SelectionDAGISel.cpp revision 693163e74d047a05799eaaf619ba4972fdc3a0e9
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/InlineAsm.h"
23#include "llvm/Instructions.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineDebugInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SchedulerRegistry.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/CodeGen/SSARegMap.h"
35#include "llvm/Target/MRegisterInfo.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Target/TargetFrameInfo.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetLowering.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Target/TargetOptions.h"
42#include "llvm/Transforms/Utils/BasicBlockUtils.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/Compiler.h"
46#include <map>
47#include <set>
48#include <iostream>
49#include <algorithm>
50using namespace llvm;
51
52#ifndef NDEBUG
53static cl::opt<bool>
54ViewISelDAGs("view-isel-dags", cl::Hidden,
55          cl::desc("Pop up a window to show isel dags as they are selected"));
56static cl::opt<bool>
57ViewSchedDAGs("view-sched-dags", cl::Hidden,
58          cl::desc("Pop up a window to show sched dags as they are processed"));
59#else
60static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
61#endif
62
63
64//===---------------------------------------------------------------------===//
65///
66/// RegisterScheduler class - Track the registration of instruction schedulers.
67///
68//===---------------------------------------------------------------------===//
69MachinePassRegistry RegisterScheduler::Registry;
70
71//===---------------------------------------------------------------------===//
72///
73/// ISHeuristic command line option for instruction schedulers.
74///
75//===---------------------------------------------------------------------===//
76namespace {
77  cl::opt<RegisterScheduler::FunctionPassCtor, false,
78          RegisterPassParser<RegisterScheduler> >
79  ISHeuristic("sched",
80              cl::init(&createDefaultScheduler),
81              cl::desc("Instruction schedulers available:"));
82
83  static RegisterScheduler
84  defaultListDAGScheduler("default", "  Best scheduler for the target",
85                          createDefaultScheduler);
86} // namespace
87
88namespace {
89  /// RegsForValue - This struct represents the physical registers that a
90  /// particular value is assigned and the type information about the value.
91  /// This is needed because values can be promoted into larger registers and
92  /// expanded into multiple smaller registers than the value.
93  struct VISIBILITY_HIDDEN RegsForValue {
94    /// Regs - This list hold the register (for legal and promoted values)
95    /// or register set (for expanded values) that the value should be assigned
96    /// to.
97    std::vector<unsigned> Regs;
98
99    /// RegVT - The value type of each register.
100    ///
101    MVT::ValueType RegVT;
102
103    /// ValueVT - The value type of the LLVM value, which may be promoted from
104    /// RegVT or made from merging the two expanded parts.
105    MVT::ValueType ValueVT;
106
107    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
108
109    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
110      : RegVT(regvt), ValueVT(valuevt) {
111        Regs.push_back(Reg);
112    }
113    RegsForValue(const std::vector<unsigned> &regs,
114                 MVT::ValueType regvt, MVT::ValueType valuevt)
115      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
116    }
117
118    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
119    /// this value and returns the result as a ValueVT value.  This uses
120    /// Chain/Flag as the input and updates them for the output Chain/Flag.
121    SDOperand getCopyFromRegs(SelectionDAG &DAG,
122                              SDOperand &Chain, SDOperand &Flag) const;
123
124    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
125    /// specified value into the registers specified by this object.  This uses
126    /// Chain/Flag as the input and updates them for the output Chain/Flag.
127    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
128                       SDOperand &Chain, SDOperand &Flag,
129                       MVT::ValueType PtrVT) const;
130
131    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
132    /// operand list.  This adds the code marker and includes the number of
133    /// values added into it.
134    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
135                              std::vector<SDOperand> &Ops) const;
136  };
137}
138
139namespace llvm {
140  //===--------------------------------------------------------------------===//
141  /// createDefaultScheduler - This creates an instruction scheduler appropriate
142  /// for the target.
143  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
144                                      SelectionDAG *DAG,
145                                      MachineBasicBlock *BB) {
146    TargetLowering &TLI = IS->getTargetLowering();
147
148    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
149      return createTDListDAGScheduler(IS, DAG, BB);
150    } else {
151      assert(TLI.getSchedulingPreference() ==
152           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
153      return createBURRListDAGScheduler(IS, DAG, BB);
154    }
155  }
156
157
158  //===--------------------------------------------------------------------===//
159  /// FunctionLoweringInfo - This contains information that is global to a
160  /// function that is used when lowering a region of the function.
161  class FunctionLoweringInfo {
162  public:
163    TargetLowering &TLI;
164    Function &Fn;
165    MachineFunction &MF;
166    SSARegMap *RegMap;
167
168    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
169
170    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
171    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
172
173    /// ValueMap - Since we emit code for the function a basic block at a time,
174    /// we must remember which virtual registers hold the values for
175    /// cross-basic-block values.
176    std::map<const Value*, unsigned> ValueMap;
177
178    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
179    /// the entry block.  This allows the allocas to be efficiently referenced
180    /// anywhere in the function.
181    std::map<const AllocaInst*, int> StaticAllocaMap;
182
183    unsigned MakeReg(MVT::ValueType VT) {
184      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
185    }
186
187    unsigned CreateRegForValue(const Value *V);
188
189    unsigned InitializeRegForValue(const Value *V) {
190      unsigned &R = ValueMap[V];
191      assert(R == 0 && "Already initialized this value register!");
192      return R = CreateRegForValue(V);
193    }
194  };
195}
196
197/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
198/// PHI nodes or outside of the basic block that defines it, or used by a
199/// switch instruction, which may expand to multiple basic blocks.
200static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
201  if (isa<PHINode>(I)) return true;
202  BasicBlock *BB = I->getParent();
203  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
204    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
205        isa<SwitchInst>(*UI))
206      return true;
207  return false;
208}
209
210/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
211/// entry block, return true.  This includes arguments used by switches, since
212/// the switch may expand into multiple basic blocks.
213static bool isOnlyUsedInEntryBlock(Argument *A) {
214  BasicBlock *Entry = A->getParent()->begin();
215  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
216    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
217      return false;  // Use not in entry block.
218  return true;
219}
220
221FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
222                                           Function &fn, MachineFunction &mf)
223    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
224
225  // Create a vreg for each argument register that is not dead and is used
226  // outside of the entry block for the function.
227  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
228       AI != E; ++AI)
229    if (!isOnlyUsedInEntryBlock(AI))
230      InitializeRegForValue(AI);
231
232  // Initialize the mapping of values to registers.  This is only set up for
233  // instruction values that are used outside of the block that defines
234  // them.
235  Function::iterator BB = Fn.begin(), EB = Fn.end();
236  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
237    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
238      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
239        const Type *Ty = AI->getAllocatedType();
240        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
241        unsigned Align =
242          std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
243                   AI->getAlignment());
244
245        // If the alignment of the value is smaller than the size of the value,
246        // and if the size of the value is particularly small (<= 8 bytes),
247        // round up to the size of the value for potentially better performance.
248        //
249        // FIXME: This could be made better with a preferred alignment hook in
250        // TargetData.  It serves primarily to 8-byte align doubles for X86.
251        if (Align < TySize && TySize <= 8) Align = TySize;
252        TySize *= CUI->getValue();   // Get total allocated size.
253        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
254        StaticAllocaMap[AI] =
255          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
256      }
257
258  for (; BB != EB; ++BB)
259    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
260      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
261        if (!isa<AllocaInst>(I) ||
262            !StaticAllocaMap.count(cast<AllocaInst>(I)))
263          InitializeRegForValue(I);
264
265  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
266  // also creates the initial PHI MachineInstrs, though none of the input
267  // operands are populated.
268  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
269    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
270    MBBMap[BB] = MBB;
271    MF.getBasicBlockList().push_back(MBB);
272
273    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
274    // appropriate.
275    PHINode *PN;
276    for (BasicBlock::iterator I = BB->begin();
277         (PN = dyn_cast<PHINode>(I)); ++I)
278      if (!PN->use_empty()) {
279        MVT::ValueType VT = TLI.getValueType(PN->getType());
280        unsigned NumElements;
281        if (VT != MVT::Vector)
282          NumElements = TLI.getNumElements(VT);
283        else {
284          MVT::ValueType VT1,VT2;
285          NumElements =
286            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
287                                       VT1, VT2);
288        }
289        unsigned PHIReg = ValueMap[PN];
290        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
291        for (unsigned i = 0; i != NumElements; ++i)
292          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
293      }
294  }
295}
296
297/// CreateRegForValue - Allocate the appropriate number of virtual registers of
298/// the correctly promoted or expanded types.  Assign these registers
299/// consecutive vreg numbers and return the first assigned number.
300unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
301  MVT::ValueType VT = TLI.getValueType(V->getType());
302
303  // The number of multiples of registers that we need, to, e.g., split up
304  // a <2 x int64> -> 4 x i32 registers.
305  unsigned NumVectorRegs = 1;
306
307  // If this is a packed type, figure out what type it will decompose into
308  // and how many of the elements it will use.
309  if (VT == MVT::Vector) {
310    const PackedType *PTy = cast<PackedType>(V->getType());
311    unsigned NumElts = PTy->getNumElements();
312    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
313
314    // Divide the input until we get to a supported size.  This will always
315    // end with a scalar if the target doesn't support vectors.
316    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
317      NumElts >>= 1;
318      NumVectorRegs <<= 1;
319    }
320    if (NumElts == 1)
321      VT = EltTy;
322    else
323      VT = getVectorType(EltTy, NumElts);
324  }
325
326  // The common case is that we will only create one register for this
327  // value.  If we have that case, create and return the virtual register.
328  unsigned NV = TLI.getNumElements(VT);
329  if (NV == 1) {
330    // If we are promoting this value, pick the next largest supported type.
331    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
332    unsigned Reg = MakeReg(PromotedType);
333    // If this is a vector of supported or promoted types (e.g. 4 x i16),
334    // create all of the registers.
335    for (unsigned i = 1; i != NumVectorRegs; ++i)
336      MakeReg(PromotedType);
337    return Reg;
338  }
339
340  // If this value is represented with multiple target registers, make sure
341  // to create enough consecutive registers of the right (smaller) type.
342  unsigned NT = VT-1;  // Find the type to use.
343  while (TLI.getNumElements((MVT::ValueType)NT) != 1)
344    --NT;
345
346  unsigned R = MakeReg((MVT::ValueType)NT);
347  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
348    MakeReg((MVT::ValueType)NT);
349  return R;
350}
351
352//===----------------------------------------------------------------------===//
353/// SelectionDAGLowering - This is the common target-independent lowering
354/// implementation that is parameterized by a TargetLowering object.
355/// Also, targets can overload any lowering method.
356///
357namespace llvm {
358class SelectionDAGLowering {
359  MachineBasicBlock *CurMBB;
360
361  std::map<const Value*, SDOperand> NodeMap;
362
363  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
364  /// them up and then emit token factor nodes when possible.  This allows us to
365  /// get simple disambiguation between loads without worrying about alias
366  /// analysis.
367  std::vector<SDOperand> PendingLoads;
368
369  /// Case - A pair of values to record the Value for a switch case, and the
370  /// case's target basic block.
371  typedef std::pair<Constant*, MachineBasicBlock*> Case;
372  typedef std::vector<Case>::iterator              CaseItr;
373  typedef std::pair<CaseItr, CaseItr>              CaseRange;
374
375  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
376  /// of conditional branches.
377  struct CaseRec {
378    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
379    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
380
381    /// CaseBB - The MBB in which to emit the compare and branch
382    MachineBasicBlock *CaseBB;
383    /// LT, GE - If nonzero, we know the current case value must be less-than or
384    /// greater-than-or-equal-to these Constants.
385    Constant *LT;
386    Constant *GE;
387    /// Range - A pair of iterators representing the range of case values to be
388    /// processed at this point in the binary search tree.
389    CaseRange Range;
390  };
391
392  /// The comparison function for sorting Case values.
393  struct CaseCmp {
394    bool operator () (const Case& C1, const Case& C2) {
395      if (const ConstantUInt* U1 = dyn_cast<const ConstantUInt>(C1.first))
396        return U1->getValue() < cast<const ConstantUInt>(C2.first)->getValue();
397
398      const ConstantSInt* S1 = dyn_cast<const ConstantSInt>(C1.first);
399      return S1->getValue() < cast<const ConstantSInt>(C2.first)->getValue();
400    }
401  };
402
403public:
404  // TLI - This is information that describes the available target features we
405  // need for lowering.  This indicates when operations are unavailable,
406  // implemented with a libcall, etc.
407  TargetLowering &TLI;
408  SelectionDAG &DAG;
409  const TargetData *TD;
410
411  /// SwitchCases - Vector of CaseBlock structures used to communicate
412  /// SwitchInst code generation information.
413  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
414  SelectionDAGISel::JumpTable JT;
415
416  /// FuncInfo - Information about the function as a whole.
417  ///
418  FunctionLoweringInfo &FuncInfo;
419
420  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
421                       FunctionLoweringInfo &funcinfo)
422    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
423      JT(0,0,0,0), FuncInfo(funcinfo) {
424  }
425
426  /// getRoot - Return the current virtual root of the Selection DAG.
427  ///
428  SDOperand getRoot() {
429    if (PendingLoads.empty())
430      return DAG.getRoot();
431
432    if (PendingLoads.size() == 1) {
433      SDOperand Root = PendingLoads[0];
434      DAG.setRoot(Root);
435      PendingLoads.clear();
436      return Root;
437    }
438
439    // Otherwise, we have to make a token factor node.
440    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
441                                 &PendingLoads[0], PendingLoads.size());
442    PendingLoads.clear();
443    DAG.setRoot(Root);
444    return Root;
445  }
446
447  void visit(Instruction &I) { visit(I.getOpcode(), I); }
448
449  void visit(unsigned Opcode, User &I) {
450    switch (Opcode) {
451    default: assert(0 && "Unknown instruction type encountered!");
452             abort();
453      // Build the switch statement using the Instruction.def file.
454#define HANDLE_INST(NUM, OPCODE, CLASS) \
455    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
456#include "llvm/Instruction.def"
457    }
458  }
459
460  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
461
462  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
463                        SDOperand SrcValue, SDOperand Root,
464                        bool isVolatile);
465
466  SDOperand getIntPtrConstant(uint64_t Val) {
467    return DAG.getConstant(Val, TLI.getPointerTy());
468  }
469
470  SDOperand getValue(const Value *V);
471
472  const SDOperand &setValue(const Value *V, SDOperand NewN) {
473    SDOperand &N = NodeMap[V];
474    assert(N.Val == 0 && "Already set a value for this node!");
475    return N = NewN;
476  }
477
478  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
479                                    MVT::ValueType VT,
480                                    bool OutReg, bool InReg,
481                                    std::set<unsigned> &OutputRegs,
482                                    std::set<unsigned> &InputRegs);
483
484  // Terminator instructions.
485  void visitRet(ReturnInst &I);
486  void visitBr(BranchInst &I);
487  void visitSwitch(SwitchInst &I);
488  void visitUnreachable(UnreachableInst &I) { /* noop */ }
489
490  // Helper for visitSwitch
491  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
492  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
493
494  // These all get lowered before this pass.
