SelectionDAGISel.cpp revision 6411e3e62ea9dfe23f5fa24b9d6a84da7ec70a98
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionAnalysis.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/CodeGen/DwarfWriter.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/Timer.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62static cl::opt<bool>
63EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
64          cl::desc("Enable verbose messages in the \"fast\" "
65                   "instruction selector"));
66static cl::opt<bool>
67EnableFastISelAbort("fast-isel-abort", cl::Hidden,
68          cl::desc("Enable abort calls when \"fast\" instruction fails"));
69static cl::opt<bool>
70SchedLiveInCopies("schedule-livein-copies", cl::Hidden,
71                  cl::desc("Schedule copies of livein registers"),
72                  cl::init(false));
73
74#ifndef NDEBUG
75static cl::opt<bool>
76ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the first "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before legalize types"));
82static cl::opt<bool>
83ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize"));
85static cl::opt<bool>
86ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before the second "
88                   "dag combine pass"));
89static cl::opt<bool>
90ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
91          cl::desc("Pop up a window to show dags before the post legalize types"
92                   " dag combine pass"));
93static cl::opt<bool>
94ViewISelDAGs("view-isel-dags", cl::Hidden,
95          cl::desc("Pop up a window to show isel dags as they are selected"));
96static cl::opt<bool>
97ViewSchedDAGs("view-sched-dags", cl::Hidden,
98          cl::desc("Pop up a window to show sched dags as they are processed"));
99static cl::opt<bool>
100ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
101      cl::desc("Pop up a window to show SUnit dags after they are processed"));
102#else
103static const bool ViewDAGCombine1 = false,
104                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
105                  ViewDAGCombine2 = false,
106                  ViewDAGCombineLT = false,
107                  ViewISelDAGs = false, ViewSchedDAGs = false,
108                  ViewSUnitDAGs = false;
109#endif
110
111//===---------------------------------------------------------------------===//
112///
113/// RegisterScheduler class - Track the registration of instruction schedulers.
114///
115//===---------------------------------------------------------------------===//
116MachinePassRegistry RegisterScheduler::Registry;
117
118//===---------------------------------------------------------------------===//
119///
120/// ISHeuristic command line option for instruction schedulers.
121///
122//===---------------------------------------------------------------------===//
123static cl::opt<RegisterScheduler::FunctionPassCtor, false,
124               RegisterPassParser<RegisterScheduler> >
125ISHeuristic("pre-RA-sched",
126            cl::init(&createDefaultScheduler),
127            cl::desc("Instruction schedulers available (before register"
128                     " allocation):"));
129
130static RegisterScheduler
131defaultListDAGScheduler("default", "Best scheduler for the target",
132                        createDefaultScheduler);
133
134namespace llvm {
135  //===--------------------------------------------------------------------===//
136  /// createDefaultScheduler - This creates an instruction scheduler appropriate
137  /// for the target.
138  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
139                                             CodeGenOpt::Level OptLevel) {
140    const TargetLowering &TLI = IS->getTargetLowering();
141
142    if (OptLevel == CodeGenOpt::None)
143      return createFastDAGScheduler(IS, OptLevel);
144    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
145      return createTDListDAGScheduler(IS, OptLevel);
146    assert(TLI.getSchedulingPreference() ==
147           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
148    return createBURRListDAGScheduler(IS, OptLevel);
149  }
150}
151
152// EmitInstrWithCustomInserter - This method should be implemented by targets
153// that mark instructions with the 'usesCustomInserter' flag.  These
154// instructions are special in various ways, which require special support to
155// insert.  The specified MachineInstr is created but not inserted into any
156// basic blocks, and this method is called to expand it into a sequence of
157// instructions, potentially also creating new basic blocks and control flow.
158// When new basic blocks are inserted and the edges from MBB to its successors
159// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
160// DenseMap.
161MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
162                                                         MachineBasicBlock *MBB,
163                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
164#ifndef NDEBUG
165  dbgs() << "If a target marks an instruction with "
166          "'usesCustomInserter', it must implement "
167          "TargetLowering::EmitInstrWithCustomInserter!";
168#endif
169  llvm_unreachable(0);
170  return 0;
171}
172
173/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
174/// physical register has only a single copy use, then coalesced the copy
175/// if possible.
176static void EmitLiveInCopy(MachineBasicBlock *MBB,
177                           MachineBasicBlock::iterator &InsertPos,
178                           unsigned VirtReg, unsigned PhysReg,
179                           const TargetRegisterClass *RC,
180                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
181                           const MachineRegisterInfo &MRI,
182                           const TargetRegisterInfo &TRI,
183                           const TargetInstrInfo &TII) {
184  unsigned NumUses = 0;
185  MachineInstr *UseMI = NULL;
186  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
187         UE = MRI.use_end(); UI != UE; ++UI) {
188    UseMI = &*UI;
189    if (++NumUses > 1)
190      break;
191  }
192
193  // If the number of uses is not one, or the use is not a move instruction,
194  // don't coalesce. Also, only coalesce away a virtual register to virtual
195  // register copy.
196  bool Coalesced = false;
197  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
198  if (NumUses == 1 &&
199      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
200      TargetRegisterInfo::isVirtualRegister(DstReg)) {
201    VirtReg = DstReg;
202    Coalesced = true;
203  }
204
205  // Now find an ideal location to insert the copy.
206  MachineBasicBlock::iterator Pos = InsertPos;
207  while (Pos != MBB->begin()) {
208    MachineInstr *PrevMI = prior(Pos);
209    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
210    // copyRegToReg might emit multiple instructions to do a copy.
211    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
212    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
213      // This is what the BB looks like right now:
214      // r1024 = mov r0
215      // ...
216      // r1    = mov r1024
217      //
218      // We want to insert "r1025 = mov r1". Inserting this copy below the
219      // move to r1024 makes it impossible for that move to be coalesced.
220      //
221      // r1025 = mov r1
222      // r1024 = mov r0
223      // ...
224      // r1    = mov 1024
225      // r2    = mov 1025
226      break; // Woot! Found a good location.
227    --Pos;
228  }
229
230  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
231  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
232  (void) Emitted;
233
234  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
235  if (Coalesced) {
236    if (&*InsertPos == UseMI) ++InsertPos;
237    MBB->erase(UseMI);
238  }
239}
240
241/// EmitLiveInCopies - If this is the first basic block in the function,
242/// and if it has live ins that need to be copied into vregs, emit the
243/// copies into the block.
244static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
245                             const MachineRegisterInfo &MRI,
246                             const TargetRegisterInfo &TRI,
247                             const TargetInstrInfo &TII) {
248  if (SchedLiveInCopies) {
249    // Emit the copies at a heuristically-determined location in the block.
250    DenseMap<MachineInstr*, unsigned> CopyRegMap;
251    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
252    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
253           E = MRI.livein_end(); LI != E; ++LI)
254      if (LI->second) {
255        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
256        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
257                       RC, CopyRegMap, MRI, TRI, TII);
258      }
259  } else {
260    // Emit the copies into the top of the block.
261    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
262           E = MRI.livein_end(); LI != E; ++LI)
263      if (LI->second) {
264        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
265        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
266                                        LI->second, LI->first, RC, RC);
267        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
268        (void) Emitted;
269      }
270  }
271}
272
273//===----------------------------------------------------------------------===//
274// SelectionDAGISel code
275//===----------------------------------------------------------------------===//
276
277SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
278  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
279  FuncInfo(new FunctionLoweringInfo(TLI)),
280  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
281  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
282  GFI(),
283  OptLevel(OL),
284  DAGSize(0)
285{}
286
287SelectionDAGISel::~SelectionDAGISel() {
288  delete SDB;
289  delete CurDAG;
290  delete FuncInfo;
291}
292
293unsigned SelectionDAGISel::MakeReg(EVT VT) {
294  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
295}
296
297void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
298  AU.addRequired<AliasAnalysis>();
299  AU.addPreserved<AliasAnalysis>();
300  AU.addRequired<GCModuleInfo>();
301  AU.addPreserved<GCModuleInfo>();
302  AU.addRequired<DwarfWriter>();
303  AU.addPreserved<DwarfWriter>();
304  MachineFunctionPass::getAnalysisUsage(AU);
305}
306
307bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
308  Function &Fn = *mf.getFunction();
309
310  // Do some sanity-checking on the command-line options.
311  assert((!EnableFastISelVerbose || EnableFastISel) &&
312         "-fast-isel-verbose requires -fast-isel");
313  assert((!EnableFastISelAbort || EnableFastISel) &&
314         "-fast-isel-abort requires -fast-isel");
315
316  // Get alias analysis for load/store combining.
317  AA = &getAnalysis<AliasAnalysis>();
318
319  MF = &mf;
320  const TargetInstrInfo &TII = *TM.getInstrInfo();
321  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
322
323  if (Fn.hasGC())
324    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
325  else
326    GFI = 0;
327  RegInfo = &MF->getRegInfo();
328  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
329
330  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
331  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
332  CurDAG->init(*MF, MMI, DW);
333  FuncInfo->set(Fn, *MF, EnableFastISel);
334  SDB->init(GFI, *AA);
335
336  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
337    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
338      // Mark landing pad.
339      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
340
341  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
342
343  // If the first basic block in the function has live ins that need to be
344  // copied into vregs, emit the copies into the top of the block before
345  // emitting the code for the block.
346  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
347
348  // Add function live-ins to entry block live-in set.
349  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
350         E = RegInfo->livein_end(); I != E; ++I)
351    MF->begin()->addLiveIn(I->first);
352
353#ifndef NDEBUG
354  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
355         "Not all catch info was assigned to a landing pad!");
356#endif
357
358  FuncInfo->clear();
359
360  return true;
361}
362
363/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
364/// attached with this instruction.
365static void SetDebugLoc(unsigned MDDbgKind, Instruction *I,
366                        SelectionDAGBuilder *SDB,
367                        FastISel *FastIS, MachineFunction *MF) {
368  if (isa<DbgInfoIntrinsic>(I)) return;
369
370  if (MDNode *Dbg = I->getMetadata(MDDbgKind)) {
371    DILocation DILoc(Dbg);
372    DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo());
373
374    SDB->setCurDebugLoc(Loc);
375
376    if (FastIS)
377      FastIS->setCurDebugLoc(Loc);
378
379    // If the function doesn't have a default debug location yet, set
380    // it. This is kind of a hack.
