SelectionDAGISel.cpp revision 657484f494edbac571ce2a91b8ac227e5011321d
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/CFG.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GCMetadata.h"
27#include "llvm/CodeGen/GCStrategy.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/DebugInfo.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/InlineAsm.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/IR/Intrinsics.h"
43#include "llvm/IR/LLVMContext.h"
44#include "llvm/IR/Module.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/Timer.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/Target/TargetInstrInfo.h"
51#include "llvm/Target/TargetIntrinsicInfo.h"
52#include "llvm/Target/TargetLibraryInfo.h"
53#include "llvm/Target/TargetLowering.h"
54#include "llvm/Target/TargetMachine.h"
55#include "llvm/Target/TargetOptions.h"
56#include "llvm/Target/TargetRegisterInfo.h"
57#include "llvm/Target/TargetSubtargetInfo.h"
58#include "llvm/Transforms/Utils/BasicBlockUtils.h"
59#include <algorithm>
60using namespace llvm;
61
62STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
63STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
64STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
65STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
66STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
67STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
68STATISTIC(NumFastIselFailLowerArguments,
69          "Number of entry blocks where fast isel failed to lower arguments");
70
71#ifndef NDEBUG
72static cl::opt<bool>
73EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
74          cl::desc("Enable extra verbose messages in the \"fast\" "
75                   "instruction selector"));
76
77  // Terminators
78STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
79STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
80STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
81STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
82STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
83STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
84STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
85
86  // Standard binary operators...
87STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
88STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
89STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
90STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
91STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
92STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
93STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
94STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
95STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
96STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
97STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
98STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
99
100  // Logical operators...
101STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
102STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
103STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
104
105  // Memory instructions...
106STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
107STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
108STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
109STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
110STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
111STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
112STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
113
114  // Convert instructions...
115STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
116STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
117STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
118STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
119STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
120STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
121STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
122STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
123STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
124STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
125STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
126STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
127
128  // Other instructions...
129STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
130STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
131STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
132STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
133STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
134STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
135STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
136STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
137STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
138STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
139STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
140STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
141STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
142STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
143STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
144#endif
145
146static cl::opt<bool>
147EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
148          cl::desc("Enable verbose messages in the \"fast\" "
149                   "instruction selector"));
150static cl::opt<bool>
151EnableFastISelAbort("fast-isel-abort", cl::Hidden,
152          cl::desc("Enable abort calls when \"fast\" instruction selection "
153                   "fails to lower an instruction"));
154static cl::opt<bool>
155EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
156          cl::desc("Enable abort calls when \"fast\" instruction selection "
157                   "fails to lower a formal argument"));
158
159static cl::opt<bool>
160UseMBPI("use-mbpi",
161        cl::desc("use Machine Branch Probability Info"),
162        cl::init(true), cl::Hidden);
163
164#ifndef NDEBUG
165static cl::opt<bool>
166ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
167          cl::desc("Pop up a window to show dags before the first "
168                   "dag combine pass"));
169static cl::opt<bool>
170ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
171          cl::desc("Pop up a window to show dags before legalize types"));
172static cl::opt<bool>
173ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
174          cl::desc("Pop up a window to show dags before legalize"));
175static cl::opt<bool>
176ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
177          cl::desc("Pop up a window to show dags before the second "
178                   "dag combine pass"));
179static cl::opt<bool>
180ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
181          cl::desc("Pop up a window to show dags before the post legalize types"
182                   " dag combine pass"));
183static cl::opt<bool>
184ViewISelDAGs("view-isel-dags", cl::Hidden,
185          cl::desc("Pop up a window to show isel dags as they are selected"));
186static cl::opt<bool>
187ViewSchedDAGs("view-sched-dags", cl::Hidden,
188          cl::desc("Pop up a window to show sched dags as they are processed"));
189static cl::opt<bool>
190ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
191      cl::desc("Pop up a window to show SUnit dags after they are processed"));
192#else
193static const bool ViewDAGCombine1 = false,
194                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
195                  ViewDAGCombine2 = false,
196                  ViewDAGCombineLT = false,
197                  ViewISelDAGs = false, ViewSchedDAGs = false,
198                  ViewSUnitDAGs = false;
199#endif
200
201//===---------------------------------------------------------------------===//
202///
203/// RegisterScheduler class - Track the registration of instruction schedulers.
204///
205//===---------------------------------------------------------------------===//
206MachinePassRegistry RegisterScheduler::Registry;
207
208//===---------------------------------------------------------------------===//
209///
210/// ISHeuristic command line option for instruction schedulers.
211///
212//===---------------------------------------------------------------------===//
213static cl::opt<RegisterScheduler::FunctionPassCtor, false,
214               RegisterPassParser<RegisterScheduler> >
215ISHeuristic("pre-RA-sched",
216            cl::init(&createDefaultScheduler),
217            cl::desc("Instruction schedulers available (before register"
218                     " allocation):"));
219
220static RegisterScheduler
221defaultListDAGScheduler("default", "Best scheduler for the target",
222                        createDefaultScheduler);
223
224namespace llvm {
225  //===--------------------------------------------------------------------===//
226  /// createDefaultScheduler - This creates an instruction scheduler appropriate
227  /// for the target.
228  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
229                                             CodeGenOpt::Level OptLevel) {
230    const TargetLowering *TLI = IS->getTargetLowering();
231    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
232
233    if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() ||
234        TLI->getSchedulingPreference() == Sched::Source)
235      return createSourceListDAGScheduler(IS, OptLevel);
236    if (TLI->getSchedulingPreference() == Sched::RegPressure)
237      return createBURRListDAGScheduler(IS, OptLevel);
238    if (TLI->getSchedulingPreference() == Sched::Hybrid)
239      return createHybridListDAGScheduler(IS, OptLevel);
240    if (TLI->getSchedulingPreference() == Sched::VLIW)
241      return createVLIWDAGScheduler(IS, OptLevel);
242    assert(TLI->getSchedulingPreference() == Sched::ILP &&
243           "Unknown sched type!");
244    return createILPListDAGScheduler(IS, OptLevel);
245  }
246}
247
248// EmitInstrWithCustomInserter - This method should be implemented by targets
249// that mark instructions with the 'usesCustomInserter' flag.  These
250// instructions are special in various ways, which require special support to
251// insert.  The specified MachineInstr is created but not inserted into any
252// basic blocks, and this method is called to expand it into a sequence of
253// instructions, potentially also creating new basic blocks and control flow.
254// When new basic blocks are inserted and the edges from MBB to its successors
255// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
256// DenseMap.
257MachineBasicBlock *
258TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
259                                            MachineBasicBlock *MBB) const {
260#ifndef NDEBUG
261  dbgs() << "If a target marks an instruction with "
262          "'usesCustomInserter', it must implement "
263          "TargetLowering::EmitInstrWithCustomInserter!";
264#endif
265  llvm_unreachable(0);
266}
267
268void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
269                                                   SDNode *Node) const {
270  assert(!MI->hasPostISelHook() &&
271         "If a target marks an instruction with 'hasPostISelHook', "
272         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
273}
274
275//===----------------------------------------------------------------------===//
276// SelectionDAGISel code
277//===----------------------------------------------------------------------===//
278
279SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
280                                   CodeGenOpt::Level OL) :
281  MachineFunctionPass(ID), TM(tm),
282  FuncInfo(new FunctionLoweringInfo(TM)),
283  CurDAG(new SelectionDAG(tm, OL)),
284  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
285  GFI(),
286  OptLevel(OL),
287  DAGSize(0) {
288    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
289    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
290    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
291    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
292  }
293
294SelectionDAGISel::~SelectionDAGISel() {
295  delete SDB;
296  delete CurDAG;
297  delete FuncInfo;
298}
299
300void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
301  AU.addRequired<AliasAnalysis>();
302  AU.addPreserved<AliasAnalysis>();
303  AU.addRequired<GCModuleInfo>();
304  AU.addPreserved<GCModuleInfo>();
305  AU.addRequired<TargetLibraryInfo>();
306  if (UseMBPI && OptLevel != CodeGenOpt::None)
307    AU.addRequired<BranchProbabilityInfo>();
308  MachineFunctionPass::getAnalysisUsage(AU);
309}
310
311/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
312/// may trap on it.  In this case we have to split the edge so that the path
313/// through the predecessor block that doesn't go to the phi block doesn't
314/// execute the possibly trapping instruction.
315///
316/// This is required for correctness, so it must be done at -O0.
317///
318static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
319  // Loop for blocks with phi nodes.
320  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
321    PHINode *PN = dyn_cast<PHINode>(BB->begin());
322    if (PN == 0) continue;
323
324  ReprocessBlock:
325    // For each block with a PHI node, check to see if any of the input values
326    // are potentially trapping constant expressions.  Constant expressions are
327    // the only potentially trapping value that can occur as the argument to a
328    // PHI.
329    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
330      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
331        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
332        if (CE == 0 || !CE->canTrap()) continue;
333
334        // The only case we have to worry about is when the edge is critical.
335        // Since this block has a PHI Node, we assume it has multiple input
336        // edges: check to see if the pred has multiple successors.
337        BasicBlock *Pred = PN->getIncomingBlock(i);
338        if (Pred->getTerminator()->getNumSuccessors() == 1)
339          continue;
340
341        // Okay, we have to split this edge.
342        SplitCriticalEdge(Pred->getTerminator(),
343                          GetSuccessorNumber(Pred, BB), SDISel, true);
344        goto ReprocessBlock;
345      }
346  }
347}
348
349bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
350  // Do some sanity-checking on the command-line options.
351  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
352         "-fast-isel-verbose requires -fast-isel");
353  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
354         "-fast-isel-abort requires -fast-isel");
355
356  const Function &Fn = *mf.getFunction();
357  const TargetInstrInfo &TII = *TM.getInstrInfo();
358  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
359
360  MF = &mf;
361  RegInfo = &MF->getRegInfo();
362  AA = &getAnalysis<AliasAnalysis>();
363  LibInfo = &getAnalysis<TargetLibraryInfo>();
364  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
365  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
366
367  TargetSubtargetInfo &ST =
368    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
369  ST.resetSubtargetFeatures(MF);
370  TM.resetTargetOptions(MF);
371
372  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
373
374  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
375
376  CurDAG->init(*MF, TTI);
377  FuncInfo->set(Fn, *MF);
378
379  if (UseMBPI && OptLevel != CodeGenOpt::None)
380    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
381  else
382    FuncInfo->BPI = 0;
383
384  SDB->init(GFI, *AA, LibInfo);
385
386  MF->setHasMSInlineAsm(false);
387  SelectAllBasicBlocks(Fn);
388
389  // If the first basic block in the function has live ins that need to be
390  // copied into vregs, emit the copies into the top of the block before
391  // emitting the code for the block.
392  MachineBasicBlock *EntryMBB = MF->begin();
393  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
394
395  DenseMap<unsigned, unsigned> LiveInMap;
396  if (!FuncInfo->ArgDbgValues.empty())
397    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
398           E = RegInfo->livein_end(); LI != E; ++LI)
399      if (LI->second)
400        LiveInMap.insert(std::make_pair(LI->first, LI->second));
401
402  // Insert DBG_VALUE instructions for function arguments to the entry block.
403  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
404    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
405    bool hasFI = MI->getOperand(0).isFI();
406    unsigned Reg = hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
407    if (TargetRegisterInfo::isPhysicalRegister(Reg))
408      EntryMBB->insert(EntryMBB->begin(), MI);
409    else {
410      MachineInstr *Def = RegInfo->getVRegDef(Reg);
411      MachineBasicBlock::iterator InsertPos = Def;
412      // FIXME: VR def may not be in entry block.
413      Def->getParent()->insert(llvm::next(InsertPos), MI);
414    }
415
416    // If Reg is live-in then update debug info to track its copy in a vreg.