495  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
496  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
497
498  void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
499  void visitShift(User &I, unsigned Opcode);
500  void visitAdd(User &I) {
501    visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD);
502  }
503  void visitSub(User &I);
504  void visitMul(User &I) {
505    visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL);
506  }
507  void visitDiv(User &I) {
508    const Type *Ty = I.getType();
509    visitBinary(I,
510                Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV,
511                Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV);
512  }
513  void visitRem(User &I) {
514    const Type *Ty = I.getType();
515    visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
516  }
517  void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); }
518  void visitOr (User &I) { visitBinary(I, ISD::OR,  0, ISD::VOR); }
519  void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); }
520  void visitShl(User &I) { visitShift(I, ISD::SHL); }
521  void visitShr(User &I) {
522    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
523  }
524
525  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc,
526                  ISD::CondCode FPOpc);
527  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ,
528                                        ISD::SETOEQ); }
529  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE,
530                                        ISD::SETUNE); }
531  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE,
532                                        ISD::SETOLE); }
533  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE,
534                                        ISD::SETOGE); }
535  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT,
536                                        ISD::SETOLT); }
537  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT,
538                                        ISD::SETOGT); }
539
540  void visitExtractElement(User &I);
541  void visitInsertElement(User &I);
542  void visitShuffleVector(User &I);
543
544  void visitGetElementPtr(User &I);
545  void visitCast(User &I);
546  void visitSelect(User &I);
547
548  void visitMalloc(MallocInst &I);
549  void visitFree(FreeInst &I);
550  void visitAlloca(AllocaInst &I);
551  void visitLoad(LoadInst &I);
552  void visitStore(StoreInst &I);
553  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
554  void visitCall(CallInst &I);
555  void visitInlineAsm(CallInst &I);
556  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
557  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
558
559  void visitVAStart(CallInst &I);
560  void visitVAArg(VAArgInst &I);
561  void visitVAEnd(CallInst &I);
562  void visitVACopy(CallInst &I);
563  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
564
565  void visitMemIntrinsic(CallInst &I, unsigned Op);
566
567  void visitUserOp1(Instruction &I) {
568    assert(0 && "UserOp1 should not exist at instruction selection time!");
569    abort();
570  }
571  void visitUserOp2(Instruction &I) {
572    assert(0 && "UserOp2 should not exist at instruction selection time!");
573    abort();
574  }
575};
576} // end namespace llvm
577
578SDOperand SelectionDAGLowering::getValue(const Value *V) {
579  SDOperand &N = NodeMap[V];
580  if (N.Val) return N;
581
582  const Type *VTy = V->getType();
583  MVT::ValueType VT = TLI.getValueType(VTy);
584  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
585    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
586      visit(CE->getOpcode(), *CE);
587      assert(N.Val && "visit didn't populate the ValueMap!");
588      return N;
589    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
590      return N = DAG.getGlobalAddress(GV, VT);
591    } else if (isa<ConstantPointerNull>(C)) {
592      return N = DAG.getConstant(0, TLI.getPointerTy());
593    } else if (isa<UndefValue>(C)) {
594      if (!isa<PackedType>(VTy))
595        return N = DAG.getNode(ISD::UNDEF, VT);
596
597      // Create a VBUILD_VECTOR of undef nodes.
598      const PackedType *PTy = cast<PackedType>(VTy);
599      unsigned NumElements = PTy->getNumElements();
600      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
601
602      SmallVector<SDOperand, 8> Ops;
603      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
604
605      // Create a VConstant node with generic Vector type.
606      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
607      Ops.push_back(DAG.getValueType(PVT));
608      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
609                             &Ops[0], Ops.size());
610    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
611      return N = DAG.getConstantFP(CFP->getValue(), VT);
612    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
613      unsigned NumElements = PTy->getNumElements();
614      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
615
616      // Now that we know the number and type of the elements, push a
617      // Constant or ConstantFP node onto the ops list for each element of
618      // the packed constant.
619      SmallVector<SDOperand, 8> Ops;
620      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
621        for (unsigned i = 0; i != NumElements; ++i)
622          Ops.push_back(getValue(CP->getOperand(i)));
623      } else {
624        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
625        SDOperand Op;
626        if (MVT::isFloatingPoint(PVT))
627          Op = DAG.getConstantFP(0, PVT);
628        else
629          Op = DAG.getConstant(0, PVT);
630        Ops.assign(NumElements, Op);
631      }
632
633      // Create a VBUILD_VECTOR node with generic Vector type.
634      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
635      Ops.push_back(DAG.getValueType(PVT));
636      return N = DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector,&Ops[0],Ops.size());
637    } else {
638      // Canonicalize all constant ints to be unsigned.
639      return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
640    }
641  }
642
643  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
644    std::map<const AllocaInst*, int>::iterator SI =
645    FuncInfo.StaticAllocaMap.find(AI);
646    if (SI != FuncInfo.StaticAllocaMap.end())
647      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
648  }
649
650  std::map<const Value*, unsigned>::const_iterator VMI =
651      FuncInfo.ValueMap.find(V);
652  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
653
654  unsigned InReg = VMI->second;
655
656  // If this type is not legal, make it so now.
657  if (VT != MVT::Vector) {
658    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
659
660    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
661    if (DestVT < VT) {
662      // Source must be expanded.  This input value is actually coming from the
663      // register pair VMI->second and VMI->second+1.
664      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
665                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
666    } else if (DestVT > VT) { // Promotion case
667      if (MVT::isFloatingPoint(VT))
668        N = DAG.getNode(ISD::FP_ROUND, VT, N);
669      else
670        N = DAG.getNode(ISD::TRUNCATE, VT, N);
671    }
672  } else {
673    // Otherwise, if this is a vector, make it available as a generic vector
674    // here.
675    MVT::ValueType PTyElementVT, PTyLegalElementVT;
676    const PackedType *PTy = cast<PackedType>(VTy);
677    unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT,
678                                             PTyLegalElementVT);
679
680    // Build a VBUILD_VECTOR with the input registers.
681    SmallVector<SDOperand, 8> Ops;
682    if (PTyElementVT == PTyLegalElementVT) {
683      // If the value types are legal, just VBUILD the CopyFromReg nodes.
684      for (unsigned i = 0; i != NE; ++i)
685        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
686                                         PTyElementVT));
687    } else if (PTyElementVT < PTyLegalElementVT) {
688      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
689      for (unsigned i = 0; i != NE; ++i) {
690        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
691                                          PTyElementVT);
692        if (MVT::isFloatingPoint(PTyElementVT))
693          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
694        else
695          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
696        Ops.push_back(Op);
697      }
698    } else {
699      // If the register was expanded, use BUILD_PAIR.
700      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
701      for (unsigned i = 0; i != NE/2; ++i) {
702        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
703                                           PTyElementVT);
704        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
705                                           PTyElementVT);
706        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
707      }
708    }
709
710    Ops.push_back(DAG.getConstant(NE, MVT::i32));
711    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
712    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
713
714    // Finally, use a VBIT_CONVERT to make this available as the appropriate
715    // vector type.
716    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
717                    DAG.getConstant(PTy->getNumElements(),
718                                    MVT::i32),
719                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
720  }
721
722  return N;
723}
724
725
726void SelectionDAGLowering::visitRet(ReturnInst &I) {
727  if (I.getNumOperands() == 0) {
728    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
729    return;
730  }
731  SmallVector<SDOperand, 8> NewValues;
732  NewValues.push_back(getRoot());
733  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
734    SDOperand RetOp = getValue(I.getOperand(i));
735    bool isSigned = I.getOperand(i)->getType()->isSigned();
736
737    // If this is an integer return value, we need to promote it ourselves to
738    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
739    // than sign/zero.
740    // FIXME: C calling convention requires the return type to be promoted to
741    // at least 32-bit. But this is not necessary for non-C calling conventions.
742    if (MVT::isInteger(RetOp.getValueType()) &&
743        RetOp.getValueType() < MVT::i64) {
744      MVT::ValueType TmpVT;
745      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
746        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
747      else
748        TmpVT = MVT::i32;
749
750      if (isSigned)
751        RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
752      else
753        RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
754    }
755    NewValues.push_back(RetOp);
756    NewValues.push_back(DAG.getConstant(isSigned, MVT::i32));
757  }
758  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
759                          &NewValues[0], NewValues.size()));
760}
761
762void SelectionDAGLowering::visitBr(BranchInst &I) {
763  // Update machine-CFG edges.
764  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
765  CurMBB->addSuccessor(Succ0MBB);
766
767  // Figure out which block is immediately after the current one.
768  MachineBasicBlock *NextBlock = 0;
769  MachineFunction::iterator BBI = CurMBB;
770  if (++BBI != CurMBB->getParent()->end())
771    NextBlock = BBI;
772
773  if (I.isUnconditional()) {
774    // If this is not a fall-through branch, emit the branch.
775    if (Succ0MBB != NextBlock)
776      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
777                              DAG.getBasicBlock(Succ0MBB)));
778  } else {
779    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
780    CurMBB->addSuccessor(Succ1MBB);
781
782    SDOperand Cond = getValue(I.getCondition());
783    if (Succ1MBB == NextBlock) {
784      // If the condition is false, fall through.  This means we should branch
785      // if the condition is true to Succ #0.
786      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
787                              Cond, DAG.getBasicBlock(Succ0MBB)));
788    } else if (Succ0MBB == NextBlock) {
789      // If the condition is true, fall through.  This means we should branch if
790      // the condition is false to Succ #1.  Invert the condition first.
791      SDOperand True = DAG.getConstant(1, Cond.getValueType());
792      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
793      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
794                              Cond, DAG.getBasicBlock(Succ1MBB)));
795    } else {
796      std::vector<SDOperand> Ops;
797      Ops.push_back(getRoot());
798      // If the false case is the current basic block, then this is a self
799      // loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it
800      // adds an extra instruction in the loop.  Instead, invert the
801      // condition and emit "Loop: ... br!cond Loop; br Out.
802      if (CurMBB == Succ1MBB) {
803        std::swap(Succ0MBB, Succ1MBB);
804        SDOperand True = DAG.getConstant(1, Cond.getValueType());
805        Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
806      }
807      SDOperand True = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
808                                   DAG.getBasicBlock(Succ0MBB));
809      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, True,
810                              DAG.getBasicBlock(Succ1MBB)));
811    }
812  }
813}
814
815/// visitSwitchCase - Emits the necessary code to represent a single node in
816/// the binary search tree resulting from lowering a switch instruction.
817void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
818  SDOperand SwitchOp = getValue(CB.SwitchV);
819  SDOperand CaseOp = getValue(CB.CaseC);
820  SDOperand Cond = DAG.getSetCC(MVT::i1, SwitchOp, CaseOp, CB.CC);
821
822  // Set NextBlock to be the MBB immediately after the current one, if any.
823  // This is used to avoid emitting unnecessary branches to the next block.
824  MachineBasicBlock *NextBlock = 0;
825  MachineFunction::iterator BBI = CurMBB;
826  if (++BBI != CurMBB->getParent()->end())
827    NextBlock = BBI;
828
829  // If the lhs block is the next block, invert the condition so that we can
830  // fall through to the lhs instead of the rhs block.
831  if (CB.LHSBB == NextBlock) {
832    std::swap(CB.LHSBB, CB.RHSBB);
833    SDOperand True = DAG.getConstant(1, Cond.getValueType());
834    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
835  }
836  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
837                                 DAG.getBasicBlock(CB.LHSBB));
838  if (CB.RHSBB == NextBlock)
839    DAG.setRoot(BrCond);
840  else
841    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
842                            DAG.getBasicBlock(CB.RHSBB)));
843  // Update successor info
844  CurMBB->addSuccessor(CB.LHSBB);
845  CurMBB->addSuccessor(CB.RHSBB);
846}
847
848void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
849  // FIXME: Need to emit different code for PIC vs. Non-PIC, specifically,
850  // we need to add the address of the jump table to the value loaded, since
851  // the entries in the jump table will be differences rather than absolute
852  // addresses.
853
854  // Emit the code for the jump table
855  MVT::ValueType PTy = TLI.getPointerTy();
856  assert((PTy == MVT::i32 || PTy == MVT::i64) &&
857         "Jump table entries are 32-bit values");
858  bool isPIC = TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_;
859  // PIC jump table entries are 32-bit values.
860  unsigned EntrySize = isPIC ? 4 : MVT::getSizeInBits(PTy)/8;
861  SDOperand Copy = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
862  SDOperand IDX = DAG.getNode(ISD::MUL, PTy, Copy,
863                              DAG.getConstant(EntrySize, PTy));
864  SDOperand TAB = DAG.getJumpTable(JT.JTI,PTy);
865  SDOperand ADD = DAG.getNode(ISD::ADD, PTy, IDX, TAB);
866  SDOperand LD  = DAG.getLoad(isPIC ? MVT::i32 : PTy, Copy.getValue(1), ADD,
867                              DAG.getSrcValue(0));
868  if (isPIC) {
869    // For Pic, the sequence is:
870    // BRIND(load(Jumptable + index) + RelocBase)
871    // RelocBase is the JumpTable on PPC and X86, GOT on Alpha
872    SDOperand Reloc = DAG.getNode(ISD::JumpTableRelocBase, PTy, TAB);
873    ADD = DAG.getNode(ISD::ADD, PTy,
874        ((PTy != MVT::i32) ? DAG.getNode(ISD::SIGN_EXTEND, PTy, LD) : LD), Reloc);
875    DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), ADD));
876  } else {
877    DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), LD));
878  }
879}
880
881void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
882  // Figure out which block is immediately after the current one.
883  MachineBasicBlock *NextBlock = 0;
884  MachineFunction::iterator BBI = CurMBB;
885  if (++BBI != CurMBB->getParent()->end())
886    NextBlock = BBI;
887
888  // If there is only the default destination, branch to it if it is not the
889  // next basic block.  Otherwise, just fall through.
890  if (I.getNumOperands() == 2) {
891    // Update machine-CFG edges.
892    MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[I.getDefaultDest()];
893    // If this is not a fall-through branch, emit the branch.
894    if (DefaultMBB != NextBlock)
895      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
896                              DAG.getBasicBlock(DefaultMBB)));
897    CurMBB->addSuccessor(DefaultMBB);
898    return;
899  }
900
901  // If there are any non-default case statements, create a vector of Cases
902  // representing each one, and sort the vector so that we can efficiently
903  // create a binary search tree from them.
904  std::vector<Case> Cases;
905  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
906    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
907    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
908  }
909  std::sort(Cases.begin(), Cases.end(), CaseCmp());
910
911  // Get the Value to be switched on and default basic blocks, which will be
912  // inserted into CaseBlock records, representing basic blocks in the binary
913  // search tree.
914  Value *SV = I.getOperand(0);
915  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
916
917  // Get the MachineFunction which holds the current MBB.  This is used during
918  // emission of jump tables, and when inserting any additional MBBs necessary
919  // to represent the switch.
920  MachineFunction *CurMF = CurMBB->getParent();
921  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
922
923  // If the switch has more than 5 blocks, and at least 31.25% dense, and the
924  // target supports indirect branches, then emit a jump table rather than
925  // lowering the switch to a binary tree of conditional branches.
926  if (TLI.isOperationLegal(ISD::BRIND, TLI.getPointerTy()) &&
927      Cases.size() > 5) {
928    uint64_t First = cast<ConstantIntegral>(Cases.front().first)->getRawValue();
929    uint64_t Last  = cast<ConstantIntegral>(Cases.back().first)->getRawValue();
930    double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
931
932    if (Density >= 0.3125) {
933      // Create a new basic block to hold the code for loading the address
934      // of the jump table, and jumping to it.  Update successor information;
935      // we will either branch to the default case for the switch, or the jump
936      // table.
937      MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
938      CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
939      CurMBB->addSuccessor(Default);
940      CurMBB->addSuccessor(JumpTableBB);
941
942      // Subtract the lowest switch case value from the value being switched on
943      // and conditional branch to default mbb if the result is greater than the
944      // difference between smallest and largest cases.
