SelectionDAGISel.cpp revision 69e6a8d5a8c486bcdd2c19238171b01d470ba45f
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/Compiler.h"
48#include <algorithm>
49using namespace llvm;
50
51#ifndef NDEBUG
52static cl::opt<bool>
53ViewISelDAGs("view-isel-dags", cl::Hidden,
54          cl::desc("Pop up a window to show isel dags as they are selected"));
55static cl::opt<bool>
56ViewSchedDAGs("view-sched-dags", cl::Hidden,
57          cl::desc("Pop up a window to show sched dags as they are processed"));
58static cl::opt<bool>
59ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
60      cl::desc("Pop up a window to show SUnit dags after they are processed"));
61#else
62static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
63#endif
64
65//===---------------------------------------------------------------------===//
66///
67/// RegisterScheduler class - Track the registration of instruction schedulers.
68///
69//===---------------------------------------------------------------------===//
70MachinePassRegistry RegisterScheduler::Registry;
71
72//===---------------------------------------------------------------------===//
73///
74/// ISHeuristic command line option for instruction schedulers.
75///
76//===---------------------------------------------------------------------===//
77namespace {
78  cl::opt<RegisterScheduler::FunctionPassCtor, false,
79          RegisterPassParser<RegisterScheduler> >
80  ISHeuristic("pre-RA-sched",
81              cl::init(&createDefaultScheduler),
82              cl::desc("Instruction schedulers available (before register"
83                       " allocation):"));
84
85  static RegisterScheduler
86  defaultListDAGScheduler("default", "  Best scheduler for the target",
87                          createDefaultScheduler);
88} // namespace
89
90namespace { struct AsmOperandInfo; }
91
92namespace {
93  /// RegsForValue - This struct represents the physical registers that a
94  /// particular value is assigned and the type information about the value.
95  /// This is needed because values can be promoted into larger registers and
96  /// expanded into multiple smaller registers than the value.
97  struct VISIBILITY_HIDDEN RegsForValue {
98    /// Regs - This list holds the register (for legal and promoted values)
99    /// or register set (for expanded values) that the value should be assigned
100    /// to.
101    std::vector<unsigned> Regs;
102
103    /// RegVT - The value type of each register.
104    ///
105    MVT::ValueType RegVT;
106
107    /// ValueVT - The value type of the LLVM value, which may be promoted from
108    /// RegVT or made from merging the two expanded parts.
109    MVT::ValueType ValueVT;
110
111    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
112
113    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
114      : RegVT(regvt), ValueVT(valuevt) {
115        Regs.push_back(Reg);
116    }
117    RegsForValue(const std::vector<unsigned> &regs,
118                 MVT::ValueType regvt, MVT::ValueType valuevt)
119      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
120    }
121
122    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
123    /// this value and returns the result as a ValueVT value.  This uses
124    /// Chain/Flag as the input and updates them for the output Chain/Flag.
125    /// If the Flag pointer is NULL, no flag is used.
126    SDOperand getCopyFromRegs(SelectionDAG &DAG,
127                              SDOperand &Chain, SDOperand *Flag) const;
128
129    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
130    /// specified value into the registers specified by this object.  This uses
131    /// Chain/Flag as the input and updates them for the output Chain/Flag.
132    /// If the Flag pointer is NULL, no flag is used.
133    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
134                       SDOperand &Chain, SDOperand *Flag) const;
135
136    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
137    /// operand list.  This adds the code marker and includes the number of
138    /// values added into it.
139    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
140                              std::vector<SDOperand> &Ops) const;
141  };
142}
143
144namespace llvm {
145  //===--------------------------------------------------------------------===//
146  /// createDefaultScheduler - This creates an instruction scheduler appropriate
147  /// for the target.
148  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
149                                      SelectionDAG *DAG,
150                                      MachineBasicBlock *BB) {
151    TargetLowering &TLI = IS->getTargetLowering();
152
153    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
154      return createTDListDAGScheduler(IS, DAG, BB);
155    } else {
156      assert(TLI.getSchedulingPreference() ==
157           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
158      return createBURRListDAGScheduler(IS, DAG, BB);
159    }
160  }
161
162
163  //===--------------------------------------------------------------------===//
164  /// FunctionLoweringInfo - This contains information that is global to a
165  /// function that is used when lowering a region of the function.
166  class FunctionLoweringInfo {
167  public:
168    TargetLowering &TLI;
169    Function &Fn;
170    MachineFunction &MF;
171    MachineRegisterInfo &RegInfo;
172
173    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
174
175    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
176    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
177
178    /// ValueMap - Since we emit code for the function a basic block at a time,
179    /// we must remember which virtual registers hold the values for
180    /// cross-basic-block values.
181    DenseMap<const Value*, unsigned> ValueMap;
182
183    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
184    /// the entry block.  This allows the allocas to be efficiently referenced
185    /// anywhere in the function.
186    std::map<const AllocaInst*, int> StaticAllocaMap;
187
188#ifndef NDEBUG
189    SmallSet<Instruction*, 8> CatchInfoLost;
190    SmallSet<Instruction*, 8> CatchInfoFound;
191#endif
192
193    unsigned MakeReg(MVT::ValueType VT) {
194      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
195    }
196
197    /// isExportedInst - Return true if the specified value is an instruction
198    /// exported from its block.
199    bool isExportedInst(const Value *V) {
200      return ValueMap.count(V);
201    }
202
203    unsigned CreateRegForValue(const Value *V);
204
205    unsigned InitializeRegForValue(const Value *V) {
206      unsigned &R = ValueMap[V];
207      assert(R == 0 && "Already initialized this value register!");
208      return R = CreateRegForValue(V);
209    }
210  };
211}
212
213/// isSelector - Return true if this instruction is a call to the
214/// eh.selector intrinsic.
215static bool isSelector(Instruction *I) {
216  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
217    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
218            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
219  return false;
220}
221
222/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
223/// PHI nodes or outside of the basic block that defines it, or used by a
224/// switch or atomic instruction, which may expand to multiple basic blocks.
225static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
226  if (isa<PHINode>(I)) return true;
227  BasicBlock *BB = I->getParent();
228  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
229    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
230        // FIXME: Remove switchinst special case.
231        isa<SwitchInst>(*UI))
232      return true;
233  return false;
234}
235
236/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
237/// entry block, return true.  This includes arguments used by switches, since
238/// the switch may expand into multiple basic blocks.
239static bool isOnlyUsedInEntryBlock(Argument *A) {
240  BasicBlock *Entry = A->getParent()->begin();
241  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
242    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
243      return false;  // Use not in entry block.
244  return true;
245}
246
247FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
248                                           Function &fn, MachineFunction &mf)
249    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
250
251  // Create a vreg for each argument register that is not dead and is used
252  // outside of the entry block for the function.
253  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
254       AI != E; ++AI)
255    if (!isOnlyUsedInEntryBlock(AI))
256      InitializeRegForValue(AI);
257
258  // Initialize the mapping of values to registers.  This is only set up for
259  // instruction values that are used outside of the block that defines
260  // them.
261  Function::iterator BB = Fn.begin(), EB = Fn.end();
262  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
263    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
264      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
265        const Type *Ty = AI->getAllocatedType();
266        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
267        unsigned Align =
268          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
269                   AI->getAlignment());
270
271        TySize *= CUI->getZExtValue();   // Get total allocated size.
272        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
273        StaticAllocaMap[AI] =
274          MF.getFrameInfo()->CreateStackObject(TySize, Align);
275      }
276
277  for (; BB != EB; ++BB)
278    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
279      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
280        if (!isa<AllocaInst>(I) ||
281            !StaticAllocaMap.count(cast<AllocaInst>(I)))
282          InitializeRegForValue(I);
283
284  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
285  // also creates the initial PHI MachineInstrs, though none of the input
286  // operands are populated.
287  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
288    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
289    MBBMap[BB] = MBB;
290    MF.getBasicBlockList().push_back(MBB);
291
292    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
293    // appropriate.
294    PHINode *PN;
295    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
296      if (PN->use_empty()) continue;
297
298      MVT::ValueType VT = TLI.getValueType(PN->getType());
299      unsigned NumRegisters = TLI.getNumRegisters(VT);
300      unsigned PHIReg = ValueMap[PN];
301      assert(PHIReg && "PHI node does not have an assigned virtual register!");
302      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
303      for (unsigned i = 0; i != NumRegisters; ++i)
304        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
305    }
306  }
307}
308
309/// CreateRegForValue - Allocate the appropriate number of virtual registers of
310/// the correctly promoted or expanded types.  Assign these registers
311/// consecutive vreg numbers and return the first assigned number.
312unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
313  MVT::ValueType VT = TLI.getValueType(V->getType());
314
315  unsigned NumRegisters = TLI.getNumRegisters(VT);
316  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
317
318  unsigned R = MakeReg(RegisterVT);
319  for (unsigned i = 1; i != NumRegisters; ++i)
320    MakeReg(RegisterVT);
321
322  return R;
323}
324
325//===----------------------------------------------------------------------===//
326/// SelectionDAGLowering - This is the common target-independent lowering
327/// implementation that is parameterized by a TargetLowering object.
328/// Also, targets can overload any lowering method.
329///
330namespace llvm {
331class SelectionDAGLowering {
332  MachineBasicBlock *CurMBB;
333
334  DenseMap<const Value*, SDOperand> NodeMap;
335
336  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
337  /// them up and then emit token factor nodes when possible.  This allows us to
338  /// get simple disambiguation between loads without worrying about alias
339  /// analysis.
340  std::vector<SDOperand> PendingLoads;
341
342  /// Case - A struct to record the Value for a switch case, and the
343  /// case's target basic block.
344  struct Case {
345    Constant* Low;
346    Constant* High;
347    MachineBasicBlock* BB;
348
349    Case() : Low(0), High(0), BB(0) { }
350    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
351      Low(low), High(high), BB(bb) { }
352    uint64_t size() const {
353      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
354      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
355      return (rHigh - rLow + 1ULL);
356    }
357  };
358
359  struct CaseBits {
360    uint64_t Mask;
361    MachineBasicBlock* BB;
362    unsigned Bits;
363
364    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
365      Mask(mask), BB(bb), Bits(bits) { }
366  };
367
368  typedef std::vector<Case>           CaseVector;
369  typedef std::vector<CaseBits>       CaseBitsVector;
370  typedef CaseVector::iterator        CaseItr;
371  typedef std::pair<CaseItr, CaseItr> CaseRange;
372
373  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
374  /// of conditional branches.
375  struct CaseRec {
376    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
377    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
378
379    /// CaseBB - The MBB in which to emit the compare and branch
380    MachineBasicBlock *CaseBB;
381    /// LT, GE - If nonzero, we know the current case value must be less-than or
382    /// greater-than-or-equal-to these Constants.
383    Constant *LT;
384    Constant *GE;
385    /// Range - A pair of iterators representing the range of case values to be
386    /// processed at this point in the binary search tree.
387    CaseRange Range;
388  };
389
390  typedef std::vector<CaseRec> CaseRecVector;
391
392  /// The comparison function for sorting the switch case values in the vector.
393  /// WARNING: Case ranges should be disjoint!
394  struct CaseCmp {
395    bool operator () (const Case& C1, const Case& C2) {
396      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
397      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
398      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
399      return CI1->getValue().slt(CI2->getValue());
400    }
401  };
402
403  struct CaseBitsCmp {
404    bool operator () (const CaseBits& C1, const CaseBits& C2) {
405      return C1.Bits > C2.Bits;
406    }
407  };
408
409  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
410
411public:
412  // TLI - This is information that describes the available target features we
413  // need for lowering.  This indicates when operations are unavailable,
414  // implemented with a libcall, etc.
415  TargetLowering &TLI;
416  SelectionDAG &DAG;
417  const TargetData *TD;
418  AliasAnalysis &AA;
419
420  /// SwitchCases - Vector of CaseBlock structures used to communicate
421  /// SwitchInst code generation information.
422  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
423  /// JTCases - Vector of JumpTable structures used to communicate
424  /// SwitchInst code generation information.
425  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
426  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
427
428  /// FuncInfo - Information about the function as a whole.
429  ///
430  FunctionLoweringInfo &FuncInfo;
431
432  /// GCI - Garbage collection metadata for the function.
433  CollectorMetadata *GCI;
434
435  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
436                       AliasAnalysis &aa,
437                       FunctionLoweringInfo &funcinfo,
438                       CollectorMetadata *gci)
439    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
440      FuncInfo(funcinfo), GCI(gci) {
441  }
442
443  /// getRoot - Return the current virtual root of the Selection DAG.
444  ///
445  SDOperand getRoot() {
446    if (PendingLoads.empty())
447      return DAG.getRoot();
448
449    if (PendingLoads.size() == 1) {
450      SDOperand Root = PendingLoads[0];
451      DAG.setRoot(Root);
452      PendingLoads.clear();
453      return Root;
454    }
455
456    // Otherwise, we have to make a token factor node.
457    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
458                                 &PendingLoads[0], PendingLoads.size());
459    PendingLoads.clear();
460    DAG.setRoot(Root);
461    return Root;
462  }
463
464  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
465
466  void visit(Instruction &I) { visit(I.getOpcode(), I); }
467
468  void visit(unsigned Opcode, User &I) {
469    // Note: this doesn't use InstVisitor, because it has to work with
470    // ConstantExpr's in addition to instructions.
471    switch (Opcode) {
472    default: assert(0 && "Unknown instruction type encountered!");
473             abort();
474      // Build the switch statement using the Instruction.def file.
475#define HANDLE_INST(NUM, OPCODE, CLASS) \
476    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
477#include "llvm/Instruction.def"
478    }
479  }
480
481  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
482
483  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
484                        const Value *SV, SDOperand Root,
485                        bool isVolatile, unsigned Alignment);
486
487  SDOperand getValue(const Value *V);
488
489  void setValue(const Value *V, SDOperand NewN) {
490    SDOperand &N = NodeMap[V];
491    assert(N.Val == 0 && "Already set a value for this node!");
492    N = NewN;
493  }
494
495  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
496                            std::set<unsigned> &OutputRegs,
497                            std::set<unsigned> &InputRegs);
498
499  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
500                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
501                            unsigned Opc);
502  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
503  void ExportFromCurrentBlock(Value *V);
504  void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
505                   MachineBasicBlock *LandingPad = NULL);
506
507  // Terminator instructions.
508  void visitRet(ReturnInst &I);
509  void visitBr(BranchInst &I);
510  void visitSwitch(SwitchInst &I);
511  void visitUnreachable(UnreachableInst &I) { /* noop */ }
512
513  // Helpers for visitSwitch
514  bool handleSmallSwitchRange(CaseRec& CR,
515                              CaseRecVector& WorkList,
516                              Value* SV,
517                              MachineBasicBlock* Default);
518  bool handleJTSwitchCase(CaseRec& CR,
519                          CaseRecVector& WorkList,
520                          Value* SV,
521                          MachineBasicBlock* Default);
522  bool handleBTSplitSwitchCase(CaseRec& CR,
523                               CaseRecVector& WorkList,
524                               Value* SV,
525                               MachineBasicBlock* Default);
526  bool handleBitTestsSwitchCase(CaseRec& CR,
527                                CaseRecVector& WorkList,
528                                Value* SV,
529                                MachineBasicBlock* Default);
530  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
531  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
532  void visitBitTestCase(MachineBasicBlock* NextMBB,
533                        unsigned Reg,
534                        SelectionDAGISel::BitTestCase &B);
535  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
536  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
537                            SelectionDAGISel::JumpTableHeader &JTH);
538
539  // These all get lowered before this pass.
540  void visitInvoke(InvokeInst &I);
541  void visitUnwind(UnwindInst &I);
542
543  void visitBinary(User &I, unsigned OpCode);
544  void visitShift(User &I, unsigned Opcode);
545  void visitAdd(User &I) {
546    if (I.getType()->isFPOrFPVector())
547      visitBinary(I, ISD::FADD);
548    else
549      visitBinary(I, ISD::ADD);
550  }
551  void visitSub(User &I);
552  void visitMul(User &I) {
553    if (I.getType()->isFPOrFPVector())
554      visitBinary(I, ISD::FMUL);
555    else
556      visitBinary(I, ISD::MUL);
557  }
558  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
559  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
560  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
561  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
562  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
563  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
564  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
565  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
566  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
567  void visitShl (User &I) { visitShift(I, ISD::SHL); }
568  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
569  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
570  void visitICmp(User &I);
571  void visitFCmp(User &I);
572  // Visit the conversion instructions
573  void visitTrunc(User &I);
574  void visitZExt(User &I);
575  void visitSExt(User &I);
576  void visitFPTrunc(User &I);
577  void visitFPExt(User &I);
578  void visitFPToUI(User &I);
579  void visitFPToSI(User &I);
580  void visitUIToFP(User &I);
581  void visitSIToFP(User &I);
582  void visitPtrToInt(User &I);
583  void visitIntToPtr(User &I);
584  void visitBitCast(User &I);
585
586  void visitExtractElement(User &I);
587  void visitInsertElement(User &I);
588  void visitShuffleVector(User &I);
589
590  void visitGetElementPtr(User &I);
591  void visitSelect(User &I);
592
593  void visitMalloc(MallocInst &I);
594  void visitFree(FreeInst &I);
595  void visitAlloca(AllocaInst &I);
596  void visitLoad(LoadInst &I);
597  void visitStore(StoreInst &I);
598  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
599  void visitCall(CallInst &I);
600  void visitInlineAsm(CallSite CS);
601  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
602  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
603
604  void visitVAStart(CallInst &I);
605  void visitVAArg(VAArgInst &I);
606  void visitVAEnd(CallInst &I);
607  void visitVACopy(CallInst &I);
608
609  void visitMemIntrinsic(CallInst &I, unsigned Op);
610
611  void visitGetResult(GetResultInst &I) {
612    assert (0 && "getresult unimplemented");
613  }
614
615  void visitUserOp1(Instruction &I) {
616    assert(0 && "UserOp1 should not exist at instruction selection time!");
617    abort();
618  }
619  void visitUserOp2(Instruction &I) {
620    assert(0 && "UserOp2 should not exist at instruction selection time!");
621    abort();
622  }
623};
624} // end namespace llvm
625
626
627/// getCopyFromParts - Create a value that contains the specified legal parts
628/// combined into the value they represent.  If the parts combine to a type
629/// larger then ValueVT then AssertOp can be used to specify whether the extra
630/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
631/// (ISD::AssertSext).  Likewise TruncExact is used for floating point types to
632/// indicate that the extra bits can be discarded without losing precision.
633static SDOperand getCopyFromParts(SelectionDAG &DAG,
634                                  const SDOperand *Parts,
635                                  unsigned NumParts,
636                                  MVT::ValueType PartVT,
637                                  MVT::ValueType ValueVT,
638                                  ISD::NodeType AssertOp = ISD::DELETED_NODE,
639                                  bool TruncExact = false) {
640  assert(NumParts > 0 && "No parts to assemble!");
641  TargetLowering &TLI = DAG.getTargetLoweringInfo();
642  SDOperand Val = Parts[0];
643
644  if (NumParts > 1) {
645    // Assemble the value from multiple parts.
646    if (!MVT::isVector(ValueVT)) {
647      unsigned PartBits = MVT::getSizeInBits(PartVT);
648      unsigned ValueBits = MVT::getSizeInBits(ValueVT);
649
650      // Assemble the power of 2 part.
651      unsigned RoundParts = NumParts & (NumParts - 1) ?
