SelectionDAGISel.cpp revision 688fb80334e1ad7b259a051411bb72e18abea9e7
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionAnalysis.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/CodeGen/DwarfWriter.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/Timer.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62static cl::opt<bool>
63EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
64          cl::desc("Enable verbose messages in the \"fast\" "
65                   "instruction selector"));
66static cl::opt<bool>
67EnableFastISelAbort("fast-isel-abort", cl::Hidden,
68          cl::desc("Enable abort calls when \"fast\" instruction fails"));
69static cl::opt<bool>
70SchedLiveInCopies("schedule-livein-copies", cl::Hidden,
71                  cl::desc("Schedule copies of livein registers"),
72                  cl::init(false));
73
74#ifndef NDEBUG
75static cl::opt<bool>
76ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the first "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before legalize types"));
82static cl::opt<bool>
83ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize"));
85static cl::opt<bool>
86ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before the second "
88                   "dag combine pass"));
89static cl::opt<bool>
90ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
91          cl::desc("Pop up a window to show dags before the post legalize types"
92                   " dag combine pass"));
93static cl::opt<bool>
94ViewISelDAGs("view-isel-dags", cl::Hidden,
95          cl::desc("Pop up a window to show isel dags as they are selected"));
96static cl::opt<bool>
97ViewSchedDAGs("view-sched-dags", cl::Hidden,
98          cl::desc("Pop up a window to show sched dags as they are processed"));
99static cl::opt<bool>
100ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
101      cl::desc("Pop up a window to show SUnit dags after they are processed"));
102#else
103static const bool ViewDAGCombine1 = false,
104                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
105                  ViewDAGCombine2 = false,
106                  ViewDAGCombineLT = false,
107                  ViewISelDAGs = false, ViewSchedDAGs = false,
108                  ViewSUnitDAGs = false;
109#endif
110
111//===---------------------------------------------------------------------===//
112///
113/// RegisterScheduler class - Track the registration of instruction schedulers.
114///
115//===---------------------------------------------------------------------===//
116MachinePassRegistry RegisterScheduler::Registry;
117
118//===---------------------------------------------------------------------===//
119///
120/// ISHeuristic command line option for instruction schedulers.
121///
122//===---------------------------------------------------------------------===//
123static cl::opt<RegisterScheduler::FunctionPassCtor, false,
124               RegisterPassParser<RegisterScheduler> >
125ISHeuristic("pre-RA-sched",
126            cl::init(&createDefaultScheduler),
127            cl::desc("Instruction schedulers available (before register"
128                     " allocation):"));
129
130static RegisterScheduler
131defaultListDAGScheduler("default", "Best scheduler for the target",
132                        createDefaultScheduler);
133
134namespace llvm {
135  //===--------------------------------------------------------------------===//
136  /// createDefaultScheduler - This creates an instruction scheduler appropriate
137  /// for the target.
138  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
139                                             CodeGenOpt::Level OptLevel) {
140    const TargetLowering &TLI = IS->getTargetLowering();
141
142    if (OptLevel == CodeGenOpt::None)
143      return createFastDAGScheduler(IS, OptLevel);
144    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
145      return createTDListDAGScheduler(IS, OptLevel);
146    assert(TLI.getSchedulingPreference() ==
147         TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
148    return createBURRListDAGScheduler(IS, OptLevel);
149  }
150}
151
152// EmitInstrWithCustomInserter - This method should be implemented by targets
153// that mark instructions with the 'usesCustomInserter' flag.  These
154// instructions are special in various ways, which require special support to
155// insert.  The specified MachineInstr is created but not inserted into any
156// basic blocks, and this method is called to expand it into a sequence of
157// instructions, potentially also creating new basic blocks and control flow.
158// When new basic blocks are inserted and the edges from MBB to its successors
159// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
160// DenseMap.
161MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
162                                                         MachineBasicBlock *MBB,
163                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
164#ifndef NDEBUG
165  errs() << "If a target marks an instruction with "
166          "'usesCustomInserter', it must implement "
167          "TargetLowering::EmitInstrWithCustomInserter!";
168#endif
169  llvm_unreachable(0);
170  return 0;
171}
172
173/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
174/// physical register has only a single copy use, then coalesced the copy
175/// if possible.
176static void EmitLiveInCopy(MachineBasicBlock *MBB,
177                           MachineBasicBlock::iterator &InsertPos,
178                           unsigned VirtReg, unsigned PhysReg,
179                           const TargetRegisterClass *RC,
180                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
181                           const MachineRegisterInfo &MRI,
182                           const TargetRegisterInfo &TRI,
183                           const TargetInstrInfo &TII) {
184  unsigned NumUses = 0;
185  MachineInstr *UseMI = NULL;
186  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
187         UE = MRI.use_end(); UI != UE; ++UI) {
188    UseMI = &*UI;
189    if (++NumUses > 1)
190      break;
191  }
192
193  // If the number of uses is not one, or the use is not a move instruction,
194  // don't coalesce. Also, only coalesce away a virtual register to virtual
195  // register copy.
196  bool Coalesced = false;
197  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
198  if (NumUses == 1 &&
199      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
200      TargetRegisterInfo::isVirtualRegister(DstReg)) {
201    VirtReg = DstReg;
202    Coalesced = true;
203  }
204
205  // Now find an ideal location to insert the copy.
206  MachineBasicBlock::iterator Pos = InsertPos;
207  while (Pos != MBB->begin()) {
208    MachineInstr *PrevMI = prior(Pos);
209    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
210    // copyRegToReg might emit multiple instructions to do a copy.
