;
482  const TargetData *TD;
483  AliasAnalysis &AA;
484
485  /// SwitchCases - Vector of CaseBlock structures used to communicate
486  /// SwitchInst code generation information.
487  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
488  /// JTCases - Vector of JumpTable structures used to communicate
489  /// SwitchInst code generation information.
490  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
491  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
492
493  /// FuncInfo - Information about the function as a whole.
494  ///
495  FunctionLoweringInfo &FuncInfo;
496
497  /// GCI - Garbage collection metadata for the function.
498  CollectorMetadata *GCI;
499
500  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
501                       AliasAnalysis &aa,
502                       FunctionLoweringInfo &funcinfo,
503                       CollectorMetadata *gci)
504    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
505      FuncInfo(funcinfo), GCI(gci) {
506  }
507
508  /// getRoot - Return the current virtual root of the Selection DAG,
509  /// flushing any PendingLoad items. This must be done before emitting
510  /// a store or any other node that may need to be ordered after any
511  /// prior load instructions.
512  ///
513  SDOperand getRoot() {
514    if (PendingLoads.empty())
515      return DAG.getRoot();
516
517    if (PendingLoads.size() == 1) {
518      SDOperand Root = PendingLoads[0];
519      DAG.setRoot(Root);
520      PendingLoads.clear();
521      return Root;
522    }
523
524    // Otherwise, we have to make a token factor node.
525    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
526                                 &PendingLoads[0], PendingLoads.size());
527    PendingLoads.clear();
528    DAG.setRoot(Root);
529    return Root;
530  }
531
532  /// getControlRoot - Similar to getRoot, but instead of flushing all the
533  /// PendingLoad items, flush all the PendingExports items. It is necessary
534  /// to do this before emitting a terminator instruction.
535  ///
536  SDOperand getControlRoot() {
537    SDOperand Root = DAG.getRoot();
538
539    if (PendingExports.empty())
540      return Root;
541
542    // Turn all of the CopyToReg chains into one factored node.
543    if (Root.getOpcode() != ISD::EntryToken) {
544      unsigned i = 0, e = PendingExports.size();
545      for (; i != e; ++i) {
546        assert(PendingExports[i].Val->getNumOperands() > 1);
547        if (PendingExports[i].Val->getOperand(0) == Root)
548          break;  // Don't add the root if we already indirectly depend on it.
549      }
550
551      if (i == e)
552        PendingExports.push_back(Root);
553    }
554
555    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
556                       &PendingExports[0],
557                       PendingExports.size());
558    PendingExports.clear();
559    DAG.setRoot(Root);
560    return Root;
561  }
562
563  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
564
565  void visit(Instruction &I) { visit(I.getOpcode(), I); }
566
567  void visit(unsigned Opcode, User &I) {
568    // Note: this doesn't use InstVisitor, because it has to work with
569    // ConstantExpr's in addition to instructions.
570    switch (Opcode) {
571    default: assert(0 && "Unknown instruction type encountered!");
572             abort();
573      // Build the switch statement using the Instruction.def file.
574#define HANDLE_INST(NUM, OPCODE, CLASS) \
575    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
576#include "llvm/Instruction.def"
577    }
578  }
579
580  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
581
582  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
583                        const Value *SV, SDOperand Root,
584                        bool isVolatile, unsigned Alignment);
585
586  SDOperand getValue(const Value *V);
587
588  void setValue(const Value *V, SDOperand NewN) {
589    SDOperand &N = NodeMap[V];
590    assert(N.Val == 0 && "Already set a value for this node!");
591    N = NewN;
592  }
593
594  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
595                            std::set<unsigned> &OutputRegs,
596                            std::set<unsigned> &InputRegs);
597
598  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
599                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
600                            unsigned Opc);
601  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
602  void ExportFromCurrentBlock(Value *V);
603  void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
604                   MachineBasicBlock *LandingPad = NULL);
605
606  // Terminator instructions.
607  void visitRet(ReturnInst &I);
608  void visitBr(BranchInst &I);
609  void visitSwitch(SwitchInst &I);
610  void visitUnreachable(UnreachableInst &I) { /* noop */ }
611
612  // Helpers for visitSwitch
613  bool handleSmallSwitchRange(CaseRec& CR,
614                              CaseRecVector& WorkList,
615                              Value* SV,
616                              MachineBasicBlock* Default);
617  bool handleJTSwitchCase(CaseRec& CR,
618                          CaseRecVector& WorkList,
619                          Value* SV,
620                          MachineBasicBlock* Default);
621  bool handleBTSplitSwitchCase(CaseRec& CR,
622                               CaseRecVector& WorkList,
623                               Value* SV,
624                               MachineBasicBlock* Default);
625  bool handleBitTestsSwitchCase(CaseRec& CR,
626                                CaseRecVector& WorkList,
627                                Value* SV,
628                                MachineBasicBlock* Default);
629  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
630  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
631  void visitBitTestCase(MachineBasicBlock* NextMBB,
632                        unsigned Reg,
633                        SelectionDAGISel::BitTestCase &B);
634  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
635  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
636                            SelectionDAGISel::JumpTableHeader &JTH);
637
638  // These all get lowered before this pass.
639  void visitInvoke(InvokeInst &I);
640  void visitUnwind(UnwindInst &I);
641
642  void visitBinary(User &I, unsigned OpCode);
643  void visitShift(User &I, unsigned Opcode);
644  void visitAdd(User &I) {
645    if (I.getType()->isFPOrFPVector())
646      visitBinary(I, ISD::FADD);
647    else
648      visitBinary(I, ISD::ADD);
649  }
650  void visitSub(User &I);
651  void visitMul(User &I) {
652    if (I.getType()->isFPOrFPVector())
653      visitBinary(I, ISD::FMUL);
654    else
655      visitBinary(I, ISD::MUL);
656  }
657  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
658  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
659  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
660  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
661  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
662  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
663  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
664  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
665  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
666  void visitShl (User &I) { visitShift(I, ISD::SHL); }
667  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
668  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
669  void visitICmp(User &I);
670  void visitFCmp(User &I);
671  // Visit the conversion instructions
672  void visitTrunc(User &I);
673  void visitZExt(User &I);
674  void visitSExt(User &I);
675  void visitFPTrunc(User &I);
676  void visitFPExt(User &I);
677  void visitFPToUI(User &I);
678  void visitFPToSI(User &I);
679  void visitUIToFP(User &I);
680  void visitSIToFP(User &I);
681  void visitPtrToInt(User &I);
682  void visitIntToPtr(User &I);
683  void visitBitCast(User &I);
684
685  void visitExtractElement(User &I);
686  void visitInsertElement(User &I);
687  void visitShuffleVector(User &I);
688
689  void visitGetElementPtr(User &I);
690  void visitSelect(User &I);
691
692  void visitMalloc(MallocInst &I);
693  void visitFree(FreeInst &I);
694  void visitAlloca(AllocaInst &I);
695  void visitLoad(LoadInst &I);
696  void visitStore(StoreInst &I);
697  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
698  void visitCall(CallInst &I);
699  void visitInlineAsm(CallSite CS);
700  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
701  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
702
703  void visitVAStart(CallInst &I);
704  void visitVAArg(VAArgInst &I);
705  void visitVAEnd(CallInst &I);
706  void visitVACopy(CallInst &I);
707
708  void visitGetResult(GetResultInst &I);
709
710  void visitUserOp1(Instruction &I) {
711    assert(0 && "UserOp1 should not exist at instruction selection time!");
712    abort();
713  }
714  void visitUserOp2(Instruction &I) {
715    assert(0 && "UserOp2 should not exist at instruction selection time!");
716    abort();
717  }
718};
719} // end namespace llvm
720
721
722/// getCopyFromParts - Create a value that contains the specified legal parts
723/// combined into the value they represent.  If the parts combine to a type
724/// larger then ValueVT then AssertOp can be used to specify whether the extra
725/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
726/// (ISD::AssertSext).
727static SDOperand getCopyFromParts(SelectionDAG &DAG,
728                                  const SDOperand *Parts,
729                                  unsigned NumParts,
730                                  MVT::ValueType PartVT,
731                                  MVT::ValueType ValueVT,
732                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
733  assert(NumParts > 0 && "No parts to assemble!");
734  TargetLowering &TLI = DAG.getTargetLoweringInfo();
735  SDOperand Val = Parts[0];
736
737  if (NumParts > 1) {
738    // Assemble the value from multiple parts.
739    if (!MVT::isVector(ValueVT)) {
740      unsigned PartBits = MVT::getSizeInBits(PartVT);
741      unsigned ValueBits = MVT::getSizeInBits(ValueVT);
742
743      // Assemble the power of 2 part.
744      unsigned RoundParts = NumParts & (NumParts - 1) ?
745        1 << Log2_32(NumParts) : NumParts;
746      unsigned RoundBits = PartBits * RoundParts;
747      MVT::ValueType RoundVT = RoundBits == ValueBits ?
748        ValueVT : MVT::getIntegerType(RoundBits);
749      SDOperand Lo, Hi;
750
751      if (RoundParts > 2) {
752        MVT::ValueType HalfVT = MVT::getIntegerType(RoundBits/2);
753        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
754        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
755                              PartVT, HalfVT);
756      } else {
757        Lo = Parts[0];
758        Hi = Parts[1];
759      }
760      if (TLI.isBigEndian())
761        std::swap(Lo, Hi);
762      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
763
764      if (RoundParts < NumParts) {
765        // Assemble the trailing non-power-of-2 part.
766        unsigned OddParts = NumParts - RoundParts;
767        MVT::ValueType OddVT = MVT::getIntegerType(OddParts * PartBits);
768        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
769
770        // Combine the round and odd parts.
771        Lo = Val;
772        if (TLI.isBigEndian())
773          std::swap(Lo, Hi);
774        MVT::ValueType TotalVT = MVT::getIntegerType(NumParts * PartBits);
775        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
776        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
777                         DAG.getConstant(MVT::getSizeInBits(Lo.getValueType()),
778                                         TLI.getShiftAmountTy()));
779        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
780        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
781      }
782    } else {
783      // Handle a multi-element vector.
784      MVT::ValueType IntermediateVT, RegisterVT;
785      unsigned NumIntermediates;
786      unsigned NumRegs =
787        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
788                                   RegisterVT);
789
790      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
791      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
792      assert(RegisterVT == Parts[0].getValueType() &&
793             "Part type doesn't match part!");
794
795      // Assemble the parts into intermediate operands.
796      SmallVector<SDOperand, 8> Ops(NumIntermediates);
797      if (NumIntermediates == NumParts) {
798        // If the register was not expanded, truncate or copy the value,
799        // as appropriate.
800        for (unsigned i = 0; i != NumParts; ++i)
801          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
802                                    PartVT, IntermediateVT);
803      } else if (NumParts > 0) {
804        // If the intermediate type was expanded, build the intermediate operands
805        // from the parts.
806        assert(NumParts % NumIntermediates == 0 &&
807               "Must expand into a divisible number of parts!");
808        unsigned Factor = NumParts / NumIntermediates;
809        for (unsigned i = 0; i != NumIntermediates; ++i)
810          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
811                                    PartVT, IntermediateVT);
812      }
813
814      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
815      // operands.
816      Val = DAG.getNode(MVT::isVector(IntermediateVT) ?
817                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
818                        ValueVT, &Ops[0], NumIntermediates);
819    }
820  }
821
822  // There is now one part, held in Val.  Correct it to match ValueVT.
823  PartVT = Val.getValueType();
824
825  if (PartVT == ValueVT)
826    return Val;
827
828  if (MVT::isVector(PartVT)) {
829    assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
830    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
831  }
832
833  if (MVT::isVector(ValueVT)) {
834    assert(MVT::getVectorElementType(ValueVT) == PartVT &&
835           MVT::getVectorNumElements(ValueVT) == 1 &&
836           "Only trivial scalar-to-vector conversions should get here!");
837    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
838  }
839
840  if (MVT::isInteger(PartVT) &&
841      MVT::isInteger(ValueVT)) {
842    if (MVT::getSizeInBits(ValueVT) < MVT::getSizeInBits(PartVT)) {
843      // For a truncate, see if we have any information to
844      // indicate whether the truncated bits will always be
845      // zero or sign-extension.
846      if (AssertOp != ISD::DELETED_NODE)
847        Val = DAG.getNode(AssertOp, PartVT, Val,
848                          DAG.getValueType(ValueVT));
849      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
850    } else {
851      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
852    }
853  }
854
855  if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT)) {
856    if (ValueVT < Val.getValueType())
857      // FP_ROUND's are always exact here.
858      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
859                         DAG.getIntPtrConstant(1));
860    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
861  }
862
863  if (MVT::getSizeInBits(PartVT) == MVT::getSizeInBits(ValueVT))
864    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
865
866  assert(0 && "Unknown mismatch!");
867  return SDOperand();
868}
869
870/// getCopyToParts - Create a series of nodes that contain the specified value
871/// split into legal parts.  If the parts contain more bits than Val, then, for
872/// integers, ExtendKind can be used to specify how to generate the extra bits.
873static void getCopyToParts(SelectionDAG &DAG,
874                           SDOperand Val,
875                           SDOperand *Parts,
876                           unsigned NumParts,
877                           MVT::ValueType PartVT,
878                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
879  TargetLowering &TLI = DAG.getTargetLoweringInfo();
880  MVT::ValueType PtrVT = TLI.getPointerTy();
881  MVT::ValueType ValueVT = Val.getValueType();
882  unsigned PartBits = MVT::getSizeInBits(PartVT);
883  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
884
885  if (!NumParts)
886    return;
887
888  if (!MVT::isVector(ValueVT)) {
889    if (PartVT == ValueVT) {
890      assert(NumParts == 1 && "No-op copy with multiple parts!");
891      Parts[0] = Val;
892      return;
893    }
894
895    if (NumParts * PartBits > MVT::getSizeInBits(ValueVT)) {
896      // If the parts cover more bits than the value has, promote the value.
897      if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT)) {
898        assert(NumParts == 1 && "Do not know what to promote to!");
899        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
900      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
901        ValueVT = MVT::getIntegerType(NumParts * PartBits);
902        Val = DAG.getNode(ExtendKind, ValueVT, Val);
903      } else {
904        assert(0 && "Unknown mismatch!");
905      }
906    } else if (PartBits == MVT::getSizeInBits(ValueVT)) {
907      // Different types of the same size.
908      assert(NumParts == 1 && PartVT != ValueVT);
909      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
910    } else if (NumParts * PartBits < MVT::getSizeInBits(ValueVT)) {
911      // If the parts cover less bits than value has, truncate the value.
912      if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
913        ValueVT = MVT::getIntegerType(NumParts * PartBits);
914        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
915      } else {
916        assert(0 && "Unknown mismatch!");
917      }
918    }
919
920    // The value may have changed - recompute ValueVT.
921    ValueVT = Val.getValueType();
922    assert(NumParts * PartBits == MVT::getSizeInBits(ValueVT) &&
923           "Failed to tile the value with PartVT!");
924
925    if (NumParts == 1) {
926      assert(PartVT == ValueVT && "Type conversion failed!");
927      Parts[0] = Val;
928      return;
929    }
930
931    // Expand the value into multiple parts.
932    if (NumParts & (NumParts - 1)) {
933      // The number of parts is not a power of 2.  Split off and copy the tail.
934      assert(MVT::isInteger(PartVT) && MVT::isInteger(ValueVT) &&
935             "Do not know what to expand to!");
936      unsigned RoundParts = 1 << Log2_32(NumParts);
937      unsigned RoundBits = RoundParts * PartBits;
938      unsigned OddParts = NumParts - RoundParts;
939      SDOperand OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
940                                     DAG.getConstant(RoundBits,
941                                                     TLI.getShiftAmountTy()));
942      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
943      if (TLI.isBigEndian())
944        // The odd parts were reversed by getCopyToParts - unreverse them.
945        std::reverse(Parts + RoundParts, Parts + NumParts);
946      NumParts = RoundParts;
947      ValueVT = MVT::getIntegerType(NumParts * PartBits);
948      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
949    }
950
951    // The number of parts is a power of 2.  Repeatedly bisect the value using
952    // EXTRACT_ELEMENT.
953    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
954                           MVT::getIntegerType(MVT::getSizeInBits(ValueVT)),
955                           Val);
956    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
957      for (unsigned i = 0; i < NumParts; i += StepSize) {
958        unsigned ThisBits = StepSize * PartBits / 2;
959        MVT::ValueType ThisVT = MVT::getIntegerType (ThisBits);
960        SDOperand &Part0 = Parts[i];
961        SDOperand &Part1 = Parts[i+StepSize/2];
962
963        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
964                            DAG.getConstant(1, PtrVT));
965        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
966                            DAG.getConstant(0, PtrVT));
967
968        if (ThisBits == PartBits && ThisVT != PartVT) {
969          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
970          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
971        }
972      }
973    }
974
975    if (TLI.isBigEndian())
976      std::reverse(Parts, Parts + NumParts);
977
978    return;
979  }
980
981  // Vector ValueVT.
982  if (NumParts == 1) {
983    if (PartVT != ValueVT) {
984      if (MVT::isVector(PartVT)) {
985        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
986      } else {
987        assert(MVT::getVectorElementType(ValueVT) == PartVT &&
988               MVT::getVectorNumElements(ValueVT) == 1 &&
989               "Only trivial vector-to-scalar conversions should get here!");
990        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
991                          DAG.getConstant(0, PtrVT));
992      }
993    }
994
995    Parts[0] = Val;
996    return;
997  }
998
999  // Handle a multi-element vector.
1000  MVT::ValueType IntermediateVT, RegisterVT;
1001  unsigned NumIntermediates;
1002  unsigned NumRegs =
1003    DAG.getTargetLoweringInfo()
1004      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1005                              RegisterVT);
1006  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
1007
1008  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1009  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1010
1011  // Split the vector into intermediate operands.
1012  SmallVector<SDOperand, 8> Ops(NumIntermediates);
1013  for (unsigned i = 0; i != NumIntermediates; ++i)
1014    if (MVT::isVector(IntermediateVT))
1015      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
1016                           IntermediateVT, Val,
1017                           DAG.getConstant(i * (NumElements / NumIntermediates),
1018                                           PtrVT));
1019    else
1020      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
1021                           IntermediateVT, Val,
1022                           DAG.getConstant(i, PtrVT));
1023
1024  // Split the intermediate operands into legal parts.
1025  if (NumParts == NumIntermediates) {
1026    // If the register was not expanded, promote or copy the value,
1027    // as appropriate.
1028    for (unsigned i = 0; i != NumParts; ++i)
1029      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
1030  } else if (NumParts > 0) {
1031    // If the intermediate type was expanded, split each the value into
1032    // legal parts.