652        1 << Log2_32(NumParts) : NumParts;
653      unsigned RoundBits = PartBits * RoundParts;
654      MVT::ValueType RoundVT = RoundBits == ValueBits ?
655        ValueVT : MVT::getIntegerType(RoundBits);
656      SDOperand Lo, Hi;
657
658      if (RoundParts > 2) {
659        MVT::ValueType HalfVT = MVT::getIntegerType(RoundBits/2);
660        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
661        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
662                              PartVT, HalfVT);
663      } else {
664        Lo = Parts[0];
665        Hi = Parts[1];
666      }
667      if (TLI.isBigEndian())
668        std::swap(Lo, Hi);
669      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
670
671      if (RoundParts < NumParts) {
672        // Assemble the trailing non-power-of-2 part.
673        unsigned OddParts = NumParts - RoundParts;
674        MVT::ValueType OddVT = MVT::getIntegerType(OddParts * PartBits);
675        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
676
677        // Combine the round and odd parts.
678        Lo = Val;
679        if (TLI.isBigEndian())
680          std::swap(Lo, Hi);
681        MVT::ValueType TotalVT = MVT::getIntegerType(NumParts * PartBits);
682        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
683        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
684                         DAG.getConstant(MVT::getSizeInBits(Lo.getValueType()),
685                                         TLI.getShiftAmountTy()));
686        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
687        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
688      }
689    } else {
690      // Handle a multi-element vector.
691      MVT::ValueType IntermediateVT, RegisterVT;
692      unsigned NumIntermediates;
693      unsigned NumRegs =
694        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
695                                   RegisterVT);
696
697      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
698      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
699      assert(RegisterVT == Parts[0].getValueType() &&
700             "Part type doesn't match part!");
701
702      // Assemble the parts into intermediate operands.
703      SmallVector<SDOperand, 8> Ops(NumIntermediates);
704      if (NumIntermediates == NumParts) {
705        // If the register was not expanded, truncate or copy the value,
706        // as appropriate.
707        for (unsigned i = 0; i != NumParts; ++i)
708          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
709                                    PartVT, IntermediateVT);
710      } else if (NumParts > 0) {
711        // If the intermediate type was expanded, build the intermediate operands
712        // from the parts.
713        assert(NumParts % NumIntermediates == 0 &&
714               "Must expand into a divisible number of parts!");
715        unsigned Factor = NumParts / NumIntermediates;
716        for (unsigned i = 0; i != NumIntermediates; ++i)
717          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
718                                    PartVT, IntermediateVT);
719      }
720
721      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
722      // operands.
723      Val = DAG.getNode(MVT::isVector(IntermediateVT) ?
724                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
725                        ValueVT, &Ops[0], NumIntermediates);
726    }
727  }
728
729  // There is now one part, held in Val.  Correct it to match ValueVT.
730  PartVT = Val.getValueType();
731
732  if (PartVT == ValueVT)
733    return Val;
734
735  if (MVT::isVector(PartVT)) {
736    assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
737    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
738  }
739
740  if (MVT::isVector(ValueVT)) {
741    assert(MVT::getVectorElementType(ValueVT) == PartVT &&
742           MVT::getVectorNumElements(ValueVT) == 1 &&
743           "Only trivial scalar-to-vector conversions should get here!");
744    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
745  }
746
747  if (MVT::isInteger(PartVT) &&
748      MVT::isInteger(ValueVT)) {
749    if (MVT::getSizeInBits(ValueVT) < MVT::getSizeInBits(PartVT)) {
750      // For a truncate, see if we have any information to
751      // indicate whether the truncated bits will always be
752      // zero or sign-extension.
753      if (AssertOp != ISD::DELETED_NODE)
754        Val = DAG.getNode(AssertOp, PartVT, Val,
755                          DAG.getValueType(ValueVT));
756      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
757    } else {
758      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
759    }
760  }
761
762  if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT))
763    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
764                       DAG.getIntPtrConstant(TruncExact));
765
766  if (MVT::getSizeInBits(PartVT) == MVT::getSizeInBits(ValueVT))
767    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
768
769  assert(0 && "Unknown mismatch!");
770}
771
772/// getCopyToParts - Create a series of nodes that contain the specified value
773/// split into legal parts.  If the parts contain more bits than Val, then, for
774/// integers, ExtendKind can be used to specify how to generate the extra bits.
775static void getCopyToParts(SelectionDAG &DAG,
776                           SDOperand Val,
777                           SDOperand *Parts,
778                           unsigned NumParts,
779                           MVT::ValueType PartVT,
780                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
781  TargetLowering &TLI = DAG.getTargetLoweringInfo();
782  MVT::ValueType PtrVT = TLI.getPointerTy();
783  MVT::ValueType ValueVT = Val.getValueType();
784  unsigned PartBits = MVT::getSizeInBits(PartVT);
785  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
786
787  if (!NumParts)
788    return;
789
790  if (!MVT::isVector(ValueVT)) {
791    if (PartVT == ValueVT) {
792      assert(NumParts == 1 && "No-op copy with multiple parts!");
793      Parts[0] = Val;
794      return;
795    }
796
797    if (NumParts * PartBits > MVT::getSizeInBits(ValueVT)) {
798      // If the parts cover more bits than the value has, promote the value.
799      if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT)) {
800        assert(NumParts == 1 && "Do not know what to promote to!");
801        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
802      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
803        ValueVT = MVT::getIntegerType(NumParts * PartBits);
804        Val = DAG.getNode(ExtendKind, ValueVT, Val);
805      } else {
806        assert(0 && "Unknown mismatch!");
807      }
808    } else if (PartBits == MVT::getSizeInBits(ValueVT)) {
809      // Different types of the same size.
810      assert(NumParts == 1 && PartVT != ValueVT);
811      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
812    } else if (NumParts * PartBits < MVT::getSizeInBits(ValueVT)) {
813      // If the parts cover less bits than value has, truncate the value.
814      if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
815        ValueVT = MVT::getIntegerType(NumParts * PartBits);
816        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
817      } else {
818        assert(0 && "Unknown mismatch!");
819      }
820    }
821
822    // The value may have changed - recompute ValueVT.
823    ValueVT = Val.getValueType();
824    assert(NumParts * PartBits == MVT::getSizeInBits(ValueVT) &&
825           "Failed to tile the value with PartVT!");
826
827    if (NumParts == 1) {
828      assert(PartVT == ValueVT && "Type conversion failed!");
829      Parts[0] = Val;
830      return;
831    }
832
833    // Expand the value into multiple parts.
834    if (NumParts & (NumParts - 1)) {
835      // The number of parts is not a power of 2.  Split off and copy the tail.
836      assert(MVT::isInteger(PartVT) && MVT::isInteger(ValueVT) &&
837             "Do not know what to expand to!");
838      unsigned RoundParts = 1 << Log2_32(NumParts);
839      unsigned RoundBits = RoundParts * PartBits;
840      unsigned OddParts = NumParts - RoundParts;
841      SDOperand OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
842                                     DAG.getConstant(RoundBits,
843                                                     TLI.getShiftAmountTy()));
844      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
845      if (TLI.isBigEndian())
846        // The odd parts were reversed by getCopyToParts - unreverse them.
847        std::reverse(Parts + RoundParts, Parts + NumParts);
848      NumParts = RoundParts;
849      ValueVT = MVT::getIntegerType(NumParts * PartBits);
850      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
851    }
852
853    // The number of parts is a power of 2.  Repeatedly bisect the value using
854    // EXTRACT_ELEMENT.
855    Parts[0] = Val;
856    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
857      for (unsigned i = 0; i < NumParts; i += StepSize) {
858        unsigned ThisBits = StepSize * PartBits / 2;
859        MVT::ValueType ThisVT =
860          ThisBits == PartBits ? PartVT : MVT::getIntegerType (ThisBits);
861
862        Parts[i+StepSize/2] =
863          DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Parts[i],
864                      DAG.getConstant(1, PtrVT));
865        Parts[i] =
866          DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Parts[i],
867                      DAG.getConstant(0, PtrVT));
868      }
869    }
870
871    if (TLI.isBigEndian())
872      std::reverse(Parts, Parts + NumParts);
873
874    return;
875  }
876
877  // Vector ValueVT.
878  if (NumParts == 1) {
879    if (PartVT != ValueVT) {
880      if (MVT::isVector(PartVT)) {
881        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
882      } else {
883        assert(MVT::getVectorElementType(ValueVT) == PartVT &&
884               MVT::getVectorNumElements(ValueVT) == 1 &&
885               "Only trivial vector-to-scalar conversions should get here!");
886        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
887                          DAG.getConstant(0, PtrVT));
888      }
889    }
890
891    Parts[0] = Val;
892    return;
893  }
894
895  // Handle a multi-element vector.
896  MVT::ValueType IntermediateVT, RegisterVT;
897  unsigned NumIntermediates;
898  unsigned NumRegs =
899    DAG.getTargetLoweringInfo()
900      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
901                              RegisterVT);
902  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
903
904  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
905  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
906
907  // Split the vector into intermediate operands.
908  SmallVector<SDOperand, 8> Ops(NumIntermediates);
909  for (unsigned i = 0; i != NumIntermediates; ++i)
910    if (MVT::isVector(IntermediateVT))
911      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
912                           IntermediateVT, Val,
913                           DAG.getConstant(i * (NumElements / NumIntermediates),
914                                           PtrVT));
915    else
916      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
917                           IntermediateVT, Val,
918                           DAG.getConstant(i, PtrVT));
919
920  // Split the intermediate operands into legal parts.
921  if (NumParts == NumIntermediates) {
922    // If the register was not expanded, promote or copy the value,
923    // as appropriate.
924    for (unsigned i = 0; i != NumParts; ++i)
925      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
926  } else if (NumParts > 0) {
927    // If the intermediate type was expanded, split each the value into
928    // legal parts.
929    assert(NumParts % NumIntermediates == 0 &&
930           "Must expand into a divisible number of parts!");
931    unsigned Factor = NumParts / NumIntermediates;
932    for (unsigned i = 0; i != NumIntermediates; ++i)
933      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
934  }
935}
936
937
938SDOperand SelectionDAGLowering::getValue(const Value *V) {
939  SDOperand &N = NodeMap[V];
940  if (N.Val) return N;
941
942  const Type *VTy = V->getType();
943  MVT::ValueType VT = TLI.getValueType(VTy);
944  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
945    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
946      visit(CE->getOpcode(), *CE);
947      SDOperand N1 = NodeMap[V];
948      assert(N1.Val && "visit didn't populate the ValueMap!");
949      return N1;
950    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
951      return N = DAG.getGlobalAddress(GV, VT);
952    } else if (isa<ConstantPointerNull>(C)) {
953      return N = DAG.getConstant(0, TLI.getPointerTy());
954    } else if (isa<UndefValue>(C)) {
955      if (!isa<VectorType>(VTy))
956        return N = DAG.getNode(ISD::UNDEF, VT);
957
958      // Create a BUILD_VECTOR of undef nodes.
959      const VectorType *PTy = cast<VectorType>(VTy);
960      unsigned NumElements = PTy->getNumElements();
961      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
962
963      SmallVector<SDOperand, 8> Ops;
964      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
965
966      // Create a VConstant node with generic Vector type.
967      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
968      return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
969                             &Ops[0], Ops.size());
970    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
971      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
972    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
973      unsigned NumElements = PTy->getNumElements();
974      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
975
976      // Now that we know the number and type of the elements, push a
977      // Constant or ConstantFP node onto the ops list for each element of
978      // the vector constant.
979      SmallVector<SDOperand, 8> Ops;
980      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
981        for (unsigned i = 0; i != NumElements; ++i)
982          Ops.push_back(getValue(CP->getOperand(i)));
983      } else {
984        assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
985        SDOperand Op;
986        if (MVT::isFloatingPoint(PVT))
987          Op = DAG.getConstantFP(0, PVT);
988        else
989          Op = DAG.getConstant(0, PVT);
990        Ops.assign(NumElements, Op);
991      }
992
993      // Create a BUILD_VECTOR node.
994      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
995      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
996                                      Ops.size());
997    } else {
998      // Canonicalize all constant ints to be unsigned.
999      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
1000    }
1001  }
1002
1003  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1004    std::map<const AllocaInst*, int>::iterator SI =
1005    FuncInfo.StaticAllocaMap.find(AI);
1006    if (SI != FuncInfo.StaticAllocaMap.end())
1007      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1008  }
1009
1010  unsigned InReg = FuncInfo.ValueMap[V];
1011  assert(InReg && "Value not in map!");
1012
1013  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
1014  unsigned NumRegs = TLI.getNumRegisters(VT);
1015
1016  std::vector<unsigned> Regs(NumRegs);
1017  for (unsigned i = 0; i != NumRegs; ++i)
1018    Regs[i] = InReg + i;
1019
1020  RegsForValue RFV(Regs, RegisterVT, VT);
1021  SDOperand Chain = DAG.getEntryNode();
1022
1023  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1024}
1025
1026
1027void SelectionDAGLowering::visitRet(ReturnInst &I) {
1028  if (I.getNumOperands() == 0) {
1029    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
1030    return;
1031  }
1032  SmallVector<SDOperand, 8> NewValues;
1033  NewValues.push_back(getRoot());
1034  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1035    SDOperand RetOp = getValue(I.getOperand(i));
1036    MVT::ValueType VT = RetOp.getValueType();
1037
1038    // FIXME: C calling convention requires the return type to be promoted to
1039    // at least 32-bit. But this is not necessary for non-C calling conventions.
1040    if (MVT::isInteger(VT)) {
1041      MVT::ValueType MinVT = TLI.getRegisterType(MVT::i32);
1042      if (MVT::getSizeInBits(VT) < MVT::getSizeInBits(MinVT))
1043        VT = MinVT;
1044    }
1045
1046    unsigned NumParts = TLI.getNumRegisters(VT);
1047    MVT::ValueType PartVT = TLI.getRegisterType(VT);
1048    SmallVector<SDOperand, 4> Parts(NumParts);
1049    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1050
1051    const Function *F = I.getParent()->getParent();
1052    if (F->paramHasAttr(0, ParamAttr::SExt))
1053      ExtendKind = ISD::SIGN_EXTEND;
1054    else if (F->paramHasAttr(0, ParamAttr::ZExt))
1055      ExtendKind = ISD::ZERO_EXTEND;
1056
1057    getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT, ExtendKind);
1058
1059    for (unsigned i = 0; i < NumParts; ++i) {
1060      NewValues.push_back(Parts[i]);
1061      NewValues.push_back(DAG.getConstant(false, MVT::i32));
1062    }
1063  }
1064  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1065                          &NewValues[0], NewValues.size()));
1066}
1067
1068/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1069/// the current basic block, add it to ValueMap now so that we'll get a
1070/// CopyTo/FromReg.
1071void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1072  // No need to export constants.
1073  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1074
1075  // Already exported?
1076  if (FuncInfo.isExportedInst(V)) return;
1077
1078  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1079  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
1080}
1081
1082bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1083                                                    const BasicBlock *FromBB) {
1084  // The operands of the setcc have to be in this block.  We don't know
1085  // how to export them from some other block.
1086  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1087    // Can export from current BB.
1088    if (VI->getParent() == FromBB)
1089      return true;
1090
1091    // Is already exported, noop.
1092    return FuncInfo.isExportedInst(V);
1093  }
1094
1095  // If this is an argument, we can export it if the BB is the entry block or
1096  // if it is already exported.
1097  if (isa<Argument>(V)) {
1098    if (FromBB == &FromBB->getParent()->getEntryBlock())
1099      return true;
1100
1101    // Otherwise, can only export this if it is already exported.
1102    return FuncInfo.isExportedInst(V);
1103  }
1104
1105  // Otherwise, constants can always be exported.
1106  return true;
1107}
1108
1109static bool InBlock(const Value *V, const BasicBlock *BB) {
1110  if (const Instruction *I = dyn_cast<Instruction>(V))
1111    return I->getParent() == BB;
1112  return true;
1113}
1114
1115/// FindMergedConditions - If Cond is an expression like
1116void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1117                                                MachineBasicBlock *TBB,
1118                                                MachineBasicBlock *FBB,
1119                                                MachineBasicBlock *CurBB,
1120                                                unsigned Opc) {
1121  // If this node is not part of the or/and tree, emit it as a branch.
1122  Instruction *BOp = dyn_cast<Instruction>(Cond);
1123
1124  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1125      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1126      BOp->getParent() != CurBB->getBasicBlock() ||
1127      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1128      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1129    const BasicBlock *BB = CurBB->getBasicBlock();
1130
1131    // If the leaf of the tree is a comparison, merge the condition into
1132    // the caseblock.
1133    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1134        // The operands of the cmp have to be in this block.  We don't know
1135        // how to export them from some other block.  If this is the first block
1136        // of the sequence, no exporting is needed.
1137        (CurBB == CurMBB ||
1138         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1139          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1140      BOp = cast<Instruction>(Cond);
1141      ISD::CondCode Condition;
1142      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1143        switch (IC->getPredicate()) {
1144        default: assert(0 && "Unknown icmp predicate opcode!");
1145        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1146        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1147        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1148        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1149        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1150        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1151        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1152        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1153        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1154        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1155        }
1156      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1157        ISD::CondCode FPC, FOC;
1158        switch (FC->getPredicate()) {
1159        default: assert(0 && "Unknown fcmp predicate opcode!");
1160        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1161        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1162        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1163        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1164        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1165        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1166        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1167        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1168        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1169        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1170        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1171        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1172        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1173        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1174        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1175        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1176        }
1177        if (FiniteOnlyFPMath())
1178          Condition = FOC;
1179        else
1180          Condition = FPC;
1181      } else {
1182        Condition = ISD::SETEQ; // silence warning.
1183        assert(0 && "Unknown compare instruction");
1184      }
1185
1186      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1187                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1188      SwitchCases.push_back(CB);
1189      return;
1190    }
1191
1192    // Create a CaseBlock record representing this branch.
1193    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1194                                   NULL, TBB, FBB, CurBB);
1195    SwitchCases.push_back(CB);
1196    return;
1197  }
1198
1199
1200  //  Create TmpBB after CurBB.
1201  MachineFunction::iterator BBI = CurBB;
1202  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1203  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1204
1205  if (Opc == Instruction::Or) {
1206    // Codegen X | Y as:
1207    //   jmp_if_X TBB
1208    //   jmp TmpBB
1209    // TmpBB:
1210    //   jmp_if_Y TBB
1211    //   jmp FBB
1212    //
1213
1214    // Emit the LHS condition.
1215    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1216
1217    // Emit the RHS condition into TmpBB.
1218    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1219  } else {
1220    assert(Opc == Instruction::And && "Unknown merge op!");
1221    // Codegen X & Y as:
1222    //   jmp_if_X TmpBB
1223    //   jmp FBB
1224    // TmpBB:
1225    //   jmp_if_Y TBB
1226    //   jmp FBB
1227    //
1228    //  This requires creation of TmpBB after CurBB.
1229
1230    // Emit the LHS condition.
1231    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1232
1233    // Emit the RHS condition into TmpBB.
1234    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1235  }
1236}
1237
1238/// If the set of cases should be emitted as a series of branches, return true.
1239/// If we should emit this as a bunch of and/or'd together conditions, return
1240/// false.
1241static bool
1242ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1243  if (Cases.size() != 2) return true;
1244
1245  // If this is two comparisons of the same values or'd or and'd together, they
1246  // will get folded into a single comparison, so don't emit two blocks.
1247  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1248       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1249      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1250       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1251    return false;
1252  }
1253
1254  return true;
1255}
1256
1257void SelectionDAGLowering::visitBr(BranchInst &I) {
1258  // Update machine-CFG edges.
1259  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1260
1261  // Figure out which block is immediately after the current one.
1262  MachineBasicBlock *NextBlock = 0;
1263  MachineFunction::iterator BBI = CurMBB;
1264  if (++BBI != CurMBB->getParent()->end())
1265    NextBlock = BBI;
1266
1267  if (I.isUnconditional()) {
1268    // If this is not a fall-through branch, emit the branch.