211    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
212    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
213      // This is what the BB looks like right now:
214      // r1024 = mov r0
215      // ...
216      // r1    = mov r1024
217      //
218      // We want to insert "r1025 = mov r1". Inserting this copy below the
219      // move to r1024 makes it impossible for that move to be coalesced.
220      //
221      // r1025 = mov r1
222      // r1024 = mov r0
223      // ...
224      // r1    = mov 1024
225      // r2    = mov 1025
226      break; // Woot! Found a good location.
227    --Pos;
228  }
229
230  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
231  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
232  (void) Emitted;
233
234  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
235  if (Coalesced) {
236    if (&*InsertPos == UseMI) ++InsertPos;
237    MBB->erase(UseMI);
238  }
239}
240
241/// EmitLiveInCopies - If this is the first basic block in the function,
242/// and if it has live ins that need to be copied into vregs, emit the
243/// copies into the block.
244static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
245                             const MachineRegisterInfo &MRI,
246                             const TargetRegisterInfo &TRI,
247                             const TargetInstrInfo &TII) {
248  if (SchedLiveInCopies) {
249    // Emit the copies at a heuristically-determined location in the block.
250    DenseMap<MachineInstr*, unsigned> CopyRegMap;
251    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
252    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
253           E = MRI.livein_end(); LI != E; ++LI)
254      if (LI->second) {
255        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
256        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
257                       RC, CopyRegMap, MRI, TRI, TII);
258      }
259  } else {
260    // Emit the copies into the top of the block.
261    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
262           E = MRI.livein_end(); LI != E; ++LI)
263      if (LI->second) {
264        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
265        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
266                                        LI->second, LI->first, RC, RC);
267        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
268        (void) Emitted;
269      }
270  }
271}
272
273//===----------------------------------------------------------------------===//
274// SelectionDAGISel code
275//===----------------------------------------------------------------------===//
276
277SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
278  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
279  FuncInfo(new FunctionLoweringInfo(TLI)),
280  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
281  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
282  GFI(),
283  OptLevel(OL),
284  DAGSize(0)
285{}
286
287SelectionDAGISel::~SelectionDAGISel() {
288  delete SDB;
289  delete CurDAG;
290  delete FuncInfo;
291}
292
293unsigned SelectionDAGISel::MakeReg(EVT VT) {
294  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
295}
296
297void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
298  AU.addRequired<AliasAnalysis>();
299  AU.addPreserved<AliasAnalysis>();
300  AU.addRequired<GCModuleInfo>();
301  AU.addPreserved<GCModuleInfo>();
302  AU.addRequired<DwarfWriter>();
303  AU.addPreserved<DwarfWriter>();
304  MachineFunctionPass::getAnalysisUsage(AU);
305}
306
307bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
308  Function &Fn = *mf.getFunction();
309
310  // Do some sanity-checking on the command-line options.
311  assert((!EnableFastISelVerbose || EnableFastISel) &&
312         "-fast-isel-verbose requires -fast-isel");
313  assert((!EnableFastISelAbort || EnableFastISel) &&
314         "-fast-isel-abort requires -fast-isel");
315
316  // Get alias analysis for load/store combining.
317  AA = &getAnalysis<AliasAnalysis>();
318
319  MF = &mf;
320  const TargetInstrInfo &TII = *TM.getInstrInfo();
321  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
322
323  if (Fn.hasGC())
324    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
325  else
326    GFI = 0;
327  RegInfo = &MF->getRegInfo();
328  DEBUG(errs() << "\n\n\n=== " << Fn.getName() << "\n");
329
330  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
331  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
332  CurDAG->init(*MF, MMI, DW);
333  FuncInfo->set(Fn, *MF, EnableFastISel);
334  SDB->init(GFI, *AA);
335
336  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
337    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
338      // Mark landing pad.
339      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
340
341  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
342
343  // If the first basic block in the function has live ins that need to be
344  // copied into vregs, emit the copies into the top of the block before
345  // emitting the code for the block.
346  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
347
348  // Add function live-ins to entry block live-in set.
349  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
350         E = RegInfo->livein_end(); I != E; ++I)
351    MF->begin()->addLiveIn(I->first);
352
353#ifndef NDEBUG
354  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
355         "Not all catch info was assigned to a landing pad!");
356#endif
357
358  FuncInfo->clear();
359
360  return true;
361}
362
363/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
364/// attached with this instruction.
365static void SetDebugLoc(unsigned MDDbgKind,
366                        MetadataContext &TheMetadata,
367                        Instruction *I,
368                        SelectionDAGBuilder *SDB,
369                        FastISel *FastIS,
370                        MachineFunction *MF) {
371  if (!isa<DbgInfoIntrinsic>(I))
372    if (MDNode *Dbg = TheMetadata.getMD(MDDbgKind, I)) {
373      DILocation DILoc(Dbg);
374      DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo());
375
376      SDB->setCurDebugLoc(Loc);
377
378      if (FastIS)
379        FastIS->setCurDebugLoc(Loc);
380
381      // If the function doesn't have a default debug location yet, set
382      // it. This is kind of a hack.