1033    assert(NumParts % NumIntermediates == 0 &&
1034           "Must expand into a divisible number of parts!");
1035    unsigned Factor = NumParts / NumIntermediates;
1036    for (unsigned i = 0; i != NumIntermediates; ++i)
1037      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
1038  }
1039}
1040
1041
1042SDOperand SelectionDAGLowering::getValue(const Value *V) {
1043  SDOperand &N = NodeMap[V];
1044  if (N.Val) return N;
1045
1046  const Type *VTy = V->getType();
1047  MVT::ValueType VT = TLI.getValueType(VTy, true);
1048  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
1049    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1050      visit(CE->getOpcode(), *CE);
1051      SDOperand N1 = NodeMap[V];
1052      assert(N1.Val && "visit didn't populate the ValueMap!");
1053      return N1;
1054    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
1055      return N = DAG.getGlobalAddress(GV, VT);
1056    } else if (isa<ConstantPointerNull>(C)) {
1057      return N = DAG.getConstant(0, TLI.getPointerTy());
1058    } else if (isa<UndefValue>(C)) {
1059      if (!isa<VectorType>(VTy))
1060        return N = DAG.getNode(ISD::UNDEF, VT);
1061
1062      // Create a BUILD_VECTOR of undef nodes.
1063      const VectorType *PTy = cast<VectorType>(VTy);
1064      unsigned NumElements = PTy->getNumElements();
1065      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1066
1067      SmallVector<SDOperand, 8> Ops;
1068      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
1069
1070      // Create a VConstant node with generic Vector type.
1071      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
1072      return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
1073                             &Ops[0], Ops.size());
1074    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1075      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
1076    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
1077      unsigned NumElements = PTy->getNumElements();
1078      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1079
1080      // Now that we know the number and type of the elements, push a
1081      // Constant or ConstantFP node onto the ops list for each element of
1082      // the vector constant.
1083      SmallVector<SDOperand, 8> Ops;
1084      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1085        for (unsigned i = 0; i != NumElements; ++i)
1086          Ops.push_back(getValue(CP->getOperand(i)));
1087      } else {
1088        assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1089        SDOperand Op;
1090        if (MVT::isFloatingPoint(PVT))
1091          Op = DAG.getConstantFP(0, PVT);
1092        else
1093          Op = DAG.getConstant(0, PVT);
1094        Ops.assign(NumElements, Op);
1095      }
1096
1097      // Create a BUILD_VECTOR node.
1098      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
1099      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
1100                                      Ops.size());
1101    } else {
1102      // Canonicalize all constant ints to be unsigned.
1103      return N = DAG.getConstant(cast<ConstantInt>(C)->getValue(),VT);
1104    }
1105  }
1106
1107  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1108    std::map<const AllocaInst*, int>::iterator SI =
1109    FuncInfo.StaticAllocaMap.find(AI);
1110    if (SI != FuncInfo.StaticAllocaMap.end())
1111      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1112  }
1113
1114  unsigned InReg = FuncInfo.ValueMap[V];
1115  assert(InReg && "Value not in map!");
1116
1117  RegsForValue RFV(TLI, InReg, VTy);
1118  SDOperand Chain = DAG.getEntryNode();
1119
1120  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1121}
1122
1123
1124void SelectionDAGLowering::visitRet(ReturnInst &I) {
1125  if (I.getNumOperands() == 0) {
1126    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
1127    return;
1128  }
1129  SmallVector<SDOperand, 8> NewValues;
1130  NewValues.push_back(getControlRoot());
1131  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1132    SDOperand RetOp = getValue(I.getOperand(i));
1133    MVT::ValueType VT = RetOp.getValueType();
1134
1135    // FIXME: C calling convention requires the return type to be promoted to
1136    // at least 32-bit. But this is not necessary for non-C calling conventions.
1137    if (MVT::isInteger(VT)) {
1138      MVT::ValueType MinVT = TLI.getRegisterType(MVT::i32);
1139      if (MVT::getSizeInBits(VT) < MVT::getSizeInBits(MinVT))
1140        VT = MinVT;
1141    }
1142
1143    unsigned NumParts = TLI.getNumRegisters(VT);
1144    MVT::ValueType PartVT = TLI.getRegisterType(VT);
1145    SmallVector<SDOperand, 4> Parts(NumParts);
1146    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1147
1148    const Function *F = I.getParent()->getParent();
1149    if (F->paramHasAttr(0, ParamAttr::SExt))
1150      ExtendKind = ISD::SIGN_EXTEND;
1151    else if (F->paramHasAttr(0, ParamAttr::ZExt))
1152      ExtendKind = ISD::ZERO_EXTEND;
1153
1154    getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT, ExtendKind);
1155
1156    for (unsigned i = 0; i < NumParts; ++i) {
1157      NewValues.push_back(Parts[i]);
1158      NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
1159    }
1160  }
1161  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1162                          &NewValues[0], NewValues.size()));
1163}
1164
1165/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1166/// the current basic block, add it to ValueMap now so that we'll get a
1167/// CopyTo/FromReg.
1168void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1169  // No need to export constants.
1170  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1171
1172  // Already exported?
1173  if (FuncInfo.isExportedInst(V)) return;
1174
1175  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1176  CopyValueToVirtualRegister(V, Reg);
1177}
1178
1179bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1180                                                    const BasicBlock *FromBB) {
1181  // The operands of the setcc have to be in this block.  We don't know
1182  // how to export them from some other block.
1183  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1184    // Can export from current BB.
1185    if (VI->getParent() == FromBB)
1186      return true;
1187
1188    // Is already exported, noop.
1189    return FuncInfo.isExportedInst(V);
1190  }
1191
1192  // If this is an argument, we can export it if the BB is the entry block or
1193  // if it is already exported.
1194  if (isa<Argument>(V)) {
1195    if (FromBB == &FromBB->getParent()->getEntryBlock())
1196      return true;
1197
1198    // Otherwise, can only export this if it is already exported.
1199    return FuncInfo.isExportedInst(V);
1200  }
1201
1202  // Otherwise, constants can always be exported.
1203  return true;
1204}
1205
1206static bool InBlock(const Value *V, const BasicBlock *BB) {
1207  if (const Instruction *I = dyn_cast<Instruction>(V))
1208    return I->getParent() == BB;
1209  return true;
1210}
1211
1212/// FindMergedConditions - If Cond is an expression like
1213void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1214                                                MachineBasicBlock *TBB,
1215                                                MachineBasicBlock *FBB,
1216                                                MachineBasicBlock *CurBB,
1217                                                unsigned Opc) {
1218  // If this node is not part of the or/and tree, emit it as a branch.
1219  Instruction *BOp = dyn_cast<Instruction>(Cond);
1220
1221  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1222      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1223      BOp->getParent() != CurBB->getBasicBlock() ||
1224      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1225      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1226    const BasicBlock *BB = CurBB->getBasicBlock();
1227
1228    // If the leaf of the tree is a comparison, merge the condition into
1229    // the caseblock.
1230    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1231        // The operands of the cmp have to be in this block.  We don't know
1232        // how to export them from some other block.  If this is the first block
1233        // of the sequence, no exporting is needed.
1234        (CurBB == CurMBB ||
1235         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1236          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1237      BOp = cast<Instruction>(Cond);
1238      ISD::CondCode Condition;
1239      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1240        switch (IC->getPredicate()) {
1241        default: assert(0 && "Unknown icmp predicate opcode!");
1242        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1243        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1244        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1245        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1246        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1247        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1248        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1249        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1250        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1251        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1252        }
1253      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1254        ISD::CondCode FPC, FOC;
1255        switch (FC->getPredicate()) {
1256        default: assert(0 && "Unknown fcmp predicate opcode!");
1257        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1258        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1259        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1260        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1261        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1262        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1263        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1264        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1265        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1266        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1267        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1268        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1269        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1270        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1271        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1272        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1273        }
1274        if (FiniteOnlyFPMath())
1275          Condition = FOC;
1276        else
1277          Condition = FPC;
1278      } else {
1279        Condition = ISD::SETEQ; // silence warning.
1280        assert(0 && "Unknown compare instruction");
1281      }
1282
1283      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1284                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1285      SwitchCases.push_back(CB);
1286      return;
1287    }
1288
1289    // Create a CaseBlock record representing this branch.
1290    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1291                                   NULL, TBB, FBB, CurBB);
1292    SwitchCases.push_back(CB);
1293    return;
1294  }
1295
1296
1297  //  Create TmpBB after CurBB.
1298  MachineFunction::iterator BBI = CurBB;
1299  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1300  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1301
1302  if (Opc == Instruction::Or) {
1303    // Codegen X | Y as:
1304    //   jmp_if_X TBB
1305    //   jmp TmpBB
1306    // TmpBB:
1307    //   jmp_if_Y TBB
1308    //   jmp FBB
1309    //
1310
1311    // Emit the LHS condition.
1312    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1313
1314    // Emit the RHS condition into TmpBB.
1315    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1316  } else {
1317    assert(Opc == Instruction::And && "Unknown merge op!");
1318    // Codegen X & Y as:
1319    //   jmp_if_X TmpBB
1320    //   jmp FBB
1321    // TmpBB:
1322    //   jmp_if_Y TBB
1323    //   jmp FBB
1324    //
1325    //  This requires creation of TmpBB after CurBB.
1326
1327    // Emit the LHS condition.
1328    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1329
1330    // Emit the RHS condition into TmpBB.
1331    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1332  }
1333}
1334
1335/// If the set of cases should be emitted as a series of branches, return true.
1336/// If we should emit this as a bunch of and/or'd together conditions, return
1337/// false.
1338static bool
1339ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1340  if (Cases.size() != 2) return true;
1341
1342  // If this is two comparisons of the same values or'd or and'd together, they
1343  // will get folded into a single comparison, so don't emit two blocks.
1344  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1345       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1346      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1347       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1348    return false;
1349  }
1350
1351  return true;
1352}
1353
1354void SelectionDAGLowering::visitBr(BranchInst &I) {
1355  // Update machine-CFG edges.
1356  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1357
1358  // Figure out which block is immediately after the current one.
1359  MachineBasicBlock *NextBlock = 0;
1360  MachineFunction::iterator BBI = CurMBB;
1361  if (++BBI != CurMBB->getParent()->end())
1362    NextBlock = BBI;
1363
1364  if (I.isUnconditional()) {
1365    // If this is not a fall-through branch, emit the branch.
1366    if (Succ0MBB != NextBlock)
1367      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1368                              DAG.getBasicBlock(Succ0MBB)));
1369
1370    // Update machine-CFG edges.
1371    CurMBB->addSuccessor(Succ0MBB);
1372    return;
1373  }
1374
1375  // If this condition is one of the special cases we handle, do special stuff
1376  // now.
1377  Value *CondVal = I.getCondition();
1378  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1379
1380  // If this is a series of conditions that are or'd or and'd together, emit
1381  // this as a sequence of branches instead of setcc's with and/or operations.
1382  // For example, instead of something like:
1383  //     cmp A, B
1384  //     C = seteq
1385  //     cmp D, E
1386  //     F = setle
1387  //     or C, F
1388  //     jnz foo
1389  // Emit:
1390  //     cmp A, B
1391  //     je foo
1392  //     cmp D, E
1393  //     jle foo
1394  //
1395  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1396    if (BOp->hasOneUse() &&
1397        (BOp->getOpcode() == Instruction::And ||
1398         BOp->getOpcode() == Instruction::Or)) {
1399      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1400      // If the compares in later blocks need to use values not currently
1401      // exported from this block, export them now.  This block should always
1402      // be the first entry.
1403      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1404
1405      // Allow some cases to be rejected.
1406      if (ShouldEmitAsBranches(SwitchCases)) {
1407        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1408          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1409          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1410        }
1411
1412        // Emit the branch for this block.
1413        visitSwitchCase(SwitchCases[0]);
1414        SwitchCases.erase(SwitchCases.begin());
1415        return;
1416      }
1417
1418      // Okay, we decided not to do this, remove any inserted MBB's and clear
1419      // SwitchCases.
1420      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1421        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1422
1423      SwitchCases.clear();
1424    }
1425  }
1426
1427  // Create a CaseBlock record representing this branch.
1428  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1429                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1430  // Use visitSwitchCase to actually insert the fast branch sequence for this
1431  // cond branch.
1432  visitSwitchCase(CB);
1433}
1434
1435/// visitSwitchCase - Emits the necessary code to represent a single node in
1436/// the binary search tree resulting from lowering a switch instruction.
1437void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1438  SDOperand Cond;
1439  SDOperand CondLHS = getValue(CB.CmpLHS);
1440
1441  // Build the setcc now.
1442  if (CB.CmpMHS == NULL) {
1443    // Fold "(X == true)" to X and "(X == false)" to !X to
1444    // handle common cases produced by branch lowering.
1445    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1446      Cond = CondLHS;
1447    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1448      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1449      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1450    } else
1451      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1452  } else {
1453    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1454
1455    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1456    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1457
1458    SDOperand CmpOp = getValue(CB.CmpMHS);
1459    MVT::ValueType VT = CmpOp.getValueType();
1460
1461    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1462      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1463    } else {
1464      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1465      Cond = DAG.getSetCC(MVT::i1, SUB,
1466                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1467    }
1468
1469  }
1470
1471  // Set NextBlock to be the MBB immediately after the current one, if any.
1472  // This is used to avoid emitting unnecessary branches to the next block.
1473  MachineBasicBlock *NextBlock = 0;
1474  MachineFunction::iterator BBI = CurMBB;
1475  if (++BBI != CurMBB->getParent()->end())
1476    NextBlock = BBI;
1477
1478  // If the lhs block is the next block, invert the condition so that we can
1479  // fall through to the lhs instead of the rhs block.
1480  if (CB.TrueBB == NextBlock) {
1481    std::swap(CB.TrueBB, CB.FalseBB);
1482    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1483    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1484  }
1485  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1486                                 DAG.getBasicBlock(CB.TrueBB));
1487  if (CB.FalseBB == NextBlock)
1488    DAG.setRoot(BrCond);
1489  else
1490    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1491                            DAG.getBasicBlock(CB.FalseBB)));
1492  // Update successor info
1493  CurMBB->addSuccessor(CB.TrueBB);
1494  CurMBB->addSuccessor(CB.FalseBB);
1495}
1496
1497/// visitJumpTable - Emit JumpTable node in the current MBB
1498void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1499  // Emit the code for the jump table
1500  assert(JT.Reg != -1U && "Should lower JT Header first!");
1501  MVT::ValueType PTy = TLI.getPointerTy();
1502  SDOperand Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1503  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1504  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1505                          Table, Index));
1506  return;
1507}
1508
1509/// visitJumpTableHeader - This function emits necessary code to produce index
1510/// in the JumpTable from switch case.
1511void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1512                                         SelectionDAGISel::JumpTableHeader &JTH) {
1513  // Subtract the lowest switch case value from the value being switched on
1514  // and conditional branch to default mbb if the result is greater than the
1515  // difference between smallest and largest cases.
1516  SDOperand SwitchOp = getValue(JTH.SValue);
1517  MVT::ValueType VT = SwitchOp.getValueType();
1518  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1519                              DAG.getConstant(JTH.First, VT));
1520
1521  // The SDNode we just created, which holds the value being switched on
1522  // minus the the smallest case value, needs to be copied to a virtual
1523  // register so it can be used as an index into the jump table in a
1524  // subsequent basic block.  This value may be smaller or larger than the
1525  // target's pointer type, and therefore require extension or truncating.
1526  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1527    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1528  else
1529    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1530
1531  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1532  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1533  JT.Reg = JumpTableReg;
1534
1535  // Emit the range check for the jump table, and branch to the default
1536  // block for the switch statement if the value being switched on exceeds
1537  // the largest case in the switch.
1538  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1539                               DAG.getConstant(JTH.Last-JTH.First,VT),
1540                               ISD::SETUGT);
1541
1542  // Set NextBlock to be the MBB immediately after the current one, if any.
1543  // This is used to avoid emitting unnecessary branches to the next block.
1544  MachineBasicBlock *NextBlock = 0;
1545  MachineFunction::iterator BBI = CurMBB;
1546  if (++BBI != CurMBB->getParent()->end())
1547    NextBlock = BBI;
1548
1549  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1550                                 DAG.getBasicBlock(JT.Default));
1551
1552  if (JT.MBB == NextBlock)
1553    DAG.setRoot(BrCond);
1554  else
1555    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1556                            DAG.getBasicBlock(JT.MBB)));
1557
1558  return;
1559}
1560
1561/// visitBitTestHeader - This function emits necessary code to produce value
1562/// suitable for "bit tests"
1563void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1564  // Subtract the minimum value
1565  SDOperand SwitchOp = getValue(B.SValue);
1566  MVT::ValueType VT = SwitchOp.getValueType();
1567  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1568                              DAG.getConstant(B.First, VT));
1569
1570  // Check range
1571  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1572                                    DAG.getConstant(B.Range, VT),
1573                                    ISD::SETUGT);
1574
1575  SDOperand ShiftOp;
1576  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1577    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1578  else
1579    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1580
1581  // Make desired shift
1582  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1583                                    DAG.getConstant(1, TLI.getPointerTy()),
1584                                    ShiftOp);
1585
1586  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1587  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1588  B.Reg = SwitchReg;
1589
1590  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1591                                  DAG.getBasicBlock(B.Default));
1592
1593  // Set NextBlock to be the MBB immediately after the current one, if any.
1594  // This is used to avoid emitting unnecessary branches to the next block.
1595  MachineBasicBlock *NextBlock = 0;
1596  MachineFunction::iterator BBI = CurMBB;
1597  if (++BBI != CurMBB->getParent()->end())
1598    NextBlock = BBI;
1599
1600  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1601  if (MBB == NextBlock)
1602    DAG.setRoot(BrRange);
1603  else
1604    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1605                            DAG.getBasicBlock(MBB)));
1606
1607  CurMBB->addSuccessor(B.Default);
1608  CurMBB->addSuccessor(MBB);
1609
1610  return;
1611}
1612
1613/// visitBitTestCase - this function produces one "bit test"
1614void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1615                                            unsigned Reg,
1616                                            SelectionDAGISel::BitTestCase &B) {
1617  // Emit bit tests and jumps
1618  SDOperand SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg, TLI.getPointerTy());
1619
1620  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1621                                SwitchVal,
1622                                DAG.getConstant(B.Mask,
1623                                                TLI.getPointerTy()));
1624  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1625                                  DAG.getConstant(0, TLI.getPointerTy()),
1626                                  ISD::SETNE);
1627  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1628                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1629
1630  // Set NextBlock to be the MBB immediately after the current one, if any.
1631  // This is used to avoid emitting unnecessary branches to the next block.
1632  MachineBasicBlock *NextBlock = 0;
1633  MachineFunction::iterator BBI = CurMBB;
1634  if (++BBI != CurMBB->getParent()->end())
1635    NextBlock = BBI;
1636
1637  if (NextMBB == NextBlock)
1638    DAG.setRoot(BrAnd);
1639  else
1640    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1641                            DAG.getBasicBlock(NextMBB)));
1642
1643  CurMBB->addSuccessor(B.TargetBB);
1644  CurMBB->addSuccessor(NextMBB);
1645
1646  return;
1647}
1648
1649void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1650  // Retrieve successors.