417    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
418    if (LDI != LiveInMap.end()) {
419      assert(!hasFI && "There's no handling of frame pointer updating here yet "
420                       "- add if needed");
421      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
422      MachineBasicBlock::iterator InsertPos = Def;
423      const MDNode *Variable =
424        MI->getOperand(MI->getNumOperands()-1).getMetadata();
425      bool IsIndirect = MI->getOperand(1).isImm();
426      unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
427      // Def is never a terminator here, so it is ok to increment InsertPos.
428      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
429              TII.get(TargetOpcode::DBG_VALUE),
430              IsIndirect,
431              LDI->second, Offset, Variable);
432
433      // If this vreg is directly copied into an exported register then
434      // that COPY instructions also need DBG_VALUE, if it is the only
435      // user of LDI->second.
436      MachineInstr *CopyUseMI = NULL;
437      for (MachineRegisterInfo::use_iterator
438             UI = RegInfo->use_begin(LDI->second);
439           MachineInstr *UseMI = UI.skipInstruction();) {
440        if (UseMI->isDebugValue()) continue;
441        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
442          CopyUseMI = UseMI; continue;
443        }
444        // Otherwise this is another use or second copy use.
445        CopyUseMI = NULL; break;
446      }
447      if (CopyUseMI) {
448        MachineInstr *NewMI =
449          BuildMI(*MF, CopyUseMI->getDebugLoc(),
450                  TII.get(TargetOpcode::DBG_VALUE),
451                  IsIndirect,
452                  CopyUseMI->getOperand(0).getReg(),
453                  Offset, Variable);
454        MachineBasicBlock::iterator Pos = CopyUseMI;
455        EntryMBB->insertAfter(Pos, NewMI);
456      }
457    }
458  }
459
460  // Determine if there are any calls in this machine function.
461  MachineFrameInfo *MFI = MF->getFrameInfo();
462  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
463       ++I) {
464
465    if (MFI->hasCalls() && MF->hasMSInlineAsm())
466      break;
467
468    const MachineBasicBlock *MBB = I;
469    for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
470         II != IE; ++II) {
471      const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
472      if ((MCID.isCall() && !MCID.isReturn()) ||
473          II->isStackAligningInlineAsm()) {
474        MFI->setHasCalls(true);
475      }
476      if (II->isMSInlineAsm()) {
477        MF->setHasMSInlineAsm(true);
478      }
479    }
480  }
481
482  // Determine if there is a call to setjmp in the machine function.
483  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
484
485  // Replace forward-declared registers with the registers containing
486  // the desired value.
487  MachineRegisterInfo &MRI = MF->getRegInfo();
488  for (DenseMap<unsigned, unsigned>::iterator
489       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
490       I != E; ++I) {
491    unsigned From = I->first;
492    unsigned To = I->second;
493    // If To is also scheduled to be replaced, find what its ultimate
494    // replacement is.
495    for (;;) {
496      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
497      if (J == E) break;
498      To = J->second;
499    }
500    // Make sure the new register has a sufficiently constrained register class.
501    if (TargetRegisterInfo::isVirtualRegister(From) &&
502        TargetRegisterInfo::isVirtualRegister(To))
503      MRI.constrainRegClass(To, MRI.getRegClass(From));
504    // Replace it.
505    MRI.replaceRegWith(From, To);
506  }
507
508  // Freeze the set of reserved registers now that MachineFrameInfo has been
509  // set up. All the information required by getReservedRegs() should be
510  // available now.
511  MRI.freezeReservedRegs(*MF);
512
513  // Release function-specific state. SDB and CurDAG are already cleared
514  // at this point.
515  FuncInfo->clear();
516
517  return true;
518}
519
520void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
521                                        BasicBlock::const_iterator End,
522                                        bool &HadTailCall) {
523  // Lower all of the non-terminator instructions. If a call is emitted
524  // as a tail call, cease emitting nodes for this block. Terminators
525  // are handled below.
526  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
527    SDB->visit(*I);
528
529  // Make sure the root of the DAG is up-to-date.
530  CurDAG->setRoot(SDB->getControlRoot());
531  HadTailCall = SDB->HasTailCall;
532  SDB->clear();
533
534  // Final step, emit the lowered DAG as machine code.
535  CodeGenAndEmitDAG();
536}
537
538void SelectionDAGISel::ComputeLiveOutVRegInfo() {
539  SmallPtrSet<SDNode*, 128> VisitedNodes;
540  SmallVector<SDNode*, 128> Worklist;
541
542  Worklist.push_back(CurDAG->getRoot().getNode());
543
544  APInt KnownZero;
545  APInt KnownOne;
546
547  do {
548    SDNode *N = Worklist.pop_back_val();
549
550    // If we've already seen this node, ignore it.
551    if (!VisitedNodes.insert(N))
552      continue;
553
554    // Otherwise, add all chain operands to the worklist.
555    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
556      if (N->getOperand(i).getValueType() == MVT::Other)
557        Worklist.push_back(N->getOperand(i).getNode());
558
559    // If this is a CopyToReg with a vreg dest, process it.
560    if (N->getOpcode() != ISD::CopyToReg)
561      continue;
562
563    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
564    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
565      continue;
566
567    // Ignore non-scalar or non-integer values.
568    SDValue Src = N->getOperand(2);
569    EVT SrcVT = Src.getValueType();
570    if (!SrcVT.isInteger() || SrcVT.isVector())
571      continue;
572
573    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
574    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
575    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
576  } while (!Worklist.empty());
577}
578
579void SelectionDAGISel::CodeGenAndEmitDAG() {
580  std::string GroupName;
581  if (TimePassesIsEnabled)
582    GroupName = "Instruction Selection and Scheduling";
583  std::string BlockName;
584  int BlockNumber = -1;
585  (void)BlockNumber;
586#ifdef NDEBUG
587  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
588      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
589      ViewSUnitDAGs)
590#endif
591  {
592    BlockNumber = FuncInfo->MBB->getNumber();
593    BlockName = MF->getName().str() + ":" +
594                FuncInfo->MBB->getBasicBlock()->getName().str();
595  }
596  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
597        << " '" << BlockName << "'\n"; CurDAG->dump());
598
599  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
600
601  // Run the DAG combiner in pre-legalize mode.
602  {
603    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
604    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
605  }
606
607  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
608        << " '" << BlockName << "'\n"; CurDAG->dump());
609
610  // Second step, hack on the DAG until it only uses operations and types that
611  // the target supports.
612  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
613                                               BlockName);
614
615  bool Changed;
616  {
617    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
618    Changed = CurDAG->LegalizeTypes();
619  }
620
621  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
622        << " '" << BlockName << "'\n"; CurDAG->dump());
623
624  if (Changed) {
625    if (ViewDAGCombineLT)
626      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
627
628    // Run the DAG combiner in post-type-legalize mode.
629    {
630      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
631                         TimePassesIsEnabled);
632      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
633    }
634
635    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
636          << " '" << BlockName << "'\n"; CurDAG->dump());
637
638  }
639
640  {
641    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
642    Changed = CurDAG->LegalizeVectors();
643  }
644
645  if (Changed) {
646    {
647      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
648      CurDAG->LegalizeTypes();
649    }
650
651    if (ViewDAGCombineLT)
652      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
653
654    // Run the DAG combiner in post-type-legalize mode.
655    {
656      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
657                         TimePassesIsEnabled);
658      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
659    }
660
661    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
662          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
663  }
664
665  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
666
667  {
668    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
669    CurDAG->Legalize();
670  }
671
672  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
673        << " '" << BlockName << "'\n"; CurDAG->dump());
674
675  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
676
677  // Run the DAG combiner in post-legalize mode.
678  {
679    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
680    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
681  }
682
683  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
684        << " '" << BlockName << "'\n"; CurDAG->dump());
685
686  if (OptLevel != CodeGenOpt::None)
687    ComputeLiveOutVRegInfo();
688
689  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
690
691  // Third, instruction select all of the operations to machine code, adding the
692  // code to the MachineBasicBlock.
693  {
694    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
695    DoInstructionSelection();
696  }
697
698  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
699        << " '" << BlockName << "'\n"; CurDAG->dump());
700
701  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
702
703  // Schedule machine code.
704  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
705  {
706    NamedRegionTimer T("Instruction Scheduling", GroupName,
707                       TimePassesIsEnabled);
708    Scheduler->Run(CurDAG, FuncInfo->MBB);
709  }
710
711  if (ViewSUnitDAGs) Scheduler->viewGraph();
712
713  // Emit machine code to BB.  This can change 'BB' to the last block being
714  // inserted into.
715  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
716  {
717    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
718
719    // FuncInfo->InsertPt is passed by reference and set to the end of the
720    // scheduled instructions.
721    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
722  }
723
724  // If the block was split, make sure we update any references that are used to
725  // update PHI nodes later on.
726  if (FirstMBB != LastMBB)
727    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
728
729  // Free the scheduler state.
730  {
731    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
732                       TimePassesIsEnabled);
733    delete Scheduler;
734  }
735
736  // Free the SelectionDAG state, now that we're finished with it.
737  CurDAG->clear();
738}
739
740namespace {
741/// ISelUpdater - helper class to handle updates of the instruction selection
742/// graph.
743class ISelUpdater : public SelectionDAG::DAGUpdateListener {
744  SelectionDAG::allnodes_iterator &ISelPosition;
745public:
746  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
747    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
748
749  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
750  /// deleted is the current ISelPosition node, update ISelPosition.
751  ///
752  virtual void NodeDeleted(SDNode *N, SDNode *E) {
753    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
754      ++ISelPosition;
755  }
756};
757} // end anonymous namespace
758
759void SelectionDAGISel::DoInstructionSelection() {
760  DEBUG(dbgs() << "===== Instruction selection begins: BB#"
761        << FuncInfo->MBB->getNumber()
762        << " '" << FuncInfo->MBB->getName() << "'\n");
763
764  PreprocessISelDAG();
765
766  // Select target instructions for the DAG.
767  {
768    // Number all nodes with a topological order and set DAGSize.
769    DAGSize = CurDAG->AssignTopologicalOrder();
770
771    // Create a dummy node (which is not added to allnodes), that adds
772    // a reference to the root node, preventing it from being deleted,
773    // and tracking any changes of the root.
774    HandleSDNode Dummy(CurDAG->getRoot());
775    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
776    ++ISelPosition;
777
778    // Make sure that ISelPosition gets properly updated when nodes are deleted
779    // in calls made from this function.
780    ISelUpdater ISU(*CurDAG, ISelPosition);
781
782    // The AllNodes list is now topological-sorted. Visit the
783    // nodes by starting at the end of the list (the root of the
784    // graph) and preceding back toward the beginning (the entry
785    // node).
786    while (ISelPosition != CurDAG->allnodes_begin()) {
787      SDNode *Node = --ISelPosition;
788      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
789      // but there are currently some corner cases that it misses. Also, this
790      // makes it theoretically possible to disable the DAGCombiner.
791      if (Node->use_empty())
792        continue;
793
794      SDNode *ResNode = Select(Node);
795
796      // FIXME: This is pretty gross.  'Select' should be changed to not return
797      // anything at all and this code should be nuked with a tactical strike.
798
799      // If node should not be replaced, continue with the next one.
800      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
801        continue;
802      // Replace node.
803      if (ResNode) {
804        ReplaceUses(Node, ResNode);
805      }
806
807      // If after the replacement this node is not used any more,
808      // remove this dead node.
809      if (Node->use_empty()) // Don't delete EntryToken, etc.
810        CurDAG->RemoveDeadNode(Node);
811    }
812
813    CurDAG->setRoot(Dummy.getValue());
814  }
815
816  DEBUG(dbgs() << "===== Instruction selection ends:\n");
817
818  PostprocessISelDAG();
819}
820
821/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
822/// do other setup for EH landing-pad blocks.
823void SelectionDAGISel::PrepareEHLandingPad() {
824  MachineBasicBlock *MBB = FuncInfo->MBB;
825
826  // Add a label to mark the beginning of the landing pad.  Deletion of the
827  // landing pad can thus be detected via the MachineModuleInfo.
828  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
829
830  // Assign the call site to the landing pad's begin label.
831  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
832
833  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
834  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
835    .addSym(Label);
836
837  // Mark exception register as live in.