383      if (MF->getDefaultDebugLoc().isUnknown())
384        MF->setDefaultDebugLoc(Loc);
385    }
386}
387
388/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
389static void ResetDebugLoc(SelectionDAGBuilder *SDB,
390                          FastISel *FastIS) {
391  SDB->setCurDebugLoc(DebugLoc::getUnknownLoc());
392  if (FastIS)
393    FastIS->setCurDebugLoc(DebugLoc::getUnknownLoc());
394}
395
396void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
397                                        BasicBlock::iterator Begin,
398                                        BasicBlock::iterator End,
399                                        bool &HadTailCall) {
400  SDB->setCurrentBasicBlock(BB);
401  MetadataContext &TheMetadata = LLVMBB->getParent()->getContext().getMetadata();
402  unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
403
404  // Lower all of the non-terminator instructions. If a call is emitted
405  // as a tail call, cease emitting nodes for this block.
406  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
407    if (MDDbgKind)
408      SetDebugLoc(MDDbgKind, TheMetadata, I, SDB, 0, MF);
409
410    if (!isa<TerminatorInst>(I)) {
411      SDB->visit(*I);
412
413      // Set the current debug location back to "unknown" so that it doesn't
414      // spuriously apply to subsequent instructions.
415      ResetDebugLoc(SDB, 0);
416    }
417  }
418
419  if (!SDB->HasTailCall) {
420    // Ensure that all instructions which are used outside of their defining
421    // blocks are available as virtual registers.  Invoke is handled elsewhere.
422    for (BasicBlock::iterator I = Begin; I != End; ++I)
423      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
424        SDB->CopyToExportRegsIfNeeded(I);
425
426    // Handle PHI nodes in successor blocks.
427    if (End == LLVMBB->end()) {
428      HandlePHINodesInSuccessorBlocks(LLVMBB);
429
430      // Lower the terminator after the copies are emitted.
431      SetDebugLoc(MDDbgKind, TheMetadata, LLVMBB->getTerminator(), SDB, 0, MF);
432      SDB->visit(*LLVMBB->getTerminator());
433      ResetDebugLoc(SDB, 0);
434    }
435  }
436
437  // Make sure the root of the DAG is up-to-date.
438  CurDAG->setRoot(SDB->getControlRoot());
439
440  // Final step, emit the lowered DAG as machine code.
441  CodeGenAndEmitDAG();
442  HadTailCall = SDB->HasTailCall;
443  SDB->clear();
444}
445
446void SelectionDAGISel::ComputeLiveOutVRegInfo() {
447  SmallPtrSet<SDNode*, 128> VisitedNodes;
448  SmallVector<SDNode*, 128> Worklist;
449
450  Worklist.push_back(CurDAG->getRoot().getNode());
451
452  APInt Mask;
453  APInt KnownZero;
454  APInt KnownOne;
455
456  while (!Worklist.empty()) {
457    SDNode *N = Worklist.back();
458    Worklist.pop_back();
459
460    // If we've already seen this node, ignore it.
461    if (!VisitedNodes.insert(N))
462      continue;
463
464    // Otherwise, add all chain operands to the worklist.
465    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
466      if (N->getOperand(i).getValueType() == MVT::Other)
467        Worklist.push_back(N->getOperand(i).getNode());
468
469    // If this is a CopyToReg with a vreg dest, process it.
470    if (N->getOpcode() != ISD::CopyToReg)
471      continue;
472
473    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
474    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
475      continue;
476
477    // Ignore non-scalar or non-integer values.
478    SDValue Src = N->getOperand(2);
479    EVT SrcVT = Src.getValueType();
480    if (!SrcVT.isInteger() || SrcVT.isVector())
481      continue;
482
483    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
484    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
485    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
486
487    // Only install this information if it tells us something.
488    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
489      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
490      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
491        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
492      FunctionLoweringInfo::LiveOutInfo &LOI =
493        FuncInfo->LiveOutRegInfo[DestReg];
494      LOI.NumSignBits = NumSignBits;
495      LOI.KnownOne = KnownOne;
496      LOI.KnownZero = KnownZero;
497    }
498  }
499}
500
501void SelectionDAGISel::CodeGenAndEmitDAG() {
502  std::string GroupName;
503  if (TimePassesIsEnabled)
504    GroupName = "Instruction Selection and Scheduling";
505  std::string BlockName;
506  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
507      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
508      ViewSUnitDAGs)
509    BlockName = MF->getFunction()->getNameStr() + ":" +
510                BB->getBasicBlock()->getNameStr();
511
512  DEBUG(errs() << "Initial selection DAG:\n");
513  DEBUG(CurDAG->dump());
514
515  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
516
517  // Run the DAG combiner in pre-legalize mode.
518  if (TimePassesIsEnabled) {
519    NamedRegionTimer T("DAG Combining 1", GroupName);
520    CurDAG->Combine(Unrestricted, *AA, OptLevel);
521  } else {
522    CurDAG->Combine(Unrestricted, *AA, OptLevel);
523  }
524
525  DEBUG(errs() << "Optimized lowered selection DAG:\n");
526  DEBUG(CurDAG->dump());
527
528  // Second step, hack on the DAG until it only uses operations and types that
529  // the target supports.
530  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
531                                               BlockName);
532
533  bool Changed;
534  if (TimePassesIsEnabled) {
535    NamedRegionTimer T("Type Legalization", GroupName);
536    Changed = CurDAG->LegalizeTypes();
537  } else {
538    Changed = CurDAG->LegalizeTypes();
539  }
540
541  DEBUG(errs() << "Type-legalized selection DAG:\n");
542  DEBUG(CurDAG->dump());
543
544  if (Changed) {
545    if (ViewDAGCombineLT)
546      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
547
548    // Run the DAG combiner in post-type-legalize mode.