381    if (MF->getDefaultDebugLoc().isUnknown())
382      MF->setDefaultDebugLoc(Loc);
383  }
384}
385
386/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
387static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
388  SDB->setCurDebugLoc(DebugLoc::getUnknownLoc());
389  if (FastIS)
390    FastIS->setCurDebugLoc(DebugLoc::getUnknownLoc());
391}
392
393void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
394                                        BasicBlock::iterator Begin,
395                                        BasicBlock::iterator End,
396                                        bool &HadTailCall) {
397  SDB->setCurrentBasicBlock(BB);
398  unsigned MDDbgKind = LLVMBB->getContext().getMDKindID("dbg");
399
400  // Lower all of the non-terminator instructions. If a call is emitted
401  // as a tail call, cease emitting nodes for this block.
402  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
403    SetDebugLoc(MDDbgKind, I, SDB, 0, MF);
404
405    if (!isa<TerminatorInst>(I)) {
406      SDB->visit(*I);
407
408      // Set the current debug location back to "unknown" so that it doesn't
409      // spuriously apply to subsequent instructions.
410      ResetDebugLoc(SDB, 0);
411    }
412  }
413
414  if (!SDB->HasTailCall) {
415    // Ensure that all instructions which are used outside of their defining
416    // blocks are available as virtual registers.  Invoke is handled elsewhere.
417    for (BasicBlock::iterator I = Begin; I != End; ++I)
418      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
419        SDB->CopyToExportRegsIfNeeded(I);
420
421    // Handle PHI nodes in successor blocks.
422    if (End == LLVMBB->end()) {
423      HandlePHINodesInSuccessorBlocks(LLVMBB);
424
425      // Lower the terminator after the copies are emitted.
426      SetDebugLoc(MDDbgKind, LLVMBB->getTerminator(), SDB, 0, MF);
427      SDB->visit(*LLVMBB->getTerminator());
428      ResetDebugLoc(SDB, 0);
429    }
430  }
431
432  // Make sure the root of the DAG is up-to-date.
433  CurDAG->setRoot(SDB->getControlRoot());
434
435  // Final step, emit the lowered DAG as machine code.
436  CodeGenAndEmitDAG();
437  HadTailCall = SDB->HasTailCall;
438  SDB->clear();
439}
440
441namespace {
442/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
443/// nodes from the worklist.
444class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
445  SmallVector<SDNode*, 128> &Worklist;
446public:
447  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl) : Worklist(wl) {}
448
449  virtual void NodeDeleted(SDNode *N, SDNode *E) {
450    Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
451                   Worklist.end());
452  }
453
454  virtual void NodeUpdated(SDNode *N) {
455    // Ignore updates.
456  }
457};
458}
459
460/// TrivialTruncElim - Eliminate some trivial nops that can result from
461/// ShrinkDemandedOps: (trunc (ext n)) -> n.
462static bool TrivialTruncElim(SDValue Op,
463                             TargetLowering::TargetLoweringOpt &TLO) {
464  SDValue N0 = Op.getOperand(0);
465  EVT VT = Op.getValueType();
466  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
467       N0.getOpcode() == ISD::SIGN_EXTEND ||
468       N0.getOpcode() == ISD::ANY_EXTEND) &&
469      N0.getOperand(0).getValueType() == VT) {
470    return TLO.CombineTo(Op, N0.getOperand(0));
471  }
472  return false;
473}
474
475/// ShrinkDemandedOps - A late transformation pass that shrink expressions
476/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
477/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
478void SelectionDAGISel::ShrinkDemandedOps() {
479  SmallVector<SDNode*, 128> Worklist;
480
481  // Add all the dag nodes to the worklist.
482  Worklist.reserve(CurDAG->allnodes_size());
483  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
484       E = CurDAG->allnodes_end(); I != E; ++I)
485    Worklist.push_back(I);
486
487  APInt Mask;
488  APInt KnownZero;
489  APInt KnownOne;
490
491  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
492  while (!Worklist.empty()) {
493    SDNode *N = Worklist.pop_back_val();
494
495    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
496      CurDAG->DeleteNode(N);
497      continue;
498    }
499
500    // Run ShrinkDemandedOp on scalar binary operations.
501    if (N->getNumValues() == 1 &&
502        N->getValueType(0).isSimple() && N->getValueType(0).isInteger()) {
503      unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
504      APInt Demanded = APInt::getAllOnesValue(BitWidth);
505      APInt KnownZero, KnownOne;
506      if (TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
507                                   KnownZero, KnownOne, TLO) ||
508          (N->getOpcode() == ISD::TRUNCATE &&
509           TrivialTruncElim(SDValue(N, 0), TLO))) {
510        // Revisit the node.
511        Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
512                       Worklist.end());
513        Worklist.push_back(N);
514
515        // Replace the old value with the new one.
516        DEBUG(errs() << "\nReplacing ";
517              TLO.Old.getNode()->dump(CurDAG);
518              errs() << "\nWith: ";
519              TLO.New.getNode()->dump(CurDAG);
520              errs() << '\n');
521
522        Worklist.push_back(TLO.New.getNode());
523
524        SDOPsWorkListRemover DeadNodes(Worklist);
525        CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
526
527        if (TLO.Old.getNode()->use_empty()) {
528          for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
529               i != e; ++i) {
530            SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
531            if (OpNode->hasOneUse()) {
532              Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
533                                         OpNode), Worklist.end());
534              Worklist.push_back(OpNode);
535            }
536          }
537
538          Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
539                                     TLO.Old.getNode()), Worklist.end());
540          CurDAG->DeleteNode(TLO.Old.getNode());
541        }
542      }
543    }
544  }
545}
546
547void SelectionDAGISel::ComputeLiveOutVRegInfo() {
548  SmallPtrSet<SDNode*, 128> VisitedNodes;
549  SmallVector<SDNode*, 128> Worklist;
550
551  Worklist.push_back(CurDAG->getRoot().getNode());
552
553  APInt Mask;
554  APInt KnownZero;
555  APInt KnownOne;
556
557  do {
558    SDNode *N = Worklist.pop_back_val();
559
560    // If we've already seen this node, ignore it.
561    if (!VisitedNodes.insert(N))
562      continue;
563
564    // Otherwise, add all chain operands to the worklist.
565    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
566      if (N->getOperand(i).getValueType() == MVT::Other)
567        Worklist.push_back(N->getOperand(i).getNode());
568
569    // If this is a CopyToReg with a vreg dest, process it.
570    if (N->getOpcode() != ISD::CopyToReg)
571      continue;
572
573    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
574    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
575      continue;
576
577    // Ignore non-scalar or non-integer values.
578    SDValue Src = N->getOperand(2);
579    EVT SrcVT = Src.getValueType();
580    if (!SrcVT.isInteger() || SrcVT.isVector())
581      continue;
582
583    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
584    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
585    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
586
587    // Only install this information if it tells us something.
588    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
589      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
590      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
591        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
592      FunctionLoweringInfo::LiveOutInfo &LOI =
593        FuncInfo->LiveOutRegInfo[DestReg];
594      LOI.NumSignBits = NumSignBits;
595      LOI.KnownOne = KnownOne;
596      LOI.KnownZero = KnownZero;
597    }
598  } while (!Worklist.empty());
599}
600
601void SelectionDAGISel::CodeGenAndEmitDAG() {
602  std::string GroupName;
603  if (TimePassesIsEnabled)
604    GroupName = "Instruction Selection and Scheduling";
605  std::string BlockName;
606  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
607      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
608      ViewSUnitDAGs)
609    BlockName = MF->getFunction()->getNameStr() + ":" +
610                BB->getBasicBlock()->getNameStr();
611
612  DEBUG(dbgs() << "Initial selection DAG:\n");
613  DEBUG(CurDAG->dump());
614
615  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
616
617  // Run the DAG combiner in pre-legalize mode.
618  if (TimePassesIsEnabled) {
619    NamedRegionTimer T("DAG Combining 1", GroupName);
620    CurDAG->Combine(Unrestricted, *AA, OptLevel);
621  } else {
622    CurDAG->Combine(Unrestricted, *AA, OptLevel);
623  }
624
625  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
626  DEBUG(CurDAG->dump());
627
628  // Second step, hack on the DAG until it only uses operations and types that
629  // the target supports.
630  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
631                                               BlockName);
632
633  bool Changed;
634  if (TimePassesIsEnabled) {
635    NamedRegionTimer T("Type Legalization", GroupName);
636    Changed = CurDAG->LegalizeTypes();
637  } else {
638    Changed = CurDAG->LegalizeTypes();
639  }
640
641  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
642  DEBUG(CurDAG->dump());
643
644  if (Changed) {
645    if (ViewDAGCombineLT)
646      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
647
648    // Run the DAG combiner in post-type-legalize mode.
649    if (TimePassesIsEnabled) {
650      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
651      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
652    } else {
653      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
654    }
655
656    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
657    DEBUG(CurDAG->dump());
658  }
659
660  if (TimePassesIsEnabled) {
661    NamedRegionTimer T("Vector Legalization", GroupName);
662    Changed = CurDAG->LegalizeVectors();
663  } else {
664    Changed = CurDAG->LegalizeVectors();
665  }
666
667  if (Changed) {
668    if (TimePassesIsEnabled) {
669      NamedRegionTimer T("Type Legalization 2", GroupName);
670      CurDAG->LegalizeTypes();
671    } else {
672      CurDAG->LegalizeTypes();
673    }
674
675    if (ViewDAGCombineLT)
676      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
677
678    // Run the DAG combiner in post-type-legalize mode.
679    if (TimePassesIsEnabled) {
680      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
681      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
682    } else {
683      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
684    }
685
686    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
687    DEBUG(CurDAG->dump());
688  }
689
690  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
691
692  if (TimePassesIsEnabled) {
693    NamedRegionTimer T("DAG Legalization", GroupName);
694    CurDAG->Legalize(OptLevel);
695  } else {
696    CurDAG->Legalize(OptLevel);
697  }
698
699  DEBUG(dbgs() << "Legalized selection DAG:\n");
700  DEBUG(CurDAG->dump());
701
702  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
703
704  // Run the DAG combiner in post-legalize mode.
705  if (TimePassesIsEnabled) {
706    NamedRegionTimer T("DAG Combining 2", GroupName);
707    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
708  } else {
709    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
710  }
711
712  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
713  DEBUG(CurDAG->dump());
714
715  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
716
717  if (OptLevel != CodeGenOpt::None) {
718    ShrinkDemandedOps();
719    ComputeLiveOutVRegInfo();
720  }
721
722  // Third, instruction select all of the operations to machine code, adding the
723  // code to the MachineBasicBlock.
