SelectionDAGISel.cpp revision 61a1f1ceb9f0fd2cb796eba50663c79cbdda63f5
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/ADT/BitVector.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/Constants.h"
19#include "llvm/CallingConv.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/ParameterAttributes.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleDAG.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Target/TargetFrameInfo.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLowering.h"
45#include "llvm/Target/TargetMachine.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/Timer.h"
51#include <algorithm>
52using namespace llvm;
53
54static cl::opt<bool>
55EnableValueProp("enable-value-prop", cl::Hidden);
56static cl::opt<bool>
57EnableLegalizeTypes("enable-legalize-types", cl::Hidden);
58static cl::opt<bool>
59EnableFastISel("fast-isel", cl::Hidden,
60          cl::desc("Enable the experimental \"fast\" instruction selector"));
61static cl::opt<bool>
62DisableFastISelAbort("fast-isel-no-abort", cl::Hidden,
63          cl::desc("Use the SelectionDAGISel when \"fast\" instruction "
64                   "selection fails"));
65
66#ifndef NDEBUG
67static cl::opt<bool>
68ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
69          cl::desc("Pop up a window to show dags before the first "
70                   "dag combine pass"));
71static cl::opt<bool>
72ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
73          cl::desc("Pop up a window to show dags before legalize types"));
74static cl::opt<bool>
75ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
76          cl::desc("Pop up a window to show dags before legalize"));
77static cl::opt<bool>
78ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the second "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewISelDAGs("view-isel-dags", cl::Hidden,
83          cl::desc("Pop up a window to show isel dags as they are selected"));
84static cl::opt<bool>
85ViewSchedDAGs("view-sched-dags", cl::Hidden,
86          cl::desc("Pop up a window to show sched dags as they are processed"));
87static cl::opt<bool>
88ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
89      cl::desc("Pop up a window to show SUnit dags after they are processed"));
90#else
91static const bool ViewDAGCombine1 = false,
92                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
93                  ViewDAGCombine2 = false,
94                  ViewISelDAGs = false, ViewSchedDAGs = false,
95                  ViewSUnitDAGs = false;
96#endif
97
98//===---------------------------------------------------------------------===//
99///
100/// RegisterScheduler class - Track the registration of instruction schedulers.
101///
102//===---------------------------------------------------------------------===//
103MachinePassRegistry RegisterScheduler::Registry;
104
105//===---------------------------------------------------------------------===//
106///
107/// ISHeuristic command line option for instruction schedulers.
108///
109//===---------------------------------------------------------------------===//
110static cl::opt<RegisterScheduler::FunctionPassCtor, false,
111               RegisterPassParser<RegisterScheduler> >
112ISHeuristic("pre-RA-sched",
113            cl::init(&createDefaultScheduler),
114            cl::desc("Instruction schedulers available (before register"
115                     " allocation):"));
116
117static RegisterScheduler
118defaultListDAGScheduler("default", "  Best scheduler for the target",
119                        createDefaultScheduler);
120
121namespace { struct SDISelAsmOperandInfo; }
122
123/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
124/// insertvalue or extractvalue indices that identify a member, return
125/// the linearized index of the start of the member.
126///
127static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
128                                   const unsigned *Indices,
129                                   const unsigned *IndicesEnd,
130                                   unsigned CurIndex = 0) {
131  // Base case: We're done.
132  if (Indices && Indices == IndicesEnd)
133    return CurIndex;
134
135  // Given a struct type, recursively traverse the elements.
136  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
137    for (StructType::element_iterator EB = STy->element_begin(),
138                                      EI = EB,
139                                      EE = STy->element_end();
140        EI != EE; ++EI) {
141      if (Indices && *Indices == unsigned(EI - EB))
142        return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
143      CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
144    }
145  }
146  // Given an array type, recursively traverse the elements.
147  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
148    const Type *EltTy = ATy->getElementType();
149    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
150      if (Indices && *Indices == i)
151        return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
152      CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
153    }
154  }
155  // We haven't found the type we're looking for, so keep searching.
156  return CurIndex + 1;
157}
158
159/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
160/// MVTs that represent all the individual underlying
161/// non-aggregate types that comprise it.
162///
163/// If Offsets is non-null, it points to a vector to be filled in
164/// with the in-memory offsets of each of the individual values.
165///
166static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
167                            SmallVectorImpl<MVT> &ValueVTs,
168                            SmallVectorImpl<uint64_t> *Offsets = 0,
169                            uint64_t StartingOffset = 0) {
170  // Given a struct type, recursively traverse the elements.
171  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
172    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
173    for (StructType::element_iterator EB = STy->element_begin(),
174                                      EI = EB,
175                                      EE = STy->element_end();
176         EI != EE; ++EI)
177      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
178                      StartingOffset + SL->getElementOffset(EI - EB));
179    return;
180  }
181  // Given an array type, recursively traverse the elements.
182  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
183    const Type *EltTy = ATy->getElementType();
184    uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
185    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
186      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
187                      StartingOffset + i * EltSize);
188    return;
189  }
190  // Base case: we can get an MVT for this LLVM IR type.
191  ValueVTs.push_back(TLI.getValueType(Ty));
192  if (Offsets)
193    Offsets->push_back(StartingOffset);
194}
195
196namespace {
197  /// RegsForValue - This struct represents the registers (physical or virtual)
198  /// that a particular set of values is assigned, and the type information about
199  /// the value. The most common situation is to represent one value at a time,
200  /// but struct or array values are handled element-wise as multiple values.
201  /// The splitting of aggregates is performed recursively, so that we never
202  /// have aggregate-typed registers. The values at this point do not necessarily
203  /// have legal types, so each value may require one or more registers of some
204  /// legal type.
205  ///
206  struct VISIBILITY_HIDDEN RegsForValue {
207    /// TLI - The TargetLowering object.
208    ///
209    const TargetLowering *TLI;
210
211    /// ValueVTs - The value types of the values, which may not be legal, and
212    /// may need be promoted or synthesized from one or more registers.
213    ///
214    SmallVector<MVT, 4> ValueVTs;
215
216    /// RegVTs - The value types of the registers. This is the same size as
217    /// ValueVTs and it records, for each value, what the type of the assigned
218    /// register or registers are. (Individual values are never synthesized
219    /// from more than one type of register.)
220    ///
221    /// With virtual registers, the contents of RegVTs is redundant with TLI's
222    /// getRegisterType member function, however when with physical registers
223    /// it is necessary to have a separate record of the types.
224    ///
225    SmallVector<MVT, 4> RegVTs;
226
227    /// Regs - This list holds the registers assigned to the values.
228    /// Each legal or promoted value requires one register, and each
229    /// expanded value requires multiple registers.
230    ///
231    SmallVector<unsigned, 4> Regs;
232
233    RegsForValue() : TLI(0) {}
234
235    RegsForValue(const TargetLowering &tli,
236                 const SmallVector<unsigned, 4> &regs,
237                 MVT regvt, MVT valuevt)
238      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
239    RegsForValue(const TargetLowering &tli,
240                 const SmallVector<unsigned, 4> &regs,
241                 const SmallVector<MVT, 4> &regvts,
242                 const SmallVector<MVT, 4> &valuevts)
243      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
244    RegsForValue(const TargetLowering &tli,
245                 unsigned Reg, const Type *Ty) : TLI(&tli) {
246      ComputeValueVTs(tli, Ty, ValueVTs);
247
248      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
249        MVT ValueVT = ValueVTs[Value];
250        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
251        MVT RegisterVT = TLI->getRegisterType(ValueVT);
252        for (unsigned i = 0; i != NumRegs; ++i)
253          Regs.push_back(Reg + i);
254        RegVTs.push_back(RegisterVT);
255        Reg += NumRegs;
256      }
257    }
258
259    /// append - Add the specified values to this one.
260    void append(const RegsForValue &RHS) {
261      TLI = RHS.TLI;
262      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
263      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
264      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
265    }
266
267
268    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
269    /// this value and returns the result as a ValueVTs value.  This uses
270    /// Chain/Flag as the input and updates them for the output Chain/Flag.
271    /// If the Flag pointer is NULL, no flag is used.
272    SDValue getCopyFromRegs(SelectionDAG &DAG,
273                              SDValue &Chain, SDValue *Flag) const;
274
275    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
276    /// specified value into the registers specified by this object.  This uses
277    /// Chain/Flag as the input and updates them for the output Chain/Flag.
278    /// If the Flag pointer is NULL, no flag is used.
279    void getCopyToRegs(SDValue Val, SelectionDAG &DAG,
280                       SDValue &Chain, SDValue *Flag) const;
281
282    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
283    /// operand list.  This adds the code marker and includes the number of
284    /// values added into it.
285    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
286                              std::vector<SDValue> &Ops) const;
287  };
288}
289
290namespace llvm {
291  //===--------------------------------------------------------------------===//
292  /// createDefaultScheduler - This creates an instruction scheduler appropriate
293  /// for the target.
294  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
295                                      SelectionDAG *DAG,
296                                      MachineBasicBlock *BB,
297                                      bool Fast) {
298    TargetLowering &TLI = IS->getTargetLowering();
299
300    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
301      return createTDListDAGScheduler(IS, DAG, BB, Fast);
302    } else {
303      assert(TLI.getSchedulingPreference() ==
304           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
305      return createBURRListDAGScheduler(IS, DAG, BB, Fast);
306    }
307  }
308
309
310  //===--------------------------------------------------------------------===//
311  /// FunctionLoweringInfo - This contains information that is global to a
312  /// function that is used when lowering a region of the function.
313  class FunctionLoweringInfo {
314  public:
315    TargetLowering &TLI;
316    Function *Fn;
317    MachineFunction *MF;
318    MachineRegisterInfo *RegInfo;
319
320    explicit FunctionLoweringInfo(TargetLowering &TLI);
321
322    /// set - Initialize this FunctionLoweringInfo with the given Function
323    /// and its associated MachineFunction.
324    ///
325    void set(Function &Fn, MachineFunction &MF);
326
327    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
328    DenseMap<const BasicBlock*, MachineBasicBlock *> MBBMap;
329
330    /// ValueMap - Since we emit code for the function a basic block at a time,
331    /// we must remember which virtual registers hold the values for
332    /// cross-basic-block values.
333    DenseMap<const Value*, unsigned> ValueMap;
334
335    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
336    /// the entry block.  This allows the allocas to be efficiently referenced
337    /// anywhere in the function.
338    DenseMap<const AllocaInst*, int> StaticAllocaMap;
339
340#ifndef NDEBUG
341    SmallSet<Instruction*, 8> CatchInfoLost;
342    SmallSet<Instruction*, 8> CatchInfoFound;
343#endif
344
345    unsigned MakeReg(MVT VT) {
346      return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
347    }
348
349    /// isExportedInst - Return true if the specified value is an instruction
350    /// exported from its block.
351    bool isExportedInst(const Value *V) {
352      return ValueMap.count(V);
353    }
354
355    unsigned CreateRegForValue(const Value *V);
356
357    unsigned InitializeRegForValue(const Value *V) {
358      unsigned &R = ValueMap[V];
359      assert(R == 0 && "Already initialized this value register!");
360      return R = CreateRegForValue(V);
361    }
362
363    struct LiveOutInfo {
364      unsigned NumSignBits;
365      APInt KnownOne, KnownZero;
366      LiveOutInfo() : NumSignBits(0) {}
367    };
368
369    /// LiveOutRegInfo - Information about live out vregs, indexed by their
370    /// register number offset by 'FirstVirtualRegister'.
371    std::vector<LiveOutInfo> LiveOutRegInfo;
372
373    /// clear - Clear out all the function-specific state. This returns this
374    /// FunctionLoweringInfo to an empty state, ready to be used for a
375    /// different function.
376    void clear() {
377      MBBMap.clear();
378      ValueMap.clear();
379      StaticAllocaMap.clear();
380#ifndef NDEBUG
381      CatchInfoLost.clear();
382      CatchInfoFound.clear();
383#endif
384      LiveOutRegInfo.clear();
385    }
386  };
387}
388
389/// isSelector - Return true if this instruction is a call to the
390/// eh.selector intrinsic.
391static bool isSelector(Instruction *I) {
392  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
393    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
394            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
395  return false;
396}
397
398/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
399/// PHI nodes or outside of the basic block that defines it, or used by a
400/// switch or atomic instruction, which may expand to multiple basic blocks.
401static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
402  if (isa<PHINode>(I)) return true;
403  BasicBlock *BB = I->getParent();
404  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
405    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
406        // FIXME: Remove switchinst special case.
407        isa<SwitchInst>(*UI))
408      return true;
409  return false;
410}
411
412/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
413/// entry block, return true.  This includes arguments used by switches, since
414/// the switch may expand into multiple basic blocks.
415static bool isOnlyUsedInEntryBlock(Argument *A) {
416  // With FastISel active, we may be splitting blocks, so force creation
417  // of virtual registers for all non-dead arguments.
418  if (EnableFastISel)
419    return A->use_empty();
420
421  BasicBlock *Entry = A->getParent()->begin();
422  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
423    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
424      return false;  // Use not in entry block.
425  return true;
426}
427
428FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
429  : TLI(tli) {
430}
431
432void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf) {
433   Fn = &fn;
434   MF = &mf;
435   RegInfo = &MF->getRegInfo();
436
437  // Create a vreg for each argument register that is not dead and is used
438  // outside of the entry block for the function.
439  for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
440       AI != E; ++AI)
441    if (!isOnlyUsedInEntryBlock(AI))
442      InitializeRegForValue(AI);
443
444  // Initialize the mapping of values to registers.  This is only set up for
445  // instruction values that are used outside of the block that defines
446  // them.
447  Function::iterator BB = Fn->begin(), EB = Fn->end();
448  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
449    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
450      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
451        const Type *Ty = AI->getAllocatedType();
452        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
453        unsigned Align =
454          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
455                   AI->getAlignment());
456
457        TySize *= CUI->getZExtValue();   // Get total allocated size.
458        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
459        StaticAllocaMap[AI] =
460          MF->getFrameInfo()->CreateStackObject(TySize, Align);
461      }
462
463  for (; BB != EB; ++BB)
464    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
465      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
466        if (!isa<AllocaInst>(I) ||
467            !StaticAllocaMap.count(cast<AllocaInst>(I)))
468          InitializeRegForValue(I);
469
470  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
471  // also creates the initial PHI MachineInstrs, though none of the input
472  // operands are populated.
473  for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
474    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
475    MBBMap[BB] = MBB;
476    MF->push_back(MBB);
477
478    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
479    // appropriate.
480    PHINode *PN;
481    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
482      if (PN->use_empty()) continue;
483
484      unsigned PHIReg = ValueMap[PN];
485      assert(PHIReg && "PHI node does not have an assigned virtual register!");
486
487      SmallVector<MVT, 4> ValueVTs;
488      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
489      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
490        MVT VT = ValueVTs[vti];
491        unsigned NumRegisters = TLI.getNumRegisters(VT);
492        const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
493        for (unsigned i = 0; i != NumRegisters; ++i)
494          BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
495        PHIReg += NumRegisters;
496      }
497    }
498  }
499}
500
501/// CreateRegForValue - Allocate the appropriate number of virtual registers of
502/// the correctly promoted or expanded types.  Assign these registers
503/// consecutive vreg numbers and return the first assigned number.
504///
505/// In the case that the given value has struct or array type, this function
506/// will assign registers for each member or element.
507///
508unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
509  SmallVector<MVT, 4> ValueVTs;
510  ComputeValueVTs(TLI, V->getType(), ValueVTs);
511
512  unsigned FirstReg = 0;
513  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
514    MVT ValueVT = ValueVTs[Value];
515    MVT RegisterVT = TLI.getRegisterType(ValueVT);
516
517    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
518    for (unsigned i = 0; i != NumRegs; ++i) {
519      unsigned R = MakeReg(RegisterVT);
520      if (!FirstReg) FirstReg = R;
521    }
522  }
523  return FirstReg;
524}
525
526//===----------------------------------------------------------------------===//
527/// SelectionDAGLowering - This is the common target-independent lowering
528/// implementation that is parameterized by a TargetLowering object.
529/// Also, targets can overload any lowering method.
530///
531namespace llvm {
532class SelectionDAGLowering {
533  MachineBasicBlock *CurMBB;
534
535  DenseMap<const Value*, SDValue> NodeMap;
536
537  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
538  /// them up and then emit token factor nodes when possible.  This allows us to
539  /// get simple disambiguation between loads without worrying about alias
540  /// analysis.
541  SmallVector<SDValue, 8> PendingLoads;
542
543  /// PendingExports - CopyToReg nodes that copy values to virtual registers
544  /// for export to other blocks need to be emitted before any terminator
545  /// instruction, but they have no other ordering requirements. We bunch them
546  /// up and the emit a single tokenfactor for them just before terminator
547  /// instructions.
548  SmallVector<SDValue, 8> PendingExports;
549
550  /// Case - A struct to record the Value for a switch case, and the
551  /// case's target basic block.
552  struct Case {
553    Constant* Low;
554    Constant* High;
555    MachineBasicBlock* BB;
556
557    Case() : Low(0), High(0), BB(0) { }
558    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
559      Low(low), High(high), BB(bb) { }
560    uint64_t size() const {
561      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
562      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
563      return (rHigh - rLow + 1ULL);
564    }
565  };
566
567  struct CaseBits {
568    uint64_t Mask;
569    MachineBasicBlock* BB;
570    unsigned Bits;
571
572    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
573      Mask(mask), BB(bb), Bits(bits) { }
574  };
575
576  typedef std::vector<Case>           CaseVector;
577  typedef std::vector<CaseBits>       CaseBitsVector;
578  typedef CaseVector::iterator        CaseItr;
579  typedef std::pair<CaseItr, CaseItr> CaseRange;
580
581  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
582  /// of conditional branches.
583  struct CaseRec {
584    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
585    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
586
587    /// CaseBB - The MBB in which to emit the compare and branch
588    MachineBasicBlock *CaseBB;
589    /// LT, GE - If nonzero, we know the current case value must be less-than or
590    /// greater-than-or-equal-to these Constants.
591    Constant *LT;
592    Constant *GE;
593    /// Range - A pair of iterators representing the range of case values to be
594    /// processed at this point in the binary search tree.
595    CaseRange Range;
596  };
597
598  typedef std::vector<CaseRec> CaseRecVector;
599
600  /// The comparison function for sorting the switch case values in the vector.
601  /// WARNING: Case ranges should be disjoint!
602  struct CaseCmp {
603    bool operator () (const Case& C1, const Case& C2) {
604      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
605      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
606      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
607      return CI1->getValue().slt(CI2->getValue());
608    }
609  };
610
611  struct CaseBitsCmp {
612    bool operator () (const CaseBits& C1, const CaseBits& C2) {
613      return C1.Bits > C2.Bits;
614    }
615  };
616
617  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
618
619  /// CaseBlock - This structure is used to communicate between SDLowering and
620  /// SDISel for the code generation of additional basic blocks needed by multi-
621  /// case switch statements.
622  struct CaseBlock {
623    CaseBlock(ISD::CondCode cc, Value *cmplhs, Value *cmprhs, Value *cmpmiddle,
624              MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
625              MachineBasicBlock *me)
626      : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
627        TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {}
628    // CC - the condition code to use for the case block's setcc node
629    ISD::CondCode CC;
630    // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
631    // Emit by default LHS op RHS. MHS is used for range comparisons:
632    // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
633    Value *CmpLHS, *CmpMHS, *CmpRHS;
634    // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
635    MachineBasicBlock *TrueBB, *FalseBB;
636    // ThisBB - the block into which to emit the code for the setcc and branches
637    MachineBasicBlock *ThisBB;
638  };
639  struct JumpTable {
640    JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
641              MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
642
643    /// Reg - the virtual register containing the index of the jump table entry
644    //. to jump to.
645    unsigned Reg;
646    /// JTI - the JumpTableIndex for this jump table in the function.
647    unsigned JTI;
648    /// MBB - the MBB into which to emit the code for the indirect jump.
649    MachineBasicBlock *MBB;
650    /// Default - the MBB of the default bb, which is a successor of the range
651    /// check MBB.  This is when updating PHI nodes in successors.
652    MachineBasicBlock *Default;
653  };
654  struct JumpTableHeader {
655    JumpTableHeader(uint64_t F, uint64_t L, Value* SV, MachineBasicBlock* H,
656                    bool E = false):
657      First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
658    uint64_t First;
659    uint64_t Last;
660    Value *SValue;
661    MachineBasicBlock *HeaderBB;
662    bool Emitted;
663  };
664  typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
665
666  struct BitTestCase {
667    BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
668      Mask(M), ThisBB(T), TargetBB(Tr) { }
669    uint64_t Mask;
670    MachineBasicBlock* ThisBB;
671    MachineBasicBlock* TargetBB;
672  };
673
674  typedef SmallVector<BitTestCase, 3> BitTestInfo;
675
676  struct BitTestBlock {
677    BitTestBlock(uint64_t F, uint64_t R, Value* SV,
678                 unsigned Rg, bool E,
679                 MachineBasicBlock* P, MachineBasicBlock* D,
680                 const BitTestInfo& C):
681      First(F), Range(R), SValue(SV), Reg(Rg), Emitted(E),
682      Parent(P), Default(D), Cases(C) { }
683    uint64_t First;
684    uint64_t Range;
685    Value  *SValue;
686    unsigned Reg;
687    bool Emitted;
688    MachineBasicBlock *Parent;
689    MachineBasicBlock *Default;
690    BitTestInfo Cases;
691  };
692
693public:
694  // TLI - This is information that describes the available target features we
695  // need for lowering.  This indicates when operations are unavailable,
696  // implemented with a libcall, etc.
697  TargetLowering &TLI;
698  SelectionDAG &DAG;
699  const TargetData *TD;
700  AliasAnalysis *AA;
701
702  /// SwitchCases - Vector of CaseBlock structures used to communicate
703  /// SwitchInst code generation information.
704  std::vector<CaseBlock> SwitchCases;
705  /// JTCases - Vector of JumpTable structures used to communicate
706  /// SwitchInst code generation information.
707  std::vector<JumpTableBlock> JTCases;
708  /// BitTestCases - Vector of BitTestBlock structures used to communicate
709  /// SwitchInst code generation information.
710  std::vector<BitTestBlock> BitTestCases;
711
712  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
713
714  // Emit PHI-node-operand constants only once even if used by multiple
715  // PHI nodes.
716  DenseMap<Constant*, unsigned> ConstantsOut;
717
718  /// FuncInfo - Information about the function as a whole.
719  ///
720  FunctionLoweringInfo &FuncInfo;
721
722  /// GFI - Garbage collection metadata for the function.
723  GCFunctionInfo *GFI;
724
725  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
726                       FunctionLoweringInfo &funcinfo)
727    : TLI(tli), DAG(dag), FuncInfo(funcinfo) {
728  }
729
730  void init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
731    AA = &aa;
732    GFI = gfi;
733    TD = DAG.getTarget().getTargetData();
734  }
735
736  /// clear - Clear out the curret SelectionDAG and the associated
737  /// state and prepare this SelectionDAGLowering object to be used
738  /// for a new block. This doesn't clear out information about
739  /// additional blocks that are needed to complete switch lowering
740  /// or PHI node updating; that information is cleared out as it is
741  /// consumed.
742  void clear() {
743    NodeMap.clear();
744    PendingLoads.clear();
745    PendingExports.clear();
746    DAG.clear();
747  }
748
749  /// getRoot - Return the current virtual root of the Selection DAG,
750  /// flushing any PendingLoad items. This must be done before emitting
751  /// a store or any other node that may need to be ordered after any
752  /// prior load instructions.
753  ///
754  SDValue getRoot() {
755    if (PendingLoads.empty())
756      return DAG.getRoot();
757
758    if (PendingLoads.size() == 1) {
759      SDValue Root = PendingLoads[0];
760      DAG.setRoot(Root);
761      PendingLoads.clear();
762      return Root;
763    }
764
765    // Otherwise, we have to make a token factor node.
766    SDValue Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
767                                 &PendingLoads[0], PendingLoads.size());
768    PendingLoads.clear();
769    DAG.setRoot(Root);
770    return Root;
771  }
772
773  /// getControlRoot - Similar to getRoot, but instead of flushing all the
774  /// PendingLoad items, flush all the PendingExports items. It is necessary
775  /// to do this before emitting a terminator instruction.
776  ///
777  SDValue getControlRoot() {
778    SDValue Root = DAG.getRoot();
779
780    if (PendingExports.empty())
781      return Root;
782
783    // Turn all of the CopyToReg chains into one factored node.
784    if (Root.getOpcode() != ISD::EntryToken) {
785      unsigned i = 0, e = PendingExports.size();
786      for (; i != e; ++i) {
787        assert(PendingExports[i].getNode()->getNumOperands() > 1);
788        if (PendingExports[i].getNode()->getOperand(0) == Root)
789          break;  // Don't add the root if we already indirectly depend on it.