549    if (TimePassesIsEnabled) {
550      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
551      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
552    } else {
553      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
554    }
555
556    DEBUG(errs() << "Optimized type-legalized selection DAG:\n");
557    DEBUG(CurDAG->dump());
558  }
559
560  if (TimePassesIsEnabled) {
561    NamedRegionTimer T("Vector Legalization", GroupName);
562    Changed = CurDAG->LegalizeVectors();
563  } else {
564    Changed = CurDAG->LegalizeVectors();
565  }
566
567  if (Changed) {
568    if (TimePassesIsEnabled) {
569      NamedRegionTimer T("Type Legalization 2", GroupName);
570      Changed = CurDAG->LegalizeTypes();
571    } else {
572      Changed = CurDAG->LegalizeTypes();
573    }
574
575    if (ViewDAGCombineLT)
576      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
577
578    // Run the DAG combiner in post-type-legalize mode.
579    if (TimePassesIsEnabled) {
580      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
581      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
582    } else {
583      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
584    }
585
586    DEBUG(errs() << "Optimized vector-legalized selection DAG:\n");
587    DEBUG(CurDAG->dump());
588  }
589
590  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
591
592  if (TimePassesIsEnabled) {
593    NamedRegionTimer T("DAG Legalization", GroupName);
594    CurDAG->Legalize(OptLevel);
595  } else {
596    CurDAG->Legalize(OptLevel);
597  }
598
599  DEBUG(errs() << "Legalized selection DAG:\n");
600  DEBUG(CurDAG->dump());
601
602  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
603
604  // Run the DAG combiner in post-legalize mode.
605  if (TimePassesIsEnabled) {
606    NamedRegionTimer T("DAG Combining 2", GroupName);
607    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
608  } else {
609    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
610  }
611
612  DEBUG(errs() << "Optimized legalized selection DAG:\n");
613  DEBUG(CurDAG->dump());
614
615  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
616
617  if (OptLevel != CodeGenOpt::None)
618    ComputeLiveOutVRegInfo();
619
620  // Third, instruction select all of the operations to machine code, adding the
621  // code to the MachineBasicBlock.
622  if (TimePassesIsEnabled) {
623    NamedRegionTimer T("Instruction Selection", GroupName);
624    InstructionSelect();
625  } else {
626    InstructionSelect();
627  }
628
629  DEBUG(errs() << "Selected selection DAG:\n");
630  DEBUG(CurDAG->dump());
631
632  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
633
634  // Schedule machine code.
635  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
636  if (TimePassesIsEnabled) {
637    NamedRegionTimer T("Instruction Scheduling", GroupName);
638    Scheduler->Run(CurDAG, BB, BB->end());
639  } else {
640    Scheduler->Run(CurDAG, BB, BB->end());
641  }
642
643  if (ViewSUnitDAGs) Scheduler->viewGraph();
644
645  // Emit machine code to BB.  This can change 'BB' to the last block being
646  // inserted into.
647  if (TimePassesIsEnabled) {
648    NamedRegionTimer T("Instruction Creation", GroupName);
649    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
650  } else {
651    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
652  }
653
654  // Free the scheduler state.
655  if (TimePassesIsEnabled) {
656    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
657    delete Scheduler;
658  } else {
659    delete Scheduler;
660  }
661
662  DEBUG(errs() << "Selected machine code:\n");
663  DEBUG(BB->dump());
664}
665
666void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
667                                            MachineFunction &MF,
668                                            MachineModuleInfo *MMI,
669                                            DwarfWriter *DW,
670                                            const TargetInstrInfo &TII) {
671  // Initialize the Fast-ISel state, if needed.
672  FastISel *FastIS = 0;
673  if (EnableFastISel)
674    FastIS = TLI.createFastISel(MF, MMI, DW,
675                                FuncInfo->ValueMap,
676                                FuncInfo->MBBMap,
677                                FuncInfo->StaticAllocaMap
678#ifndef NDEBUG
679                                , FuncInfo->CatchInfoLost
680#endif
681                                );
682
683  MetadataContext &TheMetadata = Fn.getContext().getMetadata();
684  unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
685
686  // Iterate over all basic blocks in the function.
687  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
688    BasicBlock *LLVMBB = &*I;
689    BB = FuncInfo->MBBMap[LLVMBB];
690
691    BasicBlock::iterator const Begin = LLVMBB->begin();
692    BasicBlock::iterator const End = LLVMBB->end();
693    BasicBlock::iterator BI = Begin;
694
695    // Lower any arguments needed in this block if this is the entry block.
696    bool SuppressFastISel = false;
697    if (LLVMBB == &Fn.getEntryBlock()) {
698      LowerArguments(LLVMBB);
699
700      // If any of the arguments has the byval attribute, forgo
701      // fast-isel in the entry block.
702      if (FastIS) {
703        unsigned j = 1;
704        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
705             I != E; ++I, ++j)
706          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
707            if (EnableFastISelVerbose || EnableFastISelAbort)
708              errs() << "FastISel skips entry block due to byval argument\n";
709            SuppressFastISel = true;
710            break;
711          }
712      }
713    }
714
715    if (MMI && BB->isLandingPad()) {
716      // Add a label to mark the beginning of the landing pad.  Deletion of the
717      // landing pad can thus be detected via the MachineModuleInfo.
718      unsigned LabelID = MMI->addLandingPad(BB);
719
720      const TargetInstrDesc &II = TII.get(TargetInstrInfo::EH_LABEL);
721      BuildMI(BB, SDB->getCurDebugLoc(), II).addImm(LabelID);
722
723      // Mark exception register as live in.