724  if (TimePassesIsEnabled) {
725    NamedRegionTimer T("Instruction Selection", GroupName);
726    DoInstructionSelection();
727  } else {
728    DoInstructionSelection();
729  }
730
731  DEBUG(dbgs() << "Selected selection DAG:\n");
732  DEBUG(CurDAG->dump());
733
734  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
735
736  // Schedule machine code.
737  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
738  if (TimePassesIsEnabled) {
739    NamedRegionTimer T("Instruction Scheduling", GroupName);
740    Scheduler->Run(CurDAG, BB, BB->end());
741  } else {
742    Scheduler->Run(CurDAG, BB, BB->end());
743  }
744
745  if (ViewSUnitDAGs) Scheduler->viewGraph();
746
747  // Emit machine code to BB.  This can change 'BB' to the last block being
748  // inserted into.
749  if (TimePassesIsEnabled) {
750    NamedRegionTimer T("Instruction Creation", GroupName);
751    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
752  } else {
753    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
754  }
755
756  // Free the scheduler state.
757  if (TimePassesIsEnabled) {
758    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
759    delete Scheduler;
760  } else {
761    delete Scheduler;
762  }
763
764  DEBUG(dbgs() << "Selected machine code:\n");
765  DEBUG(BB->dump());
766}
767
768void SelectionDAGISel::DoInstructionSelection() {
769  DEBUG(errs() << "===== Instruction selection begins:\n");
770
771  PreprocessISelDAG();
772
773  // Select target instructions for the DAG.
774  {
775    // Number all nodes with a topological order and set DAGSize.
776    DAGSize = CurDAG->AssignTopologicalOrder();
777
778    // Create a dummy node (which is not added to allnodes), that adds
779    // a reference to the root node, preventing it from being deleted,
780    // and tracking any changes of the root.
781    HandleSDNode Dummy(CurDAG->getRoot());
782    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
783    ++ISelPosition;
784
785    // The AllNodes list is now topological-sorted. Visit the
786    // nodes by starting at the end of the list (the root of the
787    // graph) and preceding back toward the beginning (the entry
788    // node).
789    while (ISelPosition != CurDAG->allnodes_begin()) {
790      SDNode *Node = --ISelPosition;
791      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
792      // but there are currently some corner cases that it misses. Also, this
793      // makes it theoretically possible to disable the DAGCombiner.
794      if (Node->use_empty())
795        continue;
796
797      SDNode *ResNode = Select(Node);
798
799      // If node should not be replaced, continue with the next one.
800      if (ResNode == Node)
801        continue;
802      // Replace node.
803      if (ResNode)
804        ReplaceUses(Node, ResNode);
805
806      // If after the replacement this node is not used any more,
807      // remove this dead node.
808      if (Node->use_empty()) { // Don't delete EntryToken, etc.
809        ISelUpdater ISU(ISelPosition);
810        CurDAG->RemoveDeadNode(Node, &ISU);
811      }
812    }
813
814    CurDAG->setRoot(Dummy.getValue());
815  }
816  DEBUG(errs() << "===== Instruction selection ends:\n");
817
818  PostprocessISelDAG();
819
820  // FIXME: This shouldn't be needed, remove it.
821  CurDAG->RemoveDeadNodes();
822}
823
824
825void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
826                                            MachineFunction &MF,
827                                            MachineModuleInfo *MMI,
828                                            DwarfWriter *DW,
829                                            const TargetInstrInfo &TII) {
830  // Initialize the Fast-ISel state, if needed.
831  FastISel *FastIS = 0;
832  if (EnableFastISel)
833    FastIS = TLI.createFastISel(MF, MMI, DW,
834                                FuncInfo->ValueMap,
835                                FuncInfo->MBBMap,
836                                FuncInfo->StaticAllocaMap
837#ifndef NDEBUG
838                                , FuncInfo->CatchInfoLost
839#endif
840                                );
841
842  unsigned MDDbgKind = Fn.getContext().getMDKindID("dbg");
843
844  // Iterate over all basic blocks in the function.
845  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
846    BasicBlock *LLVMBB = &*I;
847    BB = FuncInfo->MBBMap[LLVMBB];
848
849    BasicBlock::iterator const Begin = LLVMBB->begin();
850    BasicBlock::iterator const End = LLVMBB->end();
851    BasicBlock::iterator BI = Begin;
852
853    // Lower any arguments needed in this block if this is the entry block.
854    bool SuppressFastISel = false;
855    if (LLVMBB == &Fn.getEntryBlock()) {
856      LowerArguments(LLVMBB);
857
858      // If any of the arguments has the byval attribute, forgo
859      // fast-isel in the entry block.
860      if (FastIS) {
861        unsigned j = 1;
862        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
863             I != E; ++I, ++j)
864          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
865            if (EnableFastISelVerbose || EnableFastISelAbort)
866              dbgs() << "FastISel skips entry block due to byval argument\n";
867            SuppressFastISel = true;
868            break;
869          }
870      }
871    }
872
873    if (MMI && BB->isLandingPad()) {
874      // Add a label to mark the beginning of the landing pad.  Deletion of the
875      // landing pad can thus be detected via the MachineModuleInfo.
876      unsigned LabelID = MMI->addLandingPad(BB);
877
878      const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL);
879      BuildMI(BB, SDB->getCurDebugLoc(), II).addImm(LabelID);
880
881      // Mark exception register as live in.
882      unsigned Reg = TLI.getExceptionAddressRegister();
883      if (Reg) BB->addLiveIn(Reg);
884
885      // Mark exception selector register as live in.
886      Reg = TLI.getExceptionSelectorRegister();
887      if (Reg) BB->addLiveIn(Reg);
888
889      // FIXME: Hack around an exception handling flaw (PR1508): the personality
890      // function and list of typeids logically belong to the invoke (or, if you
891      // like, the basic block containing the invoke), and need to be associated
892      // with it in the dwarf exception handling tables.  Currently however the
893      // information is provided by an intrinsic (eh.selector) that can be moved
894      // to unexpected places by the optimizers: if the unwind edge is critical,
895      // then breaking it can result in the intrinsics being in the successor of
896      // the landing pad, not the landing pad itself.  This results
897      // in exceptions not being caught because no typeids are associated with
898      // the invoke.  This may not be the only way things can go wrong, but it
899      // is the only way we try to work around for the moment.
900      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
901
902      if (Br && Br->isUnconditional()) { // Critical edge?
903        BasicBlock::iterator I, E;
904        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
905          if (isa<EHSelectorInst>(I))
906            break;
907
908        if (I == E)
909          // No catch info found - try to extract some from the successor.
910          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
911      }
912    }
913
914    // Before doing SelectionDAG ISel, see if FastISel has been requested.
915    if (FastIS && !SuppressFastISel) {
916      // Emit code for any incoming arguments. This must happen before
917      // beginning FastISel on the entry block.
918      if (LLVMBB == &Fn.getEntryBlock()) {
919        CurDAG->setRoot(SDB->getControlRoot());
920        CodeGenAndEmitDAG();
921        SDB->clear();
922      }
923      FastIS->startNewBlock(BB);
924      // Do FastISel on as many instructions as possible.
925      for (; BI != End; ++BI) {
926        // Just before the terminator instruction, insert instructions to
927        // feed PHI nodes in successor blocks.
928        if (isa<TerminatorInst>(BI))
929          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
930            ResetDebugLoc(SDB, FastIS);
931            if (EnableFastISelVerbose || EnableFastISelAbort) {
932              dbgs() << "FastISel miss: ";
933              BI->dump();
934            }
935            assert(!EnableFastISelAbort &&
936                   "FastISel didn't handle a PHI in a successor");
937            break;
938          }
939
940        SetDebugLoc(MDDbgKind, BI, SDB, FastIS, &MF);
941
942        // Try to select the instruction with FastISel.
943        if (FastIS->SelectInstruction(BI)) {
944          ResetDebugLoc(SDB, FastIS);
945          continue;
946        }
947
948        // Clear out the debug location so that it doesn't carry over to
949        // unrelated instructions.
950        ResetDebugLoc(SDB, FastIS);
951
952        // Then handle certain instructions as single-LLVM-Instruction blocks.
953        if (isa<CallInst>(BI)) {
954          if (EnableFastISelVerbose || EnableFastISelAbort) {
955            dbgs() << "FastISel missed call: ";
956            BI->dump();
957          }
958
959          if (!BI->getType()->isVoidTy()) {
960            unsigned &R = FuncInfo->ValueMap[BI];
961            if (!R)
962              R = FuncInfo->CreateRegForValue(BI);
963          }
964
965          bool HadTailCall = false;
966          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
967
968          // If the call was emitted as a tail call, we're done with the block.
969          if (HadTailCall) {
970            BI = End;
971            break;
972          }
973
974          // If the instruction was codegen'd with multiple blocks,
975          // inform the FastISel object where to resume inserting.
976          FastIS->setCurrentBlock(BB);
977          continue;
978        }
979
980        // Otherwise, give up on FastISel for the rest of the block.
981        // For now, be a little lenient about non-branch terminators.
982        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
983          if (EnableFastISelVerbose || EnableFastISelAbort) {
984            dbgs() << "FastISel miss: ";
985            BI->dump();
986          }
987          if (EnableFastISelAbort)
988            // The "fast" selector couldn't handle something and bailed.
989            // For the purpose of debugging, just abort.
990            llvm_unreachable("FastISel didn't select the entire block");
991        }
992        break;
993      }
994    }
995
996    // Run SelectionDAG instruction selection on the remainder of the block
997    // not handled by FastISel. If FastISel is not run, this is the entire
998    // block.
999    if (BI != End) {
1000      bool HadTailCall;
1001      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
1002    }
1003
1004    FinishBasicBlock();
1005  }
1006
1007  delete FastIS;
1008}
1009
1010void
1011SelectionDAGISel::FinishBasicBlock() {
1012
1013  DEBUG(dbgs() << "Target-post-processed machine code:\n");
1014  DEBUG(BB->dump());
1015
1016  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1017               << SDB->PHINodesToUpdate.size() << "\n");
1018  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
1019          dbgs() << "Node " << i << " : ("
1020                 << SDB->PHINodesToUpdate[i].first
1021                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
1022
1023  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1024  // PHI nodes in successors.