790      }
791
792      if (i == e)
793        PendingExports.push_back(Root);
794    }
795
796    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
797                       &PendingExports[0],
798                       PendingExports.size());
799    PendingExports.clear();
800    DAG.setRoot(Root);
801    return Root;
802  }
803
804  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
805
806  void visit(Instruction &I) { visit(I.getOpcode(), I); }
807
808  void visit(unsigned Opcode, User &I) {
809    // Note: this doesn't use InstVisitor, because it has to work with
810    // ConstantExpr's in addition to instructions.
811    switch (Opcode) {
812    default: assert(0 && "Unknown instruction type encountered!");
813             abort();
814      // Build the switch statement using the Instruction.def file.
815#define HANDLE_INST(NUM, OPCODE, CLASS) \
816    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
817#include "llvm/Instruction.def"
818    }
819  }
820
821  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
822
823  SDValue getValue(const Value *V);
824
825  void setValue(const Value *V, SDValue NewN) {
826    SDValue &N = NodeMap[V];
827    assert(N.getNode() == 0 && "Already set a value for this node!");
828    N = NewN;
829  }
830
831  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
832                            std::set<unsigned> &OutputRegs,
833                            std::set<unsigned> &InputRegs);
834
835  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
836                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
837                            unsigned Opc);
838  bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
839  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
840  void ExportFromCurrentBlock(Value *V);
841  void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall,
842                   MachineBasicBlock *LandingPad = NULL);
843
844  // Terminator instructions.
845  void visitRet(ReturnInst &I);
846  void visitBr(BranchInst &I);
847  void visitSwitch(SwitchInst &I);
848  void visitUnreachable(UnreachableInst &I) { /* noop */ }
849
850  // Helpers for visitSwitch
851  bool handleSmallSwitchRange(CaseRec& CR,
852                              CaseRecVector& WorkList,
853                              Value* SV,
854                              MachineBasicBlock* Default);
855  bool handleJTSwitchCase(CaseRec& CR,
856                          CaseRecVector& WorkList,
857                          Value* SV,
858                          MachineBasicBlock* Default);
859  bool handleBTSplitSwitchCase(CaseRec& CR,
860                               CaseRecVector& WorkList,
861                               Value* SV,
862                               MachineBasicBlock* Default);
863  bool handleBitTestsSwitchCase(CaseRec& CR,
864                                CaseRecVector& WorkList,
865                                Value* SV,
866                                MachineBasicBlock* Default);
867  void visitSwitchCase(CaseBlock &CB);
868  void visitBitTestHeader(BitTestBlock &B);
869  void visitBitTestCase(MachineBasicBlock* NextMBB,
870                        unsigned Reg,
871                        BitTestCase &B);
872  void visitJumpTable(JumpTable &JT);
873  void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH);
874
875  // These all get lowered before this pass.
876  void visitInvoke(InvokeInst &I);
877  void visitUnwind(UnwindInst &I);
878
879  void visitBinary(User &I, unsigned OpCode);
880  void visitShift(User &I, unsigned Opcode);
881  void visitAdd(User &I) {
882    if (I.getType()->isFPOrFPVector())
883      visitBinary(I, ISD::FADD);
884    else
885      visitBinary(I, ISD::ADD);
886  }
887  void visitSub(User &I);
888  void visitMul(User &I) {
889    if (I.getType()->isFPOrFPVector())
890      visitBinary(I, ISD::FMUL);
891    else
892      visitBinary(I, ISD::MUL);
893  }
894  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
895  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
896  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
897  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
898  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
899  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
900  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
901  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
902  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
903  void visitShl (User &I) { visitShift(I, ISD::SHL); }
904  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
905  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
906  void visitICmp(User &I);
907  void visitFCmp(User &I);
908  void visitVICmp(User &I);
909  void visitVFCmp(User &I);
910  // Visit the conversion instructions
911  void visitTrunc(User &I);
912  void visitZExt(User &I);
913  void visitSExt(User &I);
914  void visitFPTrunc(User &I);
915  void visitFPExt(User &I);
916  void visitFPToUI(User &I);
917  void visitFPToSI(User &I);
918  void visitUIToFP(User &I);
919  void visitSIToFP(User &I);
920  void visitPtrToInt(User &I);
921  void visitIntToPtr(User &I);
922  void visitBitCast(User &I);
923
924  void visitExtractElement(User &I);
925  void visitInsertElement(User &I);
926  void visitShuffleVector(User &I);
927
928  void visitExtractValue(ExtractValueInst &I);
929  void visitInsertValue(InsertValueInst &I);
930
931  void visitGetElementPtr(User &I);
932  void visitSelect(User &I);
933
934  void visitMalloc(MallocInst &I);
935  void visitFree(FreeInst &I);
936  void visitAlloca(AllocaInst &I);
937  void visitLoad(LoadInst &I);
938  void visitStore(StoreInst &I);
939  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
940  void visitCall(CallInst &I);
941  void visitInlineAsm(CallSite CS);
942  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
943  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
944
945  void visitVAStart(CallInst &I);
946  void visitVAArg(VAArgInst &I);
947  void visitVAEnd(CallInst &I);
948  void visitVACopy(CallInst &I);
949
950  void visitUserOp1(Instruction &I) {
951    assert(0 && "UserOp1 should not exist at instruction selection time!");
952    abort();
953  }
954  void visitUserOp2(Instruction &I) {
955    assert(0 && "UserOp2 should not exist at instruction selection time!");
956    abort();
957  }
958
959private:
960  inline const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
961
962};
963} // end namespace llvm
964
965
966/// getCopyFromParts - Create a value that contains the specified legal parts
967/// combined into the value they represent.  If the parts combine to a type
968/// larger then ValueVT then AssertOp can be used to specify whether the extra
969/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
970/// (ISD::AssertSext).
971static SDValue getCopyFromParts(SelectionDAG &DAG,
972                                  const SDValue *Parts,
973                                  unsigned NumParts,
974                                  MVT PartVT,
975                                  MVT ValueVT,
976                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
977  assert(NumParts > 0 && "No parts to assemble!");
978  TargetLowering &TLI = DAG.getTargetLoweringInfo();
979  SDValue Val = Parts[0];
980
981  if (NumParts > 1) {
982    // Assemble the value from multiple parts.
983    if (!ValueVT.isVector()) {
984      unsigned PartBits = PartVT.getSizeInBits();
985      unsigned ValueBits = ValueVT.getSizeInBits();
986
987      // Assemble the power of 2 part.
988      unsigned RoundParts = NumParts & (NumParts - 1) ?
989        1 << Log2_32(NumParts) : NumParts;
990      unsigned RoundBits = PartBits * RoundParts;
991      MVT RoundVT = RoundBits == ValueBits ?
992        ValueVT : MVT::getIntegerVT(RoundBits);
993      SDValue Lo, Hi;
994
995      if (RoundParts > 2) {
996        MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
997        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
998        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
999                              PartVT, HalfVT);
1000      } else {
1001        Lo = Parts[0];
1002        Hi = Parts[1];
1003      }
1004      if (TLI.isBigEndian())
1005        std::swap(Lo, Hi);
1006      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
1007
1008      if (RoundParts < NumParts) {
1009        // Assemble the trailing non-power-of-2 part.
1010        unsigned OddParts = NumParts - RoundParts;
1011        MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
1012        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
1013
1014        // Combine the round and odd parts.
1015        Lo = Val;
1016        if (TLI.isBigEndian())
1017          std::swap(Lo, Hi);
1018        MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
1019        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
1020        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
1021                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
1022                                         TLI.getShiftAmountTy()));
1023        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
1024        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
1025      }
1026    } else {
1027      // Handle a multi-element vector.
1028      MVT IntermediateVT, RegisterVT;
1029      unsigned NumIntermediates;
1030      unsigned NumRegs =
1031        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1032                                   RegisterVT);
1033      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1034      NumParts = NumRegs; // Silence a compiler warning.
1035      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1036      assert(RegisterVT == Parts[0].getValueType() &&
1037             "Part type doesn't match part!");
1038
1039      // Assemble the parts into intermediate operands.
1040      SmallVector<SDValue, 8> Ops(NumIntermediates);
1041      if (NumIntermediates == NumParts) {
1042        // If the register was not expanded, truncate or copy the value,
1043        // as appropriate.
1044        for (unsigned i = 0; i != NumParts; ++i)
1045          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
1046                                    PartVT, IntermediateVT);
1047      } else if (NumParts > 0) {
1048        // If the intermediate type was expanded, build the intermediate operands
1049        // from the parts.
1050        assert(NumParts % NumIntermediates == 0 &&
1051               "Must expand into a divisible number of parts!");
1052        unsigned Factor = NumParts / NumIntermediates;
1053        for (unsigned i = 0; i != NumIntermediates; ++i)
1054          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
1055                                    PartVT, IntermediateVT);
1056      }
1057
1058      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
1059      // operands.
1060      Val = DAG.getNode(IntermediateVT.isVector() ?
1061                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
1062                        ValueVT, &Ops[0], NumIntermediates);
1063    }
1064  }
1065
1066  // There is now one part, held in Val.  Correct it to match ValueVT.
1067  PartVT = Val.getValueType();
1068
1069  if (PartVT == ValueVT)
1070    return Val;
1071
1072  if (PartVT.isVector()) {
1073    assert(ValueVT.isVector() && "Unknown vector conversion!");
1074    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
1075  }
1076
1077  if (ValueVT.isVector()) {
1078    assert(ValueVT.getVectorElementType() == PartVT &&
1079           ValueVT.getVectorNumElements() == 1 &&
1080           "Only trivial scalar-to-vector conversions should get here!");
1081    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
1082  }
1083
1084  if (PartVT.isInteger() &&
1085      ValueVT.isInteger()) {
1086    if (ValueVT.bitsLT(PartVT)) {
1087      // For a truncate, see if we have any information to
1088      // indicate whether the truncated bits will always be
1089      // zero or sign-extension.
1090      if (AssertOp != ISD::DELETED_NODE)
1091        Val = DAG.getNode(AssertOp, PartVT, Val,
1092                          DAG.getValueType(ValueVT));
1093      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1094    } else {
1095      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
1096    }
1097  }
1098
1099  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
1100    if (ValueVT.bitsLT(Val.getValueType()))
1101      // FP_ROUND's are always exact here.
1102      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
1103                         DAG.getIntPtrConstant(1));
1104    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
1105  }
1106
1107  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
1108    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
1109
1110  assert(0 && "Unknown mismatch!");
1111  return SDValue();
1112}
1113
1114/// getCopyToParts - Create a series of nodes that contain the specified value
1115/// split into legal parts.  If the parts contain more bits than Val, then, for
1116/// integers, ExtendKind can be used to specify how to generate the extra bits.
1117static void getCopyToParts(SelectionDAG &DAG,
1118                           SDValue Val,
1119                           SDValue *Parts,
1120                           unsigned NumParts,
1121                           MVT PartVT,
1122                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
1123  TargetLowering &TLI = DAG.getTargetLoweringInfo();
1124  MVT PtrVT = TLI.getPointerTy();
1125  MVT ValueVT = Val.getValueType();
1126  unsigned PartBits = PartVT.getSizeInBits();
1127  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
1128
1129  if (!NumParts)
1130    return;
1131
1132  if (!ValueVT.isVector()) {
1133    if (PartVT == ValueVT) {
1134      assert(NumParts == 1 && "No-op copy with multiple parts!");
1135      Parts[0] = Val;
1136      return;
1137    }
1138
1139    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
1140      // If the parts cover more bits than the value has, promote the value.
1141      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
1142        assert(NumParts == 1 && "Do not know what to promote to!");
1143        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
1144      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
1145        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1146        Val = DAG.getNode(ExtendKind, ValueVT, Val);
1147      } else {
1148        assert(0 && "Unknown mismatch!");
1149      }
1150    } else if (PartBits == ValueVT.getSizeInBits()) {
1151      // Different types of the same size.
1152      assert(NumParts == 1 && PartVT != ValueVT);
1153      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1154    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
1155      // If the parts cover less bits than value has, truncate the value.
1156      if (PartVT.isInteger() && ValueVT.isInteger()) {
1157        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1158        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1159      } else {
1160        assert(0 && "Unknown mismatch!");
1161      }
1162    }
1163
1164    // The value may have changed - recompute ValueVT.
1165    ValueVT = Val.getValueType();
1166    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
1167           "Failed to tile the value with PartVT!");
1168
1169    if (NumParts == 1) {
1170      assert(PartVT == ValueVT && "Type conversion failed!");
1171      Parts[0] = Val;
1172      return;
1173    }
1174
1175    // Expand the value into multiple parts.
1176    if (NumParts & (NumParts - 1)) {
1177      // The number of parts is not a power of 2.  Split off and copy the tail.
1178      assert(PartVT.isInteger() && ValueVT.isInteger() &&
1179             "Do not know what to expand to!");
1180      unsigned RoundParts = 1 << Log2_32(NumParts);
1181      unsigned RoundBits = RoundParts * PartBits;
1182      unsigned OddParts = NumParts - RoundParts;
1183      SDValue OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
1184                                     DAG.getConstant(RoundBits,
1185                                                     TLI.getShiftAmountTy()));
1186      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
1187      if (TLI.isBigEndian())
1188        // The odd parts were reversed by getCopyToParts - unreverse them.
1189        std::reverse(Parts + RoundParts, Parts + NumParts);
1190      NumParts = RoundParts;
1191      ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1192      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1193    }
1194
1195    // The number of parts is a power of 2.  Repeatedly bisect the value using
1196    // EXTRACT_ELEMENT.
1197    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
1198                           MVT::getIntegerVT(ValueVT.getSizeInBits()),
1199                           Val);
1200    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
1201      for (unsigned i = 0; i < NumParts; i += StepSize) {
1202        unsigned ThisBits = StepSize * PartBits / 2;
1203        MVT ThisVT = MVT::getIntegerVT (ThisBits);
1204        SDValue &Part0 = Parts[i];
1205        SDValue &Part1 = Parts[i+StepSize/2];
1206
1207        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1208                            DAG.getConstant(1, PtrVT));
1209        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1210                            DAG.getConstant(0, PtrVT));
1211
1212        if (ThisBits == PartBits && ThisVT != PartVT) {
1213          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
1214          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
1215        }
1216      }
1217    }
1218
1219    if (TLI.isBigEndian())
1220      std::reverse(Parts, Parts + NumParts);
1221
1222    return;
1223  }
1224
1225  // Vector ValueVT.
1226  if (NumParts == 1) {
1227    if (PartVT != ValueVT) {
1228      if (PartVT.isVector()) {
1229        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1230      } else {
1231        assert(ValueVT.getVectorElementType() == PartVT &&
1232               ValueVT.getVectorNumElements() == 1 &&
1233               "Only trivial vector-to-scalar conversions should get here!");
1234        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
1235                          DAG.getConstant(0, PtrVT));
1236      }
1237    }
1238
1239    Parts[0] = Val;
1240    return;
1241  }
1242
1243  // Handle a multi-element vector.
1244  MVT IntermediateVT, RegisterVT;
1245  unsigned NumIntermediates;
1246  unsigned NumRegs =
1247    DAG.getTargetLoweringInfo()
1248      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1249                              RegisterVT);
1250  unsigned NumElements = ValueVT.getVectorNumElements();
1251
1252  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1253  NumParts = NumRegs; // Silence a compiler warning.
1254  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1255
1256  // Split the vector into intermediate operands.
1257  SmallVector<SDValue, 8> Ops(NumIntermediates);
1258  for (unsigned i = 0; i != NumIntermediates; ++i)
1259    if (IntermediateVT.isVector())
1260      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
1261                           IntermediateVT, Val,
1262                           DAG.getConstant(i * (NumElements / NumIntermediates),
1263                                           PtrVT));
1264    else
1265      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
1266                           IntermediateVT, Val,
1267                           DAG.getConstant(i, PtrVT));
1268
1269  // Split the intermediate operands into legal parts.
1270  if (NumParts == NumIntermediates) {
1271    // If the register was not expanded, promote or copy the value,
1272    // as appropriate.
1273    for (unsigned i = 0; i != NumParts; ++i)
1274      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
1275  } else if (NumParts > 0) {
1276    // If the intermediate type was expanded, split each the value into
1277    // legal parts.
1278    assert(NumParts % NumIntermediates == 0 &&
1279           "Must expand into a divisible number of parts!");
1280    unsigned Factor = NumParts / NumIntermediates;
1281    for (unsigned i = 0; i != NumIntermediates; ++i)
1282      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
1283  }
1284}
1285
1286
1287SDValue SelectionDAGLowering::getValue(const Value *V) {
1288  SDValue &N = NodeMap[V];
1289  if (N.getNode()) return N;
1290
1291  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
1292    MVT VT = TLI.getValueType(V->getType(), true);
1293
1294    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1295      return N = DAG.getConstant(CI->getValue(), VT);
1296
1297    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
1298      return N = DAG.getGlobalAddress(GV, VT);
1299
1300    if (isa<ConstantPointerNull>(C))
1301      return N = DAG.getConstant(0, TLI.getPointerTy());
1302
1303    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1304      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
1305
1306    if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
1307        !V->getType()->isAggregateType())
1308      return N = DAG.getNode(ISD::UNDEF, VT);
1309
1310    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1311      visit(CE->getOpcode(), *CE);
1312      SDValue N1 = NodeMap[V];
1313      assert(N1.getNode() && "visit didn't populate the ValueMap!");
1314      return N1;
1315    }
1316
1317    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1318      SmallVector<SDValue, 4> Constants;
1319      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1320           OI != OE; ++OI) {
1321        SDNode *Val = getValue(*OI).getNode();
1322        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1323          Constants.push_back(SDValue(Val, i));
1324      }
1325      return DAG.getMergeValues(&Constants[0], Constants.size());
1326    }
1327
1328    if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
1329      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1330             "Unknown struct or array constant!");
1331
1332      SmallVector<MVT, 4> ValueVTs;
1333      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1334      unsigned NumElts = ValueVTs.size();
1335      if (NumElts == 0)
1336        return SDValue(); // empty struct
1337      SmallVector<SDValue, 4> Constants(NumElts);
1338      for (unsigned i = 0; i != NumElts; ++i) {
1339        MVT EltVT = ValueVTs[i];
1340        if (isa<UndefValue>(C))
1341          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1342        else if (EltVT.isFloatingPoint())
1343          Constants[i] = DAG.getConstantFP(0, EltVT);
1344        else
1345          Constants[i] = DAG.getConstant(0, EltVT);
1346      }
1347      return DAG.getMergeValues(&Constants[0], NumElts);
1348    }
1349
1350    const VectorType *VecTy = cast<VectorType>(V->getType());
1351    unsigned NumElements = VecTy->getNumElements();
1352
1353    // Now that we know the number and type of the elements, get that number of
1354    // elements into the Ops array based on what kind of constant it is.
1355    SmallVector<SDValue, 16> Ops;
1356    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1357      for (unsigned i = 0; i != NumElements; ++i)
1358        Ops.push_back(getValue(CP->getOperand(i)));
1359    } else {
1360      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1361             "Unknown vector constant!");
1362      MVT EltVT = TLI.getValueType(VecTy->getElementType());
1363
1364      SDValue Op;
1365      if (isa<UndefValue>(C))
1366        Op = DAG.getNode(ISD::UNDEF, EltVT);
1367      else if (EltVT.isFloatingPoint())
1368        Op = DAG.getConstantFP(0, EltVT);
1369      else
1370        Op = DAG.getConstant(0, EltVT);
1371      Ops.assign(NumElements, Op);
1372    }
1373
1374    // Create a BUILD_VECTOR node.
1375    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1376  }
1377
1378  // If this is a static alloca, generate it as the frameindex instead of
1379  // computation.
1380  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1381    DenseMap<const AllocaInst*, int>::iterator SI =
1382      FuncInfo.StaticAllocaMap.find(AI);
1383    if (SI != FuncInfo.StaticAllocaMap.end())
1384      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1385  }
1386
1387  unsigned InReg = FuncInfo.ValueMap[V];
1388  assert(InReg && "Value not in map!");
1389
1390  RegsForValue RFV(TLI, InReg, V->getType());
1391  SDValue Chain = DAG.getEntryNode();
1392  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1393}
1394
1395
1396void SelectionDAGLowering::visitRet(ReturnInst &I) {
1397  if (I.getNumOperands() == 0) {
1398    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
1399    return;
1400  }
1401
1402  SmallVector<SDValue, 8> NewValues;
1403  NewValues.push_back(getControlRoot());
1404  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1405    SDValue RetOp = getValue(I.getOperand(i));
1406
1407    SmallVector<MVT, 4> ValueVTs;
1408    ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
1409    for (unsigned j = 0, f = ValueVTs.size(); j != f; ++j) {
1410      MVT VT = ValueVTs[j];
1411
1412      // FIXME: C calling convention requires the return type to be promoted to
1413      // at least 32-bit. But this is not necessary for non-C calling conventions.
1414      if (VT.isInteger()) {
1415        MVT MinVT = TLI.getRegisterType(MVT::i32);
1416        if (VT.bitsLT(MinVT))
1417          VT = MinVT;
1418      }
1419
1420      unsigned NumParts = TLI.getNumRegisters(VT);
1421      MVT PartVT = TLI.getRegisterType(VT);
1422      SmallVector<SDValue, 4> Parts(NumParts);
1423      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1424
1425      const Function *F = I.getParent()->getParent();
1426      if (F->paramHasAttr(0, ParamAttr::SExt))
1427        ExtendKind = ISD::SIGN_EXTEND;
1428      else if (F->paramHasAttr(0, ParamAttr::ZExt))
1429        ExtendKind = ISD::ZERO_EXTEND;
1430
1431      getCopyToParts(DAG, SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1432                     &Parts[0], NumParts, PartVT, ExtendKind);
1433
1434      for (unsigned i = 0; i < NumParts; ++i) {
1435        NewValues.push_back(Parts[i]);
1436        NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
1437      }
1438    }
1439  }
1440  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1441                          &NewValues[0], NewValues.size()));
1442}
1443
1444/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1445/// the current basic block, add it to ValueMap now so that we'll get a
1446/// CopyTo/FromReg.
1447void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1448  // No need to export constants.
1449  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1450
1451  // Already exported?
1452  if (FuncInfo.isExportedInst(V)) return;
1453
1454  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1455  CopyValueToVirtualRegister(V, Reg);
1456}
1457
1458bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1459                                                    const BasicBlock *FromBB) {
1460  // The operands of the setcc have to be in this block.  We don't know
1461  // how to export them from some other block.
1462  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1463    // Can export from current BB.
1464    if (VI->getParent() == FromBB)
1465      return true;
1466
1467    // Is already exported, noop.
1468    return FuncInfo.isExportedInst(V);
1469  }
1470
1471  // If this is an argument, we can export it if the BB is the entry block or
1472  // if it is already exported.
1473  if (isa<Argument>(V)) {
1474    if (FromBB == &FromBB->getParent()->getEntryBlock())
1475      return true;
1476
1477    // Otherwise, can only export this if it is already exported.
1478    return FuncInfo.isExportedInst(V);
1479  }
1480
1481  // Otherwise, constants can always be exported.
1482  return true;
1483}
1484
1485static bool InBlock(const Value *V, const BasicBlock *BB) {
1486  if (const Instruction *I = dyn_cast<Instruction>(V))
1487    return I->getParent() == BB;
1488  return true;
1489}
1490
1491/// FindMergedConditions - If Cond is an expression like
1492void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1493                                                MachineBasicBlock *TBB,
1494                                                MachineBasicBlock *FBB,
1495                                                MachineBasicBlock *CurBB,
1496                                                unsigned Opc) {
1497  // If this node is not part of the or/and tree, emit it as a branch.
1498  Instruction *BOp = dyn_cast<Instruction>(Cond);
1499
1500  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1501      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1502      BOp->getParent() != CurBB->getBasicBlock() ||
1503      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1504      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1505    const BasicBlock *BB = CurBB->getBasicBlock();
1506
1507    // If the leaf of the tree is a comparison, merge the condition into
1508    // the caseblock.
1509    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1510        // The operands of the cmp have to be in this block.  We don't know
1511        // how to export them from some other block.  If this is the first block
1512        // of the sequence, no exporting is needed.
1513        (CurBB == CurMBB ||
1514         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1515          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1516      BOp = cast<Instruction>(Cond);
1517      ISD::CondCode Condition;
1518      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1519        switch (IC->getPredicate()) {
1520        default: assert(0 && "Unknown icmp predicate opcode!");
1521        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1522        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1523        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1524        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1525        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1526        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1527        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1528        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1529        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1530        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1531        }
1532      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1533        ISD::CondCode FPC, FOC;
1534        switch (FC->getPredicate()) {
1535        default: assert(0 && "Unknown fcmp predicate opcode!");
1536        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1537        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1538        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1539        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1540        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1541        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1542        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1543        case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
1544        case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
1545        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1546        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1547        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1548        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1549        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1550        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1551        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1552        }
1553        if (FiniteOnlyFPMath())
1554          Condition = FOC;
1555        else
1556          Condition = FPC;
1557      } else {
1558        Condition = ISD::SETEQ; // silence warning.
1559        assert(0 && "Unknown compare instruction");
1560      }
1561
1562      CaseBlock CB(Condition, BOp->getOperand(0),
1563                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1564      SwitchCases.push_back(CB);
1565      return;
1566    }
1567
1568    // Create a CaseBlock record representing this branch.