945      SDOperand SwitchOp = getValue(SV);
946      MVT::ValueType VT = SwitchOp.getValueType();
947      SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
948                                  DAG.getConstant(First, VT));
949
950      // The SDNode we just created, which holds the value being switched on
951      // minus the the smallest case value, needs to be copied to a virtual
952      // register so it can be used as an index into the jump table in a
953      // subsequent basic block.  This value may be smaller or larger than the
954      // target's pointer type, and therefore require extension or truncating.
955      if (VT > TLI.getPointerTy())
956        SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
957      else
958        SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
959      unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
960      SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
961
962      // Emit the range check for the jump table, and branch to the default
963      // block for the switch statement if the value being switched on exceeds
964      // the largest case in the switch.
965      SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
966                                   DAG.getConstant(Last-First,VT), ISD::SETUGT);
967      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
968                              DAG.getBasicBlock(Default)));
969
970      // Build a vector of destination BBs, corresponding to each target
971      // of the jump table.  If the value of the jump table slot corresponds to
972      // a case statement, push the case's BB onto the vector, otherwise, push
973      // the default BB.
974      std::vector<MachineBasicBlock*> DestBBs;
975      uint64_t TEI = First;
976      for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI) {
977        if (cast<ConstantIntegral>(ii->first)->getRawValue() == TEI) {
978          DestBBs.push_back(ii->second);
979          ++ii;
980        } else {
981          DestBBs.push_back(Default);
982        }
983      }
984
985      // Update successor info
986      for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
987           E = DestBBs.end(); I != E; ++I)
988        JumpTableBB->addSuccessor(*I);
989
990      // Create a jump table index for this jump table, or return an existing
991      // one.
992      unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
993
994      // Set the jump table information so that we can codegen it as a second
995      // MachineBasicBlock
996      JT.Reg = JumpTableReg;
997      JT.JTI = JTI;
998      JT.MBB = JumpTableBB;
999      JT.Default = Default;
1000      return;
1001    }
1002  }
1003
1004  // Push the initial CaseRec onto the worklist
1005  std::vector<CaseRec> CaseVec;
1006  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1007
1008  while (!CaseVec.empty()) {
1009    // Grab a record representing a case range to process off the worklist
1010    CaseRec CR = CaseVec.back();
1011    CaseVec.pop_back();
1012
1013    // Size is the number of Cases represented by this range.  If Size is 1,
1014    // then we are processing a leaf of the binary search tree.  Otherwise,
1015    // we need to pick a pivot, and push left and right ranges onto the
1016    // worklist.
1017    unsigned Size = CR.Range.second - CR.Range.first;
1018
1019    if (Size == 1) {
1020      // Create a CaseBlock record representing a conditional branch to
1021      // the Case's target mbb if the value being switched on SV is equal
1022      // to C.  Otherwise, branch to default.
1023      Constant *C = CR.Range.first->first;
1024      MachineBasicBlock *Target = CR.Range.first->second;
1025      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
1026                                     CR.CaseBB);
1027      // If the MBB representing the leaf node is the current MBB, then just
1028      // call visitSwitchCase to emit the code into the current block.
1029      // Otherwise, push the CaseBlock onto the vector to be later processed
1030      // by SDISel, and insert the node's MBB before the next MBB.
1031      if (CR.CaseBB == CurMBB)
1032        visitSwitchCase(CB);
1033      else {
1034        SwitchCases.push_back(CB);
1035        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
1036      }
1037    } else {
1038      // split case range at pivot
1039      CaseItr Pivot = CR.Range.first + (Size / 2);
1040      CaseRange LHSR(CR.Range.first, Pivot);
1041      CaseRange RHSR(Pivot, CR.Range.second);
1042      Constant *C = Pivot->first;
1043      MachineBasicBlock *RHSBB = 0, *LHSBB = 0;
1044      // We know that we branch to the LHS if the Value being switched on is
1045      // less than the Pivot value, C.  We use this to optimize our binary
1046      // tree a bit, by recognizing that if SV is greater than or equal to the
1047      // LHS's Case Value, and that Case Value is exactly one less than the
1048      // Pivot's Value, then we can branch directly to the LHS's Target,
1049      // rather than creating a leaf node for it.
1050      if ((LHSR.second - LHSR.first) == 1 &&
1051          LHSR.first->first == CR.GE &&
1052          cast<ConstantIntegral>(C)->getRawValue() ==
1053          (cast<ConstantIntegral>(CR.GE)->getRawValue() + 1ULL)) {
1054        LHSBB = LHSR.first->second;
1055      } else {
1056        LHSBB = new MachineBasicBlock(LLVMBB);
1057        CaseVec.push_back(CaseRec(LHSBB,C,CR.GE,LHSR));
1058      }
1059      // Similar to the optimization above, if the Value being switched on is
1060      // known to be less than the Constant CR.LT, and the current Case Value
1061      // is CR.LT - 1, then we can branch directly to the target block for
1062      // the current Case Value, rather than emitting a RHS leaf node for it.
1063      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1064          cast<ConstantIntegral>(RHSR.first->first)->getRawValue() ==
1065          (cast<ConstantIntegral>(CR.LT)->getRawValue() - 1ULL)) {
1066        RHSBB = RHSR.first->second;
1067      } else {
1068        RHSBB = new MachineBasicBlock(LLVMBB);
1069        CaseVec.push_back(CaseRec(RHSBB,CR.LT,C,RHSR));
1070      }
1071      // Create a CaseBlock record representing a conditional branch to
1072      // the LHS node if the value being switched on SV is less than C.
1073      // Otherwise, branch to LHS.
1074      ISD::CondCode CC = C->getType()->isSigned() ? ISD::SETLT : ISD::SETULT;
1075      SelectionDAGISel::CaseBlock CB(CC, SV, C, LHSBB, RHSBB, CR.CaseBB);
1076      if (CR.CaseBB == CurMBB)
1077        visitSwitchCase(CB);
1078      else {
1079        SwitchCases.push_back(CB);
1080        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
1081      }
1082    }
1083  }
1084}
1085
1086void SelectionDAGLowering::visitSub(User &I) {
1087  // -0.0 - X --> fneg
1088  if (I.getType()->isFloatingPoint()) {
1089    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1090      if (CFP->isExactlyValue(-0.0)) {
1091        SDOperand Op2 = getValue(I.getOperand(1));
1092        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1093        return;
1094      }
1095  }
1096  visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
1097}
1098
1099void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp,
1100                                       unsigned VecOp) {
1101  const Type *Ty = I.getType();
1102  SDOperand Op1 = getValue(I.getOperand(0));
1103  SDOperand Op2 = getValue(I.getOperand(1));
1104
1105  if (Ty->isIntegral()) {
1106    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
1107  } else if (Ty->isFloatingPoint()) {
1108    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
1109  } else {
1110    const PackedType *PTy = cast<PackedType>(Ty);
1111    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
1112    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
1113    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
1114  }
1115}
1116
1117void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1118  SDOperand Op1 = getValue(I.getOperand(0));
1119  SDOperand Op2 = getValue(I.getOperand(1));
1120
1121  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1122
1123  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1124}
1125
1126void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
1127                                      ISD::CondCode UnsignedOpcode,
1128                                      ISD::CondCode FPOpcode) {
1129  SDOperand Op1 = getValue(I.getOperand(0));
1130  SDOperand Op2 = getValue(I.getOperand(1));
1131  ISD::CondCode Opcode = SignedOpcode;
1132  if (!FiniteOnlyFPMath() && I.getOperand(0)->getType()->isFloatingPoint())
1133    Opcode = FPOpcode;
1134  else if (I.getOperand(0)->getType()->isUnsigned())
1135    Opcode = UnsignedOpcode;
1136  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1137}
1138
1139void SelectionDAGLowering::visitSelect(User &I) {
1140  SDOperand Cond     = getValue(I.getOperand(0));
1141  SDOperand TrueVal  = getValue(I.getOperand(1));
1142  SDOperand FalseVal = getValue(I.getOperand(2));
1143  if (!isa<PackedType>(I.getType())) {
1144    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1145                             TrueVal, FalseVal));
1146  } else {
1147    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1148                             *(TrueVal.Val->op_end()-2),
1149                             *(TrueVal.Val->op_end()-1)));
1150  }
1151}
1152
1153void SelectionDAGLowering::visitCast(User &I) {
1154  SDOperand N = getValue(I.getOperand(0));
1155  MVT::ValueType SrcVT = N.getValueType();
1156  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1157
1158  if (DestVT == MVT::Vector) {
1159    // This is a cast to a vector from something else.  This is always a bit
1160    // convert.  Get information about the input vector.
1161    const PackedType *DestTy = cast<PackedType>(I.getType());
1162    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1163    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1164                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1165                             DAG.getValueType(EltVT)));
1166  } else if (SrcVT == DestVT) {
1167    setValue(&I, N);  // noop cast.
1168  } else if (DestVT == MVT::i1) {
1169    // Cast to bool is a comparison against zero, not truncation to zero.
1170    SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) :
1171                                       DAG.getConstantFP(0.0, N.getValueType());
1172    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
1173  } else if (isInteger(SrcVT)) {
1174    if (isInteger(DestVT)) {        // Int -> Int cast
1175      if (DestVT < SrcVT)   // Truncating cast?
1176        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1177      else if (I.getOperand(0)->getType()->isSigned())
1178        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1179      else
1180        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1181    } else if (isFloatingPoint(DestVT)) {           // Int -> FP cast
1182      if (I.getOperand(0)->getType()->isSigned())
1183        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1184      else
1185        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1186    } else {
1187      assert(0 && "Unknown cast!");
1188    }
1189  } else if (isFloatingPoint(SrcVT)) {
1190    if (isFloatingPoint(DestVT)) {  // FP -> FP cast
1191      if (DestVT < SrcVT)   // Rounding cast?
1192        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1193      else
1194        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1195    } else if (isInteger(DestVT)) {        // FP -> Int cast.
1196      if (I.getType()->isSigned())
1197        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1198      else
1199        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1200    } else {
1201      assert(0 && "Unknown cast!");
1202    }
1203  } else {
1204    assert(SrcVT == MVT::Vector && "Unknown cast!");
1205    assert(DestVT != MVT::Vector && "Casts to vector already handled!");
1206    // This is a cast from a vector to something else.  This is always a bit
1207    // convert.  Get information about the input vector.
1208    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1209  }
1210}
1211
1212void SelectionDAGLowering::visitInsertElement(User &I) {
1213  SDOperand InVec = getValue(I.getOperand(0));
1214  SDOperand InVal = getValue(I.getOperand(1));
1215  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1216                                getValue(I.getOperand(2)));
1217
1218  SDOperand Num = *(InVec.Val->op_end()-2);
1219  SDOperand Typ = *(InVec.Val->op_end()-1);
1220  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1221                           InVec, InVal, InIdx, Num, Typ));
1222}
1223
1224void SelectionDAGLowering::visitExtractElement(User &I) {
1225  SDOperand InVec = getValue(I.getOperand(0));
1226  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1227                                getValue(I.getOperand(1)));
1228  SDOperand Typ = *(InVec.Val->op_end()-1);
1229  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1230                           TLI.getValueType(I.getType()), InVec, InIdx));
1231}
1232
1233void SelectionDAGLowering::visitShuffleVector(User &I) {
1234  SDOperand V1   = getValue(I.getOperand(0));
1235  SDOperand V2   = getValue(I.getOperand(1));
1236  SDOperand Mask = getValue(I.getOperand(2));
1237
1238  SDOperand Num = *(V1.Val->op_end()-2);
1239  SDOperand Typ = *(V2.Val->op_end()-1);
1240  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1241                           V1, V2, Mask, Num, Typ));
1242}
1243
1244
1245void SelectionDAGLowering::visitGetElementPtr(User &I) {
1246  SDOperand N = getValue(I.getOperand(0));
1247  const Type *Ty = I.getOperand(0)->getType();
1248
1249  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1250       OI != E; ++OI) {
1251    Value *Idx = *OI;
1252    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1253      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
1254      if (Field) {
1255        // N = N + Offset
1256        uint64_t Offset = TD->getStructLayout(StTy)->MemberOffsets[Field];
1257        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1258                        getIntPtrConstant(Offset));
1259      }
1260      Ty = StTy->getElementType(Field);
1261    } else {
1262      Ty = cast<SequentialType>(Ty)->getElementType();
1263
1264      // If this is a constant subscript, handle it quickly.
1265      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1266        if (CI->getRawValue() == 0) continue;
1267
1268        uint64_t Offs;
1269        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
1270          Offs = (int64_t)TD->getTypeSize(Ty)*CSI->getValue();
1271        else
1272          Offs = TD->getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
1273        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1274        continue;
1275      }
1276
1277      // N = N + Idx * ElementSize;
1278      uint64_t ElementSize = TD->getTypeSize(Ty);
1279      SDOperand IdxN = getValue(Idx);
1280
1281      // If the index is smaller or larger than intptr_t, truncate or extend
1282      // it.
1283      if (IdxN.getValueType() < N.getValueType()) {
1284        if (Idx->getType()->isSigned())
1285          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1286        else
1287          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
1288      } else if (IdxN.getValueType() > N.getValueType())
1289        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1290
1291      // If this is a multiply by a power of two, turn it into a shl
1292      // immediately.  This is a very common case.
1293      if (isPowerOf2_64(ElementSize)) {
1294        unsigned Amt = Log2_64(ElementSize);
1295        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1296                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1297        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1298        continue;
1299      }
1300
1301      SDOperand Scale = getIntPtrConstant(ElementSize);
1302      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1303      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1304    }
1305  }
1306  setValue(&I, N);
1307}
1308
1309void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1310  // If this is a fixed sized alloca in the entry block of the function,
1311  // allocate it statically on the stack.
1312  if (FuncInfo.StaticAllocaMap.count(&I))
1313    return;   // getValue will auto-populate this.
1314
1315  const Type *Ty = I.getAllocatedType();
1316  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
1317  unsigned Align = std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
1318                            I.getAlignment());
1319
1320  SDOperand AllocSize = getValue(I.getArraySize());
1321  MVT::ValueType IntPtr = TLI.getPointerTy();
1322  if (IntPtr < AllocSize.getValueType())
1323    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1324  else if (IntPtr > AllocSize.getValueType())
1325    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1326
1327  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1328                          getIntPtrConstant(TySize));
1329
1330  // Handle alignment.  If the requested alignment is less than or equal to the
1331  // stack alignment, ignore it and round the size of the allocation up to the
1332  // stack alignment size.  If the size is greater than the stack alignment, we
1333  // note this in the DYNAMIC_STACKALLOC node.
1334  unsigned StackAlign =
1335    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1336  if (Align <= StackAlign) {
1337    Align = 0;
1338    // Add SA-1 to the size.
1339    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1340                            getIntPtrConstant(StackAlign-1));
1341    // Mask out the low bits for alignment purposes.
1342    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1343                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1344  }
1345
1346  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
1347  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
1348                                                    MVT::Other);
1349  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
1350  DAG.setRoot(setValue(&I, DSA).getValue(1));
1351
1352  // Inform the Frame Information that we have just allocated a variable-sized
1353  // object.
1354  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1355}
1356
1357void SelectionDAGLowering::visitLoad(LoadInst &I) {
1358  SDOperand Ptr = getValue(I.getOperand(0));
1359
1360  SDOperand Root;
1361  if (I.isVolatile())
1362    Root = getRoot();
1363  else {
1364    // Do not serialize non-volatile loads against each other.