1025  if (SDB->SwitchCases.empty() &&
1026      SDB->JTCases.empty() &&
1027      SDB->BitTestCases.empty()) {
1028    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1029      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1030      assert(PHI->isPHI() &&
1031             "This is not a machine PHI node that we are updating!");
1032      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1033                                                false));
1034      PHI->addOperand(MachineOperand::CreateMBB(BB));
1035    }
1036    SDB->PHINodesToUpdate.clear();
1037    return;
1038  }
1039
1040  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1041    // Lower header first, if it wasn't already lowered
1042    if (!SDB->BitTestCases[i].Emitted) {
1043      // Set the current basic block to the mbb we wish to insert the code into
1044      BB = SDB->BitTestCases[i].Parent;
1045      SDB->setCurrentBasicBlock(BB);
1046      // Emit the code
1047      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
1048      CurDAG->setRoot(SDB->getRoot());
1049      CodeGenAndEmitDAG();
1050      SDB->clear();
1051    }
1052
1053    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1054      // Set the current basic block to the mbb we wish to insert the code into
1055      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
1056      SDB->setCurrentBasicBlock(BB);
1057      // Emit the code
1058      if (j+1 != ej)
1059        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
1060                              SDB->BitTestCases[i].Reg,
1061                              SDB->BitTestCases[i].Cases[j]);
1062      else
1063        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
1064                              SDB->BitTestCases[i].Reg,
1065                              SDB->BitTestCases[i].Cases[j]);
1066
1067
1068      CurDAG->setRoot(SDB->getRoot());
1069      CodeGenAndEmitDAG();
1070      SDB->clear();
1071    }
1072
1073    // Update PHI Nodes
1074    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1075      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1076      MachineBasicBlock *PHIBB = PHI->getParent();
1077      assert(PHI->isPHI() &&
1078             "This is not a machine PHI node that we are updating!");
1079      // This is "default" BB. We have two jumps to it. From "header" BB and
1080      // from last "case" BB.
1081      if (PHIBB == SDB->BitTestCases[i].Default) {
1082        PHI->addOperand(MachineOperand::
1083                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1084        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1085        PHI->addOperand(MachineOperand::
1086                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1087        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1088                                                  back().ThisBB));
1089      }
1090      // One of "cases" BB.
1091      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1092           j != ej; ++j) {
1093        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1094        if (cBB->isSuccessor(PHIBB)) {
1095          PHI->addOperand(MachineOperand::
1096                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1097          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1098        }
1099      }
1100    }
1101  }
1102  SDB->BitTestCases.clear();
1103
1104  // If the JumpTable record is filled in, then we need to emit a jump table.
1105  // Updating the PHI nodes is tricky in this case, since we need to determine
1106  // whether the PHI is a successor of the range check MBB or the jump table MBB
1107  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1108    // Lower header first, if it wasn't already lowered
1109    if (!SDB->JTCases[i].first.Emitted) {
1110      // Set the current basic block to the mbb we wish to insert the code into
1111      BB = SDB->JTCases[i].first.HeaderBB;
1112      SDB->setCurrentBasicBlock(BB);
1113      // Emit the code
1114      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
1115      CurDAG->setRoot(SDB->getRoot());
1116      CodeGenAndEmitDAG();
1117      SDB->clear();
1118    }
1119
1120    // Set the current basic block to the mbb we wish to insert the code into
1121    BB = SDB->JTCases[i].second.MBB;
1122    SDB->setCurrentBasicBlock(BB);
1123    // Emit the code
1124    SDB->visitJumpTable(SDB->JTCases[i].second);
1125    CurDAG->setRoot(SDB->getRoot());
1126    CodeGenAndEmitDAG();
1127    SDB->clear();
1128
1129    // Update PHI Nodes
1130    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1131      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1132      MachineBasicBlock *PHIBB = PHI->getParent();
1133      assert(PHI->isPHI() &&
1134             "This is not a machine PHI node that we are updating!");
1135      // "default" BB. We can go there only from header BB.
1136      if (PHIBB == SDB->JTCases[i].second.Default) {
1137        PHI->addOperand
1138          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1139        PHI->addOperand
1140          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1141      }
1142      // JT BB. Just iterate over successors here
1143      if (BB->isSuccessor(PHIBB)) {
1144        PHI->addOperand
1145          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1146        PHI->addOperand(MachineOperand::CreateMBB(BB));
1147      }
1148    }
1149  }
1150  SDB->JTCases.clear();
1151
1152  // If the switch block involved a branch to one of the actual successors, we
1153  // need to update PHI nodes in that block.
1154  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1155    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1156    assert(PHI->isPHI() &&
1157           "This is not a machine PHI node that we are updating!");
1158    if (BB->isSuccessor(PHI->getParent())) {
1159      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1160                                                false));
1161      PHI->addOperand(MachineOperand::CreateMBB(BB));
1162    }
1163  }
1164
1165  // If we generated any switch lowering information, build and codegen any
1166  // additional DAGs necessary.
1167  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1168    // Set the current basic block to the mbb we wish to insert the code into
1169    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1170    SDB->setCurrentBasicBlock(BB);
1171
1172    // Emit the code
1173    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1174    CurDAG->setRoot(SDB->getRoot());
1175    CodeGenAndEmitDAG();
1176
1177    // Handle any PHI nodes in successors of this chunk, as if we were coming
1178    // from the original BB before switch expansion.  Note that PHI nodes can
1179    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1180    // handle them the right number of times.
1181    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1182      // If new BB's are created during scheduling, the edges may have been
1183      // updated. That is, the edge from ThisBB to BB may have been split and
1184      // BB's predecessor is now another block.
1185      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1186        SDB->EdgeMapping.find(BB);
1187      if (EI != SDB->EdgeMapping.end())
1188        ThisBB = EI->second;
1189
1190      // BB may have been removed from the CFG if a branch was constant folded.
1191      if (ThisBB->isSuccessor(BB)) {
1192        for (MachineBasicBlock::iterator Phi = BB->begin();
1193             Phi != BB->end() && Phi->isPHI();
1194             ++Phi) {
1195          // This value for this PHI node is recorded in PHINodesToUpdate.
1196          for (unsigned pn = 0; ; ++pn) {
1197            assert(pn != SDB->PHINodesToUpdate.size() &&
1198                   "Didn't find PHI entry!");
1199            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1200              Phi->addOperand(MachineOperand::
1201                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1202                                        false));
1203              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1204              break;
1205            }
1206          }
1207        }
1208      }
1209
1210      // Don't process RHS if same block as LHS.
1211      if (BB == SDB->SwitchCases[i].FalseBB)
1212        SDB->SwitchCases[i].FalseBB = 0;
1213
1214      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1215      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1216      SDB->SwitchCases[i].FalseBB = 0;
1217    }
1218    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1219    SDB->clear();
1220  }
1221  SDB->SwitchCases.clear();
1222
1223  SDB->PHINodesToUpdate.clear();
1224}
1225
1226
1227/// Create the scheduler. If a specific scheduler was specified
1228/// via the SchedulerRegistry, use it, otherwise select the
1229/// one preferred by the target.
1230///
1231ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1232  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1233
1234  if (!Ctor) {
1235    Ctor = ISHeuristic;
1236    RegisterScheduler::setDefault(Ctor);
1237  }
1238
1239  return Ctor(this, OptLevel);
1240}
1241
1242ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1243  return new ScheduleHazardRecognizer();
1244}
1245
1246//===----------------------------------------------------------------------===//
1247// Helper functions used by the generated instruction selector.
1248//===----------------------------------------------------------------------===//
1249// Calls to these methods are generated by tblgen.
1250
1251/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1252/// the dag combiner simplified the 255, we still want to match.  RHS is the
1253/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1254/// specified in the .td file (e.g. 255).
1255bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1256                                    int64_t DesiredMaskS) const {
1257  const APInt &ActualMask = RHS->getAPIntValue();
1258  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1259
1260  // If the actual mask exactly matches, success!
1261  if (ActualMask == DesiredMask)
1262    return true;
1263
1264  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1265  if (ActualMask.intersects(~DesiredMask))
1266    return false;
1267
1268  // Otherwise, the DAG Combiner may have proven that the value coming in is
1269  // either already zero or is not demanded.  Check for known zero input bits.
1270  APInt NeededMask = DesiredMask & ~ActualMask;
1271  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1272    return true;
1273
1274  // TODO: check to see if missing bits are just not demanded.
1275
1276  // Otherwise, this pattern doesn't match.
1277  return false;
1278}
1279
1280/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1281/// the dag combiner simplified the 255, we still want to match.  RHS is the
1282/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1283/// specified in the .td file (e.g. 255).
1284bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1285                                   int64_t DesiredMaskS) const {
1286  const APInt &ActualMask = RHS->getAPIntValue();
1287  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1288
1289  // If the actual mask exactly matches, success!
1290  if (ActualMask == DesiredMask)
1291    return true;
1292
1293  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1294  if (ActualMask.intersects(~DesiredMask))
1295    return false;
1296
1297  // Otherwise, the DAG Combiner may have proven that the value coming in is
1298  // either already zero or is not demanded.  Check for known zero input bits.
1299  APInt NeededMask = DesiredMask & ~ActualMask;
1300
1301  APInt KnownZero, KnownOne;
1302  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1303
1304  // If all the missing bits in the or are already known to be set, match!
1305  if ((NeededMask & KnownOne) == NeededMask)
1306    return true;
1307
1308  // TODO: check to see if missing bits are just not demanded.
1309
1310  // Otherwise, this pattern doesn't match.
1311  return false;
1312}
1313
1314
1315/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1316/// by tblgen.  Others should not call it.
1317void SelectionDAGISel::
1318SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1319  std::vector<SDValue> InOps;
1320  std::swap(InOps, Ops);
1321
1322  Ops.push_back(InOps[0]);  // input chain.
1323  Ops.push_back(InOps[1]);  // input asm string.
1324
1325  unsigned i = 2, e = InOps.size();
1326  if (InOps[e-1].getValueType() == MVT::Flag)
1327    --e;  // Don't process a flag operand if it is here.
1328
1329  while (i != e) {
1330    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1331    if ((Flags & 7) != 4 /*MEM*/) {
1332      // Just skip over this operand, copying the operands verbatim.
1333      Ops.insert(Ops.end(), InOps.begin()+i,
1334                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1335      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1336    } else {
1337      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1338             "Memory operand with multiple values?");
1339      // Otherwise, this is a memory operand.  Ask the target to select it.
1340      std::vector<SDValue> SelOps;
1341      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1342        llvm_report_error("Could not match memory address.  Inline asm"
1343                          " failure!");
1344      }
1345
1346      // Add this to the output node.
1347      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1348                                              MVT::i32));
1349      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1350      i += 2;
1351    }
1352  }
1353
1354  // Add the flag input back if present.