1569    CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1570                 NULL, TBB, FBB, CurBB);
1571    SwitchCases.push_back(CB);
1572    return;
1573  }
1574
1575
1576  //  Create TmpBB after CurBB.
1577  MachineFunction::iterator BBI = CurBB;
1578  MachineFunction &MF = DAG.getMachineFunction();
1579  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1580  CurBB->getParent()->insert(++BBI, TmpBB);
1581
1582  if (Opc == Instruction::Or) {
1583    // Codegen X | Y as:
1584    //   jmp_if_X TBB
1585    //   jmp TmpBB
1586    // TmpBB:
1587    //   jmp_if_Y TBB
1588    //   jmp FBB
1589    //
1590
1591    // Emit the LHS condition.
1592    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1593
1594    // Emit the RHS condition into TmpBB.
1595    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1596  } else {
1597    assert(Opc == Instruction::And && "Unknown merge op!");
1598    // Codegen X & Y as:
1599    //   jmp_if_X TmpBB
1600    //   jmp FBB
1601    // TmpBB:
1602    //   jmp_if_Y TBB
1603    //   jmp FBB
1604    //
1605    //  This requires creation of TmpBB after CurBB.
1606
1607    // Emit the LHS condition.
1608    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1609
1610    // Emit the RHS condition into TmpBB.
1611    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1612  }
1613}
1614
1615/// If the set of cases should be emitted as a series of branches, return true.
1616/// If we should emit this as a bunch of and/or'd together conditions, return
1617/// false.
1618bool
1619SelectionDAGLowering::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1620  if (Cases.size() != 2) return true;
1621
1622  // If this is two comparisons of the same values or'd or and'd together, they
1623  // will get folded into a single comparison, so don't emit two blocks.
1624  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1625       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1626      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1627       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1628    return false;
1629  }
1630
1631  return true;
1632}
1633
1634void SelectionDAGLowering::visitBr(BranchInst &I) {
1635  // Update machine-CFG edges.
1636  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1637
1638  // Figure out which block is immediately after the current one.
1639  MachineBasicBlock *NextBlock = 0;
1640  MachineFunction::iterator BBI = CurMBB;
1641  if (++BBI != CurMBB->getParent()->end())
1642    NextBlock = BBI;
1643
1644  if (I.isUnconditional()) {
1645    // Update machine-CFG edges.
1646    CurMBB->addSuccessor(Succ0MBB);
1647
1648    // If this is not a fall-through branch, emit the branch.
1649    if (Succ0MBB != NextBlock)
1650      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1651                              DAG.getBasicBlock(Succ0MBB)));
1652    return;
1653  }
1654
1655  // If this condition is one of the special cases we handle, do special stuff
1656  // now.
1657  Value *CondVal = I.getCondition();
1658  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1659
1660  // If this is a series of conditions that are or'd or and'd together, emit
1661  // this as a sequence of branches instead of setcc's with and/or operations.
1662  // For example, instead of something like:
1663  //     cmp A, B
1664  //     C = seteq
1665  //     cmp D, E
1666  //     F = setle
1667  //     or C, F
1668  //     jnz foo
1669  // Emit:
1670  //     cmp A, B
1671  //     je foo
1672  //     cmp D, E
1673  //     jle foo
1674  //
1675  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1676    if (BOp->hasOneUse() &&
1677        (BOp->getOpcode() == Instruction::And ||
1678         BOp->getOpcode() == Instruction::Or)) {
1679      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1680      // If the compares in later blocks need to use values not currently
1681      // exported from this block, export them now.  This block should always
1682      // be the first entry.
1683      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1684
1685      // Allow some cases to be rejected.
1686      if (ShouldEmitAsBranches(SwitchCases)) {
1687        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1688          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1689          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1690        }
1691
1692        // Emit the branch for this block.
1693        visitSwitchCase(SwitchCases[0]);
1694        SwitchCases.erase(SwitchCases.begin());
1695        return;
1696      }
1697
1698      // Okay, we decided not to do this, remove any inserted MBB's and clear
1699      // SwitchCases.
1700      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1701        CurMBB->getParent()->erase(SwitchCases[i].ThisBB);
1702
1703      SwitchCases.clear();
1704    }
1705  }
1706
1707  // Create a CaseBlock record representing this branch.
1708  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1709               NULL, Succ0MBB, Succ1MBB, CurMBB);
1710  // Use visitSwitchCase to actually insert the fast branch sequence for this
1711  // cond branch.
1712  visitSwitchCase(CB);
1713}
1714
1715/// visitSwitchCase - Emits the necessary code to represent a single node in
1716/// the binary search tree resulting from lowering a switch instruction.
1717void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) {
1718  SDValue Cond;
1719  SDValue CondLHS = getValue(CB.CmpLHS);
1720
1721  // Build the setcc now.
1722  if (CB.CmpMHS == NULL) {
1723    // Fold "(X == true)" to X and "(X == false)" to !X to
1724    // handle common cases produced by branch lowering.
1725    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1726      Cond = CondLHS;
1727    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1728      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1729      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1730    } else
1731      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1732  } else {
1733    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1734
1735    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1736    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1737
1738    SDValue CmpOp = getValue(CB.CmpMHS);
1739    MVT VT = CmpOp.getValueType();
1740
1741    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1742      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1743    } else {
1744      SDValue SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1745      Cond = DAG.getSetCC(MVT::i1, SUB,
1746                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1747    }
1748  }
1749
1750  // Update successor info
1751  CurMBB->addSuccessor(CB.TrueBB);
1752  CurMBB->addSuccessor(CB.FalseBB);
1753
1754  // Set NextBlock to be the MBB immediately after the current one, if any.
1755  // This is used to avoid emitting unnecessary branches to the next block.
1756  MachineBasicBlock *NextBlock = 0;
1757  MachineFunction::iterator BBI = CurMBB;
1758  if (++BBI != CurMBB->getParent()->end())
1759    NextBlock = BBI;
1760
1761  // If the lhs block is the next block, invert the condition so that we can
1762  // fall through to the lhs instead of the rhs block.
1763  if (CB.TrueBB == NextBlock) {
1764    std::swap(CB.TrueBB, CB.FalseBB);
1765    SDValue True = DAG.getConstant(1, Cond.getValueType());
1766    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1767  }
1768  SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1769                                 DAG.getBasicBlock(CB.TrueBB));
1770
1771  // If the branch was constant folded, fix up the CFG.
1772  if (BrCond.getOpcode() == ISD::BR) {
1773    CurMBB->removeSuccessor(CB.FalseBB);
1774    DAG.setRoot(BrCond);
1775  } else {
1776    // Otherwise, go ahead and insert the false branch.
1777    if (BrCond == getControlRoot())
1778      CurMBB->removeSuccessor(CB.TrueBB);
1779
1780    if (CB.FalseBB == NextBlock)
1781      DAG.setRoot(BrCond);
1782    else
1783      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1784                              DAG.getBasicBlock(CB.FalseBB)));
1785  }
1786}
1787
1788/// visitJumpTable - Emit JumpTable node in the current MBB
1789void SelectionDAGLowering::visitJumpTable(JumpTable &JT) {
1790  // Emit the code for the jump table
1791  assert(JT.Reg != -1U && "Should lower JT Header first!");
1792  MVT PTy = TLI.getPointerTy();
1793  SDValue Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1794  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1795  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1796                          Table, Index));
1797  return;
1798}
1799
1800/// visitJumpTableHeader - This function emits necessary code to produce index
1801/// in the JumpTable from switch case.
1802void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT,
1803                                                JumpTableHeader &JTH) {
1804  // Subtract the lowest switch case value from the value being switched on
1805  // and conditional branch to default mbb if the result is greater than the
1806  // difference between smallest and largest cases.
1807  SDValue SwitchOp = getValue(JTH.SValue);
1808  MVT VT = SwitchOp.getValueType();
1809  SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1810                              DAG.getConstant(JTH.First, VT));
1811
1812  // The SDNode we just created, which holds the value being switched on
1813  // minus the the smallest case value, needs to be copied to a virtual
1814  // register so it can be used as an index into the jump table in a
1815  // subsequent basic block.  This value may be smaller or larger than the
1816  // target's pointer type, and therefore require extension or truncating.
1817  if (VT.bitsGT(TLI.getPointerTy()))
1818    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1819  else
1820    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1821
1822  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1823  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1824  JT.Reg = JumpTableReg;
1825
1826  // Emit the range check for the jump table, and branch to the default
1827  // block for the switch statement if the value being switched on exceeds
1828  // the largest case in the switch.
1829  SDValue CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1830                               DAG.getConstant(JTH.Last-JTH.First,VT),
1831                               ISD::SETUGT);
1832
1833  // Set NextBlock to be the MBB immediately after the current one, if any.
1834  // This is used to avoid emitting unnecessary branches to the next block.
1835  MachineBasicBlock *NextBlock = 0;
1836  MachineFunction::iterator BBI = CurMBB;
1837  if (++BBI != CurMBB->getParent()->end())
1838    NextBlock = BBI;
1839
1840  SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1841                                 DAG.getBasicBlock(JT.Default));
1842
1843  if (JT.MBB == NextBlock)
1844    DAG.setRoot(BrCond);
1845  else
1846    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1847                            DAG.getBasicBlock(JT.MBB)));
1848
1849  return;
1850}
1851
1852/// visitBitTestHeader - This function emits necessary code to produce value
1853/// suitable for "bit tests"
1854void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) {
1855  // Subtract the minimum value
1856  SDValue SwitchOp = getValue(B.SValue);
1857  MVT VT = SwitchOp.getValueType();
1858  SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1859                              DAG.getConstant(B.First, VT));
1860
1861  // Check range
1862  SDValue RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1863                                    DAG.getConstant(B.Range, VT),
1864                                    ISD::SETUGT);
1865
1866  SDValue ShiftOp;
1867  if (VT.bitsGT(TLI.getShiftAmountTy()))
1868    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1869  else
1870    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1871
1872  // Make desired shift
1873  SDValue SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1874                                    DAG.getConstant(1, TLI.getPointerTy()),
1875                                    ShiftOp);
1876
1877  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1878  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1879  B.Reg = SwitchReg;
1880
1881  // Set NextBlock to be the MBB immediately after the current one, if any.
1882  // This is used to avoid emitting unnecessary branches to the next block.
1883  MachineBasicBlock *NextBlock = 0;
1884  MachineFunction::iterator BBI = CurMBB;
1885  if (++BBI != CurMBB->getParent()->end())
1886    NextBlock = BBI;
1887
1888  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1889
1890  CurMBB->addSuccessor(B.Default);
1891  CurMBB->addSuccessor(MBB);
1892
1893  SDValue BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1894                                  DAG.getBasicBlock(B.Default));
1895
1896  if (MBB == NextBlock)
1897    DAG.setRoot(BrRange);
1898  else
1899    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1900                            DAG.getBasicBlock(MBB)));
1901
1902  return;
1903}
1904
1905/// visitBitTestCase - this function produces one "bit test"
1906void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1907                                            unsigned Reg,
1908                                            BitTestCase &B) {
1909  // Emit bit tests and jumps
1910  SDValue SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
1911                                           TLI.getPointerTy());
1912
1913  SDValue AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
1914                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1915  SDValue AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1916                                  DAG.getConstant(0, TLI.getPointerTy()),
1917                                  ISD::SETNE);
1918
1919  CurMBB->addSuccessor(B.TargetBB);
1920  CurMBB->addSuccessor(NextMBB);
1921
1922  SDValue BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1923                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1924
1925  // Set NextBlock to be the MBB immediately after the current one, if any.
1926  // This is used to avoid emitting unnecessary branches to the next block.
1927  MachineBasicBlock *NextBlock = 0;
1928  MachineFunction::iterator BBI = CurMBB;
1929  if (++BBI != CurMBB->getParent()->end())
1930    NextBlock = BBI;
1931
1932  if (NextMBB == NextBlock)
1933    DAG.setRoot(BrAnd);
1934  else
1935    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1936                            DAG.getBasicBlock(NextMBB)));
1937
1938  return;
1939}
1940
1941void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1942  // Retrieve successors.
1943  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1944  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1945
1946  if (isa<InlineAsm>(I.getCalledValue()))
1947    visitInlineAsm(&I);
1948  else
1949    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1950
1951  // If the value of the invoke is used outside of its defining block, make it
1952  // available as a virtual register.
1953  if (!I.use_empty()) {
1954    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1955    if (VMI != FuncInfo.ValueMap.end())
1956      CopyValueToVirtualRegister(&I, VMI->second);
1957  }
1958
1959  // Update successor info
1960  CurMBB->addSuccessor(Return);
1961  CurMBB->addSuccessor(LandingPad);
1962
1963  // Drop into normal successor.
1964  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1965                          DAG.getBasicBlock(Return)));
1966}
1967
1968void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1969}
1970
1971/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1972/// small case ranges).
1973bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1974                                                  CaseRecVector& WorkList,
1975                                                  Value* SV,
1976                                                  MachineBasicBlock* Default) {
1977  Case& BackCase  = *(CR.Range.second-1);
1978
1979  // Size is the number of Cases represented by this range.
1980  unsigned Size = CR.Range.second - CR.Range.first;
1981  if (Size > 3)
1982    return false;
1983
1984  // Get the MachineFunction which holds the current MBB.  This is used when
1985  // inserting any additional MBBs necessary to represent the switch.
1986  MachineFunction *CurMF = CurMBB->getParent();
1987
1988  // Figure out which block is immediately after the current one.
1989  MachineBasicBlock *NextBlock = 0;
1990  MachineFunction::iterator BBI = CR.CaseBB;
1991
1992  if (++BBI != CurMBB->getParent()->end())
1993    NextBlock = BBI;
1994
1995  // TODO: If any two of the cases has the same destination, and if one value
1996  // is the same as the other, but has one bit unset that the other has set,
1997  // use bit manipulation to do two compares at once.  For example:
1998  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1999
2000  // Rearrange the case blocks so that the last one falls through if possible.
2001  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2002    // The last case block won't fall through into 'NextBlock' if we emit the
2003    // branches in this order.  See if rearranging a case value would help.
2004    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
2005      if (I->BB == NextBlock) {
2006        std::swap(*I, BackCase);
2007        break;
2008      }
2009    }
2010  }
2011
2012  // Create a CaseBlock record representing a conditional branch to
2013  // the Case's target mbb if the value being switched on SV is equal
2014  // to C.
2015  MachineBasicBlock *CurBlock = CR.CaseBB;
2016  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2017    MachineBasicBlock *FallThrough;
2018    if (I != E-1) {
2019      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2020      CurMF->insert(BBI, FallThrough);
2021    } else {
2022      // If the last case doesn't match, go to the default block.
2023      FallThrough = Default;
2024    }
2025
2026    Value *RHS, *LHS, *MHS;
2027    ISD::CondCode CC;
2028    if (I->High == I->Low) {
2029      // This is just small small case range :) containing exactly 1 case
2030      CC = ISD::SETEQ;
2031      LHS = SV; RHS = I->High; MHS = NULL;
2032    } else {
2033      CC = ISD::SETLE;
2034      LHS = I->Low; MHS = SV; RHS = I->High;
2035    }
2036    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
2037
2038    // If emitting the first comparison, just call visitSwitchCase to emit the
2039    // code into the current block.  Otherwise, push the CaseBlock onto the
2040    // vector to be later processed by SDISel, and insert the node's MBB
2041    // before the next MBB.
2042    if (CurBlock == CurMBB)
2043      visitSwitchCase(CB);
2044    else
2045      SwitchCases.push_back(CB);
2046
2047    CurBlock = FallThrough;
2048  }
2049
2050  return true;
2051}
2052
2053static inline bool areJTsAllowed(const TargetLowering &TLI) {
2054  return !DisableJumpTables &&
2055          (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
2056           TLI.isOperationLegal(ISD::BRIND, MVT::Other));
2057}
2058
2059/// handleJTSwitchCase - Emit jumptable for current switch case range
2060bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
2061                                              CaseRecVector& WorkList,
2062                                              Value* SV,
2063                                              MachineBasicBlock* Default) {
2064  Case& FrontCase = *CR.Range.first;
2065  Case& BackCase  = *(CR.Range.second-1);
2066
2067  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
2068  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
2069
2070  uint64_t TSize = 0;
2071  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2072       I!=E; ++I)
2073    TSize += I->size();
2074
2075  if (!areJTsAllowed(TLI) || TSize <= 3)
2076    return false;
2077
2078  double Density = (double)TSize / (double)((Last - First) + 1ULL);
2079  if (Density < 0.4)
2080    return false;
2081
2082  DOUT << "Lowering jump table\n"
2083       << "First entry: " << First << ". Last entry: " << Last << "\n"
2084       << "Size: " << TSize << ". Density: " << Density << "\n\n";
2085
2086  // Get the MachineFunction which holds the current MBB.  This is used when
2087  // inserting any additional MBBs necessary to represent the switch.
2088  MachineFunction *CurMF = CurMBB->getParent();
2089
2090  // Figure out which block is immediately after the current one.
2091  MachineBasicBlock *NextBlock = 0;
2092  MachineFunction::iterator BBI = CR.CaseBB;
2093
2094  if (++BBI != CurMBB->getParent()->end())
2095    NextBlock = BBI;
2096
2097  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2098
2099  // Create a new basic block to hold the code for loading the address
2100  // of the jump table, and jumping to it.  Update successor information;
2101  // we will either branch to the default case for the switch, or the jump
2102  // table.
2103  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2104  CurMF->insert(BBI, JumpTableBB);
2105  CR.CaseBB->addSuccessor(Default);
2106  CR.CaseBB->addSuccessor(JumpTableBB);
2107
2108  // Build a vector of destination BBs, corresponding to each target
2109  // of the jump table. If the value of the jump table slot corresponds to
2110  // a case statement, push the case's BB onto the vector, otherwise, push
2111  // the default BB.
2112  std::vector<MachineBasicBlock*> DestBBs;
2113  int64_t TEI = First;
2114  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2115    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
2116    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
2117
2118    if ((Low <= TEI) && (TEI <= High)) {
2119      DestBBs.push_back(I->BB);
2120      if (TEI==High)
2121        ++I;
2122    } else {
2123      DestBBs.push_back(Default);
2124    }
2125  }
2126
2127  // Update successor info. Add one edge to each unique successor.
2128  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2129  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2130         E = DestBBs.end(); I != E; ++I) {
2131    if (!SuccsHandled[(*I)->getNumber()]) {
2132      SuccsHandled[(*I)->getNumber()] = true;
2133      JumpTableBB->addSuccessor(*I);
2134    }
2135  }
2136
2137  // Create a jump table index for this jump table, or return an existing
2138  // one.
2139  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
2140
2141  // Set the jump table information so that we can codegen it as a second
2142  // MachineBasicBlock
2143  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2144  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
2145  if (CR.CaseBB == CurMBB)
2146    visitJumpTableHeader(JT, JTH);
2147
2148  JTCases.push_back(JumpTableBlock(JTH, JT));
2149
2150  return true;
2151}
2152
2153/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2154/// 2 subtrees.
2155bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
2156                                                   CaseRecVector& WorkList,
2157                                                   Value* SV,
2158                                                   MachineBasicBlock* Default) {
2159  // Get the MachineFunction which holds the current MBB.  This is used when
2160  // inserting any additional MBBs necessary to represent the switch.
2161  MachineFunction *CurMF = CurMBB->getParent();
2162
2163  // Figure out which block is immediately after the current one.
2164  MachineBasicBlock *NextBlock = 0;
2165  MachineFunction::iterator BBI = CR.CaseBB;
2166
2167  if (++BBI != CurMBB->getParent()->end())
2168    NextBlock = BBI;
2169
2170  Case& FrontCase = *CR.Range.first;
2171  Case& BackCase  = *(CR.Range.second-1);
2172  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2173
2174  // Size is the number of Cases represented by this range.
2175  unsigned Size = CR.Range.second - CR.Range.first;
2176
2177  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
2178  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
2179  double FMetric = 0;
2180  CaseItr Pivot = CR.Range.first + Size/2;
2181
2182  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2183  // (heuristically) allow us to emit JumpTable's later.
2184  uint64_t TSize = 0;
2185  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2186       I!=E; ++I)
2187    TSize += I->size();
2188
2189  uint64_t LSize = FrontCase.size();
2190  uint64_t RSize = TSize-LSize;
2191  DOUT << "Selecting best pivot: \n"
2192       << "First: " << First << ", Last: " << Last <<"\n"
2193       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
2194  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2195       J!=E; ++I, ++J) {
2196    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
2197    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
2198    assert((RBegin-LEnd>=1) && "Invalid case distance");
2199    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
2200    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
2201    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
2202    // Should always split in some non-trivial place
2203    DOUT <<"=>Step\n"
2204         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
2205         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
2206         << "Metric: " << Metric << "\n";
2207    if (FMetric < Metric) {
2208      Pivot = J;
2209      FMetric = Metric;
2210      DOUT << "Current metric set to: " << FMetric << "\n";
2211    }
2212
2213    LSize += J->size();
2214    RSize -= J->size();
2215  }
2216  if (areJTsAllowed(TLI)) {
2217    // If our case is dense we *really* should handle it earlier!
2218    assert((FMetric > 0) && "Should handle dense range earlier!");
2219  } else {
2220    Pivot = CR.Range.first + Size/2;
2221  }
2222
2223  CaseRange LHSR(CR.Range.first, Pivot);
2224  CaseRange RHSR(Pivot, CR.Range.second);
2225  Constant *C = Pivot->Low;
2226  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2227
2228  // We know that we branch to the LHS if the Value being switched on is
2229  // less than the Pivot value, C.  We use this to optimize our binary
2230  // tree a bit, by recognizing that if SV is greater than or equal to the
2231  // LHS's Case Value, and that Case Value is exactly one less than the
2232  // Pivot's Value, then we can branch directly to the LHS's Target,
2233  // rather than creating a leaf node for it.
2234  if ((LHSR.second - LHSR.first) == 1 &&
2235      LHSR.first->High == CR.GE &&
2236      cast<ConstantInt>(C)->getSExtValue() ==
2237      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
2238    TrueBB = LHSR.first->BB;
2239  } else {
2240    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2241    CurMF->insert(BBI, TrueBB);
2242    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2243  }
2244
2245  // Similar to the optimization above, if the Value being switched on is
2246  // known to be less than the Constant CR.LT, and the current Case Value
2247  // is CR.LT - 1, then we can branch directly to the target block for
2248  // the current Case Value, rather than emitting a RHS leaf node for it.
2249  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2250      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
2251      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
2252    FalseBB = RHSR.first->BB;
2253  } else {
2254    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2255    CurMF->insert(BBI, FalseBB);
2256    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2257  }
2258
2259  // Create a CaseBlock record representing a conditional branch to
2260  // the LHS node if the value being switched on SV is less than C.
2261  // Otherwise, branch to LHS.
2262  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2263
2264  if (CR.CaseBB == CurMBB)
2265    visitSwitchCase(CB);
2266  else
2267    SwitchCases.push_back(CB);
2268
2269  return true;
2270}
2271
2272/// handleBitTestsSwitchCase - if current case range has few destination and
2273/// range span less, than machine word bitwidth, encode case range into series
2274/// of masks and emit bit tests with these masks.
2275bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
2276                                                    CaseRecVector& WorkList,
2277                                                    Value* SV,
2278                                                    MachineBasicBlock* Default){
2279  unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
2280
2281  Case& FrontCase = *CR.Range.first;
2282  Case& BackCase  = *(CR.Range.second-1);
2283
2284  // Get the MachineFunction which holds the current MBB.  This is used when
2285  // inserting any additional MBBs necessary to represent the switch.
2286  MachineFunction *CurMF = CurMBB->getParent();
2287
2288  unsigned numCmps = 0;
2289  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2290       I!=E; ++I) {
2291    // Single case counts one, case range - two.
2292    if (I->Low == I->High)
2293      numCmps +=1;
2294    else
2295      numCmps +=2;
2296  }
2297
2298  // Count unique destinations
2299  SmallSet<MachineBasicBlock*, 4> Dests;
2300  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2301    Dests.insert(I->BB);
2302    if (Dests.size() > 3)
2303      // Don't bother the code below, if there are too much unique destinations
2304      return false;
2305  }
2306  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
2307       << "Total number of comparisons: " << numCmps << "\n";
2308
2309  // Compute span of values.
2310  Constant* minValue = FrontCase.Low;
2311  Constant* maxValue = BackCase.High;
2312  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
2313                   cast<ConstantInt>(minValue)->getSExtValue();
2314  DOUT << "Compare range: " << range << "\n"
2315       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
2316       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
2317
2318  if (range>=IntPtrBits ||
2319      (!(Dests.size() == 1 && numCmps >= 3) &&
2320       !(Dests.size() == 2 && numCmps >= 5) &&
2321       !(Dests.size() >= 3 && numCmps >= 6)))
2322    return false;
2323
2324  DOUT << "Emitting bit tests\n";
2325  int64_t lowBound = 0;
2326
2327  // Optimize the case where all the case values fit in a
2328  // word without having to subtract minValue. In this case,
2329  // we can optimize away the subtraction.