1269    if (Succ0MBB != NextBlock)
1270      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1271                              DAG.getBasicBlock(Succ0MBB)));
1272
1273    // Update machine-CFG edges.
1274    CurMBB->addSuccessor(Succ0MBB);
1275    return;
1276  }
1277
1278  // If this condition is one of the special cases we handle, do special stuff
1279  // now.
1280  Value *CondVal = I.getCondition();
1281  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1282
1283  // If this is a series of conditions that are or'd or and'd together, emit
1284  // this as a sequence of branches instead of setcc's with and/or operations.
1285  // For example, instead of something like:
1286  //     cmp A, B
1287  //     C = seteq
1288  //     cmp D, E
1289  //     F = setle
1290  //     or C, F
1291  //     jnz foo
1292  // Emit:
1293  //     cmp A, B
1294  //     je foo
1295  //     cmp D, E
1296  //     jle foo
1297  //
1298  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1299    if (BOp->hasOneUse() &&
1300        (BOp->getOpcode() == Instruction::And ||
1301         BOp->getOpcode() == Instruction::Or)) {
1302      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1303      // If the compares in later blocks need to use values not currently
1304      // exported from this block, export them now.  This block should always
1305      // be the first entry.
1306      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1307
1308      // Allow some cases to be rejected.
1309      if (ShouldEmitAsBranches(SwitchCases)) {
1310        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1311          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1312          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1313        }
1314
1315        // Emit the branch for this block.
1316        visitSwitchCase(SwitchCases[0]);
1317        SwitchCases.erase(SwitchCases.begin());
1318        return;
1319      }
1320
1321      // Okay, we decided not to do this, remove any inserted MBB's and clear
1322      // SwitchCases.
1323      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1324        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1325
1326      SwitchCases.clear();
1327    }
1328  }
1329
1330  // Create a CaseBlock record representing this branch.
1331  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1332                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1333  // Use visitSwitchCase to actually insert the fast branch sequence for this
1334  // cond branch.
1335  visitSwitchCase(CB);
1336}
1337
1338/// visitSwitchCase - Emits the necessary code to represent a single node in
1339/// the binary search tree resulting from lowering a switch instruction.
1340void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1341  SDOperand Cond;
1342  SDOperand CondLHS = getValue(CB.CmpLHS);
1343
1344  // Build the setcc now.
1345  if (CB.CmpMHS == NULL) {
1346    // Fold "(X == true)" to X and "(X == false)" to !X to
1347    // handle common cases produced by branch lowering.
1348    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1349      Cond = CondLHS;
1350    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1351      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1352      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1353    } else
1354      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1355  } else {
1356    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1357
1358    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1359    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1360
1361    SDOperand CmpOp = getValue(CB.CmpMHS);
1362    MVT::ValueType VT = CmpOp.getValueType();
1363
1364    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1365      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1366    } else {
1367      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1368      Cond = DAG.getSetCC(MVT::i1, SUB,
1369                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1370    }
1371
1372  }
1373
1374  // Set NextBlock to be the MBB immediately after the current one, if any.
1375  // This is used to avoid emitting unnecessary branches to the next block.
1376  MachineBasicBlock *NextBlock = 0;
1377  MachineFunction::iterator BBI = CurMBB;
1378  if (++BBI != CurMBB->getParent()->end())
1379    NextBlock = BBI;
1380
1381  // If the lhs block is the next block, invert the condition so that we can
1382  // fall through to the lhs instead of the rhs block.
1383  if (CB.TrueBB == NextBlock) {
1384    std::swap(CB.TrueBB, CB.FalseBB);
1385    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1386    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1387  }
1388  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1389                                 DAG.getBasicBlock(CB.TrueBB));
1390  if (CB.FalseBB == NextBlock)
1391    DAG.setRoot(BrCond);
1392  else
1393    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1394                            DAG.getBasicBlock(CB.FalseBB)));
1395  // Update successor info
1396  CurMBB->addSuccessor(CB.TrueBB);
1397  CurMBB->addSuccessor(CB.FalseBB);
1398}
1399
1400/// visitJumpTable - Emit JumpTable node in the current MBB
1401void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1402  // Emit the code for the jump table
1403  assert(JT.Reg != -1U && "Should lower JT Header first!");
1404  MVT::ValueType PTy = TLI.getPointerTy();
1405  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1406  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1407  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1408                          Table, Index));
1409  return;
1410}
1411
1412/// visitJumpTableHeader - This function emits necessary code to produce index
1413/// in the JumpTable from switch case.
1414void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1415                                         SelectionDAGISel::JumpTableHeader &JTH) {
1416  // Subtract the lowest switch case value from the value being switched on
1417  // and conditional branch to default mbb if the result is greater than the
1418  // difference between smallest and largest cases.
1419  SDOperand SwitchOp = getValue(JTH.SValue);
1420  MVT::ValueType VT = SwitchOp.getValueType();
1421  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1422                              DAG.getConstant(JTH.First, VT));
1423
1424  // The SDNode we just created, which holds the value being switched on
1425  // minus the the smallest case value, needs to be copied to a virtual
1426  // register so it can be used as an index into the jump table in a
1427  // subsequent basic block.  This value may be smaller or larger than the
1428  // target's pointer type, and therefore require extension or truncating.
1429  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1430    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1431  else
1432    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1433
1434  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1435  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1436  JT.Reg = JumpTableReg;
1437
1438  // Emit the range check for the jump table, and branch to the default
1439  // block for the switch statement if the value being switched on exceeds
1440  // the largest case in the switch.
1441  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1442                               DAG.getConstant(JTH.Last-JTH.First,VT),
1443                               ISD::SETUGT);
1444
1445  // Set NextBlock to be the MBB immediately after the current one, if any.
1446  // This is used to avoid emitting unnecessary branches to the next block.
1447  MachineBasicBlock *NextBlock = 0;
1448  MachineFunction::iterator BBI = CurMBB;
1449  if (++BBI != CurMBB->getParent()->end())
1450    NextBlock = BBI;
1451
1452  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1453                                 DAG.getBasicBlock(JT.Default));
1454
1455  if (JT.MBB == NextBlock)
1456    DAG.setRoot(BrCond);
1457  else
1458    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1459                            DAG.getBasicBlock(JT.MBB)));
1460
1461  return;
1462}
1463
1464/// visitBitTestHeader - This function emits necessary code to produce value
1465/// suitable for "bit tests"
1466void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1467  // Subtract the minimum value
1468  SDOperand SwitchOp = getValue(B.SValue);
1469  MVT::ValueType VT = SwitchOp.getValueType();
1470  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1471                              DAG.getConstant(B.First, VT));
1472
1473  // Check range
1474  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1475                                    DAG.getConstant(B.Range, VT),
1476                                    ISD::SETUGT);
1477
1478  SDOperand ShiftOp;
1479  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1480    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1481  else
1482    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1483
1484  // Make desired shift
1485  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1486                                    DAG.getConstant(1, TLI.getPointerTy()),
1487                                    ShiftOp);
1488
1489  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1490  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1491  B.Reg = SwitchReg;
1492
1493  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1494                                  DAG.getBasicBlock(B.Default));
1495
1496  // Set NextBlock to be the MBB immediately after the current one, if any.
1497  // This is used to avoid emitting unnecessary branches to the next block.
1498  MachineBasicBlock *NextBlock = 0;
1499  MachineFunction::iterator BBI = CurMBB;
1500  if (++BBI != CurMBB->getParent()->end())
1501    NextBlock = BBI;
1502
1503  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1504  if (MBB == NextBlock)
1505    DAG.setRoot(BrRange);
1506  else
1507    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1508                            DAG.getBasicBlock(MBB)));
1509
1510  CurMBB->addSuccessor(B.Default);
1511  CurMBB->addSuccessor(MBB);
1512
1513  return;
1514}
1515
1516/// visitBitTestCase - this function produces one "bit test"
1517void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1518                                            unsigned Reg,
1519                                            SelectionDAGISel::BitTestCase &B) {
1520  // Emit bit tests and jumps
1521  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1522
1523  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1524                                SwitchVal,
1525                                DAG.getConstant(B.Mask,
1526                                                TLI.getPointerTy()));
1527  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1528                                  DAG.getConstant(0, TLI.getPointerTy()),
1529                                  ISD::SETNE);
1530  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1531                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1532
1533  // Set NextBlock to be the MBB immediately after the current one, if any.
1534  // This is used to avoid emitting unnecessary branches to the next block.
1535  MachineBasicBlock *NextBlock = 0;
1536  MachineFunction::iterator BBI = CurMBB;
1537  if (++BBI != CurMBB->getParent()->end())
1538    NextBlock = BBI;
1539
1540  if (NextMBB == NextBlock)
1541    DAG.setRoot(BrAnd);
1542  else
1543    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1544                            DAG.getBasicBlock(NextMBB)));
1545
1546  CurMBB->addSuccessor(B.TargetBB);
1547  CurMBB->addSuccessor(NextMBB);
1548
1549  return;
1550}
1551
1552void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1553  // Retrieve successors.
1554  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1555  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1556
1557  if (isa<InlineAsm>(I.getCalledValue()))
1558    visitInlineAsm(&I);
1559  else
1560    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1561
1562  // If the value of the invoke is used outside of its defining block, make it
1563  // available as a virtual register.
1564  if (!I.use_empty()) {
1565    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1566    if (VMI != FuncInfo.ValueMap.end())
1567      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1568  }
1569
1570  // Drop into normal successor.
1571  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1572                          DAG.getBasicBlock(Return)));
1573
1574  // Update successor info
1575  CurMBB->addSuccessor(Return);
1576  CurMBB->addSuccessor(LandingPad);
1577}
1578
1579void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1580}
1581
1582/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1583/// small case ranges).
1584bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1585                                                  CaseRecVector& WorkList,
1586                                                  Value* SV,
1587                                                  MachineBasicBlock* Default) {
1588  Case& BackCase  = *(CR.Range.second-1);
1589
1590  // Size is the number of Cases represented by this range.
1591  unsigned Size = CR.Range.second - CR.Range.first;
1592  if (Size > 3)
1593    return false;
1594
1595  // Get the MachineFunction which holds the current MBB.  This is used when
1596  // inserting any additional MBBs necessary to represent the switch.
1597  MachineFunction *CurMF = CurMBB->getParent();
1598
1599  // Figure out which block is immediately after the current one.
1600  MachineBasicBlock *NextBlock = 0;
1601  MachineFunction::iterator BBI = CR.CaseBB;
1602
1603  if (++BBI != CurMBB->getParent()->end())
1604    NextBlock = BBI;
1605
1606  // TODO: If any two of the cases has the same destination, and if one value
1607  // is the same as the other, but has one bit unset that the other has set,
1608  // use bit manipulation to do two compares at once.  For example:
1609  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1610
1611  // Rearrange the case blocks so that the last one falls through if possible.
1612  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1613    // The last case block won't fall through into 'NextBlock' if we emit the
1614    // branches in this order.  See if rearranging a case value would help.
1615    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1616      if (I->BB == NextBlock) {
1617        std::swap(*I, BackCase);
1618        break;
1619      }
1620    }
1621  }
1622
1623  // Create a CaseBlock record representing a conditional branch to
1624  // the Case's target mbb if the value being switched on SV is equal
1625  // to C.
1626  MachineBasicBlock *CurBlock = CR.CaseBB;
1627  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1628    MachineBasicBlock *FallThrough;
1629    if (I != E-1) {
1630      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1631      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1632    } else {
1633      // If the last case doesn't match, go to the default block.
1634      FallThrough = Default;
1635    }
1636
1637    Value *RHS, *LHS, *MHS;
1638    ISD::CondCode CC;
1639    if (I->High == I->Low) {
1640      // This is just small small case range :) containing exactly 1 case
1641      CC = ISD::SETEQ;
1642      LHS = SV; RHS = I->High; MHS = NULL;
1643    } else {
1644      CC = ISD::SETLE;
1645      LHS = I->Low; MHS = SV; RHS = I->High;
1646    }
1647    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1648                                   I->BB, FallThrough, CurBlock);
1649
1650    // If emitting the first comparison, just call visitSwitchCase to emit the
1651    // code into the current block.  Otherwise, push the CaseBlock onto the
1652    // vector to be later processed by SDISel, and insert the node's MBB
1653    // before the next MBB.
1654    if (CurBlock == CurMBB)
1655      visitSwitchCase(CB);
1656    else
1657      SwitchCases.push_back(CB);
1658
1659    CurBlock = FallThrough;
1660  }
1661
1662  return true;
1663}
1664
1665static inline bool areJTsAllowed(const TargetLowering &TLI) {
1666  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1667          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1668}
1669
1670/// handleJTSwitchCase - Emit jumptable for current switch case range
1671bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1672                                              CaseRecVector& WorkList,
1673                                              Value* SV,
1674                                              MachineBasicBlock* Default) {
1675  Case& FrontCase = *CR.Range.first;
1676  Case& BackCase  = *(CR.Range.second-1);
1677
1678  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1679  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1680
1681  uint64_t TSize = 0;
1682  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1683       I!=E; ++I)
1684    TSize += I->size();
1685
1686  if (!areJTsAllowed(TLI) || TSize <= 3)
1687    return false;
1688
1689  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1690  if (Density < 0.4)
1691    return false;
1692
1693  DOUT << "Lowering jump table\n"
1694       << "First entry: " << First << ". Last entry: " << Last << "\n"
1695       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1696
1697  // Get the MachineFunction which holds the current MBB.  This is used when
1698  // inserting any additional MBBs necessary to represent the switch.
1699  MachineFunction *CurMF = CurMBB->getParent();
1700
1701  // Figure out which block is immediately after the current one.
1702  MachineBasicBlock *NextBlock = 0;
1703  MachineFunction::iterator BBI = CR.CaseBB;
1704
1705  if (++BBI != CurMBB->getParent()->end())
1706    NextBlock = BBI;
1707
1708  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1709
1710  // Create a new basic block to hold the code for loading the address
1711  // of the jump table, and jumping to it.  Update successor information;
1712  // we will either branch to the default case for the switch, or the jump
1713  // table.
1714  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1715  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1716  CR.CaseBB->addSuccessor(Default);
1717  CR.CaseBB->addSuccessor(JumpTableBB);
1718
1719  // Build a vector of destination BBs, corresponding to each target
1720  // of the jump table. If the value of the jump table slot corresponds to
1721  // a case statement, push the case's BB onto the vector, otherwise, push
1722  // the default BB.
1723  std::vector<MachineBasicBlock*> DestBBs;
1724  int64_t TEI = First;
1725  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1726    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1727    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1728
1729    if ((Low <= TEI) && (TEI <= High)) {
1730      DestBBs.push_back(I->BB);
1731      if (TEI==High)
1732        ++I;
1733    } else {
1734      DestBBs.push_back(Default);
1735    }
1736  }
1737
1738  // Update successor info. Add one edge to each unique successor.
1739  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1740  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1741         E = DestBBs.end(); I != E; ++I) {
1742    if (!SuccsHandled[(*I)->getNumber()]) {
1743      SuccsHandled[(*I)->getNumber()] = true;
1744      JumpTableBB->addSuccessor(*I);
1745    }
1746  }
1747
1748  // Create a jump table index for this jump table, or return an existing
1749  // one.
1750  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1751
1752  // Set the jump table information so that we can codegen it as a second
1753  // MachineBasicBlock
1754  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1755  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1756                                        (CR.CaseBB == CurMBB));
1757  if (CR.CaseBB == CurMBB)
1758    visitJumpTableHeader(JT, JTH);
1759
1760  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1761
1762  return true;
1763}
1764
1765/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1766/// 2 subtrees.
1767bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1768                                                   CaseRecVector& WorkList,
1769                                                   Value* SV,
1770                                                   MachineBasicBlock* Default) {
1771  // Get the MachineFunction which holds the current MBB.  This is used when
1772  // inserting any additional MBBs necessary to represent the switch.
1773  MachineFunction *CurMF = CurMBB->getParent();
1774
1775  // Figure out which block is immediately after the current one.
1776  MachineBasicBlock *NextBlock = 0;
1777  MachineFunction::iterator BBI = CR.CaseBB;
1778
1779  if (++BBI != CurMBB->getParent()->end())
1780    NextBlock = BBI;
1781
1782  Case& FrontCase = *CR.Range.first;
1783  Case& BackCase  = *(CR.Range.second-1);
1784  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1785
1786  // Size is the number of Cases represented by this range.
1787  unsigned Size = CR.Range.second - CR.Range.first;
1788
1789  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1790  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1791  double FMetric = 0;
1792  CaseItr Pivot = CR.Range.first + Size/2;
1793
1794  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1795  // (heuristically) allow us to emit JumpTable's later.
1796  uint64_t TSize = 0;
1797  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1798       I!=E; ++I)
1799    TSize += I->size();
1800
1801  uint64_t LSize = FrontCase.size();
1802  uint64_t RSize = TSize-LSize;
1803  DOUT << "Selecting best pivot: \n"
1804       << "First: " << First << ", Last: " << Last <<"\n"
1805       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1806  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1807       J!=E; ++I, ++J) {
1808    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1809    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1810    assert((RBegin-LEnd>=1) && "Invalid case distance");
1811    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1812    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1813    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1814    // Should always split in some non-trivial place
1815    DOUT <<"=>Step\n"
1816         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1817         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1818         << "Metric: " << Metric << "\n";
1819    if (FMetric < Metric) {
1820      Pivot = J;
1821      FMetric = Metric;
1822      DOUT << "Current metric set to: " << FMetric << "\n";
1823    }
1824
1825    LSize += J->size();
1826    RSize -= J->size();
1827  }
1828  if (areJTsAllowed(TLI)) {
1829    // If our case is dense we *really* should handle it earlier!
1830    assert((FMetric > 0) && "Should handle dense range earlier!");
1831  } else {
1832    Pivot = CR.Range.first + Size/2;
1833  }
1834
1835  CaseRange LHSR(CR.Range.first, Pivot);
1836  CaseRange RHSR(Pivot, CR.Range.second);
1837  Constant *C = Pivot->Low;
1838  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1839
1840  // We know that we branch to the LHS if the Value being switched on is
1841  // less than the Pivot value, C.  We use this to optimize our binary
1842  // tree a bit, by recognizing that if SV is greater than or equal to the
1843  // LHS's Case Value, and that Case Value is exactly one less than the
1844  // Pivot's Value, then we can branch directly to the LHS's Target,
1845  // rather than creating a leaf node for it.
1846  if ((LHSR.second - LHSR.first) == 1 &&
1847      LHSR.first->High == CR.GE &&
1848      cast<ConstantInt>(C)->getSExtValue() ==
1849      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1850    TrueBB = LHSR.first->BB;
1851  } else {
1852    TrueBB = new MachineBasicBlock(LLVMBB);
1853    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1854    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1855  }
1856
1857  // Similar to the optimization above, if the Value being switched on is
1858  // known to be less than the Constant CR.LT, and the current Case Value
1859  // is CR.LT - 1, then we can branch directly to the target block for
1860  // the current Case Value, rather than emitting a RHS leaf node for it.
1861  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1862      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1863      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1864    FalseBB = RHSR.first->BB;
1865  } else {
1866    FalseBB = new MachineBasicBlock(LLVMBB);
1867    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1868    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1869  }
1870
1871  // Create a CaseBlock record representing a conditional branch to
1872  // the LHS node if the value being switched on SV is less than C.
1873  // Otherwise, branch to LHS.
1874  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1875                                 TrueBB, FalseBB, CR.CaseBB);
1876
1877  if (CR.CaseBB == CurMBB)
1878    visitSwitchCase(CB);
1879  else
1880    SwitchCases.push_back(CB);
1881
1882  return true;
1883}
1884
1885/// handleBitTestsSwitchCase - if current case range has few destination and
1886/// range span less, than machine word bitwidth, encode case range into series
1887/// of masks and emit bit tests with these masks.