1355  if (e != InOps.size())
1356    Ops.push_back(InOps.back());
1357}
1358
1359/// findFlagUse - Return use of EVT::Flag value produced by the specified
1360/// SDNode.
1361///
1362static SDNode *findFlagUse(SDNode *N) {
1363  unsigned FlagResNo = N->getNumValues()-1;
1364  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1365    SDUse &Use = I.getUse();
1366    if (Use.getResNo() == FlagResNo)
1367      return Use.getUser();
1368  }
1369  return NULL;
1370}
1371
1372/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1373/// This function recursively traverses up the operand chain, ignoring
1374/// certain nodes.
1375static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1376                          SDNode *Root,
1377                          SmallPtrSet<SDNode*, 16> &Visited) {
1378  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1379  // greater than all of its (recursive) operands.  If we scan to a point where
1380  // 'use' is smaller than the node we're scanning for, then we know we will
1381  // never find it.
1382  //
1383  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1384  // happen because we scan down to newly selected nodes in the case of flag
1385  // uses.
1386  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1387    return false;
1388
1389  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1390  // won't fail if we scan it again.
1391  if (!Visited.insert(Use))
1392    return false;
1393
1394  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1395    SDNode *N = Use->getOperand(i).getNode();
1396    if (N == Def) {
1397      if (Use == ImmedUse || Use == Root)
1398        continue;  // We are not looking for immediate use.
1399      assert(N != Root);
1400      return true;
1401    }
1402
1403    // Traverse up the operand chain.
1404    if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
1405      return true;
1406  }
1407  return false;
1408}
1409
1410/// isNonImmUse - Start searching from Root up the DAG to check is Def can
1411/// be reached. Return true if that's the case. However, ignore direct uses
1412/// by ImmedUse (which would be U in the example illustrated in
1413/// IsLegalToFold) and by Root (which can happen in the store case).
1414/// FIXME: to be really generic, we should allow direct use by any node
1415/// that is being folded. But realisticly since we only fold loads which
1416/// have one non-chain use, we only need to watch out for load/op/store
1417/// and load/op/cmp case where the root (store / cmp) may reach the load via
1418/// its chain operand.
1419static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
1420  SmallPtrSet<SDNode*, 16> Visited;
1421  return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
1422}
1423
1424/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1425/// operand node N of U during instruction selection that starts at Root.
1426bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1427                                          SDNode *Root) const {
1428  if (OptLevel == CodeGenOpt::None) return false;
1429  return N.hasOneUse();
1430}
1431
1432/// IsLegalToFold - Returns true if the specific operand node N of
1433/// U can be folded during instruction selection that starts at Root.
1434bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root) const {
1435  if (OptLevel == CodeGenOpt::None) return false;
1436
1437  // If Root use can somehow reach N through a path that that doesn't contain
1438  // U then folding N would create a cycle. e.g. In the following
1439  // diagram, Root can reach N through X. If N is folded into into Root, then
1440  // X is both a predecessor and a successor of U.
1441  //
1442  //          [N*]           //
1443  //         ^   ^           //
1444  //        /     \          //
1445  //      [U*]    [X]?       //
1446  //        ^     ^          //
1447  //         \   /           //
1448  //          \ /            //
1449  //         [Root*]         //
1450  //
1451  // * indicates nodes to be folded together.
1452  //
1453  // If Root produces a flag, then it gets (even more) interesting. Since it
1454  // will be "glued" together with its flag use in the scheduler, we need to
1455  // check if it might reach N.
1456  //
1457  //          [N*]           //
1458  //         ^   ^           //
1459  //        /     \          //
1460  //      [U*]    [X]?       //
1461  //        ^       ^        //
1462  //         \       \       //
1463  //          \      |       //
1464  //         [Root*] |       //
1465  //          ^      |       //
1466  //          f      |       //
1467  //          |      /       //
1468  //         [Y]    /        //
1469  //           ^   /         //
1470  //           f  /          //
1471  //           | /           //
1472  //          [FU]           //
1473  //
1474  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1475  // (call it Fold), then X is a predecessor of FU and a successor of
1476  // Fold. But since Fold and FU are flagged together, this will create
1477  // a cycle in the scheduling graph.
1478
1479  EVT VT = Root->getValueType(Root->getNumValues()-1);
1480  while (VT == MVT::Flag) {
1481    SDNode *FU = findFlagUse(Root);
1482    if (FU == NULL)
1483      break;
1484    Root = FU;
1485    VT = Root->getValueType(Root->getNumValues()-1);
1486  }
1487
1488  return !isNonImmUse(Root, N.getNode(), U);
1489}
1490
1491SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1492  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1493  SelectInlineAsmMemoryOperands(Ops);
1494
1495  std::vector<EVT> VTs;
1496  VTs.push_back(MVT::Other);
1497  VTs.push_back(MVT::Flag);
1498  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1499                                VTs, &Ops[0], Ops.size());
1500  return New.getNode();
1501}
1502
1503SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1504  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1505}
1506
1507SDNode *SelectionDAGISel::Select_EH_LABEL(SDNode *N) {
1508  SDValue Chain = N->getOperand(0);
1509  unsigned C = cast<LabelSDNode>(N)->getLabelID();
1510  SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);
1511  return CurDAG->SelectNodeTo(N, TargetOpcode::EH_LABEL,
1512                              MVT::Other, Tmp, Chain);
1513}
1514
1515/// GetVBR - decode a vbr encoding whose top bit is set.
1516ALWAYS_INLINE static uint64_t
1517GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1518  assert(Val >= 128 && "Not a VBR");
1519  Val &= 127;  // Remove first vbr bit.
1520
1521  unsigned Shift = 7;
1522  uint64_t NextBits;
1523  do {
1524    NextBits = MatcherTable[Idx++];
1525    Val |= (NextBits&127) << Shift;
1526    Shift += 7;
1527  } while (NextBits & 128);
1528
1529  return Val;
1530}
1531
1532
1533/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1534/// interior flag and chain results to use the new flag and chain results.
1535static void UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1536                              const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1537                                 SDValue InputFlag,
1538                         const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1539                                 bool isMorphNodeTo, SelectionDAG *CurDAG) {
1540  // Now that all the normal results are replaced, we replace the chain and
1541  // flag results if present.
1542  if (!ChainNodesMatched.empty()) {
1543    assert(InputChain.getNode() != 0 &&
1544           "Matched input chains but didn't produce a chain");
1545    // Loop over all of the nodes we matched that produced a chain result.
1546    // Replace all the chain results with the final chain we ended up with.
1547    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1548      SDNode *ChainNode = ChainNodesMatched[i];
1549
1550      // Don't replace the results of the root node if we're doing a
1551      // MorphNodeTo.
1552      if (ChainNode == NodeToMatch && isMorphNodeTo)
1553        continue;
1554
1555      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1556      if (ChainVal.getValueType() == MVT::Flag)
1557        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1558      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1559      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1560    }
1561  }
1562
1563  // If the result produces a flag, update any flag results in the matched
1564  // pattern with the flag result.
1565  if (InputFlag.getNode() != 0) {
1566    // Handle any interior nodes explicitly marked.
1567    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1568      SDNode *FRN = FlagResultNodesMatched[i];
1569      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1570             "Doesn't have a flag result");
1571      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1572                                        InputFlag);
1573    }
1574  }
1575
1576  DEBUG(errs() << "ISEL: Match complete!\n");
1577}
1578
1579enum ChainResult {
1580  CR_Simple,
1581  CR_InducesCycle,
1582  CR_LeadsToInteriorNode
1583};
1584
1585/// WalkChainUsers - Walk down the users of the specified chained node that is
1586/// part of the pattern we're matching, looking at all of the users we find.
1587/// This determines whether something is an interior node, whether we have a
1588/// non-pattern node in between two pattern nodes (which prevent folding because
1589/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1590/// between pattern nodes (in which case the TF becomes part of the pattern).
1591///
1592/// The walk we do here is guaranteed to be small because we quickly get down to
1593/// already selected nodes "below" us.
1594static ChainResult
1595WalkChainUsers(SDNode *ChainedNode,
1596               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1597               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1598  ChainResult Result = CR_Simple;
1599
1600  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1601         E = ChainedNode->use_end(); UI != E; ++UI) {
1602    // Make sure the use is of the chain, not some other value we produce.
1603    if (UI.getUse().getValueType() != MVT::Other) continue;
1604
1605    SDNode *User = *UI;
1606
1607    // If we see an already-selected machine node, then we've gone beyond the
1608    // pattern that we're selecting down into the already selected chunk of the
1609    // DAG.
1610    if (User->isMachineOpcode() ||
1611        User->getOpcode() == ISD::CopyToReg ||
1612        User->getOpcode() == ISD::CopyFromReg ||
1613        User->getOpcode() == ISD::INLINEASM ||
1614        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1615      continue;
1616
1617    // If we have a TokenFactor, we handle it specially.
1618    if (User->getOpcode() != ISD::TokenFactor) {
1619      // If the node isn't a token factor and isn't part of our pattern, then it
1620      // must be a random chained node in between two nodes we're selecting.
1621      // This happens when we have something like:
1622      //   x = load ptr
1623      //   call
1624      //   y = x+4
1625      //   store y -> ptr
1626      // Because we structurally match the load/store as a read/modify/write,
1627      // but the call is chained between them.  We cannot fold in this case
1628      // because it would induce a cycle in the graph.
1629      if (!std::count(ChainedNodesInPattern.begin(),
1630                      ChainedNodesInPattern.end(), User))
1631        return CR_InducesCycle;
1632
1633      // Otherwise we found a node that is part of our pattern.  For example in:
1634      //   x = load ptr
1635      //   y = x+4
1636      //   store y -> ptr
1637      // This would happen when we're scanning down from the load and see the
1638      // store as a user.  Record that there is a use of ChainedNode that is
1639      // part of the pattern and keep scanning uses.
1640      Result = CR_LeadsToInteriorNode;
1641      InteriorChainedNodes.push_back(User);
1642      continue;
1643    }
1644
1645    // If we found a TokenFactor, there are two cases to consider: first if the
1646    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1647    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1648    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1649    //     [Load chain]
1650    //         ^
1651    //         |
1652    //       [Load]
1653    //       ^    ^
1654    //       |    \                    DAG's like cheese
1655    //      /       \                       do you?
1656    //     /         |
1657    // [TokenFactor] [Op]
1658    //     ^          ^
1659    //     |          |
1660    //      \        /
1661    //       \      /
1662    //       [Store]
1663    //
1664    // In this case, the TokenFactor becomes part of our match and we rewrite it
1665    // as a new TokenFactor.