838  const TargetLowering *TLI = getTargetLowering();
839  const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy());
840  if (unsigned Reg = TLI->getExceptionPointerRegister())
841    FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
842
843  // Mark exception selector register as live in.
844  if (unsigned Reg = TLI->getExceptionSelectorRegister())
845    FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
846}
847
848/// isFoldedOrDeadInstruction - Return true if the specified instruction is
849/// side-effect free and is either dead or folded into a generated instruction.
850/// Return false if it needs to be emitted.
851static bool isFoldedOrDeadInstruction(const Instruction *I,
852                                      FunctionLoweringInfo *FuncInfo) {
853  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
854         !isa<TerminatorInst>(I) && // Terminators aren't folded.
855         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
856         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
857         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
858}
859
860#ifndef NDEBUG
861// Collect per Instruction statistics for fast-isel misses.  Only those
862// instructions that cause the bail are accounted for.  It does not account for
863// instructions higher in the block.  Thus, summing the per instructions stats
864// will not add up to what is reported by NumFastIselFailures.
865static void collectFailStats(const Instruction *I) {
866  switch (I->getOpcode()) {
867  default: assert (0 && "<Invalid operator> ");
868
869  // Terminators
870  case Instruction::Ret:         NumFastIselFailRet++; return;
871  case Instruction::Br:          NumFastIselFailBr++; return;
872  case Instruction::Switch:      NumFastIselFailSwitch++; return;
873  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
874  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
875  case Instruction::Resume:      NumFastIselFailResume++; return;
876  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
877
878  // Standard binary operators...
879  case Instruction::Add:  NumFastIselFailAdd++; return;
880  case Instruction::FAdd: NumFastIselFailFAdd++; return;
881  case Instruction::Sub:  NumFastIselFailSub++; return;
882  case Instruction::FSub: NumFastIselFailFSub++; return;
883  case Instruction::Mul:  NumFastIselFailMul++; return;
884  case Instruction::FMul: NumFastIselFailFMul++; return;
885  case Instruction::UDiv: NumFastIselFailUDiv++; return;
886  case Instruction::SDiv: NumFastIselFailSDiv++; return;
887  case Instruction::FDiv: NumFastIselFailFDiv++; return;
888  case Instruction::URem: NumFastIselFailURem++; return;
889  case Instruction::SRem: NumFastIselFailSRem++; return;
890  case Instruction::FRem: NumFastIselFailFRem++; return;
891
892  // Logical operators...
893  case Instruction::And: NumFastIselFailAnd++; return;
894  case Instruction::Or:  NumFastIselFailOr++; return;
895  case Instruction::Xor: NumFastIselFailXor++; return;
896
897  // Memory instructions...
898  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
899  case Instruction::Load:          NumFastIselFailLoad++; return;
900  case Instruction::Store:         NumFastIselFailStore++; return;
901  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
902  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
903  case Instruction::Fence:         NumFastIselFailFence++; return;
904  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
905
906  // Convert instructions...
907  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
908  case Instruction::ZExt:     NumFastIselFailZExt++; return;
909  case Instruction::SExt:     NumFastIselFailSExt++; return;
910  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
911  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
912  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
913  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
914  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
915  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
916  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
917  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
918  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
919
920  // Other instructions...
921  case Instruction::ICmp:           NumFastIselFailICmp++; return;
922  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
923  case Instruction::PHI:            NumFastIselFailPHI++; return;
924  case Instruction::Select:         NumFastIselFailSelect++; return;
925  case Instruction::Call:           NumFastIselFailCall++; return;
926  case Instruction::Shl:            NumFastIselFailShl++; return;
927  case Instruction::LShr:           NumFastIselFailLShr++; return;
928  case Instruction::AShr:           NumFastIselFailAShr++; return;
929  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
930  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
931  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
932  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
933  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
934  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
935  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
936  }
937}
938#endif
939
940void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
941  // Initialize the Fast-ISel state, if needed.
942  FastISel *FastIS = 0;
943  if (TM.Options.EnableFastISel)
944    FastIS = getTargetLowering()->createFastISel(*FuncInfo, LibInfo);
945
946  // Iterate over all basic blocks in the function.
947  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
948  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
949       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
950    const BasicBlock *LLVMBB = *I;
951
952    if (OptLevel != CodeGenOpt::None) {
953      bool AllPredsVisited = true;
954      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
955           PI != PE; ++PI) {
956        if (!FuncInfo->VisitedBBs.count(*PI)) {
957          AllPredsVisited = false;
958          break;
959        }
960      }
961
962      if (AllPredsVisited) {
963        for (BasicBlock::const_iterator I = LLVMBB->begin();
964             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
965          FuncInfo->ComputePHILiveOutRegInfo(PN);
966      } else {
967        for (BasicBlock::const_iterator I = LLVMBB->begin();
968             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
969          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
970      }
971
972      FuncInfo->VisitedBBs.insert(LLVMBB);
973    }
974
975    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
976    BasicBlock::const_iterator const End = LLVMBB->end();
977    BasicBlock::const_iterator BI = End;
978
979    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
980    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
981
982    // Setup an EH landing-pad block.
983    FuncInfo->ExceptionPointerVirtReg = 0;
984    FuncInfo->ExceptionSelectorVirtReg = 0;
985    if (FuncInfo->MBB->isLandingPad())
986      PrepareEHLandingPad();
987
988    // Before doing SelectionDAG ISel, see if FastISel has been requested.
989    if (FastIS) {
990      FastIS->startNewBlock();
991
992      // Emit code for any incoming arguments. This must happen before
993      // beginning FastISel on the entry block.
994      if (LLVMBB == &Fn.getEntryBlock()) {
995        ++NumEntryBlocks;
996
997        // Lower any arguments needed in this block if this is the entry block.
998        if (!FastIS->LowerArguments()) {
999          // Fast isel failed to lower these arguments
1000          ++NumFastIselFailLowerArguments;
1001          if (EnableFastISelAbortArgs)
1002            llvm_unreachable("FastISel didn't lower all arguments");
1003
1004          // Use SelectionDAG argument lowering
1005          LowerArguments(Fn);
1006          CurDAG->setRoot(SDB->getControlRoot());
1007          SDB->clear();
1008          CodeGenAndEmitDAG();
1009        }
1010
1011        // If we inserted any instructions at the beginning, make a note of
1012        // where they are, so we can be sure to emit subsequent instructions
1013        // after them.
1014        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1015          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1016        else
1017          FastIS->setLastLocalValue(0);
1018      }
1019
1020      unsigned NumFastIselRemaining = std::distance(Begin, End);
1021      // Do FastISel on as many instructions as possible.
1022      for (; BI != Begin; --BI) {
1023        const Instruction *Inst = llvm::prior(BI);
1024
1025        // If we no longer require this instruction, skip it.
1026        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1027          --NumFastIselRemaining;
1028          continue;
1029        }
1030
1031        // Bottom-up: reset the insert pos at the top, after any local-value
1032        // instructions.
1033        FastIS->recomputeInsertPt();
1034
1035        // Try to select the instruction with FastISel.
1036        if (FastIS->SelectInstruction(Inst)) {
1037          --NumFastIselRemaining;
1038          ++NumFastIselSuccess;
1039          // If fast isel succeeded, skip over all the folded instructions, and
1040          // then see if there is a load right before the selected instructions.
1041          // Try to fold the load if so.
1042          const Instruction *BeforeInst = Inst;
1043          while (BeforeInst != Begin) {
1044            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1045            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1046              break;
1047          }
1048          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1049              BeforeInst->hasOneUse() &&
1050              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1051            // If we succeeded, don't re-select the load.
1052            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1053            --NumFastIselRemaining;
1054            ++NumFastIselSuccess;
1055          }
1056          continue;
1057        }
1058
1059#ifndef NDEBUG
1060        if (EnableFastISelVerbose2)
1061          collectFailStats(Inst);
1062#endif
1063
1064        // Then handle certain instructions as single-LLVM-Instruction blocks.
1065        if (isa<CallInst>(Inst)) {
1066
1067          if (EnableFastISelVerbose || EnableFastISelAbort) {
1068            dbgs() << "FastISel missed call: ";
1069            Inst->dump();
1070          }
1071
1072          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1073            unsigned &R = FuncInfo->ValueMap[Inst];
1074            if (!R)
1075              R = FuncInfo->CreateRegs(Inst->getType());
1076          }
1077
1078          bool HadTailCall = false;
1079          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1080          SelectBasicBlock(Inst, BI, HadTailCall);
1081
1082          // If the call was emitted as a tail call, we're done with the block.
1083          // We also need to delete any previously emitted instructions.
1084          if (HadTailCall) {
1085            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1086            --BI;
1087            break;
1088          }
1089
1090          // Recompute NumFastIselRemaining as Selection DAG instruction
1091          // selection may have handled the call, input args, etc.
1092          unsigned RemainingNow = std::distance(Begin, BI);
1093          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1094          NumFastIselRemaining = RemainingNow;
1095          continue;
1096        }
1097
1098        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1099          // Don't abort, and use a different message for terminator misses.
1100          NumFastIselFailures += NumFastIselRemaining;
1101          if (EnableFastISelVerbose || EnableFastISelAbort) {
1102            dbgs() << "FastISel missed terminator: ";
1103            Inst->dump();
1104          }
1105        } else {
1106          NumFastIselFailures += NumFastIselRemaining;
1107          if (EnableFastISelVerbose || EnableFastISelAbort) {
1108            dbgs() << "FastISel miss: ";
1109            Inst->dump();
1110          }
1111          if (EnableFastISelAbort)
1112            // The "fast" selector couldn't handle something and bailed.
1113            // For the purpose of debugging, just abort.
1114            llvm_unreachable("FastISel didn't select the entire block");
1115        }
1116        break;
1117      }
1118
1119      FastIS->recomputeInsertPt();
1120    } else {
1121      // Lower any arguments needed in this block if this is the entry block.
1122      if (LLVMBB == &Fn.getEntryBlock()) {
1123        ++NumEntryBlocks;
1124        LowerArguments(Fn);
1125      }
1126    }
1127
1128    if (Begin != BI)
1129      ++NumDAGBlocks;
1130    else
1131      ++NumFastIselBlocks;
1132
1133    if (Begin != BI) {
1134      // Run SelectionDAG instruction selection on the remainder of the block
1135      // not handled by FastISel. If FastISel is not run, this is the entire
1136      // block.
1137      bool HadTailCall;
1138      SelectBasicBlock(Begin, BI, HadTailCall);
1139    }
1140
1141    FinishBasicBlock();
1142    FuncInfo->PHINodesToUpdate.clear();
1143  }
1144
1145  delete FastIS;
1146  SDB->clearDanglingDebugInfo();
1147  SDB->SPDescriptor.resetPerFunctionState();
1148}
1149
1150/// Find the split point at which to splice the end of BB into its success stack
1151/// protector check machine basic block.
1152static MachineBasicBlock::iterator
1153FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) {
1154  MachineFunction *MF = BB->getParent();
1155  MachineRegisterInfo &MRI = MF->getRegInfo();
1156  const TargetMachine &TM = MF->getTarget();
1157  const TargetInstrInfo *TII = TM.getInstrInfo();
1158  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
1159
1160  MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1161  if (SplitPoint == BB->begin())
1162    return SplitPoint;
1163
1164  MachineBasicBlock::iterator Start = BB->begin();
1165  MachineBasicBlock::iterator Previous = SplitPoint;
1166  --Previous;
1167
1168  while (Previous->isCopy() || Previous->isImplicitDef()) {
1169    MachineInstr::mop_iterator OPI = Previous->operands_begin();
1170
1171    if (!OPI->isReg() || !OPI->isDef() ||
1172        (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1173         !Previous->isImplicitDef()))
1174      break;
1175
1176    SplitPoint = Previous;
1177    if (Previous == Start)
1178      break;
1179    --Previous;
1180  }
1181
1182  return SplitPoint;
1183}
1184
1185void
1186SelectionDAGISel::FinishBasicBlock() {
1187
1188  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1189               << FuncInfo->PHINodesToUpdate.size() << "\n";
1190        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1191          dbgs() << "Node " << i << " : ("
1192                 << FuncInfo->PHINodesToUpdate[i].first
1193                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1194
1195  const bool MustUpdatePHINodes = SDB->SwitchCases.empty() &&
1196                                  SDB->JTCases.empty() &&
1197                                  SDB->BitTestCases.empty();
1198
1199  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1200  // PHI nodes in successors.