1888bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1889                                                    CaseRecVector& WorkList,
1890                                                    Value* SV,
1891                                                    MachineBasicBlock* Default){
1892  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1893
1894  Case& FrontCase = *CR.Range.first;
1895  Case& BackCase  = *(CR.Range.second-1);
1896
1897  // Get the MachineFunction which holds the current MBB.  This is used when
1898  // inserting any additional MBBs necessary to represent the switch.
1899  MachineFunction *CurMF = CurMBB->getParent();
1900
1901  unsigned numCmps = 0;
1902  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1903       I!=E; ++I) {
1904    // Single case counts one, case range - two.
1905    if (I->Low == I->High)
1906      numCmps +=1;
1907    else
1908      numCmps +=2;
1909  }
1910
1911  // Count unique destinations
1912  SmallSet<MachineBasicBlock*, 4> Dests;
1913  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1914    Dests.insert(I->BB);
1915    if (Dests.size() > 3)
1916      // Don't bother the code below, if there are too much unique destinations
1917      return false;
1918  }
1919  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1920       << "Total number of comparisons: " << numCmps << "\n";
1921
1922  // Compute span of values.
1923  Constant* minValue = FrontCase.Low;
1924  Constant* maxValue = BackCase.High;
1925  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1926                   cast<ConstantInt>(minValue)->getSExtValue();
1927  DOUT << "Compare range: " << range << "\n"
1928       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1929       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1930
1931  if (range>=IntPtrBits ||
1932      (!(Dests.size() == 1 && numCmps >= 3) &&
1933       !(Dests.size() == 2 && numCmps >= 5) &&
1934       !(Dests.size() >= 3 && numCmps >= 6)))
1935    return false;
1936
1937  DOUT << "Emitting bit tests\n";
1938  int64_t lowBound = 0;
1939
1940  // Optimize the case where all the case values fit in a
1941  // word without having to subtract minValue. In this case,
1942  // we can optimize away the subtraction.
1943  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1944      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1945    range = cast<ConstantInt>(maxValue)->getSExtValue();
1946  } else {
1947    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1948  }
1949
1950  CaseBitsVector CasesBits;
1951  unsigned i, count = 0;
1952
1953  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1954    MachineBasicBlock* Dest = I->BB;
1955    for (i = 0; i < count; ++i)
1956      if (Dest == CasesBits[i].BB)
1957        break;
1958
1959    if (i == count) {
1960      assert((count < 3) && "Too much destinations to test!");
1961      CasesBits.push_back(CaseBits(0, Dest, 0));
1962      count++;
1963    }
1964
1965    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1966    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1967
1968    for (uint64_t j = lo; j <= hi; j++) {
1969      CasesBits[i].Mask |=  1ULL << j;
1970      CasesBits[i].Bits++;
1971    }
1972
1973  }
1974  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1975
1976  SelectionDAGISel::BitTestInfo BTC;
1977
1978  // Figure out which block is immediately after the current one.
1979  MachineFunction::iterator BBI = CR.CaseBB;
1980  ++BBI;
1981
1982  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1983
1984  DOUT << "Cases:\n";
1985  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1986    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1987         << ", BB: " << CasesBits[i].BB << "\n";
1988
1989    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1990    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1991    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1992                                                CaseBB,
1993                                                CasesBits[i].BB));
1994  }
1995
1996  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1997                                     -1U, (CR.CaseBB == CurMBB),
1998                                     CR.CaseBB, Default, BTC);
1999
2000  if (CR.CaseBB == CurMBB)
2001    visitBitTestHeader(BTB);
2002
2003  BitTestCases.push_back(BTB);
2004
2005  return true;
2006}
2007
2008
2009// Clusterify - Transform simple list of Cases into list of CaseRange's
2010unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2011                                          const SwitchInst& SI) {
2012  unsigned numCmps = 0;
2013
2014  // Start with "simple" cases
2015  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2016    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2017    Cases.push_back(Case(SI.getSuccessorValue(i),
2018                         SI.getSuccessorValue(i),
2019                         SMBB));
2020  }
2021  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2022
2023  // Merge case into clusters
2024  if (Cases.size()>=2)
2025    // Must recompute end() each iteration because it may be
2026    // invalidated by erase if we hold on to it
2027    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2028      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2029      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2030      MachineBasicBlock* nextBB = J->BB;
2031      MachineBasicBlock* currentBB = I->BB;
2032
2033      // If the two neighboring cases go to the same destination, merge them
2034      // into a single case.
2035      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2036        I->High = J->High;
2037        J = Cases.erase(J);
2038      } else {
2039        I = J++;
2040      }
2041    }
2042
2043  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2044    if (I->Low != I->High)
2045      // A range counts double, since it requires two compares.
2046      ++numCmps;
2047  }
2048
2049  return numCmps;
2050}
2051
2052void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2053  // Figure out which block is immediately after the current one.
2054  MachineBasicBlock *NextBlock = 0;
2055  MachineFunction::iterator BBI = CurMBB;
2056
2057  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2058
2059  // If there is only the default destination, branch to it if it is not the
2060  // next basic block.  Otherwise, just fall through.
2061  if (SI.getNumOperands() == 2) {
2062    // Update machine-CFG edges.
2063
2064    // If this is not a fall-through branch, emit the branch.
2065    if (Default != NextBlock)
2066      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
2067                              DAG.getBasicBlock(Default)));
2068
2069    CurMBB->addSuccessor(Default);
2070    return;
2071  }
2072
2073  // If there are any non-default case statements, create a vector of Cases
2074  // representing each one, and sort the vector so that we can efficiently
2075  // create a binary search tree from them.
2076  CaseVector Cases;
2077  unsigned numCmps = Clusterify(Cases, SI);
2078  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2079       << ". Total compares: " << numCmps << "\n";
2080
2081  // Get the Value to be switched on and default basic blocks, which will be
2082  // inserted into CaseBlock records, representing basic blocks in the binary
2083  // search tree.
2084  Value *SV = SI.getOperand(0);
2085
2086  // Push the initial CaseRec onto the worklist
2087  CaseRecVector WorkList;
2088  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2089
2090  while (!WorkList.empty()) {
2091    // Grab a record representing a case range to process off the worklist
2092    CaseRec CR = WorkList.back();
2093    WorkList.pop_back();
2094
2095    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2096      continue;
2097
2098    // If the range has few cases (two or less) emit a series of specific
2099    // tests.
2100    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2101      continue;
2102
2103    // If the switch has more than 5 blocks, and at least 40% dense, and the
2104    // target supports indirect branches, then emit a jump table rather than
2105    // lowering the switch to a binary tree of conditional branches.
2106    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2107      continue;
2108
2109    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2110    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2111    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2112  }
2113}
2114
2115
2116void SelectionDAGLowering::visitSub(User &I) {
2117  // -0.0 - X --> fneg
2118  const Type *Ty = I.getType();
2119  if (isa<VectorType>(Ty)) {
2120    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2121      const VectorType *DestTy = cast<VectorType>(I.getType());
2122      const Type *ElTy = DestTy->getElementType();
2123      if (ElTy->isFloatingPoint()) {
2124        unsigned VL = DestTy->getNumElements();
2125        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2126        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2127        if (CV == CNZ) {
2128          SDOperand Op2 = getValue(I.getOperand(1));
2129          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2130          return;
2131        }
2132      }
2133    }
2134  }
2135  if (Ty->isFloatingPoint()) {
2136    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2137      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2138        SDOperand Op2 = getValue(I.getOperand(1));
2139        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2140        return;
2141      }
2142  }
2143
2144  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2145}
2146
2147void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2148  SDOperand Op1 = getValue(I.getOperand(0));
2149  SDOperand Op2 = getValue(I.getOperand(1));
2150
2151  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2152}
2153
2154void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2155  SDOperand Op1 = getValue(I.getOperand(0));
2156  SDOperand Op2 = getValue(I.getOperand(1));
2157
2158  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2159      MVT::getSizeInBits(Op2.getValueType()))
2160    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2161  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2162    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2163
2164  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2165}
2166
2167void SelectionDAGLowering::visitICmp(User &I) {
2168  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2169  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2170    predicate = IC->getPredicate();
2171  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2172    predicate = ICmpInst::Predicate(IC->getPredicate());
2173  SDOperand Op1 = getValue(I.getOperand(0));
2174  SDOperand Op2 = getValue(I.getOperand(1));
2175  ISD::CondCode Opcode;
2176  switch (predicate) {
2177    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2178    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2179    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2180    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2181    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2182    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2183    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2184    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2185    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2186    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2187    default:
2188      assert(!"Invalid ICmp predicate value");
2189      Opcode = ISD::SETEQ;
2190      break;
2191  }
2192  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2193}
2194
2195void SelectionDAGLowering::visitFCmp(User &I) {
2196  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2197  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2198    predicate = FC->getPredicate();
2199  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2200    predicate = FCmpInst::Predicate(FC->getPredicate());
2201  SDOperand Op1 = getValue(I.getOperand(0));
2202  SDOperand Op2 = getValue(I.getOperand(1));
2203  ISD::CondCode Condition, FOC, FPC;
2204  switch (predicate) {
2205    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2206    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2207    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2208    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2209    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2210    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2211    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2212    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2213    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2214    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2215    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2216    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2217    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2218    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2219    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2220    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2221    default:
2222      assert(!"Invalid FCmp predicate value");
2223      FOC = FPC = ISD::SETFALSE;
2224      break;
2225  }
2226  if (FiniteOnlyFPMath())
2227    Condition = FOC;
2228  else
2229    Condition = FPC;
2230  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2231}
2232
2233void SelectionDAGLowering::visitSelect(User &I) {
2234  SDOperand Cond     = getValue(I.getOperand(0));
2235  SDOperand TrueVal  = getValue(I.getOperand(1));
2236  SDOperand FalseVal = getValue(I.getOperand(2));
2237  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2238                           TrueVal, FalseVal));
2239}
2240
2241
2242void SelectionDAGLowering::visitTrunc(User &I) {
2243  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2244  SDOperand N = getValue(I.getOperand(0));
2245  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2246  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2247}
2248
2249void SelectionDAGLowering::visitZExt(User &I) {
2250  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2251  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2252  SDOperand N = getValue(I.getOperand(0));
2253  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2254  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2255}
2256
2257void SelectionDAGLowering::visitSExt(User &I) {
2258  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2259  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2260  SDOperand N = getValue(I.getOperand(0));
2261  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2262  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2263}
2264
2265void SelectionDAGLowering::visitFPTrunc(User &I) {
2266  // FPTrunc is never a no-op cast, no need to check
2267  SDOperand N = getValue(I.getOperand(0));
2268  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2269  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2270}
2271
2272void SelectionDAGLowering::visitFPExt(User &I){
2273  // FPTrunc is never a no-op cast, no need to check
2274  SDOperand N = getValue(I.getOperand(0));
2275  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2276  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2277}
2278
2279void SelectionDAGLowering::visitFPToUI(User &I) {
2280  // FPToUI is never a no-op cast, no need to check
2281  SDOperand N = getValue(I.getOperand(0));
2282  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2283  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2284}
2285
2286void SelectionDAGLowering::visitFPToSI(User &I) {
2287  // FPToSI is never a no-op cast, no need to check
2288  SDOperand N = getValue(I.getOperand(0));
2289  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2290  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2291}
2292
2293void SelectionDAGLowering::visitUIToFP(User &I) {
2294  // UIToFP is never a no-op cast, no need to check
2295  SDOperand N = getValue(I.getOperand(0));
2296  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2297  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2298}
2299
2300void SelectionDAGLowering::visitSIToFP(User &I){
2301  // UIToFP is never a no-op cast, no need to check
2302  SDOperand N = getValue(I.getOperand(0));
2303  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2304  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2305}
2306
2307void SelectionDAGLowering::visitPtrToInt(User &I) {
2308  // What to do depends on the size of the integer and the size of the pointer.
2309  // We can either truncate, zero extend, or no-op, accordingly.
2310  SDOperand N = getValue(I.getOperand(0));
2311  MVT::ValueType SrcVT = N.getValueType();
2312  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2313  SDOperand Result;
2314  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2315    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2316  else
2317    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2318    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2319  setValue(&I, Result);
2320}
2321
2322void SelectionDAGLowering::visitIntToPtr(User &I) {
2323  // What to do depends on the size of the integer and the size of the pointer.
2324  // We can either truncate, zero extend, or no-op, accordingly.
2325  SDOperand N = getValue(I.getOperand(0));
2326  MVT::ValueType SrcVT = N.getValueType();
2327  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2328  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2329    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2330  else
2331    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2332    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2333}
2334
2335void SelectionDAGLowering::visitBitCast(User &I) {
2336  SDOperand N = getValue(I.getOperand(0));
2337  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2338
2339  // BitCast assures us that source and destination are the same size so this
2340  // is either a BIT_CONVERT or a no-op.
2341  if (DestVT != N.getValueType())
2342    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2343  else
2344    setValue(&I, N); // noop cast.
2345}
2346
2347void SelectionDAGLowering::visitInsertElement(User &I) {
2348  SDOperand InVec = getValue(I.getOperand(0));
2349  SDOperand InVal = getValue(I.getOperand(1));
2350  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2351                                getValue(I.getOperand(2)));
2352
2353  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2354                           TLI.getValueType(I.getType()),
2355                           InVec, InVal, InIdx));
2356}
2357
2358void SelectionDAGLowering::visitExtractElement(User &I) {
2359  SDOperand InVec = getValue(I.getOperand(0));
2360  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2361                                getValue(I.getOperand(1)));
2362  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2363                           TLI.getValueType(I.getType()), InVec, InIdx));
2364}
2365
2366void SelectionDAGLowering::visitShuffleVector(User &I) {
2367  SDOperand V1   = getValue(I.getOperand(0));
2368  SDOperand V2   = getValue(I.getOperand(1));
2369  SDOperand Mask = getValue(I.getOperand(2));
2370
2371  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2372                           TLI.getValueType(I.getType()),
2373                           V1, V2, Mask));
2374}
2375
2376
2377void SelectionDAGLowering::visitGetElementPtr(User &I) {
2378  SDOperand N = getValue(I.getOperand(0));
2379  const Type *Ty = I.getOperand(0)->getType();
2380
2381  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2382       OI != E; ++OI) {
2383    Value *Idx = *OI;
2384    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2385      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2386      if (Field) {
2387        // N = N + Offset
2388        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2389        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2390                        DAG.getIntPtrConstant(Offset));
2391      }
2392      Ty = StTy->getElementType(Field);
2393    } else {
2394      Ty = cast<SequentialType>(Ty)->getElementType();
2395
2396      // If this is a constant subscript, handle it quickly.
2397      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2398        if (CI->getZExtValue() == 0) continue;
2399        uint64_t Offs =
2400            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2401        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2402                        DAG.getIntPtrConstant(Offs));
2403        continue;
2404      }
2405
2406      // N = N + Idx * ElementSize;
2407      uint64_t ElementSize = TD->getABITypeSize(Ty);
2408      SDOperand IdxN = getValue(Idx);
2409
2410      // If the index is smaller or larger than intptr_t, truncate or extend
2411      // it.
2412      if (IdxN.getValueType() < N.getValueType()) {
2413        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2414      } else if (IdxN.getValueType() > N.getValueType())
2415        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2416
2417      // If this is a multiply by a power of two, turn it into a shl
2418      // immediately.  This is a very common case.
2419      if (isPowerOf2_64(ElementSize)) {
2420        unsigned Amt = Log2_64(ElementSize);
2421        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2422                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2423        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2424        continue;
2425      }
2426
2427      SDOperand Scale = DAG.getIntPtrConstant(ElementSize);
2428      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2429      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2430    }
2431  }
2432  setValue(&I, N);
2433}
2434
2435void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2436  // If this is a fixed sized alloca in the entry block of the function,
2437  // allocate it statically on the stack.
2438  if (FuncInfo.StaticAllocaMap.count(&I))
2439    return;   // getValue will auto-populate this.
2440
2441  const Type *Ty = I.getAllocatedType();
2442  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2443  unsigned Align =
2444    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2445             I.getAlignment());
2446
2447  SDOperand AllocSize = getValue(I.getArraySize());
2448  MVT::ValueType IntPtr = TLI.getPointerTy();
2449  if (IntPtr < AllocSize.getValueType())
2450    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2451  else if (IntPtr > AllocSize.getValueType())
2452    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2453
2454  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2455                          DAG.getIntPtrConstant(TySize));
2456
2457  // Handle alignment.  If the requested alignment is less than or equal to
2458  // the stack alignment, ignore it.  If the size is greater than or equal to
2459  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2460  unsigned StackAlign =
2461    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2462  if (Align <= StackAlign)
2463    Align = 0;
2464
2465  // Round the size of the allocation up to the stack alignment size
2466  // by add SA-1 to the size.
2467  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2468                          DAG.getIntPtrConstant(StackAlign-1));
2469  // Mask out the low bits for alignment purposes.
2470  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2471                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2472
2473  SDOperand Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2474  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2475                                                    MVT::Other);
2476  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2477  setValue(&I, DSA);
2478  DAG.setRoot(DSA.getValue(1));
2479
2480  // Inform the Frame Information that we have just allocated a variable-sized
2481  // object.
2482  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2483}
2484
2485void SelectionDAGLowering::visitLoad(LoadInst &I) {
2486  SDOperand Ptr = getValue(I.getOperand(0));
2487
2488  SDOperand Root;
2489  if (I.isVolatile())
2490    Root = getRoot();
2491  else {
2492    // Do not serialize non-volatile loads against each other.
2493    Root = DAG.getRoot();
2494  }
2495
2496  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2497                           Root, I.isVolatile(), I.getAlignment()));
2498}
2499
2500SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2501                                            const Value *SV, SDOperand Root,
2502                                            bool isVolatile,
2503                                            unsigned Alignment) {
2504  SDOperand L =
2505    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2506                isVolatile, Alignment);
2507
2508  if (isVolatile)
2509    DAG.setRoot(L.getValue(1));
2510  else
2511    PendingLoads.push_back(L.getValue(1));
2512
2513  return L;
2514}
2515
2516
2517void SelectionDAGLowering::visitStore(StoreInst &I) {
2518  Value *SrcV = I.getOperand(0);
2519  SDOperand Src = getValue(SrcV);
2520  SDOperand Ptr = getValue(I.getOperand(1));
2521  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2522                           I.isVolatile(), I.getAlignment()));
2523}
2524
2525/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2526/// node.
2527void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2528                                                unsigned Intrinsic) {
2529  bool HasChain = !I.doesNotAccessMemory();
2530  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2531
2532  // Build the operand list.
2533  SmallVector<SDOperand, 8> Ops;
2534  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2535    if (OnlyLoad) {
2536      // We don't need to serialize loads against other loads.
2537      Ops.push_back(DAG.getRoot());
2538    } else {
2539      Ops.push_back(getRoot());
2540    }
2541  }
2542
2543  // Add the intrinsic ID as an integer operand.
2544  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2545
2546  // Add all operands of the call to the operand list.
2547  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2548    SDOperand Op = getValue(I.getOperand(i));
2549    assert(TLI.isTypeLegal(Op.getValueType()) &&
2550           "Intrinsic uses a non-legal type?");
2551    Ops.push_back(Op);
2552  }
2553
2554  std::vector<MVT::ValueType> VTs;
2555  if (I.getType() != Type::VoidTy) {
2556    MVT::ValueType VT = TLI.getValueType(I.getType());
2557    if (MVT::isVector(VT)) {
2558      const VectorType *DestTy = cast<VectorType>(I.getType());
2559      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2560
2561      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2562      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2563    }
2564
2565    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2566    VTs.push_back(VT);
2567  }
2568  if (HasChain)
2569    VTs.push_back(MVT::Other);
2570
2571  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2572
2573  // Create the node.