2330  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
2331      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
2332    range = cast<ConstantInt>(maxValue)->getSExtValue();
2333  } else {
2334    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
2335  }
2336
2337  CaseBitsVector CasesBits;
2338  unsigned i, count = 0;
2339
2340  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2341    MachineBasicBlock* Dest = I->BB;
2342    for (i = 0; i < count; ++i)
2343      if (Dest == CasesBits[i].BB)
2344        break;
2345
2346    if (i == count) {
2347      assert((count < 3) && "Too much destinations to test!");
2348      CasesBits.push_back(CaseBits(0, Dest, 0));
2349      count++;
2350    }
2351
2352    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2353    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2354
2355    for (uint64_t j = lo; j <= hi; j++) {
2356      CasesBits[i].Mask |=  1ULL << j;
2357      CasesBits[i].Bits++;
2358    }
2359
2360  }
2361  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2362
2363  BitTestInfo BTC;
2364
2365  // Figure out which block is immediately after the current one.
2366  MachineFunction::iterator BBI = CR.CaseBB;
2367  ++BBI;
2368
2369  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2370
2371  DOUT << "Cases:\n";
2372  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2373    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2374         << ", BB: " << CasesBits[i].BB << "\n";
2375
2376    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2377    CurMF->insert(BBI, CaseBB);
2378    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2379                              CaseBB,
2380                              CasesBits[i].BB));
2381  }
2382
2383  BitTestBlock BTB(lowBound, range, SV,
2384                   -1U, (CR.CaseBB == CurMBB),
2385                   CR.CaseBB, Default, BTC);
2386
2387  if (CR.CaseBB == CurMBB)
2388    visitBitTestHeader(BTB);
2389
2390  BitTestCases.push_back(BTB);
2391
2392  return true;
2393}
2394
2395
2396/// Clusterify - Transform simple list of Cases into list of CaseRange's
2397unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2398                                          const SwitchInst& SI) {
2399  unsigned numCmps = 0;
2400
2401  // Start with "simple" cases
2402  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2403    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2404    Cases.push_back(Case(SI.getSuccessorValue(i),
2405                         SI.getSuccessorValue(i),
2406                         SMBB));
2407  }
2408  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2409
2410  // Merge case into clusters
2411  if (Cases.size()>=2)
2412    // Must recompute end() each iteration because it may be
2413    // invalidated by erase if we hold on to it
2414    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2415      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2416      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2417      MachineBasicBlock* nextBB = J->BB;
2418      MachineBasicBlock* currentBB = I->BB;
2419
2420      // If the two neighboring cases go to the same destination, merge them
2421      // into a single case.
2422      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2423        I->High = J->High;
2424        J = Cases.erase(J);
2425      } else {
2426        I = J++;
2427      }
2428    }
2429
2430  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2431    if (I->Low != I->High)
2432      // A range counts double, since it requires two compares.
2433      ++numCmps;
2434  }
2435
2436  return numCmps;
2437}
2438
2439void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2440  // Figure out which block is immediately after the current one.
2441  MachineBasicBlock *NextBlock = 0;
2442  MachineFunction::iterator BBI = CurMBB;
2443
2444  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2445
2446  // If there is only the default destination, branch to it if it is not the
2447  // next basic block.  Otherwise, just fall through.
2448  if (SI.getNumOperands() == 2) {
2449    // Update machine-CFG edges.
2450
2451    // If this is not a fall-through branch, emit the branch.
2452    CurMBB->addSuccessor(Default);
2453    if (Default != NextBlock)
2454      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2455                              DAG.getBasicBlock(Default)));
2456
2457    return;
2458  }
2459
2460  // If there are any non-default case statements, create a vector of Cases
2461  // representing each one, and sort the vector so that we can efficiently
2462  // create a binary search tree from them.
2463  CaseVector Cases;
2464  unsigned numCmps = Clusterify(Cases, SI);
2465  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2466       << ". Total compares: " << numCmps << "\n";
2467
2468  // Get the Value to be switched on and default basic blocks, which will be
2469  // inserted into CaseBlock records, representing basic blocks in the binary
2470  // search tree.
2471  Value *SV = SI.getOperand(0);
2472
2473  // Push the initial CaseRec onto the worklist
2474  CaseRecVector WorkList;
2475  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2476
2477  while (!WorkList.empty()) {
2478    // Grab a record representing a case range to process off the worklist
2479    CaseRec CR = WorkList.back();
2480    WorkList.pop_back();
2481
2482    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2483      continue;
2484
2485    // If the range has few cases (two or less) emit a series of specific
2486    // tests.
2487    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2488      continue;
2489
2490    // If the switch has more than 5 blocks, and at least 40% dense, and the
2491    // target supports indirect branches, then emit a jump table rather than
2492    // lowering the switch to a binary tree of conditional branches.
2493    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2494      continue;
2495
2496    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2497    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2498    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2499  }
2500}
2501
2502
2503void SelectionDAGLowering::visitSub(User &I) {
2504  // -0.0 - X --> fneg
2505  const Type *Ty = I.getType();
2506  if (isa<VectorType>(Ty)) {
2507    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2508      const VectorType *DestTy = cast<VectorType>(I.getType());
2509      const Type *ElTy = DestTy->getElementType();
2510      if (ElTy->isFloatingPoint()) {
2511        unsigned VL = DestTy->getNumElements();
2512        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2513        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2514        if (CV == CNZ) {
2515          SDValue Op2 = getValue(I.getOperand(1));
2516          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2517          return;
2518        }
2519      }
2520    }
2521  }
2522  if (Ty->isFloatingPoint()) {
2523    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2524      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2525        SDValue Op2 = getValue(I.getOperand(1));
2526        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2527        return;
2528      }
2529  }
2530
2531  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2532}
2533
2534void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2535  SDValue Op1 = getValue(I.getOperand(0));
2536  SDValue Op2 = getValue(I.getOperand(1));
2537
2538  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2539}
2540
2541void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2542  SDValue Op1 = getValue(I.getOperand(0));
2543  SDValue Op2 = getValue(I.getOperand(1));
2544  if (!isa<VectorType>(I.getType())) {
2545    if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
2546      Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2547    else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
2548      Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2549  }
2550
2551  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2552}
2553
2554void SelectionDAGLowering::visitICmp(User &I) {
2555  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2556  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2557    predicate = IC->getPredicate();
2558  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2559    predicate = ICmpInst::Predicate(IC->getPredicate());
2560  SDValue Op1 = getValue(I.getOperand(0));
2561  SDValue Op2 = getValue(I.getOperand(1));
2562  ISD::CondCode Opcode;
2563  switch (predicate) {
2564    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2565    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2566    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2567    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2568    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2569    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2570    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2571    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2572    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2573    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2574    default:
2575      assert(!"Invalid ICmp predicate value");
2576      Opcode = ISD::SETEQ;
2577      break;
2578  }
2579  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2580}
2581
2582void SelectionDAGLowering::visitFCmp(User &I) {
2583  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2584  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2585    predicate = FC->getPredicate();
2586  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2587    predicate = FCmpInst::Predicate(FC->getPredicate());
2588  SDValue Op1 = getValue(I.getOperand(0));
2589  SDValue Op2 = getValue(I.getOperand(1));
2590  ISD::CondCode Condition, FOC, FPC;
2591  switch (predicate) {
2592    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2593    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2594    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2595    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2596    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2597    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2598    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2599    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2600    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2601    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2602    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2603    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2604    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2605    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2606    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2607    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2608    default:
2609      assert(!"Invalid FCmp predicate value");
2610      FOC = FPC = ISD::SETFALSE;
2611      break;
2612  }
2613  if (FiniteOnlyFPMath())
2614    Condition = FOC;
2615  else
2616    Condition = FPC;
2617  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2618}
2619
2620void SelectionDAGLowering::visitVICmp(User &I) {
2621  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2622  if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2623    predicate = IC->getPredicate();
2624  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2625    predicate = ICmpInst::Predicate(IC->getPredicate());
2626  SDValue Op1 = getValue(I.getOperand(0));
2627  SDValue Op2 = getValue(I.getOperand(1));
2628  ISD::CondCode Opcode;
2629  switch (predicate) {
2630    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2631    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2632    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2633    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2634    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2635    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2636    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2637    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2638    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2639    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2640    default:
2641      assert(!"Invalid ICmp predicate value");
2642      Opcode = ISD::SETEQ;
2643      break;
2644  }
2645  setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2646}
2647
2648void SelectionDAGLowering::visitVFCmp(User &I) {
2649  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2650  if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2651    predicate = FC->getPredicate();
2652  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2653    predicate = FCmpInst::Predicate(FC->getPredicate());
2654  SDValue Op1 = getValue(I.getOperand(0));
2655  SDValue Op2 = getValue(I.getOperand(1));
2656  ISD::CondCode Condition, FOC, FPC;
2657  switch (predicate) {
2658    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2659    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2660    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2661    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2662    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2663    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2664    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2665    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2666    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2667    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2668    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2669    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2670    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2671    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2672    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2673    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2674    default:
2675      assert(!"Invalid VFCmp predicate value");
2676      FOC = FPC = ISD::SETFALSE;
2677      break;
2678  }
2679  if (FiniteOnlyFPMath())
2680    Condition = FOC;
2681  else
2682    Condition = FPC;
2683
2684  MVT DestVT = TLI.getValueType(I.getType());
2685
2686  setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2687}
2688
2689void SelectionDAGLowering::visitSelect(User &I) {
2690  SDValue Cond     = getValue(I.getOperand(0));
2691  SDValue TrueVal  = getValue(I.getOperand(1));
2692  SDValue FalseVal = getValue(I.getOperand(2));
2693  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2694                           TrueVal, FalseVal));
2695}
2696
2697
2698void SelectionDAGLowering::visitTrunc(User &I) {
2699  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2700  SDValue N = getValue(I.getOperand(0));
2701  MVT DestVT = TLI.getValueType(I.getType());
2702  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2703}
2704
2705void SelectionDAGLowering::visitZExt(User &I) {
2706  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2707  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2708  SDValue N = getValue(I.getOperand(0));
2709  MVT DestVT = TLI.getValueType(I.getType());
2710  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2711}
2712
2713void SelectionDAGLowering::visitSExt(User &I) {
2714  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2715  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2716  SDValue N = getValue(I.getOperand(0));
2717  MVT DestVT = TLI.getValueType(I.getType());
2718  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2719}
2720
2721void SelectionDAGLowering::visitFPTrunc(User &I) {
2722  // FPTrunc is never a no-op cast, no need to check
2723  SDValue N = getValue(I.getOperand(0));
2724  MVT DestVT = TLI.getValueType(I.getType());
2725  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2726}
2727
2728void SelectionDAGLowering::visitFPExt(User &I){
2729  // FPTrunc is never a no-op cast, no need to check
2730  SDValue N = getValue(I.getOperand(0));
2731  MVT DestVT = TLI.getValueType(I.getType());
2732  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2733}
2734
2735void SelectionDAGLowering::visitFPToUI(User &I) {
2736  // FPToUI is never a no-op cast, no need to check
2737  SDValue N = getValue(I.getOperand(0));
2738  MVT DestVT = TLI.getValueType(I.getType());
2739  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2740}
2741
2742void SelectionDAGLowering::visitFPToSI(User &I) {
2743  // FPToSI is never a no-op cast, no need to check
2744  SDValue N = getValue(I.getOperand(0));
2745  MVT DestVT = TLI.getValueType(I.getType());
2746  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2747}
2748
2749void SelectionDAGLowering::visitUIToFP(User &I) {
2750  // UIToFP is never a no-op cast, no need to check
2751  SDValue N = getValue(I.getOperand(0));
2752  MVT DestVT = TLI.getValueType(I.getType());
2753  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2754}
2755
2756void SelectionDAGLowering::visitSIToFP(User &I){
2757  // UIToFP is never a no-op cast, no need to check
2758  SDValue N = getValue(I.getOperand(0));
2759  MVT DestVT = TLI.getValueType(I.getType());
2760  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2761}
2762
2763void SelectionDAGLowering::visitPtrToInt(User &I) {
2764  // What to do depends on the size of the integer and the size of the pointer.
2765  // We can either truncate, zero extend, or no-op, accordingly.
2766  SDValue N = getValue(I.getOperand(0));
2767  MVT SrcVT = N.getValueType();
2768  MVT DestVT = TLI.getValueType(I.getType());
2769  SDValue Result;
2770  if (DestVT.bitsLT(SrcVT))
2771    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2772  else
2773    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2774    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2775  setValue(&I, Result);
2776}
2777
2778void SelectionDAGLowering::visitIntToPtr(User &I) {
2779  // What to do depends on the size of the integer and the size of the pointer.
2780  // We can either truncate, zero extend, or no-op, accordingly.
2781  SDValue N = getValue(I.getOperand(0));
2782  MVT SrcVT = N.getValueType();
2783  MVT DestVT = TLI.getValueType(I.getType());
2784  if (DestVT.bitsLT(SrcVT))
2785    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2786  else
2787    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2788    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2789}
2790
2791void SelectionDAGLowering::visitBitCast(User &I) {
2792  SDValue N = getValue(I.getOperand(0));
2793  MVT DestVT = TLI.getValueType(I.getType());
2794
2795  // BitCast assures us that source and destination are the same size so this
2796  // is either a BIT_CONVERT or a no-op.
2797  if (DestVT != N.getValueType())
2798    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2799  else
2800    setValue(&I, N); // noop cast.
2801}
2802
2803void SelectionDAGLowering::visitInsertElement(User &I) {
2804  SDValue InVec = getValue(I.getOperand(0));
2805  SDValue InVal = getValue(I.getOperand(1));
2806  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2807                                getValue(I.getOperand(2)));
2808
2809  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2810                           TLI.getValueType(I.getType()),
2811                           InVec, InVal, InIdx));
2812}
2813
2814void SelectionDAGLowering::visitExtractElement(User &I) {
2815  SDValue InVec = getValue(I.getOperand(0));
2816  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2817                                getValue(I.getOperand(1)));
2818  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2819                           TLI.getValueType(I.getType()), InVec, InIdx));
2820}
2821
2822void SelectionDAGLowering::visitShuffleVector(User &I) {
2823  SDValue V1   = getValue(I.getOperand(0));
2824  SDValue V2   = getValue(I.getOperand(1));
2825  SDValue Mask = getValue(I.getOperand(2));
2826
2827  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2828                           TLI.getValueType(I.getType()),
2829                           V1, V2, Mask));
2830}
2831
2832void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
2833  const Value *Op0 = I.getOperand(0);
2834  const Value *Op1 = I.getOperand(1);
2835  const Type *AggTy = I.getType();
2836  const Type *ValTy = Op1->getType();
2837  bool IntoUndef = isa<UndefValue>(Op0);
2838  bool FromUndef = isa<UndefValue>(Op1);
2839
2840  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2841                                            I.idx_begin(), I.idx_end());
2842
2843  SmallVector<MVT, 4> AggValueVTs;
2844  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2845  SmallVector<MVT, 4> ValValueVTs;
2846  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2847
2848  unsigned NumAggValues = AggValueVTs.size();
2849  unsigned NumValValues = ValValueVTs.size();
2850  SmallVector<SDValue, 4> Values(NumAggValues);
2851
2852  SDValue Agg = getValue(Op0);
2853  SDValue Val = getValue(Op1);
2854  unsigned i = 0;
2855  // Copy the beginning value(s) from the original aggregate.
2856  for (; i != LinearIndex; ++i)
2857    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2858                SDValue(Agg.getNode(), Agg.getResNo() + i);
2859  // Copy values from the inserted value(s).
2860  for (; i != LinearIndex + NumValValues; ++i)
2861    Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2862                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2863  // Copy remaining value(s) from the original aggregate.
2864  for (; i != NumAggValues; ++i)
2865    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2866                SDValue(Agg.getNode(), Agg.getResNo() + i);
2867
2868  setValue(&I, DAG.getMergeValues(DAG.getVTList(&AggValueVTs[0], NumAggValues),
2869                                  &Values[0], NumAggValues));
2870}
2871
2872void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
2873  const Value *Op0 = I.getOperand(0);
2874  const Type *AggTy = Op0->getType();
2875  const Type *ValTy = I.getType();
2876  bool OutOfUndef = isa<UndefValue>(Op0);
2877
2878  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2879                                            I.idx_begin(), I.idx_end());
2880
2881  SmallVector<MVT, 4> ValValueVTs;
2882  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2883
2884  unsigned NumValValues = ValValueVTs.size();
2885  SmallVector<SDValue, 4> Values(NumValValues);
2886
2887  SDValue Agg = getValue(Op0);
2888  // Copy out the selected value(s).
2889  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2890    Values[i - LinearIndex] =
2891      OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2892                   SDValue(Agg.getNode(), Agg.getResNo() + i);
2893
2894  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValValueVTs[0], NumValValues),
2895                                  &Values[0], NumValValues));
2896}
2897
2898
2899void SelectionDAGLowering::visitGetElementPtr(User &I) {
2900  SDValue N = getValue(I.getOperand(0));
2901  const Type *Ty = I.getOperand(0)->getType();
2902
2903  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2904       OI != E; ++OI) {
2905    Value *Idx = *OI;
2906    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2907      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2908      if (Field) {
2909        // N = N + Offset
2910        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2911        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2912                        DAG.getIntPtrConstant(Offset));
2913      }
2914      Ty = StTy->getElementType(Field);
2915    } else {
2916      Ty = cast<SequentialType>(Ty)->getElementType();
2917
2918      // If this is a constant subscript, handle it quickly.
2919      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2920        if (CI->getZExtValue() == 0) continue;
2921        uint64_t Offs =
2922            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2923        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2924                        DAG.getIntPtrConstant(Offs));
2925        continue;
2926      }
2927
2928      // N = N + Idx * ElementSize;
2929      uint64_t ElementSize = TD->getABITypeSize(Ty);
2930      SDValue IdxN = getValue(Idx);
2931
2932      // If the index is smaller or larger than intptr_t, truncate or extend
2933      // it.
2934      if (IdxN.getValueType().bitsLT(N.getValueType()))
2935        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2936      else if (IdxN.getValueType().bitsGT(N.getValueType()))
2937        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2938
2939      // If this is a multiply by a power of two, turn it into a shl
2940      // immediately.  This is a very common case.
2941      if (ElementSize != 1) {
2942        if (isPowerOf2_64(ElementSize)) {
2943          unsigned Amt = Log2_64(ElementSize);
2944          IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2945                             DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2946        } else {
2947          SDValue Scale = DAG.getIntPtrConstant(ElementSize);
2948          IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2949        }
2950      }
2951
2952      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2953    }
2954  }
2955  setValue(&I, N);
2956}
2957
2958void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2959  // If this is a fixed sized alloca in the entry block of the function,
2960  // allocate it statically on the stack.
2961  if (FuncInfo.StaticAllocaMap.count(&I))
2962    return;   // getValue will auto-populate this.
2963
2964  const Type *Ty = I.getAllocatedType();
2965  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2966  unsigned Align =
2967    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2968             I.getAlignment());
2969
2970  SDValue AllocSize = getValue(I.getArraySize());
2971  MVT IntPtr = TLI.getPointerTy();
2972  if (IntPtr.bitsLT(AllocSize.getValueType()))
2973    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2974  else if (IntPtr.bitsGT(AllocSize.getValueType()))
2975    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2976
2977  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2978                          DAG.getIntPtrConstant(TySize));
2979
2980  // Handle alignment.  If the requested alignment is less than or equal to
2981  // the stack alignment, ignore it.  If the size is greater than or equal to
2982  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2983  unsigned StackAlign =
2984    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2985  if (Align <= StackAlign)
2986    Align = 0;
2987
2988  // Round the size of the allocation up to the stack alignment size
2989  // by add SA-1 to the size.
2990  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2991                          DAG.getIntPtrConstant(StackAlign-1));
2992  // Mask out the low bits for alignment purposes.
2993  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2994                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2995
2996  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2997  const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2998                                                    MVT::Other);
2999  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
3000  setValue(&I, DSA);
3001  DAG.setRoot(DSA.getValue(1));
3002
3003  // Inform the Frame Information that we have just allocated a variable-sized
3004  // object.
3005  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
3006}
3007
3008void SelectionDAGLowering::visitLoad(LoadInst &I) {
3009  const Value *SV = I.getOperand(0);
3010  SDValue Ptr = getValue(SV);
3011
3012  const Type *Ty = I.getType();
3013  bool isVolatile = I.isVolatile();
3014  unsigned Alignment = I.getAlignment();
3015
3016  SmallVector<MVT, 4> ValueVTs;
3017  SmallVector<uint64_t, 4> Offsets;
3018  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3019  unsigned NumValues = ValueVTs.size();
3020  if (NumValues == 0)
3021    return;
3022
3023  SDValue Root;
3024  bool ConstantMemory = false;
3025  if (I.isVolatile())
3026    // Serialize volatile loads with other side effects.
3027    Root = getRoot();
3028  else if (AA->pointsToConstantMemory(SV)) {
3029    // Do not serialize (non-volatile) loads of constant memory with anything.
3030    Root = DAG.getEntryNode();
3031    ConstantMemory = true;
3032  } else {
3033    // Do not serialize non-volatile loads against each other.
3034    Root = DAG.getRoot();
3035  }
3036
3037  SmallVector<SDValue, 4> Values(NumValues);
3038  SmallVector<SDValue, 4> Chains(NumValues);
3039  MVT PtrVT = Ptr.getValueType();
3040  for (unsigned i = 0; i != NumValues; ++i) {
3041    SDValue L = DAG.getLoad(ValueVTs[i], Root,
3042                              DAG.getNode(ISD::ADD, PtrVT, Ptr,
3043                                          DAG.getConstant(Offsets[i], PtrVT)),
3044                              SV, Offsets[i],
3045                              isVolatile, Alignment);
3046    Values[i] = L;
3047    Chains[i] = L.getValue(1);
3048  }
3049
3050  if (!ConstantMemory) {
3051    SDValue Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3052                                  &Chains[0], NumValues);
3053    if (isVolatile)
3054      DAG.setRoot(Chain);
3055    else
3056      PendingLoads.push_back(Chain);
3057  }
3058
3059  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues),
3060                                  &Values[0], NumValues));
3061}
3062
3063
3064void SelectionDAGLowering::visitStore(StoreInst &I) {
3065  Value *SrcV = I.getOperand(0);
3066  Value *PtrV = I.getOperand(1);
3067
3068  SmallVector<MVT, 4> ValueVTs;
3069  SmallVector<uint64_t, 4> Offsets;
3070  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3071  unsigned NumValues = ValueVTs.size();
3072  if (NumValues == 0)
3073    return;
3074
3075  // Get the lowered operands. Note that we do this after
3076  // checking if NumResults is zero, because with zero results
3077  // the operands won't have values in the map.
3078  SDValue Src = getValue(SrcV);
3079  SDValue Ptr = getValue(PtrV);
3080
3081  SDValue Root = getRoot();
3082  SmallVector<SDValue, 4> Chains(NumValues);
3083  MVT PtrVT = Ptr.getValueType();
3084  bool isVolatile = I.isVolatile();
3085  unsigned Alignment = I.getAlignment();
3086  for (unsigned i = 0; i != NumValues; ++i)
3087    Chains[i] = DAG.getStore(Root, SDValue(Src.getNode(), Src.getResNo() + i),
3088                             DAG.getNode(ISD::ADD, PtrVT, Ptr,
3089                                         DAG.getConstant(Offsets[i], PtrVT)),
3090                             PtrV, Offsets[i],
3091                             isVolatile, Alignment);
3092
3093  DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
3094}
3095
3096/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3097/// node.
3098void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
3099                                                unsigned Intrinsic) {
3100  bool HasChain = !I.doesNotAccessMemory();
3101  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3102
3103  // Build the operand list.
3104  SmallVector<SDValue, 8> Ops;
3105  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3106    if (OnlyLoad) {
3107      // We don't need to serialize loads against other loads.
3108      Ops.push_back(DAG.getRoot());
3109    } else {
3110      Ops.push_back(getRoot());
3111    }
3112  }
3113
3114  // Add the intrinsic ID as an integer operand.
3115  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3116
3117  // Add all operands of the call to the operand list.
3118  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
3119    SDValue Op = getValue(I.getOperand(i));
3120    assert(TLI.isTypeLegal(Op.getValueType()) &&
3121           "Intrinsic uses a non-legal type?");
3122    Ops.push_back(Op);
3123  }
3124
3125  std::vector<MVT> VTs;
3126  if (I.getType() != Type::VoidTy) {
3127    MVT VT = TLI.getValueType(I.getType());
3128    if (VT.isVector()) {
3129      const VectorType *DestTy = cast<VectorType>(I.getType());
3130      MVT EltVT = TLI.getValueType(DestTy->getElementType());
3131
3132      VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
3133      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
3134    }
3135
3136    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
3137    VTs.push_back(VT);
3138  }
3139  if (HasChain)
3140    VTs.push_back(MVT::Other);
3141
3142  const MVT *VTList = DAG.getNodeValueTypes(VTs);
3143
3144  // Create the node.