724      unsigned Reg = TLI.getExceptionAddressRegister();
725      if (Reg) BB->addLiveIn(Reg);
726
727      // Mark exception selector register as live in.
728      Reg = TLI.getExceptionSelectorRegister();
729      if (Reg) BB->addLiveIn(Reg);
730
731      // FIXME: Hack around an exception handling flaw (PR1508): the personality
732      // function and list of typeids logically belong to the invoke (or, if you
733      // like, the basic block containing the invoke), and need to be associated
734      // with it in the dwarf exception handling tables.  Currently however the
735      // information is provided by an intrinsic (eh.selector) that can be moved
736      // to unexpected places by the optimizers: if the unwind edge is critical,
737      // then breaking it can result in the intrinsics being in the successor of
738      // the landing pad, not the landing pad itself.  This results in exceptions
739      // not being caught because no typeids are associated with the invoke.
740      // This may not be the only way things can go wrong, but it is the only way
741      // we try to work around for the moment.
742      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
743
744      if (Br && Br->isUnconditional()) { // Critical edge?
745        BasicBlock::iterator I, E;
746        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
747          if (isa<EHSelectorInst>(I))
748            break;
749
750        if (I == E)
751          // No catch info found - try to extract some from the successor.
752          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
753      }
754    }
755
756    // Before doing SelectionDAG ISel, see if FastISel has been requested.
757    if (FastIS && !SuppressFastISel) {
758      // Emit code for any incoming arguments. This must happen before
759      // beginning FastISel on the entry block.
760      if (LLVMBB == &Fn.getEntryBlock()) {
761        CurDAG->setRoot(SDB->getControlRoot());
762        CodeGenAndEmitDAG();
763        SDB->clear();
764      }
765      FastIS->startNewBlock(BB);
766      // Do FastISel on as many instructions as possible.
767      for (; BI != End; ++BI) {
768        // Just before the terminator instruction, insert instructions to
769        // feed PHI nodes in successor blocks.
770        if (isa<TerminatorInst>(BI))
771          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
772            ResetDebugLoc(SDB, FastIS);
773            if (EnableFastISelVerbose || EnableFastISelAbort) {
774              errs() << "FastISel miss: ";
775              BI->dump();
776            }
777            assert(!EnableFastISelAbort &&
778                   "FastISel didn't handle a PHI in a successor");
779            break;
780          }
781
782        if (MDDbgKind)
783          SetDebugLoc(MDDbgKind, TheMetadata, BI, SDB, FastIS, &MF);
784
785        // First try normal tablegen-generated "fast" selection.
786        if (FastIS->SelectInstruction(BI)) {
787          ResetDebugLoc(SDB, FastIS);
788          continue;
789        }
790
791        // Clear out the debug location so that it doesn't carry over to
792        // unrelated instructions.
793        ResetDebugLoc(SDB, FastIS);
794
795        // Then handle certain instructions as single-LLVM-Instruction blocks.
796        if (isa<CallInst>(BI)) {
797          if (EnableFastISelVerbose || EnableFastISelAbort) {
798            errs() << "FastISel missed call: ";
799            BI->dump();
800          }
801
802          if (BI->getType() != Type::getVoidTy(*CurDAG->getContext())) {
803            unsigned &R = FuncInfo->ValueMap[BI];
804            if (!R)
805              R = FuncInfo->CreateRegForValue(BI);
806          }
807
808          bool HadTailCall = false;
809          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
810
811          // If the call was emitted as a tail call, we're done with the block.
812          if (HadTailCall) {
813            BI = End;
814            break;
815          }
816
817          // If the instruction was codegen'd with multiple blocks,
818          // inform the FastISel object where to resume inserting.
819          FastIS->setCurrentBlock(BB);
820          continue;
821        }
822
823        // Otherwise, give up on FastISel for the rest of the block.
824        // For now, be a little lenient about non-branch terminators.
825        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
826          if (EnableFastISelVerbose || EnableFastISelAbort) {
827            errs() << "FastISel miss: ";
828            BI->dump();
829          }
830          if (EnableFastISelAbort)
831            // The "fast" selector couldn't handle something and bailed.
832            // For the purpose of debugging, just abort.
833            llvm_unreachable("FastISel didn't select the entire block");
834        }
835        break;
836      }
837    }
838
839    // Run SelectionDAG instruction selection on the remainder of the block
840    // not handled by FastISel. If FastISel is not run, this is the entire
841    // block.
842    if (BI != End) {
843      bool HadTailCall;
844      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
845    }
846
847    FinishBasicBlock();
848  }
849
850  delete FastIS;
851}
852
853void
854SelectionDAGISel::FinishBasicBlock() {
855
856  DEBUG(errs() << "Target-post-processed machine code:\n");
857  DEBUG(BB->dump());
858
859  DEBUG(errs() << "Total amount of phi nodes to update: "
860               << SDB->PHINodesToUpdate.size() << "\n");
861  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
862          errs() << "Node " << i << " : ("
863                 << SDB->PHINodesToUpdate[i].first
864                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
865
866  // Next, now that we know what the last MBB the LLVM BB expanded is, update
867  // PHI nodes in successors.