2574  SDOperand Result;
2575  if (!HasChain)
2576    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2577                         &Ops[0], Ops.size());
2578  else if (I.getType() != Type::VoidTy)
2579    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2580                         &Ops[0], Ops.size());
2581  else
2582    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2583                         &Ops[0], Ops.size());
2584
2585  if (HasChain) {
2586    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2587    if (OnlyLoad)
2588      PendingLoads.push_back(Chain);
2589    else
2590      DAG.setRoot(Chain);
2591  }
2592  if (I.getType() != Type::VoidTy) {
2593    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2594      MVT::ValueType VT = TLI.getValueType(PTy);
2595      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2596    }
2597    setValue(&I, Result);
2598  }
2599}
2600
2601/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2602static GlobalVariable *ExtractTypeInfo (Value *V) {
2603  V = IntrinsicInst::StripPointerCasts(V);
2604  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2605  assert ((GV || isa<ConstantPointerNull>(V)) &&
2606          "TypeInfo must be a global variable or NULL");
2607  return GV;
2608}
2609
2610/// addCatchInfo - Extract the personality and type infos from an eh.selector
2611/// call, and add them to the specified machine basic block.
2612static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2613                         MachineBasicBlock *MBB) {
2614  // Inform the MachineModuleInfo of the personality for this landing pad.
2615  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2616  assert(CE->getOpcode() == Instruction::BitCast &&
2617         isa<Function>(CE->getOperand(0)) &&
2618         "Personality should be a function");
2619  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2620
2621  // Gather all the type infos for this landing pad and pass them along to
2622  // MachineModuleInfo.
2623  std::vector<GlobalVariable *> TyInfo;
2624  unsigned N = I.getNumOperands();
2625
2626  for (unsigned i = N - 1; i > 2; --i) {
2627    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2628      unsigned FilterLength = CI->getZExtValue();
2629      unsigned FirstCatch = i + FilterLength + !FilterLength;
2630      assert (FirstCatch <= N && "Invalid filter length");
2631
2632      if (FirstCatch < N) {
2633        TyInfo.reserve(N - FirstCatch);
2634        for (unsigned j = FirstCatch; j < N; ++j)
2635          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2636        MMI->addCatchTypeInfo(MBB, TyInfo);
2637        TyInfo.clear();
2638      }
2639
2640      if (!FilterLength) {
2641        // Cleanup.
2642        MMI->addCleanup(MBB);
2643      } else {
2644        // Filter.
2645        TyInfo.reserve(FilterLength - 1);
2646        for (unsigned j = i + 1; j < FirstCatch; ++j)
2647          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2648        MMI->addFilterTypeInfo(MBB, TyInfo);
2649        TyInfo.clear();
2650      }
2651
2652      N = i;
2653    }
2654  }
2655
2656  if (N > 3) {
2657    TyInfo.reserve(N - 3);
2658    for (unsigned j = 3; j < N; ++j)
2659      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2660    MMI->addCatchTypeInfo(MBB, TyInfo);
2661  }
2662}
2663
2664/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2665/// we want to emit this as a call to a named external function, return the name
2666/// otherwise lower it and return null.
2667const char *
2668SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2669  switch (Intrinsic) {
2670  default:
2671    // By default, turn this into a target intrinsic node.
2672    visitTargetIntrinsic(I, Intrinsic);
2673    return 0;
2674  case Intrinsic::vastart:  visitVAStart(I); return 0;
2675  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2676  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2677  case Intrinsic::returnaddress:
2678    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2679                             getValue(I.getOperand(1))));
2680    return 0;
2681  case Intrinsic::frameaddress:
2682    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2683                             getValue(I.getOperand(1))));
2684    return 0;
2685  case Intrinsic::setjmp:
2686    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2687    break;
2688  case Intrinsic::longjmp:
2689    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2690    break;
2691  case Intrinsic::memcpy_i32:
2692  case Intrinsic::memcpy_i64:
2693    visitMemIntrinsic(I, ISD::MEMCPY);
2694    return 0;
2695  case Intrinsic::memset_i32:
2696  case Intrinsic::memset_i64:
2697    visitMemIntrinsic(I, ISD::MEMSET);
2698    return 0;
2699  case Intrinsic::memmove_i32:
2700  case Intrinsic::memmove_i64:
2701    visitMemIntrinsic(I, ISD::MEMMOVE);
2702    return 0;
2703
2704  case Intrinsic::dbg_stoppoint: {
2705    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2706    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2707    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2708      SDOperand Ops[5];
2709
2710      Ops[0] = getRoot();
2711      Ops[1] = getValue(SPI.getLineValue());
2712      Ops[2] = getValue(SPI.getColumnValue());
2713
2714      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2715      assert(DD && "Not a debug information descriptor");
2716      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2717
2718      Ops[3] = DAG.getString(CompileUnit->getFileName());
2719      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2720
2721      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2722    }
2723
2724    return 0;
2725  }
2726  case Intrinsic::dbg_region_start: {
2727    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2728    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2729    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2730      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2731      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2732                              DAG.getConstant(LabelID, MVT::i32),
2733                              DAG.getConstant(0, MVT::i32)));
2734    }
2735
2736    return 0;
2737  }
2738  case Intrinsic::dbg_region_end: {
2739    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2740    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2741    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2742      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2743      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2744                              DAG.getConstant(LabelID, MVT::i32),
2745                              DAG.getConstant(0, MVT::i32)));
2746    }
2747
2748    return 0;
2749  }
2750  case Intrinsic::dbg_func_start: {
2751    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2752    if (!MMI) return 0;
2753    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2754    Value *SP = FSI.getSubprogram();
2755    if (SP && MMI->Verify(SP)) {
2756      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
2757      // what (most?) gdb expects.
2758      DebugInfoDesc *DD = MMI->getDescFor(SP);
2759      assert(DD && "Not a debug information descriptor");
2760      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
2761      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
2762      unsigned SrcFile = MMI->RecordSource(CompileUnit->getDirectory(),
2763                                           CompileUnit->getFileName());
2764      // Record the source line but does create a label. It will be emitted
2765      // at asm emission time.
2766      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
2767    }
2768
2769    return 0;
2770  }
2771  case Intrinsic::dbg_declare: {
2772    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2773    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2774    Value *Variable = DI.getVariable();
2775    if (MMI && Variable && MMI->Verify(Variable))
2776      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
2777                              getValue(DI.getAddress()), getValue(Variable)));
2778    return 0;
2779  }
2780
2781  case Intrinsic::eh_exception: {
2782    if (ExceptionHandling) {
2783      if (!CurMBB->isLandingPad()) {
2784        // FIXME: Mark exception register as live in.  Hack for PR1508.
2785        unsigned Reg = TLI.getExceptionAddressRegister();
2786        if (Reg) CurMBB->addLiveIn(Reg);
2787      }
2788      // Insert the EXCEPTIONADDR instruction.
2789      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2790      SDOperand Ops[1];
2791      Ops[0] = DAG.getRoot();
2792      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2793      setValue(&I, Op);
2794      DAG.setRoot(Op.getValue(1));
2795    } else {
2796      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2797    }
2798    return 0;
2799  }
2800
2801  case Intrinsic::eh_selector_i32:
2802  case Intrinsic::eh_selector_i64: {
2803    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2804    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2805                         MVT::i32 : MVT::i64);
2806
2807    if (ExceptionHandling && MMI) {
2808      if (CurMBB->isLandingPad())
2809        addCatchInfo(I, MMI, CurMBB);
2810      else {
2811#ifndef NDEBUG
2812        FuncInfo.CatchInfoLost.insert(&I);
2813#endif
2814        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
2815        unsigned Reg = TLI.getExceptionSelectorRegister();
2816        if (Reg) CurMBB->addLiveIn(Reg);
2817      }
2818
2819      // Insert the EHSELECTION instruction.
2820      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2821      SDOperand Ops[2];
2822      Ops[0] = getValue(I.getOperand(1));
2823      Ops[1] = getRoot();
2824      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2825      setValue(&I, Op);
2826      DAG.setRoot(Op.getValue(1));
2827    } else {
2828      setValue(&I, DAG.getConstant(0, VT));
2829    }
2830
2831    return 0;
2832  }
2833
2834  case Intrinsic::eh_typeid_for_i32:
2835  case Intrinsic::eh_typeid_for_i64: {
2836    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2837    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2838                         MVT::i32 : MVT::i64);
2839
2840    if (MMI) {
2841      // Find the type id for the given typeinfo.
2842      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2843
2844      unsigned TypeID = MMI->getTypeIDFor(GV);
2845      setValue(&I, DAG.getConstant(TypeID, VT));
2846    } else {
2847      // Return something different to eh_selector.
2848      setValue(&I, DAG.getConstant(1, VT));
2849    }
2850
2851    return 0;
2852  }
2853
2854  case Intrinsic::eh_return: {
2855    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2856
2857    if (MMI && ExceptionHandling) {
2858      MMI->setCallsEHReturn(true);
2859      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2860                              MVT::Other,
2861                              getRoot(),
2862                              getValue(I.getOperand(1)),
2863                              getValue(I.getOperand(2))));
2864    } else {
2865      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2866    }
2867
2868    return 0;
2869  }
2870
2871   case Intrinsic::eh_unwind_init: {
2872     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2873       MMI->setCallsUnwindInit(true);
2874     }
2875
2876     return 0;
2877   }
2878
2879   case Intrinsic::eh_dwarf_cfa: {
2880     if (ExceptionHandling) {
2881       MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
2882       SDOperand CfaArg;
2883       if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2884         CfaArg = DAG.getNode(ISD::TRUNCATE,
2885                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2886       else
2887         CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2888                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2889
2890       SDOperand Offset = DAG.getNode(ISD::ADD,
2891                                      TLI.getPointerTy(),
2892                                      DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
2893                                                  TLI.getPointerTy()),
2894                                      CfaArg);
2895       setValue(&I, DAG.getNode(ISD::ADD,
2896                                TLI.getPointerTy(),
2897                                DAG.getNode(ISD::FRAMEADDR,
2898                                            TLI.getPointerTy(),
2899                                            DAG.getConstant(0,
2900                                                            TLI.getPointerTy())),
2901                                Offset));
2902     } else {
2903       setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2904     }
2905
2906     return 0;
2907  }
2908
2909  case Intrinsic::sqrt:
2910    setValue(&I, DAG.getNode(ISD::FSQRT,
2911                             getValue(I.getOperand(1)).getValueType(),
2912                             getValue(I.getOperand(1))));
2913    return 0;
2914  case Intrinsic::powi:
2915    setValue(&I, DAG.getNode(ISD::FPOWI,
2916                             getValue(I.getOperand(1)).getValueType(),
2917                             getValue(I.getOperand(1)),
2918                             getValue(I.getOperand(2))));
2919    return 0;
2920  case Intrinsic::sin:
2921    setValue(&I, DAG.getNode(ISD::FSIN,
2922                             getValue(I.getOperand(1)).getValueType(),
2923                             getValue(I.getOperand(1))));
2924    return 0;
2925  case Intrinsic::cos:
2926    setValue(&I, DAG.getNode(ISD::FCOS,
2927                             getValue(I.getOperand(1)).getValueType(),
2928                             getValue(I.getOperand(1))));
2929    return 0;
2930  case Intrinsic::pow:
2931    setValue(&I, DAG.getNode(ISD::FPOW,
2932                             getValue(I.getOperand(1)).getValueType(),
2933                             getValue(I.getOperand(1)),
2934                             getValue(I.getOperand(2))));
2935    return 0;
2936  case Intrinsic::pcmarker: {
2937    SDOperand Tmp = getValue(I.getOperand(1));
2938    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2939    return 0;
2940  }
2941  case Intrinsic::readcyclecounter: {
2942    SDOperand Op = getRoot();
2943    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2944                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2945                                &Op, 1);
2946    setValue(&I, Tmp);
2947    DAG.setRoot(Tmp.getValue(1));
2948    return 0;
2949  }
2950  case Intrinsic::part_select: {
2951    // Currently not implemented: just abort
2952    assert(0 && "part_select intrinsic not implemented");
2953    abort();
2954  }
2955  case Intrinsic::part_set: {
2956    // Currently not implemented: just abort
2957    assert(0 && "part_set intrinsic not implemented");
2958    abort();
2959  }
2960  case Intrinsic::bswap:
2961    setValue(&I, DAG.getNode(ISD::BSWAP,
2962                             getValue(I.getOperand(1)).getValueType(),
2963                             getValue(I.getOperand(1))));
2964    return 0;
2965  case Intrinsic::cttz: {
2966    SDOperand Arg = getValue(I.getOperand(1));
2967    MVT::ValueType Ty = Arg.getValueType();
2968    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2969    setValue(&I, result);
2970    return 0;
2971  }
2972  case Intrinsic::ctlz: {
2973    SDOperand Arg = getValue(I.getOperand(1));
2974    MVT::ValueType Ty = Arg.getValueType();
2975    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2976    setValue(&I, result);
2977    return 0;
2978  }
2979  case Intrinsic::ctpop: {
2980    SDOperand Arg = getValue(I.getOperand(1));
2981    MVT::ValueType Ty = Arg.getValueType();
2982    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2983    setValue(&I, result);
2984    return 0;
2985  }
2986  case Intrinsic::stacksave: {
2987    SDOperand Op = getRoot();
2988    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2989              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2990    setValue(&I, Tmp);
2991    DAG.setRoot(Tmp.getValue(1));
2992    return 0;
2993  }
2994  case Intrinsic::stackrestore: {
2995    SDOperand Tmp = getValue(I.getOperand(1));
2996    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2997    return 0;
2998  }
2999  case Intrinsic::prefetch:
3000    // FIXME: Currently discarding prefetches.
3001    return 0;
3002
3003  case Intrinsic::var_annotation:
3004    // Discard annotate attributes
3005    return 0;
3006
3007  case Intrinsic::init_trampoline: {
3008    const Function *F =
3009      cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
3010
3011    SDOperand Ops[6];
3012    Ops[0] = getRoot();
3013    Ops[1] = getValue(I.getOperand(1));
3014    Ops[2] = getValue(I.getOperand(2));
3015    Ops[3] = getValue(I.getOperand(3));
3016    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3017    Ops[5] = DAG.getSrcValue(F);
3018
3019    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
3020                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3021                                                      MVT::Other), 2,
3022                                Ops, 6);
3023
3024    setValue(&I, Tmp);
3025    DAG.setRoot(Tmp.getValue(1));
3026    return 0;
3027  }
3028
3029  case Intrinsic::gcroot:
3030    if (GCI) {
3031      Value *Alloca = I.getOperand(1);
3032      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3033
3034      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3035      GCI->addStackRoot(FI->getIndex(), TypeMap);
3036    }
3037    return 0;
3038
3039  case Intrinsic::gcread:
3040  case Intrinsic::gcwrite:
3041    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3042    return 0;
3043
3044  case Intrinsic::flt_rounds: {
3045    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3046    return 0;
3047  }
3048
3049  case Intrinsic::trap: {
3050    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3051    return 0;
3052  }
3053  case Intrinsic::memory_barrier: {
3054    SDOperand Ops[6];
3055    Ops[0] = getRoot();
3056    for (int x = 1; x < 6; ++x)
3057      Ops[x] = getValue(I.getOperand(x));
3058
3059    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3060    return 0;
3061  }
3062  case Intrinsic::atomic_lcs: {
3063    SDOperand Root = getRoot();
3064    SDOperand O3 = getValue(I.getOperand(3));
3065    SDOperand L = DAG.getAtomic(ISD::ATOMIC_LCS, Root,
3066                                getValue(I.getOperand(1)),
3067                                getValue(I.getOperand(2)),
3068                                O3, O3.getValueType());
3069    setValue(&I, L);
3070    DAG.setRoot(L.getValue(1));
3071    return 0;
3072  }
3073  case Intrinsic::atomic_las: {
3074    SDOperand Root = getRoot();
3075    SDOperand O2 = getValue(I.getOperand(2));
3076    SDOperand L = DAG.getAtomic(ISD::ATOMIC_LAS, Root,
3077                                getValue(I.getOperand(1)),
3078                                O2, O2.getValueType());
3079    setValue(&I, L);
3080    DAG.setRoot(L.getValue(1));
3081    return 0;
3082  }
3083  case Intrinsic::atomic_swap: {
3084    SDOperand Root = getRoot();
3085    SDOperand O2 = getValue(I.getOperand(2));
3086    SDOperand L = DAG.getAtomic(ISD::ATOMIC_SWAP, Root,
3087                                getValue(I.getOperand(1)),
3088                                O2, O2.getValueType());
3089    setValue(&I, L);
3090    DAG.setRoot(L.getValue(1));
3091    return 0;
3092  }
3093
3094  }
3095}
3096
3097
3098void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
3099                                       bool IsTailCall,
3100                                       MachineBasicBlock *LandingPad) {
3101  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3102  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3103  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3104  unsigned BeginLabel = 0, EndLabel = 0;
3105
3106  TargetLowering::ArgListTy Args;
3107  TargetLowering::ArgListEntry Entry;
3108  Args.reserve(CS.arg_size());
3109  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3110       i != e; ++i) {
3111    SDOperand ArgNode = getValue(*i);
3112    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3113
3114    unsigned attrInd = i - CS.arg_begin() + 1;
3115    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3116    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3117    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3118    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3119    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3120    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3121    Args.push_back(Entry);
3122  }
3123
3124  bool MarkTryRange = LandingPad ||
3125    // C++ requires special handling of 'nounwind' calls.
3126    (CS.doesNotThrow());
3127
3128  if (MarkTryRange && ExceptionHandling && MMI) {
3129    // Insert a label before the invoke call to mark the try range.  This can be
3130    // used to detect deletion of the invoke via the MachineModuleInfo.
3131    BeginLabel = MMI->NextLabelID();
3132    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3133                            DAG.getConstant(BeginLabel, MVT::i32),
3134                            DAG.getConstant(1, MVT::i32)));
3135  }
3136
3137  std::pair<SDOperand,SDOperand> Result =
3138    TLI.LowerCallTo(getRoot(), CS.getType(),
3139                    CS.paramHasAttr(0, ParamAttr::SExt),
3140                    CS.paramHasAttr(0, ParamAttr::ZExt),
3141                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3142                    Callee, Args, DAG);
3143  if (CS.getType() != Type::VoidTy)
3144    setValue(CS.getInstruction(), Result.first);
3145  DAG.setRoot(Result.second);
3146
3147  if (MarkTryRange && ExceptionHandling && MMI) {
3148    // Insert a label at the end of the invoke call to mark the try range.  This
3149    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3150    EndLabel = MMI->NextLabelID();
3151    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3152                            DAG.getConstant(EndLabel, MVT::i32),
3153                            DAG.getConstant(1, MVT::i32)));
3154
3155    // Inform MachineModuleInfo of range.
3156    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3157  }
3158}
3159
3160
3161void SelectionDAGLowering::visitCall(CallInst &I) {
3162  const char *RenameFn = 0;
3163  if (Function *F = I.getCalledFunction()) {
3164    if (F->isDeclaration()) {
3165      if (unsigned IID = F->getIntrinsicID()) {
3166        RenameFn = visitIntrinsicCall(I, IID);
3167        if (!RenameFn)
3168          return;
3169      }
3170    }
3171
3172    // Check for well-known libc/libm calls.  If the function is internal, it
3173    // can't be a library call.