3145  SDValue Result;
3146  if (!HasChain)
3147    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
3148                         &Ops[0], Ops.size());
3149  else if (I.getType() != Type::VoidTy)
3150    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
3151                         &Ops[0], Ops.size());
3152  else
3153    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
3154                         &Ops[0], Ops.size());
3155
3156  if (HasChain) {
3157    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3158    if (OnlyLoad)
3159      PendingLoads.push_back(Chain);
3160    else
3161      DAG.setRoot(Chain);
3162  }
3163  if (I.getType() != Type::VoidTy) {
3164    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3165      MVT VT = TLI.getValueType(PTy);
3166      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
3167    }
3168    setValue(&I, Result);
3169  }
3170}
3171
3172/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
3173static GlobalVariable *ExtractTypeInfo (Value *V) {
3174  V = V->stripPointerCasts();
3175  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3176  assert ((GV || isa<ConstantPointerNull>(V)) &&
3177          "TypeInfo must be a global variable or NULL");
3178  return GV;
3179}
3180
3181/// addCatchInfo - Extract the personality and type infos from an eh.selector
3182/// call, and add them to the specified machine basic block.
3183static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
3184                         MachineBasicBlock *MBB) {
3185  // Inform the MachineModuleInfo of the personality for this landing pad.
3186  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
3187  assert(CE->getOpcode() == Instruction::BitCast &&
3188         isa<Function>(CE->getOperand(0)) &&
3189         "Personality should be a function");
3190  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
3191
3192  // Gather all the type infos for this landing pad and pass them along to
3193  // MachineModuleInfo.
3194  std::vector<GlobalVariable *> TyInfo;
3195  unsigned N = I.getNumOperands();
3196
3197  for (unsigned i = N - 1; i > 2; --i) {
3198    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
3199      unsigned FilterLength = CI->getZExtValue();
3200      unsigned FirstCatch = i + FilterLength + !FilterLength;
3201      assert (FirstCatch <= N && "Invalid filter length");
3202
3203      if (FirstCatch < N) {
3204        TyInfo.reserve(N - FirstCatch);
3205        for (unsigned j = FirstCatch; j < N; ++j)
3206          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3207        MMI->addCatchTypeInfo(MBB, TyInfo);
3208        TyInfo.clear();
3209      }
3210
3211      if (!FilterLength) {
3212        // Cleanup.
3213        MMI->addCleanup(MBB);
3214      } else {
3215        // Filter.
3216        TyInfo.reserve(FilterLength - 1);
3217        for (unsigned j = i + 1; j < FirstCatch; ++j)
3218          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3219        MMI->addFilterTypeInfo(MBB, TyInfo);
3220        TyInfo.clear();
3221      }
3222
3223      N = i;
3224    }
3225  }
3226
3227  if (N > 3) {
3228    TyInfo.reserve(N - 3);
3229    for (unsigned j = 3; j < N; ++j)
3230      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3231    MMI->addCatchTypeInfo(MBB, TyInfo);
3232  }
3233}
3234
3235
3236/// Inlined utility function to implement binary input atomic intrinsics for
3237// visitIntrinsicCall: I is a call instruction
3238//                     Op is the associated NodeType for I
3239const char *
3240SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3241  SDValue Root = getRoot();
3242  SDValue L = DAG.getAtomic(Op, Root,
3243                              getValue(I.getOperand(1)),
3244                              getValue(I.getOperand(2)),
3245                              I.getOperand(1));
3246  setValue(&I, L);
3247  DAG.setRoot(L.getValue(1));
3248  return 0;
3249}
3250
3251/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3252/// we want to emit this as a call to a named external function, return the name
3253/// otherwise lower it and return null.
3254const char *
3255SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3256  switch (Intrinsic) {
3257  default:
3258    // By default, turn this into a target intrinsic node.
3259    visitTargetIntrinsic(I, Intrinsic);
3260    return 0;
3261  case Intrinsic::vastart:  visitVAStart(I); return 0;
3262  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3263  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3264  case Intrinsic::returnaddress:
3265    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
3266                             getValue(I.getOperand(1))));
3267    return 0;
3268  case Intrinsic::frameaddress:
3269    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
3270                             getValue(I.getOperand(1))));
3271    return 0;
3272  case Intrinsic::setjmp:
3273    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3274    break;
3275  case Intrinsic::longjmp:
3276    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3277    break;
3278  case Intrinsic::memcpy_i32:
3279  case Intrinsic::memcpy_i64: {
3280    SDValue Op1 = getValue(I.getOperand(1));
3281    SDValue Op2 = getValue(I.getOperand(2));
3282    SDValue Op3 = getValue(I.getOperand(3));
3283    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3284    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3285                              I.getOperand(1), 0, I.getOperand(2), 0));
3286    return 0;
3287  }
3288  case Intrinsic::memset_i32:
3289  case Intrinsic::memset_i64: {
3290    SDValue Op1 = getValue(I.getOperand(1));
3291    SDValue Op2 = getValue(I.getOperand(2));
3292    SDValue Op3 = getValue(I.getOperand(3));
3293    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3294    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
3295                              I.getOperand(1), 0));
3296    return 0;
3297  }
3298  case Intrinsic::memmove_i32:
3299  case Intrinsic::memmove_i64: {
3300    SDValue Op1 = getValue(I.getOperand(1));
3301    SDValue Op2 = getValue(I.getOperand(2));
3302    SDValue Op3 = getValue(I.getOperand(3));
3303    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3304
3305    // If the source and destination are known to not be aliases, we can
3306    // lower memmove as memcpy.
3307    uint64_t Size = -1ULL;
3308    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3309      Size = C->getValue();
3310    if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3311        AliasAnalysis::NoAlias) {
3312      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3313                                I.getOperand(1), 0, I.getOperand(2), 0));
3314      return 0;
3315    }
3316
3317    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
3318                               I.getOperand(1), 0, I.getOperand(2), 0));
3319    return 0;
3320  }
3321  case Intrinsic::dbg_stoppoint: {
3322    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3323    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3324    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
3325      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
3326      assert(DD && "Not a debug information descriptor");
3327      DAG.setRoot(DAG.getDbgStopPoint(getRoot(),
3328                                      SPI.getLine(),
3329                                      SPI.getColumn(),
3330                                      cast<CompileUnitDesc>(DD)));
3331    }
3332
3333    return 0;
3334  }
3335  case Intrinsic::dbg_region_start: {
3336    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3337    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
3338    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
3339      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
3340      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3341    }
3342
3343    return 0;
3344  }
3345  case Intrinsic::dbg_region_end: {
3346    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3347    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
3348    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
3349      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
3350      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3351    }
3352
3353    return 0;
3354  }
3355  case Intrinsic::dbg_func_start: {
3356    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3357    if (!MMI) return 0;
3358    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
3359    Value *SP = FSI.getSubprogram();
3360    if (SP && MMI->Verify(SP)) {
3361      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3362      // what (most?) gdb expects.
3363      DebugInfoDesc *DD = MMI->getDescFor(SP);
3364      assert(DD && "Not a debug information descriptor");
3365      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
3366      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
3367      unsigned SrcFile = MMI->RecordSource(CompileUnit);
3368      // Record the source line but does create a label. It will be emitted
3369      // at asm emission time.
3370      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
3371    }
3372
3373    return 0;
3374  }
3375  case Intrinsic::dbg_declare: {
3376    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3377    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3378    Value *Variable = DI.getVariable();
3379    if (MMI && Variable && MMI->Verify(Variable))
3380      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3381                              getValue(DI.getAddress()), getValue(Variable)));
3382    return 0;
3383  }
3384
3385  case Intrinsic::eh_exception: {
3386    if (!CurMBB->isLandingPad()) {
3387      // FIXME: Mark exception register as live in.  Hack for PR1508.
3388      unsigned Reg = TLI.getExceptionAddressRegister();
3389      if (Reg) CurMBB->addLiveIn(Reg);
3390    }
3391    // Insert the EXCEPTIONADDR instruction.
3392    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3393    SDValue Ops[1];
3394    Ops[0] = DAG.getRoot();
3395    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3396    setValue(&I, Op);
3397    DAG.setRoot(Op.getValue(1));
3398    return 0;
3399  }
3400
3401  case Intrinsic::eh_selector_i32:
3402  case Intrinsic::eh_selector_i64: {
3403    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3404    MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3405                         MVT::i32 : MVT::i64);
3406
3407    if (MMI) {
3408      if (CurMBB->isLandingPad())
3409        addCatchInfo(I, MMI, CurMBB);
3410      else {
3411#ifndef NDEBUG
3412        FuncInfo.CatchInfoLost.insert(&I);
3413#endif
3414        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3415        unsigned Reg = TLI.getExceptionSelectorRegister();
3416        if (Reg) CurMBB->addLiveIn(Reg);
3417      }
3418
3419      // Insert the EHSELECTION instruction.
3420      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3421      SDValue Ops[2];
3422      Ops[0] = getValue(I.getOperand(1));
3423      Ops[1] = getRoot();
3424      SDValue Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3425      setValue(&I, Op);
3426      DAG.setRoot(Op.getValue(1));
3427    } else {
3428      setValue(&I, DAG.getConstant(0, VT));
3429    }
3430
3431    return 0;
3432  }
3433
3434  case Intrinsic::eh_typeid_for_i32:
3435  case Intrinsic::eh_typeid_for_i64: {
3436    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3437    MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3438                         MVT::i32 : MVT::i64);
3439
3440    if (MMI) {
3441      // Find the type id for the given typeinfo.
3442      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3443
3444      unsigned TypeID = MMI->getTypeIDFor(GV);
3445      setValue(&I, DAG.getConstant(TypeID, VT));
3446    } else {
3447      // Return something different to eh_selector.
3448      setValue(&I, DAG.getConstant(1, VT));
3449    }
3450
3451    return 0;
3452  }
3453
3454  case Intrinsic::eh_return: {
3455    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3456
3457    if (MMI) {
3458      MMI->setCallsEHReturn(true);
3459      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3460                              MVT::Other,
3461                              getControlRoot(),
3462                              getValue(I.getOperand(1)),
3463                              getValue(I.getOperand(2))));
3464    } else {
3465      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3466    }
3467
3468    return 0;
3469  }
3470
3471   case Intrinsic::eh_unwind_init: {
3472     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3473       MMI->setCallsUnwindInit(true);
3474     }
3475
3476     return 0;
3477   }
3478
3479   case Intrinsic::eh_dwarf_cfa: {
3480     MVT VT = getValue(I.getOperand(1)).getValueType();
3481     SDValue CfaArg;
3482     if (VT.bitsGT(TLI.getPointerTy()))
3483       CfaArg = DAG.getNode(ISD::TRUNCATE,
3484                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3485     else
3486       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3487                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3488
3489     SDValue Offset = DAG.getNode(ISD::ADD,
3490                                    TLI.getPointerTy(),
3491                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3492                                                TLI.getPointerTy()),
3493                                    CfaArg);
3494     setValue(&I, DAG.getNode(ISD::ADD,
3495                              TLI.getPointerTy(),
3496                              DAG.getNode(ISD::FRAMEADDR,
3497                                          TLI.getPointerTy(),
3498                                          DAG.getConstant(0,
3499                                                          TLI.getPointerTy())),
3500                              Offset));
3501     return 0;
3502  }
3503
3504  case Intrinsic::sqrt:
3505    setValue(&I, DAG.getNode(ISD::FSQRT,
3506                             getValue(I.getOperand(1)).getValueType(),
3507                             getValue(I.getOperand(1))));
3508    return 0;
3509  case Intrinsic::powi:
3510    setValue(&I, DAG.getNode(ISD::FPOWI,
3511                             getValue(I.getOperand(1)).getValueType(),
3512                             getValue(I.getOperand(1)),
3513                             getValue(I.getOperand(2))));
3514    return 0;
3515  case Intrinsic::sin:
3516    setValue(&I, DAG.getNode(ISD::FSIN,
3517                             getValue(I.getOperand(1)).getValueType(),
3518                             getValue(I.getOperand(1))));
3519    return 0;
3520  case Intrinsic::cos:
3521    setValue(&I, DAG.getNode(ISD::FCOS,
3522                             getValue(I.getOperand(1)).getValueType(),
3523                             getValue(I.getOperand(1))));
3524    return 0;
3525  case Intrinsic::pow:
3526    setValue(&I, DAG.getNode(ISD::FPOW,
3527                             getValue(I.getOperand(1)).getValueType(),
3528                             getValue(I.getOperand(1)),
3529                             getValue(I.getOperand(2))));
3530    return 0;
3531  case Intrinsic::pcmarker: {
3532    SDValue Tmp = getValue(I.getOperand(1));
3533    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3534    return 0;
3535  }
3536  case Intrinsic::readcyclecounter: {
3537    SDValue Op = getRoot();
3538    SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3539                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3540                                &Op, 1);
3541    setValue(&I, Tmp);
3542    DAG.setRoot(Tmp.getValue(1));
3543    return 0;
3544  }
3545  case Intrinsic::part_select: {
3546    // Currently not implemented: just abort
3547    assert(0 && "part_select intrinsic not implemented");
3548    abort();
3549  }
3550  case Intrinsic::part_set: {
3551    // Currently not implemented: just abort
3552    assert(0 && "part_set intrinsic not implemented");
3553    abort();
3554  }
3555  case Intrinsic::bswap:
3556    setValue(&I, DAG.getNode(ISD::BSWAP,
3557                             getValue(I.getOperand(1)).getValueType(),
3558                             getValue(I.getOperand(1))));
3559    return 0;
3560  case Intrinsic::cttz: {
3561    SDValue Arg = getValue(I.getOperand(1));
3562    MVT Ty = Arg.getValueType();
3563    SDValue result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3564    setValue(&I, result);
3565    return 0;
3566  }
3567  case Intrinsic::ctlz: {
3568    SDValue Arg = getValue(I.getOperand(1));
3569    MVT Ty = Arg.getValueType();
3570    SDValue result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3571    setValue(&I, result);
3572    return 0;
3573  }
3574  case Intrinsic::ctpop: {
3575    SDValue Arg = getValue(I.getOperand(1));
3576    MVT Ty = Arg.getValueType();
3577    SDValue result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3578    setValue(&I, result);
3579    return 0;
3580  }
3581  case Intrinsic::stacksave: {
3582    SDValue Op = getRoot();
3583    SDValue Tmp = DAG.getNode(ISD::STACKSAVE,
3584              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3585    setValue(&I, Tmp);
3586    DAG.setRoot(Tmp.getValue(1));
3587    return 0;
3588  }
3589  case Intrinsic::stackrestore: {
3590    SDValue Tmp = getValue(I.getOperand(1));
3591    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3592    return 0;
3593  }
3594  case Intrinsic::var_annotation:
3595    // Discard annotate attributes
3596    return 0;
3597
3598  case Intrinsic::init_trampoline: {
3599    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
3600
3601    SDValue Ops[6];
3602    Ops[0] = getRoot();
3603    Ops[1] = getValue(I.getOperand(1));
3604    Ops[2] = getValue(I.getOperand(2));
3605    Ops[3] = getValue(I.getOperand(3));
3606    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3607    Ops[5] = DAG.getSrcValue(F);
3608
3609    SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE,
3610                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3611                                                      MVT::Other), 2,
3612                                Ops, 6);
3613
3614    setValue(&I, Tmp);
3615    DAG.setRoot(Tmp.getValue(1));
3616    return 0;
3617  }
3618
3619  case Intrinsic::gcroot:
3620    if (GFI) {
3621      Value *Alloca = I.getOperand(1);
3622      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3623
3624      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
3625      GFI->addStackRoot(FI->getIndex(), TypeMap);
3626    }
3627    return 0;
3628
3629  case Intrinsic::gcread:
3630  case Intrinsic::gcwrite:
3631    assert(0 && "GC failed to lower gcread/gcwrite intrinsics!");
3632    return 0;
3633
3634  case Intrinsic::flt_rounds: {
3635    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3636    return 0;
3637  }
3638
3639  case Intrinsic::trap: {
3640    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3641    return 0;
3642  }
3643  case Intrinsic::prefetch: {
3644    SDValue Ops[4];
3645    Ops[0] = getRoot();
3646    Ops[1] = getValue(I.getOperand(1));
3647    Ops[2] = getValue(I.getOperand(2));
3648    Ops[3] = getValue(I.getOperand(3));
3649    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3650    return 0;
3651  }
3652
3653  case Intrinsic::memory_barrier: {
3654    SDValue Ops[6];
3655    Ops[0] = getRoot();
3656    for (int x = 1; x < 6; ++x)
3657      Ops[x] = getValue(I.getOperand(x));
3658
3659    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3660    return 0;
3661  }
3662  case Intrinsic::atomic_cmp_swap: {
3663    SDValue Root = getRoot();
3664    SDValue L;
3665    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3666      case MVT::i8:
3667        L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_8, Root,
3668                          getValue(I.getOperand(1)),
3669                          getValue(I.getOperand(2)),
3670                          getValue(I.getOperand(3)),
3671                          I.getOperand(1));
3672        break;
3673      case MVT::i16:
3674        L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_16, Root,
3675                          getValue(I.getOperand(1)),
3676                          getValue(I.getOperand(2)),
3677                          getValue(I.getOperand(3)),
3678                          I.getOperand(1));
3679        break;
3680      case MVT::i32:
3681        L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_32, Root,
3682                          getValue(I.getOperand(1)),
3683                          getValue(I.getOperand(2)),
3684                          getValue(I.getOperand(3)),
3685                          I.getOperand(1));
3686        break;
3687      case MVT::i64:
3688        L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_64, Root,
3689                          getValue(I.getOperand(1)),
3690                          getValue(I.getOperand(2)),
3691                          getValue(I.getOperand(3)),
3692                          I.getOperand(1));
3693        break;
3694      default:
3695       assert(0 && "Invalid atomic type");
3696       abort();
3697    }
3698    setValue(&I, L);
3699    DAG.setRoot(L.getValue(1));
3700    return 0;
3701  }
3702  case Intrinsic::atomic_load_add:
3703    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3704      case MVT::i8:
3705        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_8);
3706      case MVT::i16:
3707        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_16);
3708      case MVT::i32:
3709        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_32);
3710      case MVT::i64:
3711        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_64);
3712      default:
3713       assert(0 && "Invalid atomic type");
3714       abort();
3715    }
3716  case Intrinsic::atomic_load_sub:
3717    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3718      case MVT::i8:
3719        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_8);
3720      case MVT::i16:
3721        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_16);
3722      case MVT::i32:
3723        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_32);
3724      case MVT::i64:
3725        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_64);
3726      default:
3727       assert(0 && "Invalid atomic type");
3728       abort();
3729    }
3730  case Intrinsic::atomic_load_or:
3731    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3732      case MVT::i8:
3733        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_8);
3734      case MVT::i16:
3735        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_16);
3736      case MVT::i32:
3737        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_32);
3738      case MVT::i64:
3739        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_64);
3740      default:
3741       assert(0 && "Invalid atomic type");
3742       abort();
3743    }
3744  case Intrinsic::atomic_load_xor:
3745    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3746      case MVT::i8:
3747        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_8);
3748      case MVT::i16:
3749        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_16);
3750      case MVT::i32:
3751        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_32);
3752      case MVT::i64:
3753        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_64);
3754      default:
3755       assert(0 && "Invalid atomic type");
3756       abort();
3757    }
3758  case Intrinsic::atomic_load_and:
3759    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3760      case MVT::i8:
3761        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_8);
3762      case MVT::i16:
3763        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_16);
3764      case MVT::i32:
3765        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_32);
3766      case MVT::i64:
3767        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_64);
3768      default:
3769       assert(0 && "Invalid atomic type");
3770       abort();
3771    }
3772  case Intrinsic::atomic_load_nand:
3773    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3774      case MVT::i8:
3775        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_8);
3776      case MVT::i16:
3777        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_16);
3778      case MVT::i32:
3779        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_32);
3780      case MVT::i64:
3781        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_64);
3782      default:
3783       assert(0 && "Invalid atomic type");
3784       abort();
3785    }
3786  case Intrinsic::atomic_load_max:
3787    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3788      case MVT::i8:
3789        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_8);
3790      case MVT::i16:
3791        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_16);
3792      case MVT::i32:
3793        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_32);
3794      case MVT::i64:
3795        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_64);
3796      default:
3797       assert(0 && "Invalid atomic type");
3798       abort();
3799    }
3800  case Intrinsic::atomic_load_min:
3801    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3802      case MVT::i8:
3803        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_8);
3804      case MVT::i16:
3805        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_16);
3806      case MVT::i32:
3807        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_32);
3808      case MVT::i64:
3809        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_64);
3810      default:
3811       assert(0 && "Invalid atomic type");
3812       abort();
3813    }
3814  case Intrinsic::atomic_load_umin:
3815    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3816      case MVT::i8:
3817        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_8);
3818      case MVT::i16:
3819        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_16);
3820      case MVT::i32:
3821        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_32);
3822      case MVT::i64:
3823        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_64);
3824      default:
3825       assert(0 && "Invalid atomic type");
3826       abort();
3827    }
3828  case Intrinsic::atomic_load_umax:
3829    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3830      case MVT::i8:
3831        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_8);
3832      case MVT::i16:
3833        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_16);
3834      case MVT::i32:
3835        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_32);
3836      case MVT::i64:
3837        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_64);
3838      default:
3839       assert(0 && "Invalid atomic type");
3840       abort();
3841    }
3842  case Intrinsic::atomic_swap:
3843    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3844      case MVT::i8:
3845        return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_8);
3846      case MVT::i16:
3847        return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_16);
3848      case MVT::i32:
3849        return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_32);
3850      case MVT::i64:
3851        return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_64);
3852      default:
3853       assert(0 && "Invalid atomic type");
3854       abort();
3855    }
3856  }
3857}
3858
3859
3860void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
3861                                       bool IsTailCall,
3862                                       MachineBasicBlock *LandingPad) {
3863  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3864  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3865  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3866  unsigned BeginLabel = 0, EndLabel = 0;
3867
3868  TargetLowering::ArgListTy Args;
3869  TargetLowering::ArgListEntry Entry;
3870  Args.reserve(CS.arg_size());
3871  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3872       i != e; ++i) {
3873    SDValue ArgNode = getValue(*i);
3874    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3875
3876    unsigned attrInd = i - CS.arg_begin() + 1;
3877    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3878    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3879    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3880    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3881    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3882    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3883    Entry.Alignment = CS.getParamAlignment(attrInd);
3884    Args.push_back(Entry);
3885  }
3886
3887  if (LandingPad && MMI) {
3888    // Insert a label before the invoke call to mark the try range.  This can be
3889    // used to detect deletion of the invoke via the MachineModuleInfo.
3890    BeginLabel = MMI->NextLabelID();
3891    // Both PendingLoads and PendingExports must be flushed here;
3892    // this call might not return.
3893    (void)getRoot();
3894    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel));
3895  }
3896
3897  std::pair<SDValue,SDValue> Result =
3898    TLI.LowerCallTo(getRoot(), CS.getType(),
3899                    CS.paramHasAttr(0, ParamAttr::SExt),
3900                    CS.paramHasAttr(0, ParamAttr::ZExt),
3901                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3902                    Callee, Args, DAG);
3903  if (CS.getType() != Type::VoidTy)
3904    setValue(CS.getInstruction(), Result.first);
3905  DAG.setRoot(Result.second);
3906
3907  if (LandingPad && MMI) {
3908    // Insert a label at the end of the invoke call to mark the try range.  This
3909    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3910    EndLabel = MMI->NextLabelID();
3911    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel));
3912
3913    // Inform MachineModuleInfo of range.
3914    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3915  }
3916}
3917
3918
3919void SelectionDAGLowering::visitCall(CallInst &I) {
3920  const char *RenameFn = 0;
3921  if (Function *F = I.getCalledFunction()) {
3922    if (F->isDeclaration()) {
3923      if (unsigned IID = F->getIntrinsicID()) {
3924        RenameFn = visitIntrinsicCall(I, IID);
3925        if (!RenameFn)
3926          return;
3927      }
3928    }
3929
3930    // Check for well-known libc/libm calls.  If the function is internal, it
3931    // can't be a library call.