1651  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1652  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1653
1654  if (isa<InlineAsm>(I.getCalledValue()))
1655    visitInlineAsm(&I);
1656  else
1657    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1658
1659  // If the value of the invoke is used outside of its defining block, make it
1660  // available as a virtual register.
1661  if (!I.use_empty()) {
1662    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1663    if (VMI != FuncInfo.ValueMap.end())
1664      CopyValueToVirtualRegister(&I, VMI->second);
1665  }
1666
1667  // Drop into normal successor.
1668  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1669                          DAG.getBasicBlock(Return)));
1670
1671  // Update successor info
1672  CurMBB->addSuccessor(Return);
1673  CurMBB->addSuccessor(LandingPad);
1674}
1675
1676void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1677}
1678
1679/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1680/// small case ranges).
1681bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1682                                                  CaseRecVector& WorkList,
1683                                                  Value* SV,
1684                                                  MachineBasicBlock* Default) {
1685  Case& BackCase  = *(CR.Range.second-1);
1686
1687  // Size is the number of Cases represented by this range.
1688  unsigned Size = CR.Range.second - CR.Range.first;
1689  if (Size > 3)
1690    return false;
1691
1692  // Get the MachineFunction which holds the current MBB.  This is used when
1693  // inserting any additional MBBs necessary to represent the switch.
1694  MachineFunction *CurMF = CurMBB->getParent();
1695
1696  // Figure out which block is immediately after the current one.
1697  MachineBasicBlock *NextBlock = 0;
1698  MachineFunction::iterator BBI = CR.CaseBB;
1699
1700  if (++BBI != CurMBB->getParent()->end())
1701    NextBlock = BBI;
1702
1703  // TODO: If any two of the cases has the same destination, and if one value
1704  // is the same as the other, but has one bit unset that the other has set,
1705  // use bit manipulation to do two compares at once.  For example:
1706  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1707
1708  // Rearrange the case blocks so that the last one falls through if possible.
1709  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1710    // The last case block won't fall through into 'NextBlock' if we emit the
1711    // branches in this order.  See if rearranging a case value would help.
1712    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1713      if (I->BB == NextBlock) {
1714        std::swap(*I, BackCase);
1715        break;
1716      }
1717    }
1718  }
1719
1720  // Create a CaseBlock record representing a conditional branch to
1721  // the Case's target mbb if the value being switched on SV is equal
1722  // to C.
1723  MachineBasicBlock *CurBlock = CR.CaseBB;
1724  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1725    MachineBasicBlock *FallThrough;
1726    if (I != E-1) {
1727      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1728      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1729    } else {
1730      // If the last case doesn't match, go to the default block.
1731      FallThrough = Default;
1732    }
1733
1734    Value *RHS, *LHS, *MHS;
1735    ISD::CondCode CC;
1736    if (I->High == I->Low) {
1737      // This is just small small case range :) containing exactly 1 case
1738      CC = ISD::SETEQ;
1739      LHS = SV; RHS = I->High; MHS = NULL;
1740    } else {
1741      CC = ISD::SETLE;
1742      LHS = I->Low; MHS = SV; RHS = I->High;
1743    }
1744    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1745                                   I->BB, FallThrough, CurBlock);
1746
1747    // If emitting the first comparison, just call visitSwitchCase to emit the
1748    // code into the current block.  Otherwise, push the CaseBlock onto the
1749    // vector to be later processed by SDISel, and insert the node's MBB
1750    // before the next MBB.
1751    if (CurBlock == CurMBB)
1752      visitSwitchCase(CB);
1753    else
1754      SwitchCases.push_back(CB);
1755
1756    CurBlock = FallThrough;
1757  }
1758
1759  return true;
1760}
1761
1762static inline bool areJTsAllowed(const TargetLowering &TLI) {
1763  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1764          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1765}
1766
1767/// handleJTSwitchCase - Emit jumptable for current switch case range
1768bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1769                                              CaseRecVector& WorkList,
1770                                              Value* SV,
1771                                              MachineBasicBlock* Default) {
1772  Case& FrontCase = *CR.Range.first;
1773  Case& BackCase  = *(CR.Range.second-1);
1774
1775  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1776  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1777
1778  uint64_t TSize = 0;
1779  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1780       I!=E; ++I)
1781    TSize += I->size();
1782
1783  if (!areJTsAllowed(TLI) || TSize <= 3)
1784    return false;
1785
1786  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1787  if (Density < 0.4)
1788    return false;
1789
1790  DOUT << "Lowering jump table\n"
1791       << "First entry: " << First << ". Last entry: " << Last << "\n"
1792       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1793
1794  // Get the MachineFunction which holds the current MBB.  This is used when
1795  // inserting any additional MBBs necessary to represent the switch.
1796  MachineFunction *CurMF = CurMBB->getParent();
1797
1798  // Figure out which block is immediately after the current one.
1799  MachineBasicBlock *NextBlock = 0;
1800  MachineFunction::iterator BBI = CR.CaseBB;
1801
1802  if (++BBI != CurMBB->getParent()->end())
1803    NextBlock = BBI;
1804
1805  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1806
1807  // Create a new basic block to hold the code for loading the address
1808  // of the jump table, and jumping to it.  Update successor information;
1809  // we will either branch to the default case for the switch, or the jump
1810  // table.
1811  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1812  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1813  CR.CaseBB->addSuccessor(Default);
1814  CR.CaseBB->addSuccessor(JumpTableBB);
1815
1816  // Build a vector of destination BBs, corresponding to each target
1817  // of the jump table. If the value of the jump table slot corresponds to
1818  // a case statement, push the case's BB onto the vector, otherwise, push
1819  // the default BB.
1820  std::vector<MachineBasicBlock*> DestBBs;
1821  int64_t TEI = First;
1822  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1823    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1824    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1825
1826    if ((Low <= TEI) && (TEI <= High)) {
1827      DestBBs.push_back(I->BB);
1828      if (TEI==High)
1829        ++I;
1830    } else {
1831      DestBBs.push_back(Default);
1832    }
1833  }
1834
1835  // Update successor info. Add one edge to each unique successor.
1836  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1837  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1838         E = DestBBs.end(); I != E; ++I) {
1839    if (!SuccsHandled[(*I)->getNumber()]) {
1840      SuccsHandled[(*I)->getNumber()] = true;
1841      JumpTableBB->addSuccessor(*I);
1842    }
1843  }
1844
1845  // Create a jump table index for this jump table, or return an existing
1846  // one.
1847  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1848
1849  // Set the jump table information so that we can codegen it as a second
1850  // MachineBasicBlock
1851  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1852  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1853                                        (CR.CaseBB == CurMBB));
1854  if (CR.CaseBB == CurMBB)
1855    visitJumpTableHeader(JT, JTH);
1856
1857  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1858
1859  return true;
1860}
1861
1862/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1863/// 2 subtrees.
1864bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1865                                                   CaseRecVector& WorkList,
1866                                                   Value* SV,
1867                                                   MachineBasicBlock* Default) {
1868  // Get the MachineFunction which holds the current MBB.  This is used when
1869  // inserting any additional MBBs necessary to represent the switch.
1870  MachineFunction *CurMF = CurMBB->getParent();
1871
1872  // Figure out which block is immediately after the current one.
1873  MachineBasicBlock *NextBlock = 0;
1874  MachineFunction::iterator BBI = CR.CaseBB;
1875
1876  if (++BBI != CurMBB->getParent()->end())
1877    NextBlock = BBI;
1878
1879  Case& FrontCase = *CR.Range.first;
1880  Case& BackCase  = *(CR.Range.second-1);
1881  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1882
1883  // Size is the number of Cases represented by this range.
1884  unsigned Size = CR.Range.second - CR.Range.first;
1885
1886  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1887  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1888  double FMetric = 0;
1889  CaseItr Pivot = CR.Range.first + Size/2;
1890
1891  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1892  // (heuristically) allow us to emit JumpTable's later.
1893  uint64_t TSize = 0;
1894  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1895       I!=E; ++I)
1896    TSize += I->size();
1897
1898  uint64_t LSize = FrontCase.size();
1899  uint64_t RSize = TSize-LSize;
1900  DOUT << "Selecting best pivot: \n"
1901       << "First: " << First << ", Last: " << Last <<"\n"
1902       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1903  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1904       J!=E; ++I, ++J) {
1905    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1906    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1907    assert((RBegin-LEnd>=1) && "Invalid case distance");
1908    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1909    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1910    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1911    // Should always split in some non-trivial place
1912    DOUT <<"=>Step\n"
1913         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1914         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1915         << "Metric: " << Metric << "\n";
1916    if (FMetric < Metric) {
1917      Pivot = J;
1918      FMetric = Metric;
1919      DOUT << "Current metric set to: " << FMetric << "\n";
1920    }
1921
1922    LSize += J->size();
1923    RSize -= J->size();
1924  }
1925  if (areJTsAllowed(TLI)) {
1926    // If our case is dense we *really* should handle it earlier!
1927    assert((FMetric > 0) && "Should handle dense range earlier!");
1928  } else {
1929    Pivot = CR.Range.first + Size/2;
1930  }
1931
1932  CaseRange LHSR(CR.Range.first, Pivot);
1933  CaseRange RHSR(Pivot, CR.Range.second);
1934  Constant *C = Pivot->Low;
1935  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1936
1937  // We know that we branch to the LHS if the Value being switched on is
1938  // less than the Pivot value, C.  We use this to optimize our binary
1939  // tree a bit, by recognizing that if SV is greater than or equal to the
1940  // LHS's Case Value, and that Case Value is exactly one less than the
1941  // Pivot's Value, then we can branch directly to the LHS's Target,
1942  // rather than creating a leaf node for it.
1943  if ((LHSR.second - LHSR.first) == 1 &&
1944      LHSR.first->High == CR.GE &&
1945      cast<ConstantInt>(C)->getSExtValue() ==
1946      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1947    TrueBB = LHSR.first->BB;
1948  } else {
1949    TrueBB = new MachineBasicBlock(LLVMBB);
1950    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1951    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1952  }
1953
1954  // Similar to the optimization above, if the Value being switched on is
1955  // known to be less than the Constant CR.LT, and the current Case Value
1956  // is CR.LT - 1, then we can branch directly to the target block for
1957  // the current Case Value, rather than emitting a RHS leaf node for it.
1958  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1959      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1960      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1961    FalseBB = RHSR.first->BB;
1962  } else {
1963    FalseBB = new MachineBasicBlock(LLVMBB);
1964    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1965    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1966  }
1967
1968  // Create a CaseBlock record representing a conditional branch to
1969  // the LHS node if the value being switched on SV is less than C.
1970  // Otherwise, branch to LHS.
1971  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1972                                 TrueBB, FalseBB, CR.CaseBB);
1973
1974  if (CR.CaseBB == CurMBB)
1975    visitSwitchCase(CB);
1976  else
1977    SwitchCases.push_back(CB);
1978
1979  return true;
1980}
1981
1982/// handleBitTestsSwitchCase - if current case range has few destination and
1983/// range span less, than machine word bitwidth, encode case range into series
1984/// of masks and emit bit tests with these masks.
1985bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1986                                                    CaseRecVector& WorkList,
1987                                                    Value* SV,
1988                                                    MachineBasicBlock* Default){
1989  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1990
1991  Case& FrontCase = *CR.Range.first;
1992  Case& BackCase  = *(CR.Range.second-1);
1993
1994  // Get the MachineFunction which holds the current MBB.  This is used when
1995  // inserting any additional MBBs necessary to represent the switch.
1996  MachineFunction *CurMF = CurMBB->getParent();
1997
1998  unsigned numCmps = 0;
1999  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2000       I!=E; ++I) {
2001    // Single case counts one, case range - two.
2002    if (I->Low == I->High)
2003      numCmps +=1;
2004    else
2005      numCmps +=2;
2006  }
2007
2008  // Count unique destinations
2009  SmallSet<MachineBasicBlock*, 4> Dests;
2010  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2011    Dests.insert(I->BB);
2012    if (Dests.size() > 3)
2013      // Don't bother the code below, if there are too much unique destinations
2014      return false;
2015  }
2016  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
2017       << "Total number of comparisons: " << numCmps << "\n";
2018
2019  // Compute span of values.
2020  Constant* minValue = FrontCase.Low;
2021  Constant* maxValue = BackCase.High;
2022  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
2023                   cast<ConstantInt>(minValue)->getSExtValue();
2024  DOUT << "Compare range: " << range << "\n"
2025       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
2026       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
2027
2028  if (range>=IntPtrBits ||
2029      (!(Dests.size() == 1 && numCmps >= 3) &&
2030       !(Dests.size() == 2 && numCmps >= 5) &&
2031       !(Dests.size() >= 3 && numCmps >= 6)))
2032    return false;
2033
2034  DOUT << "Emitting bit tests\n";
2035  int64_t lowBound = 0;
2036
2037  // Optimize the case where all the case values fit in a
2038  // word without having to subtract minValue. In this case,
2039  // we can optimize away the subtraction.
2040  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
2041      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
2042    range = cast<ConstantInt>(maxValue)->getSExtValue();
2043  } else {
2044    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
2045  }
2046
2047  CaseBitsVector CasesBits;
2048  unsigned i, count = 0;
2049
2050  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2051    MachineBasicBlock* Dest = I->BB;
2052    for (i = 0; i < count; ++i)
2053      if (Dest == CasesBits[i].BB)
2054        break;
2055
2056    if (i == count) {
2057      assert((count < 3) && "Too much destinations to test!");
2058      CasesBits.push_back(CaseBits(0, Dest, 0));
2059      count++;
2060    }
2061
2062    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2063    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2064
2065    for (uint64_t j = lo; j <= hi; j++) {
2066      CasesBits[i].Mask |=  1ULL << j;
2067      CasesBits[i].Bits++;
2068    }
2069
2070  }
2071  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2072
2073  SelectionDAGISel::BitTestInfo BTC;
2074
2075  // Figure out which block is immediately after the current one.
2076  MachineFunction::iterator BBI = CR.CaseBB;
2077  ++BBI;
2078
2079  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2080
2081  DOUT << "Cases:\n";
2082  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2083    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2084         << ", BB: " << CasesBits[i].BB << "\n";
2085
2086    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
2087    CurMF->getBasicBlockList().insert(BBI, CaseBB);
2088    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
2089                                                CaseBB,
2090                                                CasesBits[i].BB));
2091  }
2092
2093  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
2094                                     -1U, (CR.CaseBB == CurMBB),
2095                                     CR.CaseBB, Default, BTC);
2096
2097  if (CR.CaseBB == CurMBB)
2098    visitBitTestHeader(BTB);
2099
2100  BitTestCases.push_back(BTB);
2101
2102  return true;
2103}
2104
2105
2106/// Clusterify - Transform simple list of Cases into list of CaseRange's
2107unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2108                                          const SwitchInst& SI) {
2109  unsigned numCmps = 0;
2110
2111  // Start with "simple" cases
2112  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2113    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2114    Cases.push_back(Case(SI.getSuccessorValue(i),
2115                         SI.getSuccessorValue(i),
2116                         SMBB));
2117  }
2118  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2119
2120  // Merge case into clusters
2121  if (Cases.size()>=2)
2122    // Must recompute end() each iteration because it may be
2123    // invalidated by erase if we hold on to it
2124    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2125      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2126      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2127      MachineBasicBlock* nextBB = J->BB;
2128      MachineBasicBlock* currentBB = I->BB;
2129
2130      // If the two neighboring cases go to the same destination, merge them
2131      // into a single case.
2132      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2133        I->High = J->High;
2134        J = Cases.erase(J);
2135      } else {
2136        I = J++;
2137      }
2138    }
2139
2140  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2141    if (I->Low != I->High)
2142      // A range counts double, since it requires two compares.
2143      ++numCmps;
2144  }
2145
2146  return numCmps;
2147}
2148
2149void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2150  // Figure out which block is immediately after the current one.
2151  MachineBasicBlock *NextBlock = 0;
2152  MachineFunction::iterator BBI = CurMBB;
2153
2154  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2155
2156  // If there is only the default destination, branch to it if it is not the
2157  // next basic block.  Otherwise, just fall through.
2158  if (SI.getNumOperands() == 2) {
2159    // Update machine-CFG edges.
2160
2161    // If this is not a fall-through branch, emit the branch.
2162    if (Default != NextBlock)
2163      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2164                              DAG.getBasicBlock(Default)));
2165
2166    CurMBB->addSuccessor(Default);
2167    return;
2168  }
2169
2170  // If there are any non-default case statements, create a vector of Cases
2171  // representing each one, and sort the vector so that we can efficiently
2172  // create a binary search tree from them.
2173  CaseVector Cases;
2174  unsigned numCmps = Clusterify(Cases, SI);
2175  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2176       << ". Total compares: " << numCmps << "\n";
2177
2178  // Get the Value to be switched on and default basic blocks, which will be
2179  // inserted into CaseBlock records, representing basic blocks in the binary
2180  // search tree.
2181  Value *SV = SI.getOperand(0);
2182
2183  // Push the initial CaseRec onto the worklist
2184  CaseRecVector WorkList;
2185  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2186
2187  while (!WorkList.empty()) {
2188    // Grab a record representing a case range to process off the worklist
2189    CaseRec CR = WorkList.back();
2190    WorkList.pop_back();
2191
2192    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2193      continue;
2194
2195    // If the range has few cases (two or less) emit a series of specific
2196    // tests.
2197    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2198      continue;
2199
2200    // If the switch has more than 5 blocks, and at least 40% dense, and the
2201    // target supports indirect branches, then emit a jump table rather than
2202    // lowering the switch to a binary tree of conditional branches.