1666    //
1667    // To distinguish these two cases, do a recursive walk down the uses.
1668    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1669    case CR_Simple:
1670      // If the uses of the TokenFactor are just already-selected nodes, ignore
1671      // it, it is "below" our pattern.
1672      continue;
1673    case CR_InducesCycle:
1674      // If the uses of the TokenFactor lead to nodes that are not part of our
1675      // pattern that are not selected, folding would turn this into a cycle,
1676      // bail out now.
1677      return CR_InducesCycle;
1678    case CR_LeadsToInteriorNode:
1679      break;  // Otherwise, keep processing.
1680    }
1681
1682    // Okay, we know we're in the interesting interior case.  The TokenFactor
1683    // is now going to be considered part of the pattern so that we rewrite its
1684    // uses (it may have uses that are not part of the pattern) with the
1685    // ultimate chain result of the generated code.  We will also add its chain
1686    // inputs as inputs to the ultimate TokenFactor we create.
1687    Result = CR_LeadsToInteriorNode;
1688    ChainedNodesInPattern.push_back(User);
1689    InteriorChainedNodes.push_back(User);
1690    continue;
1691  }
1692
1693  return Result;
1694}
1695
1696/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1697/// operation for when the pattern matched multiple nodes with chains.  The
1698/// input vector contains a list of all of the chained nodes that we match.  We
1699/// must determine if this is a valid thing to cover (i.e. matching it won't
1700/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1701/// be used as the input node chain for the generated nodes.
1702static SDValue
1703HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1704                       SelectionDAG *CurDAG) {
1705  assert(ChainNodesMatched.size() > 1 &&
1706         "Should only happen for multi chain node case");
1707
1708  // Walk all of the chained nodes we've matched, recursively scanning down the
1709  // users of the chain result. This adds any TokenFactor nodes that are caught
1710  // in between chained nodes to the chained and interior nodes list.
1711  SmallVector<SDNode*, 3> InteriorChainedNodes;
1712  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1713    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1714                       InteriorChainedNodes) == CR_InducesCycle)
1715      return SDValue(); // Would induce a cycle.
1716  }
1717
1718  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1719  // that we are interested in.  Form our input TokenFactor node.
1720  SmallVector<SDValue, 3> InputChains;
1721  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1722    // Add the input chain of this node to the InputChains list (which will be
1723    // the operands of the generated TokenFactor) if it's not an interior node.
1724    SDNode *N = ChainNodesMatched[i];
1725    if (N->getOpcode() != ISD::TokenFactor) {
1726      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1727        continue;
1728
1729      // Otherwise, add the input chain.
1730      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1731      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1732      InputChains.push_back(InChain);
1733      continue;
1734    }
1735
1736    // If we have a token factor, we want to add all inputs of the token factor
1737    // that are not part of the pattern we're matching.
1738    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1739      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1740                      N->getOperand(op).getNode()))
1741        InputChains.push_back(N->getOperand(op));
1742    }
1743  }
1744
1745  SDValue Res;
1746  if (InputChains.size() == 1)
1747    return InputChains[0];
1748  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1749                         MVT::Other, &InputChains[0], InputChains.size());
1750}
1751
1752struct MatchScope {
1753  /// FailIndex - If this match fails, this is the index to continue with.
1754  unsigned FailIndex;
1755
1756  /// NodeStack - The node stack when the scope was formed.
1757  SmallVector<SDValue, 4> NodeStack;
1758
1759  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1760  unsigned NumRecordedNodes;
1761
1762  /// NumMatchedMemRefs - The number of matched memref entries.
1763  unsigned NumMatchedMemRefs;
1764
1765  /// InputChain/InputFlag - The current chain/flag
1766  SDValue InputChain, InputFlag;
1767
1768  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1769  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1770};
1771
1772SDNode *SelectionDAGISel::
1773SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1774                 unsigned TableSize) {
1775  // FIXME: Should these even be selected?  Handle these cases in the caller?
1776  switch (NodeToMatch->getOpcode()) {
1777  default:
1778    break;
1779  case ISD::EntryToken:       // These nodes remain the same.
1780  case ISD::BasicBlock:
1781  case ISD::Register:
1782  case ISD::HANDLENODE:
1783  case ISD::TargetConstant:
1784  case ISD::TargetConstantFP:
1785  case ISD::TargetConstantPool:
1786  case ISD::TargetFrameIndex:
1787  case ISD::TargetExternalSymbol:
1788  case ISD::TargetBlockAddress:
1789  case ISD::TargetJumpTable:
1790  case ISD::TargetGlobalTLSAddress:
1791  case ISD::TargetGlobalAddress:
1792  case ISD::TokenFactor:
1793  case ISD::CopyFromReg:
1794  case ISD::CopyToReg:
1795    return 0;
1796  case ISD::AssertSext:
1797  case ISD::AssertZext:
1798    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1799                                      NodeToMatch->getOperand(0));
1800    return 0;
1801  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1802  case ISD::EH_LABEL:  return Select_EH_LABEL(NodeToMatch);
1803  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1804  }
1805
1806  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1807
1808  // Set up the node stack with NodeToMatch as the only node on the stack.
1809  SmallVector<SDValue, 8> NodeStack;
1810  SDValue N = SDValue(NodeToMatch, 0);
1811  NodeStack.push_back(N);
1812
1813  // MatchScopes - Scopes used when matching, if a match failure happens, this
1814  // indicates where to continue checking.
1815  SmallVector<MatchScope, 8> MatchScopes;
1816
1817  // RecordedNodes - This is the set of nodes that have been recorded by the
1818  // state machine.
1819  SmallVector<SDValue, 8> RecordedNodes;
1820
1821  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1822  // pattern.
1823  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1824
1825  // These are the current input chain and flag for use when generating nodes.
1826  // Various Emit operations change these.  For example, emitting a copytoreg
1827  // uses and updates these.
1828  SDValue InputChain, InputFlag;
1829
1830  // ChainNodesMatched - If a pattern matches nodes that have input/output
1831  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1832  // which ones they are.  The result is captured into this list so that we can
1833  // update the chain results when the pattern is complete.
1834  SmallVector<SDNode*, 3> ChainNodesMatched;
1835  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1836
1837  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1838        NodeToMatch->dump(CurDAG);
1839        errs() << '\n');
1840
1841  // Determine where to start the interpreter.  Normally we start at opcode #0,
1842  // but if the state machine starts with an OPC_SwitchOpcode, then we
1843  // accelerate the first lookup (which is guaranteed to be hot) with the
1844  // OpcodeOffset table.
1845  unsigned MatcherIndex = 0;
1846
1847  if (!OpcodeOffset.empty()) {
1848    // Already computed the OpcodeOffset table, just index into it.
1849    if (N.getOpcode() < OpcodeOffset.size())
1850      MatcherIndex = OpcodeOffset[N.getOpcode()];
1851    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1852
1853  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1854    // Otherwise, the table isn't computed, but the state machine does start
1855    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1856    // is the first time we're selecting an instruction.
1857    unsigned Idx = 1;
1858    while (1) {
1859      // Get the size of this case.
1860      unsigned CaseSize = MatcherTable[Idx++];
1861      if (CaseSize & 128)
1862        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1863      if (CaseSize == 0) break;
1864
1865      // Get the opcode, add the index to the table.
1866      unsigned Opc = MatcherTable[Idx++];
1867      if (Opc >= OpcodeOffset.size())
1868        OpcodeOffset.resize((Opc+1)*2);
1869      OpcodeOffset[Opc] = Idx;
1870      Idx += CaseSize;
1871    }
1872
1873    // Okay, do the lookup for the first opcode.
1874    if (N.getOpcode() < OpcodeOffset.size())
1875      MatcherIndex = OpcodeOffset[N.getOpcode()];
1876  }
1877
1878  while (1) {
1879    assert(MatcherIndex < TableSize && "Invalid index");
1880    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
1881    switch (Opcode) {
1882    case OPC_Scope: {
1883      unsigned NumToSkip = MatcherTable[MatcherIndex++];
1884      if (NumToSkip & 128)
1885        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
1886      assert(NumToSkip != 0 &&
1887             "First entry of OPC_Scope shouldn't be 0, scope has no children?");
1888
1889      // Push a MatchScope which indicates where to go if the first child fails
1890      // to match.
1891      MatchScope NewEntry;
1892      NewEntry.FailIndex = MatcherIndex+NumToSkip;
1893      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
1894      NewEntry.NumRecordedNodes = RecordedNodes.size();
1895      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
1896      NewEntry.InputChain = InputChain;
1897      NewEntry.InputFlag = InputFlag;
1898      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
1899      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
1900      MatchScopes.push_back(NewEntry);
1901      continue;
1902    }
1903    case OPC_RecordNode:
1904      // Remember this node, it may end up being an operand in the pattern.
1905      RecordedNodes.push_back(N);
1906      continue;
1907
1908    case OPC_RecordChild0: case OPC_RecordChild1:
1909    case OPC_RecordChild2: case OPC_RecordChild3:
1910    case OPC_RecordChild4: case OPC_RecordChild5:
1911    case OPC_RecordChild6: case OPC_RecordChild7: {
1912      unsigned ChildNo = Opcode-OPC_RecordChild0;
1913      if (ChildNo >= N.getNumOperands())
1914        break;  // Match fails if out of range child #.
1915
1916      RecordedNodes.push_back(N->getOperand(ChildNo));
1917      continue;
1918    }
1919    case OPC_RecordMemRef:
1920      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
1921      continue;
1922
1923    case OPC_CaptureFlagInput:
1924      // If the current node has an input flag, capture it in InputFlag.
1925      if (N->getNumOperands() != 0 &&
1926          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
1927        InputFlag = N->getOperand(N->getNumOperands()-1);
1928      continue;
1929
1930    case OPC_MoveChild: {
1931      unsigned ChildNo = MatcherTable[MatcherIndex++];
1932      if (ChildNo >= N.getNumOperands())
1933        break;  // Match fails if out of range child #.
1934      N = N.getOperand(ChildNo);
1935      NodeStack.push_back(N);
1936      continue;
1937    }
1938
1939    case OPC_MoveParent:
1940      // Pop the current node off the NodeStack.
1941      NodeStack.pop_back();
1942      assert(!NodeStack.empty() && "Node stack imbalance!");
1943      N = NodeStack.back();
1944      continue;
1945
1946    case OPC_CheckSame: {
1947      // Accept if it is exactly the same as a previously recorded node.