3932    unsigned NameLen = F->getNameLen();
3933    if (!F->hasInternalLinkage() && NameLen) {
3934      const char *NameStr = F->getNameStart();
3935      if (NameStr[0] == 'c' &&
3936          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3937           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3938        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3939            I.getOperand(1)->getType()->isFloatingPoint() &&
3940            I.getType() == I.getOperand(1)->getType() &&
3941            I.getType() == I.getOperand(2)->getType()) {
3942          SDValue LHS = getValue(I.getOperand(1));
3943          SDValue RHS = getValue(I.getOperand(2));
3944          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3945                                   LHS, RHS));
3946          return;
3947        }
3948      } else if (NameStr[0] == 'f' &&
3949                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3950                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3951                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3952        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3953            I.getOperand(1)->getType()->isFloatingPoint() &&
3954            I.getType() == I.getOperand(1)->getType()) {
3955          SDValue Tmp = getValue(I.getOperand(1));
3956          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3957          return;
3958        }
3959      } else if (NameStr[0] == 's' &&
3960                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3961                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3962                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3963        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3964            I.getOperand(1)->getType()->isFloatingPoint() &&
3965            I.getType() == I.getOperand(1)->getType()) {
3966          SDValue Tmp = getValue(I.getOperand(1));
3967          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3968          return;
3969        }
3970      } else if (NameStr[0] == 'c' &&
3971                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3972                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3973                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3974        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3975            I.getOperand(1)->getType()->isFloatingPoint() &&
3976            I.getType() == I.getOperand(1)->getType()) {
3977          SDValue Tmp = getValue(I.getOperand(1));
3978          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3979          return;
3980        }
3981      }
3982    }
3983  } else if (isa<InlineAsm>(I.getOperand(0))) {
3984    visitInlineAsm(&I);
3985    return;
3986  }
3987
3988  SDValue Callee;
3989  if (!RenameFn)
3990    Callee = getValue(I.getOperand(0));
3991  else
3992    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3993
3994  LowerCallTo(&I, Callee, I.isTailCall());
3995}
3996
3997
3998/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3999/// this value and returns the result as a ValueVT value.  This uses
4000/// Chain/Flag as the input and updates them for the output Chain/Flag.
4001/// If the Flag pointer is NULL, no flag is used.
4002SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
4003                                      SDValue &Chain,
4004                                      SDValue *Flag) const {
4005  // Assemble the legal parts into the final values.
4006  SmallVector<SDValue, 4> Values(ValueVTs.size());
4007  SmallVector<SDValue, 8> Parts;
4008  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4009    // Copy the legal parts from the registers.
4010    MVT ValueVT = ValueVTs[Value];
4011    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
4012    MVT RegisterVT = RegVTs[Value];
4013
4014    Parts.resize(NumRegs);
4015    for (unsigned i = 0; i != NumRegs; ++i) {
4016      SDValue P;
4017      if (Flag == 0)
4018        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
4019      else {
4020        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
4021        *Flag = P.getValue(2);
4022      }
4023      Chain = P.getValue(1);
4024
4025      // If the source register was virtual and if we know something about it,
4026      // add an assert node.
4027      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4028          RegisterVT.isInteger() && !RegisterVT.isVector()) {
4029        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4030        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4031        if (FLI.LiveOutRegInfo.size() > SlotNo) {
4032          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4033
4034          unsigned RegSize = RegisterVT.getSizeInBits();
4035          unsigned NumSignBits = LOI.NumSignBits;
4036          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4037
4038          // FIXME: We capture more information than the dag can represent.  For
4039          // now, just use the tightest assertzext/assertsext possible.
4040          bool isSExt = true;
4041          MVT FromVT(MVT::Other);
4042          if (NumSignBits == RegSize)
4043            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
4044          else if (NumZeroBits >= RegSize-1)
4045            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
4046          else if (NumSignBits > RegSize-8)
4047            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
4048          else if (NumZeroBits >= RegSize-9)
4049            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
4050          else if (NumSignBits > RegSize-16)
4051            isSExt = true, FromVT = MVT::i16;   // ASSERT SEXT 16
4052          else if (NumZeroBits >= RegSize-17)
4053            isSExt = false, FromVT = MVT::i16;  // ASSERT ZEXT 16
4054          else if (NumSignBits > RegSize-32)
4055            isSExt = true, FromVT = MVT::i32;   // ASSERT SEXT 32
4056          else if (NumZeroBits >= RegSize-33)
4057            isSExt = false, FromVT = MVT::i32;  // ASSERT ZEXT 32
4058
4059          if (FromVT != MVT::Other) {
4060            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
4061                            RegisterVT, P, DAG.getValueType(FromVT));
4062
4063          }
4064        }
4065      }
4066
4067      Parts[i] = P;
4068    }
4069
4070    Values[Value] = getCopyFromParts(DAG, Parts.begin(), NumRegs, RegisterVT,
4071                                     ValueVT);
4072    Part += NumRegs;
4073    Parts.clear();
4074  }
4075
4076  return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4077                            &Values[0], ValueVTs.size());
4078}
4079
4080/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4081/// specified value into the registers specified by this object.  This uses
4082/// Chain/Flag as the input and updates them for the output Chain/Flag.
4083/// If the Flag pointer is NULL, no flag is used.
4084void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
4085                                 SDValue &Chain, SDValue *Flag) const {
4086  // Get the list of the values's legal parts.
4087  unsigned NumRegs = Regs.size();
4088  SmallVector<SDValue, 8> Parts(NumRegs);
4089  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4090    MVT ValueVT = ValueVTs[Value];
4091    unsigned NumParts = TLI->getNumRegisters(ValueVT);
4092    MVT RegisterVT = RegVTs[Value];
4093
4094    getCopyToParts(DAG, Val.getValue(Val.getResNo() + Value),
4095                   &Parts[Part], NumParts, RegisterVT);
4096    Part += NumParts;
4097  }
4098
4099  // Copy the parts into the registers.
4100  SmallVector<SDValue, 8> Chains(NumRegs);
4101  for (unsigned i = 0; i != NumRegs; ++i) {
4102    SDValue Part;
4103    if (Flag == 0)
4104      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
4105    else {
4106      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
4107      *Flag = Part.getValue(1);
4108    }
4109    Chains[i] = Part.getValue(0);
4110  }
4111
4112  if (NumRegs == 1 || Flag)
4113    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4114    // flagged to it. That is the CopyToReg nodes and the user are considered
4115    // a single scheduling unit. If we create a TokenFactor and return it as
4116    // chain, then the TokenFactor is both a predecessor (operand) of the
4117    // user as well as a successor (the TF operands are flagged to the user).
4118    // c1, f1 = CopyToReg
4119    // c2, f2 = CopyToReg
4120    // c3     = TokenFactor c1, c2
4121    // ...
4122    //        = op c3, ..., f2
4123    Chain = Chains[NumRegs-1];
4124  else
4125    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4126}
4127
4128/// AddInlineAsmOperands - Add this value to the specified inlineasm node
4129/// operand list.  This adds the code marker and includes the number of
4130/// values added into it.
4131void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
4132                                        std::vector<SDValue> &Ops) const {
4133  MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4134  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
4135  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4136    unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
4137    MVT RegisterVT = RegVTs[Value];
4138    for (unsigned i = 0; i != NumRegs; ++i)
4139      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
4140  }
4141}
4142
4143/// isAllocatableRegister - If the specified register is safe to allocate,
4144/// i.e. it isn't a stack pointer or some other special register, return the
4145/// register class for the register.  Otherwise, return null.
4146static const TargetRegisterClass *
4147isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4148                      const TargetLowering &TLI,
4149                      const TargetRegisterInfo *TRI) {
4150  MVT FoundVT = MVT::Other;
4151  const TargetRegisterClass *FoundRC = 0;
4152  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4153       E = TRI->regclass_end(); RCI != E; ++RCI) {
4154    MVT ThisVT = MVT::Other;
4155
4156    const TargetRegisterClass *RC = *RCI;
4157    // If none of the the value types for this register class are valid, we
4158    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4159    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4160         I != E; ++I) {
4161      if (TLI.isTypeLegal(*I)) {
4162        // If we have already found this register in a different register class,
4163        // choose the one with the largest VT specified.  For example, on
4164        // PowerPC, we favor f64 register classes over f32.
4165        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4166          ThisVT = *I;
4167          break;
4168        }
4169      }
4170    }
4171
4172    if (ThisVT == MVT::Other) continue;
4173
4174    // NOTE: This isn't ideal.  In particular, this might allocate the
4175    // frame pointer in functions that need it (due to them not being taken
4176    // out of allocation, because a variable sized allocation hasn't been seen
4177    // yet).  This is a slight code pessimization, but should still work.
4178    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4179         E = RC->allocation_order_end(MF); I != E; ++I)
4180      if (*I == Reg) {
4181        // We found a matching register class.  Keep looking at others in case
4182        // we find one with larger registers that this physreg is also in.
4183        FoundRC = RC;
4184        FoundVT = ThisVT;
4185        break;
4186      }
4187  }
4188  return FoundRC;
4189}
4190
4191
4192namespace {
4193/// AsmOperandInfo - This contains information for each constraint that we are
4194/// lowering.
4195struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
4196  /// CallOperand - If this is the result output operand or a clobber
4197  /// this is null, otherwise it is the incoming operand to the CallInst.
4198  /// This gets modified as the asm is processed.
4199  SDValue CallOperand;
4200
4201  /// AssignedRegs - If this is a register or register class operand, this
4202  /// contains the set of register corresponding to the operand.
4203  RegsForValue AssignedRegs;
4204
4205  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4206    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4207  }
4208
4209  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4210  /// busy in OutputRegs/InputRegs.
4211  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4212                         std::set<unsigned> &OutputRegs,
4213                         std::set<unsigned> &InputRegs,
4214                         const TargetRegisterInfo &TRI) const {
4215    if (isOutReg) {
4216      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4217        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4218    }
4219    if (isInReg) {
4220      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4221        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4222    }
4223  }
4224
4225private:
4226  /// MarkRegAndAliases - Mark the specified register and all aliases in the
4227  /// specified set.
4228  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4229                                const TargetRegisterInfo &TRI) {
4230    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4231    Regs.insert(Reg);
4232    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4233      for (; *Aliases; ++Aliases)
4234        Regs.insert(*Aliases);
4235  }
4236};
4237} // end anon namespace.
4238
4239
4240/// GetRegistersForValue - Assign registers (virtual or physical) for the
4241/// specified operand.  We prefer to assign virtual registers, to allow the
4242/// register allocator handle the assignment process.  However, if the asm uses
4243/// features that we can't model on machineinstrs, we have SDISel do the
4244/// allocation.  This produces generally horrible, but correct, code.
4245///
4246///   OpInfo describes the operand.
4247///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
4248///     or any explicitly clobbered registers.
4249///   Input and OutputRegs are the set of already allocated physical registers.
4250///
4251void SelectionDAGLowering::
4252GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
4253                     std::set<unsigned> &OutputRegs,
4254                     std::set<unsigned> &InputRegs) {
4255  // Compute whether this value requires an input register, an output register,
4256  // or both.
4257  bool isOutReg = false;
4258  bool isInReg = false;
4259  switch (OpInfo.Type) {
4260  case InlineAsm::isOutput:
4261    isOutReg = true;
4262
4263    // If this is an early-clobber output, or if there is an input
4264    // constraint that matches this, we need to reserve the input register
4265    // so no other inputs allocate to it.
4266    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
4267    break;
4268  case InlineAsm::isInput:
4269    isInReg = true;
4270    isOutReg = false;
4271    break;
4272  case InlineAsm::isClobber:
4273    isOutReg = true;
4274    isInReg = true;
4275    break;
4276  }
4277
4278
4279  MachineFunction &MF = DAG.getMachineFunction();
4280  SmallVector<unsigned, 4> Regs;
4281
4282  // If this is a constraint for a single physreg, or a constraint for a
4283  // register class, find it.
4284  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4285    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4286                                     OpInfo.ConstraintVT);
4287
4288  unsigned NumRegs = 1;
4289  if (OpInfo.ConstraintVT != MVT::Other)
4290    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
4291  MVT RegVT;
4292  MVT ValueVT = OpInfo.ConstraintVT;
4293
4294
4295  // If this is a constraint for a specific physical register, like {r17},
4296  // assign it now.
4297  if (PhysReg.first) {
4298    if (OpInfo.ConstraintVT == MVT::Other)
4299      ValueVT = *PhysReg.second->vt_begin();
4300
4301    // Get the actual register value type.  This is important, because the user
4302    // may have asked for (e.g.) the AX register in i32 type.  We need to
4303    // remember that AX is actually i16 to get the right extension.
4304    RegVT = *PhysReg.second->vt_begin();
4305
4306    // This is a explicit reference to a physical register.
4307    Regs.push_back(PhysReg.first);
4308
4309    // If this is an expanded reference, add the rest of the regs to Regs.
4310    if (NumRegs != 1) {
4311      TargetRegisterClass::iterator I = PhysReg.second->begin();
4312      for (; *I != PhysReg.first; ++I)
4313        assert(I != PhysReg.second->end() && "Didn't find reg!");
4314
4315      // Already added the first reg.
4316      --NumRegs; ++I;
4317      for (; NumRegs; --NumRegs, ++I) {
4318        assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
4319        Regs.push_back(*I);
4320      }
4321    }
4322    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4323    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4324    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4325    return;
4326  }
4327
4328  // Otherwise, if this was a reference to an LLVM register class, create vregs
4329  // for this reference.
4330  std::vector<unsigned> RegClassRegs;
4331  const TargetRegisterClass *RC = PhysReg.second;
4332  if (RC) {
4333    // If this is an early clobber or tied register, our regalloc doesn't know
4334    // how to maintain the constraint.  If it isn't, go ahead and create vreg
4335    // and let the regalloc do the right thing.
4336    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
4337        // If there is some other early clobber and this is an input register,
4338        // then we are forced to pre-allocate the input reg so it doesn't
4339        // conflict with the earlyclobber.
4340        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
4341      RegVT = *PhysReg.second->vt_begin();
4342
4343      if (OpInfo.ConstraintVT == MVT::Other)
4344        ValueVT = RegVT;
4345
4346      // Create the appropriate number of virtual registers.
4347      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4348      for (; NumRegs; --NumRegs)
4349        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
4350
4351      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4352      return;
4353    }
4354
4355    // Otherwise, we can't allocate it.  Let the code below figure out how to
4356    // maintain these constraints.
4357    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
4358
4359  } else {
4360    // This is a reference to a register class that doesn't directly correspond
4361    // to an LLVM register class.  Allocate NumRegs consecutive, available,
4362    // registers from the class.
4363    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
4364                                                         OpInfo.ConstraintVT);
4365  }
4366
4367  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4368  unsigned NumAllocated = 0;
4369  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
4370    unsigned Reg = RegClassRegs[i];
4371    // See if this register is available.
4372    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
4373        (isInReg  && InputRegs.count(Reg))) {    // Already used.
4374      // Make sure we find consecutive registers.
4375      NumAllocated = 0;
4376      continue;
4377    }
4378
4379    // Check to see if this register is allocatable (i.e. don't give out the
4380    // stack pointer).
4381    if (RC == 0) {
4382      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
4383      if (!RC) {        // Couldn't allocate this register.
4384        // Reset NumAllocated to make sure we return consecutive registers.
4385        NumAllocated = 0;
4386        continue;
4387      }
4388    }
4389
4390    // Okay, this register is good, we can use it.
4391    ++NumAllocated;
4392
4393    // If we allocated enough consecutive registers, succeed.
4394    if (NumAllocated == NumRegs) {
4395      unsigned RegStart = (i-NumAllocated)+1;
4396      unsigned RegEnd   = i+1;
4397      // Mark all of the allocated registers used.
4398      for (unsigned i = RegStart; i != RegEnd; ++i)
4399        Regs.push_back(RegClassRegs[i]);
4400
4401      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
4402                                         OpInfo.ConstraintVT);
4403      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4404      return;
4405    }
4406  }
4407
4408  // Otherwise, we couldn't allocate enough registers for this.
4409}
4410
4411
4412/// visitInlineAsm - Handle a call to an InlineAsm object.
4413///
4414void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
4415  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4416
4417  /// ConstraintOperands - Information about all of the constraints.
4418  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
4419
4420  SDValue Chain = getRoot();
4421  SDValue Flag;
4422
4423  std::set<unsigned> OutputRegs, InputRegs;
4424
4425  // Do a prepass over the constraints, canonicalizing them, and building up the
4426  // ConstraintOperands list.
4427  std::vector<InlineAsm::ConstraintInfo>
4428    ConstraintInfos = IA->ParseConstraints();
4429
4430  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
4431  // constraint.  If so, we can't let the register allocator allocate any input
4432  // registers, because it will not know to avoid the earlyclobbered output reg.
4433  bool SawEarlyClobber = false;
4434
4435  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
4436  unsigned ResNo = 0;   // ResNo - The result number of the next output.
4437  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4438    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
4439    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
4440
4441    MVT OpVT = MVT::Other;
4442
4443    // Compute the value type for each operand.
4444    switch (OpInfo.Type) {
4445    case InlineAsm::isOutput:
4446      // Indirect outputs just consume an argument.
4447      if (OpInfo.isIndirect) {
4448        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4449        break;
4450      }
4451      // The return value of the call is this value.  As such, there is no
4452      // corresponding argument.
4453      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4454      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
4455        OpVT = TLI.getValueType(STy->getElementType(ResNo));
4456      } else {
4457        assert(ResNo == 0 && "Asm only has one result!");
4458        OpVT = TLI.getValueType(CS.getType());
4459      }
4460      ++ResNo;
4461      break;
4462    case InlineAsm::isInput:
4463      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4464      break;
4465    case InlineAsm::isClobber:
4466      // Nothing to do.
4467      break;
4468    }
4469
4470    // If this is an input or an indirect output, process the call argument.
4471    // BasicBlocks are labels, currently appearing only in asm's.
4472    if (OpInfo.CallOperandVal) {
4473      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
4474        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
4475      else {
4476        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
4477        const Type *OpTy = OpInfo.CallOperandVal->getType();
4478        // If this is an indirect operand, the operand is a pointer to the
4479        // accessed type.
4480        if (OpInfo.isIndirect)
4481          OpTy = cast<PointerType>(OpTy)->getElementType();
4482
4483        // If OpTy is not a single value, it may be a struct/union that we
4484        // can tile with integers.
4485        if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4486          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4487          switch (BitSize) {
4488          default: break;
4489          case 1:
4490          case 8:
4491          case 16:
4492          case 32:
4493          case 64:
4494            OpTy = IntegerType::get(BitSize);
4495            break;
4496          }
4497        }
4498
4499        OpVT = TLI.getValueType(OpTy, true);
4500      }
4501    }
4502
4503    OpInfo.ConstraintVT = OpVT;
4504
4505    // Compute the constraint code and ConstraintType to use.
4506    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
4507
4508    // Keep track of whether we see an earlyclobber.
4509    SawEarlyClobber |= OpInfo.isEarlyClobber;
4510
4511    // If we see a clobber of a register, it is an early clobber.
4512    if (!SawEarlyClobber &&
4513        OpInfo.Type == InlineAsm::isClobber &&
4514        OpInfo.ConstraintType == TargetLowering::C_Register) {
4515      // Note that we want to ignore things that we don't track here, like
4516      // dirflag, fpsr, flags, etc.
4517      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4518        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4519                                         OpInfo.ConstraintVT);
4520      if (PhysReg.first || PhysReg.second) {
4521        // This is a register we know of.
4522        SawEarlyClobber = true;
4523      }
4524    }
4525
4526    // If this is a memory input, and if the operand is not indirect, do what we
4527    // need to to provide an address for the memory input.
4528    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4529        !OpInfo.isIndirect) {
4530      assert(OpInfo.Type == InlineAsm::isInput &&
4531             "Can only indirectify direct input operands!");
4532
4533      // Memory operands really want the address of the value.  If we don't have
4534      // an indirect input, put it in the constpool if we can, otherwise spill
4535      // it to a stack slot.
4536
4537      // If the operand is a float, integer, or vector constant, spill to a
4538      // constant pool entry to get its address.
4539      Value *OpVal = OpInfo.CallOperandVal;
4540      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
4541          isa<ConstantVector>(OpVal)) {
4542        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
4543                                                 TLI.getPointerTy());
4544      } else {
4545        // Otherwise, create a stack slot and emit a store to it before the
4546        // asm.
4547        const Type *Ty = OpVal->getType();
4548        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
4549        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
4550        MachineFunction &MF = DAG.getMachineFunction();
4551        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
4552        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4553        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
4554        OpInfo.CallOperand = StackSlot;
4555      }
4556
4557      // There is no longer a Value* corresponding to this operand.
4558      OpInfo.CallOperandVal = 0;
4559      // It is now an indirect operand.
4560      OpInfo.isIndirect = true;
4561    }
4562
4563    // If this constraint is for a specific register, allocate it before
4564    // anything else.
4565    if (OpInfo.ConstraintType == TargetLowering::C_Register)
4566      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4567  }
4568  ConstraintInfos.clear();
4569
4570
4571  // Second pass - Loop over all of the operands, assigning virtual or physregs
4572  // to registerclass operands.
4573  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4574    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4575
4576    // C_Register operands have already been allocated, Other/Memory don't need
4577    // to be.
4578    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
4579      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4580  }
4581
4582  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
4583  std::vector<SDValue> AsmNodeOperands;
4584  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
4585  AsmNodeOperands.push_back(
4586          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
4587
4588
4589  // Loop over all of the inputs, copying the operand values into the
4590  // appropriate registers and processing the output regs.
4591  RegsForValue RetValRegs;
4592
4593  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
4594  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
4595
4596  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4597    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4598
4599    switch (OpInfo.Type) {
4600    case InlineAsm::isOutput: {
4601      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
4602          OpInfo.ConstraintType != TargetLowering::C_Register) {
4603        // Memory output, or 'other' output (e.g. 'X' constraint).
4604        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
4605
4606        // Add information to the INLINEASM node to know about this output.
4607        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4608        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4609                                                        TLI.getPointerTy()));
4610        AsmNodeOperands.push_back(OpInfo.CallOperand);
4611        break;
4612      }
4613
4614      // Otherwise, this is a register or register class output.
4615
4616      // Copy the output from the appropriate register.  Find a register that
4617      // we can use.
4618      if (OpInfo.AssignedRegs.Regs.empty()) {
4619        cerr << "Couldn't allocate output reg for constraint '"
4620             << OpInfo.ConstraintCode << "'!\n";
4621        exit(1);
4622      }
4623
4624      // If this is an indirect operand, store through the pointer after the
4625      // asm.
4626      if (OpInfo.isIndirect) {
4627        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
4628                                                      OpInfo.CallOperandVal));
4629      } else {
4630        // This is the result value of the call.
4631        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4632        // Concatenate this output onto the outputs list.
4633        RetValRegs.append(OpInfo.AssignedRegs);
4634      }
4635
4636      // Add information to the INLINEASM node to know that this register is
4637      // set.
4638      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
4639                                               AsmNodeOperands);
4640      break;
4641    }
4642    case InlineAsm::isInput: {
4643      SDValue InOperandVal = OpInfo.CallOperand;
4644
4645      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
4646        // If this is required to match an output register we have already set,
4647        // just use its register.
4648        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
4649
4650        // Scan until we find the definition we already emitted of this operand.
4651        // When we find it, create a RegsForValue operand.
4652        unsigned CurOp = 2;  // The first operand.
4653        for (; OperandNo; --OperandNo) {
4654          // Advance to the next operand.
4655          unsigned NumOps =
4656            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4657          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
4658                  (NumOps & 7) == 4 /*MEM*/) &&
4659                 "Skipped past definitions?");
4660          CurOp += (NumOps>>3)+1;
4661        }
4662
4663        unsigned NumOps =
4664          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4665        if ((NumOps & 7) == 2 /*REGDEF*/) {
4666          // Add NumOps>>3 registers to MatchedRegs.
4667          RegsForValue MatchedRegs;
4668          MatchedRegs.TLI = &TLI;
4669          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
4670          MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
4671          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
4672            unsigned Reg =
4673              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4674            MatchedRegs.Regs.push_back(Reg);
4675          }
4676
4677          // Use the produced MatchedRegs object to
4678          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4679          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
4680          break;
4681        } else {
4682          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
4683          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4684          // Add information to the INLINEASM node to know about this input.
4685          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4686          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4687                                                          TLI.getPointerTy()));
4688          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4689          break;
4690        }
4691      }
4692
4693      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4694        assert(!OpInfo.isIndirect &&
4695               "Don't know how to handle indirect other inputs yet!");
4696
4697        std::vector<SDValue> Ops;
4698        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
4699                                         Ops, DAG);
4700        if (Ops.empty()) {
4701          cerr << "Invalid operand for inline asm constraint '"
4702               << OpInfo.ConstraintCode << "'!\n";
4703          exit(1);
4704        }
4705
4706        // Add information to the INLINEASM node to know about this input.
4707        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4708        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4709                                                        TLI.getPointerTy()));
4710        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4711        break;
4712      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4713        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4714        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4715               "Memory operands expect pointer values");
4716
4717        // Add information to the INLINEASM node to know about this input.
4718        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4719        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4720                                                        TLI.getPointerTy()));
4721        AsmNodeOperands.push_back(InOperandVal);
4722        break;
4723      }
4724
4725      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4726              OpInfo.ConstraintType == TargetLowering::C_Register) &&
4727             "Unknown constraint type!");
4728      assert(!OpInfo.isIndirect &&
4729             "Don't know how to handle indirect register inputs yet!");
4730
4731      // Copy the input into the appropriate registers.
4732      assert(!OpInfo.AssignedRegs.Regs.empty() &&
4733             "Couldn't allocate input reg!");
4734
4735      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4736
4737      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
4738                                               AsmNodeOperands);
4739      break;
4740    }
4741    case InlineAsm::isClobber: {
4742      // Add the clobbered value to the operand list, so that the register
4743      // allocator is aware that the physreg got clobbered.
4744      if (!OpInfo.AssignedRegs.Regs.empty())
4745        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
4746                                                 AsmNodeOperands);
4747      break;
4748    }
4749    }
4750  }
4751
4752  // Finish up input operands.