2203    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2204      continue;
2205
2206    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2207    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2208    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2209  }
2210}
2211
2212
2213void SelectionDAGLowering::visitSub(User &I) {
2214  // -0.0 - X --> fneg
2215  const Type *Ty = I.getType();
2216  if (isa<VectorType>(Ty)) {
2217    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2218      const VectorType *DestTy = cast<VectorType>(I.getType());
2219      const Type *ElTy = DestTy->getElementType();
2220      if (ElTy->isFloatingPoint()) {
2221        unsigned VL = DestTy->getNumElements();
2222        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2223        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2224        if (CV == CNZ) {
2225          SDOperand Op2 = getValue(I.getOperand(1));
2226          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2227          return;
2228        }
2229      }
2230    }
2231  }
2232  if (Ty->isFloatingPoint()) {
2233    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2234      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2235        SDOperand Op2 = getValue(I.getOperand(1));
2236        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2237        return;
2238      }
2239  }
2240
2241  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2242}
2243
2244void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2245  SDOperand Op1 = getValue(I.getOperand(0));
2246  SDOperand Op2 = getValue(I.getOperand(1));
2247
2248  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2249}
2250
2251void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2252  SDOperand Op1 = getValue(I.getOperand(0));
2253  SDOperand Op2 = getValue(I.getOperand(1));
2254
2255  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2256      MVT::getSizeInBits(Op2.getValueType()))
2257    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2258  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2259    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2260
2261  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2262}
2263
2264void SelectionDAGLowering::visitICmp(User &I) {
2265  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2266  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2267    predicate = IC->getPredicate();
2268  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2269    predicate = ICmpInst::Predicate(IC->getPredicate());
2270  SDOperand Op1 = getValue(I.getOperand(0));
2271  SDOperand Op2 = getValue(I.getOperand(1));
2272  ISD::CondCode Opcode;
2273  switch (predicate) {
2274    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2275    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2276    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2277    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2278    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2279    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2280    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2281    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2282    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2283    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2284    default:
2285      assert(!"Invalid ICmp predicate value");
2286      Opcode = ISD::SETEQ;
2287      break;
2288  }
2289  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2290}
2291
2292void SelectionDAGLowering::visitFCmp(User &I) {
2293  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2294  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2295    predicate = FC->getPredicate();
2296  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2297    predicate = FCmpInst::Predicate(FC->getPredicate());
2298  SDOperand Op1 = getValue(I.getOperand(0));
2299  SDOperand Op2 = getValue(I.getOperand(1));
2300  ISD::CondCode Condition, FOC, FPC;
2301  switch (predicate) {
2302    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2303    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2304    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2305    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2306    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2307    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2308    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2309    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2310    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2311    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2312    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2313    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2314    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2315    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2316    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2317    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2318    default:
2319      assert(!"Invalid FCmp predicate value");
2320      FOC = FPC = ISD::SETFALSE;
2321      break;
2322  }
2323  if (FiniteOnlyFPMath())
2324    Condition = FOC;
2325  else
2326    Condition = FPC;
2327  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2328}
2329
2330void SelectionDAGLowering::visitSelect(User &I) {
2331  SDOperand Cond     = getValue(I.getOperand(0));
2332  SDOperand TrueVal  = getValue(I.getOperand(1));
2333  SDOperand FalseVal = getValue(I.getOperand(2));
2334  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2335                           TrueVal, FalseVal));
2336}
2337
2338
2339void SelectionDAGLowering::visitTrunc(User &I) {
2340  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2341  SDOperand N = getValue(I.getOperand(0));
2342  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2343  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2344}
2345
2346void SelectionDAGLowering::visitZExt(User &I) {
2347  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2348  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2349  SDOperand N = getValue(I.getOperand(0));
2350  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2351  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2352}
2353
2354void SelectionDAGLowering::visitSExt(User &I) {
2355  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2356  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2357  SDOperand N = getValue(I.getOperand(0));
2358  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2359  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2360}
2361
2362void SelectionDAGLowering::visitFPTrunc(User &I) {
2363  // FPTrunc is never a no-op cast, no need to check
2364  SDOperand N = getValue(I.getOperand(0));
2365  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2366  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2367}
2368
2369void SelectionDAGLowering::visitFPExt(User &I){
2370  // FPTrunc is never a no-op cast, no need to check
2371  SDOperand N = getValue(I.getOperand(0));
2372  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2373  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2374}
2375
2376void SelectionDAGLowering::visitFPToUI(User &I) {
2377  // FPToUI is never a no-op cast, no need to check
2378  SDOperand N = getValue(I.getOperand(0));
2379  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2380  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2381}
2382
2383void SelectionDAGLowering::visitFPToSI(User &I) {
2384  // FPToSI is never a no-op cast, no need to check
2385  SDOperand N = getValue(I.getOperand(0));
2386  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2387  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2388}
2389
2390void SelectionDAGLowering::visitUIToFP(User &I) {
2391  // UIToFP is never a no-op cast, no need to check
2392  SDOperand N = getValue(I.getOperand(0));
2393  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2394  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2395}
2396
2397void SelectionDAGLowering::visitSIToFP(User &I){
2398  // UIToFP is never a no-op cast, no need to check
2399  SDOperand N = getValue(I.getOperand(0));
2400  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2401  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2402}
2403
2404void SelectionDAGLowering::visitPtrToInt(User &I) {
2405  // What to do depends on the size of the integer and the size of the pointer.
2406  // We can either truncate, zero extend, or no-op, accordingly.
2407  SDOperand N = getValue(I.getOperand(0));
2408  MVT::ValueType SrcVT = N.getValueType();
2409  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2410  SDOperand Result;
2411  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2412    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2413  else
2414    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2415    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2416  setValue(&I, Result);
2417}
2418
2419void SelectionDAGLowering::visitIntToPtr(User &I) {
2420  // What to do depends on the size of the integer and the size of the pointer.
2421  // We can either truncate, zero extend, or no-op, accordingly.
2422  SDOperand N = getValue(I.getOperand(0));
2423  MVT::ValueType SrcVT = N.getValueType();
2424  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2425  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2426    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2427  else
2428    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2429    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2430}
2431
2432void SelectionDAGLowering::visitBitCast(User &I) {
2433  SDOperand N = getValue(I.getOperand(0));
2434  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2435
2436  // BitCast assures us that source and destination are the same size so this
2437  // is either a BIT_CONVERT or a no-op.
2438  if (DestVT != N.getValueType())
2439    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2440  else
2441    setValue(&I, N); // noop cast.
2442}
2443
2444void SelectionDAGLowering::visitInsertElement(User &I) {
2445  SDOperand InVec = getValue(I.getOperand(0));
2446  SDOperand InVal = getValue(I.getOperand(1));
2447  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2448                                getValue(I.getOperand(2)));
2449
2450  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2451                           TLI.getValueType(I.getType()),
2452                           InVec, InVal, InIdx));
2453}
2454
2455void SelectionDAGLowering::visitExtractElement(User &I) {
2456  SDOperand InVec = getValue(I.getOperand(0));
2457  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2458                                getValue(I.getOperand(1)));
2459  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2460                           TLI.getValueType(I.getType()), InVec, InIdx));
2461}
2462
2463void SelectionDAGLowering::visitShuffleVector(User &I) {
2464  SDOperand V1   = getValue(I.getOperand(0));
2465  SDOperand V2   = getValue(I.getOperand(1));
2466  SDOperand Mask = getValue(I.getOperand(2));
2467
2468  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2469                           TLI.getValueType(I.getType()),
2470                           V1, V2, Mask));
2471}
2472
2473
2474void SelectionDAGLowering::visitGetElementPtr(User &I) {
2475  SDOperand N = getValue(I.getOperand(0));
2476  const Type *Ty = I.getOperand(0)->getType();
2477
2478  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2479       OI != E; ++OI) {
2480    Value *Idx = *OI;
2481    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2482      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2483      if (Field) {
2484        // N = N + Offset
2485        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2486        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2487                        DAG.getIntPtrConstant(Offset));
2488      }
2489      Ty = StTy->getElementType(Field);
2490    } else {
2491      Ty = cast<SequentialType>(Ty)->getElementType();
2492
2493      // If this is a constant subscript, handle it quickly.
2494      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2495        if (CI->getZExtValue() == 0) continue;
2496        uint64_t Offs =
2497            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2498        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2499                        DAG.getIntPtrConstant(Offs));
2500        continue;
2501      }
2502
2503      // N = N + Idx * ElementSize;
2504      uint64_t ElementSize = TD->getABITypeSize(Ty);
2505      SDOperand IdxN = getValue(Idx);
2506
2507      // If the index is smaller or larger than intptr_t, truncate or extend
2508      // it.
2509      if (IdxN.getValueType() < N.getValueType()) {
2510        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2511      } else if (IdxN.getValueType() > N.getValueType())
2512        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2513
2514      // If this is a multiply by a power of two, turn it into a shl
2515      // immediately.  This is a very common case.
2516      if (isPowerOf2_64(ElementSize)) {
2517        unsigned Amt = Log2_64(ElementSize);
2518        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2519                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2520        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2521        continue;
2522      }
2523
2524      SDOperand Scale = DAG.getIntPtrConstant(ElementSize);
2525      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2526      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2527    }
2528  }
2529  setValue(&I, N);
2530}
2531
2532void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2533  // If this is a fixed sized alloca in the entry block of the function,
2534  // allocate it statically on the stack.
2535  if (FuncInfo.StaticAllocaMap.count(&I))
2536    return;   // getValue will auto-populate this.
2537
2538  const Type *Ty = I.getAllocatedType();
2539  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2540  unsigned Align =
2541    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2542             I.getAlignment());
2543
2544  SDOperand AllocSize = getValue(I.getArraySize());
2545  MVT::ValueType IntPtr = TLI.getPointerTy();
2546  if (IntPtr < AllocSize.getValueType())
2547    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2548  else if (IntPtr > AllocSize.getValueType())
2549    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2550
2551  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2552                          DAG.getIntPtrConstant(TySize));
2553
2554  // Handle alignment.  If the requested alignment is less than or equal to
2555  // the stack alignment, ignore it.  If the size is greater than or equal to
2556  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2557  unsigned StackAlign =
2558    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2559  if (Align <= StackAlign)
2560    Align = 0;
2561
2562  // Round the size of the allocation up to the stack alignment size
2563  // by add SA-1 to the size.
2564  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2565                          DAG.getIntPtrConstant(StackAlign-1));
2566  // Mask out the low bits for alignment purposes.
2567  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2568                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2569
2570  SDOperand Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2571  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2572                                                    MVT::Other);
2573  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2574  setValue(&I, DSA);
2575  DAG.setRoot(DSA.getValue(1));
2576
2577  // Inform the Frame Information that we have just allocated a variable-sized
2578  // object.
2579  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2580}
2581
2582void SelectionDAGLowering::visitLoad(LoadInst &I) {
2583  SDOperand Ptr = getValue(I.getOperand(0));
2584
2585  SDOperand Root;
2586  if (I.isVolatile())
2587    Root = getRoot();
2588  else {
2589    // Do not serialize non-volatile loads against each other.
2590    Root = DAG.getRoot();
2591  }
2592
2593  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2594                           Root, I.isVolatile(), I.getAlignment()));
2595}
2596
2597SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2598                                            const Value *SV, SDOperand Root,
2599                                            bool isVolatile,
2600                                            unsigned Alignment) {
2601  SDOperand L =
2602    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2603                isVolatile, Alignment);
2604
2605  if (isVolatile)
2606    DAG.setRoot(L.getValue(1));
2607  else
2608    PendingLoads.push_back(L.getValue(1));
2609
2610  return L;
2611}
2612
2613
2614void SelectionDAGLowering::visitStore(StoreInst &I) {
2615  Value *SrcV = I.getOperand(0);
2616  SDOperand Src = getValue(SrcV);
2617  SDOperand Ptr = getValue(I.getOperand(1));
2618  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2619                           I.isVolatile(), I.getAlignment()));
2620}
2621
2622/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2623/// node.
2624void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2625                                                unsigned Intrinsic) {
2626  bool HasChain = !I.doesNotAccessMemory();
2627  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2628
2629  // Build the operand list.
2630  SmallVector<SDOperand, 8> Ops;
2631  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2632    if (OnlyLoad) {
2633      // We don't need to serialize loads against other loads.
2634      Ops.push_back(DAG.getRoot());
2635    } else {
2636      Ops.push_back(getRoot());
2637    }
2638  }
2639
2640  // Add the intrinsic ID as an integer operand.
2641  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2642
2643  // Add all operands of the call to the operand list.
2644  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2645    SDOperand Op = getValue(I.getOperand(i));
2646    assert(TLI.isTypeLegal(Op.getValueType()) &&
2647           "Intrinsic uses a non-legal type?");
2648    Ops.push_back(Op);
2649  }
2650
2651  std::vector<MVT::ValueType> VTs;
2652  if (I.getType() != Type::VoidTy) {
2653    MVT::ValueType VT = TLI.getValueType(I.getType());
2654    if (MVT::isVector(VT)) {
2655      const VectorType *DestTy = cast<VectorType>(I.getType());
2656      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2657
2658      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2659      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2660    }
2661
2662    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2663    VTs.push_back(VT);
2664  }
2665  if (HasChain)
2666    VTs.push_back(MVT::Other);
2667
2668  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2669
2670  // Create the node.
2671  SDOperand Result;
2672  if (!HasChain)
2673    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2674                         &Ops[0], Ops.size());
2675  else if (I.getType() != Type::VoidTy)
2676    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2677                         &Ops[0], Ops.size());
2678  else
2679    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2680                         &Ops[0], Ops.size());
2681
2682  if (HasChain) {
2683    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2684    if (OnlyLoad)
2685      PendingLoads.push_back(Chain);
2686    else
2687      DAG.setRoot(Chain);
2688  }
2689  if (I.getType() != Type::VoidTy) {
2690    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2691      MVT::ValueType VT = TLI.getValueType(PTy);
2692      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2693    }
2694    setValue(&I, Result);
2695  }
2696}
2697
2698/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2699static GlobalVariable *ExtractTypeInfo (Value *V) {
2700  V = IntrinsicInst::StripPointerCasts(V);
2701  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2702  assert ((GV || isa<ConstantPointerNull>(V)) &&
2703          "TypeInfo must be a global variable or NULL");
2704  return GV;
2705}
2706
2707/// addCatchInfo - Extract the personality and type infos from an eh.selector
2708/// call, and add them to the specified machine basic block.
2709static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2710                         MachineBasicBlock *MBB) {
2711  // Inform the MachineModuleInfo of the personality for this landing pad.
2712  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2713  assert(CE->getOpcode() == Instruction::BitCast &&
2714         isa<Function>(CE->getOperand(0)) &&
2715         "Personality should be a function");
2716  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2717
2718  // Gather all the type infos for this landing pad and pass them along to
2719  // MachineModuleInfo.
2720  std::vector<GlobalVariable *> TyInfo;
2721  unsigned N = I.getNumOperands();
2722
2723  for (unsigned i = N - 1; i > 2; --i) {
2724    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2725      unsigned FilterLength = CI->getZExtValue();
2726      unsigned FirstCatch = i + FilterLength + !FilterLength;
2727      assert (FirstCatch <= N && "Invalid filter length");
2728
2729      if (FirstCatch < N) {
2730        TyInfo.reserve(N - FirstCatch);
2731        for (unsigned j = FirstCatch; j < N; ++j)
2732          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2733        MMI->addCatchTypeInfo(MBB, TyInfo);
2734        TyInfo.clear();
2735      }
2736
2737      if (!FilterLength) {
2738        // Cleanup.
2739        MMI->addCleanup(MBB);
2740      } else {
2741        // Filter.
2742        TyInfo.reserve(FilterLength - 1);
2743        for (unsigned j = i + 1; j < FirstCatch; ++j)
2744          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2745        MMI->addFilterTypeInfo(MBB, TyInfo);
2746        TyInfo.clear();
2747      }
2748
2749      N = i;
2750    }
2751  }
2752
2753  if (N > 3) {
2754    TyInfo.reserve(N - 3);
2755    for (unsigned j = 3; j < N; ++j)
2756      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2757    MMI->addCatchTypeInfo(MBB, TyInfo);
2758  }
2759}
2760
2761/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2762/// we want to emit this as a call to a named external function, return the name
2763/// otherwise lower it and return null.
2764const char *
2765SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2766  switch (Intrinsic) {
2767  default:
2768    // By default, turn this into a target intrinsic node.
2769    visitTargetIntrinsic(I, Intrinsic);
2770    return 0;
2771  case Intrinsic::vastart:  visitVAStart(I); return 0;
2772  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2773  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2774  case Intrinsic::returnaddress:
2775    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2776                             getValue(I.getOperand(1))));
2777    return 0;
2778  case Intrinsic::frameaddress:
2779    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2780                             getValue(I.getOperand(1))));
2781    return 0;
2782  case Intrinsic::setjmp:
2783    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2784    break;
2785  case Intrinsic::longjmp:
2786    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2787    break;
2788  case Intrinsic::memcpy_i32:
2789  case Intrinsic::memcpy_i64: {
2790    SDOperand Op1 = getValue(I.getOperand(1));
2791    SDOperand Op2 = getValue(I.getOperand(2));
2792    SDOperand Op3 = getValue(I.getOperand(3));
2793    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
2794    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
2795                              I.getOperand(1), 0, I.getOperand(2), 0));
2796    return 0;
2797  }
2798  case Intrinsic::memset_i32:
2799  case Intrinsic::memset_i64: {
2800    SDOperand Op1 = getValue(I.getOperand(1));
2801    SDOperand Op2 = getValue(I.getOperand(2));
2802    SDOperand Op3 = getValue(I.getOperand(3));
2803    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
2804    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
2805                              I.getOperand(1), 0));
2806    return 0;
2807  }
2808  case Intrinsic::memmove_i32:
2809  case Intrinsic::memmove_i64: {
2810    SDOperand Op1 = getValue(I.getOperand(1));
2811    SDOperand Op2 = getValue(I.getOperand(2));
2812    SDOperand Op3 = getValue(I.getOperand(3));
2813    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
2814
2815    // If the source and destination are known to not be aliases, we can
2816    // lower memmove as memcpy.
2817    uint64_t Size = -1ULL;
2818    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
2819      Size = C->getValue();
2820    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
2821        AliasAnalysis::NoAlias) {
2822      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
2823                                I.getOperand(1), 0, I.getOperand(2), 0));
2824      return 0;
2825    }
2826
2827    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
2828                               I.getOperand(1), 0, I.getOperand(2), 0));
2829    return 0;
2830  }
2831  case Intrinsic::dbg_stoppoint: {
2832    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2833    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2834    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2835      SDOperand Ops[5];
2836
2837      Ops[0] = getRoot();
2838      Ops[1] = getValue(SPI.getLineValue());
2839      Ops[2] = getValue(SPI.getColumnValue());
2840
2841      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2842      assert(DD && "Not a debug information descriptor");
2843      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2844
2845      Ops[3] = DAG.getString(CompileUnit->getFileName());
2846      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2847
2848      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2849    }
2850
2851    return 0;
2852  }
2853  case Intrinsic::dbg_region_start: {
2854    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2855    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2856    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2857      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2858      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2859                              DAG.getConstant(LabelID, MVT::i32),
2860                              DAG.getConstant(0, MVT::i32)));
2861    }
2862
2863    return 0;
2864  }
2865  case Intrinsic::dbg_region_end: {
2866    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2867    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2868    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2869      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2870      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2871                              DAG.getConstant(LabelID, MVT::i32),
2872                              DAG.getConstant(0, MVT::i32)));
2873    }
2874
2875    return 0;
2876  }
2877  case Intrinsic::dbg_func_start: {
2878    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2879    if (!MMI) return 0;
2880    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2881    Value *SP = FSI.getSubprogram();
2882    if (SP && MMI->Verify(SP)) {
2883      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
2884      // what (most?) gdb expects.