3174    unsigned NameLen = F->getNameLen();
3175    if (!F->hasInternalLinkage() && NameLen) {
3176      const char *NameStr = F->getNameStart();
3177      if (NameStr[0] == 'c' &&
3178          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3179           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3180        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3181            I.getOperand(1)->getType()->isFloatingPoint() &&
3182            I.getType() == I.getOperand(1)->getType() &&
3183            I.getType() == I.getOperand(2)->getType()) {
3184          SDOperand LHS = getValue(I.getOperand(1));
3185          SDOperand RHS = getValue(I.getOperand(2));
3186          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3187                                   LHS, RHS));
3188          return;
3189        }
3190      } else if (NameStr[0] == 'f' &&
3191                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3192                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3193                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3194        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3195            I.getOperand(1)->getType()->isFloatingPoint() &&
3196            I.getType() == I.getOperand(1)->getType()) {
3197          SDOperand Tmp = getValue(I.getOperand(1));
3198          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3199          return;
3200        }
3201      } else if (NameStr[0] == 's' &&
3202                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3203                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3204                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3205        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3206            I.getOperand(1)->getType()->isFloatingPoint() &&
3207            I.getType() == I.getOperand(1)->getType()) {
3208          SDOperand Tmp = getValue(I.getOperand(1));
3209          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3210          return;
3211        }
3212      } else if (NameStr[0] == 'c' &&
3213                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3214                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3215                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3216        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3217            I.getOperand(1)->getType()->isFloatingPoint() &&
3218            I.getType() == I.getOperand(1)->getType()) {
3219          SDOperand Tmp = getValue(I.getOperand(1));
3220          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3221          return;
3222        }
3223      }
3224    }
3225  } else if (isa<InlineAsm>(I.getOperand(0))) {
3226    visitInlineAsm(&I);
3227    return;
3228  }
3229
3230  SDOperand Callee;
3231  if (!RenameFn)
3232    Callee = getValue(I.getOperand(0));
3233  else
3234    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3235
3236  LowerCallTo(&I, Callee, I.isTailCall());
3237}
3238
3239
3240/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3241/// this value and returns the result as a ValueVT value.  This uses
3242/// Chain/Flag as the input and updates them for the output Chain/Flag.
3243/// If the Flag pointer is NULL, no flag is used.
3244SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3245                                        SDOperand &Chain, SDOperand *Flag)const{
3246  // Copy the legal parts from the registers.
3247  unsigned NumParts = Regs.size();
3248  SmallVector<SDOperand, 8> Parts(NumParts);
3249  for (unsigned i = 0; i != NumParts; ++i) {
3250    SDOperand Part = Flag ?
3251                     DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3252                     DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3253    Chain = Part.getValue(1);
3254    if (Flag)
3255      *Flag = Part.getValue(2);
3256    Parts[i] = Part;
3257  }
3258
3259  // Assemble the legal parts into the final value.
3260  return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3261}
3262
3263/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3264/// specified value into the registers specified by this object.  This uses
3265/// Chain/Flag as the input and updates them for the output Chain/Flag.
3266/// If the Flag pointer is NULL, no flag is used.
3267void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3268                                 SDOperand &Chain, SDOperand *Flag) const {
3269  // Get the list of the values's legal parts.
3270  unsigned NumParts = Regs.size();
3271  SmallVector<SDOperand, 8> Parts(NumParts);
3272  getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3273
3274  // Copy the parts into the registers.
3275  for (unsigned i = 0; i != NumParts; ++i) {
3276    SDOperand Part = Flag ?
3277                     DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3278                     DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3279    Chain = Part.getValue(0);
3280    if (Flag)
3281      *Flag = Part.getValue(1);
3282  }
3283}
3284
3285/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3286/// operand list.  This adds the code marker and includes the number of
3287/// values added into it.
3288void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3289                                        std::vector<SDOperand> &Ops) const {
3290  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3291  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3292  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3293    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3294}
3295
3296/// isAllocatableRegister - If the specified register is safe to allocate,
3297/// i.e. it isn't a stack pointer or some other special register, return the
3298/// register class for the register.  Otherwise, return null.
3299static const TargetRegisterClass *
3300isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3301                      const TargetLowering &TLI,
3302                      const TargetRegisterInfo *TRI) {
3303  MVT::ValueType FoundVT = MVT::Other;
3304  const TargetRegisterClass *FoundRC = 0;
3305  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3306       E = TRI->regclass_end(); RCI != E; ++RCI) {
3307    MVT::ValueType ThisVT = MVT::Other;
3308
3309    const TargetRegisterClass *RC = *RCI;
3310    // If none of the the value types for this register class are valid, we
3311    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3312    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3313         I != E; ++I) {
3314      if (TLI.isTypeLegal(*I)) {
3315        // If we have already found this register in a different register class,
3316        // choose the one with the largest VT specified.  For example, on
3317        // PowerPC, we favor f64 register classes over f32.
3318        if (FoundVT == MVT::Other ||
3319            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3320          ThisVT = *I;
3321          break;
3322        }
3323      }
3324    }
3325
3326    if (ThisVT == MVT::Other) continue;
3327
3328    // NOTE: This isn't ideal.  In particular, this might allocate the
3329    // frame pointer in functions that need it (due to them not being taken
3330    // out of allocation, because a variable sized allocation hasn't been seen
3331    // yet).  This is a slight code pessimization, but should still work.
3332    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3333         E = RC->allocation_order_end(MF); I != E; ++I)
3334      if (*I == Reg) {
3335        // We found a matching register class.  Keep looking at others in case
3336        // we find one with larger registers that this physreg is also in.
3337        FoundRC = RC;
3338        FoundVT = ThisVT;
3339        break;
3340      }
3341  }
3342  return FoundRC;
3343}
3344
3345
3346namespace {
3347/// AsmOperandInfo - This contains information for each constraint that we are
3348/// lowering.
3349struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3350  /// ConstraintCode - This contains the actual string for the code, like "m".
3351  std::string ConstraintCode;
3352
3353  /// ConstraintType - Information about the constraint code, e.g. Register,
3354  /// RegisterClass, Memory, Other, Unknown.
3355  TargetLowering::ConstraintType ConstraintType;
3356
3357  /// CallOperand/CallOperandval - If this is the result output operand or a
3358  /// clobber, this is null, otherwise it is the incoming operand to the
3359  /// CallInst.  This gets modified as the asm is processed.
3360  SDOperand CallOperand;
3361  Value *CallOperandVal;
3362
3363  /// ConstraintVT - The ValueType for the operand value.
3364  MVT::ValueType ConstraintVT;
3365
3366  /// AssignedRegs - If this is a register or register class operand, this
3367  /// contains the set of register corresponding to the operand.
3368  RegsForValue AssignedRegs;
3369
3370  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3371    : InlineAsm::ConstraintInfo(info),
3372      ConstraintType(TargetLowering::C_Unknown),
3373      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3374  }
3375
3376  void ComputeConstraintToUse(const TargetLowering &TLI);
3377
3378  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3379  /// busy in OutputRegs/InputRegs.
3380  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3381                         std::set<unsigned> &OutputRegs,
3382                         std::set<unsigned> &InputRegs,
3383                         const TargetRegisterInfo &TRI) const {
3384    if (isOutReg) {
3385      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3386        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3387    }
3388    if (isInReg) {
3389      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3390        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3391    }
3392  }
3393
3394private:
3395  /// MarkRegAndAliases - Mark the specified register and all aliases in the
3396  /// specified set.
3397  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3398                                const TargetRegisterInfo &TRI) {
3399    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3400    Regs.insert(Reg);
3401    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3402      for (; *Aliases; ++Aliases)
3403        Regs.insert(*Aliases);
3404  }
3405};
3406} // end anon namespace.
3407
3408/// getConstraintGenerality - Return an integer indicating how general CT is.
3409static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3410  switch (CT) {
3411    default: assert(0 && "Unknown constraint type!");
3412    case TargetLowering::C_Other:
3413    case TargetLowering::C_Unknown:
3414      return 0;
3415    case TargetLowering::C_Register:
3416      return 1;
3417    case TargetLowering::C_RegisterClass:
3418      return 2;
3419    case TargetLowering::C_Memory:
3420      return 3;
3421  }
3422}
3423
3424void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3425  assert(!Codes.empty() && "Must have at least one constraint");
3426
3427  std::string *Current = &Codes[0];
3428  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3429  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3430    ConstraintCode = *Current;
3431    ConstraintType = CurType;
3432  } else {
3433    unsigned CurGenerality = getConstraintGenerality(CurType);
3434
3435    // If we have multiple constraints, try to pick the most general one ahead
3436    // of time.  This isn't a wonderful solution, but handles common cases.
3437    for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3438      TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3439      unsigned ThisGenerality = getConstraintGenerality(ThisType);
3440      if (ThisGenerality > CurGenerality) {
3441        // This constraint letter is more general than the previous one,
3442        // use it.
3443        CurType = ThisType;
3444        Current = &Codes[j];
3445        CurGenerality = ThisGenerality;
3446      }
3447    }
3448
3449    ConstraintCode = *Current;
3450    ConstraintType = CurType;
3451  }
3452
3453  if (ConstraintCode == "X") {
3454    if (isa<BasicBlock>(CallOperandVal) || isa<ConstantInt>(CallOperandVal))
3455      return;
3456    // This matches anything.  Labels and constants we handle elsewhere
3457    // ('X' is the only thing that matches labels).  Otherwise, try to
3458    // resolve it to something we know about by looking at the actual
3459    // operand type.
3460    std::string s = "";
3461    TLI.lowerXConstraint(ConstraintVT, s);
3462    if (s!="") {
3463      ConstraintCode = s;
3464      ConstraintType = TLI.getConstraintType(ConstraintCode);
3465    }
3466  }
3467}
3468
3469
3470/// GetRegistersForValue - Assign registers (virtual or physical) for the
3471/// specified operand.  We prefer to assign virtual registers, to allow the
3472/// register allocator handle the assignment process.  However, if the asm uses
3473/// features that we can't model on machineinstrs, we have SDISel do the
3474/// allocation.  This produces generally horrible, but correct, code.
3475///
3476///   OpInfo describes the operand.
3477///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
3478///     or any explicitly clobbered registers.
3479///   Input and OutputRegs are the set of already allocated physical registers.
3480///
3481void SelectionDAGLowering::
3482GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3483                     std::set<unsigned> &OutputRegs,
3484                     std::set<unsigned> &InputRegs) {
3485  // Compute whether this value requires an input register, an output register,
3486  // or both.
3487  bool isOutReg = false;
3488  bool isInReg = false;
3489  switch (OpInfo.Type) {
3490  case InlineAsm::isOutput:
3491    isOutReg = true;
3492
3493    // If this is an early-clobber output, or if there is an input
3494    // constraint that matches this, we need to reserve the input register
3495    // so no other inputs allocate to it.
3496    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3497    break;
3498  case InlineAsm::isInput:
3499    isInReg = true;
3500    isOutReg = false;
3501    break;
3502  case InlineAsm::isClobber:
3503    isOutReg = true;
3504    isInReg = true;
3505    break;
3506  }
3507
3508
3509  MachineFunction &MF = DAG.getMachineFunction();
3510  std::vector<unsigned> Regs;
3511
3512  // If this is a constraint for a single physreg, or a constraint for a
3513  // register class, find it.
3514  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3515    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3516                                     OpInfo.ConstraintVT);
3517
3518  unsigned NumRegs = 1;
3519  if (OpInfo.ConstraintVT != MVT::Other)
3520    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3521  MVT::ValueType RegVT;
3522  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3523
3524
3525  // If this is a constraint for a specific physical register, like {r17},
3526  // assign it now.
3527  if (PhysReg.first) {
3528    if (OpInfo.ConstraintVT == MVT::Other)
3529      ValueVT = *PhysReg.second->vt_begin();
3530
3531    // Get the actual register value type.  This is important, because the user
3532    // may have asked for (e.g.) the AX register in i32 type.  We need to
3533    // remember that AX is actually i16 to get the right extension.
3534    RegVT = *PhysReg.second->vt_begin();
3535
3536    // This is a explicit reference to a physical register.
3537    Regs.push_back(PhysReg.first);
3538
3539    // If this is an expanded reference, add the rest of the regs to Regs.
3540    if (NumRegs != 1) {
3541      TargetRegisterClass::iterator I = PhysReg.second->begin();
3542      TargetRegisterClass::iterator E = PhysReg.second->end();
3543      for (; *I != PhysReg.first; ++I)
3544        assert(I != E && "Didn't find reg!");
3545
3546      // Already added the first reg.
3547      --NumRegs; ++I;
3548      for (; NumRegs; --NumRegs, ++I) {
3549        assert(I != E && "Ran out of registers to allocate!");
3550        Regs.push_back(*I);
3551      }
3552    }
3553    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3554    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3555    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
3556    return;
3557  }
3558
3559  // Otherwise, if this was a reference to an LLVM register class, create vregs
3560  // for this reference.
3561  std::vector<unsigned> RegClassRegs;
3562  const TargetRegisterClass *RC = PhysReg.second;
3563  if (RC) {
3564    // If this is an early clobber or tied register, our regalloc doesn't know
3565    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3566    // and let the regalloc do the right thing.
3567    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3568        // If there is some other early clobber and this is an input register,
3569        // then we are forced to pre-allocate the input reg so it doesn't
3570        // conflict with the earlyclobber.
3571        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3572      RegVT = *PhysReg.second->vt_begin();
3573
3574      if (OpInfo.ConstraintVT == MVT::Other)
3575        ValueVT = RegVT;
3576
3577      // Create the appropriate number of virtual registers.
3578      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3579      for (; NumRegs; --NumRegs)
3580        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
3581
3582      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3583      return;
3584    }
3585
3586    // Otherwise, we can't allocate it.  Let the code below figure out how to
3587    // maintain these constraints.
3588    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3589
3590  } else {
3591    // This is a reference to a register class that doesn't directly correspond
3592    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3593    // registers from the class.
3594    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3595                                                         OpInfo.ConstraintVT);
3596  }
3597
3598  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3599  unsigned NumAllocated = 0;
3600  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3601    unsigned Reg = RegClassRegs[i];
3602    // See if this register is available.
3603    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3604        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3605      // Make sure we find consecutive registers.
3606      NumAllocated = 0;
3607      continue;
3608    }
3609
3610    // Check to see if this register is allocatable (i.e. don't give out the
3611    // stack pointer).
3612    if (RC == 0) {
3613      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
3614      if (!RC) {        // Couldn't allocate this register.
3615        // Reset NumAllocated to make sure we return consecutive registers.
3616        NumAllocated = 0;
3617        continue;
3618      }
3619    }
3620
3621    // Okay, this register is good, we can use it.
3622    ++NumAllocated;
3623
3624    // If we allocated enough consecutive registers, succeed.
3625    if (NumAllocated == NumRegs) {
3626      unsigned RegStart = (i-NumAllocated)+1;
3627      unsigned RegEnd   = i+1;
3628      // Mark all of the allocated registers used.
3629      for (unsigned i = RegStart; i != RegEnd; ++i)
3630        Regs.push_back(RegClassRegs[i]);
3631
3632      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3633                                         OpInfo.ConstraintVT);
3634      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
3635      return;
3636    }
3637  }
3638
3639  // Otherwise, we couldn't allocate enough registers for this.
3640  return;
3641}
3642
3643
3644/// visitInlineAsm - Handle a call to an InlineAsm object.
3645///
3646void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
3647  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3648
3649  /// ConstraintOperands - Information about all of the constraints.
3650  std::vector<AsmOperandInfo> ConstraintOperands;
3651
3652  SDOperand Chain = getRoot();
3653  SDOperand Flag;
3654
3655  std::set<unsigned> OutputRegs, InputRegs;
3656
3657  // Do a prepass over the constraints, canonicalizing them, and building up the
3658  // ConstraintOperands list.
3659  std::vector<InlineAsm::ConstraintInfo>
3660    ConstraintInfos = IA->ParseConstraints();
3661
3662  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3663  // constraint.  If so, we can't let the register allocator allocate any input
3664  // registers, because it will not know to avoid the earlyclobbered output reg.
3665  bool SawEarlyClobber = false;
3666
3667  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3668  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3669    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3670    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3671
3672    MVT::ValueType OpVT = MVT::Other;
3673
3674    // Compute the value type for each operand.
3675    switch (OpInfo.Type) {
3676    case InlineAsm::isOutput:
3677      if (!OpInfo.isIndirect) {
3678        // The return value of the call is this value.  As such, there is no
3679        // corresponding argument.
3680        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3681        OpVT = TLI.getValueType(CS.getType());
3682      } else {
3683        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3684      }
3685      break;
3686    case InlineAsm::isInput:
3687      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3688      break;
3689    case InlineAsm::isClobber:
3690      // Nothing to do.
3691      break;
3692    }
3693
3694    // If this is an input or an indirect output, process the call argument.
3695    // BasicBlocks are labels, currently appearing only in asm's.
3696    if (OpInfo.CallOperandVal) {
3697      if (isa<BasicBlock>(OpInfo.CallOperandVal))
3698        OpInfo.CallOperand =
3699          DAG.getBasicBlock(FuncInfo.MBBMap[cast<BasicBlock>(
3700                                                 OpInfo.CallOperandVal)]);
3701      else {
3702        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3703        const Type *OpTy = OpInfo.CallOperandVal->getType();
3704        // If this is an indirect operand, the operand is a pointer to the
3705        // accessed type.
3706        if (OpInfo.isIndirect)
3707          OpTy = cast<PointerType>(OpTy)->getElementType();
3708
3709        // If OpTy is not a first-class value, it may be a struct/union that we
3710        // can tile with integers.
3711        if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3712          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3713          switch (BitSize) {
3714          default: break;
3715          case 1:
3716          case 8:
3717          case 16:
3718          case 32:
3719          case 64:
3720            OpTy = IntegerType::get(BitSize);
3721            break;
3722          }
3723        }
3724
3725        OpVT = TLI.getValueType(OpTy, true);
3726      }
3727    }
3728
3729    OpInfo.ConstraintVT = OpVT;
3730
3731    // Compute the constraint code and ConstraintType to use.
3732    OpInfo.ComputeConstraintToUse(TLI);
3733
3734    // Keep track of whether we see an earlyclobber.
3735    SawEarlyClobber |= OpInfo.isEarlyClobber;
3736
3737    // If we see a clobber of a register, it is an early clobber.
3738    if (!SawEarlyClobber &&
3739        OpInfo.Type == InlineAsm::isClobber &&
3740        OpInfo.ConstraintType == TargetLowering::C_Register) {
3741      // Note that we want to ignore things that we don't trick here, like
3742      // dirflag, fpsr, flags, etc.
3743      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3744        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3745                                         OpInfo.ConstraintVT);
3746      if (PhysReg.first || PhysReg.second) {
3747        // This is a register we know of.
3748        SawEarlyClobber = true;
3749      }
3750    }
3751
3752    // If this is a memory input, and if the operand is not indirect, do what we
3753    // need to to provide an address for the memory input.
3754    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3755        !OpInfo.isIndirect) {
3756      assert(OpInfo.Type == InlineAsm::isInput &&
3757             "Can only indirectify direct input operands!");
3758
3759      // Memory operands really want the address of the value.  If we don't have
3760      // an indirect input, put it in the constpool if we can, otherwise spill
3761      // it to a stack slot.
3762
3763      // If the operand is a float, integer, or vector constant, spill to a
3764      // constant pool entry to get its address.
3765      Value *OpVal = OpInfo.CallOperandVal;
3766      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3767          isa<ConstantVector>(OpVal)) {
3768        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3769                                                 TLI.getPointerTy());
3770      } else {
3771        // Otherwise, create a stack slot and emit a store to it before the
3772        // asm.