1948      unsigned RecNo = MatcherTable[MatcherIndex++];
1949      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1950      if (N != RecordedNodes[RecNo]) break;
1951      continue;
1952    }
1953    case OPC_CheckPatternPredicate:
1954      if (!CheckPatternPredicate(MatcherTable[MatcherIndex++])) break;
1955      continue;
1956    case OPC_CheckPredicate:
1957      if (!CheckNodePredicate(N.getNode(), MatcherTable[MatcherIndex++])) break;
1958      continue;
1959    case OPC_CheckComplexPat:
1960      if (!CheckComplexPattern(NodeToMatch, N,
1961                               MatcherTable[MatcherIndex++], RecordedNodes))
1962        break;
1963      continue;
1964    case OPC_CheckOpcode:
1965      if (N->getOpcode() != MatcherTable[MatcherIndex++]) break;
1966      continue;
1967
1968    case OPC_SwitchOpcode: {
1969      unsigned CurNodeOpcode = N.getOpcode();
1970
1971      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
1972
1973      unsigned CaseSize;
1974      while (1) {
1975        // Get the size of this case.
1976        CaseSize = MatcherTable[MatcherIndex++];
1977        if (CaseSize & 128)
1978          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
1979        if (CaseSize == 0) break;
1980
1981        // If the opcode matches, then we will execute this case.
1982        if (CurNodeOpcode == MatcherTable[MatcherIndex++])
1983          break;
1984
1985        // Otherwise, skip over this case.
1986        MatcherIndex += CaseSize;
1987      }
1988
1989      // If we failed to match, bail out.
1990      if (CaseSize == 0) break;
1991
1992      // Otherwise, execute the case we found.
1993      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
1994                   << " to " << MatcherIndex << "\n");
1995      continue;
1996    }
1997
1998    case OPC_CheckType: {
1999      MVT::SimpleValueType VT =
2000        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2001      if (N.getValueType() != VT) {
2002        // Handle the case when VT is iPTR.
2003        if (VT != MVT::iPTR || N.getValueType() != TLI.getPointerTy())
2004          break;
2005      }
2006      continue;
2007    }
2008    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2009    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2010    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2011    case OPC_CheckChild6Type: case OPC_CheckChild7Type: {
2012      unsigned ChildNo = Opcode-OPC_CheckChild0Type;
2013      if (ChildNo >= N.getNumOperands())
2014        break;  // Match fails if out of range child #.
2015
2016      MVT::SimpleValueType VT =
2017        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2018      EVT ChildVT = N.getOperand(ChildNo).getValueType();
2019      if (ChildVT != VT) {
2020        // Handle the case when VT is iPTR.
2021        if (VT != MVT::iPTR || ChildVT != TLI.getPointerTy())
2022          break;
2023      }
2024      continue;
2025    }
2026    case OPC_CheckCondCode:
2027      if (cast<CondCodeSDNode>(N)->get() !=
2028          (ISD::CondCode)MatcherTable[MatcherIndex++]) break;
2029      continue;
2030    case OPC_CheckValueType: {
2031      MVT::SimpleValueType VT =
2032        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2033      if (cast<VTSDNode>(N)->getVT() != VT) {
2034        // Handle the case when VT is iPTR.
2035        if (VT != MVT::iPTR || cast<VTSDNode>(N)->getVT() != TLI.getPointerTy())
2036          break;
2037      }
2038      continue;
2039    }
2040    case OPC_CheckInteger: {
2041      int64_t Val = MatcherTable[MatcherIndex++];
2042      if (Val & 128)
2043        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2044
2045      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2046      if (C == 0 || C->getSExtValue() != Val)
2047        break;
2048      continue;
2049    }
2050    case OPC_CheckAndImm: {
2051      int64_t Val = MatcherTable[MatcherIndex++];
2052      if (Val & 128)
2053        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2054
2055      if (N->getOpcode() != ISD::AND) break;
2056      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2057      if (C == 0 || !CheckAndMask(N.getOperand(0), C, Val))
2058        break;
2059      continue;
2060    }
2061    case OPC_CheckOrImm: {
2062      int64_t Val = MatcherTable[MatcherIndex++];
2063      if (Val & 128)
2064        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2065
2066      if (N->getOpcode() != ISD::OR) break;
2067
2068      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2069      if (C == 0 || !CheckOrMask(N.getOperand(0), C, Val))
2070        break;
2071      continue;
2072    }
2073
2074    case OPC_CheckFoldableChainNode: {
2075      assert(NodeStack.size() != 1 && "No parent node");
2076      // Verify that all intermediate nodes between the root and this one have
2077      // a single use.
2078      bool HasMultipleUses = false;
2079      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2080        if (!NodeStack[i].hasOneUse()) {
2081          HasMultipleUses = true;
2082          break;
2083        }
2084      if (HasMultipleUses) break;
2085
2086      // Check to see that the target thinks this is profitable to fold and that
2087      // we can fold it without inducing cycles in the graph.
2088      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2089                              NodeToMatch) ||
2090          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2091                         NodeToMatch))
2092        break;
2093
2094      continue;
2095    }
2096    case OPC_EmitInteger: {
2097      MVT::SimpleValueType VT =
2098        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2099      int64_t Val = MatcherTable[MatcherIndex++];
2100      if (Val & 128)
2101        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2102      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2103      continue;
2104    }
2105    case OPC_EmitRegister: {
2106      MVT::SimpleValueType VT =
2107        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2108      unsigned RegNo = MatcherTable[MatcherIndex++];
2109      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2110      continue;
2111    }
2112
2113    case OPC_EmitConvertToTarget:  {
2114      // Convert from IMM/FPIMM to target version.
2115      unsigned RecNo = MatcherTable[MatcherIndex++];
2116      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2117      SDValue Imm = RecordedNodes[RecNo];
2118
2119      if (Imm->getOpcode() == ISD::Constant) {
2120        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2121        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2122      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2123        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2124        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2125      }
2126
2127      RecordedNodes.push_back(Imm);
2128      continue;
2129    }
2130
2131    case OPC_EmitMergeInputChains: {
2132      assert(InputChain.getNode() == 0 &&
2133             "EmitMergeInputChains should be the first chain producing node");
2134      // This node gets a list of nodes we matched in the input that have
2135      // chains.  We want to token factor all of the input chains to these nodes
2136      // together.  However, if any of the input chains is actually one of the
2137      // nodes matched in this pattern, then we have an intra-match reference.
2138      // Ignore these because the newly token factored chain should not refer to
2139      // the old nodes.
2140      unsigned NumChains = MatcherTable[MatcherIndex++];
2141      assert(NumChains != 0 && "Can't TF zero chains");
2142
2143      assert(ChainNodesMatched.empty() &&
2144             "Should only have one EmitMergeInputChains per match");
2145
2146      // Handle the first chain.
2147      unsigned RecNo = MatcherTable[MatcherIndex++];
2148      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2149      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2150
2151      // If the chained node is not the root, we can't fold it if it has
2152      // multiple uses.
2153      // FIXME: What if other value results of the node have uses not matched by
2154      // this pattern?
2155      if (ChainNodesMatched.back() != NodeToMatch &&
2156          !RecordedNodes[RecNo].hasOneUse()) {
2157        ChainNodesMatched.clear();
2158        break;
2159      }
2160
2161      // The common case here is that we have exactly one chain, which is really
2162      // cheap to handle, just do it.
2163      if (NumChains == 1) {
2164        InputChain = RecordedNodes[RecNo].getOperand(0);
2165        assert(InputChain.getValueType() == MVT::Other && "Not a chain");
2166        continue;
2167      }
2168
2169      // Read all of the chained nodes.
2170      for (unsigned i = 1; i != NumChains; ++i) {
2171        RecNo = MatcherTable[MatcherIndex++];
2172        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2173        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2174
2175        // FIXME: What if other value results of the node have uses not matched
2176        // by this pattern?
2177        if (ChainNodesMatched.back() != NodeToMatch &&
2178            !RecordedNodes[RecNo].hasOneUse()) {
2179          ChainNodesMatched.clear();
2180          break;
2181        }
2182      }
2183
2184      // If the inner loop broke out, the match fails.
2185      if (ChainNodesMatched.empty())
2186        break;
2187
2188      // Merge the input chains if they are not intra-pattern references.
2189      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2190
2191      if (InputChain.getNode() == 0)
2192        break;  // Failed to merge.
2193
2194      continue;
2195    }
2196
2197    case OPC_EmitCopyToReg: {
2198      unsigned RecNo = MatcherTable[MatcherIndex++];
2199      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2200      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2201
2202      if (InputChain.getNode() == 0)
2203        InputChain = CurDAG->getEntryNode();
2204
2205      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2206                                        DestPhysReg, RecordedNodes[RecNo],
2207                                        InputFlag);
2208
2209      InputFlag = InputChain.getValue(1);
2210      continue;
2211    }
2212
2213    case OPC_EmitNodeXForm: {
2214      unsigned XFormNo = MatcherTable[MatcherIndex++];
2215      unsigned RecNo = MatcherTable[MatcherIndex++];
2216      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2217      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2218      continue;
2219    }
2220
2221    case OPC_EmitNode:
2222    case OPC_MorphNodeTo: {
2223      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2224      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2225      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2226      // Get the result VT list.
2227      unsigned NumVTs = MatcherTable[MatcherIndex++];
2228      SmallVector<EVT, 4> VTs;
2229      for (unsigned i = 0; i != NumVTs; ++i) {
2230        MVT::SimpleValueType VT =
2231          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2232        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2233        VTs.push_back(VT);
2234      }
2235
2236      if (EmitNodeInfo & OPFL_Chain)
2237        VTs.push_back(MVT::Other);
2238      if (EmitNodeInfo & OPFL_FlagOutput)
2239        VTs.push_back(MVT::Flag);
2240
2241      // This is hot code, so optimize the two most common cases of 1 and 2
2242      // results.
2243      SDVTList VTList;
2244      if (VTs.size() == 1)
2245        VTList = CurDAG->getVTList(VTs[0]);
2246      else if (VTs.size() == 2)
2247        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2248      else
2249        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2250
2251      // Get the operand list.
2252      unsigned NumOps = MatcherTable[MatcherIndex++];
2253      SmallVector<SDValue, 8> Ops;
2254      for (unsigned i = 0; i != NumOps; ++i) {
2255        unsigned RecNo = MatcherTable[MatcherIndex++];
2256        if (RecNo & 128)
2257          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2258
2259        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2260        Ops.push_back(RecordedNodes[RecNo]);
2261      }
2262
2263      // If there are variadic operands to add, handle them now.