2885      DebugInfoDesc *DD = MMI->getDescFor(SP);
2886      assert(DD && "Not a debug information descriptor");
2887      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
2888      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
2889      unsigned SrcFile = MMI->RecordSource(CompileUnit->getDirectory(),
2890                                           CompileUnit->getFileName());
2891      // Record the source line but does create a label. It will be emitted
2892      // at asm emission time.
2893      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
2894    }
2895
2896    return 0;
2897  }
2898  case Intrinsic::dbg_declare: {
2899    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2900    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2901    Value *Variable = DI.getVariable();
2902    if (MMI && Variable && MMI->Verify(Variable))
2903      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
2904                              getValue(DI.getAddress()), getValue(Variable)));
2905    return 0;
2906  }
2907
2908  case Intrinsic::eh_exception: {
2909    if (!CurMBB->isLandingPad()) {
2910      // FIXME: Mark exception register as live in.  Hack for PR1508.
2911      unsigned Reg = TLI.getExceptionAddressRegister();
2912      if (Reg) CurMBB->addLiveIn(Reg);
2913    }
2914    // Insert the EXCEPTIONADDR instruction.
2915    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2916    SDOperand Ops[1];
2917    Ops[0] = DAG.getRoot();
2918    SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2919    setValue(&I, Op);
2920    DAG.setRoot(Op.getValue(1));
2921    return 0;
2922  }
2923
2924  case Intrinsic::eh_selector_i32:
2925  case Intrinsic::eh_selector_i64: {
2926    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2927    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2928                         MVT::i32 : MVT::i64);
2929
2930    if (MMI) {
2931      if (CurMBB->isLandingPad())
2932        addCatchInfo(I, MMI, CurMBB);
2933      else {
2934#ifndef NDEBUG
2935        FuncInfo.CatchInfoLost.insert(&I);
2936#endif
2937        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
2938        unsigned Reg = TLI.getExceptionSelectorRegister();
2939        if (Reg) CurMBB->addLiveIn(Reg);
2940      }
2941
2942      // Insert the EHSELECTION instruction.
2943      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2944      SDOperand Ops[2];
2945      Ops[0] = getValue(I.getOperand(1));
2946      Ops[1] = getRoot();
2947      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2948      setValue(&I, Op);
2949      DAG.setRoot(Op.getValue(1));
2950    } else {
2951      setValue(&I, DAG.getConstant(0, VT));
2952    }
2953
2954    return 0;
2955  }
2956
2957  case Intrinsic::eh_typeid_for_i32:
2958  case Intrinsic::eh_typeid_for_i64: {
2959    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2960    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2961                         MVT::i32 : MVT::i64);
2962
2963    if (MMI) {
2964      // Find the type id for the given typeinfo.
2965      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2966
2967      unsigned TypeID = MMI->getTypeIDFor(GV);
2968      setValue(&I, DAG.getConstant(TypeID, VT));
2969    } else {
2970      // Return something different to eh_selector.
2971      setValue(&I, DAG.getConstant(1, VT));
2972    }
2973
2974    return 0;
2975  }
2976
2977  case Intrinsic::eh_return: {
2978    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2979
2980    if (MMI) {
2981      MMI->setCallsEHReturn(true);
2982      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2983                              MVT::Other,
2984                              getControlRoot(),
2985                              getValue(I.getOperand(1)),
2986                              getValue(I.getOperand(2))));
2987    } else {
2988      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2989    }
2990
2991    return 0;
2992  }
2993
2994   case Intrinsic::eh_unwind_init: {
2995     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2996       MMI->setCallsUnwindInit(true);
2997     }
2998
2999     return 0;
3000   }
3001
3002   case Intrinsic::eh_dwarf_cfa: {
3003     MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
3004     SDOperand CfaArg;
3005     if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
3006       CfaArg = DAG.getNode(ISD::TRUNCATE,
3007                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3008     else
3009       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3010                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3011
3012     SDOperand Offset = DAG.getNode(ISD::ADD,
3013                                    TLI.getPointerTy(),
3014                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3015                                                TLI.getPointerTy()),
3016                                    CfaArg);
3017     setValue(&I, DAG.getNode(ISD::ADD,
3018                              TLI.getPointerTy(),
3019                              DAG.getNode(ISD::FRAMEADDR,
3020                                          TLI.getPointerTy(),
3021                                          DAG.getConstant(0,
3022                                                          TLI.getPointerTy())),
3023                              Offset));
3024     return 0;
3025  }
3026
3027  case Intrinsic::sqrt:
3028    setValue(&I, DAG.getNode(ISD::FSQRT,
3029                             getValue(I.getOperand(1)).getValueType(),
3030                             getValue(I.getOperand(1))));
3031    return 0;
3032  case Intrinsic::powi:
3033    setValue(&I, DAG.getNode(ISD::FPOWI,
3034                             getValue(I.getOperand(1)).getValueType(),
3035                             getValue(I.getOperand(1)),
3036                             getValue(I.getOperand(2))));
3037    return 0;
3038  case Intrinsic::sin:
3039    setValue(&I, DAG.getNode(ISD::FSIN,
3040                             getValue(I.getOperand(1)).getValueType(),
3041                             getValue(I.getOperand(1))));
3042    return 0;
3043  case Intrinsic::cos:
3044    setValue(&I, DAG.getNode(ISD::FCOS,
3045                             getValue(I.getOperand(1)).getValueType(),
3046                             getValue(I.getOperand(1))));
3047    return 0;
3048  case Intrinsic::pow:
3049    setValue(&I, DAG.getNode(ISD::FPOW,
3050                             getValue(I.getOperand(1)).getValueType(),
3051                             getValue(I.getOperand(1)),
3052                             getValue(I.getOperand(2))));
3053    return 0;
3054  case Intrinsic::pcmarker: {
3055    SDOperand Tmp = getValue(I.getOperand(1));
3056    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3057    return 0;
3058  }
3059  case Intrinsic::readcyclecounter: {
3060    SDOperand Op = getRoot();
3061    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3062                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3063                                &Op, 1);
3064    setValue(&I, Tmp);
3065    DAG.setRoot(Tmp.getValue(1));
3066    return 0;
3067  }
3068  case Intrinsic::part_select: {
3069    // Currently not implemented: just abort
3070    assert(0 && "part_select intrinsic not implemented");
3071    abort();
3072  }
3073  case Intrinsic::part_set: {
3074    // Currently not implemented: just abort
3075    assert(0 && "part_set intrinsic not implemented");
3076    abort();
3077  }
3078  case Intrinsic::bswap:
3079    setValue(&I, DAG.getNode(ISD::BSWAP,
3080                             getValue(I.getOperand(1)).getValueType(),
3081                             getValue(I.getOperand(1))));
3082    return 0;
3083  case Intrinsic::cttz: {
3084    SDOperand Arg = getValue(I.getOperand(1));
3085    MVT::ValueType Ty = Arg.getValueType();
3086    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3087    setValue(&I, result);
3088    return 0;
3089  }
3090  case Intrinsic::ctlz: {
3091    SDOperand Arg = getValue(I.getOperand(1));
3092    MVT::ValueType Ty = Arg.getValueType();
3093    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3094    setValue(&I, result);
3095    return 0;
3096  }
3097  case Intrinsic::ctpop: {
3098    SDOperand Arg = getValue(I.getOperand(1));
3099    MVT::ValueType Ty = Arg.getValueType();
3100    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3101    setValue(&I, result);
3102    return 0;
3103  }
3104  case Intrinsic::stacksave: {
3105    SDOperand Op = getRoot();
3106    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
3107              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3108    setValue(&I, Tmp);
3109    DAG.setRoot(Tmp.getValue(1));
3110    return 0;
3111  }
3112  case Intrinsic::stackrestore: {
3113    SDOperand Tmp = getValue(I.getOperand(1));
3114    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3115    return 0;
3116  }
3117  case Intrinsic::var_annotation:
3118    // Discard annotate attributes
3119    return 0;
3120
3121  case Intrinsic::init_trampoline: {
3122    const Function *F =
3123      cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
3124
3125    SDOperand Ops[6];
3126    Ops[0] = getRoot();
3127    Ops[1] = getValue(I.getOperand(1));
3128    Ops[2] = getValue(I.getOperand(2));
3129    Ops[3] = getValue(I.getOperand(3));
3130    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3131    Ops[5] = DAG.getSrcValue(F);
3132
3133    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
3134                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3135                                                      MVT::Other), 2,
3136                                Ops, 6);
3137
3138    setValue(&I, Tmp);
3139    DAG.setRoot(Tmp.getValue(1));
3140    return 0;
3141  }
3142
3143  case Intrinsic::gcroot:
3144    if (GCI) {
3145      Value *Alloca = I.getOperand(1);
3146      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3147
3148      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3149      GCI->addStackRoot(FI->getIndex(), TypeMap);
3150    }
3151    return 0;
3152
3153  case Intrinsic::gcread:
3154  case Intrinsic::gcwrite:
3155    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3156    return 0;
3157
3158  case Intrinsic::flt_rounds: {
3159    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3160    return 0;
3161  }
3162
3163  case Intrinsic::trap: {
3164    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3165    return 0;
3166  }
3167  case Intrinsic::prefetch: {
3168    SDOperand Ops[4];
3169    Ops[0] = getRoot();
3170    Ops[1] = getValue(I.getOperand(1));
3171    Ops[2] = getValue(I.getOperand(2));
3172    Ops[3] = getValue(I.getOperand(3));
3173    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3174    return 0;
3175  }
3176
3177  case Intrinsic::memory_barrier: {
3178    SDOperand Ops[6];
3179    Ops[0] = getRoot();
3180    for (int x = 1; x < 6; ++x)
3181      Ops[x] = getValue(I.getOperand(x));
3182
3183    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3184    return 0;
3185  }
3186  case Intrinsic::atomic_lcs: {
3187    SDOperand Root = getRoot();
3188    SDOperand O3 = getValue(I.getOperand(3));
3189    SDOperand L = DAG.getAtomic(ISD::ATOMIC_LCS, Root,
3190                                getValue(I.getOperand(1)),
3191                                getValue(I.getOperand(2)),
3192                                O3, O3.getValueType());
3193    setValue(&I, L);
3194    DAG.setRoot(L.getValue(1));
3195    return 0;
3196  }
3197  case Intrinsic::atomic_las: {
3198    SDOperand Root = getRoot();
3199    SDOperand O2 = getValue(I.getOperand(2));
3200    SDOperand L = DAG.getAtomic(ISD::ATOMIC_LAS, Root,
3201                                getValue(I.getOperand(1)),
3202                                O2, O2.getValueType());
3203    setValue(&I, L);
3204    DAG.setRoot(L.getValue(1));
3205    return 0;
3206  }
3207  case Intrinsic::atomic_swap: {
3208    SDOperand Root = getRoot();
3209    SDOperand O2 = getValue(I.getOperand(2));
3210    SDOperand L = DAG.getAtomic(ISD::ATOMIC_SWAP, Root,
3211                                getValue(I.getOperand(1)),
3212                                O2, O2.getValueType());
3213    setValue(&I, L);
3214    DAG.setRoot(L.getValue(1));
3215    return 0;
3216  }
3217
3218  }
3219}
3220
3221
3222void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
3223                                       bool IsTailCall,
3224                                       MachineBasicBlock *LandingPad) {
3225  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3226  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3227  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3228  unsigned BeginLabel = 0, EndLabel = 0;
3229
3230  TargetLowering::ArgListTy Args;
3231  TargetLowering::ArgListEntry Entry;
3232  Args.reserve(CS.arg_size());
3233  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3234       i != e; ++i) {
3235    SDOperand ArgNode = getValue(*i);
3236    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3237
3238    unsigned attrInd = i - CS.arg_begin() + 1;
3239    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3240    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3241    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3242    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3243    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3244    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3245    Entry.Alignment = CS.getParamAlignment(attrInd);
3246    Args.push_back(Entry);
3247  }
3248
3249  if (LandingPad && MMI) {
3250    // Insert a label before the invoke call to mark the try range.  This can be
3251    // used to detect deletion of the invoke via the MachineModuleInfo.
3252    BeginLabel = MMI->NextLabelID();
3253    // Both PendingLoads and PendingExports must be flushed here;
3254    // this call might not return.
3255    (void)getRoot();
3256    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getControlRoot(),
3257                            DAG.getConstant(BeginLabel, MVT::i32),
3258                            DAG.getConstant(1, MVT::i32)));
3259  }
3260
3261  std::pair<SDOperand,SDOperand> Result =
3262    TLI.LowerCallTo(getRoot(), CS.getType(),
3263                    CS.paramHasAttr(0, ParamAttr::SExt),
3264                    CS.paramHasAttr(0, ParamAttr::ZExt),
3265                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3266                    Callee, Args, DAG);
3267  if (CS.getType() != Type::VoidTy)
3268    setValue(CS.getInstruction(), Result.first);
3269  DAG.setRoot(Result.second);
3270
3271  if (LandingPad && MMI) {
3272    // Insert a label at the end of the invoke call to mark the try range.  This
3273    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3274    EndLabel = MMI->NextLabelID();
3275    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3276                            DAG.getConstant(EndLabel, MVT::i32),
3277                            DAG.getConstant(1, MVT::i32)));
3278
3279    // Inform MachineModuleInfo of range.
3280    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3281  }
3282}
3283
3284
3285void SelectionDAGLowering::visitCall(CallInst &I) {
3286  const char *RenameFn = 0;
3287  if (Function *F = I.getCalledFunction()) {
3288    if (F->isDeclaration()) {
3289      if (unsigned IID = F->getIntrinsicID()) {
3290        RenameFn = visitIntrinsicCall(I, IID);
3291        if (!RenameFn)
3292          return;
3293      }
3294    }
3295
3296    // Check for well-known libc/libm calls.  If the function is internal, it
3297    // can't be a library call.
3298    unsigned NameLen = F->getNameLen();
3299    if (!F->hasInternalLinkage() && NameLen) {
3300      const char *NameStr = F->getNameStart();
3301      if (NameStr[0] == 'c' &&
3302          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3303           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3304        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3305            I.getOperand(1)->getType()->isFloatingPoint() &&
3306            I.getType() == I.getOperand(1)->getType() &&
3307            I.getType() == I.getOperand(2)->getType()) {
3308          SDOperand LHS = getValue(I.getOperand(1));
3309          SDOperand RHS = getValue(I.getOperand(2));
3310          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3311                                   LHS, RHS));
3312          return;
3313        }
3314      } else if (NameStr[0] == 'f' &&
3315                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3316                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3317                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3318        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3319            I.getOperand(1)->getType()->isFloatingPoint() &&
3320            I.getType() == I.getOperand(1)->getType()) {
3321          SDOperand Tmp = getValue(I.getOperand(1));
3322          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3323          return;
3324        }
3325      } else if (NameStr[0] == 's' &&
3326                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3327                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3328                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3329        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3330            I.getOperand(1)->getType()->isFloatingPoint() &&
3331            I.getType() == I.getOperand(1)->getType()) {
3332          SDOperand Tmp = getValue(I.getOperand(1));
3333          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3334          return;
3335        }
3336      } else if (NameStr[0] == 'c' &&
3337                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3338                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3339                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3340        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3341            I.getOperand(1)->getType()->isFloatingPoint() &&
3342            I.getType() == I.getOperand(1)->getType()) {
3343          SDOperand Tmp = getValue(I.getOperand(1));
3344          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3345          return;
3346        }
3347      }
3348    }
3349  } else if (isa<InlineAsm>(I.getOperand(0))) {
3350    visitInlineAsm(&I);
3351    return;
3352  }
3353
3354  SDOperand Callee;
3355  if (!RenameFn)
3356    Callee = getValue(I.getOperand(0));
3357  else
3358    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3359
3360  LowerCallTo(&I, Callee, I.isTailCall());
3361}
3362
3363
3364void SelectionDAGLowering::visitGetResult(GetResultInst &I) {
3365  if (isa<UndefValue>(I.getOperand(0))) {
3366    SDOperand Undef = DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()));
3367    setValue(&I, Undef);
3368  } else {
3369    SDOperand Call = getValue(I.getOperand(0));
3370
3371    // To add support for individual return values with aggregate types,
3372    // we'd need a way to take a getresult index and determine which
3373    // values of the Call SDNode are associated with it.
3374    assert(TLI.getValueType(I.getType(), true) != MVT::Other &&
3375           "Individual return values must not be aggregates!");
3376
3377    setValue(&I, SDOperand(Call.Val, I.getIndex()));
3378  }
3379}
3380
3381
3382/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3383/// this value and returns the result as a ValueVT value.  This uses
3384/// Chain/Flag as the input and updates them for the output Chain/Flag.
3385/// If the Flag pointer is NULL, no flag is used.
3386SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3387                                        SDOperand &Chain, SDOperand *Flag)const{
3388  // Assemble the legal parts into the final values.
3389  SmallVector<SDOperand, 4> Values(ValueVTs.size());
3390  for (unsigned Value = 0, Part = 0; Value != ValueVTs.size(); ++Value) {
3391    // Copy the legal parts from the registers.
3392    MVT::ValueType ValueVT = ValueVTs[Value];
3393    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
3394    MVT::ValueType RegisterVT = RegVTs[Value];
3395
3396    SmallVector<SDOperand, 8> Parts(NumRegs);
3397    for (unsigned i = 0; i != NumRegs; ++i) {
3398      SDOperand P = Flag ?
3399                    DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag) :
3400                    DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
3401      Chain = P.getValue(1);
3402      if (Flag)
3403        *Flag = P.getValue(2);
3404      Parts[Part+i] = P;
3405    }
3406
3407    Values[Value] = getCopyFromParts(DAG, &Parts[Part], NumRegs, RegisterVT,
3408                                     ValueVT);
3409    Part += NumRegs;
3410  }
3411  return DAG.getNode(ISD::MERGE_VALUES,
3412                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
3413                     &Values[0], ValueVTs.size());
3414}
3415
3416/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3417/// specified value into the registers specified by this object.  This uses
3418/// Chain/Flag as the input and updates them for the output Chain/Flag.
3419/// If the Flag pointer is NULL, no flag is used.
3420void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3421                                 SDOperand &Chain, SDOperand *Flag) const {
3422  // Get the list of the values's legal parts.
3423  unsigned NumRegs = Regs.size();
3424  SmallVector<SDOperand, 8> Parts(NumRegs);
3425  for (unsigned Value = 0, Part = 0; Value != ValueVTs.size(); ++Value) {
3426    MVT::ValueType ValueVT = ValueVTs[Value];
3427    unsigned NumParts = TLI->getNumRegisters(ValueVT);
3428    MVT::ValueType RegisterVT = RegVTs[Value];
3429
3430    getCopyToParts(DAG, Val.getValue(Val.ResNo + Value),
3431                   &Parts[Part], NumParts, RegisterVT);
3432    Part += NumParts;
3433  }
3434
3435  // Copy the parts into the registers.