1201  if (MustUpdatePHINodes) {
1202    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1203      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1204      assert(PHI->isPHI() &&
1205             "This is not a machine PHI node that we are updating!");
1206      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1207        continue;
1208      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1209    }
1210  }
1211
1212  // Handle stack protector.
1213  if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1214    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1215    MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1216
1217    // Find the split point to split the parent mbb. At the same time copy all
1218    // physical registers used in the tail of parent mbb into virtual registers
1219    // before the split point and back into physical registers after the split
1220    // point. This prevents us needing to deal with Live-ins and many other
1221    // register allocation issues caused by us splitting the parent mbb. The
1222    // register allocator will clean up said virtual copies later on.
1223    MachineBasicBlock::iterator SplitPoint =
1224      FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc());
1225
1226    // Splice the terminator of ParentMBB into SuccessMBB.
1227    SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1228                       SplitPoint,
1229                       ParentMBB->end());
1230
1231    // Add compare/jump on neq/jump to the parent BB.
1232    FuncInfo->MBB = ParentMBB;
1233    FuncInfo->InsertPt = ParentMBB->end();
1234    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1235    CurDAG->setRoot(SDB->getRoot());
1236    SDB->clear();
1237    CodeGenAndEmitDAG();
1238
1239    // CodeGen Failure MBB if we have not codegened it yet.
1240    MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1241    if (!FailureMBB->size()) {
1242      FuncInfo->MBB = FailureMBB;
1243      FuncInfo->InsertPt = FailureMBB->end();
1244      SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1245      CurDAG->setRoot(SDB->getRoot());
1246      SDB->clear();
1247      CodeGenAndEmitDAG();
1248    }
1249
1250    // Clear the Per-BB State.
1251    SDB->SPDescriptor.resetPerBBState();
1252  }
1253
1254  // If we updated PHI Nodes, return early.
1255  if (MustUpdatePHINodes)
1256    return;
1257
1258  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1259    // Lower header first, if it wasn't already lowered
1260    if (!SDB->BitTestCases[i].Emitted) {
1261      // Set the current basic block to the mbb we wish to insert the code into
1262      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1263      FuncInfo->InsertPt = FuncInfo->MBB->end();
1264      // Emit the code
1265      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1266      CurDAG->setRoot(SDB->getRoot());
1267      SDB->clear();
1268      CodeGenAndEmitDAG();
1269    }
1270
1271    uint32_t UnhandledWeight = 0;
1272    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1273      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1274
1275    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1276      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1277      // Set the current basic block to the mbb we wish to insert the code into
1278      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1279      FuncInfo->InsertPt = FuncInfo->MBB->end();
1280      // Emit the code
1281      if (j+1 != ej)
1282        SDB->visitBitTestCase(SDB->BitTestCases[i],
1283                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1284                              UnhandledWeight,
1285                              SDB->BitTestCases[i].Reg,
1286                              SDB->BitTestCases[i].Cases[j],
1287                              FuncInfo->MBB);
1288      else
1289        SDB->visitBitTestCase(SDB->BitTestCases[i],
1290                              SDB->BitTestCases[i].Default,
1291                              UnhandledWeight,
1292                              SDB->BitTestCases[i].Reg,
1293                              SDB->BitTestCases[i].Cases[j],
1294                              FuncInfo->MBB);
1295
1296
1297      CurDAG->setRoot(SDB->getRoot());
1298      SDB->clear();
1299      CodeGenAndEmitDAG();
1300    }
1301
1302    // Update PHI Nodes
1303    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1304         pi != pe; ++pi) {
1305      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1306      MachineBasicBlock *PHIBB = PHI->getParent();
1307      assert(PHI->isPHI() &&
1308             "This is not a machine PHI node that we are updating!");
1309      // This is "default" BB. We have two jumps to it. From "header" BB and
1310      // from last "case" BB.
1311      if (PHIBB == SDB->BitTestCases[i].Default)
1312        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1313           .addMBB(SDB->BitTestCases[i].Parent)
1314           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1315           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1316      // One of "cases" BB.
1317      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1318           j != ej; ++j) {
1319        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1320        if (cBB->isSuccessor(PHIBB))
1321          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1322      }
1323    }
1324  }
1325  SDB->BitTestCases.clear();
1326
1327  // If the JumpTable record is filled in, then we need to emit a jump table.
1328  // Updating the PHI nodes is tricky in this case, since we need to determine
1329  // whether the PHI is a successor of the range check MBB or the jump table MBB
1330  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1331    // Lower header first, if it wasn't already lowered
1332    if (!SDB->JTCases[i].first.Emitted) {
1333      // Set the current basic block to the mbb we wish to insert the code into
1334      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1335      FuncInfo->InsertPt = FuncInfo->MBB->end();
1336      // Emit the code
1337      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1338                                FuncInfo->MBB);
1339      CurDAG->setRoot(SDB->getRoot());
1340      SDB->clear();
1341      CodeGenAndEmitDAG();
1342    }
1343
1344    // Set the current basic block to the mbb we wish to insert the code into
1345    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1346    FuncInfo->InsertPt = FuncInfo->MBB->end();
1347    // Emit the code
1348    SDB->visitJumpTable(SDB->JTCases[i].second);
1349    CurDAG->setRoot(SDB->getRoot());
1350    SDB->clear();
1351    CodeGenAndEmitDAG();
1352
1353    // Update PHI Nodes
1354    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1355         pi != pe; ++pi) {
1356      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1357      MachineBasicBlock *PHIBB = PHI->getParent();
1358      assert(PHI->isPHI() &&
1359             "This is not a machine PHI node that we are updating!");
1360      // "default" BB. We can go there only from header BB.
1361      if (PHIBB == SDB->JTCases[i].second.Default)
1362        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1363           .addMBB(SDB->JTCases[i].first.HeaderBB);
1364      // JT BB. Just iterate over successors here
1365      if (FuncInfo->MBB->isSuccessor(PHIBB))
1366        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1367    }
1368  }
1369  SDB->JTCases.clear();
1370
1371  // If the switch block involved a branch to one of the actual successors, we
1372  // need to update PHI nodes in that block.
1373  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1374    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1375    assert(PHI->isPHI() &&
1376           "This is not a machine PHI node that we are updating!");
1377    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1378      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1379  }
1380
1381  // If we generated any switch lowering information, build and codegen any
1382  // additional DAGs necessary.
1383  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1384    // Set the current basic block to the mbb we wish to insert the code into
1385    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1386    FuncInfo->InsertPt = FuncInfo->MBB->end();
1387
1388    // Determine the unique successors.
1389    SmallVector<MachineBasicBlock *, 2> Succs;
1390    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1391    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1392      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1393
1394    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1395    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1396    CurDAG->setRoot(SDB->getRoot());
1397    SDB->clear();
1398    CodeGenAndEmitDAG();
1399
1400    // Remember the last block, now that any splitting is done, for use in
1401    // populating PHI nodes in successors.
1402    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1403
1404    // Handle any PHI nodes in successors of this chunk, as if we were coming
1405    // from the original BB before switch expansion.  Note that PHI nodes can
1406    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1407    // handle them the right number of times.
1408    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1409      FuncInfo->MBB = Succs[i];
1410      FuncInfo->InsertPt = FuncInfo->MBB->end();
1411      // FuncInfo->MBB may have been removed from the CFG if a branch was
1412      // constant folded.
1413      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1414        for (MachineBasicBlock::iterator
1415             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1416             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1417          MachineInstrBuilder PHI(*MF, MBBI);
1418          // This value for this PHI node is recorded in PHINodesToUpdate.
1419          for (unsigned pn = 0; ; ++pn) {
1420            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1421                   "Didn't find PHI entry!");
1422            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1423              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1424              break;
1425            }
1426          }
1427        }
1428      }
1429    }
1430  }
1431  SDB->SwitchCases.clear();
1432}
1433
1434
1435/// Create the scheduler. If a specific scheduler was specified
1436/// via the SchedulerRegistry, use it, otherwise select the
1437/// one preferred by the target.
1438///
1439ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1440  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1441
1442  if (!Ctor) {
1443    Ctor = ISHeuristic;
1444    RegisterScheduler::setDefault(Ctor);
1445  }
1446
1447  return Ctor(this, OptLevel);
1448}
1449
1450//===----------------------------------------------------------------------===//
1451// Helper functions used by the generated instruction selector.
1452//===----------------------------------------------------------------------===//
1453// Calls to these methods are generated by tblgen.
1454
1455/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1456/// the dag combiner simplified the 255, we still want to match.  RHS is the
1457/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1458/// specified in the .td file (e.g. 255).
1459bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1460                                    int64_t DesiredMaskS) const {
1461  const APInt &ActualMask = RHS->getAPIntValue();
1462  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1463
1464  // If the actual mask exactly matches, success!
1465  if (ActualMask == DesiredMask)
1466    return true;
1467
1468  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1469  if (ActualMask.intersects(~DesiredMask))
1470    return false;
1471
1472  // Otherwise, the DAG Combiner may have proven that the value coming in is
1473  // either already zero or is not demanded.  Check for known zero input bits.
1474  APInt NeededMask = DesiredMask & ~ActualMask;
1475  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1476    return true;
1477
1478  // TODO: check to see if missing bits are just not demanded.
1479
1480  // Otherwise, this pattern doesn't match.
1481  return false;
1482}
1483
1484/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1485/// the dag combiner simplified the 255, we still want to match.  RHS is the
1486/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1487/// specified in the .td file (e.g. 255).
1488bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1489                                   int64_t DesiredMaskS) const {
1490  const APInt &ActualMask = RHS->getAPIntValue();
1491  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1492
1493  // If the actual mask exactly matches, success!
1494  if (ActualMask == DesiredMask)
1495    return true;
1496
1497  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1498  if (ActualMask.intersects(~DesiredMask))
1499    return false;
1500
1501  // Otherwise, the DAG Combiner may have proven that the value coming in is
1502  // either already zero or is not demanded.  Check for known zero input bits.
1503  APInt NeededMask = DesiredMask & ~ActualMask;
1504
1505  APInt KnownZero, KnownOne;
1506  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1507
1508  // If all the missing bits in the or are already known to be set, match!
1509  if ((NeededMask & KnownOne) == NeededMask)
1510    return true;
1511
1512  // TODO: check to see if missing bits are just not demanded.
1513
1514  // Otherwise, this pattern doesn't match.
1515  return false;
1516}
1517
1518
1519/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1520/// by tblgen.  Others should not call it.
1521void SelectionDAGISel::
1522SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1523  std::vector<SDValue> InOps;
1524  std::swap(InOps, Ops);
1525
1526  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1527  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1528  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1529  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1530
1531  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1532  if (InOps[e-1].getValueType() == MVT::Glue)
1533    --e;  // Don't process a glue operand if it is here.
1534
1535  while (i != e) {
1536    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1537    if (!InlineAsm::isMemKind(Flags)) {
1538      // Just skip over this operand, copying the operands verbatim.
1539      Ops.insert(Ops.end(), InOps.begin()+i,
1540                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1541      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1542    } else {
1543      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1544             "Memory operand with multiple values?");
1545      // Otherwise, this is a memory operand.  Ask the target to select it.
1546      std::vector<SDValue> SelOps;
1547      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1548        report_fatal_error("Could not match memory address.  Inline asm"
1549                           " failure!");
1550
1551      // Add this to the output node.
1552      unsigned NewFlags =
1553        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1554      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1555      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1556      i += 2;
1557    }
1558  }
1559
1560  // Add the glue input back if present.
1561  if (e != InOps.size())
1562    Ops.push_back(InOps.back());
1563}
1564
1565/// findGlueUse - Return use of MVT::Glue value produced by the specified
1566/// SDNode.
1567///
1568static SDNode *findGlueUse(SDNode *N) {
1569  unsigned FlagResNo = N->getNumValues()-1;
1570  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1571    SDUse &Use = I.getUse();
1572    if (Use.getResNo() == FlagResNo)
1573      return Use.getUser();
1574  }
1575  return NULL;
1576}
1577
1578/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1579/// This function recursively traverses up the operand chain, ignoring
1580/// certain nodes.