3773        const Type *Ty = OpVal->getType();
3774        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
3775        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3776        MachineFunction &MF = DAG.getMachineFunction();
3777        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3778        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3779        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3780        OpInfo.CallOperand = StackSlot;
3781      }
3782
3783      // There is no longer a Value* corresponding to this operand.
3784      OpInfo.CallOperandVal = 0;
3785      // It is now an indirect operand.
3786      OpInfo.isIndirect = true;
3787    }
3788
3789    // If this constraint is for a specific register, allocate it before
3790    // anything else.
3791    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3792      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3793  }
3794  ConstraintInfos.clear();
3795
3796
3797  // Second pass - Loop over all of the operands, assigning virtual or physregs
3798  // to registerclass operands.
3799  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3800    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3801
3802    // C_Register operands have already been allocated, Other/Memory don't need
3803    // to be.
3804    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3805      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3806  }
3807
3808  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3809  std::vector<SDOperand> AsmNodeOperands;
3810  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3811  AsmNodeOperands.push_back(
3812          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3813
3814
3815  // Loop over all of the inputs, copying the operand values into the
3816  // appropriate registers and processing the output regs.
3817  RegsForValue RetValRegs;
3818
3819  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3820  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3821
3822  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3823    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3824
3825    switch (OpInfo.Type) {
3826    case InlineAsm::isOutput: {
3827      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3828          OpInfo.ConstraintType != TargetLowering::C_Register) {
3829        // Memory output, or 'other' output (e.g. 'X' constraint).
3830        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3831
3832        // Add information to the INLINEASM node to know about this output.
3833        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3834        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3835                                                        TLI.getPointerTy()));
3836        AsmNodeOperands.push_back(OpInfo.CallOperand);
3837        break;
3838      }
3839
3840      // Otherwise, this is a register or register class output.
3841
3842      // Copy the output from the appropriate register.  Find a register that
3843      // we can use.
3844      if (OpInfo.AssignedRegs.Regs.empty()) {
3845        cerr << "Couldn't allocate output reg for contraint '"
3846             << OpInfo.ConstraintCode << "'!\n";
3847        exit(1);
3848      }
3849
3850      if (!OpInfo.isIndirect) {
3851        // This is the result value of the call.
3852        assert(RetValRegs.Regs.empty() &&
3853               "Cannot have multiple output constraints yet!");
3854        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3855        RetValRegs = OpInfo.AssignedRegs;
3856      } else {
3857        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3858                                                      OpInfo.CallOperandVal));
3859      }
3860
3861      // Add information to the INLINEASM node to know that this register is
3862      // set.
3863      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3864                                               AsmNodeOperands);
3865      break;
3866    }
3867    case InlineAsm::isInput: {
3868      SDOperand InOperandVal = OpInfo.CallOperand;
3869
3870      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3871        // If this is required to match an output register we have already set,
3872        // just use its register.
3873        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3874
3875        // Scan until we find the definition we already emitted of this operand.
3876        // When we find it, create a RegsForValue operand.
3877        unsigned CurOp = 2;  // The first operand.
3878        for (; OperandNo; --OperandNo) {
3879          // Advance to the next operand.
3880          unsigned NumOps =
3881            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3882          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3883                  (NumOps & 7) == 4 /*MEM*/) &&
3884                 "Skipped past definitions?");
3885          CurOp += (NumOps>>3)+1;
3886        }
3887
3888        unsigned NumOps =
3889          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3890        if ((NumOps & 7) == 2 /*REGDEF*/) {
3891          // Add NumOps>>3 registers to MatchedRegs.
3892          RegsForValue MatchedRegs;
3893          MatchedRegs.ValueVT = InOperandVal.getValueType();
3894          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3895          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3896            unsigned Reg =
3897              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3898            MatchedRegs.Regs.push_back(Reg);
3899          }
3900
3901          // Use the produced MatchedRegs object to
3902          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3903          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3904          break;
3905        } else {
3906          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3907          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
3908          // Add information to the INLINEASM node to know about this input.
3909          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3910          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3911                                                          TLI.getPointerTy()));
3912          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
3913          break;
3914        }
3915      }
3916
3917      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3918        assert(!OpInfo.isIndirect &&
3919               "Don't know how to handle indirect other inputs yet!");
3920
3921        std::vector<SDOperand> Ops;
3922        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3923                                         Ops, DAG);
3924        if (Ops.empty()) {
3925          cerr << "Invalid operand for inline asm constraint '"
3926               << OpInfo.ConstraintCode << "'!\n";
3927          exit(1);
3928        }
3929
3930        // Add information to the INLINEASM node to know about this input.
3931        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
3932        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3933                                                        TLI.getPointerTy()));
3934        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
3935        break;
3936      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3937        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3938        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3939               "Memory operands expect pointer values");
3940
3941        // Add information to the INLINEASM node to know about this input.
3942        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3943        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3944                                                        TLI.getPointerTy()));
3945        AsmNodeOperands.push_back(InOperandVal);
3946        break;
3947      }
3948
3949      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3950              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3951             "Unknown constraint type!");
3952      assert(!OpInfo.isIndirect &&
3953             "Don't know how to handle indirect register inputs yet!");
3954
3955      // Copy the input into the appropriate registers.
3956      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3957             "Couldn't allocate input reg!");
3958
3959      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3960
3961      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3962                                               AsmNodeOperands);
3963      break;
3964    }
3965    case InlineAsm::isClobber: {
3966      // Add the clobbered value to the operand list, so that the register
3967      // allocator is aware that the physreg got clobbered.
3968      if (!OpInfo.AssignedRegs.Regs.empty())
3969        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3970                                                 AsmNodeOperands);
3971      break;
3972    }
3973    }
3974  }
3975
3976  // Finish up input operands.
3977  AsmNodeOperands[0] = Chain;
3978  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3979
3980  Chain = DAG.getNode(ISD::INLINEASM,
3981                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3982                      &AsmNodeOperands[0], AsmNodeOperands.size());
3983  Flag = Chain.getValue(1);
3984
3985  // If this asm returns a register value, copy the result from that register
3986  // and set it as the value of the call.
3987  if (!RetValRegs.Regs.empty()) {
3988    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3989
3990    // If the result of the inline asm is a vector, it may have the wrong
3991    // width/num elts.  Make sure to convert it to the right type with
3992    // bit_convert.
3993    if (MVT::isVector(Val.getValueType())) {
3994      const VectorType *VTy = cast<VectorType>(CS.getType());
3995      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3996
3997      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3998    }
3999
4000    setValue(CS.getInstruction(), Val);
4001  }
4002
4003  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
4004
4005  // Process indirect outputs, first output all of the flagged copies out of
4006  // physregs.
4007  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4008    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4009    Value *Ptr = IndirectStoresToEmit[i].second;
4010    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4011    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4012  }
4013
4014  // Emit the non-flagged stores from the physregs.
4015  SmallVector<SDOperand, 8> OutChains;
4016  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4017    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4018                                    getValue(StoresToEmit[i].second),
4019                                    StoresToEmit[i].second, 0));
4020  if (!OutChains.empty())
4021    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4022                        &OutChains[0], OutChains.size());
4023  DAG.setRoot(Chain);
4024}
4025
4026
4027void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4028  SDOperand Src = getValue(I.getOperand(0));
4029
4030  MVT::ValueType IntPtr = TLI.getPointerTy();
4031
4032  if (IntPtr < Src.getValueType())
4033    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4034  else if (IntPtr > Src.getValueType())
4035    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4036
4037  // Scale the source by the type size.
4038  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4039  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4040                    Src, DAG.getIntPtrConstant(ElementSize));
4041
4042  TargetLowering::ArgListTy Args;
4043  TargetLowering::ArgListEntry Entry;
4044  Entry.Node = Src;
4045  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4046  Args.push_back(Entry);
4047
4048  std::pair<SDOperand,SDOperand> Result =
4049    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4050                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4051  setValue(&I, Result.first);  // Pointers always fit in registers
4052  DAG.setRoot(Result.second);
4053}
4054
4055void SelectionDAGLowering::visitFree(FreeInst &I) {
4056  TargetLowering::ArgListTy Args;
4057  TargetLowering::ArgListEntry Entry;
4058  Entry.Node = getValue(I.getOperand(0));
4059  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4060  Args.push_back(Entry);
4061  MVT::ValueType IntPtr = TLI.getPointerTy();
4062  std::pair<SDOperand,SDOperand> Result =
4063    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4064                    CallingConv::C, true,
4065                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4066  DAG.setRoot(Result.second);
4067}
4068
4069// EmitInstrWithCustomInserter - This method should be implemented by targets
4070// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4071// instructions are special in various ways, which require special support to
4072// insert.  The specified MachineInstr is created but not inserted into any
4073// basic blocks, and the scheduler passes ownership of it to this method.
4074MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4075                                                       MachineBasicBlock *MBB) {
4076  cerr << "If a target marks an instruction with "
4077       << "'usesCustomDAGSchedInserter', it must implement "
4078       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4079  abort();
4080  return 0;
4081}
4082
4083void SelectionDAGLowering::visitVAStart(CallInst &I) {
4084  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4085                          getValue(I.getOperand(1)),
4086                          DAG.getSrcValue(I.getOperand(1))));
4087}
4088
4089void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4090  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4091                             getValue(I.getOperand(0)),
4092                             DAG.getSrcValue(I.getOperand(0)));
4093  setValue(&I, V);
4094  DAG.setRoot(V.getValue(1));
4095}
4096
4097void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4098  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4099                          getValue(I.getOperand(1)),
4100                          DAG.getSrcValue(I.getOperand(1))));
4101}
4102
4103void SelectionDAGLowering::visitVACopy(CallInst &I) {
4104  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4105                          getValue(I.getOperand(1)),
4106                          getValue(I.getOperand(2)),
4107                          DAG.getSrcValue(I.getOperand(1)),
4108                          DAG.getSrcValue(I.getOperand(2))));
4109}
4110
4111/// TargetLowering::LowerArguments - This is the default LowerArguments
4112/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4113/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4114/// integrated into SDISel.
4115std::vector<SDOperand>
4116TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
4117  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4118  std::vector<SDOperand> Ops;
4119  Ops.push_back(DAG.getRoot());
4120  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4121  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4122
4123  // Add one result value for each formal argument.
4124  std::vector<MVT::ValueType> RetVals;
4125  unsigned j = 1;
4126  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4127       I != E; ++I, ++j) {
4128    MVT::ValueType VT = getValueType(I->getType());
4129    unsigned Flags = ISD::ParamFlags::NoFlagSet;
4130    unsigned OriginalAlignment =
4131      getTargetData()->getABITypeAlignment(I->getType());
4132
4133    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
4134    // that is zero extended!
4135    if (F.paramHasAttr(j, ParamAttr::ZExt))
4136      Flags &= ~(ISD::ParamFlags::SExt);
4137    if (F.paramHasAttr(j, ParamAttr::SExt))
4138      Flags |= ISD::ParamFlags::SExt;
4139    if (F.paramHasAttr(j, ParamAttr::InReg))
4140      Flags |= ISD::ParamFlags::InReg;
4141    if (F.paramHasAttr(j, ParamAttr::StructRet))
4142      Flags |= ISD::ParamFlags::StructReturn;
4143    if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4144      Flags |= ISD::ParamFlags::ByVal;
4145      const PointerType *Ty = cast<PointerType>(I->getType());
4146      const Type *ElementTy = Ty->getElementType();
4147      unsigned FrameAlign = Log2_32(getByValTypeAlignment(ElementTy));
4148      unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4149      Flags |= (FrameAlign << ISD::ParamFlags::ByValAlignOffs);
4150      Flags |= (FrameSize  << ISD::ParamFlags::ByValSizeOffs);
4151    }
4152    if (F.paramHasAttr(j, ParamAttr::Nest))
4153      Flags |= ISD::ParamFlags::Nest;
4154    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
4155
4156    MVT::ValueType RegisterVT = getRegisterType(VT);
4157    unsigned NumRegs = getNumRegisters(VT);
4158    for (unsigned i = 0; i != NumRegs; ++i) {
4159      RetVals.push_back(RegisterVT);
4160      // if it isn't first piece, alignment must be 1
4161      if (i > 0)
4162        Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
4163          (1 << ISD::ParamFlags::OrigAlignmentOffs);
4164      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4165    }
4166  }
4167
4168  RetVals.push_back(MVT::Other);
4169
4170  // Create the node.
4171  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4172                               DAG.getVTList(&RetVals[0], RetVals.size()),
4173                               &Ops[0], Ops.size()).Val;
4174
4175  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4176  // allows exposing the loads that may be part of the argument access to the
4177  // first DAGCombiner pass.
4178  SDOperand TmpRes = LowerOperation(SDOperand(Result, 0), DAG);
4179
4180  // The number of results should match up, except that the lowered one may have
4181  // an extra flag result.
4182  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4183          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4184           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4185         && "Lowering produced unexpected number of results!");
4186  Result = TmpRes.Val;
4187
4188  unsigned NumArgRegs = Result->getNumValues() - 1;
4189  DAG.setRoot(SDOperand(Result, NumArgRegs));
4190
4191  // Set up the return result vector.
4192  Ops.clear();
4193  unsigned i = 0;
4194  unsigned Idx = 1;
4195  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4196      ++I, ++Idx) {
4197    MVT::ValueType VT = getValueType(I->getType());
4198    MVT::ValueType PartVT = getRegisterType(VT);
4199
4200    unsigned NumParts = getNumRegisters(VT);
4201    SmallVector<SDOperand, 4> Parts(NumParts);
4202    for (unsigned j = 0; j != NumParts; ++j)
4203      Parts[j] = SDOperand(Result, i++);
4204
4205    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4206    if (F.paramHasAttr(Idx, ParamAttr::SExt))
4207      AssertOp = ISD::AssertSext;
4208    else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4209      AssertOp = ISD::AssertZext;
4210
4211    Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4212                                   AssertOp, true));
4213  }
4214  assert(i == NumArgRegs && "Argument register count mismatch!");
4215  return Ops;
4216}
4217
4218
4219/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4220/// implementation, which just inserts an ISD::CALL node, which is later custom
4221/// lowered by the target to something concrete.  FIXME: When all targets are
4222/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4223std::pair<SDOperand, SDOperand>
4224TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4225                            bool RetSExt, bool RetZExt, bool isVarArg,
4226                            unsigned CallingConv, bool isTailCall,
4227                            SDOperand Callee,
4228                            ArgListTy &Args, SelectionDAG &DAG) {
4229  SmallVector<SDOperand, 32> Ops;
4230  Ops.push_back(Chain);   // Op#0 - Chain
4231  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4232  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4233  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4234  Ops.push_back(Callee);
4235
4236  // Handle all of the outgoing arguments.
4237  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4238    MVT::ValueType VT = getValueType(Args[i].Ty);
4239    SDOperand Op = Args[i].Node;
4240    unsigned Flags = ISD::ParamFlags::NoFlagSet;
4241    unsigned OriginalAlignment =
4242      getTargetData()->getABITypeAlignment(Args[i].Ty);
4243
4244    if (Args[i].isSExt)
4245      Flags |= ISD::ParamFlags::SExt;
4246    if (Args[i].isZExt)
4247      Flags |= ISD::ParamFlags::ZExt;
4248    if (Args[i].isInReg)
4249      Flags |= ISD::ParamFlags::InReg;
4250    if (Args[i].isSRet)
4251      Flags |= ISD::ParamFlags::StructReturn;
4252    if (Args[i].isByVal) {
4253      Flags |= ISD::ParamFlags::ByVal;
4254      const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4255      const Type *ElementTy = Ty->getElementType();
4256      unsigned FrameAlign = Log2_32(getByValTypeAlignment(ElementTy));
4257      unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4258      Flags |= (FrameAlign << ISD::ParamFlags::ByValAlignOffs);
4259      Flags |= (FrameSize  << ISD::ParamFlags::ByValSizeOffs);
4260    }
4261    if (Args[i].isNest)
4262      Flags |= ISD::ParamFlags::Nest;
4263    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
4264
4265    MVT::ValueType PartVT = getRegisterType(VT);
4266    unsigned NumParts = getNumRegisters(VT);
4267    SmallVector<SDOperand, 4> Parts(NumParts);
4268    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4269
4270    if (Args[i].isSExt)
4271      ExtendKind = ISD::SIGN_EXTEND;
4272    else if (Args[i].isZExt)
4273      ExtendKind = ISD::ZERO_EXTEND;
4274
4275    getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4276
4277    for (unsigned i = 0; i != NumParts; ++i) {
4278      // if it isn't first piece, alignment must be 1
4279      unsigned MyFlags = Flags;
4280      if (i != 0)
4281        MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4282          (1 << ISD::ParamFlags::OrigAlignmentOffs);
4283
4284      Ops.push_back(Parts[i]);
4285      Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
4286    }
4287  }
4288
4289  // Figure out the result value types.
4290  MVT::ValueType VT = getValueType(RetTy);
4291  MVT::ValueType RegisterVT = getRegisterType(VT);
4292  unsigned NumRegs = getNumRegisters(VT);
4293  SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
4294  for (unsigned i = 0; i != NumRegs; ++i)
4295    RetTys[i] = RegisterVT;
4296
4297  RetTys.push_back(MVT::Other);  // Always has a chain.
4298
4299  // Create the CALL node.
4300  SDOperand Res = DAG.getNode(ISD::CALL,
4301                              DAG.getVTList(&RetTys[0], NumRegs + 1),
4302                              &Ops[0], Ops.size());
4303  Chain = Res.getValue(NumRegs);
4304
4305  // Gather up the call result into a single value.
4306  if (RetTy != Type::VoidTy) {
4307    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4308
4309    if (RetSExt)
4310      AssertOp = ISD::AssertSext;
4311    else if (RetZExt)
4312      AssertOp = ISD::AssertZext;
4313
4314    SmallVector<SDOperand, 4> Results(NumRegs);
4315    for (unsigned i = 0; i != NumRegs; ++i)
4316      Results[i] = Res.getValue(i);
4317    Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4318                           AssertOp, true);
4319  }
4320
4321  return std::make_pair(Res, Chain);
4322}
4323
4324SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4325  assert(0 && "LowerOperation not implemented for this target!");
4326  abort();
4327  return SDOperand();
4328}
4329
4330SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4331                                                 SelectionDAG &DAG) {
4332  assert(0 && "CustomPromoteOperation not implemented for this target!");
4333  abort();
4334  return SDOperand();
4335}
4336
4337/// getMemsetValue - Vectorized representation of the memset value
4338/// operand.
4339static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4340                                SelectionDAG &DAG) {
4341  MVT::ValueType CurVT = VT;
4342  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4343    uint64_t Val   = C->getValue() & 255;
4344    unsigned Shift = 8;
4345    while (CurVT != MVT::i8) {
4346      Val = (Val << Shift) | Val;
4347      Shift <<= 1;
4348      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4349    }
4350    return DAG.getConstant(Val, VT);
4351  } else {
4352    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4353    unsigned Shift = 8;
4354    while (CurVT != MVT::i8) {
4355      Value =
4356        DAG.getNode(ISD::OR, VT,
4357                    DAG.getNode(ISD::SHL, VT, Value,
4358                                DAG.getConstant(Shift, MVT::i8)), Value);
4359      Shift <<= 1;
4360      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4361    }
4362
4363    return Value;
4364  }
4365}
4366
4367/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4368/// used when a memcpy is turned into a memset when the source is a constant
4369/// string ptr.