4753  AsmNodeOperands[0] = Chain;
4754  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
4755
4756  Chain = DAG.getNode(ISD::INLINEASM,
4757                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4758                      &AsmNodeOperands[0], AsmNodeOperands.size());
4759  Flag = Chain.getValue(1);
4760
4761  // If this asm returns a register value, copy the result from that register
4762  // and set it as the value of the call.
4763  if (!RetValRegs.Regs.empty()) {
4764    SDValue Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4765
4766    // If any of the results of the inline asm is a vector, it may have the
4767    // wrong width/num elts.  This can happen for register classes that can
4768    // contain multiple different value types.  The preg or vreg allocated may
4769    // not have the same VT as was expected.  Convert it to the right type with
4770    // bit_convert.
4771    if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
4772      for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
4773        if (Val.getNode()->getValueType(i).isVector())
4774          Val = DAG.getNode(ISD::BIT_CONVERT,
4775                            TLI.getValueType(ResSTy->getElementType(i)), Val);
4776      }
4777    } else {
4778      if (Val.getValueType().isVector())
4779        Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
4780                          Val);
4781    }
4782
4783    setValue(CS.getInstruction(), Val);
4784  }
4785
4786  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
4787
4788  // Process indirect outputs, first output all of the flagged copies out of
4789  // physregs.
4790  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4791    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4792    Value *Ptr = IndirectStoresToEmit[i].second;
4793    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4794    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4795  }
4796
4797  // Emit the non-flagged stores from the physregs.
4798  SmallVector<SDValue, 8> OutChains;
4799  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4800    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4801                                    getValue(StoresToEmit[i].second),
4802                                    StoresToEmit[i].second, 0));
4803  if (!OutChains.empty())
4804    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4805                        &OutChains[0], OutChains.size());
4806  DAG.setRoot(Chain);
4807}
4808
4809
4810void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4811  SDValue Src = getValue(I.getOperand(0));
4812
4813  MVT IntPtr = TLI.getPointerTy();
4814
4815  if (IntPtr.bitsLT(Src.getValueType()))
4816    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4817  else if (IntPtr.bitsGT(Src.getValueType()))
4818    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4819
4820  // Scale the source by the type size.
4821  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4822  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4823                    Src, DAG.getIntPtrConstant(ElementSize));
4824
4825  TargetLowering::ArgListTy Args;
4826  TargetLowering::ArgListEntry Entry;
4827  Entry.Node = Src;
4828  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4829  Args.push_back(Entry);
4830
4831  std::pair<SDValue,SDValue> Result =
4832    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4833                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4834  setValue(&I, Result.first);  // Pointers always fit in registers
4835  DAG.setRoot(Result.second);
4836}
4837
4838void SelectionDAGLowering::visitFree(FreeInst &I) {
4839  TargetLowering::ArgListTy Args;
4840  TargetLowering::ArgListEntry Entry;
4841  Entry.Node = getValue(I.getOperand(0));
4842  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4843  Args.push_back(Entry);
4844  MVT IntPtr = TLI.getPointerTy();
4845  std::pair<SDValue,SDValue> Result =
4846    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4847                    CallingConv::C, true,
4848                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4849  DAG.setRoot(Result.second);
4850}
4851
4852// EmitInstrWithCustomInserter - This method should be implemented by targets
4853// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4854// instructions are special in various ways, which require special support to
4855// insert.  The specified MachineInstr is created but not inserted into any
4856// basic blocks, and the scheduler passes ownership of it to this method.
4857MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4858                                                       MachineBasicBlock *MBB) {
4859  cerr << "If a target marks an instruction with "
4860       << "'usesCustomDAGSchedInserter', it must implement "
4861       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4862  abort();
4863  return 0;
4864}
4865
4866void SelectionDAGLowering::visitVAStart(CallInst &I) {
4867  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4868                          getValue(I.getOperand(1)),
4869                          DAG.getSrcValue(I.getOperand(1))));
4870}
4871
4872void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4873  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4874                             getValue(I.getOperand(0)),
4875                             DAG.getSrcValue(I.getOperand(0)));
4876  setValue(&I, V);
4877  DAG.setRoot(V.getValue(1));
4878}
4879
4880void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4881  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4882                          getValue(I.getOperand(1)),
4883                          DAG.getSrcValue(I.getOperand(1))));
4884}
4885
4886void SelectionDAGLowering::visitVACopy(CallInst &I) {
4887  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4888                          getValue(I.getOperand(1)),
4889                          getValue(I.getOperand(2)),
4890                          DAG.getSrcValue(I.getOperand(1)),
4891                          DAG.getSrcValue(I.getOperand(2))));
4892}
4893
4894/// TargetLowering::LowerArguments - This is the default LowerArguments
4895/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4896/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4897/// integrated into SDISel.
4898void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
4899                                    SmallVectorImpl<SDValue> &ArgValues) {
4900  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4901  SmallVector<SDValue, 3+16> Ops;
4902  Ops.push_back(DAG.getRoot());
4903  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4904  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4905
4906  // Add one result value for each formal argument.
4907  SmallVector<MVT, 16> RetVals;
4908  unsigned j = 1;
4909  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4910       I != E; ++I, ++j) {
4911    SmallVector<MVT, 4> ValueVTs;
4912    ComputeValueVTs(*this, I->getType(), ValueVTs);
4913    for (unsigned Value = 0, NumValues = ValueVTs.size();
4914         Value != NumValues; ++Value) {
4915      MVT VT = ValueVTs[Value];
4916      const Type *ArgTy = VT.getTypeForMVT();
4917      ISD::ArgFlagsTy Flags;
4918      unsigned OriginalAlignment =
4919        getTargetData()->getABITypeAlignment(ArgTy);
4920
4921      if (F.paramHasAttr(j, ParamAttr::ZExt))
4922        Flags.setZExt();
4923      if (F.paramHasAttr(j, ParamAttr::SExt))
4924        Flags.setSExt();
4925      if (F.paramHasAttr(j, ParamAttr::InReg))
4926        Flags.setInReg();
4927      if (F.paramHasAttr(j, ParamAttr::StructRet))
4928        Flags.setSRet();
4929      if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4930        Flags.setByVal();
4931        const PointerType *Ty = cast<PointerType>(I->getType());
4932        const Type *ElementTy = Ty->getElementType();
4933        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4934        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4935        // For ByVal, alignment should be passed from FE.  BE will guess if
4936        // this info is not there but there are cases it cannot get right.
4937        if (F.getParamAlignment(j))
4938          FrameAlign = F.getParamAlignment(j);
4939        Flags.setByValAlign(FrameAlign);
4940        Flags.setByValSize(FrameSize);
4941      }
4942      if (F.paramHasAttr(j, ParamAttr::Nest))
4943        Flags.setNest();
4944      Flags.setOrigAlign(OriginalAlignment);
4945
4946      MVT RegisterVT = getRegisterType(VT);
4947      unsigned NumRegs = getNumRegisters(VT);
4948      for (unsigned i = 0; i != NumRegs; ++i) {
4949        RetVals.push_back(RegisterVT);
4950        ISD::ArgFlagsTy MyFlags = Flags;
4951        if (NumRegs > 1 && i == 0)
4952          MyFlags.setSplit();
4953        // if it isn't first piece, alignment must be 1
4954        else if (i > 0)
4955          MyFlags.setOrigAlign(1);
4956        Ops.push_back(DAG.getArgFlags(MyFlags));
4957      }
4958    }
4959  }
4960
4961  RetVals.push_back(MVT::Other);
4962
4963  // Create the node.
4964  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4965                               DAG.getVTList(&RetVals[0], RetVals.size()),
4966                               &Ops[0], Ops.size()).getNode();
4967
4968  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4969  // allows exposing the loads that may be part of the argument access to the
4970  // first DAGCombiner pass.
4971  SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG);
4972
4973  // The number of results should match up, except that the lowered one may have
4974  // an extra flag result.
4975  assert((Result->getNumValues() == TmpRes.getNode()->getNumValues() ||
4976          (Result->getNumValues()+1 == TmpRes.getNode()->getNumValues() &&
4977           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4978         && "Lowering produced unexpected number of results!");
4979
4980  // The FORMAL_ARGUMENTS node itself is likely no longer needed.
4981  if (Result != TmpRes.getNode() && Result->use_empty()) {
4982    HandleSDNode Dummy(DAG.getRoot());
4983    DAG.RemoveDeadNode(Result);
4984  }
4985
4986  Result = TmpRes.getNode();
4987
4988  unsigned NumArgRegs = Result->getNumValues() - 1;
4989  DAG.setRoot(SDValue(Result, NumArgRegs));
4990
4991  // Set up the return result vector.
4992  unsigned i = 0;
4993  unsigned Idx = 1;
4994  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4995      ++I, ++Idx) {
4996    SmallVector<MVT, 4> ValueVTs;
4997    ComputeValueVTs(*this, I->getType(), ValueVTs);
4998    for (unsigned Value = 0, NumValues = ValueVTs.size();
4999         Value != NumValues; ++Value) {
5000      MVT VT = ValueVTs[Value];
5001      MVT PartVT = getRegisterType(VT);
5002
5003      unsigned NumParts = getNumRegisters(VT);
5004      SmallVector<SDValue, 4> Parts(NumParts);
5005      for (unsigned j = 0; j != NumParts; ++j)
5006        Parts[j] = SDValue(Result, i++);
5007
5008      ISD::NodeType AssertOp = ISD::DELETED_NODE;
5009      if (F.paramHasAttr(Idx, ParamAttr::SExt))
5010        AssertOp = ISD::AssertSext;
5011      else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
5012        AssertOp = ISD::AssertZext;
5013
5014      ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
5015                                           AssertOp));
5016    }
5017  }
5018  assert(i == NumArgRegs && "Argument register count mismatch!");
5019}
5020
5021
5022/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5023/// implementation, which just inserts an ISD::CALL node, which is later custom
5024/// lowered by the target to something concrete.  FIXME: When all targets are
5025/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
5026std::pair<SDValue, SDValue>
5027TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5028                            bool RetSExt, bool RetZExt, bool isVarArg,
5029                            unsigned CallingConv, bool isTailCall,
5030                            SDValue Callee,
5031                            ArgListTy &Args, SelectionDAG &DAG) {
5032  SmallVector<SDValue, 32> Ops;
5033  Ops.push_back(Chain);   // Op#0 - Chain
5034  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
5035  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
5036  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
5037  Ops.push_back(Callee);
5038
5039  // Handle all of the outgoing arguments.
5040  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5041    SmallVector<MVT, 4> ValueVTs;
5042    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5043    for (unsigned Value = 0, NumValues = ValueVTs.size();
5044         Value != NumValues; ++Value) {
5045      MVT VT = ValueVTs[Value];
5046      const Type *ArgTy = VT.getTypeForMVT();
5047      SDValue Op = SDValue(Args[i].Node.getNode(), Args[i].Node.getResNo() + Value);
5048      ISD::ArgFlagsTy Flags;
5049      unsigned OriginalAlignment =
5050        getTargetData()->getABITypeAlignment(ArgTy);
5051
5052      if (Args[i].isZExt)
5053        Flags.setZExt();
5054      if (Args[i].isSExt)
5055        Flags.setSExt();
5056      if (Args[i].isInReg)
5057        Flags.setInReg();
5058      if (Args[i].isSRet)
5059        Flags.setSRet();
5060      if (Args[i].isByVal) {
5061        Flags.setByVal();
5062        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5063        const Type *ElementTy = Ty->getElementType();
5064        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5065        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
5066        // For ByVal, alignment should come from FE.  BE will guess if this
5067        // info is not there but there are cases it cannot get right.
5068        if (Args[i].Alignment)
5069          FrameAlign = Args[i].Alignment;
5070        Flags.setByValAlign(FrameAlign);
5071        Flags.setByValSize(FrameSize);
5072      }
5073      if (Args[i].isNest)
5074        Flags.setNest();
5075      Flags.setOrigAlign(OriginalAlignment);
5076
5077      MVT PartVT = getRegisterType(VT);
5078      unsigned NumParts = getNumRegisters(VT);
5079      SmallVector<SDValue, 4> Parts(NumParts);
5080      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5081
5082      if (Args[i].isSExt)
5083        ExtendKind = ISD::SIGN_EXTEND;
5084      else if (Args[i].isZExt)
5085        ExtendKind = ISD::ZERO_EXTEND;
5086
5087      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
5088
5089      for (unsigned i = 0; i != NumParts; ++i) {
5090        // if it isn't first piece, alignment must be 1
5091        ISD::ArgFlagsTy MyFlags = Flags;
5092        if (NumParts > 1 && i == 0)
5093          MyFlags.setSplit();
5094        else if (i != 0)
5095          MyFlags.setOrigAlign(1);
5096
5097        Ops.push_back(Parts[i]);
5098        Ops.push_back(DAG.getArgFlags(MyFlags));
5099      }
5100    }
5101  }
5102
5103  // Figure out the result value types. We start by making a list of
5104  // the potentially illegal return value types.
5105  SmallVector<MVT, 4> LoweredRetTys;
5106  SmallVector<MVT, 4> RetTys;
5107  ComputeValueVTs(*this, RetTy, RetTys);
5108
5109  // Then we translate that to a list of legal types.
5110  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5111    MVT VT = RetTys[I];
5112    MVT RegisterVT = getRegisterType(VT);
5113    unsigned NumRegs = getNumRegisters(VT);
5114    for (unsigned i = 0; i != NumRegs; ++i)
5115      LoweredRetTys.push_back(RegisterVT);
5116  }
5117
5118  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
5119
5120  // Create the CALL node.
5121  SDValue Res = DAG.getNode(ISD::CALL,
5122                              DAG.getVTList(&LoweredRetTys[0],
5123                                            LoweredRetTys.size()),
5124                              &Ops[0], Ops.size());
5125  Chain = Res.getValue(LoweredRetTys.size() - 1);
5126
5127  // Gather up the call result into a single value.
5128  if (RetTy != Type::VoidTy) {
5129    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5130
5131    if (RetSExt)
5132      AssertOp = ISD::AssertSext;
5133    else if (RetZExt)
5134      AssertOp = ISD::AssertZext;
5135
5136    SmallVector<SDValue, 4> ReturnValues;
5137    unsigned RegNo = 0;
5138    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5139      MVT VT = RetTys[I];
5140      MVT RegisterVT = getRegisterType(VT);
5141      unsigned NumRegs = getNumRegisters(VT);
5142      unsigned RegNoEnd = NumRegs + RegNo;
5143      SmallVector<SDValue, 4> Results;
5144      for (; RegNo != RegNoEnd; ++RegNo)
5145        Results.push_back(Res.getValue(RegNo));
5146      SDValue ReturnValue =
5147        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
5148                         AssertOp);
5149      ReturnValues.push_back(ReturnValue);
5150    }
5151    Res = DAG.getMergeValues(DAG.getVTList(&RetTys[0], RetTys.size()),
5152                             &ReturnValues[0], ReturnValues.size());
5153  }
5154
5155  return std::make_pair(Res, Chain);
5156}
5157
5158SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5159  assert(0 && "LowerOperation not implemented for this target!");
5160  abort();
5161  return SDValue();
5162}
5163
5164
5165//===----------------------------------------------------------------------===//
5166// SelectionDAGISel code
5167//===----------------------------------------------------------------------===//
5168
5169SelectionDAGISel::SelectionDAGISel(TargetLowering &tli, bool fast) :
5170  FunctionPass((intptr_t)&ID), TLI(tli),
5171  FuncInfo(new FunctionLoweringInfo(TLI)),
5172  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
5173  SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo)),
5174  GFI(),
5175  Fast(fast),
5176  DAGSize(0)
5177{}
5178
5179SelectionDAGISel::~SelectionDAGISel() {
5180  delete SDL;
5181  delete CurDAG;
5182  delete FuncInfo;
5183}
5184
5185unsigned SelectionDAGISel::MakeReg(MVT VT) {
5186  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
5187}
5188
5189void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
5190  AU.addRequired<AliasAnalysis>();
5191  AU.addRequired<GCModuleInfo>();
5192  AU.setPreservesAll();
5193}
5194
5195bool SelectionDAGISel::runOnFunction(Function &Fn) {
5196  // Get alias analysis for load/store combining.
5197  AA = &getAnalysis<AliasAnalysis>();
5198
5199  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
5200  if (MF.getFunction()->hasGC())
5201    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(*MF.getFunction());
5202  else
5203    GFI = 0;
5204  RegInfo = &MF.getRegInfo();
5205  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
5206
5207  FuncInfo->set(Fn, MF);
5208  CurDAG->init(MF, getAnalysisToUpdate<MachineModuleInfo>());
5209  SDL->init(GFI, *AA);
5210
5211  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
5212    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
5213      // Mark landing pad.
5214      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
5215
5216  SelectAllBasicBlocks(Fn, MF);
5217
5218  // Add function live-ins to entry block live-in set.
5219  BasicBlock *EntryBB = &Fn.getEntryBlock();
5220  BB = FuncInfo->MBBMap[EntryBB];
5221  if (!RegInfo->livein_empty())
5222    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
5223           E = RegInfo->livein_end(); I != E; ++I)
5224      BB->addLiveIn(I->first);
5225
5226#ifndef NDEBUG
5227  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
5228         "Not all catch info was assigned to a landing pad!");
5229#endif
5230
5231  FuncInfo->clear();
5232
5233  return true;
5234}
5235
5236void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
5237  SDValue Op = getValue(V);
5238  assert((Op.getOpcode() != ISD::CopyFromReg ||
5239          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5240         "Copy from a reg to the same reg!");
5241  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5242
5243  RegsForValue RFV(TLI, Reg, V->getType());
5244  SDValue Chain = DAG.getEntryNode();
5245  RFV.getCopyToRegs(Op, DAG, Chain, 0);
5246  PendingExports.push_back(Chain);
5247}
5248
5249void SelectionDAGISel::
5250LowerArguments(BasicBlock *LLVMBB) {
5251  // If this is the entry block, emit arguments.
5252  Function &F = *LLVMBB->getParent();
5253  SDValue OldRoot = SDL->DAG.getRoot();
5254  SmallVector<SDValue, 16> Args;
5255  TLI.LowerArguments(F, SDL->DAG, Args);
5256
5257  unsigned a = 0;
5258  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
5259       AI != E; ++AI) {
5260    SmallVector<MVT, 4> ValueVTs;
5261    ComputeValueVTs(TLI, AI->getType(), ValueVTs);
5262    unsigned NumValues = ValueVTs.size();
5263    if (!AI->use_empty()) {
5264      SDL->setValue(AI, SDL->DAG.getMergeValues(&Args[a], NumValues));
5265      // If this argument is live outside of the entry block, insert a copy from
5266      // whereever we got it to the vreg that other BB's will reference it as.
5267      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo->ValueMap.find(AI);
5268      if (VMI != FuncInfo->ValueMap.end()) {
5269        SDL->CopyValueToVirtualRegister(AI, VMI->second);
5270      }
5271    }
5272    a += NumValues;
5273  }
5274
5275  // Finally, if the target has anything special to do, allow it to do so.
5276  // FIXME: this should insert code into the DAG!
5277  EmitFunctionEntryCode(F, SDL->DAG.getMachineFunction());
5278}
5279
5280static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
5281                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
5282  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
5283    if (isSelector(I)) {
5284      // Apply the catch info to DestBB.
5285      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
5286#ifndef NDEBUG
5287      if (!FLI.MBBMap[SrcBB]->isLandingPad())
5288        FLI.CatchInfoFound.insert(I);
5289#endif
5290    }
5291}
5292
5293/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
5294/// whether object offset >= 0.
5295static bool
5296IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDValue Op) {
5297  if (!isa<FrameIndexSDNode>(Op)) return false;
5298
5299  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
5300  int FrameIdx =  FrameIdxNode->getIndex();
5301  return MFI->isFixedObjectIndex(FrameIdx) &&
5302    MFI->getObjectOffset(FrameIdx) >= 0;
5303}
5304
5305/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
5306/// possibly be overwritten when lowering the outgoing arguments in a tail
5307/// call. Currently the implementation of this call is very conservative and
5308/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
5309/// virtual registers would be overwritten by direct lowering.
5310static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
5311                                                    MachineFrameInfo * MFI) {
5312  RegisterSDNode * OpReg = NULL;
5313  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
5314      (Op.getOpcode()== ISD::CopyFromReg &&
5315       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
5316       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
5317      (Op.getOpcode() == ISD::LOAD &&
5318       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
5319      (Op.getOpcode() == ISD::MERGE_VALUES &&
5320       Op.getOperand(Op.getResNo()).getOpcode() == ISD::LOAD &&
5321       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.getResNo()).
5322                                       getOperand(1))))
5323    return true;
5324  return false;
5325}
5326
5327/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
5328/// DAG and fixes their tailcall attribute operand.
5329static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
5330                                           TargetLowering& TLI) {
5331  SDNode * Ret = NULL;
5332  SDValue Terminator = DAG.getRoot();
5333
5334  // Find RET node.
5335  if (Terminator.getOpcode() == ISD::RET) {
5336    Ret = Terminator.getNode();
5337  }
5338
5339  // Fix tail call attribute of CALL nodes.
5340  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
5341         BI = DAG.allnodes_end(); BI != BE; ) {
5342    --BI;
5343    if (BI->getOpcode() == ISD::CALL) {
5344      SDValue OpRet(Ret, 0);
5345      SDValue OpCall(BI, 0);
5346      bool isMarkedTailCall =
5347        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
5348      // If CALL node has tail call attribute set to true and the call is not
5349      // eligible (no RET or the target rejects) the attribute is fixed to
5350      // false. The TargetLowering::IsEligibleForTailCallOptimization function
5351      // must correctly identify tail call optimizable calls.
5352      if (!isMarkedTailCall) continue;
5353      if (Ret==NULL ||
5354          !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
5355        // Not eligible. Mark CALL node as non tail call.
5356        SmallVector<SDValue, 32> Ops;
5357        unsigned idx=0;
5358        for(SDNode::op_iterator I =OpCall.getNode()->op_begin(),
5359              E = OpCall.getNode()->op_end(); I != E; I++, idx++) {
5360          if (idx!=3)
5361            Ops.push_back(*I);
5362          else
5363            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
5364        }
5365        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5366      } else {
5367        // Look for tail call clobbered arguments. Emit a series of
5368        // copyto/copyfrom virtual register nodes to protect them.
5369        SmallVector<SDValue, 32> Ops;
5370        SDValue Chain = OpCall.getOperand(0), InFlag;
5371        unsigned idx=0;
5372        for(SDNode::op_iterator I = OpCall.getNode()->op_begin(),
5373              E = OpCall.getNode()->op_end(); I != E; I++, idx++) {
5374          SDValue Arg = *I;
5375          if (idx > 4 && (idx % 2)) {
5376            bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
5377              getArgFlags().isByVal();
5378            MachineFunction &MF = DAG.getMachineFunction();
5379            MachineFrameInfo *MFI = MF.getFrameInfo();
5380            if (!isByVal &&
5381                IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
5382              MVT VT = Arg.getValueType();
5383              unsigned VReg = MF.getRegInfo().
5384                createVirtualRegister(TLI.getRegClassFor(VT));
5385              Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
5386              InFlag = Chain.getValue(1);
5387              Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
5388              Chain = Arg.getValue(1);
5389              InFlag = Arg.getValue(2);
5390            }
5391          }
5392          Ops.push_back(Arg);
5393        }
5394        // Link in chain of CopyTo/CopyFromReg.
5395        Ops[0] = Chain;
5396        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5397      }
5398    }
5399  }
5400}
5401
5402/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
5403/// ensure constants are generated when needed.  Remember the virtual registers
5404/// that need to be added to the Machine PHI nodes as input.  We cannot just
5405/// directly add them, because expansion might result in multiple MBB's for one
5406/// BB.  As such, the start of the BB might correspond to a different MBB than
5407/// the end.
5408///
5409void
5410SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
5411  TerminatorInst *TI = LLVMBB->getTerminator();
5412
5413  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
5414
5415  // Check successor nodes' PHI nodes that expect a constant to be available
5416  // from this block.
5417  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5418    BasicBlock *SuccBB = TI->getSuccessor(succ);
5419    if (!isa<PHINode>(SuccBB->begin())) continue;
5420    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
5421
5422    // If this terminator has multiple identical successors (common for
5423    // switches), only handle each succ once.
5424    if (!SuccsHandled.insert(SuccMBB)) continue;
5425
5426    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5427    PHINode *PN;
5428
5429    // At this point we know that there is a 1-1 correspondence between LLVM PHI
5430    // nodes and Machine PHI nodes, but the incoming operands have not been
5431    // emitted yet.
5432    for (BasicBlock::iterator I = SuccBB->begin();
5433         (PN = dyn_cast<PHINode>(I)); ++I) {
5434      // Ignore dead phi's.