1581static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1582                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1583                          bool IgnoreChains) {
1584  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1585  // greater than all of its (recursive) operands.  If we scan to a point where
1586  // 'use' is smaller than the node we're scanning for, then we know we will
1587  // never find it.
1588  //
1589  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1590  // happen because we scan down to newly selected nodes in the case of glue
1591  // uses.
1592  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1593    return false;
1594
1595  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1596  // won't fail if we scan it again.
1597  if (!Visited.insert(Use))
1598    return false;
1599
1600  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1601    // Ignore chain uses, they are validated by HandleMergeInputChains.
1602    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1603      continue;
1604
1605    SDNode *N = Use->getOperand(i).getNode();
1606    if (N == Def) {
1607      if (Use == ImmedUse || Use == Root)
1608        continue;  // We are not looking for immediate use.
1609      assert(N != Root);
1610      return true;
1611    }
1612
1613    // Traverse up the operand chain.
1614    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1615      return true;
1616  }
1617  return false;
1618}
1619
1620/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1621/// operand node N of U during instruction selection that starts at Root.
1622bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1623                                          SDNode *Root) const {
1624  if (OptLevel == CodeGenOpt::None) return false;
1625  return N.hasOneUse();
1626}
1627
1628/// IsLegalToFold - Returns true if the specific operand node N of
1629/// U can be folded during instruction selection that starts at Root.
1630bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1631                                     CodeGenOpt::Level OptLevel,
1632                                     bool IgnoreChains) {
1633  if (OptLevel == CodeGenOpt::None) return false;
1634
1635  // If Root use can somehow reach N through a path that that doesn't contain
1636  // U then folding N would create a cycle. e.g. In the following
1637  // diagram, Root can reach N through X. If N is folded into into Root, then
1638  // X is both a predecessor and a successor of U.
1639  //
1640  //          [N*]           //
1641  //         ^   ^           //
1642  //        /     \          //
1643  //      [U*]    [X]?       //
1644  //        ^     ^          //
1645  //         \   /           //
1646  //          \ /            //
1647  //         [Root*]         //
1648  //
1649  // * indicates nodes to be folded together.
1650  //
1651  // If Root produces glue, then it gets (even more) interesting. Since it
1652  // will be "glued" together with its glue use in the scheduler, we need to
1653  // check if it might reach N.
1654  //
1655  //          [N*]           //
1656  //         ^   ^           //
1657  //        /     \          //
1658  //      [U*]    [X]?       //
1659  //        ^       ^        //
1660  //         \       \       //
1661  //          \      |       //
1662  //         [Root*] |       //
1663  //          ^      |       //
1664  //          f      |       //
1665  //          |      /       //
1666  //         [Y]    /        //
1667  //           ^   /         //
1668  //           f  /          //
1669  //           | /           //
1670  //          [GU]           //
1671  //
1672  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1673  // (call it Fold), then X is a predecessor of GU and a successor of
1674  // Fold. But since Fold and GU are glued together, this will create
1675  // a cycle in the scheduling graph.
1676
1677  // If the node has glue, walk down the graph to the "lowest" node in the
1678  // glueged set.
1679  EVT VT = Root->getValueType(Root->getNumValues()-1);
1680  while (VT == MVT::Glue) {
1681    SDNode *GU = findGlueUse(Root);
1682    if (GU == NULL)
1683      break;
1684    Root = GU;
1685    VT = Root->getValueType(Root->getNumValues()-1);
1686
1687    // If our query node has a glue result with a use, we've walked up it.  If
1688    // the user (which has already been selected) has a chain or indirectly uses
1689    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1690    // this, we cannot ignore chains in this predicate.
1691    IgnoreChains = false;
1692  }
1693
1694
1695  SmallPtrSet<SDNode*, 16> Visited;
1696  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1697}
1698
1699SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1700  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1701  SelectInlineAsmMemoryOperands(Ops);
1702
1703  EVT VTs[] = { MVT::Other, MVT::Glue };
1704  SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
1705                                VTs, &Ops[0], Ops.size());
1706  New->setNodeId(-1);
1707  return New.getNode();
1708}
1709
1710SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1711  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1712}
1713
1714/// GetVBR - decode a vbr encoding whose top bit is set.
1715LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1716GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1717  assert(Val >= 128 && "Not a VBR");
1718  Val &= 127;  // Remove first vbr bit.
1719
1720  unsigned Shift = 7;
1721  uint64_t NextBits;
1722  do {
1723    NextBits = MatcherTable[Idx++];
1724    Val |= (NextBits&127) << Shift;
1725    Shift += 7;
1726  } while (NextBits & 128);
1727
1728  return Val;
1729}
1730
1731
1732/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1733/// interior glue and chain results to use the new glue and chain results.
1734void SelectionDAGISel::
1735UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1736                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1737                    SDValue InputGlue,
1738                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1739                    bool isMorphNodeTo) {
1740  SmallVector<SDNode*, 4> NowDeadNodes;
1741
1742  // Now that all the normal results are replaced, we replace the chain and
1743  // glue results if present.
1744  if (!ChainNodesMatched.empty()) {
1745    assert(InputChain.getNode() != 0 &&
1746           "Matched input chains but didn't produce a chain");
1747    // Loop over all of the nodes we matched that produced a chain result.
1748    // Replace all the chain results with the final chain we ended up with.
1749    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1750      SDNode *ChainNode = ChainNodesMatched[i];
1751
1752      // If this node was already deleted, don't look at it.
1753      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1754        continue;
1755
1756      // Don't replace the results of the root node if we're doing a
1757      // MorphNodeTo.
1758      if (ChainNode == NodeToMatch && isMorphNodeTo)
1759        continue;
1760
1761      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1762      if (ChainVal.getValueType() == MVT::Glue)
1763        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1764      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1765      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1766
1767      // If the node became dead and we haven't already seen it, delete it.
1768      if (ChainNode->use_empty() &&
1769          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1770        NowDeadNodes.push_back(ChainNode);
1771    }
1772  }
1773
1774  // If the result produces glue, update any glue results in the matched
1775  // pattern with the glue result.
1776  if (InputGlue.getNode() != 0) {
1777    // Handle any interior nodes explicitly marked.
1778    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1779      SDNode *FRN = GlueResultNodesMatched[i];
1780
1781      // If this node was already deleted, don't look at it.
1782      if (FRN->getOpcode() == ISD::DELETED_NODE)
1783        continue;
1784
1785      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1786             "Doesn't have a glue result");
1787      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1788                                        InputGlue);
1789
1790      // If the node became dead and we haven't already seen it, delete it.
1791      if (FRN->use_empty() &&
1792          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1793        NowDeadNodes.push_back(FRN);
1794    }
1795  }
1796
1797  if (!NowDeadNodes.empty())
1798    CurDAG->RemoveDeadNodes(NowDeadNodes);
1799
1800  DEBUG(dbgs() << "ISEL: Match complete!\n");
1801}
1802
1803enum ChainResult {
1804  CR_Simple,
1805  CR_InducesCycle,
1806  CR_LeadsToInteriorNode
1807};
1808
1809/// WalkChainUsers - Walk down the users of the specified chained node that is
1810/// part of the pattern we're matching, looking at all of the users we find.
1811/// This determines whether something is an interior node, whether we have a
1812/// non-pattern node in between two pattern nodes (which prevent folding because
1813/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1814/// between pattern nodes (in which case the TF becomes part of the pattern).
1815///
1816/// The walk we do here is guaranteed to be small because we quickly get down to
1817/// already selected nodes "below" us.
1818static ChainResult
1819WalkChainUsers(const SDNode *ChainedNode,
1820               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1821               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1822  ChainResult Result = CR_Simple;
1823
1824  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1825         E = ChainedNode->use_end(); UI != E; ++UI) {
1826    // Make sure the use is of the chain, not some other value we produce.
1827    if (UI.getUse().getValueType() != MVT::Other) continue;
1828
1829    SDNode *User = *UI;
1830
1831    // If we see an already-selected machine node, then we've gone beyond the
1832    // pattern that we're selecting down into the already selected chunk of the
1833    // DAG.
1834    if (User->isMachineOpcode() ||
1835        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1836      continue;
1837
1838    unsigned UserOpcode = User->getOpcode();
1839    if (UserOpcode == ISD::CopyToReg ||
1840        UserOpcode == ISD::CopyFromReg ||
1841        UserOpcode == ISD::INLINEASM ||
1842        UserOpcode == ISD::EH_LABEL ||
1843        UserOpcode == ISD::LIFETIME_START ||
1844        UserOpcode == ISD::LIFETIME_END) {
1845      // If their node ID got reset to -1 then they've already been selected.
1846      // Treat them like a MachineOpcode.
1847      if (User->getNodeId() == -1)
1848        continue;
1849    }
1850
1851    // If we have a TokenFactor, we handle it specially.
1852    if (User->getOpcode() != ISD::TokenFactor) {
1853      // If the node isn't a token factor and isn't part of our pattern, then it
1854      // must be a random chained node in between two nodes we're selecting.
1855      // This happens when we have something like:
1856      //   x = load ptr
1857      //   call
1858      //   y = x+4
1859      //   store y -> ptr
1860      // Because we structurally match the load/store as a read/modify/write,
1861      // but the call is chained between them.  We cannot fold in this case
1862      // because it would induce a cycle in the graph.
1863      if (!std::count(ChainedNodesInPattern.begin(),
1864                      ChainedNodesInPattern.end(), User))
1865        return CR_InducesCycle;
1866
1867      // Otherwise we found a node that is part of our pattern.  For example in:
1868      //   x = load ptr
1869      //   y = x+4
1870      //   store y -> ptr
1871      // This would happen when we're scanning down from the load and see the
1872      // store as a user.  Record that there is a use of ChainedNode that is
1873      // part of the pattern and keep scanning uses.
1874      Result = CR_LeadsToInteriorNode;
1875      InteriorChainedNodes.push_back(User);
1876      continue;
1877    }
1878
1879    // If we found a TokenFactor, there are two cases to consider: first if the
1880    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1881    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1882    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1883    //     [Load chain]
1884    //         ^
1885    //         |
1886    //       [Load]
1887    //       ^    ^
1888    //       |    \                    DAG's like cheese
1889    //      /       \                       do you?
1890    //     /         |
1891    // [TokenFactor] [Op]
1892    //     ^          ^
1893    //     |          |
1894    //      \        /
1895    //       \      /
1896    //       [Store]
1897    //
1898    // In this case, the TokenFactor becomes part of our match and we rewrite it
1899    // as a new TokenFactor.
1900    //
1901    // To distinguish these two cases, do a recursive walk down the uses.
1902    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1903    case CR_Simple:
1904      // If the uses of the TokenFactor are just already-selected nodes, ignore
1905      // it, it is "below" our pattern.
1906      continue;
1907    case CR_InducesCycle:
1908      // If the uses of the TokenFactor lead to nodes that are not part of our
1909      // pattern that are not selected, folding would turn this into a cycle,
1910      // bail out now.
1911      return CR_InducesCycle;
1912    case CR_LeadsToInteriorNode:
1913      break;  // Otherwise, keep processing.
1914    }
1915
1916    // Okay, we know we're in the interesting interior case.  The TokenFactor
1917    // is now going to be considered part of the pattern so that we rewrite its
1918    // uses (it may have uses that are not part of the pattern) with the
1919    // ultimate chain result of the generated code.  We will also add its chain
1920    // inputs as inputs to the ultimate TokenFactor we create.
1921    Result = CR_LeadsToInteriorNode;
1922    ChainedNodesInPattern.push_back(User);
1923    InteriorChainedNodes.push_back(User);
1924    continue;
1925  }
1926
1927  return Result;
1928}
1929
1930/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1931/// operation for when the pattern matched at least one node with a chains.  The
1932/// input vector contains a list of all of the chained nodes that we match.  We
1933/// must determine if this is a valid thing to cover (i.e. matching it won't
1934/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1935/// be used as the input node chain for the generated nodes.