2264      if (EmitNodeInfo & OPFL_VariadicInfo) {
2265        // Determine the start index to copy from.
2266        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2267        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2268        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2269               "Invalid variadic node");
2270        // Copy all of the variadic operands, not including a potential flag
2271        // input.
2272        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2273             i != e; ++i) {
2274          SDValue V = NodeToMatch->getOperand(i);
2275          if (V.getValueType() == MVT::Flag) break;
2276          Ops.push_back(V);
2277        }
2278      }
2279
2280      // If this has chain/flag inputs, add them.
2281      if (EmitNodeInfo & OPFL_Chain)
2282        Ops.push_back(InputChain);
2283      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2284        Ops.push_back(InputFlag);
2285
2286      // Create the node.
2287      SDNode *Res = 0;
2288      if (Opcode != OPC_MorphNodeTo) {
2289        // If this is a normal EmitNode command, just create the new node and
2290        // add the results to the RecordedNodes list.
2291        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2292                                     VTList, Ops.data(), Ops.size());
2293
2294        // Add all the non-flag/non-chain results to the RecordedNodes list.
2295        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2296          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2297          RecordedNodes.push_back(SDValue(Res, i));
2298        }
2299
2300      } else {
2301        // It is possible we're using MorphNodeTo to replace a node with no
2302        // normal results with one that has a normal result (or we could be
2303        // adding a chain) and the input could have flags and chains as well.
2304        // In this case we need to shifting the operands down.
2305        // FIXME: This is a horrible hack and broken in obscure cases, no worse
2306        // than the old isel though.  We should sink this into MorphNodeTo.
2307        int OldFlagResultNo = -1, OldChainResultNo = -1;
2308
2309        unsigned NTMNumResults = NodeToMatch->getNumValues();
2310        if (NodeToMatch->getValueType(NTMNumResults-1) == MVT::Flag) {
2311          OldFlagResultNo = NTMNumResults-1;
2312          if (NTMNumResults != 1 &&
2313              NodeToMatch->getValueType(NTMNumResults-2) == MVT::Other)
2314            OldChainResultNo = NTMNumResults-2;
2315        } else if (NodeToMatch->getValueType(NTMNumResults-1) == MVT::Other)
2316          OldChainResultNo = NTMNumResults-1;
2317
2318        // FIXME: If this matches multiple nodes it will just leave them here
2319        // dead with noone to love them.  These dead nodes can block future
2320        // matches (!).
2321        Res = CurDAG->MorphNodeTo(NodeToMatch, ~TargetOpc, VTList,
2322                                  Ops.data(), Ops.size());
2323
2324        // MorphNodeTo can operate in two ways: if an existing node with the
2325        // specified operands exists, it can just return it.  Otherwise, it
2326        // updates the node in place to have the requested operands.
2327        if (Res == NodeToMatch) {
2328          // If we updated the node in place, reset the node ID.  To the isel,
2329          // this should be just like a newly allocated machine node.
2330          Res->setNodeId(-1);
2331        }
2332
2333        unsigned ResNumResults = Res->getNumValues();
2334        // Move the flag if needed.
2335        if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
2336            (unsigned)OldFlagResultNo != ResNumResults-1)
2337          CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch,
2338                                                    OldFlagResultNo),
2339                                            SDValue(Res, ResNumResults-1));
2340
2341        if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
2342          --ResNumResults;
2343
2344        // Move the chain reference if needed.
2345        if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2346            (unsigned)OldChainResultNo != ResNumResults-1)
2347          CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch,
2348                                                    OldChainResultNo),
2349                                            SDValue(Res, ResNumResults-1));
2350
2351        if (Res != NodeToMatch) {
2352          // Otherwise, no replacement happened because the node already exists.
2353          CurDAG->ReplaceAllUsesWith(NodeToMatch, Res);
2354        }
2355      }
2356
2357      // If the node had chain/flag results, update our notion of the current
2358      // chain and flag.
2359      if (VTs.back() == MVT::Flag) {
2360        InputFlag = SDValue(Res, VTs.size()-1);
2361        if (EmitNodeInfo & OPFL_Chain)
2362          InputChain = SDValue(Res, VTs.size()-2);
2363      } else if (EmitNodeInfo & OPFL_Chain)
2364        InputChain = SDValue(Res, VTs.size()-1);
2365
2366      // If the OPFL_MemRefs flag is set on this node, slap all of the
2367      // accumulated memrefs onto it.
2368      //
2369      // FIXME: This is vastly incorrect for patterns with multiple outputs
2370      // instructions that access memory and for ComplexPatterns that match
2371      // loads.
2372      if (EmitNodeInfo & OPFL_MemRefs) {
2373        MachineSDNode::mmo_iterator MemRefs =
2374          MF->allocateMemRefsArray(MatchedMemRefs.size());
2375        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2376        cast<MachineSDNode>(Res)
2377          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2378      }
2379
2380      DEBUG(errs() << "  "
2381                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2382                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2383
2384      // If this was a MorphNodeTo then we're completely done!
2385      if (Opcode == OPC_MorphNodeTo) {
2386        // Update chain and flag uses.
2387        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2388                             InputFlag, FlagResultNodesMatched, true, CurDAG);
2389        return 0;
2390      }
2391
2392      continue;
2393    }
2394
2395    case OPC_MarkFlagResults: {
2396      unsigned NumNodes = MatcherTable[MatcherIndex++];
2397
2398      // Read and remember all the flag-result nodes.
2399      for (unsigned i = 0; i != NumNodes; ++i) {
2400        unsigned RecNo = MatcherTable[MatcherIndex++];
2401        if (RecNo & 128)
2402          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2403
2404        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2405        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2406      }
2407      continue;
2408    }
2409
2410    case OPC_CompleteMatch: {
2411      // The match has been completed, and any new nodes (if any) have been
2412      // created.  Patch up references to the matched dag to use the newly
2413      // created nodes.
2414      unsigned NumResults = MatcherTable[MatcherIndex++];
2415
2416      for (unsigned i = 0; i != NumResults; ++i) {
2417        unsigned ResSlot = MatcherTable[MatcherIndex++];
2418        if (ResSlot & 128)
2419          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2420
2421        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2422        SDValue Res = RecordedNodes[ResSlot];
2423
2424        // FIXME2: Eliminate this horrible hack by fixing the 'Gen' program
2425        // after (parallel) on input patterns are removed.  This would also
2426        // allow us to stop encoding #results in OPC_CompleteMatch's table
2427        // entry.
2428        if (NodeToMatch->getNumValues() <= i ||
2429            NodeToMatch->getValueType(i) == MVT::Other ||
2430            NodeToMatch->getValueType(i) == MVT::Flag)
2431          break;
2432        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2433                NodeToMatch->getValueType(i) == MVT::iPTR ||
2434                Res.getValueType() == MVT::iPTR ||
2435                NodeToMatch->getValueType(i).getSizeInBits() ==
2436                    Res.getValueType().getSizeInBits()) &&
2437               "invalid replacement");
2438        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2439      }
2440
2441      // If the root node defines a flag, add it to the flag nodes to update
2442      // list.
2443      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2444        FlagResultNodesMatched.push_back(NodeToMatch);
2445
2446      // Update chain and flag uses.
2447      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2448                           InputFlag, FlagResultNodesMatched, false, CurDAG);
2449
2450      assert(NodeToMatch->use_empty() &&
2451             "Didn't replace all uses of the node?");
2452
2453      // FIXME: We just return here, which interacts correctly with SelectRoot
2454      // above.  We should fix this to not return an SDNode* anymore.
2455      return 0;
2456    }
2457    }
2458
2459    // If the code reached this point, then the match failed.  See if there is
2460    // another child to try in the current 'Scope', otherwise pop it until we
2461    // find a case to check.
2462    while (1) {
2463      if (MatchScopes.empty()) {
2464        CannotYetSelect(NodeToMatch);
2465        return 0;
2466      }
2467
2468      // Restore the interpreter state back to the point where the scope was
2469      // formed.
2470      MatchScope &LastScope = MatchScopes.back();
2471      RecordedNodes.resize(LastScope.NumRecordedNodes);
2472      NodeStack.clear();
2473      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2474      N = NodeStack.back();
2475
2476      DEBUG(errs() << "  Match failed at index " << MatcherIndex
2477                   << " continuing at " << LastScope.FailIndex << "\n");
2478
2479      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2480        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2481      MatcherIndex = LastScope.FailIndex;
2482
2483      InputChain = LastScope.InputChain;
2484      InputFlag = LastScope.InputFlag;
2485      if (!LastScope.HasChainNodesMatched)
2486        ChainNodesMatched.clear();
2487      if (!LastScope.HasFlagResultNodesMatched)
2488        FlagResultNodesMatched.clear();
2489
2490      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2491      // we have reached the end of this scope, otherwise we have another child
2492      // in the current scope to try.
2493      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2494      if (NumToSkip & 128)
2495        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2496
2497      // If we have another child in this scope to match, update FailIndex and
2498      // try it.
2499      if (NumToSkip != 0) {
2500        LastScope.FailIndex = MatcherIndex+NumToSkip;
2501        break;
2502      }
2503
2504      // End of this scope, pop it and try the next child in the containing
2505      // scope.
2506      MatchScopes.pop_back();
2507    }
2508  }
2509}
2510
2511
2512
2513void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2514  if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2515      N->getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2516      N->getOpcode() == ISD::INTRINSIC_VOID)
2517    return CannotYetSelectIntrinsic(N);
2518
2519  std::string msg;
2520  raw_string_ostream Msg(msg);
2521  Msg << "Cannot yet select: ";
2522  N->printrFull(Msg, CurDAG);
2523  llvm_report_error(Msg.str());
2524}
2525
2526void SelectionDAGISel::CannotYetSelectIntrinsic(SDNode *N) {
2527  dbgs() << "Cannot yet select: ";
2528  unsigned iid =
2529    cast<ConstantSDNode>(N->getOperand(N->getOperand(0).getValueType() ==
2530                                       MVT::Other))->getZExtValue();
2531  if (iid < Intrinsic::num_intrinsics)
2532    llvm_report_error("Cannot yet select: intrinsic %" +
2533                      Intrinsic::getName((Intrinsic::ID)iid));
2534  else if (const TargetIntrinsicInfo *tii = TM.getIntrinsicInfo())
2535    llvm_report_error(Twine("Cannot yet select: target intrinsic %") +
2536                      tii->getName(iid));
2537}
2538
2539char SelectionDAGISel::ID = 0;
2540