1365    Root = DAG.getRoot();
1366  }
1367
1368  setValue(&I, getLoadFrom(I.getType(), Ptr, DAG.getSrcValue(I.getOperand(0)),
1369                           Root, I.isVolatile()));
1370}
1371
1372SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1373                                            SDOperand SrcValue, SDOperand Root,
1374                                            bool isVolatile) {
1375  SDOperand L;
1376  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1377    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1378    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr, SrcValue);
1379  } else {
1380    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SrcValue);
1381  }
1382
1383  if (isVolatile)
1384    DAG.setRoot(L.getValue(1));
1385  else
1386    PendingLoads.push_back(L.getValue(1));
1387
1388  return L;
1389}
1390
1391
1392void SelectionDAGLowering::visitStore(StoreInst &I) {
1393  Value *SrcV = I.getOperand(0);
1394  SDOperand Src = getValue(SrcV);
1395  SDOperand Ptr = getValue(I.getOperand(1));
1396  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
1397                          DAG.getSrcValue(I.getOperand(1))));
1398}
1399
1400/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1401/// access memory and has no other side effects at all.
1402static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1403#define GET_NO_MEMORY_INTRINSICS
1404#include "llvm/Intrinsics.gen"
1405#undef GET_NO_MEMORY_INTRINSICS
1406  return false;
1407}
1408
1409// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
1410// have any side-effects or if it only reads memory.
1411static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
1412#define GET_SIDE_EFFECT_INFO
1413#include "llvm/Intrinsics.gen"
1414#undef GET_SIDE_EFFECT_INFO
1415  return false;
1416}
1417
1418/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1419/// node.
1420void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1421                                                unsigned Intrinsic) {
1422  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1423  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
1424
1425  // Build the operand list.
1426  SmallVector<SDOperand, 8> Ops;
1427  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
1428    if (OnlyLoad) {
1429      // We don't need to serialize loads against other loads.
1430      Ops.push_back(DAG.getRoot());
1431    } else {
1432      Ops.push_back(getRoot());
1433    }
1434  }
1435
1436  // Add the intrinsic ID as an integer operand.
1437  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1438
1439  // Add all operands of the call to the operand list.
1440  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1441    SDOperand Op = getValue(I.getOperand(i));
1442
1443    // If this is a vector type, force it to the right packed type.
1444    if (Op.getValueType() == MVT::Vector) {
1445      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1446      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1447
1448      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1449      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1450      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1451    }
1452
1453    assert(TLI.isTypeLegal(Op.getValueType()) &&
1454           "Intrinsic uses a non-legal type?");
1455    Ops.push_back(Op);
1456  }
1457
1458  std::vector<MVT::ValueType> VTs;
1459  if (I.getType() != Type::VoidTy) {
1460    MVT::ValueType VT = TLI.getValueType(I.getType());
1461    if (VT == MVT::Vector) {
1462      const PackedType *DestTy = cast<PackedType>(I.getType());
1463      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1464
1465      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1466      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1467    }
1468
1469    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1470    VTs.push_back(VT);
1471  }
1472  if (HasChain)
1473    VTs.push_back(MVT::Other);
1474
1475  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
1476
1477  // Create the node.
1478  SDOperand Result;
1479  if (!HasChain)
1480    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
1481                         &Ops[0], Ops.size());
1482  else if (I.getType() != Type::VoidTy)
1483    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
1484                         &Ops[0], Ops.size());
1485  else
1486    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
1487                         &Ops[0], Ops.size());
1488
1489  if (HasChain) {
1490    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
1491    if (OnlyLoad)
1492      PendingLoads.push_back(Chain);
1493    else
1494      DAG.setRoot(Chain);
1495  }
1496  if (I.getType() != Type::VoidTy) {
1497    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1498      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1499      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1500                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1501                           DAG.getValueType(EVT));
1502    }
1503    setValue(&I, Result);
1504  }
1505}
1506
1507/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1508/// we want to emit this as a call to a named external function, return the name
1509/// otherwise lower it and return null.
1510const char *
1511SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1512  switch (Intrinsic) {
1513  default:
1514    // By default, turn this into a target intrinsic node.
1515    visitTargetIntrinsic(I, Intrinsic);
1516    return 0;
1517  case Intrinsic::vastart:  visitVAStart(I); return 0;
1518  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1519  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1520  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1521  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1522  case Intrinsic::setjmp:
1523    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1524    break;
1525  case Intrinsic::longjmp:
1526    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1527    break;
1528  case Intrinsic::memcpy_i32:
1529  case Intrinsic::memcpy_i64:
1530    visitMemIntrinsic(I, ISD::MEMCPY);
1531    return 0;
1532  case Intrinsic::memset_i32:
1533  case Intrinsic::memset_i64:
1534    visitMemIntrinsic(I, ISD::MEMSET);
1535    return 0;
1536  case Intrinsic::memmove_i32:
1537  case Intrinsic::memmove_i64:
1538    visitMemIntrinsic(I, ISD::MEMMOVE);
1539    return 0;
1540
1541  case Intrinsic::dbg_stoppoint: {
1542    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1543    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1544    if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
1545      SDOperand Ops[5];
1546
1547      Ops[0] = getRoot();
1548      Ops[1] = getValue(SPI.getLineValue());
1549      Ops[2] = getValue(SPI.getColumnValue());
1550
1551      DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
1552      assert(DD && "Not a debug information descriptor");
1553      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1554
1555      Ops[3] = DAG.getString(CompileUnit->getFileName());
1556      Ops[4] = DAG.getString(CompileUnit->getDirectory());
1557
1558      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
1559    }
1560
1561    return 0;
1562  }
1563  case Intrinsic::dbg_region_start: {
1564    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1565    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1566    if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
1567      unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
1568      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, getRoot(),
1569                              DAG.getConstant(LabelID, MVT::i32)));
1570    }
1571
1572    return 0;
1573  }
1574  case Intrinsic::dbg_region_end: {
1575    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1576    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
1577    if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
1578      unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
1579      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
1580                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
1581    }
1582
1583    return 0;
1584  }
1585  case Intrinsic::dbg_func_start: {
1586    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1587    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
1588    if (DebugInfo && FSI.getSubprogram() &&
1589        DebugInfo->Verify(FSI.getSubprogram())) {
1590      unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
1591      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
1592                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
1593    }
1594
1595    return 0;
1596  }
1597  case Intrinsic::dbg_declare: {
1598    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1599    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
1600    if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) {
1601      SDOperand AddressOp  = getValue(DI.getAddress());
1602      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
1603        DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
1604    }
1605
1606    return 0;
1607  }
1608
1609  case Intrinsic::isunordered_f32:
1610  case Intrinsic::isunordered_f64:
1611    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
1612                              getValue(I.getOperand(2)), ISD::SETUO));
1613    return 0;
1614
1615  case Intrinsic::sqrt_f32:
1616  case Intrinsic::sqrt_f64:
1617    setValue(&I, DAG.getNode(ISD::FSQRT,
1618                             getValue(I.getOperand(1)).getValueType(),
1619                             getValue(I.getOperand(1))));
1620    return 0;
1621  case Intrinsic::powi_f32:
1622  case Intrinsic::powi_f64:
1623    setValue(&I, DAG.getNode(ISD::FPOWI,
1624                             getValue(I.getOperand(1)).getValueType(),
1625                             getValue(I.getOperand(1)),
1626                             getValue(I.getOperand(2))));
1627    return 0;
1628  case Intrinsic::pcmarker: {
1629    SDOperand Tmp = getValue(I.getOperand(1));
1630    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
1631    return 0;
1632  }
1633  case Intrinsic::readcyclecounter: {
1634    SDOperand Op = getRoot();
1635    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
1636                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
1637                                &Op, 1);
1638    setValue(&I, Tmp);
1639    DAG.setRoot(Tmp.getValue(1));
1640    return 0;
1641  }
1642  case Intrinsic::bswap_i16:
1643  case Intrinsic::bswap_i32:
1644  case Intrinsic::bswap_i64:
1645    setValue(&I, DAG.getNode(ISD::BSWAP,
1646                             getValue(I.getOperand(1)).getValueType(),
1647                             getValue(I.getOperand(1))));
1648    return 0;
1649  case Intrinsic::cttz_i8:
1650  case Intrinsic::cttz_i16:
1651  case Intrinsic::cttz_i32:
1652  case Intrinsic::cttz_i64:
1653    setValue(&I, DAG.getNode(ISD::CTTZ,
1654                             getValue(I.getOperand(1)).getValueType(),
1655                             getValue(I.getOperand(1))));
1656    return 0;
1657  case Intrinsic::ctlz_i8:
1658  case Intrinsic::ctlz_i16:
1659  case Intrinsic::ctlz_i32:
1660  case Intrinsic::ctlz_i64:
1661    setValue(&I, DAG.getNode(ISD::CTLZ,
1662                             getValue(I.getOperand(1)).getValueType(),
1663                             getValue(I.getOperand(1))));
1664    return 0;
1665  case Intrinsic::ctpop_i8:
1666  case Intrinsic::ctpop_i16:
1667  case Intrinsic::ctpop_i32:
1668  case Intrinsic::ctpop_i64:
1669    setValue(&I, DAG.getNode(ISD::CTPOP,
1670                             getValue(I.getOperand(1)).getValueType(),
1671                             getValue(I.getOperand(1))));
1672    return 0;
1673  case Intrinsic::stacksave: {
1674    SDOperand Op = getRoot();
1675    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
1676              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
1677    setValue(&I, Tmp);
1678    DAG.setRoot(Tmp.getValue(1));
1679    return 0;
1680  }
1681  case Intrinsic::stackrestore: {
1682    SDOperand Tmp = getValue(I.getOperand(1));
1683    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
1684    return 0;
1685  }
1686  case Intrinsic::prefetch:
1687    // FIXME: Currently discarding prefetches.
1688    return 0;
1689  }
1690}
1691
1692
1693void SelectionDAGLowering::visitCall(CallInst &I) {
1694  const char *RenameFn = 0;
1695  if (Function *F = I.getCalledFunction()) {
1696    if (F->isExternal())
1697      if (unsigned IID = F->getIntrinsicID()) {
1698        RenameFn = visitIntrinsicCall(I, IID);
1699        if (!RenameFn)
1700          return;
1701      } else {    // Not an LLVM intrinsic.
1702        const std::string &Name = F->getName();
1703        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
1704          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
1705              I.getOperand(1)->getType()->isFloatingPoint() &&
1706              I.getType() == I.getOperand(1)->getType() &&
1707              I.getType() == I.getOperand(2)->getType()) {
1708            SDOperand LHS = getValue(I.getOperand(1));
1709            SDOperand RHS = getValue(I.getOperand(2));
1710            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
1711                                     LHS, RHS));
1712            return;
1713          }
1714        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
1715          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1716              I.getOperand(1)->getType()->isFloatingPoint() &&
1717              I.getType() == I.getOperand(1)->getType()) {
1718            SDOperand Tmp = getValue(I.getOperand(1));
1719            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
1720            return;
1721          }
1722        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
1723          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1724              I.getOperand(1)->getType()->isFloatingPoint() &&
1725              I.getType() == I.getOperand(1)->getType()) {
1726            SDOperand Tmp = getValue(I.getOperand(1));
1727            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
1728            return;
1729          }
1730        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
1731          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1732              I.getOperand(1)->getType()->isFloatingPoint() &&
1733              I.getType() == I.getOperand(1)->getType()) {
1734            SDOperand Tmp = getValue(I.getOperand(1));
1735            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
1736            return;
1737          }
1738        }
1739      }
1740  } else if (isa<InlineAsm>(I.getOperand(0))) {
1741    visitInlineAsm(I);
1742    return;
1743  }
1744
1745  SDOperand Callee;
1746  if (!RenameFn)
1747    Callee = getValue(I.getOperand(0));
1748  else
1749    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
1750  std::vector<std::pair<SDOperand, const Type*> > Args;
1751  Args.reserve(I.getNumOperands());
1752  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1753    Value *Arg = I.getOperand(i);
1754    SDOperand ArgNode = getValue(Arg);
1755    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
1756  }
1757
1758  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
1759  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1760
1761  std::pair<SDOperand,SDOperand> Result =
1762    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
1763                    I.isTailCall(), Callee, Args, DAG);
1764  if (I.getType() != Type::VoidTy)
1765    setValue(&I, Result.first);
1766  DAG.setRoot(Result.second);
1767}
1768
1769SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
1770                                        SDOperand &Chain, SDOperand &Flag)const{
1771  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
1772  Chain = Val.getValue(1);
1773  Flag  = Val.getValue(2);
1774
1775  // If the result was expanded, copy from the top part.
1776  if (Regs.size() > 1) {
1777    assert(Regs.size() == 2 &&
1778           "Cannot expand to more than 2 elts yet!");
1779    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
1780    Chain = Hi.getValue(1);
1781    Flag  = Hi.getValue(2);
1782    if (DAG.getTargetLoweringInfo().isLittleEndian())
1783      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
1784    else
1785      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
1786  }
1787
1788  // Otherwise, if the return value was promoted or extended, truncate it to the
1789  // appropriate type.
1790  if (RegVT == ValueVT)
1791    return Val;
1792
1793  if (MVT::isInteger(RegVT)) {
1794    if (ValueVT < RegVT)
1795      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1796    else
1797      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
1798  } else {
1799    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
1800  }
1801}
1802
1803/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
1804/// specified value into the registers specified by this object.  This uses
1805/// Chain/Flag as the input and updates them for the output Chain/Flag.
1806void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
1807                                 SDOperand &Chain, SDOperand &Flag,
1808                                 MVT::ValueType PtrVT) const {
1809  if (Regs.size() == 1) {
1810    // If there is a single register and the types differ, this must be
1811    // a promotion.
1812    if (RegVT != ValueVT) {
1813      if (MVT::isInteger(RegVT)) {
1814        if (RegVT < ValueVT)
1815          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
1816        else
1817          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
1818      } else
1819        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
1820    }
1821    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
1822    Flag = Chain.getValue(1);
1823  } else {
1824    std::vector<unsigned> R(Regs);
1825    if (!DAG.getTargetLoweringInfo().isLittleEndian())
1826      std::reverse(R.begin(), R.end());
1827
1828    for (unsigned i = 0, e = R.size(); i != e; ++i) {
1829      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
1830                                   DAG.getConstant(i, PtrVT));
1831      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
1832      Flag = Chain.getValue(1);
1833    }
1834  }
1835}
1836
1837/// AddInlineAsmOperands - Add this value to the specified inlineasm node
1838/// operand list.  This adds the code marker and includes the number of
1839/// values added into it.
1840void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
1841                                        std::vector<SDOperand> &Ops) const {
1842  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
1843  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1844    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
1845}
1846
1847/// isAllocatableRegister - If the specified register is safe to allocate,
1848/// i.e. it isn't a stack pointer or some other special register, return the
1849/// register class for the register.  Otherwise, return null.
1850static const TargetRegisterClass *
1851isAllocatableRegister(unsigned Reg, MachineFunction &MF,
1852                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
1853  MVT::ValueType FoundVT = MVT::Other;
1854  const TargetRegisterClass *FoundRC = 0;
1855  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
1856       E = MRI->regclass_end(); RCI != E; ++RCI) {
1857    MVT::ValueType ThisVT = MVT::Other;
1858
1859    const TargetRegisterClass *RC = *RCI;
1860    // If none of the the value types for this register class are valid, we
1861    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1862    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1863         I != E; ++I) {
1864      if (TLI.isTypeLegal(*I)) {
1865        // If we have already found this register in a different register class,
1866        // choose the one with the largest VT specified.  For example, on
1867        // PowerPC, we favor f64 register classes over f32.