1936static SDValue
1937HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1938                       SelectionDAG *CurDAG) {
1939  // Walk all of the chained nodes we've matched, recursively scanning down the
1940  // users of the chain result. This adds any TokenFactor nodes that are caught
1941  // in between chained nodes to the chained and interior nodes list.
1942  SmallVector<SDNode*, 3> InteriorChainedNodes;
1943  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1944    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1945                       InteriorChainedNodes) == CR_InducesCycle)
1946      return SDValue(); // Would induce a cycle.
1947  }
1948
1949  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1950  // that we are interested in.  Form our input TokenFactor node.
1951  SmallVector<SDValue, 3> InputChains;
1952  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1953    // Add the input chain of this node to the InputChains list (which will be
1954    // the operands of the generated TokenFactor) if it's not an interior node.
1955    SDNode *N = ChainNodesMatched[i];
1956    if (N->getOpcode() != ISD::TokenFactor) {
1957      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1958        continue;
1959
1960      // Otherwise, add the input chain.
1961      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1962      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1963      InputChains.push_back(InChain);
1964      continue;
1965    }
1966
1967    // If we have a token factor, we want to add all inputs of the token factor
1968    // that are not part of the pattern we're matching.
1969    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1970      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1971                      N->getOperand(op).getNode()))
1972        InputChains.push_back(N->getOperand(op));
1973    }
1974  }
1975
1976  SDValue Res;
1977  if (InputChains.size() == 1)
1978    return InputChains[0];
1979  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
1980                         MVT::Other, &InputChains[0], InputChains.size());
1981}
1982
1983/// MorphNode - Handle morphing a node in place for the selector.
1984SDNode *SelectionDAGISel::
1985MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1986          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1987  // It is possible we're using MorphNodeTo to replace a node with no
1988  // normal results with one that has a normal result (or we could be
1989  // adding a chain) and the input could have glue and chains as well.
1990  // In this case we need to shift the operands down.
1991  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1992  // than the old isel though.
1993  int OldGlueResultNo = -1, OldChainResultNo = -1;
1994
1995  unsigned NTMNumResults = Node->getNumValues();
1996  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1997    OldGlueResultNo = NTMNumResults-1;
1998    if (NTMNumResults != 1 &&
1999        Node->getValueType(NTMNumResults-2) == MVT::Other)
2000      OldChainResultNo = NTMNumResults-2;
2001  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2002    OldChainResultNo = NTMNumResults-1;
2003
2004  // Call the underlying SelectionDAG routine to do the transmogrification. Note
2005  // that this deletes operands of the old node that become dead.
2006  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
2007
2008  // MorphNodeTo can operate in two ways: if an existing node with the
2009  // specified operands exists, it can just return it.  Otherwise, it
2010  // updates the node in place to have the requested operands.
2011  if (Res == Node) {
2012    // If we updated the node in place, reset the node ID.  To the isel,
2013    // this should be just like a newly allocated machine node.
2014    Res->setNodeId(-1);
2015  }
2016
2017  unsigned ResNumResults = Res->getNumValues();
2018  // Move the glue if needed.
2019  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2020      (unsigned)OldGlueResultNo != ResNumResults-1)
2021    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2022                                      SDValue(Res, ResNumResults-1));
2023
2024  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2025    --ResNumResults;
2026
2027  // Move the chain reference if needed.
2028  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2029      (unsigned)OldChainResultNo != ResNumResults-1)
2030    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2031                                      SDValue(Res, ResNumResults-1));
2032
2033  // Otherwise, no replacement happened because the node already exists. Replace
2034  // Uses of the old node with the new one.
2035  if (Res != Node)
2036    CurDAG->ReplaceAllUsesWith(Node, Res);
2037
2038  return Res;
2039}
2040
2041/// CheckSame - Implements OP_CheckSame.
2042LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2043CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2044          SDValue N,
2045          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2046  // Accept if it is exactly the same as a previously recorded node.
2047  unsigned RecNo = MatcherTable[MatcherIndex++];
2048  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2049  return N == RecordedNodes[RecNo].first;
2050}
2051
2052/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2053LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2054CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2055                      const SelectionDAGISel &SDISel) {
2056  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2057}
2058
2059/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2060LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2061CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2062                   const SelectionDAGISel &SDISel, SDNode *N) {
2063  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2064}
2065
2066LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2067CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2068            SDNode *N) {
2069  uint16_t Opc = MatcherTable[MatcherIndex++];
2070  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2071  return N->getOpcode() == Opc;
2072}
2073
2074LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2075CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2076          SDValue N, const TargetLowering *TLI) {
2077  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2078  if (N.getValueType() == VT) return true;
2079
2080  // Handle the case when VT is iPTR.
2081  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy();
2082}
2083
2084LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2085CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2086               SDValue N, const TargetLowering *TLI,
2087               unsigned ChildNo) {
2088  if (ChildNo >= N.getNumOperands())
2089    return false;  // Match fails if out of range child #.
2090  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2091}
2092
2093LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2094CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2095              SDValue N) {
2096  return cast<CondCodeSDNode>(N)->get() ==
2097      (ISD::CondCode)MatcherTable[MatcherIndex++];
2098}
2099
2100LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2101CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2102               SDValue N, const TargetLowering *TLI) {
2103  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2104  if (cast<VTSDNode>(N)->getVT() == VT)
2105    return true;
2106
2107  // Handle the case when VT is iPTR.
2108  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy();
2109}
2110
2111LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2112CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2113             SDValue N) {
2114  int64_t Val = MatcherTable[MatcherIndex++];
2115  if (Val & 128)
2116    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2117
2118  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2119  return C != 0 && C->getSExtValue() == Val;
2120}
2121
2122LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2123CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2124            SDValue N, const SelectionDAGISel &SDISel) {
2125  int64_t Val = MatcherTable[MatcherIndex++];
2126  if (Val & 128)
2127    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2128
2129  if (N->getOpcode() != ISD::AND) return false;
2130
2131  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2132  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2133}
2134
2135LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2136CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2137           SDValue N, const SelectionDAGISel &SDISel) {
2138  int64_t Val = MatcherTable[MatcherIndex++];
2139  if (Val & 128)
2140    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2141
2142  if (N->getOpcode() != ISD::OR) return false;
2143
2144  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2145  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2146}
2147
2148/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2149/// scope, evaluate the current node.  If the current predicate is known to
2150/// fail, set Result=true and return anything.  If the current predicate is
2151/// known to pass, set Result=false and return the MatcherIndex to continue
2152/// with.  If the current predicate is unknown, set Result=false and return the
2153/// MatcherIndex to continue with.
2154static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2155                                       unsigned Index, SDValue N,
2156                                       bool &Result,
2157                                       const SelectionDAGISel &SDISel,
2158                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2159  switch (Table[Index++]) {
2160  default:
2161    Result = false;
2162    return Index-1;  // Could not evaluate this predicate.
2163  case SelectionDAGISel::OPC_CheckSame:
2164    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2165    return Index;
2166  case SelectionDAGISel::OPC_CheckPatternPredicate:
2167    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2168    return Index;
2169  case SelectionDAGISel::OPC_CheckPredicate:
2170    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2171    return Index;
2172  case SelectionDAGISel::OPC_CheckOpcode:
2173    Result = !::CheckOpcode(Table, Index, N.getNode());
2174    return Index;
2175  case SelectionDAGISel::OPC_CheckType:
2176    Result = !::CheckType(Table, Index, N, SDISel.getTargetLowering());
2177    return Index;
2178  case SelectionDAGISel::OPC_CheckChild0Type:
2179  case SelectionDAGISel::OPC_CheckChild1Type:
2180  case SelectionDAGISel::OPC_CheckChild2Type:
2181  case SelectionDAGISel::OPC_CheckChild3Type:
2182  case SelectionDAGISel::OPC_CheckChild4Type:
2183  case SelectionDAGISel::OPC_CheckChild5Type:
2184  case SelectionDAGISel::OPC_CheckChild6Type:
2185  case SelectionDAGISel::OPC_CheckChild7Type:
2186    Result = !::CheckChildType(Table, Index, N, SDISel.getTargetLowering(),
2187                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2188    return Index;
2189  case SelectionDAGISel::OPC_CheckCondCode:
2190    Result = !::CheckCondCode(Table, Index, N);
2191    return Index;
2192  case SelectionDAGISel::OPC_CheckValueType:
2193    Result = !::CheckValueType(Table, Index, N, SDISel.getTargetLowering());
2194    return Index;
2195  case SelectionDAGISel::OPC_CheckInteger:
2196    Result = !::CheckInteger(Table, Index, N);
2197    return Index;
2198  case SelectionDAGISel::OPC_CheckAndImm:
2199    Result = !::CheckAndImm(Table, Index, N, SDISel);
2200    return Index;
2201  case SelectionDAGISel::OPC_CheckOrImm:
2202    Result = !::CheckOrImm(Table, Index, N, SDISel);
2203    return Index;
2204  }
2205}
2206
2207namespace {
2208
2209struct MatchScope {
2210  /// FailIndex - If this match fails, this is the index to continue with.
2211  unsigned FailIndex;
2212
2213  /// NodeStack - The node stack when the scope was formed.
2214  SmallVector<SDValue, 4> NodeStack;
2215
2216  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2217  unsigned NumRecordedNodes;
2218
2219  /// NumMatchedMemRefs - The number of matched memref entries.
2220  unsigned NumMatchedMemRefs;
2221
2222  /// InputChain/InputGlue - The current chain/glue
2223  SDValue InputChain, InputGlue;
2224
2225  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2226  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2227};
2228
2229}
2230
2231SDNode *SelectionDAGISel::
2232SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2233                 unsigned TableSize) {
2234  // FIXME: Should these even be selected?  Handle these cases in the caller?
2235  switch (NodeToMatch->getOpcode()) {
2236  default:
2237    break;
2238  case ISD::EntryToken:       // These nodes remain the same.
2239  case ISD::BasicBlock:
2240  case ISD::Register:
2241  case ISD::RegisterMask:
2242  //case ISD::VALUETYPE:
2243  //case ISD::CONDCODE:
2244  case ISD::HANDLENODE:
2245  case ISD::MDNODE_SDNODE:
2246  case ISD::TargetConstant:
2247  case ISD::TargetConstantFP:
2248  case ISD::TargetConstantPool:
2249  case ISD::TargetFrameIndex:
2250  case ISD::TargetExternalSymbol:
2251  case ISD::TargetBlockAddress:
2252  case ISD::TargetJumpTable:
2253  case ISD::TargetGlobalTLSAddress:
2254  case ISD::TargetGlobalAddress:
2255  case ISD::TokenFactor:
2256  case ISD::CopyFromReg:
2257  case ISD::CopyToReg:
2258  case ISD::EH_LABEL:
2259  case ISD::LIFETIME_START:
2260  case ISD::LIFETIME_END:
2261    NodeToMatch->setNodeId(-1); // Mark selected.
2262    return 0;
2263  case ISD::AssertSext:
2264  case ISD::AssertZext:
2265    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2266                                      NodeToMatch->getOperand(0));
2267    return 0;
2268  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2269  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2270  }
2271
2272  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2273
2274  // Set up the node stack with NodeToMatch as the only node on the stack.
2275  SmallVector<SDValue, 8> NodeStack;
2276  SDValue N = SDValue(NodeToMatch, 0);
2277  NodeStack.push_back(N);
2278
2279  // MatchScopes - Scopes used when matching, if a match failure happens, this
2280  // indicates where to continue checking.
2281  SmallVector<MatchScope, 8> MatchScopes;
2282
2283  // RecordedNodes - This is the set of nodes that have been recorded by the
2284  // state machine.  The second value is the parent of the node, or null if the
2285  // root is recorded.
2286  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2287
2288  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2289  // pattern.
2290  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2291
2292  // These are the current input chain and glue for use when generating nodes.
2293  // Various Emit operations change these.  For example, emitting a copytoreg
2294  // uses and updates these.
2295  SDValue InputChain, InputGlue;
2296
2297  // ChainNodesMatched - If a pattern matches nodes that have input/output
2298  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2299  // which ones they are.  The result is captured into this list so that we can
2300  // update the chain results when the pattern is complete.