868  if (SDB->SwitchCases.empty() &&
869      SDB->JTCases.empty() &&
870      SDB->BitTestCases.empty()) {
871    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
872      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
873      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
874             "This is not a machine PHI node that we are updating!");
875      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
876                                                false));
877      PHI->addOperand(MachineOperand::CreateMBB(BB));
878    }
879    SDB->PHINodesToUpdate.clear();
880    return;
881  }
882
883  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
884    // Lower header first, if it wasn't already lowered
885    if (!SDB->BitTestCases[i].Emitted) {
886      // Set the current basic block to the mbb we wish to insert the code into
887      BB = SDB->BitTestCases[i].Parent;
888      SDB->setCurrentBasicBlock(BB);
889      // Emit the code
890      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
891      CurDAG->setRoot(SDB->getRoot());
892      CodeGenAndEmitDAG();
893      SDB->clear();
894    }
895
896    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
897      // Set the current basic block to the mbb we wish to insert the code into
898      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
899      SDB->setCurrentBasicBlock(BB);
900      // Emit the code
901      if (j+1 != ej)
902        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
903                              SDB->BitTestCases[i].Reg,
904                              SDB->BitTestCases[i].Cases[j]);
905      else
906        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
907                              SDB->BitTestCases[i].Reg,
908                              SDB->BitTestCases[i].Cases[j]);
909
910
911      CurDAG->setRoot(SDB->getRoot());
912      CodeGenAndEmitDAG();
913      SDB->clear();
914    }
915
916    // Update PHI Nodes
917    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
918      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
919      MachineBasicBlock *PHIBB = PHI->getParent();
920      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
921             "This is not a machine PHI node that we are updating!");
922      // This is "default" BB. We have two jumps to it. From "header" BB and
923      // from last "case" BB.
924      if (PHIBB == SDB->BitTestCases[i].Default) {
925        PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second,
926                                                  false));
927        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
928        PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second,
929                                                  false));
930        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
931                                                  back().ThisBB));
932      }
933      // One of "cases" BB.
934      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
935           j != ej; ++j) {
936        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
937        if (cBB->succ_end() !=
938            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
939          PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second,
940                                                    false));
941          PHI->addOperand(MachineOperand::CreateMBB(cBB));
942        }
943      }
944    }
945  }
946  SDB->BitTestCases.clear();
947
948  // If the JumpTable record is filled in, then we need to emit a jump table.
949  // Updating the PHI nodes is tricky in this case, since we need to determine
950  // whether the PHI is a successor of the range check MBB or the jump table MBB
951  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
952    // Lower header first, if it wasn't already lowered
953    if (!SDB->JTCases[i].first.Emitted) {
954      // Set the current basic block to the mbb we wish to insert the code into
955      BB = SDB->JTCases[i].first.HeaderBB;
956      SDB->setCurrentBasicBlock(BB);
957      // Emit the code
958      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
959      CurDAG->setRoot(SDB->getRoot());
960      CodeGenAndEmitDAG();
961      SDB->clear();
962    }
963
964    // Set the current basic block to the mbb we wish to insert the code into
965    BB = SDB->JTCases[i].second.MBB;
966    SDB->setCurrentBasicBlock(BB);
967    // Emit the code
968    SDB->visitJumpTable(SDB->JTCases[i].second);
969    CurDAG->setRoot(SDB->getRoot());
970    CodeGenAndEmitDAG();
971    SDB->clear();
972
973    // Update PHI Nodes
974    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
975      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
976      MachineBasicBlock *PHIBB = PHI->getParent();
977      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
978             "This is not a machine PHI node that we are updating!");
979      // "default" BB. We can go there only from header BB.
980      if (PHIBB == SDB->JTCases[i].second.Default) {
981        PHI->addOperand
982          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
983        PHI->addOperand
984          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
985      }
986      // JT BB. Just iterate over successors here
987      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
988        PHI->addOperand
989          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
990        PHI->addOperand(MachineOperand::CreateMBB(BB));
991      }
992    }
993  }
994  SDB->JTCases.clear();
995
996  // If the switch block involved a branch to one of the actual successors, we
997  // need to update PHI nodes in that block.
998  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
999    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1000    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
1001           "This is not a machine PHI node that we are updating!");
1002    if (BB->isSuccessor(PHI->getParent())) {
1003      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1004                                                false));
1005      PHI->addOperand(MachineOperand::CreateMBB(BB));
1006    }
1007  }
1008
1009  // If we generated any switch lowering information, build and codegen any
1010  // additional DAGs necessary.
1011  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1012    // Set the current basic block to the mbb we wish to insert the code into
1013    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1014    SDB->setCurrentBasicBlock(BB);
1015
1016    // Emit the code
1017    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1018    CurDAG->setRoot(SDB->getRoot());
1019    CodeGenAndEmitDAG();
1020
1021    // Handle any PHI nodes in successors of this chunk, as if we were coming
1022    // from the original BB before switch expansion.  Note that PHI nodes can
1023    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1024    // handle them the right number of times.
1025    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1026      // If new BB's are created during scheduling, the edges may have been
1027      // updated. That is, the edge from ThisBB to BB may have been split and
1028      // BB's predecessor is now another block.
1029      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1030        SDB->EdgeMapping.find(BB);
1031      if (EI != SDB->EdgeMapping.end())
1032        ThisBB = EI->second;
1033      for (MachineBasicBlock::iterator Phi = BB->begin();
1034           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
1035        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
1036        for (unsigned pn = 0; ; ++pn) {
1037          assert(pn != SDB->PHINodesToUpdate.size() &&
1038                 "Didn't find PHI entry!");
1039          if (SDB->PHINodesToUpdate[pn].first == Phi) {
1040            Phi->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pn].
1041                                                      second, false));
1042            Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1043            break;
1044          }
1045        }
1046      }
1047
1048      // Don't process RHS if same block as LHS.