3436  SmallVector<SDOperand, 8> Chains(NumRegs);
3437  for (unsigned i = 0; i != NumRegs; ++i) {
3438    SDOperand Part = Flag ?
3439                     DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3440                     DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3441    Chains[i] = Part.getValue(0);
3442    if (Flag)
3443      *Flag = Part.getValue(1);
3444  }
3445  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
3446}
3447
3448/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3449/// operand list.  This adds the code marker and includes the number of
3450/// values added into it.
3451void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3452                                        std::vector<SDOperand> &Ops) const {
3453  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3454  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3455  for (unsigned Value = 0, Reg = 0; Value != ValueVTs.size(); ++Value) {
3456    MVT::ValueType ValueVT = ValueVTs[Value];
3457    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
3458    MVT::ValueType RegisterVT = RegVTs[Value];
3459    for (unsigned i = 0; i != NumRegs; ++i) {
3460      SDOperand RegOp = DAG.getRegister(Regs[Reg+i], RegisterVT);
3461      Ops.push_back(RegOp);
3462    }
3463    Reg += NumRegs;
3464  }
3465}
3466
3467/// isAllocatableRegister - If the specified register is safe to allocate,
3468/// i.e. it isn't a stack pointer or some other special register, return the
3469/// register class for the register.  Otherwise, return null.
3470static const TargetRegisterClass *
3471isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3472                      const TargetLowering &TLI,
3473                      const TargetRegisterInfo *TRI) {
3474  MVT::ValueType FoundVT = MVT::Other;
3475  const TargetRegisterClass *FoundRC = 0;
3476  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3477       E = TRI->regclass_end(); RCI != E; ++RCI) {
3478    MVT::ValueType ThisVT = MVT::Other;
3479
3480    const TargetRegisterClass *RC = *RCI;
3481    // If none of the the value types for this register class are valid, we
3482    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3483    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3484         I != E; ++I) {
3485      if (TLI.isTypeLegal(*I)) {
3486        // If we have already found this register in a different register class,
3487        // choose the one with the largest VT specified.  For example, on
3488        // PowerPC, we favor f64 register classes over f32.
3489        if (FoundVT == MVT::Other ||
3490            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3491          ThisVT = *I;
3492          break;
3493        }
3494      }
3495    }
3496
3497    if (ThisVT == MVT::Other) continue;
3498
3499    // NOTE: This isn't ideal.  In particular, this might allocate the
3500    // frame pointer in functions that need it (due to them not being taken
3501    // out of allocation, because a variable sized allocation hasn't been seen
3502    // yet).  This is a slight code pessimization, but should still work.
3503    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3504         E = RC->allocation_order_end(MF); I != E; ++I)
3505      if (*I == Reg) {
3506        // We found a matching register class.  Keep looking at others in case
3507        // we find one with larger registers that this physreg is also in.
3508        FoundRC = RC;
3509        FoundVT = ThisVT;
3510        break;
3511      }
3512  }
3513  return FoundRC;
3514}
3515
3516
3517namespace {
3518/// AsmOperandInfo - This contains information for each constraint that we are
3519/// lowering.
3520struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
3521  /// CallOperand - If this is the result output operand or a clobber
3522  /// this is null, otherwise it is the incoming operand to the CallInst.
3523  /// This gets modified as the asm is processed.
3524  SDOperand CallOperand;
3525
3526  /// AssignedRegs - If this is a register or register class operand, this
3527  /// contains the set of register corresponding to the operand.
3528  RegsForValue AssignedRegs;
3529
3530  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3531    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
3532  }
3533
3534  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3535  /// busy in OutputRegs/InputRegs.
3536  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3537                         std::set<unsigned> &OutputRegs,
3538                         std::set<unsigned> &InputRegs,
3539                         const TargetRegisterInfo &TRI) const {
3540    if (isOutReg) {
3541      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3542        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3543    }
3544    if (isInReg) {
3545      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3546        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3547    }
3548  }
3549
3550private:
3551  /// MarkRegAndAliases - Mark the specified register and all aliases in the
3552  /// specified set.
3553  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3554                                const TargetRegisterInfo &TRI) {
3555    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3556    Regs.insert(Reg);
3557    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3558      for (; *Aliases; ++Aliases)
3559        Regs.insert(*Aliases);
3560  }
3561};
3562} // end anon namespace.
3563
3564
3565/// GetRegistersForValue - Assign registers (virtual or physical) for the
3566/// specified operand.  We prefer to assign virtual registers, to allow the
3567/// register allocator handle the assignment process.  However, if the asm uses
3568/// features that we can't model on machineinstrs, we have SDISel do the
3569/// allocation.  This produces generally horrible, but correct, code.
3570///
3571///   OpInfo describes the operand.
3572///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
3573///     or any explicitly clobbered registers.
3574///   Input and OutputRegs are the set of already allocated physical registers.
3575///
3576void SelectionDAGLowering::
3577GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
3578                     std::set<unsigned> &OutputRegs,
3579                     std::set<unsigned> &InputRegs) {
3580  // Compute whether this value requires an input register, an output register,
3581  // or both.
3582  bool isOutReg = false;
3583  bool isInReg = false;
3584  switch (OpInfo.Type) {
3585  case InlineAsm::isOutput:
3586    isOutReg = true;
3587
3588    // If this is an early-clobber output, or if there is an input
3589    // constraint that matches this, we need to reserve the input register
3590    // so no other inputs allocate to it.
3591    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3592    break;
3593  case InlineAsm::isInput:
3594    isInReg = true;
3595    isOutReg = false;
3596    break;
3597  case InlineAsm::isClobber:
3598    isOutReg = true;
3599    isInReg = true;
3600    break;
3601  }
3602
3603
3604  MachineFunction &MF = DAG.getMachineFunction();
3605  std::vector<unsigned> Regs;
3606
3607  // If this is a constraint for a single physreg, or a constraint for a
3608  // register class, find it.
3609  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3610    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3611                                     OpInfo.ConstraintVT);
3612
3613  unsigned NumRegs = 1;
3614  if (OpInfo.ConstraintVT != MVT::Other)
3615    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3616  MVT::ValueType RegVT;
3617  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3618
3619
3620  // If this is a constraint for a specific physical register, like {r17},
3621  // assign it now.
3622  if (PhysReg.first) {
3623    if (OpInfo.ConstraintVT == MVT::Other)
3624      ValueVT = *PhysReg.second->vt_begin();
3625
3626    // Get the actual register value type.  This is important, because the user
3627    // may have asked for (e.g.) the AX register in i32 type.  We need to
3628    // remember that AX is actually i16 to get the right extension.
3629    RegVT = *PhysReg.second->vt_begin();
3630
3631    // This is a explicit reference to a physical register.
3632    Regs.push_back(PhysReg.first);
3633
3634    // If this is an expanded reference, add the rest of the regs to Regs.
3635    if (NumRegs != 1) {
3636      TargetRegisterClass::iterator I = PhysReg.second->begin();
3637      TargetRegisterClass::iterator E = PhysReg.second->end();
3638      for (; *I != PhysReg.first; ++I)
3639        assert(I != E && "Didn't find reg!");
3640
3641      // Already added the first reg.
3642      --NumRegs; ++I;
3643      for (; NumRegs; --NumRegs, ++I) {
3644        assert(I != E && "Ran out of registers to allocate!");
3645        Regs.push_back(*I);
3646      }
3647    }
3648    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
3649    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3650    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
3651    return;
3652  }
3653
3654  // Otherwise, if this was a reference to an LLVM register class, create vregs
3655  // for this reference.
3656  std::vector<unsigned> RegClassRegs;
3657  const TargetRegisterClass *RC = PhysReg.second;
3658  if (RC) {
3659    // If this is an early clobber or tied register, our regalloc doesn't know
3660    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3661    // and let the regalloc do the right thing.
3662    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3663        // If there is some other early clobber and this is an input register,
3664        // then we are forced to pre-allocate the input reg so it doesn't
3665        // conflict with the earlyclobber.
3666        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3667      RegVT = *PhysReg.second->vt_begin();
3668
3669      if (OpInfo.ConstraintVT == MVT::Other)
3670        ValueVT = RegVT;
3671
3672      // Create the appropriate number of virtual registers.
3673      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3674      for (; NumRegs; --NumRegs)
3675        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
3676
3677      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
3678      return;
3679    }
3680
3681    // Otherwise, we can't allocate it.  Let the code below figure out how to
3682    // maintain these constraints.
3683    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3684
3685  } else {
3686    // This is a reference to a register class that doesn't directly correspond
3687    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3688    // registers from the class.
3689    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3690                                                         OpInfo.ConstraintVT);
3691  }
3692
3693  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3694  unsigned NumAllocated = 0;
3695  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3696    unsigned Reg = RegClassRegs[i];
3697    // See if this register is available.
3698    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3699        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3700      // Make sure we find consecutive registers.
3701      NumAllocated = 0;
3702      continue;
3703    }
3704
3705    // Check to see if this register is allocatable (i.e. don't give out the
3706    // stack pointer).
3707    if (RC == 0) {
3708      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
3709      if (!RC) {        // Couldn't allocate this register.
3710        // Reset NumAllocated to make sure we return consecutive registers.
3711        NumAllocated = 0;
3712        continue;
3713      }
3714    }
3715
3716    // Okay, this register is good, we can use it.
3717    ++NumAllocated;
3718
3719    // If we allocated enough consecutive registers, succeed.
3720    if (NumAllocated == NumRegs) {
3721      unsigned RegStart = (i-NumAllocated)+1;
3722      unsigned RegEnd   = i+1;
3723      // Mark all of the allocated registers used.
3724      for (unsigned i = RegStart; i != RegEnd; ++i)
3725        Regs.push_back(RegClassRegs[i]);
3726
3727      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
3728                                         OpInfo.ConstraintVT);
3729      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
3730      return;
3731    }
3732  }
3733
3734  // Otherwise, we couldn't allocate enough registers for this.
3735  return;
3736}
3737
3738
3739/// visitInlineAsm - Handle a call to an InlineAsm object.
3740///
3741void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
3742  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3743
3744  /// ConstraintOperands - Information about all of the constraints.
3745  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
3746
3747  SDOperand Chain = getRoot();
3748  SDOperand Flag;
3749
3750  std::set<unsigned> OutputRegs, InputRegs;
3751
3752  // Do a prepass over the constraints, canonicalizing them, and building up the
3753  // ConstraintOperands list.
3754  std::vector<InlineAsm::ConstraintInfo>
3755    ConstraintInfos = IA->ParseConstraints();
3756
3757  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3758  // constraint.  If so, we can't let the register allocator allocate any input
3759  // registers, because it will not know to avoid the earlyclobbered output reg.
3760  bool SawEarlyClobber = false;
3761
3762  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3763  unsigned ResNo = 0;   // ResNo - The result number of the next output.
3764  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3765    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
3766    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
3767
3768    MVT::ValueType OpVT = MVT::Other;
3769
3770    // Compute the value type for each operand.
3771    switch (OpInfo.Type) {
3772    case InlineAsm::isOutput:
3773      // Indirect outputs just consume an argument.
3774      if (OpInfo.isIndirect) {
3775        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3776        break;
3777      }
3778      // The return value of the call is this value.  As such, there is no
3779      // corresponding argument.
3780      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3781      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
3782        OpVT = TLI.getValueType(STy->getElementType(ResNo));
3783      } else {
3784        assert(ResNo == 0 && "Asm only has one result!");
3785        OpVT = TLI.getValueType(CS.getType());
3786      }
3787      ++ResNo;
3788      break;
3789    case InlineAsm::isInput:
3790      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3791      break;
3792    case InlineAsm::isClobber:
3793      // Nothing to do.
3794      break;
3795    }
3796
3797    // If this is an input or an indirect output, process the call argument.
3798    // BasicBlocks are labels, currently appearing only in asm's.
3799    if (OpInfo.CallOperandVal) {
3800      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
3801        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
3802      else {
3803        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3804        const Type *OpTy = OpInfo.CallOperandVal->getType();
3805        // If this is an indirect operand, the operand is a pointer to the
3806        // accessed type.
3807        if (OpInfo.isIndirect)
3808          OpTy = cast<PointerType>(OpTy)->getElementType();
3809
3810        // If OpTy is not a first-class value, it may be a struct/union that we
3811        // can tile with integers.
3812        if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3813          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3814          switch (BitSize) {
3815          default: break;
3816          case 1:
3817          case 8:
3818          case 16:
3819          case 32:
3820          case 64:
3821            OpTy = IntegerType::get(BitSize);
3822            break;
3823          }
3824        }
3825
3826        OpVT = TLI.getValueType(OpTy, true);
3827      }
3828    }
3829
3830    OpInfo.ConstraintVT = OpVT;
3831
3832    // Compute the constraint code and ConstraintType to use.
3833    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
3834
3835    // Keep track of whether we see an earlyclobber.
3836    SawEarlyClobber |= OpInfo.isEarlyClobber;
3837
3838    // If we see a clobber of a register, it is an early clobber.
3839    if (!SawEarlyClobber &&
3840        OpInfo.Type == InlineAsm::isClobber &&
3841        OpInfo.ConstraintType == TargetLowering::C_Register) {
3842      // Note that we want to ignore things that we don't trick here, like
3843      // dirflag, fpsr, flags, etc.
3844      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3845        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3846                                         OpInfo.ConstraintVT);
3847      if (PhysReg.first || PhysReg.second) {
3848        // This is a register we know of.
3849        SawEarlyClobber = true;
3850      }
3851    }
3852
3853    // If this is a memory input, and if the operand is not indirect, do what we
3854    // need to to provide an address for the memory input.
3855    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3856        !OpInfo.isIndirect) {
3857      assert(OpInfo.Type == InlineAsm::isInput &&
3858             "Can only indirectify direct input operands!");
3859
3860      // Memory operands really want the address of the value.  If we don't have
3861      // an indirect input, put it in the constpool if we can, otherwise spill
3862      // it to a stack slot.
3863
3864      // If the operand is a float, integer, or vector constant, spill to a
3865      // constant pool entry to get its address.
3866      Value *OpVal = OpInfo.CallOperandVal;
3867      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3868          isa<ConstantVector>(OpVal)) {
3869        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3870                                                 TLI.getPointerTy());
3871      } else {
3872        // Otherwise, create a stack slot and emit a store to it before the
3873        // asm.
3874        const Type *Ty = OpVal->getType();
3875        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
3876        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3877        MachineFunction &MF = DAG.getMachineFunction();
3878        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3879        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3880        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3881        OpInfo.CallOperand = StackSlot;
3882      }
3883
3884      // There is no longer a Value* corresponding to this operand.
3885      OpInfo.CallOperandVal = 0;
3886      // It is now an indirect operand.
3887      OpInfo.isIndirect = true;
3888    }
3889
3890    // If this constraint is for a specific register, allocate it before
3891    // anything else.
3892    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3893      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3894  }
3895  ConstraintInfos.clear();
3896
3897
3898  // Second pass - Loop over all of the operands, assigning virtual or physregs
3899  // to registerclass operands.
3900  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3901    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
3902
3903    // C_Register operands have already been allocated, Other/Memory don't need
3904    // to be.
3905    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3906      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3907  }
3908
3909  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3910  std::vector<SDOperand> AsmNodeOperands;
3911  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3912  AsmNodeOperands.push_back(
3913          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3914
3915
3916  // Loop over all of the inputs, copying the operand values into the
3917  // appropriate registers and processing the output regs.
3918  RegsForValue RetValRegs;
3919
3920  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3921  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3922
3923  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3924    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
3925
3926    switch (OpInfo.Type) {
3927    case InlineAsm::isOutput: {
3928      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3929          OpInfo.ConstraintType != TargetLowering::C_Register) {
3930        // Memory output, or 'other' output (e.g. 'X' constraint).
3931        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3932
3933        // Add information to the INLINEASM node to know about this output.
3934        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3935        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3936                                                        TLI.getPointerTy()));
3937        AsmNodeOperands.push_back(OpInfo.CallOperand);
3938        break;
3939      }
3940
3941      // Otherwise, this is a register or register class output.
3942
3943      // Copy the output from the appropriate register.  Find a register that
3944      // we can use.
3945      if (OpInfo.AssignedRegs.Regs.empty()) {
3946        cerr << "Couldn't allocate output reg for contraint '"
3947             << OpInfo.ConstraintCode << "'!\n";
3948        exit(1);
3949      }
3950
3951      if (!OpInfo.isIndirect) {
3952        // This is the result value of the call.
3953        assert(RetValRegs.Regs.empty() &&
3954               "Cannot have multiple output constraints yet!");
3955        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3956        RetValRegs = OpInfo.AssignedRegs;
3957      } else {
3958        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3959                                                      OpInfo.CallOperandVal));
3960      }
3961
3962      // Add information to the INLINEASM node to know that this register is
3963      // set.
3964      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3965                                               AsmNodeOperands);
3966      break;
3967    }
3968    case InlineAsm::isInput: {
3969      SDOperand InOperandVal = OpInfo.CallOperand;
3970
3971      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3972        // If this is required to match an output register we have already set,
3973        // just use its register.
3974        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3975
3976        // Scan until we find the definition we already emitted of this operand.
3977        // When we find it, create a RegsForValue operand.
3978        unsigned CurOp = 2;  // The first operand.
3979        for (; OperandNo; --OperandNo) {
3980          // Advance to the next operand.
3981          unsigned NumOps =
3982            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3983          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3984                  (NumOps & 7) == 4 /*MEM*/) &&
3985                 "Skipped past definitions?");
3986          CurOp += (NumOps>>3)+1;
3987        }
3988
3989        unsigned NumOps =
3990          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3991        if ((NumOps & 7) == 2 /*REGDEF*/) {
3992          // Add NumOps>>3 registers to MatchedRegs.
3993          RegsForValue MatchedRegs;
3994          MatchedRegs.TLI = &TLI;
3995          MatchedRegs.ValueVTs.resize(1, InOperandVal.getValueType());
3996          MatchedRegs.RegVTs.resize(1, AsmNodeOperands[CurOp+1].getValueType());
3997          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3998            unsigned Reg =
3999              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4000            MatchedRegs.Regs.push_back(Reg);
4001          }
4002
4003          // Use the produced MatchedRegs object to
4004          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4005          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
4006          break;
4007        } else {
4008          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
4009          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4010          // Add information to the INLINEASM node to know about this input.
4011          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4012          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4013                                                          TLI.getPointerTy()));
4014          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4015          break;
4016        }
4017      }
4018
4019      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4020        assert(!OpInfo.isIndirect &&
4021               "Don't know how to handle indirect other inputs yet!");
4022
4023        std::vector<SDOperand> Ops;
4024        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
4025                                         Ops, DAG);
4026        if (Ops.empty()) {
4027          cerr << "Invalid operand for inline asm constraint '"
4028               << OpInfo.ConstraintCode << "'!\n";
4029          exit(1);
4030        }
4031
4032        // Add information to the INLINEASM node to know about this input.