2301  SmallVector<SDNode*, 3> ChainNodesMatched;
2302  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2303
2304  DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2305        NodeToMatch->dump(CurDAG);
2306        dbgs() << '\n');
2307
2308  // Determine where to start the interpreter.  Normally we start at opcode #0,
2309  // but if the state machine starts with an OPC_SwitchOpcode, then we
2310  // accelerate the first lookup (which is guaranteed to be hot) with the
2311  // OpcodeOffset table.
2312  unsigned MatcherIndex = 0;
2313
2314  if (!OpcodeOffset.empty()) {
2315    // Already computed the OpcodeOffset table, just index into it.
2316    if (N.getOpcode() < OpcodeOffset.size())
2317      MatcherIndex = OpcodeOffset[N.getOpcode()];
2318    DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2319
2320  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2321    // Otherwise, the table isn't computed, but the state machine does start
2322    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2323    // is the first time we're selecting an instruction.
2324    unsigned Idx = 1;
2325    while (1) {
2326      // Get the size of this case.
2327      unsigned CaseSize = MatcherTable[Idx++];
2328      if (CaseSize & 128)
2329        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2330      if (CaseSize == 0) break;
2331
2332      // Get the opcode, add the index to the table.
2333      uint16_t Opc = MatcherTable[Idx++];
2334      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2335      if (Opc >= OpcodeOffset.size())
2336        OpcodeOffset.resize((Opc+1)*2);
2337      OpcodeOffset[Opc] = Idx;
2338      Idx += CaseSize;
2339    }
2340
2341    // Okay, do the lookup for the first opcode.
2342    if (N.getOpcode() < OpcodeOffset.size())
2343      MatcherIndex = OpcodeOffset[N.getOpcode()];
2344  }
2345
2346  while (1) {
2347    assert(MatcherIndex < TableSize && "Invalid index");
2348#ifndef NDEBUG
2349    unsigned CurrentOpcodeIndex = MatcherIndex;
2350#endif
2351    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2352    switch (Opcode) {
2353    case OPC_Scope: {
2354      // Okay, the semantics of this operation are that we should push a scope
2355      // then evaluate the first child.  However, pushing a scope only to have
2356      // the first check fail (which then pops it) is inefficient.  If we can
2357      // determine immediately that the first check (or first several) will
2358      // immediately fail, don't even bother pushing a scope for them.
2359      unsigned FailIndex;
2360
2361      while (1) {
2362        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2363        if (NumToSkip & 128)
2364          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2365        // Found the end of the scope with no match.
2366        if (NumToSkip == 0) {
2367          FailIndex = 0;
2368          break;
2369        }
2370
2371        FailIndex = MatcherIndex+NumToSkip;
2372
2373        unsigned MatcherIndexOfPredicate = MatcherIndex;
2374        (void)MatcherIndexOfPredicate; // silence warning.
2375
2376        // If we can't evaluate this predicate without pushing a scope (e.g. if
2377        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2378        // push the scope and evaluate the full predicate chain.
2379        bool Result;
2380        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2381                                              Result, *this, RecordedNodes);
2382        if (!Result)
2383          break;
2384
2385        DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
2386                     << "index " << MatcherIndexOfPredicate
2387                     << ", continuing at " << FailIndex << "\n");
2388        ++NumDAGIselRetries;
2389
2390        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2391        // move to the next case.
2392        MatcherIndex = FailIndex;
2393      }
2394
2395      // If the whole scope failed to match, bail.
2396      if (FailIndex == 0) break;
2397
2398      // Push a MatchScope which indicates where to go if the first child fails
2399      // to match.
2400      MatchScope NewEntry;
2401      NewEntry.FailIndex = FailIndex;
2402      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2403      NewEntry.NumRecordedNodes = RecordedNodes.size();
2404      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2405      NewEntry.InputChain = InputChain;
2406      NewEntry.InputGlue = InputGlue;
2407      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2408      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2409      MatchScopes.push_back(NewEntry);
2410      continue;
2411    }
2412    case OPC_RecordNode: {
2413      // Remember this node, it may end up being an operand in the pattern.
2414      SDNode *Parent = 0;
2415      if (NodeStack.size() > 1)
2416        Parent = NodeStack[NodeStack.size()-2].getNode();
2417      RecordedNodes.push_back(std::make_pair(N, Parent));
2418      continue;
2419    }
2420
2421    case OPC_RecordChild0: case OPC_RecordChild1:
2422    case OPC_RecordChild2: case OPC_RecordChild3:
2423    case OPC_RecordChild4: case OPC_RecordChild5:
2424    case OPC_RecordChild6: case OPC_RecordChild7: {
2425      unsigned ChildNo = Opcode-OPC_RecordChild0;
2426      if (ChildNo >= N.getNumOperands())
2427        break;  // Match fails if out of range child #.
2428
2429      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2430                                             N.getNode()));
2431      continue;
2432    }
2433    case OPC_RecordMemRef:
2434      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2435      continue;
2436
2437    case OPC_CaptureGlueInput:
2438      // If the current node has an input glue, capture it in InputGlue.
2439      if (N->getNumOperands() != 0 &&
2440          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2441        InputGlue = N->getOperand(N->getNumOperands()-1);
2442      continue;
2443
2444    case OPC_MoveChild: {
2445      unsigned ChildNo = MatcherTable[MatcherIndex++];
2446      if (ChildNo >= N.getNumOperands())
2447        break;  // Match fails if out of range child #.
2448      N = N.getOperand(ChildNo);
2449      NodeStack.push_back(N);
2450      continue;
2451    }
2452
2453    case OPC_MoveParent:
2454      // Pop the current node off the NodeStack.
2455      NodeStack.pop_back();
2456      assert(!NodeStack.empty() && "Node stack imbalance!");
2457      N = NodeStack.back();
2458      continue;
2459
2460    case OPC_CheckSame:
2461      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2462      continue;
2463    case OPC_CheckPatternPredicate:
2464      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2465      continue;
2466    case OPC_CheckPredicate:
2467      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2468                                N.getNode()))
2469        break;
2470      continue;
2471    case OPC_CheckComplexPat: {
2472      unsigned CPNum = MatcherTable[MatcherIndex++];
2473      unsigned RecNo = MatcherTable[MatcherIndex++];
2474      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2475      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2476                               RecordedNodes[RecNo].first, CPNum,
2477                               RecordedNodes))
2478        break;
2479      continue;
2480    }
2481    case OPC_CheckOpcode:
2482      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2483      continue;
2484
2485    case OPC_CheckType:
2486      if (!::CheckType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2487        break;
2488      continue;
2489
2490    case OPC_SwitchOpcode: {
2491      unsigned CurNodeOpcode = N.getOpcode();
2492      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2493      unsigned CaseSize;
2494      while (1) {
2495        // Get the size of this case.
2496        CaseSize = MatcherTable[MatcherIndex++];
2497        if (CaseSize & 128)
2498          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2499        if (CaseSize == 0) break;
2500
2501        uint16_t Opc = MatcherTable[MatcherIndex++];
2502        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2503
2504        // If the opcode matches, then we will execute this case.
2505        if (CurNodeOpcode == Opc)
2506          break;
2507
2508        // Otherwise, skip over this case.
2509        MatcherIndex += CaseSize;
2510      }
2511
2512      // If no cases matched, bail out.
2513      if (CaseSize == 0) break;
2514
2515      // Otherwise, execute the case we found.
2516      DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
2517                   << " to " << MatcherIndex << "\n");
2518      continue;
2519    }
2520
2521    case OPC_SwitchType: {
2522      MVT CurNodeVT = N.getSimpleValueType();
2523      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2524      unsigned CaseSize;
2525      while (1) {
2526        // Get the size of this case.
2527        CaseSize = MatcherTable[MatcherIndex++];
2528        if (CaseSize & 128)
2529          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2530        if (CaseSize == 0) break;
2531
2532        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2533        if (CaseVT == MVT::iPTR)
2534          CaseVT = getTargetLowering()->getPointerTy();
2535
2536        // If the VT matches, then we will execute this case.
2537        if (CurNodeVT == CaseVT)
2538          break;
2539
2540        // Otherwise, skip over this case.
2541        MatcherIndex += CaseSize;
2542      }
2543
2544      // If no cases matched, bail out.
2545      if (CaseSize == 0) break;
2546
2547      // Otherwise, execute the case we found.
2548      DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2549                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2550      continue;
2551    }
2552    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2553    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2554    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2555    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2556      if (!::CheckChildType(MatcherTable, MatcherIndex, N, getTargetLowering(),
2557                            Opcode-OPC_CheckChild0Type))
2558        break;
2559      continue;
2560    case OPC_CheckCondCode:
2561      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2562      continue;
2563    case OPC_CheckValueType:
2564      if (!::CheckValueType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2565        break;
2566      continue;
2567    case OPC_CheckInteger:
2568      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2569      continue;
2570    case OPC_CheckAndImm:
2571      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2572      continue;
2573    case OPC_CheckOrImm:
2574      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2575      continue;
2576
2577    case OPC_CheckFoldableChainNode: {
2578      assert(NodeStack.size() != 1 && "No parent node");
2579      // Verify that all intermediate nodes between the root and this one have
2580      // a single use.
2581      bool HasMultipleUses = false;
2582      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2583        if (!NodeStack[i].hasOneUse()) {
2584          HasMultipleUses = true;
2585          break;
2586        }
2587      if (HasMultipleUses) break;
2588
2589      // Check to see that the target thinks this is profitable to fold and that
2590      // we can fold it without inducing cycles in the graph.
2591      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2592                              NodeToMatch) ||
2593          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2594                         NodeToMatch, OptLevel,
2595                         true/*We validate our own chains*/))
2596        break;
2597
2598      continue;
2599    }
2600    case OPC_EmitInteger: {
2601      MVT::SimpleValueType VT =
2602        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2603      int64_t Val = MatcherTable[MatcherIndex++];
2604      if (Val & 128)
2605        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2606      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2607                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2608      continue;
2609    }
2610    case OPC_EmitRegister: {
2611      MVT::SimpleValueType VT =
2612        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2613      unsigned RegNo = MatcherTable[MatcherIndex++];
2614      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2615                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2616      continue;
2617    }
2618    case OPC_EmitRegister2: {
2619      // For targets w/ more than 256 register names, the register enum
2620      // values are stored in two bytes in the matcher table (just like
2621      // opcodes).
2622      MVT::SimpleValueType VT =
2623        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2624      unsigned RegNo = MatcherTable[MatcherIndex++];
2625      RegNo |= MatcherTable[MatcherIndex++] << 8;
2626      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2627                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2628      continue;
2629    }
2630
2631    case OPC_EmitConvertToTarget:  {
2632      // Convert from IMM/FPIMM to target version.
2633      unsigned RecNo = MatcherTable[MatcherIndex++];
2634      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2635      SDValue Imm = RecordedNodes[RecNo].first;
2636
2637      if (Imm->getOpcode() == ISD::Constant) {
2638        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
2639        Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
2640      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2641        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2642        Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
2643      }
2644
2645      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2646      continue;
2647    }
2648
2649    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2650    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2651      // These are space-optimized forms of OPC_EmitMergeInputChains.
2652      assert(InputChain.getNode() == 0 &&
2653             "EmitMergeInputChains should be the first chain producing node");
2654      assert(ChainNodesMatched.empty() &&
2655             "Should only have one EmitMergeInputChains per match");
2656
2657      // Read all of the chained nodes.
2658      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2659      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2660      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2661
2662      // FIXME: What if other value results of the node have uses not matched
2663      // by this pattern?
2664      if (ChainNodesMatched.back() != NodeToMatch &&
2665          !RecordedNodes[RecNo].first.hasOneUse()) {
2666        ChainNodesMatched.clear();
2667        break;
2668      }
2669
2670      // Merge the input chains if they are not intra-pattern references.
2671      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2672
2673      if (InputChain.getNode() == 0)
2674        break;  // Failed to merge.