5435      if (PN->use_empty()) continue;
5436
5437      unsigned Reg;
5438      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5439
5440      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5441        unsigned &RegOut = SDL->ConstantsOut[C];
5442        if (RegOut == 0) {
5443          RegOut = FuncInfo->CreateRegForValue(C);
5444          SDL->CopyValueToVirtualRegister(C, RegOut);
5445        }
5446        Reg = RegOut;
5447      } else {
5448        Reg = FuncInfo->ValueMap[PHIOp];
5449        if (Reg == 0) {
5450          assert(isa<AllocaInst>(PHIOp) &&
5451                 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5452                 "Didn't codegen value into a register!??");
5453          Reg = FuncInfo->CreateRegForValue(PHIOp);
5454          SDL->CopyValueToVirtualRegister(PHIOp, Reg);
5455        }
5456      }
5457
5458      // Remember that this register needs to added to the machine PHI node as
5459      // the input for this MBB.
5460      SmallVector<MVT, 4> ValueVTs;
5461      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
5462      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
5463        MVT VT = ValueVTs[vti];
5464        unsigned NumRegisters = TLI.getNumRegisters(VT);
5465        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5466          SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5467        Reg += NumRegisters;
5468      }
5469    }
5470  }
5471  SDL->ConstantsOut.clear();
5472
5473  // Lower the terminator after the copies are emitted.
5474  SDL->visit(*LLVMBB->getTerminator());
5475}
5476
5477void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
5478                                        BasicBlock::iterator Begin,
5479                                        BasicBlock::iterator End) {
5480  SDL->setCurrentBasicBlock(BB);
5481
5482  MachineModuleInfo *MMI = CurDAG->getMachineModuleInfo();
5483
5484  if (MMI && BB->isLandingPad()) {
5485    // Add a label to mark the beginning of the landing pad.  Deletion of the
5486    // landing pad can thus be detected via the MachineModuleInfo.
5487    unsigned LabelID = MMI->addLandingPad(BB);
5488    CurDAG->setRoot(CurDAG->getLabel(ISD::EH_LABEL,
5489                                     CurDAG->getEntryNode(), LabelID));
5490
5491    // Mark exception register as live in.
5492    unsigned Reg = TLI.getExceptionAddressRegister();
5493    if (Reg) BB->addLiveIn(Reg);
5494
5495    // Mark exception selector register as live in.
5496    Reg = TLI.getExceptionSelectorRegister();
5497    if (Reg) BB->addLiveIn(Reg);
5498
5499    // FIXME: Hack around an exception handling flaw (PR1508): the personality
5500    // function and list of typeids logically belong to the invoke (or, if you
5501    // like, the basic block containing the invoke), and need to be associated
5502    // with it in the dwarf exception handling tables.  Currently however the
5503    // information is provided by an intrinsic (eh.selector) that can be moved
5504    // to unexpected places by the optimizers: if the unwind edge is critical,
5505    // then breaking it can result in the intrinsics being in the successor of
5506    // the landing pad, not the landing pad itself.  This results in exceptions
5507    // not being caught because no typeids are associated with the invoke.
5508    // This may not be the only way things can go wrong, but it is the only way
5509    // we try to work around for the moment.
5510    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
5511
5512    if (Br && Br->isUnconditional()) { // Critical edge?
5513      BasicBlock::iterator I, E;
5514      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
5515        if (isSelector(I))
5516          break;
5517
5518      if (I == E)
5519        // No catch info found - try to extract some from the successor.
5520        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
5521    }
5522  }
5523
5524  // Lower all of the non-terminator instructions.
5525  for (BasicBlock::iterator I = Begin; I != End; ++I)
5526    if (!isa<TerminatorInst>(I))
5527      SDL->visit(*I);
5528
5529  // Ensure that all instructions which are used outside of their defining
5530  // blocks are available as virtual registers.  Invoke is handled elsewhere.
5531  for (BasicBlock::iterator I = Begin; I != End; ++I)
5532    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
5533      DenseMap<const Value*,unsigned>::iterator VMI =FuncInfo->ValueMap.find(I);
5534      if (VMI != FuncInfo->ValueMap.end())
5535        SDL->CopyValueToVirtualRegister(I, VMI->second);
5536    }
5537
5538  // Handle PHI nodes in successor blocks.
5539  if (End == LLVMBB->end())
5540    HandlePHINodesInSuccessorBlocks(LLVMBB);
5541
5542  // Make sure the root of the DAG is up-to-date.
5543  CurDAG->setRoot(SDL->getControlRoot());
5544
5545  // Check whether calls in this block are real tail calls. Fix up CALL nodes
5546  // with correct tailcall attribute so that the target can rely on the tailcall
5547  // attribute indicating whether the call is really eligible for tail call
5548  // optimization.
5549  CheckDAGForTailCallsAndFixThem(*CurDAG, TLI);
5550
5551  // Final step, emit the lowered DAG as machine code.
5552  CodeGenAndEmitDAG();
5553  SDL->clear();
5554}
5555
5556void SelectionDAGISel::ComputeLiveOutVRegInfo() {
5557  SmallPtrSet<SDNode*, 128> VisitedNodes;
5558  SmallVector<SDNode*, 128> Worklist;
5559
5560  Worklist.push_back(CurDAG->getRoot().getNode());
5561
5562  APInt Mask;
5563  APInt KnownZero;
5564  APInt KnownOne;
5565
5566  while (!Worklist.empty()) {
5567    SDNode *N = Worklist.back();
5568    Worklist.pop_back();
5569
5570    // If we've already seen this node, ignore it.
5571    if (!VisitedNodes.insert(N))
5572      continue;
5573
5574    // Otherwise, add all chain operands to the worklist.
5575    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5576      if (N->getOperand(i).getValueType() == MVT::Other)
5577        Worklist.push_back(N->getOperand(i).getNode());
5578
5579    // If this is a CopyToReg with a vreg dest, process it.
5580    if (N->getOpcode() != ISD::CopyToReg)
5581      continue;
5582
5583    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
5584    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
5585      continue;
5586
5587    // Ignore non-scalar or non-integer values.
5588    SDValue Src = N->getOperand(2);
5589    MVT SrcVT = Src.getValueType();
5590    if (!SrcVT.isInteger() || SrcVT.isVector())
5591      continue;
5592
5593    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
5594    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
5595    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
5596
5597    // Only install this information if it tells us something.
5598    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
5599      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
5600      FunctionLoweringInfo &FLI = CurDAG->getFunctionLoweringInfo();
5601      if (DestReg >= FLI.LiveOutRegInfo.size())
5602        FLI.LiveOutRegInfo.resize(DestReg+1);
5603      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
5604      LOI.NumSignBits = NumSignBits;
5605      LOI.KnownOne = NumSignBits;
5606      LOI.KnownZero = NumSignBits;
5607    }
5608  }
5609}
5610
5611void SelectionDAGISel::CodeGenAndEmitDAG() {
5612  std::string GroupName;
5613  if (TimePassesIsEnabled)
5614    GroupName = "Instruction Selection and Scheduling";
5615  std::string BlockName;
5616  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
5617      ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs)
5618    BlockName = CurDAG->getMachineFunction().getFunction()->getName() + ':' +
5619                BB->getBasicBlock()->getName();
5620
5621  DOUT << "Initial selection DAG:\n";
5622  DEBUG(CurDAG->dump());
5623
5624  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
5625
5626  // Run the DAG combiner in pre-legalize mode.
5627  if (TimePassesIsEnabled) {
5628    NamedRegionTimer T("DAG Combining 1", GroupName);
5629    CurDAG->Combine(false, *AA, Fast);
5630  } else {
5631    CurDAG->Combine(false, *AA, Fast);
5632  }
5633
5634  DOUT << "Optimized lowered selection DAG:\n";
5635  DEBUG(CurDAG->dump());
5636
5637  // Second step, hack on the DAG until it only uses operations and types that
5638  // the target supports.
5639  if (EnableLegalizeTypes) {// Enable this some day.
5640    if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
5641                                                 BlockName);
5642
5643    if (TimePassesIsEnabled) {
5644      NamedRegionTimer T("Type Legalization", GroupName);
5645      CurDAG->LegalizeTypes();
5646    } else {
5647      CurDAG->LegalizeTypes();
5648    }
5649
5650    DOUT << "Type-legalized selection DAG:\n";
5651    DEBUG(CurDAG->dump());
5652
5653    // TODO: enable a dag combine pass here.
5654  }
5655
5656  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
5657
5658  if (TimePassesIsEnabled) {
5659    NamedRegionTimer T("DAG Legalization", GroupName);
5660    CurDAG->Legalize();
5661  } else {
5662    CurDAG->Legalize();
5663  }
5664
5665  DOUT << "Legalized selection DAG:\n";
5666  DEBUG(CurDAG->dump());
5667
5668  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
5669
5670  // Run the DAG combiner in post-legalize mode.
5671  if (TimePassesIsEnabled) {
5672    NamedRegionTimer T("DAG Combining 2", GroupName);
5673    CurDAG->Combine(true, *AA, Fast);
5674  } else {
5675    CurDAG->Combine(true, *AA, Fast);
5676  }
5677
5678  DOUT << "Optimized legalized selection DAG:\n";
5679  DEBUG(CurDAG->dump());
5680
5681  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
5682
5683  if (!Fast && EnableValueProp)
5684    ComputeLiveOutVRegInfo();
5685
5686  // Third, instruction select all of the operations to machine code, adding the
5687  // code to the MachineBasicBlock.
5688  if (TimePassesIsEnabled) {
5689    NamedRegionTimer T("Instruction Selection", GroupName);
5690    InstructionSelect();
5691  } else {
5692    InstructionSelect();
5693  }
5694
5695  DOUT << "Selected selection DAG:\n";
5696  DEBUG(CurDAG->dump());
5697
5698  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
5699
5700  // Schedule machine code.
5701  ScheduleDAG *Scheduler;
5702  if (TimePassesIsEnabled) {
5703    NamedRegionTimer T("Instruction Scheduling", GroupName);
5704    Scheduler = Schedule();
5705  } else {
5706    Scheduler = Schedule();
5707  }
5708
5709  if (ViewSUnitDAGs) Scheduler->viewGraph();
5710
5711  // Emit machine code to BB.  This can change 'BB' to the last block being
5712  // inserted into.
5713  if (TimePassesIsEnabled) {
5714    NamedRegionTimer T("Instruction Creation", GroupName);
5715    BB = Scheduler->EmitSchedule();
5716  } else {
5717    BB = Scheduler->EmitSchedule();
5718  }
5719
5720  // Free the scheduler state.
5721  if (TimePassesIsEnabled) {
5722    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
5723    delete Scheduler;
5724  } else {
5725    delete Scheduler;
5726  }
5727
5728  DOUT << "Selected machine code:\n";
5729  DEBUG(BB->dump());
5730}
5731
5732void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF) {
5733  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
5734    BasicBlock *LLVMBB = &*I;
5735    BB = FuncInfo->MBBMap[LLVMBB];
5736
5737    BasicBlock::iterator Begin = LLVMBB->begin();
5738    BasicBlock::iterator End = LLVMBB->end();
5739
5740    // Lower any arguments needed in this block if this is the entry block.
5741    if (LLVMBB == &Fn.getEntryBlock())
5742      LowerArguments(LLVMBB);
5743
5744    // Before doing SelectionDAG ISel, see if FastISel has been requested.
5745    // FastISel doesn't support EH landing pads, which require special handling.
5746    if (EnableFastISel && !BB->isLandingPad()) {
5747      if (FastISel *F = TLI.createFastISel(*FuncInfo->MF)) {
5748        // Emit code for any incoming arguments. This must happen before
5749        // beginning FastISel on the entry block.
5750        if (LLVMBB == &Fn.getEntryBlock()) {
5751          CurDAG->setRoot(SDL->getControlRoot());
5752          CodeGenAndEmitDAG();
5753          SDL->clear();
5754        }
5755        // Do FastISel on as many instructions as possible.
5756        while (Begin != End) {
5757          Begin = F->SelectInstructions(Begin, End, FuncInfo->ValueMap,
5758                                        FuncInfo->MBBMap, BB);
5759
5760          // If the "fast" selector selected the entire block, we're done.
5761          if (Begin == End)
5762            break;
5763
5764          // Next, try calling the target to attempt to handle the instruction.
5765          if (F->TargetSelectInstruction(Begin, FuncInfo->ValueMap,
5766                                         FuncInfo->MBBMap, BB))
5767            continue;
5768
5769          // Handle certain instructions as single-LLVM-Instruction blocks.
5770          if (isa<CallInst>(Begin) || isa<LoadInst>(Begin) ||
5771              isa<StoreInst>(Begin)) {
5772            if (Begin->getType() != Type::VoidTy) {
5773              unsigned &R = FuncInfo->ValueMap[Begin];
5774              if (!R)
5775                R = FuncInfo->CreateRegForValue(Begin);
5776            }
5777
5778            SelectBasicBlock(LLVMBB, Begin, next(Begin));
5779            ++Begin;
5780            continue;
5781          }
5782
5783          if (!DisableFastISelAbort &&
5784              // For now, don't abort on non-conditional-branch terminators.
5785              (!isa<TerminatorInst>(Begin) ||
5786               (isa<BranchInst>(Begin) &&
5787                cast<BranchInst>(Begin)->isUnconditional()))) {
5788            // The "fast" selector couldn't handle something and bailed.
5789            // For the purpose of debugging, just abort.
5790#ifndef NDEBUG
5791            Begin->dump();
5792#endif
5793            assert(0 && "FastISel didn't select the entire block");
5794          }
5795          break;
5796        }
5797        delete F;
5798      }
5799    }
5800
5801    // Run SelectionDAG instruction selection on the remainder of the block
5802    // not handled by FastISel. If FastISel is not run, this is the entire
5803    // block. If FastISel is run and happens to handle all of the
5804    // LLVM Instructions in the block, [Begin,End) will be an empty range,
5805    // but we still need to run this so that
5806    // HandlePHINodesInSuccessorBlocks is called and any resulting code
5807    // is emitted.
5808    SelectBasicBlock(LLVMBB, Begin, End);
5809
5810    FinishBasicBlock();
5811  }
5812}
5813
5814void
5815SelectionDAGISel::FinishBasicBlock() {
5816
5817  // Perform target specific isel post processing.
5818  InstructionSelectPostProcessing();
5819
5820  DOUT << "Target-post-processed machine code:\n";
5821  DEBUG(BB->dump());
5822
5823  DOUT << "Total amount of phi nodes to update: "
5824       << SDL->PHINodesToUpdate.size() << "\n";
5825  DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
5826          DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
5827               << ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
5828
5829  // Next, now that we know what the last MBB the LLVM BB expanded is, update
5830  // PHI nodes in successors.
5831  if (SDL->SwitchCases.empty() &&
5832      SDL->JTCases.empty() &&
5833      SDL->BitTestCases.empty()) {
5834    for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
5835      MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
5836      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5837             "This is not a machine PHI node that we are updating!");
5838      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
5839                                                false));
5840      PHI->addOperand(MachineOperand::CreateMBB(BB));
5841    }
5842    SDL->PHINodesToUpdate.clear();
5843    return;
5844  }
5845
5846  for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) {
5847    // Lower header first, if it wasn't already lowered
5848    if (!SDL->BitTestCases[i].Emitted) {
5849      // Set the current basic block to the mbb we wish to insert the code into
5850      BB = SDL->BitTestCases[i].Parent;
5851      SDL->setCurrentBasicBlock(BB);
5852      // Emit the code
5853      SDL->visitBitTestHeader(SDL->BitTestCases[i]);
5854      CurDAG->setRoot(SDL->getRoot());
5855      CodeGenAndEmitDAG();
5856      SDL->clear();
5857    }
5858
5859    for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
5860      // Set the current basic block to the mbb we wish to insert the code into
5861      BB = SDL->BitTestCases[i].Cases[j].ThisBB;
5862      SDL->setCurrentBasicBlock(BB);
5863      // Emit the code
5864      if (j+1 != ej)
5865        SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB,
5866                              SDL->BitTestCases[i].Reg,
5867                              SDL->BitTestCases[i].Cases[j]);
5868      else
5869        SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
5870                              SDL->BitTestCases[i].Reg,
5871                              SDL->BitTestCases[i].Cases[j]);
5872
5873
5874      CurDAG->setRoot(SDL->getRoot());
5875      CodeGenAndEmitDAG();
5876      SDL->clear();
5877    }
5878
5879    // Update PHI Nodes
5880    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
5881      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
5882      MachineBasicBlock *PHIBB = PHI->getParent();
5883      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5884             "This is not a machine PHI node that we are updating!");
5885      // This is "default" BB. We have two jumps to it. From "header" BB and
5886      // from last "case" BB.
5887      if (PHIBB == SDL->BitTestCases[i].Default) {
5888        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
5889                                                  false));
5890        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent));
5891        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
5892                                                  false));
5893        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases.
5894                                                  back().ThisBB));
5895      }
5896      // One of "cases" BB.
5897      for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size();
5898           j != ej; ++j) {
5899        MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB;
5900        if (cBB->succ_end() !=
5901            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
5902          PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
5903                                                    false));
5904          PHI->addOperand(MachineOperand::CreateMBB(cBB));
5905        }
5906      }
5907    }
5908  }
5909  SDL->BitTestCases.clear();
5910
5911  // If the JumpTable record is filled in, then we need to emit a jump table.
5912  // Updating the PHI nodes is tricky in this case, since we need to determine
5913  // whether the PHI is a successor of the range check MBB or the jump table MBB
5914  for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) {
5915    // Lower header first, if it wasn't already lowered
5916    if (!SDL->JTCases[i].first.Emitted) {
5917      // Set the current basic block to the mbb we wish to insert the code into
5918      BB = SDL->JTCases[i].first.HeaderBB;
5919      SDL->setCurrentBasicBlock(BB);
5920      // Emit the code
5921      SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first);
5922      CurDAG->setRoot(SDL->getRoot());
5923      CodeGenAndEmitDAG();
5924      SDL->clear();
5925    }
5926
5927    // Set the current basic block to the mbb we wish to insert the code into
5928    BB = SDL->JTCases[i].second.MBB;
5929    SDL->setCurrentBasicBlock(BB);
5930    // Emit the code
5931    SDL->visitJumpTable(SDL->JTCases[i].second);
5932    CurDAG->setRoot(SDL->getRoot());
5933    CodeGenAndEmitDAG();
5934    SDL->clear();
5935
5936    // Update PHI Nodes
5937    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
5938      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
5939      MachineBasicBlock *PHIBB = PHI->getParent();
5940      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5941             "This is not a machine PHI node that we are updating!");
5942      // "default" BB. We can go there only from header BB.
5943      if (PHIBB == SDL->JTCases[i].second.Default) {
5944        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
5945                                                  false));
5946        PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
5947      }
5948      // JT BB. Just iterate over successors here
5949      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
5950        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
5951                                                  false));
5952        PHI->addOperand(MachineOperand::CreateMBB(BB));
5953      }
5954    }
5955  }
5956  SDL->JTCases.clear();
5957
5958  // If the switch block involved a branch to one of the actual successors, we
5959  // need to update PHI nodes in that block.
5960  for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
5961    MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
5962    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5963           "This is not a machine PHI node that we are updating!");
5964    if (BB->isSuccessor(PHI->getParent())) {
5965      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
5966                                                false));
5967      PHI->addOperand(MachineOperand::CreateMBB(BB));
5968    }
5969  }
5970
5971  // If we generated any switch lowering information, build and codegen any
5972  // additional DAGs necessary.
5973  for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
5974    // Set the current basic block to the mbb we wish to insert the code into
5975    BB = SDL->SwitchCases[i].ThisBB;
5976    SDL->setCurrentBasicBlock(BB);
5977
5978    // Emit the code
5979    SDL->visitSwitchCase(SDL->SwitchCases[i]);
5980    CurDAG->setRoot(SDL->getRoot());
5981    CodeGenAndEmitDAG();
5982    SDL->clear();
5983
5984    // Handle any PHI nodes in successors of this chunk, as if we were coming
5985    // from the original BB before switch expansion.  Note that PHI nodes can
5986    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5987    // handle them the right number of times.
5988    while ((BB = SDL->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5989      for (MachineBasicBlock::iterator Phi = BB->begin();
5990           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5991        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5992        for (unsigned pn = 0; ; ++pn) {
5993          assert(pn != SDL->PHINodesToUpdate.size() &&
5994                 "Didn't find PHI entry!");
5995          if (SDL->PHINodesToUpdate[pn].first == Phi) {
5996            Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
5997                                                      second, false));
5998            Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
5999            break;
6000          }
6001        }
6002      }
6003
6004      // Don't process RHS if same block as LHS.
6005      if (BB == SDL->SwitchCases[i].FalseBB)
6006        SDL->SwitchCases[i].FalseBB = 0;
6007
6008      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
6009      SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
6010      SDL->SwitchCases[i].FalseBB = 0;
6011    }
6012    assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
6013  }
6014  SDL->SwitchCases.clear();
6015
6016  SDL->PHINodesToUpdate.clear();
6017}
6018
6019
6020/// Schedule - Pick a safe ordering for instructions for each
6021/// target node in the graph.
6022///
6023ScheduleDAG *SelectionDAGISel::Schedule() {
6024  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
6025
6026  if (!Ctor) {
6027    Ctor = ISHeuristic;
6028    RegisterScheduler::setDefault(Ctor);
6029  }
6030
6031  ScheduleDAG *Scheduler = Ctor(this, CurDAG, BB, Fast);
6032  Scheduler->Run();
6033
6034  return Scheduler;
6035}
6036
6037
6038HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
6039  return new HazardRecognizer();
6040}
6041
6042//===----------------------------------------------------------------------===//
6043// Helper functions used by the generated instruction selector.
6044//===----------------------------------------------------------------------===//
6045// Calls to these methods are generated by tblgen.
6046
6047/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
6048/// the dag combiner simplified the 255, we still want to match.  RHS is the
6049/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
6050/// specified in the .td file (e.g. 255).
6051bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
6052                                    int64_t DesiredMaskS) const {
6053  const APInt &ActualMask = RHS->getAPIntValue();
6054  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
6055
6056  // If the actual mask exactly matches, success!
6057  if (ActualMask == DesiredMask)
6058    return true;
6059
6060  // If the actual AND mask is allowing unallowed bits, this doesn't match.
6061  if (ActualMask.intersects(~DesiredMask))
6062    return false;
6063
6064  // Otherwise, the DAG Combiner may have proven that the value coming in is
6065  // either already zero or is not demanded.  Check for known zero input bits.
6066  APInt NeededMask = DesiredMask & ~ActualMask;
6067  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
6068    return true;
6069
6070  // TODO: check to see if missing bits are just not demanded.
6071
6072  // Otherwise, this pattern doesn't match.
6073  return false;
6074}
6075
6076/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
6077/// the dag combiner simplified the 255, we still want to match.  RHS is the
6078/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
6079/// specified in the .td file (e.g. 255).
6080bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
6081                                   int64_t DesiredMaskS) const {
6082  const APInt &ActualMask = RHS->getAPIntValue();
6083  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
6084
6085  // If the actual mask exactly matches, success!
6086  if (ActualMask == DesiredMask)
6087    return true;
6088
6089  // If the actual AND mask is allowing unallowed bits, this doesn't match.
6090  if (ActualMask.intersects(~DesiredMask))
6091    return false;
6092
6093  // Otherwise, the DAG Combiner may have proven that the value coming in is
6094  // either already zero or is not demanded.  Check for known zero input bits.
6095  APInt NeededMask = DesiredMask & ~ActualMask;
6096
6097  APInt KnownZero, KnownOne;
6098  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
6099
6100  // If all the missing bits in the or are already known to be set, match!
6101  if ((NeededMask & KnownOne) == NeededMask)
6102    return true;
6103
6104  // TODO: check to see if missing bits are just not demanded.
6105
6106  // Otherwise, this pattern doesn't match.
6107  return false;
6108}
6109
6110
6111/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
6112/// by tblgen.  Others should not call it.
6113void SelectionDAGISel::
6114SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
6115  std::vector<SDValue> InOps;
6116  std::swap(InOps, Ops);
6117
6118  Ops.push_back(InOps[0]);  // input chain.
6119  Ops.push_back(InOps[1]);  // input asm string.
6120
6121  unsigned i = 2, e = InOps.size();
6122  if (InOps[e-1].getValueType() == MVT::Flag)
6123    --e;  // Don't process a flag operand if it is here.
6124
6125  while (i != e) {
6126    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
6127    if ((Flags & 7) != 4 /*MEM*/) {
6128      // Just skip over this operand, copying the operands verbatim.
6129      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
6130      i += (Flags >> 3) + 1;
6131    } else {
6132      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
6133      // Otherwise, this is a memory operand.  Ask the target to select it.
6134      std::vector<SDValue> SelOps;
6135      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
6136        cerr << "Could not match memory address.  Inline asm failure!\n";
6137        exit(1);
6138      }
6139
6140      // Add this to the output node.
6141      MVT IntPtrTy = CurDAG->getTargetLoweringInfo().getPointerTy();
6142      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
6143                                              IntPtrTy));
6144      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
6145      i += 2;
6146    }
6147  }
6148
6149  // Add the flag input back if present.
6150  if (e != InOps.size())
6151    Ops.push_back(InOps.back());
6152}
6153
6154char SelectionDAGISel::ID = 0;
6155