1868        if (FoundVT == MVT::Other ||
1869            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
1870          ThisVT = *I;
1871          break;
1872        }
1873      }
1874    }
1875
1876    if (ThisVT == MVT::Other) continue;
1877
1878    // NOTE: This isn't ideal.  In particular, this might allocate the
1879    // frame pointer in functions that need it (due to them not being taken
1880    // out of allocation, because a variable sized allocation hasn't been seen
1881    // yet).  This is a slight code pessimization, but should still work.
1882    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
1883         E = RC->allocation_order_end(MF); I != E; ++I)
1884      if (*I == Reg) {
1885        // We found a matching register class.  Keep looking at others in case
1886        // we find one with larger registers that this physreg is also in.
1887        FoundRC = RC;
1888        FoundVT = ThisVT;
1889        break;
1890      }
1891  }
1892  return FoundRC;
1893}
1894
1895RegsForValue SelectionDAGLowering::
1896GetRegistersForValue(const std::string &ConstrCode,
1897                     MVT::ValueType VT, bool isOutReg, bool isInReg,
1898                     std::set<unsigned> &OutputRegs,
1899                     std::set<unsigned> &InputRegs) {
1900  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
1901    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
1902  std::vector<unsigned> Regs;
1903
1904  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
1905  MVT::ValueType RegVT;
1906  MVT::ValueType ValueVT = VT;
1907
1908  if (PhysReg.first) {
1909    if (VT == MVT::Other)
1910      ValueVT = *PhysReg.second->vt_begin();
1911
1912    // Get the actual register value type.  This is important, because the user
1913    // may have asked for (e.g.) the AX register in i32 type.  We need to
1914    // remember that AX is actually i16 to get the right extension.
1915    RegVT = *PhysReg.second->vt_begin();
1916
1917    // This is a explicit reference to a physical register.
1918    Regs.push_back(PhysReg.first);
1919
1920    // If this is an expanded reference, add the rest of the regs to Regs.
1921    if (NumRegs != 1) {
1922      TargetRegisterClass::iterator I = PhysReg.second->begin();
1923      TargetRegisterClass::iterator E = PhysReg.second->end();
1924      for (; *I != PhysReg.first; ++I)
1925        assert(I != E && "Didn't find reg!");
1926
1927      // Already added the first reg.
1928      --NumRegs; ++I;
1929      for (; NumRegs; --NumRegs, ++I) {
1930        assert(I != E && "Ran out of registers to allocate!");
1931        Regs.push_back(*I);
1932      }
1933    }
1934    return RegsForValue(Regs, RegVT, ValueVT);
1935  }
1936
1937  // This is a reference to a register class.  Allocate NumRegs consecutive,
1938  // available, registers from the class.
1939  std::vector<unsigned> RegClassRegs =
1940    TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
1941
1942  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
1943  MachineFunction &MF = *CurMBB->getParent();
1944  unsigned NumAllocated = 0;
1945  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
1946    unsigned Reg = RegClassRegs[i];
1947    // See if this register is available.
1948    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
1949        (isInReg  && InputRegs.count(Reg))) {    // Already used.
1950      // Make sure we find consecutive registers.
1951      NumAllocated = 0;
1952      continue;
1953    }
1954
1955    // Check to see if this register is allocatable (i.e. don't give out the
1956    // stack pointer).
1957    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
1958    if (!RC) {
1959      // Make sure we find consecutive registers.
1960      NumAllocated = 0;
1961      continue;
1962    }
1963
1964    // Okay, this register is good, we can use it.
1965    ++NumAllocated;
1966
1967    // If we allocated enough consecutive
1968    if (NumAllocated == NumRegs) {
1969      unsigned RegStart = (i-NumAllocated)+1;
1970      unsigned RegEnd   = i+1;
1971      // Mark all of the allocated registers used.
1972      for (unsigned i = RegStart; i != RegEnd; ++i) {
1973        unsigned Reg = RegClassRegs[i];
1974        Regs.push_back(Reg);
1975        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
1976        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
1977      }
1978
1979      return RegsForValue(Regs, *RC->vt_begin(), VT);
1980    }
1981  }
1982
1983  // Otherwise, we couldn't allocate enough registers for this.
1984  return RegsForValue();
1985}
1986
1987
1988/// visitInlineAsm - Handle a call to an InlineAsm object.
1989///
1990void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
1991  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
1992
1993  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
1994                                                 MVT::Other);
1995
1996  // Note, we treat inline asms both with and without side-effects as the same.
1997  // If an inline asm doesn't have side effects and doesn't access memory, we
1998  // could not choose to not chain it.
1999  bool hasSideEffects = IA->hasSideEffects();
2000
2001  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
2002  std::vector<MVT::ValueType> ConstraintVTs;
2003
2004  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
2005  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
2006  /// if it is a def of that register.
2007  std::vector<SDOperand> AsmNodeOperands;
2008  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
2009  AsmNodeOperands.push_back(AsmStr);
2010
2011  SDOperand Chain = getRoot();
2012  SDOperand Flag;
2013
2014  // We fully assign registers here at isel time.  This is not optimal, but
2015  // should work.  For register classes that correspond to LLVM classes, we
2016  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
2017  // over the constraints, collecting fixed registers that we know we can't use.
2018  std::set<unsigned> OutputRegs, InputRegs;
2019  unsigned OpNum = 1;
2020  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2021    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2022    std::string &ConstraintCode = Constraints[i].Codes[0];
2023
2024    MVT::ValueType OpVT;
2025
2026    // Compute the value type for each operand and add it to ConstraintVTs.
2027    switch (Constraints[i].Type) {
2028    case InlineAsm::isOutput:
2029      if (!Constraints[i].isIndirectOutput) {
2030        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2031        OpVT = TLI.getValueType(I.getType());
2032      } else {
2033        const Type *OpTy = I.getOperand(OpNum)->getType();
2034        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2035        OpNum++;  // Consumes a call operand.
2036      }
2037      break;
2038    case InlineAsm::isInput:
2039      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2040      OpNum++;  // Consumes a call operand.
2041      break;
2042    case InlineAsm::isClobber:
2043      OpVT = MVT::Other;
2044      break;
2045    }
2046
2047    ConstraintVTs.push_back(OpVT);
2048
2049    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2050      continue;  // Not assigned a fixed reg.
2051
2052    // Build a list of regs that this operand uses.  This always has a single
2053    // element for promoted/expanded operands.
2054    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2055                                             false, false,
2056                                             OutputRegs, InputRegs);
2057
2058    switch (Constraints[i].Type) {
2059    case InlineAsm::isOutput:
2060      // We can't assign any other output to this register.
2061      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2062      // If this is an early-clobber output, it cannot be assigned to the same
2063      // value as the input reg.
2064      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2065        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2066      break;
2067    case InlineAsm::isInput:
2068      // We can't assign any other input to this register.
2069      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2070      break;
2071    case InlineAsm::isClobber:
2072      // Clobbered regs cannot be used as inputs or outputs.
2073      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2074      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2075      break;
2076    }
2077  }
2078
2079  // Loop over all of the inputs, copying the operand values into the
2080  // appropriate registers and processing the output regs.
2081  RegsForValue RetValRegs;
2082  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2083  OpNum = 1;
2084
2085  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2086    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2087    std::string &ConstraintCode = Constraints[i].Codes[0];
2088
2089    switch (Constraints[i].Type) {
2090    case InlineAsm::isOutput: {
2091      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2092      if (ConstraintCode.size() == 1)   // not a physreg name.
2093        CTy = TLI.getConstraintType(ConstraintCode[0]);
2094
2095      if (CTy == TargetLowering::C_Memory) {
2096        // Memory output.
2097        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2098
2099        // Check that the operand (the address to store to) isn't a float.
2100        if (!MVT::isInteger(InOperandVal.getValueType()))
2101          assert(0 && "MATCH FAIL!");
2102
2103        if (!Constraints[i].isIndirectOutput)
2104          assert(0 && "MATCH FAIL!");
2105
2106        OpNum++;  // Consumes a call operand.
2107
2108        // Extend/truncate to the right pointer type if needed.
2109        MVT::ValueType PtrType = TLI.getPointerTy();
2110        if (InOperandVal.getValueType() < PtrType)
2111          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2112        else if (InOperandVal.getValueType() > PtrType)
2113          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2114
2115        // Add information to the INLINEASM node to know about this output.
2116        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2117        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2118        AsmNodeOperands.push_back(InOperandVal);
2119        break;
2120      }
2121
2122      // Otherwise, this is a register output.
2123      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2124
2125      // If this is an early-clobber output, or if there is an input
2126      // constraint that matches this, we need to reserve the input register
2127      // so no other inputs allocate to it.
2128      bool UsesInputRegister = false;
2129      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2130        UsesInputRegister = true;
2131
2132      // Copy the output from the appropriate register.  Find a register that
2133      // we can use.
2134      RegsForValue Regs =
2135        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2136                             true, UsesInputRegister,
2137                             OutputRegs, InputRegs);
2138      assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
2139
2140      if (!Constraints[i].isIndirectOutput) {
2141        assert(RetValRegs.Regs.empty() &&
2142               "Cannot have multiple output constraints yet!");
2143        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2144        RetValRegs = Regs;
2145      } else {
2146        IndirectStoresToEmit.push_back(std::make_pair(Regs,
2147                                                      I.getOperand(OpNum)));
2148        OpNum++;  // Consumes a call operand.
2149      }
2150
2151      // Add information to the INLINEASM node to know that this register is
2152      // set.
2153      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
2154      break;
2155    }
2156    case InlineAsm::isInput: {
2157      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2158      OpNum++;  // Consumes a call operand.
2159
2160      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
2161        // If this is required to match an output register we have already set,
2162        // just use its register.
2163        unsigned OperandNo = atoi(ConstraintCode.c_str());
2164
2165        // Scan until we find the definition we already emitted of this operand.
2166        // When we find it, create a RegsForValue operand.
2167        unsigned CurOp = 2;  // The first operand.
2168        for (; OperandNo; --OperandNo) {
2169          // Advance to the next operand.
2170          unsigned NumOps =
2171            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2172          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
2173                  (NumOps & 7) == 4 /*MEM*/) &&
2174                 "Skipped past definitions?");
2175          CurOp += (NumOps>>3)+1;
2176        }
2177
2178        unsigned NumOps =
2179          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2180        assert((NumOps & 7) == 2 /*REGDEF*/ &&
2181               "Skipped past definitions?");
2182
2183        // Add NumOps>>3 registers to MatchedRegs.
2184        RegsForValue MatchedRegs;
2185        MatchedRegs.ValueVT = InOperandVal.getValueType();
2186        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
2187        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
2188          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
2189          MatchedRegs.Regs.push_back(Reg);
2190        }
2191
2192        // Use the produced MatchedRegs object to
2193        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
2194                                  TLI.getPointerTy());
2195        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2196        break;
2197      }
2198
2199      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2200      if (ConstraintCode.size() == 1)   // not a physreg name.
2201        CTy = TLI.getConstraintType(ConstraintCode[0]);
2202
2203      if (CTy == TargetLowering::C_Other) {
2204        if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
2205          assert(0 && "MATCH FAIL!");
2206
2207        // Add information to the INLINEASM node to know about this input.
2208        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2209        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2210        AsmNodeOperands.push_back(InOperandVal);
2211        break;
2212      } else if (CTy == TargetLowering::C_Memory) {
2213        // Memory input.
2214
2215        // Check that the operand isn't a float.
2216        if (!MVT::isInteger(InOperandVal.getValueType()))
2217          assert(0 && "MATCH FAIL!");
2218
2219        // Extend/truncate to the right pointer type if needed.
2220        MVT::ValueType PtrType = TLI.getPointerTy();
2221        if (InOperandVal.getValueType() < PtrType)
2222          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2223        else if (InOperandVal.getValueType() > PtrType)
2224          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2225
2226        // Add information to the INLINEASM node to know about this input.
2227        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2228        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2229        AsmNodeOperands.push_back(InOperandVal);
2230        break;
2231      }
2232
2233      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2234
2235      // Copy the input into the appropriate registers.
2236      RegsForValue InRegs =
2237        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2238                             false, true, OutputRegs, InputRegs);
2239      // FIXME: should be match fail.
2240      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2241
2242      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
2243
2244      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2245      break;
2246    }
2247    case InlineAsm::isClobber: {
2248      RegsForValue ClobberedRegs =
2249        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2250                             OutputRegs, InputRegs);
2251      // Add the clobbered value to the operand list, so that the register
2252      // allocator is aware that the physreg got clobbered.
2253      if (!ClobberedRegs.Regs.empty())
2254        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2255      break;
2256    }
2257    }
2258  }
2259
2260  // Finish up input operands.
2261  AsmNodeOperands[0] = Chain;
2262  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2263
2264  Chain = DAG.getNode(ISD::INLINEASM,
2265                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
2266                      &AsmNodeOperands[0], AsmNodeOperands.size());
2267  Flag = Chain.getValue(1);
2268
2269  // If this asm returns a register value, copy the result from that register
2270  // and set it as the value of the call.
2271  if (!RetValRegs.Regs.empty())
2272    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2273
2274  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2275
2276  // Process indirect outputs, first output all of the flagged copies out of
2277  // physregs.
2278  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2279    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2280    Value *Ptr = IndirectStoresToEmit[i].second;
2281    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2282    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2283  }
2284
2285  // Emit the non-flagged stores from the physregs.
2286  SmallVector<SDOperand, 8> OutChains;
2287  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2288    OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
2289                                    StoresToEmit[i].first,
2290                                    getValue(StoresToEmit[i].second),
2291                                    DAG.getSrcValue(StoresToEmit[i].second)));
2292  if (!OutChains.empty())
2293    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2294                        &OutChains[0], OutChains.size());
2295  DAG.setRoot(Chain);
2296}
2297
2298
2299void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2300  SDOperand Src = getValue(I.getOperand(0));
2301
2302  MVT::ValueType IntPtr = TLI.getPointerTy();
2303
2304  if (IntPtr < Src.getValueType())
2305    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2306  else if (IntPtr > Src.getValueType())
2307    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2308
2309  // Scale the source by the type size.
2310  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
2311  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2312                    Src, getIntPtrConstant(ElementSize));
2313
2314  std::vector<std::pair<SDOperand, const Type*> > Args;
2315  Args.push_back(std::make_pair(Src, TLI.getTargetData()->getIntPtrType()));
2316
2317  std::pair<SDOperand,SDOperand> Result =
2318    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
2319                    DAG.getExternalSymbol("malloc", IntPtr),
2320                    Args, DAG);
2321  setValue(&I, Result.first);  // Pointers always fit in registers
2322  DAG.setRoot(Result.second);
2323}
2324
2325void SelectionDAGLowering::visitFree(FreeInst &I) {
2326  std::vector<std::pair<SDOperand, const Type*> > Args;
2327  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
2328                                TLI.getTargetData()->getIntPtrType()));
2329  MVT::ValueType IntPtr = TLI.getPointerTy();
2330  std::pair<SDOperand,SDOperand> Result =
2331    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
2332                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2333  DAG.setRoot(Result.second);
2334}
2335
2336// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2337// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2338// instructions are special in various ways, which require special support to
2339// insert.  The specified MachineInstr is created but not inserted into any
2340// basic blocks, and the scheduler passes ownership of it to this method.