4033        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4034        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4035                                                        TLI.getPointerTy()));
4036        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4037        break;
4038      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4039        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4040        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4041               "Memory operands expect pointer values");
4042
4043        // Add information to the INLINEASM node to know about this input.
4044        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4045        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4046                                                        TLI.getPointerTy()));
4047        AsmNodeOperands.push_back(InOperandVal);
4048        break;
4049      }
4050
4051      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4052              OpInfo.ConstraintType == TargetLowering::C_Register) &&
4053             "Unknown constraint type!");
4054      assert(!OpInfo.isIndirect &&
4055             "Don't know how to handle indirect register inputs yet!");
4056
4057      // Copy the input into the appropriate registers.
4058      assert(!OpInfo.AssignedRegs.Regs.empty() &&
4059             "Couldn't allocate input reg!");
4060
4061      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4062
4063      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
4064                                               AsmNodeOperands);
4065      break;
4066    }
4067    case InlineAsm::isClobber: {
4068      // Add the clobbered value to the operand list, so that the register
4069      // allocator is aware that the physreg got clobbered.
4070      if (!OpInfo.AssignedRegs.Regs.empty())
4071        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
4072                                                 AsmNodeOperands);
4073      break;
4074    }
4075    }
4076  }
4077
4078  // Finish up input operands.
4079  AsmNodeOperands[0] = Chain;
4080  if (Flag.Val) AsmNodeOperands.push_back(Flag);
4081
4082  Chain = DAG.getNode(ISD::INLINEASM,
4083                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4084                      &AsmNodeOperands[0], AsmNodeOperands.size());
4085  Flag = Chain.getValue(1);
4086
4087  // If this asm returns a register value, copy the result from that register
4088  // and set it as the value of the call.
4089  if (!RetValRegs.Regs.empty()) {
4090    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4091
4092    // If the result of the inline asm is a vector, it may have the wrong
4093    // width/num elts.  Make sure to convert it to the right type with
4094    // bit_convert.
4095    if (MVT::isVector(Val.getValueType())) {
4096      const VectorType *VTy = cast<VectorType>(CS.getType());
4097      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
4098
4099      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
4100    }
4101
4102    setValue(CS.getInstruction(), Val);
4103  }
4104
4105  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
4106
4107  // Process indirect outputs, first output all of the flagged copies out of
4108  // physregs.
4109  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4110    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4111    Value *Ptr = IndirectStoresToEmit[i].second;
4112    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4113    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4114  }
4115
4116  // Emit the non-flagged stores from the physregs.
4117  SmallVector<SDOperand, 8> OutChains;
4118  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4119    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4120                                    getValue(StoresToEmit[i].second),
4121                                    StoresToEmit[i].second, 0));
4122  if (!OutChains.empty())
4123    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4124                        &OutChains[0], OutChains.size());
4125  DAG.setRoot(Chain);
4126}
4127
4128
4129void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4130  SDOperand Src = getValue(I.getOperand(0));
4131
4132  MVT::ValueType IntPtr = TLI.getPointerTy();
4133
4134  if (IntPtr < Src.getValueType())
4135    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4136  else if (IntPtr > Src.getValueType())
4137    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4138
4139  // Scale the source by the type size.
4140  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4141  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4142                    Src, DAG.getIntPtrConstant(ElementSize));
4143
4144  TargetLowering::ArgListTy Args;
4145  TargetLowering::ArgListEntry Entry;
4146  Entry.Node = Src;
4147  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4148  Args.push_back(Entry);
4149
4150  std::pair<SDOperand,SDOperand> Result =
4151    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4152                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4153  setValue(&I, Result.first);  // Pointers always fit in registers
4154  DAG.setRoot(Result.second);
4155}
4156
4157void SelectionDAGLowering::visitFree(FreeInst &I) {
4158  TargetLowering::ArgListTy Args;
4159  TargetLowering::ArgListEntry Entry;
4160  Entry.Node = getValue(I.getOperand(0));
4161  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4162  Args.push_back(Entry);
4163  MVT::ValueType IntPtr = TLI.getPointerTy();
4164  std::pair<SDOperand,SDOperand> Result =
4165    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4166                    CallingConv::C, true,
4167                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4168  DAG.setRoot(Result.second);
4169}
4170
4171// EmitInstrWithCustomInserter - This method should be implemented by targets
4172// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4173// instructions are special in various ways, which require special support to
4174// insert.  The specified MachineInstr is created but not inserted into any
4175// basic blocks, and the scheduler passes ownership of it to this method.
4176MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4177                                                       MachineBasicBlock *MBB) {
4178  cerr << "If a target marks an instruction with "
4179       << "'usesCustomDAGSchedInserter', it must implement "
4180       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4181  abort();
4182  return 0;
4183}
4184
4185void SelectionDAGLowering::visitVAStart(CallInst &I) {
4186  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4187                          getValue(I.getOperand(1)),
4188                          DAG.getSrcValue(I.getOperand(1))));
4189}
4190
4191void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4192  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4193                             getValue(I.getOperand(0)),
4194                             DAG.getSrcValue(I.getOperand(0)));
4195  setValue(&I, V);
4196  DAG.setRoot(V.getValue(1));
4197}
4198
4199void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4200  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4201                          getValue(I.getOperand(1)),
4202                          DAG.getSrcValue(I.getOperand(1))));
4203}
4204
4205void SelectionDAGLowering::visitVACopy(CallInst &I) {
4206  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4207                          getValue(I.getOperand(1)),
4208                          getValue(I.getOperand(2)),
4209                          DAG.getSrcValue(I.getOperand(1)),
4210                          DAG.getSrcValue(I.getOperand(2))));
4211}
4212
4213/// TargetLowering::LowerArguments - This is the default LowerArguments
4214/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4215/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4216/// integrated into SDISel.
4217std::vector<SDOperand>
4218TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
4219  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4220  std::vector<SDOperand> Ops;
4221  Ops.push_back(DAG.getRoot());
4222  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4223  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4224
4225  // Add one result value for each formal argument.
4226  std::vector<MVT::ValueType> RetVals;
4227  unsigned j = 1;
4228  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4229       I != E; ++I, ++j) {
4230    MVT::ValueType VT = getValueType(I->getType());
4231    ISD::ArgFlagsTy Flags;
4232    unsigned OriginalAlignment =
4233      getTargetData()->getABITypeAlignment(I->getType());
4234
4235    if (F.paramHasAttr(j, ParamAttr::ZExt))
4236      Flags.setZExt();
4237    if (F.paramHasAttr(j, ParamAttr::SExt))
4238      Flags.setSExt();
4239    if (F.paramHasAttr(j, ParamAttr::InReg))
4240      Flags.setInReg();
4241    if (F.paramHasAttr(j, ParamAttr::StructRet))
4242      Flags.setSRet();
4243    if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4244      Flags.setByVal();
4245      const PointerType *Ty = cast<PointerType>(I->getType());
4246      const Type *ElementTy = Ty->getElementType();
4247      unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4248      unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4249      // For ByVal, alignment should be passed from FE.  BE will guess if
4250      // this info is not there but there are cases it cannot get right.
4251      if (F.getParamAlignment(j))
4252        FrameAlign = F.getParamAlignment(j);
4253      Flags.setByValAlign(FrameAlign);
4254      Flags.setByValSize(FrameSize);
4255    }
4256    if (F.paramHasAttr(j, ParamAttr::Nest))
4257      Flags.setNest();
4258    Flags.setOrigAlign(OriginalAlignment);
4259
4260    MVT::ValueType RegisterVT = getRegisterType(VT);
4261    unsigned NumRegs = getNumRegisters(VT);
4262    for (unsigned i = 0; i != NumRegs; ++i) {
4263      RetVals.push_back(RegisterVT);
4264      ISD::ArgFlagsTy MyFlags = Flags;
4265      if (NumRegs > 1 && i == 0)
4266        MyFlags.setSplit();
4267      // if it isn't first piece, alignment must be 1
4268      else if (i > 0)
4269        MyFlags.setOrigAlign(1);
4270      Ops.push_back(DAG.getArgFlags(MyFlags));
4271    }
4272  }
4273
4274  RetVals.push_back(MVT::Other);
4275
4276  // Create the node.
4277  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4278                               DAG.getVTList(&RetVals[0], RetVals.size()),
4279                               &Ops[0], Ops.size()).Val;
4280
4281  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4282  // allows exposing the loads that may be part of the argument access to the
4283  // first DAGCombiner pass.
4284  SDOperand TmpRes = LowerOperation(SDOperand(Result, 0), DAG);
4285
4286  // The number of results should match up, except that the lowered one may have
4287  // an extra flag result.
4288  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4289          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4290           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4291         && "Lowering produced unexpected number of results!");
4292  Result = TmpRes.Val;
4293
4294  unsigned NumArgRegs = Result->getNumValues() - 1;
4295  DAG.setRoot(SDOperand(Result, NumArgRegs));
4296
4297  // Set up the return result vector.
4298  Ops.clear();
4299  unsigned i = 0;
4300  unsigned Idx = 1;
4301  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4302      ++I, ++Idx) {
4303    MVT::ValueType VT = getValueType(I->getType());
4304    MVT::ValueType PartVT = getRegisterType(VT);
4305
4306    unsigned NumParts = getNumRegisters(VT);
4307    SmallVector<SDOperand, 4> Parts(NumParts);
4308    for (unsigned j = 0; j != NumParts; ++j)
4309      Parts[j] = SDOperand(Result, i++);
4310
4311    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4312    if (F.paramHasAttr(Idx, ParamAttr::SExt))
4313      AssertOp = ISD::AssertSext;
4314    else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4315      AssertOp = ISD::AssertZext;
4316
4317    Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4318                                   AssertOp));
4319  }
4320  assert(i == NumArgRegs && "Argument register count mismatch!");
4321  return Ops;
4322}
4323
4324
4325/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4326/// implementation, which just inserts an ISD::CALL node, which is later custom
4327/// lowered by the target to something concrete.  FIXME: When all targets are
4328/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4329std::pair<SDOperand, SDOperand>
4330TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4331                            bool RetSExt, bool RetZExt, bool isVarArg,
4332                            unsigned CallingConv, bool isTailCall,
4333                            SDOperand Callee,
4334                            ArgListTy &Args, SelectionDAG &DAG) {
4335  SmallVector<SDOperand, 32> Ops;
4336  Ops.push_back(Chain);   // Op#0 - Chain
4337  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4338  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4339  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4340  Ops.push_back(Callee);
4341
4342  // Handle all of the outgoing arguments.
4343  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4344    MVT::ValueType VT = getValueType(Args[i].Ty);
4345    SDOperand Op = Args[i].Node;
4346    ISD::ArgFlagsTy Flags;
4347    unsigned OriginalAlignment =
4348      getTargetData()->getABITypeAlignment(Args[i].Ty);
4349
4350    if (Args[i].isZExt)
4351      Flags.setZExt();
4352    if (Args[i].isSExt)
4353      Flags.setSExt();
4354    if (Args[i].isInReg)
4355      Flags.setInReg();
4356    if (Args[i].isSRet)
4357      Flags.setSRet();
4358    if (Args[i].isByVal) {
4359      Flags.setByVal();
4360      const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4361      const Type *ElementTy = Ty->getElementType();
4362      unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4363      unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4364      // For ByVal, alignment should come from FE.  BE will guess if this
4365      // info is not there but there are cases it cannot get right.
4366      if (Args[i].Alignment)
4367        FrameAlign = Args[i].Alignment;
4368      Flags.setByValAlign(FrameAlign);
4369      Flags.setByValSize(FrameSize);
4370    }
4371    if (Args[i].isNest)
4372      Flags.setNest();
4373    Flags.setOrigAlign(OriginalAlignment);
4374
4375    MVT::ValueType PartVT = getRegisterType(VT);
4376    unsigned NumParts = getNumRegisters(VT);
4377    SmallVector<SDOperand, 4> Parts(NumParts);
4378    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4379
4380    if (Args[i].isSExt)
4381      ExtendKind = ISD::SIGN_EXTEND;
4382    else if (Args[i].isZExt)
4383      ExtendKind = ISD::ZERO_EXTEND;
4384
4385    getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4386
4387    for (unsigned i = 0; i != NumParts; ++i) {
4388      // if it isn't first piece, alignment must be 1
4389      ISD::ArgFlagsTy MyFlags = Flags;
4390      if (NumParts > 1 && i == 0)
4391        MyFlags.setSplit();
4392      else if (i != 0)
4393        MyFlags.setOrigAlign(1);
4394
4395      Ops.push_back(Parts[i]);
4396      Ops.push_back(DAG.getArgFlags(MyFlags));
4397    }
4398  }
4399
4400  // Figure out the result value types. We start by making a list of
4401  // the potentially illegal return value types.
4402  SmallVector<MVT::ValueType, 4> LoweredRetTys;
4403  SmallVector<MVT::ValueType, 4> RetTys;
4404  ComputeValueVTs(*this, RetTy, RetTys);
4405
4406  // Then we translate that to a list of legal types.
4407  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4408    MVT::ValueType VT = RetTys[I];
4409    MVT::ValueType RegisterVT = getRegisterType(VT);
4410    unsigned NumRegs = getNumRegisters(VT);
4411    for (unsigned i = 0; i != NumRegs; ++i)
4412      LoweredRetTys.push_back(RegisterVT);
4413  }
4414
4415  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
4416
4417  // Create the CALL node.
4418  SDOperand Res = DAG.getNode(ISD::CALL,
4419                              DAG.getVTList(&LoweredRetTys[0],
4420                                            LoweredRetTys.size()),
4421                              &Ops[0], Ops.size());
4422  Chain = Res.getValue(LoweredRetTys.size() - 1);
4423
4424  // Gather up the call result into a single value.
4425  if (RetTy != Type::VoidTy) {
4426    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4427
4428    if (RetSExt)
4429      AssertOp = ISD::AssertSext;
4430    else if (RetZExt)
4431      AssertOp = ISD::AssertZext;
4432
4433    SmallVector<SDOperand, 4> ReturnValues;
4434    unsigned RegNo = 0;
4435    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4436      MVT::ValueType VT = RetTys[I];
4437      MVT::ValueType RegisterVT = getRegisterType(VT);
4438      unsigned NumRegs = getNumRegisters(VT);
4439      unsigned RegNoEnd = NumRegs + RegNo;
4440      SmallVector<SDOperand, 4> Results;
4441      for (; RegNo != RegNoEnd; ++RegNo)
4442        Results.push_back(Res.getValue(RegNo));
4443      SDOperand ReturnValue =
4444        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4445                         AssertOp);
4446      ReturnValues.push_back(ReturnValue);
4447    }
4448    Res = ReturnValues.size() == 1 ? ReturnValues.front() :
4449          DAG.getNode(ISD::MERGE_VALUES,
4450                      DAG.getVTList(&RetTys[0], RetTys.size()),
4451                      &ReturnValues[0], ReturnValues.size());
4452  }
4453
4454  return std::make_pair(Res, Chain);
4455}
4456
4457SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4458  assert(0 && "LowerOperation not implemented for this target!");
4459  abort();
4460  return SDOperand();
4461}
4462
4463SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4464                                                 SelectionDAG &DAG) {
4465  assert(0 && "CustomPromoteOperation not implemented for this target!");
4466  abort();
4467  return SDOperand();
4468}
4469
4470//===----------------------------------------------------------------------===//
4471// SelectionDAGISel code
4472//===----------------------------------------------------------------------===//
4473
4474unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4475  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4476}
4477
4478void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4479  AU.addRequired<AliasAnalysis>();
4480  AU.addRequired<CollectorModuleMetadata>();
4481  AU.setPreservesAll();
4482}
4483
4484
4485
4486bool SelectionDAGISel::runOnFunction(Function &Fn) {
4487  // Get alias analysis for load/store combining.
4488  AA = &getAnalysis<AliasAnalysis>();
4489
4490  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4491  if (MF.getFunction()->hasCollector())
4492    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4493  else
4494    GCI = 0;
4495  RegInfo = &MF.getRegInfo();
4496  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4497
4498  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4499
4500  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4501    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4502      // Mark landing pad.
4503      FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4504
4505  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4506    SelectBasicBlock(I, MF, FuncInfo);
4507
4508  // Add function live-ins to entry block live-in set.
4509  BasicBlock *EntryBB = &Fn.getEntryBlock();
4510  BB = FuncInfo.MBBMap[EntryBB];
4511  if (!RegInfo->livein_empty())
4512    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4513           E = RegInfo->livein_end(); I != E; ++I)
4514      BB->addLiveIn(I->first);
4515
4516#ifndef NDEBUG
4517  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4518         "Not all catch info was assigned to a landing pad!");
4519#endif
4520
4521  return true;
4522}
4523
4524void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4525                                                      unsigned Reg) {
4526  SDOperand Op = getValue(V);
4527  assert((Op.getOpcode() != ISD::CopyFromReg ||
4528          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4529         "Copy from a reg to the same reg!");
4530  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
4531
4532  RegsForValue RFV(TLI, Reg, V->getType());
4533  SDOperand Chain = DAG.getEntryNode();
4534  RFV.getCopyToRegs(Op, DAG, Chain, 0);
4535  PendingExports.push_back(Chain);
4536}
4537
4538void SelectionDAGISel::
4539LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) {
4540  // If this is the entry block, emit arguments.
4541  Function &F = *LLVMBB->getParent();
4542  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4543  SDOperand OldRoot = SDL.DAG.getRoot();
4544  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4545
4546  unsigned a = 0;
4547  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4548       AI != E; ++AI, ++a)
4549    if (!AI->use_empty()) {
4550      SDL.setValue(AI, Args[a]);
4551
4552      // If this argument is live outside of the entry block, insert a copy from
4553      // whereever we got it to the vreg that other BB's will reference it as.
4554      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4555      if (VMI != FuncInfo.ValueMap.end()) {
4556        SDL.CopyValueToVirtualRegister(AI, VMI->second);
4557      }
4558    }
4559
4560  // Finally, if the target has anything special to do, allow it to do so.
4561  // FIXME: this should insert code into the DAG!
4562  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4563}
4564
4565static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4566                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4567  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4568    if (isSelector(I)) {
4569      // Apply the catch info to DestBB.
4570      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4571#ifndef NDEBUG
4572      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4573        FLI.CatchInfoFound.insert(I);
4574#endif
4575    }
4576}
4577
4578/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
4579/// DAG and fixes their tailcall attribute operand.
4580static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4581                                           TargetLowering& TLI) {
4582  SDNode * Ret = NULL;
4583  SDOperand Terminator = DAG.getRoot();
4584
4585  // Find RET node.
4586  if (Terminator.getOpcode() == ISD::RET) {
4587    Ret = Terminator.Val;
4588  }
4589
4590  // Fix tail call attribute of CALL nodes.