1049      if (BB == SDB->SwitchCases[i].FalseBB)
1050        SDB->SwitchCases[i].FalseBB = 0;
1051
1052      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1053      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1054      SDB->SwitchCases[i].FalseBB = 0;
1055    }
1056    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1057    SDB->clear();
1058  }
1059  SDB->SwitchCases.clear();
1060
1061  SDB->PHINodesToUpdate.clear();
1062}
1063
1064
1065/// Create the scheduler. If a specific scheduler was specified
1066/// via the SchedulerRegistry, use it, otherwise select the
1067/// one preferred by the target.
1068///
1069ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1070  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1071
1072  if (!Ctor) {
1073    Ctor = ISHeuristic;
1074    RegisterScheduler::setDefault(Ctor);
1075  }
1076
1077  return Ctor(this, OptLevel);
1078}
1079
1080ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1081  return new ScheduleHazardRecognizer();
1082}
1083
1084//===----------------------------------------------------------------------===//
1085// Helper functions used by the generated instruction selector.
1086//===----------------------------------------------------------------------===//
1087// Calls to these methods are generated by tblgen.
1088
1089/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1090/// the dag combiner simplified the 255, we still want to match.  RHS is the
1091/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1092/// specified in the .td file (e.g. 255).
1093bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1094                                    int64_t DesiredMaskS) const {
1095  const APInt &ActualMask = RHS->getAPIntValue();
1096  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1097
1098  // If the actual mask exactly matches, success!
1099  if (ActualMask == DesiredMask)
1100    return true;
1101
1102  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1103  if (ActualMask.intersects(~DesiredMask))
1104    return false;
1105
1106  // Otherwise, the DAG Combiner may have proven that the value coming in is
1107  // either already zero or is not demanded.  Check for known zero input bits.
1108  APInt NeededMask = DesiredMask & ~ActualMask;
1109  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1110    return true;
1111
1112  // TODO: check to see if missing bits are just not demanded.
1113
1114  // Otherwise, this pattern doesn't match.
1115  return false;
1116}
1117
1118/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1119/// the dag combiner simplified the 255, we still want to match.  RHS is the
1120/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1121/// specified in the .td file (e.g. 255).
1122bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1123                                   int64_t DesiredMaskS) const {
1124  const APInt &ActualMask = RHS->getAPIntValue();
1125  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1126
1127  // If the actual mask exactly matches, success!
1128  if (ActualMask == DesiredMask)
1129    return true;
1130
1131  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1132  if (ActualMask.intersects(~DesiredMask))
1133    return false;
1134
1135  // Otherwise, the DAG Combiner may have proven that the value coming in is
1136  // either already zero or is not demanded.  Check for known zero input bits.
1137  APInt NeededMask = DesiredMask & ~ActualMask;
1138
1139  APInt KnownZero, KnownOne;
1140  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1141
1142  // If all the missing bits in the or are already known to be set, match!
1143  if ((NeededMask & KnownOne) == NeededMask)
1144    return true;
1145
1146  // TODO: check to see if missing bits are just not demanded.
1147
1148  // Otherwise, this pattern doesn't match.
1149  return false;
1150}
1151
1152
1153/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1154/// by tblgen.  Others should not call it.
1155void SelectionDAGISel::
1156SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1157  std::vector<SDValue> InOps;
1158  std::swap(InOps, Ops);
1159
1160  Ops.push_back(InOps[0]);  // input chain.
1161  Ops.push_back(InOps[1]);  // input asm string.
1162
1163  unsigned i = 2, e = InOps.size();
1164  if (InOps[e-1].getValueType() == MVT::Flag)
1165    --e;  // Don't process a flag operand if it is here.
1166
1167  while (i != e) {
1168    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1169    if ((Flags & 7) != 4 /*MEM*/) {
1170      // Just skip over this operand, copying the operands verbatim.
1171      Ops.insert(Ops.end(), InOps.begin()+i,
1172                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1173      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1174    } else {
1175      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1176             "Memory operand with multiple values?");
1177      // Otherwise, this is a memory operand.  Ask the target to select it.
1178      std::vector<SDValue> SelOps;
1179      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1180        llvm_report_error("Could not match memory address.  Inline asm"
1181                          " failure!");
1182      }
1183
1184      // Add this to the output node.
1185      EVT IntPtrTy = TLI.getPointerTy();
1186      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1187                                              IntPtrTy));
1188      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1189      i += 2;
1190    }
1191  }
1192
1193  // Add the flag input back if present.
1194  if (e != InOps.size())
1195    Ops.push_back(InOps.back());
1196}
1197
1198/// findFlagUse - Return use of EVT::Flag value produced by the specified
1199/// SDNode.
1200///
1201static SDNode *findFlagUse(SDNode *N) {
1202  unsigned FlagResNo = N->getNumValues()-1;
1203  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1204    SDUse &Use = I.getUse();
1205    if (Use.getResNo() == FlagResNo)
1206      return Use.getUser();
1207  }
1208  return NULL;
1209}
1210
1211/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1212/// This function recursively traverses up the operand chain, ignoring
1213/// certain nodes.
1214static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1215                          SDNode *Root,
1216                          SmallPtrSet<SDNode*, 16> &Visited) {
1217  if (Use->getNodeId() < Def->getNodeId() ||
1218      !Visited.insert(Use))
1219    return false;
1220
1221  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1222    SDNode *N = Use->getOperand(i).getNode();
1223    if (N == Def) {
1224      if (Use == ImmedUse || Use == Root)
1225        continue;  // We are not looking for immediate use.