2341MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2342                                                       MachineBasicBlock *MBB) {
2343  std::cerr << "If a target marks an instruction with "
2344               "'usesCustomDAGSchedInserter', it must implement "
2345               "TargetLowering::InsertAtEndOfBasicBlock!\n";
2346  abort();
2347  return 0;
2348}
2349
2350void SelectionDAGLowering::visitVAStart(CallInst &I) {
2351  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2352                          getValue(I.getOperand(1)),
2353                          DAG.getSrcValue(I.getOperand(1))));
2354}
2355
2356void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2357  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2358                             getValue(I.getOperand(0)),
2359                             DAG.getSrcValue(I.getOperand(0)));
2360  setValue(&I, V);
2361  DAG.setRoot(V.getValue(1));
2362}
2363
2364void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2365  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2366                          getValue(I.getOperand(1)),
2367                          DAG.getSrcValue(I.getOperand(1))));
2368}
2369
2370void SelectionDAGLowering::visitVACopy(CallInst &I) {
2371  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2372                          getValue(I.getOperand(1)),
2373                          getValue(I.getOperand(2)),
2374                          DAG.getSrcValue(I.getOperand(1)),
2375                          DAG.getSrcValue(I.getOperand(2))));
2376}
2377
2378/// TargetLowering::LowerArguments - This is the default LowerArguments
2379/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
2380/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
2381/// integrated into SDISel.
2382std::vector<SDOperand>
2383TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
2384  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
2385  std::vector<SDOperand> Ops;
2386  Ops.push_back(DAG.getRoot());
2387  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
2388  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
2389
2390  // Add one result value for each formal argument.
2391  std::vector<MVT::ValueType> RetVals;
2392  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2393    MVT::ValueType VT = getValueType(I->getType());
2394
2395    switch (getTypeAction(VT)) {
2396    default: assert(0 && "Unknown type action!");
2397    case Legal:
2398      RetVals.push_back(VT);
2399      break;
2400    case Promote:
2401      RetVals.push_back(getTypeToTransformTo(VT));
2402      break;
2403    case Expand:
2404      if (VT != MVT::Vector) {
2405        // If this is a large integer, it needs to be broken up into small
2406        // integers.  Figure out what the destination type is and how many small
2407        // integers it turns into.
2408        MVT::ValueType NVT = getTypeToTransformTo(VT);
2409        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2410        for (unsigned i = 0; i != NumVals; ++i)
2411          RetVals.push_back(NVT);
2412      } else {
2413        // Otherwise, this is a vector type.  We only support legal vectors
2414        // right now.
2415        unsigned NumElems = cast<PackedType>(I->getType())->getNumElements();
2416        const Type *EltTy = cast<PackedType>(I->getType())->getElementType();
2417
2418        // Figure out if there is a Packed type corresponding to this Vector
2419        // type.  If so, convert to the packed type.
2420        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2421        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2422          RetVals.push_back(TVT);
2423        } else {
2424          assert(0 && "Don't support illegal by-val vector arguments yet!");
2425        }
2426      }
2427      break;
2428    }
2429  }
2430
2431  RetVals.push_back(MVT::Other);
2432
2433  // Create the node.
2434  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
2435                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
2436                               &Ops[0], Ops.size()).Val;
2437
2438  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
2439
2440  // Set up the return result vector.
2441  Ops.clear();
2442  unsigned i = 0;
2443  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2444    MVT::ValueType VT = getValueType(I->getType());
2445
2446    switch (getTypeAction(VT)) {
2447    default: assert(0 && "Unknown type action!");
2448    case Legal:
2449      Ops.push_back(SDOperand(Result, i++));
2450      break;
2451    case Promote: {
2452      SDOperand Op(Result, i++);
2453      if (MVT::isInteger(VT)) {
2454        unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext
2455                                                     : ISD::AssertZext;
2456        Op = DAG.getNode(AssertOp, Op.getValueType(), Op, DAG.getValueType(VT));
2457        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2458      } else {
2459        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2460        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
2461      }
2462      Ops.push_back(Op);
2463      break;
2464    }
2465    case Expand:
2466      if (VT != MVT::Vector) {
2467        // If this is a large integer, it needs to be reassembled from small
2468        // integers.  Figure out what the source elt type is and how many small
2469        // integers it is.
2470        MVT::ValueType NVT = getTypeToTransformTo(VT);
2471        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2472        if (NumVals == 2) {
2473          SDOperand Lo = SDOperand(Result, i++);
2474          SDOperand Hi = SDOperand(Result, i++);
2475
2476          if (!isLittleEndian())
2477            std::swap(Lo, Hi);
2478
2479          Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi));
2480        } else {
2481          // Value scalarized into many values.  Unimp for now.
2482          assert(0 && "Cannot expand i64 -> i16 yet!");
2483        }
2484      } else {
2485        // Otherwise, this is a vector type.  We only support legal vectors
2486        // right now.
2487        const PackedType *PTy = cast<PackedType>(I->getType());
2488        unsigned NumElems = PTy->getNumElements();
2489        const Type *EltTy = PTy->getElementType();
2490
2491        // Figure out if there is a Packed type corresponding to this Vector
2492        // type.  If so, convert to the packed type.
2493        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2494        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2495          SDOperand N = SDOperand(Result, i++);
2496          // Handle copies from generic vectors to registers.
2497          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
2498                          DAG.getConstant(NumElems, MVT::i32),
2499                          DAG.getValueType(getValueType(EltTy)));
2500          Ops.push_back(N);
2501        } else {
2502          assert(0 && "Don't support illegal by-val vector arguments yet!");
2503          abort();
2504        }
2505      }
2506      break;
2507    }
2508  }
2509  return Ops;
2510}
2511
2512
2513/// TargetLowering::LowerCallTo - This is the default LowerCallTo
2514/// implementation, which just inserts an ISD::CALL node, which is later custom
2515/// lowered by the target to something concrete.  FIXME: When all targets are
2516/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
2517std::pair<SDOperand, SDOperand>
2518TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
2519                            unsigned CallingConv, bool isTailCall,
2520                            SDOperand Callee,
2521                            ArgListTy &Args, SelectionDAG &DAG) {
2522  SmallVector<SDOperand, 32> Ops;
2523  Ops.push_back(Chain);   // Op#0 - Chain
2524  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
2525  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
2526  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
2527  Ops.push_back(Callee);
2528
2529  // Handle all of the outgoing arguments.
2530  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
2531    MVT::ValueType VT = getValueType(Args[i].second);
2532    SDOperand Op = Args[i].first;
2533    bool isSigned = Args[i].second->isSigned();
2534    switch (getTypeAction(VT)) {
2535    default: assert(0 && "Unknown type action!");
2536    case Legal:
2537      Ops.push_back(Op);
2538      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2539      break;
2540    case Promote:
2541      if (MVT::isInteger(VT)) {
2542        unsigned ExtOp = isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2543        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
2544      } else {
2545        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2546        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
2547      }
2548      Ops.push_back(Op);
2549      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2550      break;
2551    case Expand:
2552      if (VT != MVT::Vector) {
2553        // If this is a large integer, it needs to be broken down into small
2554        // integers.  Figure out what the source elt type is and how many small
2555        // integers it is.
2556        MVT::ValueType NVT = getTypeToTransformTo(VT);
2557        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2558        if (NumVals == 2) {
2559          SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
2560                                     DAG.getConstant(0, getPointerTy()));
2561          SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
2562                                     DAG.getConstant(1, getPointerTy()));
2563          if (!isLittleEndian())
2564            std::swap(Lo, Hi);
2565
2566          Ops.push_back(Lo);
2567          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2568          Ops.push_back(Hi);
2569          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2570        } else {
2571          // Value scalarized into many values.  Unimp for now.
2572          assert(0 && "Cannot expand i64 -> i16 yet!");
2573        }
2574      } else {
2575        // Otherwise, this is a vector type.  We only support legal vectors
2576        // right now.
2577        const PackedType *PTy = cast<PackedType>(Args[i].second);
2578        unsigned NumElems = PTy->getNumElements();
2579        const Type *EltTy = PTy->getElementType();
2580
2581        // Figure out if there is a Packed type corresponding to this Vector
2582        // type.  If so, convert to the packed type.
2583        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2584        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2585          // Insert a VBIT_CONVERT of the MVT::Vector type to the packed type.
2586          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
2587          Ops.push_back(Op);
2588          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2589        } else {
2590          assert(0 && "Don't support illegal by-val vector call args yet!");
2591          abort();
2592        }
2593      }
2594      break;
2595    }
2596  }
2597
2598  // Figure out the result value types.
2599  SmallVector<MVT::ValueType, 4> RetTys;
2600
2601  if (RetTy != Type::VoidTy) {
2602    MVT::ValueType VT = getValueType(RetTy);
2603    switch (getTypeAction(VT)) {
2604    default: assert(0 && "Unknown type action!");
2605    case Legal:
2606      RetTys.push_back(VT);
2607      break;
2608    case Promote:
2609      RetTys.push_back(getTypeToTransformTo(VT));
2610      break;
2611    case Expand:
2612      if (VT != MVT::Vector) {
2613        // If this is a large integer, it needs to be reassembled from small
2614        // integers.  Figure out what the source elt type is and how many small
2615        // integers it is.
2616        MVT::ValueType NVT = getTypeToTransformTo(VT);
2617        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2618        for (unsigned i = 0; i != NumVals; ++i)
2619          RetTys.push_back(NVT);
2620      } else {
2621        // Otherwise, this is a vector type.  We only support legal vectors
2622        // right now.
2623        const PackedType *PTy = cast<PackedType>(RetTy);
2624        unsigned NumElems = PTy->getNumElements();
2625        const Type *EltTy = PTy->getElementType();
2626
2627        // Figure out if there is a Packed type corresponding to this Vector
2628        // type.  If so, convert to the packed type.
2629        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2630        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2631          RetTys.push_back(TVT);
2632        } else {
2633          assert(0 && "Don't support illegal by-val vector call results yet!");
2634          abort();
2635        }
2636      }
2637    }
2638  }
2639
2640  RetTys.push_back(MVT::Other);  // Always has a chain.
2641
2642  // Finally, create the CALL node.
2643  SDOperand Res = DAG.getNode(ISD::CALL,
2644                              DAG.getVTList(&RetTys[0], RetTys.size()),
2645                              &Ops[0], Ops.size());
2646
2647  // This returns a pair of operands.  The first element is the
2648  // return value for the function (if RetTy is not VoidTy).  The second
2649  // element is the outgoing token chain.
2650  SDOperand ResVal;
2651  if (RetTys.size() != 1) {
2652    MVT::ValueType VT = getValueType(RetTy);
2653    if (RetTys.size() == 2) {
2654      ResVal = Res;
2655
2656      // If this value was promoted, truncate it down.
2657      if (ResVal.getValueType() != VT) {
2658        if (VT == MVT::Vector) {
2659          // Insert a VBITCONVERT to convert from the packed result type to the
2660          // MVT::Vector type.
2661          unsigned NumElems = cast<PackedType>(RetTy)->getNumElements();
2662          const Type *EltTy = cast<PackedType>(RetTy)->getElementType();
2663
2664          // Figure out if there is a Packed type corresponding to this Vector
2665          // type.  If so, convert to the packed type.
2666          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2667          if (TVT != MVT::Other && isTypeLegal(TVT)) {
2668            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
2669            // "N x PTyElementVT" MVT::Vector type.
2670            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
2671                                 DAG.getConstant(NumElems, MVT::i32),
2672                                 DAG.getValueType(getValueType(EltTy)));
2673          } else {
2674            abort();
2675          }
2676        } else if (MVT::isInteger(VT)) {
2677          unsigned AssertOp = RetTy->isSigned() ?
2678                                  ISD::AssertSext : ISD::AssertZext;
2679          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
2680                               DAG.getValueType(VT));
2681          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
2682        } else {
2683          assert(MVT::isFloatingPoint(VT));
2684          ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
2685        }
2686      }
2687    } else if (RetTys.size() == 3) {
2688      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
2689                           Res.getValue(0), Res.getValue(1));
2690
2691    } else {
2692      assert(0 && "Case not handled yet!");
2693    }
2694  }
2695
2696  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
2697}
2698
2699
2700
2701// It is always conservatively correct for llvm.returnaddress and
2702// llvm.frameaddress to return 0.
2703//
2704// FIXME: Change this to insert a FRAMEADDR/RETURNADDR node, and have that be
2705// expanded to 0 if the target wants.
2706std::pair<SDOperand, SDOperand>
2707TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
2708                                        unsigned Depth, SelectionDAG &DAG) {
2709  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
2710}
2711
2712SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2713  assert(0 && "LowerOperation not implemented for this target!");
2714  abort();
2715  return SDOperand();
2716}
2717
2718SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
2719                                                 SelectionDAG &DAG) {
2720  assert(0 && "CustomPromoteOperation not implemented for this target!");
2721  abort();
2722  return SDOperand();
2723}
2724
2725void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
2726  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
2727  std::pair<SDOperand,SDOperand> Result =
2728    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
2729  setValue(&I, Result.first);
2730  DAG.setRoot(Result.second);
2731}
2732
2733/// getMemsetValue - Vectorized representation of the memset value
2734/// operand.
2735static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2736                                SelectionDAG &DAG) {
2737  MVT::ValueType CurVT = VT;
2738  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2739    uint64_t Val   = C->getValue() & 255;
2740    unsigned Shift = 8;
2741    while (CurVT != MVT::i8) {
2742      Val = (Val << Shift) | Val;
2743      Shift <<= 1;
2744      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2745    }
2746    return DAG.getConstant(Val, VT);
2747  } else {
2748    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2749    unsigned Shift = 8;
2750    while (CurVT != MVT::i8) {
2751      Value =
2752        DAG.getNode(ISD::OR, VT,
2753                    DAG.getNode(ISD::SHL, VT, Value,
2754                                DAG.getConstant(Shift, MVT::i8)), Value);
2755      Shift <<= 1;
2756      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2757    }
2758
2759    return Value;
2760  }
2761}
2762
2763/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2764/// used when a memcpy is turned into a memset when the source is a constant
2765/// string ptr.
2766static SDOperand getMemsetStringVal(MVT::ValueType VT,
2767                                    SelectionDAG &DAG, TargetLowering &TLI,
2768                                    std::string &Str, unsigned Offset) {
2769  MVT::ValueType CurVT = VT;
2770  uint64_t Val = 0;
2771  unsigned MSB = getSizeInBits(VT) / 8;
2772  if (TLI.isLittleEndian())
2773    Offset = Offset + MSB - 1;
2774  for (unsigned i = 0; i != MSB; ++i) {
2775    Val = (Val << 8) | Str[Offset];
2776    Offset += TLI.isLittleEndian() ? -1 : 1;
2777  }
2778  return DAG.getConstant(Val, VT);
2779}
2780
2781/// getMemBasePlusOffset - Returns base and offset node for the
2782static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2783                                      SelectionDAG &DAG, TargetLowering &TLI) {
2784  MVT::ValueType VT = Base.getValueType();
2785  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2786}
2787
2788/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2789/// to replace the memset / memcpy is below the threshold. It also returns the
2790/// types of the sequence of  memory ops to perform memset / memcpy.