2675      continue;
2676    }
2677
2678    case OPC_EmitMergeInputChains: {
2679      assert(InputChain.getNode() == 0 &&
2680             "EmitMergeInputChains should be the first chain producing node");
2681      // This node gets a list of nodes we matched in the input that have
2682      // chains.  We want to token factor all of the input chains to these nodes
2683      // together.  However, if any of the input chains is actually one of the
2684      // nodes matched in this pattern, then we have an intra-match reference.
2685      // Ignore these because the newly token factored chain should not refer to
2686      // the old nodes.
2687      unsigned NumChains = MatcherTable[MatcherIndex++];
2688      assert(NumChains != 0 && "Can't TF zero chains");
2689
2690      assert(ChainNodesMatched.empty() &&
2691             "Should only have one EmitMergeInputChains per match");
2692
2693      // Read all of the chained nodes.
2694      for (unsigned i = 0; i != NumChains; ++i) {
2695        unsigned RecNo = MatcherTable[MatcherIndex++];
2696        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2697        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2698
2699        // FIXME: What if other value results of the node have uses not matched
2700        // by this pattern?
2701        if (ChainNodesMatched.back() != NodeToMatch &&
2702            !RecordedNodes[RecNo].first.hasOneUse()) {
2703          ChainNodesMatched.clear();
2704          break;
2705        }
2706      }
2707
2708      // If the inner loop broke out, the match fails.
2709      if (ChainNodesMatched.empty())
2710        break;
2711
2712      // Merge the input chains if they are not intra-pattern references.
2713      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2714
2715      if (InputChain.getNode() == 0)
2716        break;  // Failed to merge.
2717
2718      continue;
2719    }
2720
2721    case OPC_EmitCopyToReg: {
2722      unsigned RecNo = MatcherTable[MatcherIndex++];
2723      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2724      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2725
2726      if (InputChain.getNode() == 0)
2727        InputChain = CurDAG->getEntryNode();
2728
2729      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
2730                                        DestPhysReg, RecordedNodes[RecNo].first,
2731                                        InputGlue);
2732
2733      InputGlue = InputChain.getValue(1);
2734      continue;
2735    }
2736
2737    case OPC_EmitNodeXForm: {
2738      unsigned XFormNo = MatcherTable[MatcherIndex++];
2739      unsigned RecNo = MatcherTable[MatcherIndex++];
2740      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2741      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2742      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2743      continue;
2744    }
2745
2746    case OPC_EmitNode:
2747    case OPC_MorphNodeTo: {
2748      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2749      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2750      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2751      // Get the result VT list.
2752      unsigned NumVTs = MatcherTable[MatcherIndex++];
2753      SmallVector<EVT, 4> VTs;
2754      for (unsigned i = 0; i != NumVTs; ++i) {
2755        MVT::SimpleValueType VT =
2756          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2757        if (VT == MVT::iPTR) VT = getTargetLowering()->getPointerTy().SimpleTy;
2758        VTs.push_back(VT);
2759      }
2760
2761      if (EmitNodeInfo & OPFL_Chain)
2762        VTs.push_back(MVT::Other);
2763      if (EmitNodeInfo & OPFL_GlueOutput)
2764        VTs.push_back(MVT::Glue);
2765
2766      // This is hot code, so optimize the two most common cases of 1 and 2
2767      // results.
2768      SDVTList VTList;
2769      if (VTs.size() == 1)
2770        VTList = CurDAG->getVTList(VTs[0]);
2771      else if (VTs.size() == 2)
2772        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2773      else
2774        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2775
2776      // Get the operand list.
2777      unsigned NumOps = MatcherTable[MatcherIndex++];
2778      SmallVector<SDValue, 8> Ops;
2779      for (unsigned i = 0; i != NumOps; ++i) {
2780        unsigned RecNo = MatcherTable[MatcherIndex++];
2781        if (RecNo & 128)
2782          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2783
2784        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2785        Ops.push_back(RecordedNodes[RecNo].first);
2786      }
2787
2788      // If there are variadic operands to add, handle them now.
2789      if (EmitNodeInfo & OPFL_VariadicInfo) {
2790        // Determine the start index to copy from.
2791        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2792        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2793        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2794               "Invalid variadic node");
2795        // Copy all of the variadic operands, not including a potential glue
2796        // input.
2797        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2798             i != e; ++i) {
2799          SDValue V = NodeToMatch->getOperand(i);
2800          if (V.getValueType() == MVT::Glue) break;
2801          Ops.push_back(V);
2802        }
2803      }
2804
2805      // If this has chain/glue inputs, add them.
2806      if (EmitNodeInfo & OPFL_Chain)
2807        Ops.push_back(InputChain);
2808      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2809        Ops.push_back(InputGlue);
2810
2811      // Create the node.
2812      SDNode *Res = 0;
2813      if (Opcode != OPC_MorphNodeTo) {
2814        // If this is a normal EmitNode command, just create the new node and
2815        // add the results to the RecordedNodes list.
2816        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
2817                                     VTList, Ops);
2818
2819        // Add all the non-glue/non-chain results to the RecordedNodes list.
2820        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2821          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2822          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2823                                                             (SDNode*) 0));
2824        }
2825
2826      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2827        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2828                        EmitNodeInfo);
2829      } else {
2830        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2831        // We will visit the equivalent node later.
2832        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2833        return 0;
2834      }
2835
2836      // If the node had chain/glue results, update our notion of the current
2837      // chain and glue.
2838      if (EmitNodeInfo & OPFL_GlueOutput) {
2839        InputGlue = SDValue(Res, VTs.size()-1);
2840        if (EmitNodeInfo & OPFL_Chain)
2841          InputChain = SDValue(Res, VTs.size()-2);
2842      } else if (EmitNodeInfo & OPFL_Chain)
2843        InputChain = SDValue(Res, VTs.size()-1);
2844
2845      // If the OPFL_MemRefs glue is set on this node, slap all of the
2846      // accumulated memrefs onto it.
2847      //
2848      // FIXME: This is vastly incorrect for patterns with multiple outputs
2849      // instructions that access memory and for ComplexPatterns that match
2850      // loads.
2851      if (EmitNodeInfo & OPFL_MemRefs) {
2852        // Only attach load or store memory operands if the generated
2853        // instruction may load or store.
2854        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2855        bool mayLoad = MCID.mayLoad();
2856        bool mayStore = MCID.mayStore();
2857
2858        unsigned NumMemRefs = 0;
2859        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
2860               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2861          if ((*I)->isLoad()) {
2862            if (mayLoad)
2863              ++NumMemRefs;
2864          } else if ((*I)->isStore()) {
2865            if (mayStore)
2866              ++NumMemRefs;
2867          } else {
2868            ++NumMemRefs;
2869          }
2870        }
2871
2872        MachineSDNode::mmo_iterator MemRefs =
2873          MF->allocateMemRefsArray(NumMemRefs);
2874
2875        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2876        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
2877               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2878          if ((*I)->isLoad()) {
2879            if (mayLoad)
2880              *MemRefsPos++ = *I;
2881          } else if ((*I)->isStore()) {
2882            if (mayStore)
2883              *MemRefsPos++ = *I;
2884          } else {
2885            *MemRefsPos++ = *I;
2886          }
2887        }
2888
2889        cast<MachineSDNode>(Res)
2890          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2891      }
2892
2893      DEBUG(dbgs() << "  "
2894                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2895                   << " node: "; Res->dump(CurDAG); dbgs() << "\n");
2896
2897      // If this was a MorphNodeTo then we're completely done!
2898      if (Opcode == OPC_MorphNodeTo) {
2899        // Update chain and glue uses.
2900        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2901                            InputGlue, GlueResultNodesMatched, true);
2902        return Res;
2903      }
2904
2905      continue;
2906    }
2907
2908    case OPC_MarkGlueResults: {
2909      unsigned NumNodes = MatcherTable[MatcherIndex++];
2910
2911      // Read and remember all the glue-result nodes.
2912      for (unsigned i = 0; i != NumNodes; ++i) {
2913        unsigned RecNo = MatcherTable[MatcherIndex++];
2914        if (RecNo & 128)
2915          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2916
2917        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2918        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2919      }
2920      continue;
2921    }
2922
2923    case OPC_CompleteMatch: {
2924      // The match has been completed, and any new nodes (if any) have been
2925      // created.  Patch up references to the matched dag to use the newly
2926      // created nodes.
2927      unsigned NumResults = MatcherTable[MatcherIndex++];
2928
2929      for (unsigned i = 0; i != NumResults; ++i) {
2930        unsigned ResSlot = MatcherTable[MatcherIndex++];
2931        if (ResSlot & 128)
2932          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2933
2934        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2935        SDValue Res = RecordedNodes[ResSlot].first;
2936
2937        assert(i < NodeToMatch->getNumValues() &&
2938               NodeToMatch->getValueType(i) != MVT::Other &&
2939               NodeToMatch->getValueType(i) != MVT::Glue &&
2940               "Invalid number of results to complete!");
2941        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2942                NodeToMatch->getValueType(i) == MVT::iPTR ||
2943                Res.getValueType() == MVT::iPTR ||
2944                NodeToMatch->getValueType(i).getSizeInBits() ==
2945                    Res.getValueType().getSizeInBits()) &&
2946               "invalid replacement");
2947        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2948      }
2949
2950      // If the root node defines glue, add it to the glue nodes to update list.
2951      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2952        GlueResultNodesMatched.push_back(NodeToMatch);
2953
2954      // Update chain and glue uses.
2955      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2956                          InputGlue, GlueResultNodesMatched, false);
2957
2958      assert(NodeToMatch->use_empty() &&
2959             "Didn't replace all uses of the node?");
2960
2961      // FIXME: We just return here, which interacts correctly with SelectRoot
2962      // above.  We should fix this to not return an SDNode* anymore.
2963      return 0;
2964    }
2965    }
2966
2967    // If the code reached this point, then the match failed.  See if there is
2968    // another child to try in the current 'Scope', otherwise pop it until we
2969    // find a case to check.
2970    DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2971    ++NumDAGIselRetries;
2972    while (1) {
2973      if (MatchScopes.empty()) {
2974        CannotYetSelect(NodeToMatch);
2975        return 0;
2976      }
2977
2978      // Restore the interpreter state back to the point where the scope was
2979      // formed.
2980      MatchScope &LastScope = MatchScopes.back();
2981      RecordedNodes.resize(LastScope.NumRecordedNodes);
2982      NodeStack.clear();
2983      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2984      N = NodeStack.back();
2985
2986      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2987        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2988      MatcherIndex = LastScope.FailIndex;
2989
2990      DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
2991
2992      InputChain = LastScope.InputChain;
2993      InputGlue = LastScope.InputGlue;
2994      if (!LastScope.HasChainNodesMatched)
2995        ChainNodesMatched.clear();
2996      if (!LastScope.HasGlueResultNodesMatched)
2997        GlueResultNodesMatched.clear();
2998
2999      // Check to see what the offset is at the new MatcherIndex.  If it is zero
3000      // we have reached the end of this scope, otherwise we have another child
3001      // in the current scope to try.
3002      unsigned NumToSkip = MatcherTable[MatcherIndex++];
3003      if (NumToSkip & 128)
3004        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3005
3006      // If we have another child in this scope to match, update FailIndex and
3007      // try it.
3008      if (NumToSkip != 0) {
3009        LastScope.FailIndex = MatcherIndex+NumToSkip;
3010        break;
3011      }
3012
3013      // End of this scope, pop it and try the next child in the containing
3014      // scope.
3015      MatchScopes.pop_back();
3016    }
3017  }
3018}
3019
3020
3021
3022void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3023  std::string msg;
3024  raw_string_ostream Msg(msg);
3025  Msg << "Cannot select: ";
3026
3027  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3028      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3029      N->getOpcode() != ISD::INTRINSIC_VOID) {
3030    N->printrFull(Msg, CurDAG);
3031    Msg << "\nIn function: " << MF->getName();
3032  } else {
3033    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3034    unsigned iid =
3035      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3036    if (iid < Intrinsic::num_intrinsics)
3037      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3038    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3039      Msg << "target intrinsic %" << TII->getName(iid);
3040    else
3041      Msg << "unknown intrinsic #" << iid;
3042  }
3043  report_fatal_error(Msg.str());
3044}
3045
3046char SelectionDAGISel::ID = 0;
3047