4591  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4592         BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4593    if (BI->getOpcode() == ISD::CALL) {
4594      SDOperand OpRet(Ret, 0);
4595      SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4596      bool isMarkedTailCall =
4597        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4598      // If CALL node has tail call attribute set to true and the call is not
4599      // eligible (no RET or the target rejects) the attribute is fixed to
4600      // false. The TargetLowering::IsEligibleForTailCallOptimization function
4601      // must correctly identify tail call optimizable calls.
4602      if (isMarkedTailCall &&
4603          (Ret==NULL ||
4604           !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
4605        SmallVector<SDOperand, 32> Ops;
4606        unsigned idx=0;
4607        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4608              E=OpCall.Val->op_end(); I!=E; I++, idx++) {
4609          if (idx!=3)
4610            Ops.push_back(*I);
4611          else
4612            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4613        }
4614        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4615      }
4616    }
4617  }
4618}
4619
4620void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4621       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4622                                         FunctionLoweringInfo &FuncInfo) {
4623  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
4624
4625  // Lower any arguments needed in this block if this is the entry block.
4626  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4627    LowerArguments(LLVMBB, SDL);
4628
4629  BB = FuncInfo.MBBMap[LLVMBB];
4630  SDL.setCurrentBasicBlock(BB);
4631
4632  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4633
4634  if (MMI && BB->isLandingPad()) {
4635    // Add a label to mark the beginning of the landing pad.  Deletion of the
4636    // landing pad can thus be detected via the MachineModuleInfo.
4637    unsigned LabelID = MMI->addLandingPad(BB);
4638    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4639                            DAG.getConstant(LabelID, MVT::i32),
4640                            DAG.getConstant(1, MVT::i32)));
4641
4642    // Mark exception register as live in.
4643    unsigned Reg = TLI.getExceptionAddressRegister();
4644    if (Reg) BB->addLiveIn(Reg);
4645
4646    // Mark exception selector register as live in.
4647    Reg = TLI.getExceptionSelectorRegister();
4648    if (Reg) BB->addLiveIn(Reg);
4649
4650    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4651    // function and list of typeids logically belong to the invoke (or, if you
4652    // like, the basic block containing the invoke), and need to be associated
4653    // with it in the dwarf exception handling tables.  Currently however the
4654    // information is provided by an intrinsic (eh.selector) that can be moved
4655    // to unexpected places by the optimizers: if the unwind edge is critical,
4656    // then breaking it can result in the intrinsics being in the successor of
4657    // the landing pad, not the landing pad itself.  This results in exceptions
4658    // not being caught because no typeids are associated with the invoke.
4659    // This may not be the only way things can go wrong, but it is the only way
4660    // we try to work around for the moment.
4661    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4662
4663    if (Br && Br->isUnconditional()) { // Critical edge?
4664      BasicBlock::iterator I, E;
4665      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4666        if (isSelector(I))
4667          break;
4668
4669      if (I == E)
4670        // No catch info found - try to extract some from the successor.
4671        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4672    }
4673  }
4674
4675  // Lower all of the non-terminator instructions.
4676  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4677       I != E; ++I)
4678    SDL.visit(*I);
4679
4680  // Ensure that all instructions which are used outside of their defining
4681  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4682  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4683    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4684      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4685      if (VMI != FuncInfo.ValueMap.end())
4686        SDL.CopyValueToVirtualRegister(I, VMI->second);
4687    }
4688
4689  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4690  // ensure constants are generated when needed.  Remember the virtual registers
4691  // that need to be added to the Machine PHI nodes as input.  We cannot just
4692  // directly add them, because expansion might result in multiple MBB's for one
4693  // BB.  As such, the start of the BB might correspond to a different MBB than
4694  // the end.
4695  //
4696  TerminatorInst *TI = LLVMBB->getTerminator();
4697
4698  // Emit constants only once even if used by multiple PHI nodes.
4699  std::map<Constant*, unsigned> ConstantsOut;
4700
4701  // Vector bool would be better, but vector<bool> is really slow.
4702  std::vector<unsigned char> SuccsHandled;
4703  if (TI->getNumSuccessors())
4704    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4705
4706  // Check successor nodes' PHI nodes that expect a constant to be available
4707  // from this block.
4708  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4709    BasicBlock *SuccBB = TI->getSuccessor(succ);
4710    if (!isa<PHINode>(SuccBB->begin())) continue;
4711    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4712
4713    // If this terminator has multiple identical successors (common for
4714    // switches), only handle each succ once.
4715    unsigned SuccMBBNo = SuccMBB->getNumber();
4716    if (SuccsHandled[SuccMBBNo]) continue;
4717    SuccsHandled[SuccMBBNo] = true;
4718
4719    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4720    PHINode *PN;
4721
4722    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4723    // nodes and Machine PHI nodes, but the incoming operands have not been
4724    // emitted yet.
4725    for (BasicBlock::iterator I = SuccBB->begin();
4726         (PN = dyn_cast<PHINode>(I)); ++I) {
4727      // Ignore dead phi's.
4728      if (PN->use_empty()) continue;
4729
4730      unsigned Reg;
4731      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4732
4733      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4734        unsigned &RegOut = ConstantsOut[C];
4735        if (RegOut == 0) {
4736          RegOut = FuncInfo.CreateRegForValue(C);
4737          SDL.CopyValueToVirtualRegister(C, RegOut);
4738        }
4739        Reg = RegOut;
4740      } else {
4741        Reg = FuncInfo.ValueMap[PHIOp];
4742        if (Reg == 0) {
4743          assert(isa<AllocaInst>(PHIOp) &&
4744                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4745                 "Didn't codegen value into a register!??");
4746          Reg = FuncInfo.CreateRegForValue(PHIOp);
4747          SDL.CopyValueToVirtualRegister(PHIOp, Reg);
4748        }
4749      }
4750
4751      // Remember that this register needs to added to the machine PHI node as
4752      // the input for this MBB.
4753      MVT::ValueType VT = TLI.getValueType(PN->getType());
4754      unsigned NumRegisters = TLI.getNumRegisters(VT);
4755      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4756        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4757    }
4758  }
4759  ConstantsOut.clear();
4760
4761  // Lower the terminator after the copies are emitted.
4762  SDL.visit(*LLVMBB->getTerminator());
4763
4764  // Copy over any CaseBlock records that may now exist due to SwitchInst
4765  // lowering, as well as any jump table information.
4766  SwitchCases.clear();
4767  SwitchCases = SDL.SwitchCases;
4768  JTCases.clear();
4769  JTCases = SDL.JTCases;
4770  BitTestCases.clear();
4771  BitTestCases = SDL.BitTestCases;
4772
4773  // Make sure the root of the DAG is up-to-date.
4774  DAG.setRoot(SDL.getControlRoot());
4775
4776  // Check whether calls in this block are real tail calls. Fix up CALL nodes
4777  // with correct tailcall attribute so that the target can rely on the tailcall
4778  // attribute indicating whether the call is really eligible for tail call
4779  // optimization.
4780  CheckDAGForTailCallsAndFixThem(DAG, TLI);
4781}
4782
4783void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4784  DOUT << "Lowered selection DAG:\n";
4785  DEBUG(DAG.dump());
4786
4787  // Run the DAG combiner in pre-legalize mode.
4788  DAG.Combine(false, *AA);
4789
4790  DOUT << "Optimized lowered selection DAG:\n";
4791  DEBUG(DAG.dump());
4792
4793  // Second step, hack on the DAG until it only uses operations and types that
4794  // the target supports.
4795#if 0  // Enable this some day.
4796  DAG.LegalizeTypes();
4797  // Someday even later, enable a dag combine pass here.
4798#endif
4799  DAG.Legalize();
4800
4801  DOUT << "Legalized selection DAG:\n";
4802  DEBUG(DAG.dump());
4803
4804  // Run the DAG combiner in post-legalize mode.
4805  DAG.Combine(true, *AA);
4806
4807  DOUT << "Optimized legalized selection DAG:\n";
4808  DEBUG(DAG.dump());
4809
4810  if (ViewISelDAGs) DAG.viewGraph();
4811
4812  // Third, instruction select all of the operations to machine code, adding the
4813  // code to the MachineBasicBlock.
4814  InstructionSelectBasicBlock(DAG);
4815
4816  DOUT << "Selected machine code:\n";
4817  DEBUG(BB->dump());
4818}
4819
4820void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4821                                        FunctionLoweringInfo &FuncInfo) {
4822  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4823  {
4824    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4825    CurDAG = &DAG;
4826
4827    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4828    // types that are not supported by the target.
4829    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4830
4831    // Second step, emit the lowered DAG as machine code.
4832    CodeGenAndEmitDAG(DAG);
4833  }
4834
4835  DOUT << "Total amount of phi nodes to update: "
4836       << PHINodesToUpdate.size() << "\n";
4837  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4838          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4839               << ", " << PHINodesToUpdate[i].second << ")\n";);
4840
4841  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4842  // PHI nodes in successors.
4843  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4844    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4845      MachineInstr *PHI = PHINodesToUpdate[i].first;
4846      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4847             "This is not a machine PHI node that we are updating!");
4848      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4849                                                false));
4850      PHI->addOperand(MachineOperand::CreateMBB(BB));
4851    }
4852    return;
4853  }
4854
4855  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4856    // Lower header first, if it wasn't already lowered
4857    if (!BitTestCases[i].Emitted) {
4858      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4859      CurDAG = &HSDAG;
4860      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
4861      // Set the current basic block to the mbb we wish to insert the code into
4862      BB = BitTestCases[i].Parent;
4863      HSDL.setCurrentBasicBlock(BB);
4864      // Emit the code
4865      HSDL.visitBitTestHeader(BitTestCases[i]);
4866      HSDAG.setRoot(HSDL.getRoot());
4867      CodeGenAndEmitDAG(HSDAG);
4868    }
4869
4870    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4871      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4872      CurDAG = &BSDAG;
4873      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
4874      // Set the current basic block to the mbb we wish to insert the code into
4875      BB = BitTestCases[i].Cases[j].ThisBB;
4876      BSDL.setCurrentBasicBlock(BB);
4877      // Emit the code
4878      if (j+1 != ej)
4879        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4880                              BitTestCases[i].Reg,
4881                              BitTestCases[i].Cases[j]);
4882      else
4883        BSDL.visitBitTestCase(BitTestCases[i].Default,
4884                              BitTestCases[i].Reg,
4885                              BitTestCases[i].Cases[j]);
4886
4887
4888      BSDAG.setRoot(BSDL.getRoot());
4889      CodeGenAndEmitDAG(BSDAG);
4890    }
4891
4892    // Update PHI Nodes
4893    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4894      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4895      MachineBasicBlock *PHIBB = PHI->getParent();
4896      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4897             "This is not a machine PHI node that we are updating!");
4898      // This is "default" BB. We have two jumps to it. From "header" BB and
4899      // from last "case" BB.
4900      if (PHIBB == BitTestCases[i].Default) {
4901        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4902                                                  false));
4903        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
4904        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4905                                                  false));
4906        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
4907                                                  back().ThisBB));
4908      }
4909      // One of "cases" BB.
4910      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4911        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4912        if (cBB->succ_end() !=
4913            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4914          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4915                                                    false));
4916          PHI->addOperand(MachineOperand::CreateMBB(cBB));
4917        }
4918      }
4919    }
4920  }
4921
4922  // If the JumpTable record is filled in, then we need to emit a jump table.
4923  // Updating the PHI nodes is tricky in this case, since we need to determine
4924  // whether the PHI is a successor of the range check MBB or the jump table MBB
4925  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4926    // Lower header first, if it wasn't already lowered
4927    if (!JTCases[i].first.Emitted) {
4928      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4929      CurDAG = &HSDAG;
4930      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
4931      // Set the current basic block to the mbb we wish to insert the code into
4932      BB = JTCases[i].first.HeaderBB;
4933      HSDL.setCurrentBasicBlock(BB);
4934      // Emit the code
4935      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4936      HSDAG.setRoot(HSDL.getRoot());
4937      CodeGenAndEmitDAG(HSDAG);
4938    }
4939
4940    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4941    CurDAG = &JSDAG;
4942    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
4943    // Set the current basic block to the mbb we wish to insert the code into
4944    BB = JTCases[i].second.MBB;
4945    JSDL.setCurrentBasicBlock(BB);
4946    // Emit the code
4947    JSDL.visitJumpTable(JTCases[i].second);
4948    JSDAG.setRoot(JSDL.getRoot());
4949    CodeGenAndEmitDAG(JSDAG);
4950
4951    // Update PHI Nodes
4952    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4953      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4954      MachineBasicBlock *PHIBB = PHI->getParent();
4955      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4956             "This is not a machine PHI node that we are updating!");
4957      // "default" BB. We can go there only from header BB.
4958      if (PHIBB == JTCases[i].second.Default) {
4959        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4960                                                  false));
4961        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
4962      }
4963      // JT BB. Just iterate over successors here
4964      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4965        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4966                                                  false));
4967        PHI->addOperand(MachineOperand::CreateMBB(BB));
4968      }
4969    }
4970  }
4971
4972  // If the switch block involved a branch to one of the actual successors, we
4973  // need to update PHI nodes in that block.
4974  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4975    MachineInstr *PHI = PHINodesToUpdate[i].first;
4976    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4977           "This is not a machine PHI node that we are updating!");
4978    if (BB->isSuccessor(PHI->getParent())) {
4979      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4980                                                false));
4981      PHI->addOperand(MachineOperand::CreateMBB(BB));
4982    }
4983  }
4984
4985  // If we generated any switch lowering information, build and codegen any
4986  // additional DAGs necessary.
4987  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4988    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4989    CurDAG = &SDAG;
4990    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
4991
4992    // Set the current basic block to the mbb we wish to insert the code into
4993    BB = SwitchCases[i].ThisBB;
4994    SDL.setCurrentBasicBlock(BB);
4995
4996    // Emit the code
4997    SDL.visitSwitchCase(SwitchCases[i]);
4998    SDAG.setRoot(SDL.getRoot());
4999    CodeGenAndEmitDAG(SDAG);
5000
5001    // Handle any PHI nodes in successors of this chunk, as if we were coming
5002    // from the original BB before switch expansion.  Note that PHI nodes can
5003    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5004    // handle them the right number of times.
5005    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5006      for (MachineBasicBlock::iterator Phi = BB->begin();
5007           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5008        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5009        for (unsigned pn = 0; ; ++pn) {
5010          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5011          if (PHINodesToUpdate[pn].first == Phi) {
5012            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5013                                                      second, false));
5014            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5015            break;
5016          }
5017        }
5018      }
5019
5020      // Don't process RHS if same block as LHS.
5021      if (BB == SwitchCases[i].FalseBB)
5022        SwitchCases[i].FalseBB = 0;
5023
5024      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5025      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5026      SwitchCases[i].FalseBB = 0;
5027    }
5028    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5029  }
5030}
5031
5032
5033//===----------------------------------------------------------------------===//
5034/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
5035/// target node in the graph.
5036void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
5037  if (ViewSchedDAGs) DAG.viewGraph();
5038
5039  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5040
5041  if (!Ctor) {
5042    Ctor = ISHeuristic;
5043    RegisterScheduler::setDefault(Ctor);
5044  }
5045
5046  ScheduleDAG *SL = Ctor(this, &DAG, BB);
5047  BB = SL->Run();
5048
5049  if (ViewSUnitDAGs) SL->viewGraph();
5050
5051  delete SL;
5052}
5053
5054
5055HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5056  return new HazardRecognizer();
5057}
5058
5059//===----------------------------------------------------------------------===//
5060// Helper functions used by the generated instruction selector.
5061//===----------------------------------------------------------------------===//
5062// Calls to these methods are generated by tblgen.
5063
5064/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5065/// the dag combiner simplified the 255, we still want to match.  RHS is the
5066/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5067/// specified in the .td file (e.g. 255).
5068bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
5069                                    int64_t DesiredMaskS) const {
5070  const APInt &ActualMask = RHS->getAPIntValue();
5071  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5072
5073  // If the actual mask exactly matches, success!
5074  if (ActualMask == DesiredMask)
5075    return true;
5076
5077  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5078  if (ActualMask.intersects(~DesiredMask))
5079    return false;
5080
5081  // Otherwise, the DAG Combiner may have proven that the value coming in is
5082  // either already zero or is not demanded.  Check for known zero input bits.
5083  APInt NeededMask = DesiredMask & ~ActualMask;
5084  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5085    return true;
5086
5087  // TODO: check to see if missing bits are just not demanded.
5088
5089  // Otherwise, this pattern doesn't match.
5090  return false;
5091}
5092
5093/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5094/// the dag combiner simplified the 255, we still want to match.  RHS is the
5095/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5096/// specified in the .td file (e.g. 255).
5097bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5098                                   int64_t DesiredMaskS) const {
5099  const APInt &ActualMask = RHS->getAPIntValue();
5100  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5101
5102  // If the actual mask exactly matches, success!
5103  if (ActualMask == DesiredMask)
5104    return true;
5105
5106  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5107  if (ActualMask.intersects(~DesiredMask))
5108    return false;
5109
5110  // Otherwise, the DAG Combiner may have proven that the value coming in is
5111  // either already zero or is not demanded.  Check for known zero input bits.
5112  APInt NeededMask = DesiredMask & ~ActualMask;
5113
5114  APInt KnownZero, KnownOne;
5115  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5116
5117  // If all the missing bits in the or are already known to be set, match!
5118  if ((NeededMask & KnownOne) == NeededMask)
5119    return true;
5120
5121  // TODO: check to see if missing bits are just not demanded.
5122
5123  // Otherwise, this pattern doesn't match.
5124  return false;
5125}
5126
5127
5128/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5129/// by tblgen.  Others should not call it.
5130void SelectionDAGISel::
5131SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5132  std::vector<SDOperand> InOps;
5133  std::swap(InOps, Ops);
5134
5135  Ops.push_back(InOps[0]);  // input chain.
5136  Ops.push_back(InOps[1]);  // input asm string.
5137
5138  unsigned i = 2, e = InOps.size();
5139  if (InOps[e-1].getValueType() == MVT::Flag)
5140    --e;  // Don't process a flag operand if it is here.
5141
5142  while (i != e) {
5143    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5144    if ((Flags & 7) != 4 /*MEM*/) {
5145      // Just skip over this operand, copying the operands verbatim.
5146      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5147      i += (Flags >> 3) + 1;
5148    } else {
5149      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5150      // Otherwise, this is a memory operand.  Ask the target to select it.
5151      std::vector<SDOperand> SelOps;
5152      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5153        cerr << "Could not match memory address.  Inline asm failure!\n";
5154        exit(1);
5155      }
5156
5157      // Add this to the output node.
5158      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5159      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5160                                          IntPtrTy));
5161      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5162      i += 2;
5163    }
5164  }
5165
5166  // Add the flag input back if present.
5167  if (e != InOps.size())
5168    Ops.push_back(InOps.back());
5169}
5170
5171char SelectionDAGISel::ID = 0;
5172