2791static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2792                                     unsigned Limit, uint64_t Size,
2793                                     unsigned Align, TargetLowering &TLI) {
2794  MVT::ValueType VT;
2795
2796  if (TLI.allowsUnalignedMemoryAccesses()) {
2797    VT = MVT::i64;
2798  } else {
2799    switch (Align & 7) {
2800    case 0:
2801      VT = MVT::i64;
2802      break;
2803    case 4:
2804      VT = MVT::i32;
2805      break;
2806    case 2:
2807      VT = MVT::i16;
2808      break;
2809    default:
2810      VT = MVT::i8;
2811      break;
2812    }
2813  }
2814
2815  MVT::ValueType LVT = MVT::i64;
2816  while (!TLI.isTypeLegal(LVT))
2817    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2818  assert(MVT::isInteger(LVT));
2819
2820  if (VT > LVT)
2821    VT = LVT;
2822
2823  unsigned NumMemOps = 0;
2824  while (Size != 0) {
2825    unsigned VTSize = getSizeInBits(VT) / 8;
2826    while (VTSize > Size) {
2827      VT = (MVT::ValueType)((unsigned)VT - 1);
2828      VTSize >>= 1;
2829    }
2830    assert(MVT::isInteger(VT));
2831
2832    if (++NumMemOps > Limit)
2833      return false;
2834    MemOps.push_back(VT);
2835    Size -= VTSize;
2836  }
2837
2838  return true;
2839}
2840
2841void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
2842  SDOperand Op1 = getValue(I.getOperand(1));
2843  SDOperand Op2 = getValue(I.getOperand(2));
2844  SDOperand Op3 = getValue(I.getOperand(3));
2845  SDOperand Op4 = getValue(I.getOperand(4));
2846  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
2847  if (Align == 0) Align = 1;
2848
2849  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
2850    std::vector<MVT::ValueType> MemOps;
2851
2852    // Expand memset / memcpy to a series of load / store ops
2853    // if the size operand falls below a certain threshold.
2854    SmallVector<SDOperand, 8> OutChains;
2855    switch (Op) {
2856    default: break;  // Do nothing for now.
2857    case ISD::MEMSET: {
2858      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2859                                   Size->getValue(), Align, TLI)) {
2860        unsigned NumMemOps = MemOps.size();
2861        unsigned Offset = 0;
2862        for (unsigned i = 0; i < NumMemOps; i++) {
2863          MVT::ValueType VT = MemOps[i];
2864          unsigned VTSize = getSizeInBits(VT) / 8;
2865          SDOperand Value = getMemsetValue(Op2, VT, DAG);
2866          SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, getRoot(),
2867                                        Value,
2868                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
2869                                      DAG.getSrcValue(I.getOperand(1), Offset));
2870          OutChains.push_back(Store);
2871          Offset += VTSize;
2872        }
2873      }
2874      break;
2875    }
2876    case ISD::MEMCPY: {
2877      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
2878                                   Size->getValue(), Align, TLI)) {
2879        unsigned NumMemOps = MemOps.size();
2880        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
2881        GlobalAddressSDNode *G = NULL;
2882        std::string Str;
2883        bool CopyFromStr = false;
2884
2885        if (Op2.getOpcode() == ISD::GlobalAddress)
2886          G = cast<GlobalAddressSDNode>(Op2);
2887        else if (Op2.getOpcode() == ISD::ADD &&
2888                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2889                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
2890          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
2891          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
2892        }
2893        if (G) {
2894          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2895          if (GV) {
2896            Str = GV->getStringValue(false);
2897            if (!Str.empty()) {
2898              CopyFromStr = true;
2899              SrcOff += SrcDelta;
2900            }
2901          }
2902        }
2903
2904        for (unsigned i = 0; i < NumMemOps; i++) {
2905          MVT::ValueType VT = MemOps[i];
2906          unsigned VTSize = getSizeInBits(VT) / 8;
2907          SDOperand Value, Chain, Store;
2908
2909          if (CopyFromStr) {
2910            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2911            Chain = getRoot();
2912            Store =
2913              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2914                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2915                          DAG.getSrcValue(I.getOperand(1), DstOff));
2916          } else {
2917            Value = DAG.getLoad(VT, getRoot(),
2918                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
2919                        DAG.getSrcValue(I.getOperand(2), SrcOff));
2920            Chain = Value.getValue(1);
2921            Store =
2922              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2923                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2924                          DAG.getSrcValue(I.getOperand(1), DstOff));
2925          }
2926          OutChains.push_back(Store);
2927          SrcOff += VTSize;
2928          DstOff += VTSize;
2929        }
2930      }
2931      break;
2932    }
2933    }
2934
2935    if (!OutChains.empty()) {
2936      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
2937                  &OutChains[0], OutChains.size()));
2938      return;
2939    }
2940  }
2941
2942  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
2943}
2944
2945//===----------------------------------------------------------------------===//
2946// SelectionDAGISel code
2947//===----------------------------------------------------------------------===//
2948
2949unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
2950  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
2951}
2952
2953void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
2954  // FIXME: we only modify the CFG to split critical edges.  This
2955  // updates dom and loop info.
2956}
2957
2958
2959/// OptimizeNoopCopyExpression - We have determined that the specified cast
2960/// instruction is a noop copy (e.g. it's casting from one pointer type to
2961/// another, int->uint, or int->sbyte on PPC.
2962///
2963/// Return true if any changes are made.
2964static bool OptimizeNoopCopyExpression(CastInst *CI) {
2965  BasicBlock *DefBB = CI->getParent();
2966
2967  /// InsertedCasts - Only insert a cast in each block once.
2968  std::map<BasicBlock*, CastInst*> InsertedCasts;
2969
2970  bool MadeChange = false;
2971  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
2972       UI != E; ) {
2973    Use &TheUse = UI.getUse();
2974    Instruction *User = cast<Instruction>(*UI);
2975
2976    // Figure out which BB this cast is used in.  For PHI's this is the
2977    // appropriate predecessor block.
2978    BasicBlock *UserBB = User->getParent();
2979    if (PHINode *PN = dyn_cast<PHINode>(User)) {
2980      unsigned OpVal = UI.getOperandNo()/2;
2981      UserBB = PN->getIncomingBlock(OpVal);
2982    }
2983
2984    // Preincrement use iterator so we don't invalidate it.
2985    ++UI;
2986
2987    // If this user is in the same block as the cast, don't change the cast.
2988    if (UserBB == DefBB) continue;
2989
2990    // If we have already inserted a cast into this block, use it.
2991    CastInst *&InsertedCast = InsertedCasts[UserBB];
2992
2993    if (!InsertedCast) {
2994      BasicBlock::iterator InsertPt = UserBB->begin();
2995      while (isa<PHINode>(InsertPt)) ++InsertPt;
2996
2997      InsertedCast =
2998        new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
2999      MadeChange = true;
3000    }
3001
3002    // Replace a use of the cast with a use of the new casat.
3003    TheUse = InsertedCast;
3004  }
3005
3006  // If we removed all uses, nuke the cast.
3007  if (CI->use_empty())
3008    CI->eraseFromParent();
3009
3010  return MadeChange;
3011}
3012
3013/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
3014/// casting to the type of GEPI.
3015static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
3016                                         Instruction *GEPI, Value *Ptr,
3017                                         Value *PtrOffset) {
3018  if (V) return V;   // Already computed.
3019
3020  BasicBlock::iterator InsertPt;
3021  if (BB == GEPI->getParent()) {
3022    // If insert into the GEP's block, insert right after the GEP.
3023    InsertPt = GEPI;
3024    ++InsertPt;
3025  } else {
3026    // Otherwise, insert at the top of BB, after any PHI nodes
3027    InsertPt = BB->begin();
3028    while (isa<PHINode>(InsertPt)) ++InsertPt;
3029  }
3030
3031  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
3032  // BB so that there is only one value live across basic blocks (the cast
3033  // operand).
3034  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
3035    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
3036      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
3037
3038  // Add the offset, cast it to the right type.
3039  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
3040  return V = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
3041}
3042
3043/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
3044/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
3045/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
3046/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
3047/// sink PtrOffset into user blocks where doing so will likely allow us to fold
3048/// the constant add into a load or store instruction.  Additionally, if a user
3049/// is a pointer-pointer cast, we look through it to find its users.
3050static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
3051                                 Constant *PtrOffset, BasicBlock *DefBB,
3052                                 GetElementPtrInst *GEPI,
3053                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
3054  while (!RepPtr->use_empty()) {
3055    Instruction *User = cast<Instruction>(RepPtr->use_back());
3056
3057    // If the user is a Pointer-Pointer cast, recurse.
3058    if (isa<CastInst>(User) && isa<PointerType>(User->getType())) {
3059      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3060
3061      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
3062      // could invalidate an iterator.
3063      User->setOperand(0, UndefValue::get(RepPtr->getType()));
3064      continue;
3065    }
3066
3067    // If this is a load of the pointer, or a store through the pointer, emit
3068    // the increment into the load/store block.
3069    Instruction *NewVal;
3070    if (isa<LoadInst>(User) ||
3071        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
3072      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
3073                                    User->getParent(), GEPI,
3074                                    Ptr, PtrOffset);
3075    } else {
3076      // If this use is not foldable into the addressing mode, use a version
3077      // emitted in the GEP block.
3078      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
3079                                    Ptr, PtrOffset);
3080    }
3081
3082    if (GEPI->getType() != RepPtr->getType()) {
3083      BasicBlock::iterator IP = NewVal;
3084      ++IP;
3085      NewVal = new CastInst(NewVal, RepPtr->getType(), "", IP);
3086    }
3087    User->replaceUsesOfWith(RepPtr, NewVal);
3088  }
3089}
3090
3091
3092/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
3093/// selection, we want to be a bit careful about some things.  In particular, if
3094/// we have a GEP instruction that is used in a different block than it is
3095/// defined, the addressing expression of the GEP cannot be folded into loads or
3096/// stores that use it.  In this case, decompose the GEP and move constant
3097/// indices into blocks that use it.
3098static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
3099                                  const TargetData *TD) {
3100  // If this GEP is only used inside the block it is defined in, there is no
3101  // need to rewrite it.
3102  bool isUsedOutsideDefBB = false;
3103  BasicBlock *DefBB = GEPI->getParent();
3104  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
3105       UI != E; ++UI) {
3106    if (cast<Instruction>(*UI)->getParent() != DefBB) {
3107      isUsedOutsideDefBB = true;
3108      break;
3109    }
3110  }
3111  if (!isUsedOutsideDefBB) return false;
3112
3113  // If this GEP has no non-zero constant indices, there is nothing we can do,
3114  // ignore it.
3115  bool hasConstantIndex = false;
3116  bool hasVariableIndex = false;
3117  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3118       E = GEPI->op_end(); OI != E; ++OI) {
3119    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
3120      if (CI->getRawValue()) {
3121        hasConstantIndex = true;
3122        break;
3123      }
3124    } else {
3125      hasVariableIndex = true;
3126    }
3127  }
3128
3129  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
3130  if (!hasConstantIndex && !hasVariableIndex) {
3131    Value *NC = new CastInst(GEPI->getOperand(0), GEPI->getType(),
3132                             GEPI->getName(), GEPI);
3133    GEPI->replaceAllUsesWith(NC);
3134    GEPI->eraseFromParent();
3135    return true;
3136  }
3137
3138  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
3139  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
3140    return false;
3141
3142  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
3143  // constant offset (which we now know is non-zero) and deal with it later.
3144  uint64_t ConstantOffset = 0;
3145  const Type *UIntPtrTy = TD->getIntPtrType();
3146  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
3147  const Type *Ty = GEPI->getOperand(0)->getType();
3148
3149  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3150       E = GEPI->op_end(); OI != E; ++OI) {
3151    Value *Idx = *OI;
3152    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
3153      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
3154      if (Field)
3155        ConstantOffset += TD->getStructLayout(StTy)->MemberOffsets[Field];
3156      Ty = StTy->getElementType(Field);
3157    } else {
3158      Ty = cast<SequentialType>(Ty)->getElementType();
3159
3160      // Handle constant subscripts.
3161      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3162        if (CI->getRawValue() == 0) continue;
3163
3164        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
3165          ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CSI->getValue();
3166        else
3167          ConstantOffset+=TD->getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
3168        continue;
3169      }
3170
3171      // Ptr = Ptr + Idx * ElementSize;
3172
3173      // Cast Idx to UIntPtrTy if needed.
3174      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
3175
3176      uint64_t ElementSize = TD->getTypeSize(Ty);
3177      // Mask off bits that should not be set.
3178      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3179      Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
3180
3181      // Multiply by the element size and add to the base.
3182      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
3183      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
3184    }
3185  }
3186
3187  // Make sure that the offset fits in uintptr_t.
3188  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3189  Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
3190
3191  // Okay, we have now emitted all of the variable index parts to the BB that
3192  // the GEP is defined in.  Loop over all of the using instructions, inserting
3193  // an "add Ptr, ConstantOffset" into each block that uses it and update the
3194  // instruction to use the newly computed value, making GEPI dead.  When the
3195  // user is a load or store instruction address, we emit the add into the user
3196  // block, otherwise we use a canonical version right next to the gep (these
3197  // won't be foldable as addresses, so we might as well share the computation).
3198
3199  std::map<BasicBlock*,Instruction*> InsertedExprs;
3200  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3201
3202  // Finally, the GEP is dead, remove it.
3203  GEPI->eraseFromParent();
3204
3205  return true;
3206}
3207
3208/// SplitCritEdgesForPHIConstants - If this block has any PHI nodes with
3209/// constant operands, and if any of the edges feeding the PHI node are
3210/// critical, split them so that the assignments of a constant to a register
3211/// will not be executed on a path that isn't relevant.
3212void SelectionDAGISel::SplitCritEdgesForPHIConstants(BasicBlock *BB) {
3213  PHINode *PN;
3214  BasicBlock::iterator BBI = BB->begin();
3215  while ((PN = dyn_cast<PHINode>(BBI++))) {
3216    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3217      if (isa<Constant>(PN->getIncomingValue(i)))
3218        SplitCriticalEdge(PN->getIncomingBlock(i), BB);
3219  }
3220}
3221
3222
3223bool SelectionDAGISel::runOnFunction(Function &Fn) {
3224  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
3225  RegMap = MF.getSSARegMap();
3226  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
3227
3228  // First, split all critical edges for PHI nodes with incoming values that are
3229  // constants, this way the load of the constant into a vreg will not be placed
3230  // into MBBs that are used some other way.
3231  //
3232  // In this pass we also look for GEP and cast instructions that are used
3233  // across basic blocks and rewrite them to improve basic-block-at-a-time
3234  // selection.
3235  //
3236  //
3237  bool MadeChange = true;
3238  while (MadeChange) {
3239    MadeChange = false;
3240  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
3241    // If this block has any PHI nodes with constant operands, and if any of the
3242    // edges feeding the PHI node are critical, split them.
3243    if (isa<PHINode>(BB->begin()))
3244      SplitCritEdgesForPHIConstants(BB);
3245
3246    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3247      Instruction *I = BBI++;
3248      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
3249        MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
3250      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
3251        // If the source of the cast is a constant, then this should have
3252        // already been constant folded.  The only reason NOT to constant fold
3253        // it is if something (e.g. LSR) was careful to place the constant
3254        // evaluation in a block other than then one that uses it (e.g. to hoist
3255        // the address of globals out of a loop).  If this is the case, we don't
3256        // want to forward-subst the cast.
3257        if (isa<Constant>(CI->getOperand(0)))
3258          continue;
3259
3260        // If this is a noop copy, sink it into user blocks to reduce the number
3261        // of virtual registers that must be created and coallesced.
3262        MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
3263        MVT::ValueType DstVT = TLI.getValueType(CI->getType());
3264
3265        // This is an fp<->int conversion?
3266        if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
3267          continue;
3268
3269        // If this is an extension, it will be a zero or sign extension, which
3270        // isn't a noop.