1226      assert(N != Root);
1227      return true;
1228    }
1229
1230    // Traverse up the operand chain.
1231    if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
1232      return true;
1233  }
1234  return false;
1235}
1236
1237/// isNonImmUse - Start searching from Root up the DAG to check is Def can
1238/// be reached. Return true if that's the case. However, ignore direct uses
1239/// by ImmedUse (which would be U in the example illustrated in
1240/// IsLegalAndProfitableToFold) and by Root (which can happen in the store
1241/// case).
1242/// FIXME: to be really generic, we should allow direct use by any node
1243/// that is being folded. But realisticly since we only fold loads which
1244/// have one non-chain use, we only need to watch out for load/op/store
1245/// and load/op/cmp case where the root (store / cmp) may reach the load via
1246/// its chain operand.
1247static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
1248  SmallPtrSet<SDNode*, 16> Visited;
1249  return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
1250}
1251
1252/// IsLegalAndProfitableToFold - Returns true if the specific operand node N of
1253/// U can be folded during instruction selection that starts at Root and
1254/// folding N is profitable.
1255bool SelectionDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
1256                                                  SDNode *Root) const {
1257  if (OptLevel == CodeGenOpt::None) return false;
1258
1259  // If Root use can somehow reach N through a path that that doesn't contain
1260  // U then folding N would create a cycle. e.g. In the following
1261  // diagram, Root can reach N through X. If N is folded into into Root, then
1262  // X is both a predecessor and a successor of U.
1263  //
1264  //          [N*]           //
1265  //         ^   ^           //
1266  //        /     \          //
1267  //      [U*]    [X]?       //
1268  //        ^     ^          //
1269  //         \   /           //
1270  //          \ /            //
1271  //         [Root*]         //
1272  //
1273  // * indicates nodes to be folded together.
1274  //
1275  // If Root produces a flag, then it gets (even more) interesting. Since it
1276  // will be "glued" together with its flag use in the scheduler, we need to
1277  // check if it might reach N.
1278  //
1279  //          [N*]           //
1280  //         ^   ^           //
1281  //        /     \          //
1282  //      [U*]    [X]?       //
1283  //        ^       ^        //
1284  //         \       \       //
1285  //          \      |       //
1286  //         [Root*] |       //
1287  //          ^      |       //
1288  //          f      |       //
1289  //          |      /       //
1290  //         [Y]    /        //
1291  //           ^   /         //
1292  //           f  /          //
1293  //           | /           //
1294  //          [FU]           //
1295  //
1296  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1297  // (call it Fold), then X is a predecessor of FU and a successor of
1298  // Fold. But since Fold and FU are flagged together, this will create
1299  // a cycle in the scheduling graph.
1300
1301  EVT VT = Root->getValueType(Root->getNumValues()-1);
1302  while (VT == MVT::Flag) {
1303    SDNode *FU = findFlagUse(Root);
1304    if (FU == NULL)
1305      break;
1306    Root = FU;
1307    VT = Root->getValueType(Root->getNumValues()-1);
1308  }
1309
1310  return !isNonImmUse(Root, N, U);
1311}
1312
1313SDNode *SelectionDAGISel::Select_INLINEASM(SDValue N) {
1314  std::vector<SDValue> Ops(N.getNode()->op_begin(), N.getNode()->op_end());
1315  SelectInlineAsmMemoryOperands(Ops);
1316
1317  std::vector<EVT> VTs;
1318  VTs.push_back(MVT::Other);
1319  VTs.push_back(MVT::Flag);
1320  SDValue New = CurDAG->getNode(ISD::INLINEASM, N.getDebugLoc(),
1321                                VTs, &Ops[0], Ops.size());
1322  return New.getNode();
1323}
1324
1325SDNode *SelectionDAGISel::Select_UNDEF(const SDValue &N) {
1326  return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::IMPLICIT_DEF,
1327                              N.getValueType());
1328}
1329
1330SDNode *SelectionDAGISel::Select_EH_LABEL(const SDValue &N) {
1331  SDValue Chain = N.getOperand(0);
1332  unsigned C = cast<LabelSDNode>(N)->getLabelID();
1333  SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);
1334  return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::EH_LABEL,
1335                              MVT::Other, Tmp, Chain);
1336}
1337
1338void SelectionDAGISel::CannotYetSelect(SDValue N) {
1339  std::string msg;
1340  raw_string_ostream Msg(msg);
1341  Msg << "Cannot yet select: ";
1342  N.getNode()->print(Msg, CurDAG);
1343  llvm_report_error(Msg.str());
1344}
1345
1346void SelectionDAGISel::CannotYetSelectIntrinsic(SDValue N) {
1347  errs() << "Cannot yet select: ";
1348  unsigned iid =
1349    cast<ConstantSDNode>(N.getOperand(N.getOperand(0).getValueType() == MVT::Other))->getZExtValue();
1350  if (iid < Intrinsic::num_intrinsics)
1351    llvm_report_error("Cannot yet select: intrinsic %" + Intrinsic::getName((Intrinsic::ID)iid));
1352  else if (const TargetIntrinsicInfo *tii = TM.getIntrinsicInfo())
1353    llvm_report_error(Twine("Cannot yet select: target intrinsic %") +
1354                      tii->getName(iid));
1355}
1356
1357char SelectionDAGISel::ID = 0;
1358