3271        if (SrcVT < DstVT) continue;
3272
3273        // If these values will be promoted, find out what they will be promoted
3274        // to.  This helps us consider truncates on PPC as noop copies when they
3275        // are.
3276        if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
3277          SrcVT = TLI.getTypeToTransformTo(SrcVT);
3278        if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
3279          DstVT = TLI.getTypeToTransformTo(DstVT);
3280
3281        // If, after promotion, these are the same types, this is a noop copy.
3282        if (SrcVT == DstVT)
3283          MadeChange |= OptimizeNoopCopyExpression(CI);
3284      }
3285    }
3286  }
3287  }
3288
3289  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
3290
3291  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
3292    SelectBasicBlock(I, MF, FuncInfo);
3293
3294  return true;
3295}
3296
3297
3298SDOperand SelectionDAGISel::
3299CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
3300  SDOperand Op = SDL.getValue(V);
3301  assert((Op.getOpcode() != ISD::CopyFromReg ||
3302          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
3303         "Copy from a reg to the same reg!");
3304
3305  // If this type is not legal, we must make sure to not create an invalid
3306  // register use.
3307  MVT::ValueType SrcVT = Op.getValueType();
3308  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
3309  SelectionDAG &DAG = SDL.DAG;
3310  if (SrcVT == DestVT) {
3311    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
3312  } else if (SrcVT == MVT::Vector) {
3313    // Handle copies from generic vectors to registers.
3314    MVT::ValueType PTyElementVT, PTyLegalElementVT;
3315    unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
3316                                             PTyElementVT, PTyLegalElementVT);
3317
3318    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
3319    // MVT::Vector type.
3320    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
3321                     DAG.getConstant(NE, MVT::i32),
3322                     DAG.getValueType(PTyElementVT));
3323
3324    // Loop over all of the elements of the resultant vector,
3325    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
3326    // copying them into output registers.
3327    SmallVector<SDOperand, 8> OutChains;
3328    SDOperand Root = SDL.getRoot();
3329    for (unsigned i = 0; i != NE; ++i) {
3330      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
3331                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
3332      if (PTyElementVT == PTyLegalElementVT) {
3333        // Elements are legal.
3334        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3335      } else if (PTyLegalElementVT > PTyElementVT) {
3336        // Elements are promoted.
3337        if (MVT::isFloatingPoint(PTyLegalElementVT))
3338          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
3339        else
3340          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
3341        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3342      } else {
3343        // Elements are expanded.
3344        // The src value is expanded into multiple registers.
3345        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3346                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
3347        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3348                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
3349        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
3350        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
3351      }
3352    }
3353    return DAG.getNode(ISD::TokenFactor, MVT::Other,
3354                       &OutChains[0], OutChains.size());
3355  } else if (SrcVT < DestVT) {
3356    // The src value is promoted to the register.
3357    if (MVT::isFloatingPoint(SrcVT))
3358      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
3359    else
3360      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
3361    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
3362  } else  {
3363    // The src value is expanded into multiple registers.
3364    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3365                               Op, DAG.getConstant(0, TLI.getPointerTy()));
3366    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3367                               Op, DAG.getConstant(1, TLI.getPointerTy()));
3368    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
3369    return DAG.getCopyToReg(Op, Reg+1, Hi);
3370  }
3371}
3372
3373void SelectionDAGISel::
3374LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
3375               std::vector<SDOperand> &UnorderedChains) {
3376  // If this is the entry block, emit arguments.
3377  Function &F = *BB->getParent();
3378  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
3379  SDOperand OldRoot = SDL.DAG.getRoot();
3380  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
3381
3382  unsigned a = 0;
3383  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
3384       AI != E; ++AI, ++a)
3385    if (!AI->use_empty()) {
3386      SDL.setValue(AI, Args[a]);
3387
3388      // If this argument is live outside of the entry block, insert a copy from
3389      // whereever we got it to the vreg that other BB's will reference it as.
3390      if (FuncInfo.ValueMap.count(AI)) {
3391        SDOperand Copy =
3392          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
3393        UnorderedChains.push_back(Copy);
3394      }
3395    }
3396
3397  // Finally, if the target has anything special to do, allow it to do so.
3398  // FIXME: this should insert code into the DAG!
3399  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
3400}
3401
3402void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
3403       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
3404                                         FunctionLoweringInfo &FuncInfo) {
3405  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
3406
3407  std::vector<SDOperand> UnorderedChains;
3408
3409  // Lower any arguments needed in this block if this is the entry block.
3410  if (LLVMBB == &LLVMBB->getParent()->front())
3411    LowerArguments(LLVMBB, SDL, UnorderedChains);
3412
3413  BB = FuncInfo.MBBMap[LLVMBB];
3414  SDL.setCurrentBasicBlock(BB);
3415
3416  // Lower all of the non-terminator instructions.
3417  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
3418       I != E; ++I)
3419    SDL.visit(*I);
3420
3421  // Ensure that all instructions which are used outside of their defining
3422  // blocks are available as virtual registers.
3423  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
3424    if (!I->use_empty() && !isa<PHINode>(I)) {
3425      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
3426      if (VMI != FuncInfo.ValueMap.end())
3427        UnorderedChains.push_back(
3428                           CopyValueToVirtualRegister(SDL, I, VMI->second));
3429    }
3430
3431  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
3432  // ensure constants are generated when needed.  Remember the virtual registers
3433  // that need to be added to the Machine PHI nodes as input.  We cannot just
3434  // directly add them, because expansion might result in multiple MBB's for one
3435  // BB.  As such, the start of the BB might correspond to a different MBB than
3436  // the end.
3437  //
3438
3439  // Emit constants only once even if used by multiple PHI nodes.
3440  std::map<Constant*, unsigned> ConstantsOut;
3441
3442  // Check successor nodes PHI nodes that expect a constant to be available from
3443  // this block.
3444  TerminatorInst *TI = LLVMBB->getTerminator();
3445  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
3446    BasicBlock *SuccBB = TI->getSuccessor(succ);
3447    if (!isa<PHINode>(SuccBB->begin())) continue;
3448
3449    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
3450    PHINode *PN;
3451
3452    // At this point we know that there is a 1-1 correspondence between LLVM PHI
3453    // nodes and Machine PHI nodes, but the incoming operands have not been
3454    // emitted yet.
3455    for (BasicBlock::iterator I = SuccBB->begin();
3456         (PN = dyn_cast<PHINode>(I)); ++I)
3457      if (!PN->use_empty()) {
3458        unsigned Reg;
3459        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
3460        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
3461          unsigned &RegOut = ConstantsOut[C];
3462          if (RegOut == 0) {
3463            RegOut = FuncInfo.CreateRegForValue(C);
3464            UnorderedChains.push_back(
3465                             CopyValueToVirtualRegister(SDL, C, RegOut));
3466          }
3467          Reg = RegOut;
3468        } else {
3469          Reg = FuncInfo.ValueMap[PHIOp];
3470          if (Reg == 0) {
3471            assert(isa<AllocaInst>(PHIOp) &&
3472                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
3473                   "Didn't codegen value into a register!??");
3474            Reg = FuncInfo.CreateRegForValue(PHIOp);
3475            UnorderedChains.push_back(
3476                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
3477          }
3478        }
3479
3480        // Remember that this register needs to added to the machine PHI node as
3481        // the input for this MBB.
3482        MVT::ValueType VT = TLI.getValueType(PN->getType());
3483        unsigned NumElements;
3484        if (VT != MVT::Vector)
3485          NumElements = TLI.getNumElements(VT);
3486        else {
3487          MVT::ValueType VT1,VT2;
3488          NumElements =
3489            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
3490                                       VT1, VT2);
3491        }
3492        for (unsigned i = 0, e = NumElements; i != e; ++i)
3493          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
3494      }
3495  }
3496  ConstantsOut.clear();
3497
3498  // Turn all of the unordered chains into one factored node.
3499  if (!UnorderedChains.empty()) {
3500    SDOperand Root = SDL.getRoot();
3501    if (Root.getOpcode() != ISD::EntryToken) {
3502      unsigned i = 0, e = UnorderedChains.size();
3503      for (; i != e; ++i) {
3504        assert(UnorderedChains[i].Val->getNumOperands() > 1);
3505        if (UnorderedChains[i].Val->getOperand(0) == Root)
3506          break;  // Don't add the root if we already indirectly depend on it.
3507      }
3508
3509      if (i == e)
3510        UnorderedChains.push_back(Root);
3511    }
3512    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3513                            &UnorderedChains[0], UnorderedChains.size()));
3514  }
3515
3516  // Lower the terminator after the copies are emitted.
3517  SDL.visit(*LLVMBB->getTerminator());
3518
3519  // Copy over any CaseBlock records that may now exist due to SwitchInst
3520  // lowering, as well as any jump table information.
3521  SwitchCases.clear();
3522  SwitchCases = SDL.SwitchCases;
3523  JT = SDL.JT;
3524
3525  // Make sure the root of the DAG is up-to-date.
3526  DAG.setRoot(SDL.getRoot());
3527}
3528
3529void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
3530  // Run the DAG combiner in pre-legalize mode.
3531  DAG.Combine(false);
3532
3533  DEBUG(std::cerr << "Lowered selection DAG:\n");
3534  DEBUG(DAG.dump());
3535
3536  // Second step, hack on the DAG until it only uses operations and types that
3537  // the target supports.
3538  DAG.Legalize();
3539
3540  DEBUG(std::cerr << "Legalized selection DAG:\n");
3541  DEBUG(DAG.dump());
3542
3543  // Run the DAG combiner in post-legalize mode.
3544  DAG.Combine(true);
3545
3546  if (ViewISelDAGs) DAG.viewGraph();
3547
3548  // Third, instruction select all of the operations to machine code, adding the
3549  // code to the MachineBasicBlock.
3550  InstructionSelectBasicBlock(DAG);
3551
3552  DEBUG(std::cerr << "Selected machine code:\n");
3553  DEBUG(BB->dump());
3554}
3555
3556void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
3557                                        FunctionLoweringInfo &FuncInfo) {
3558  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
3559  {
3560    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3561    CurDAG = &DAG;
3562
3563    // First step, lower LLVM code to some DAG.  This DAG may use operations and
3564    // types that are not supported by the target.
3565    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
3566
3567    // Second step, emit the lowered DAG as machine code.
3568    CodeGenAndEmitDAG(DAG);
3569  }
3570
3571  // Next, now that we know what the last MBB the LLVM BB expanded is, update
3572  // PHI nodes in successors.
3573  if (SwitchCases.empty() && JT.Reg == 0) {
3574    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
3575      MachineInstr *PHI = PHINodesToUpdate[i].first;
3576      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3577             "This is not a machine PHI node that we are updating!");
3578      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
3579      PHI->addMachineBasicBlockOperand(BB);
3580    }
3581    return;
3582  }
3583
3584  // If the JumpTable record is filled in, then we need to emit a jump table.
3585  // Updating the PHI nodes is tricky in this case, since we need to determine
3586  // whether the PHI is a successor of the range check MBB or the jump table MBB
3587  if (JT.Reg) {
3588    assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
3589    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3590    CurDAG = &SDAG;
3591    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3592    MachineBasicBlock *RangeBB = BB;
3593    // Set the current basic block to the mbb we wish to insert the code into
3594    BB = JT.MBB;
3595    SDL.setCurrentBasicBlock(BB);
3596    // Emit the code
3597    SDL.visitJumpTable(JT);
3598    SDAG.setRoot(SDL.getRoot());
3599    CodeGenAndEmitDAG(SDAG);
3600    // Update PHI Nodes
3601    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
3602      MachineInstr *PHI = PHINodesToUpdate[pi].first;
3603      MachineBasicBlock *PHIBB = PHI->getParent();
3604      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3605             "This is not a machine PHI node that we are updating!");
3606      if (PHIBB == JT.Default) {
3607        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
3608        PHI->addMachineBasicBlockOperand(RangeBB);
3609      }
3610      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
3611        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
3612        PHI->addMachineBasicBlockOperand(BB);
3613      }
3614    }
3615    return;
3616  }
3617
3618  // If we generated any switch lowering information, build and codegen any
3619  // additional DAGs necessary.
3620  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
3621    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3622    CurDAG = &SDAG;
3623    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3624
3625    // Set the current basic block to the mbb we wish to insert the code into
3626    BB = SwitchCases[i].ThisBB;
3627    SDL.setCurrentBasicBlock(BB);
3628
3629    // Emit the code
3630    SDL.visitSwitchCase(SwitchCases[i]);
3631    SDAG.setRoot(SDL.getRoot());
3632    CodeGenAndEmitDAG(SDAG);
3633
3634    // Handle any PHI nodes in successors of this chunk, as if we were coming
3635    // from the original BB before switch expansion.  Note that PHI nodes can
3636    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
3637    // handle them the right number of times.
3638    while ((BB = SwitchCases[i].LHSBB)) {  // Handle LHS and RHS.
3639      for (MachineBasicBlock::iterator Phi = BB->begin();
3640           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
3641        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
3642        for (unsigned pn = 0; ; ++pn) {
3643          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
3644          if (PHINodesToUpdate[pn].first == Phi) {
3645            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
3646            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
3647            break;
3648          }
3649        }
3650      }
3651
3652      // Don't process RHS if same block as LHS.
3653      if (BB == SwitchCases[i].RHSBB)
3654        SwitchCases[i].RHSBB = 0;
3655
3656      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
3657      SwitchCases[i].LHSBB = SwitchCases[i].RHSBB;
3658      SwitchCases[i].RHSBB = 0;
3659    }
3660    assert(SwitchCases[i].LHSBB == 0 && SwitchCases[i].RHSBB == 0);
3661  }
3662}
3663
3664
3665//===----------------------------------------------------------------------===//
3666/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
3667/// target node in the graph.
3668void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
3669  if (ViewSchedDAGs) DAG.viewGraph();
3670
3671  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
3672
3673  if (!Ctor) {
3674    Ctor = ISHeuristic;
3675    RegisterScheduler::setDefault(Ctor);
3676  }
3677
3678  ScheduleDAG *SL = Ctor(this, &DAG, BB);
3679  BB = SL->Run();
3680  delete SL;
3681}
3682
3683
3684HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
3685  return new HazardRecognizer();
3686}
3687
3688
3689/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
3690/// by tblgen.  Others should not call it.
3691void SelectionDAGISel::
3692SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
3693  std::vector<SDOperand> InOps;
3694  std::swap(InOps, Ops);
3695
3696  Ops.push_back(InOps[0]);  // input chain.
3697  Ops.push_back(InOps[1]);  // input asm string.
3698
3699  unsigned i = 2, e = InOps.size();
3700  if (InOps[e-1].getValueType() == MVT::Flag)
3701    --e;  // Don't process a flag operand if it is here.
3702
3703  while (i != e) {
3704    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
3705    if ((Flags & 7) != 4 /*MEM*/) {
3706      // Just skip over this operand, copying the operands verbatim.
3707      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
3708      i += (Flags >> 3) + 1;
3709    } else {
3710      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
3711      // Otherwise, this is a memory operand.  Ask the target to select it.
3712      std::vector<SDOperand> SelOps;
3713      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
3714        std::cerr << "Could not match memory address.  Inline asm failure!\n";
3715        exit(1);
3716      }
3717
3718      // Add this to the output node.
3719      Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
3720      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
3721      i += 2;
3722    }
3723  }
3724
3725  // Add the flag input back if present.
3726  if (e != InOps.size())
3727    Ops.push_back(InOps.back());
3728}
3729