4370static SDOperand getMemsetStringVal(MVT::ValueType VT,
4371                                    SelectionDAG &DAG, TargetLowering &TLI,
4372                                    std::string &Str, unsigned Offset) {
4373  uint64_t Val = 0;
4374  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4375  if (TLI.isLittleEndian())
4376    Offset = Offset + MSB - 1;
4377  for (unsigned i = 0; i != MSB; ++i) {
4378    Val = (Val << 8) | (unsigned char)Str[Offset];
4379    Offset += TLI.isLittleEndian() ? -1 : 1;
4380  }
4381  return DAG.getConstant(Val, VT);
4382}
4383
4384/// getMemBasePlusOffset - Returns base and offset node for the
4385static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4386                                      SelectionDAG &DAG, TargetLowering &TLI) {
4387  MVT::ValueType VT = Base.getValueType();
4388  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4389}
4390
4391/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4392/// to replace the memset / memcpy is below the threshold. It also returns the
4393/// types of the sequence of  memory ops to perform memset / memcpy.
4394static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4395                                     unsigned Limit, uint64_t Size,
4396                                     unsigned Align, TargetLowering &TLI) {
4397  MVT::ValueType VT;
4398
4399  if (TLI.allowsUnalignedMemoryAccesses()) {
4400    VT = MVT::i64;
4401  } else {
4402    switch (Align & 7) {
4403    case 0:
4404      VT = MVT::i64;
4405      break;
4406    case 4:
4407      VT = MVT::i32;
4408      break;
4409    case 2:
4410      VT = MVT::i16;
4411      break;
4412    default:
4413      VT = MVT::i8;
4414      break;
4415    }
4416  }
4417
4418  MVT::ValueType LVT = MVT::i64;
4419  while (!TLI.isTypeLegal(LVT))
4420    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4421  assert(MVT::isInteger(LVT));
4422
4423  if (VT > LVT)
4424    VT = LVT;
4425
4426  unsigned NumMemOps = 0;
4427  while (Size != 0) {
4428    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4429    while (VTSize > Size) {
4430      VT = (MVT::ValueType)((unsigned)VT - 1);
4431      VTSize >>= 1;
4432    }
4433    assert(MVT::isInteger(VT));
4434
4435    if (++NumMemOps > Limit)
4436      return false;
4437    MemOps.push_back(VT);
4438    Size -= VTSize;
4439  }
4440
4441  return true;
4442}
4443
4444void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4445  SDOperand Op1 = getValue(I.getOperand(1));
4446  SDOperand Op2 = getValue(I.getOperand(2));
4447  SDOperand Op3 = getValue(I.getOperand(3));
4448  SDOperand Op4 = getValue(I.getOperand(4));
4449  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4450  if (Align == 0) Align = 1;
4451
4452  // If the source and destination are known to not be aliases, we can
4453  // lower memmove as memcpy.
4454  if (Op == ISD::MEMMOVE) {
4455    uint64_t Size = -1ULL;
4456    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4457      Size = C->getValue();
4458    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4459        AliasAnalysis::NoAlias)
4460      Op = ISD::MEMCPY;
4461  }
4462
4463  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4464    std::vector<MVT::ValueType> MemOps;
4465
4466    // Expand memset / memcpy to a series of load / store ops
4467    // if the size operand falls below a certain threshold.
4468    SmallVector<SDOperand, 8> OutChains;
4469    switch (Op) {
4470    default: break;  // Do nothing for now.
4471    case ISD::MEMSET: {
4472      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4473                                   Size->getValue(), Align, TLI)) {
4474        unsigned NumMemOps = MemOps.size();
4475        unsigned Offset = 0;
4476        for (unsigned i = 0; i < NumMemOps; i++) {
4477          MVT::ValueType VT = MemOps[i];
4478          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4479          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4480          SDOperand Store = DAG.getStore(getRoot(), Value,
4481                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4482                                         I.getOperand(1), Offset);
4483          OutChains.push_back(Store);
4484          Offset += VTSize;
4485        }
4486      }
4487      break;
4488    }
4489    case ISD::MEMCPY: {
4490      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4491                                   Size->getValue(), Align, TLI)) {
4492        unsigned NumMemOps = MemOps.size();
4493        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4494        GlobalAddressSDNode *G = NULL;
4495        std::string Str;
4496        bool CopyFromStr = false;
4497
4498        if (Op2.getOpcode() == ISD::GlobalAddress)
4499          G = cast<GlobalAddressSDNode>(Op2);
4500        else if (Op2.getOpcode() == ISD::ADD &&
4501                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4502                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4503          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4504          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4505        }
4506        if (G) {
4507          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4508          if (GV && GV->isConstant()) {
4509            Str = GV->getStringValue(false);
4510            if (!Str.empty()) {
4511              CopyFromStr = true;
4512              SrcOff += SrcDelta;
4513            }
4514          }
4515        }
4516
4517        for (unsigned i = 0; i < NumMemOps; i++) {
4518          MVT::ValueType VT = MemOps[i];
4519          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4520          SDOperand Value, Chain, Store;
4521
4522          if (CopyFromStr) {
4523            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4524            Chain = getRoot();
4525            Store =
4526              DAG.getStore(Chain, Value,
4527                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4528                           I.getOperand(1), DstOff);
4529          } else {
4530            Value = DAG.getLoad(VT, getRoot(),
4531                                getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4532                                I.getOperand(2), SrcOff, false, Align);
4533            Chain = Value.getValue(1);
4534            Store =
4535              DAG.getStore(Chain, Value,
4536                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4537                           I.getOperand(1), DstOff, false, Align);
4538          }
4539          OutChains.push_back(Store);
4540          SrcOff += VTSize;
4541          DstOff += VTSize;
4542        }
4543      }
4544      break;
4545    }
4546    }
4547
4548    if (!OutChains.empty()) {
4549      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4550                  &OutChains[0], OutChains.size()));
4551      return;
4552    }
4553  }
4554
4555  SDOperand AlwaysInline = DAG.getConstant(0, MVT::i1);
4556  SDOperand Node;
4557  switch(Op) {
4558    default:
4559      assert(0 && "Unknown Op");
4560    case ISD::MEMCPY:
4561      Node = DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4562      break;
4563    case ISD::MEMMOVE:
4564      Node = DAG.getMemmove(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4565      break;
4566    case ISD::MEMSET:
4567      Node = DAG.getMemset(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4568      break;
4569  }
4570  DAG.setRoot(Node);
4571}
4572
4573//===----------------------------------------------------------------------===//
4574// SelectionDAGISel code
4575//===----------------------------------------------------------------------===//
4576
4577unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4578  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4579}
4580
4581void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4582  AU.addRequired<AliasAnalysis>();
4583  AU.addRequired<CollectorModuleMetadata>();
4584  AU.setPreservesAll();
4585}
4586
4587
4588
4589bool SelectionDAGISel::runOnFunction(Function &Fn) {
4590  // Get alias analysis for load/store combining.
4591  AA = &getAnalysis<AliasAnalysis>();
4592
4593  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4594  if (MF.getFunction()->hasCollector())
4595    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4596  else
4597    GCI = 0;
4598  RegInfo = &MF.getRegInfo();
4599  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4600
4601  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4602
4603  if (ExceptionHandling)
4604    for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4605      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4606        // Mark landing pad.
4607        FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4608
4609  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4610    SelectBasicBlock(I, MF, FuncInfo);
4611
4612  // Add function live-ins to entry block live-in set.
4613  BasicBlock *EntryBB = &Fn.getEntryBlock();
4614  BB = FuncInfo.MBBMap[EntryBB];
4615  if (!RegInfo->livein_empty())
4616    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4617           E = RegInfo->livein_end(); I != E; ++I)
4618      BB->addLiveIn(I->first);
4619
4620#ifndef NDEBUG
4621  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4622         "Not all catch info was assigned to a landing pad!");
4623#endif
4624
4625  return true;
4626}
4627
4628SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4629                                                           unsigned Reg) {
4630  SDOperand Op = getValue(V);
4631  assert((Op.getOpcode() != ISD::CopyFromReg ||
4632          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4633         "Copy from a reg to the same reg!");
4634
4635  MVT::ValueType SrcVT = Op.getValueType();
4636  MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4637  unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4638  SmallVector<SDOperand, 8> Regs(NumRegs);
4639  SmallVector<SDOperand, 8> Chains(NumRegs);
4640
4641  // Copy the value by legal parts into sequential virtual registers.
4642  getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4643  for (unsigned i = 0; i != NumRegs; ++i)
4644    Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4645  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4646}
4647
4648void SelectionDAGISel::
4649LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4650               std::vector<SDOperand> &UnorderedChains) {
4651  // If this is the entry block, emit arguments.
4652  Function &F = *LLVMBB->getParent();
4653  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4654  SDOperand OldRoot = SDL.DAG.getRoot();
4655  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4656
4657  unsigned a = 0;
4658  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4659       AI != E; ++AI, ++a)
4660    if (!AI->use_empty()) {
4661      SDL.setValue(AI, Args[a]);
4662
4663      // If this argument is live outside of the entry block, insert a copy from
4664      // whereever we got it to the vreg that other BB's will reference it as.
4665      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4666      if (VMI != FuncInfo.ValueMap.end()) {
4667        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4668        UnorderedChains.push_back(Copy);
4669      }
4670    }
4671
4672  // Finally, if the target has anything special to do, allow it to do so.
4673  // FIXME: this should insert code into the DAG!
4674  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4675}
4676
4677static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4678                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4679  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4680    if (isSelector(I)) {
4681      // Apply the catch info to DestBB.
4682      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4683#ifndef NDEBUG
4684      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4685        FLI.CatchInfoFound.insert(I);
4686#endif
4687    }
4688}
4689
4690/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
4691/// DAG and fixes their tailcall attribute operand.
4692static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4693                                           TargetLowering& TLI) {
4694  SDNode * Ret = NULL;
4695  SDOperand Terminator = DAG.getRoot();
4696
4697  // Find RET node.
4698  if (Terminator.getOpcode() == ISD::RET) {
4699    Ret = Terminator.Val;
4700  }
4701
4702  // Fix tail call attribute of CALL nodes.
4703  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4704         BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4705    if (BI->getOpcode() == ISD::CALL) {
4706      SDOperand OpRet(Ret, 0);
4707      SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4708      bool isMarkedTailCall =
4709        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4710      // If CALL node has tail call attribute set to true and the call is not
4711      // eligible (no RET or the target rejects) the attribute is fixed to
4712      // false. The TargetLowering::IsEligibleForTailCallOptimization function
4713      // must correctly identify tail call optimizable calls.
4714      if (isMarkedTailCall &&
4715          (Ret==NULL ||
4716           !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
4717        SmallVector<SDOperand, 32> Ops;
4718        unsigned idx=0;
4719        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4720              E=OpCall.Val->op_end(); I!=E; I++, idx++) {
4721          if (idx!=3)
4722            Ops.push_back(*I);
4723          else
4724            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4725        }
4726        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4727      }
4728    }
4729  }
4730}
4731
4732void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4733       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4734                                         FunctionLoweringInfo &FuncInfo) {
4735  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
4736
4737  std::vector<SDOperand> UnorderedChains;
4738
4739  // Lower any arguments needed in this block if this is the entry block.
4740  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4741    LowerArguments(LLVMBB, SDL, UnorderedChains);
4742
4743  BB = FuncInfo.MBBMap[LLVMBB];
4744  SDL.setCurrentBasicBlock(BB);
4745
4746  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4747
4748  if (ExceptionHandling && MMI && BB->isLandingPad()) {
4749    // Add a label to mark the beginning of the landing pad.  Deletion of the
4750    // landing pad can thus be detected via the MachineModuleInfo.
4751    unsigned LabelID = MMI->addLandingPad(BB);
4752    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4753                            DAG.getConstant(LabelID, MVT::i32),
4754                            DAG.getConstant(1, MVT::i32)));
4755
4756    // Mark exception register as live in.
4757    unsigned Reg = TLI.getExceptionAddressRegister();
4758    if (Reg) BB->addLiveIn(Reg);
4759
4760    // Mark exception selector register as live in.
4761    Reg = TLI.getExceptionSelectorRegister();
4762    if (Reg) BB->addLiveIn(Reg);
4763
4764    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4765    // function and list of typeids logically belong to the invoke (or, if you
4766    // like, the basic block containing the invoke), and need to be associated
4767    // with it in the dwarf exception handling tables.  Currently however the
4768    // information is provided by an intrinsic (eh.selector) that can be moved
4769    // to unexpected places by the optimizers: if the unwind edge is critical,
4770    // then breaking it can result in the intrinsics being in the successor of
4771    // the landing pad, not the landing pad itself.  This results in exceptions
4772    // not being caught because no typeids are associated with the invoke.
4773    // This may not be the only way things can go wrong, but it is the only way
4774    // we try to work around for the moment.
4775    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4776
4777    if (Br && Br->isUnconditional()) { // Critical edge?
4778      BasicBlock::iterator I, E;
4779      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4780        if (isSelector(I))
4781          break;
4782
4783      if (I == E)
4784        // No catch info found - try to extract some from the successor.
4785        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4786    }
4787  }
4788
4789  // Lower all of the non-terminator instructions.
4790  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4791       I != E; ++I)
4792    SDL.visit(*I);
4793
4794  // Ensure that all instructions which are used outside of their defining
4795  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4796  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4797    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4798      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4799      if (VMI != FuncInfo.ValueMap.end())
4800        UnorderedChains.push_back(
4801                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4802    }
4803
4804  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4805  // ensure constants are generated when needed.  Remember the virtual registers
4806  // that need to be added to the Machine PHI nodes as input.  We cannot just
4807  // directly add them, because expansion might result in multiple MBB's for one
4808  // BB.  As such, the start of the BB might correspond to a different MBB than
4809  // the end.
4810  //
4811  TerminatorInst *TI = LLVMBB->getTerminator();
4812
4813  // Emit constants only once even if used by multiple PHI nodes.
4814  std::map<Constant*, unsigned> ConstantsOut;
4815
4816  // Vector bool would be better, but vector<bool> is really slow.
4817  std::vector<unsigned char> SuccsHandled;
4818  if (TI->getNumSuccessors())
4819    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4820
4821  // Check successor nodes' PHI nodes that expect a constant to be available
4822  // from this block.
4823  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4824    BasicBlock *SuccBB = TI->getSuccessor(succ);
4825    if (!isa<PHINode>(SuccBB->begin())) continue;
4826    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4827
4828    // If this terminator has multiple identical successors (common for
4829    // switches), only handle each succ once.
4830    unsigned SuccMBBNo = SuccMBB->getNumber();
4831    if (SuccsHandled[SuccMBBNo]) continue;
4832    SuccsHandled[SuccMBBNo] = true;
4833
4834    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4835    PHINode *PN;
4836
4837    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4838    // nodes and Machine PHI nodes, but the incoming operands have not been
4839    // emitted yet.
4840    for (BasicBlock::iterator I = SuccBB->begin();
4841         (PN = dyn_cast<PHINode>(I)); ++I) {
4842      // Ignore dead phi's.
4843      if (PN->use_empty()) continue;
4844
4845      unsigned Reg;
4846      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4847
4848      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4849        unsigned &RegOut = ConstantsOut[C];
4850        if (RegOut == 0) {
4851          RegOut = FuncInfo.CreateRegForValue(C);
4852          UnorderedChains.push_back(
4853                           SDL.CopyValueToVirtualRegister(C, RegOut));
4854        }
4855        Reg = RegOut;
4856      } else {
4857        Reg = FuncInfo.ValueMap[PHIOp];
4858        if (Reg == 0) {
4859          assert(isa<AllocaInst>(PHIOp) &&
4860                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4861                 "Didn't codegen value into a register!??");
4862          Reg = FuncInfo.CreateRegForValue(PHIOp);
4863          UnorderedChains.push_back(
4864                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4865        }
4866      }
4867
4868      // Remember that this register needs to added to the machine PHI node as
4869      // the input for this MBB.
4870      MVT::ValueType VT = TLI.getValueType(PN->getType());
4871      unsigned NumRegisters = TLI.getNumRegisters(VT);
4872      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4873        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4874    }
4875  }
4876  ConstantsOut.clear();
4877
4878  // Turn all of the unordered chains into one factored node.
4879  if (!UnorderedChains.empty()) {
4880    SDOperand Root = SDL.getRoot();
4881    if (Root.getOpcode() != ISD::EntryToken) {
4882      unsigned i = 0, e = UnorderedChains.size();
4883      for (; i != e; ++i) {
4884        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4885        if (UnorderedChains[i].Val->getOperand(0) == Root)
4886          break;  // Don't add the root if we already indirectly depend on it.
4887      }
4888
4889      if (i == e)
4890        UnorderedChains.push_back(Root);
4891    }
4892    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4893                            &UnorderedChains[0], UnorderedChains.size()));
4894  }
4895
4896  // Lower the terminator after the copies are emitted.
4897  SDL.visit(*LLVMBB->getTerminator());
4898
4899  // Copy over any CaseBlock records that may now exist due to SwitchInst
4900  // lowering, as well as any jump table information.
4901  SwitchCases.clear();
4902  SwitchCases = SDL.SwitchCases;
4903  JTCases.clear();
4904  JTCases = SDL.JTCases;
4905  BitTestCases.clear();
4906  BitTestCases = SDL.BitTestCases;
4907
4908  // Make sure the root of the DAG is up-to-date.
4909  DAG.setRoot(SDL.getRoot());
4910
4911  // Check whether calls in this block are real tail calls. Fix up CALL nodes
4912  // with correct tailcall attribute so that the target can rely on the tailcall
4913  // attribute indicating whether the call is really eligible for tail call
4914  // optimization.
4915  CheckDAGForTailCallsAndFixThem(DAG, TLI);
4916}
4917
4918void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4919  DOUT << "Lowered selection DAG:\n";
4920  DEBUG(DAG.dump());
4921
4922  // Run the DAG combiner in pre-legalize mode.
4923  DAG.Combine(false, *AA);
4924
4925  DOUT << "Optimized lowered selection DAG:\n";
4926  DEBUG(DAG.dump());
4927
4928  // Second step, hack on the DAG until it only uses operations and types that
4929  // the target supports.
4930#if 0  // Enable this some day.
4931  DAG.LegalizeTypes();
4932  // Someday even later, enable a dag combine pass here.
4933#endif
4934  DAG.Legalize();
4935
4936  DOUT << "Legalized selection DAG:\n";
4937  DEBUG(DAG.dump());
4938
4939  // Run the DAG combiner in post-legalize mode.
4940  DAG.Combine(true, *AA);
4941
4942  DOUT << "Optimized legalized selection DAG:\n";
4943  DEBUG(DAG.dump());
4944
4945  if (ViewISelDAGs) DAG.viewGraph();
4946
4947  // Third, instruction select all of the operations to machine code, adding the
4948  // code to the MachineBasicBlock.
4949  InstructionSelectBasicBlock(DAG);
4950
4951  DOUT << "Selected machine code:\n";
4952  DEBUG(BB->dump());
4953}
4954
4955void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4956                                        FunctionLoweringInfo &FuncInfo) {
4957  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4958  {
4959    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4960    CurDAG = &DAG;
4961
4962    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4963    // types that are not supported by the target.
4964    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4965
4966    // Second step, emit the lowered DAG as machine code.
4967    CodeGenAndEmitDAG(DAG);
4968  }
4969
4970  DOUT << "Total amount of phi nodes to update: "
4971       << PHINodesToUpdate.size() << "\n";
4972  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4973          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4974               << ", " << PHINodesToUpdate[i].second << ")\n";);
4975
4976  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4977  // PHI nodes in successors.
4978  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4979    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4980      MachineInstr *PHI = PHINodesToUpdate[i].first;
4981      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4982             "This is not a machine PHI node that we are updating!");
4983      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4984                                                false));
4985      PHI->addOperand(MachineOperand::CreateMBB(BB));
4986    }
4987    return;
4988  }
4989
4990  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4991    // Lower header first, if it wasn't already lowered
4992    if (!BitTestCases[i].Emitted) {
4993      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4994      CurDAG = &HSDAG;
4995      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
4996      // Set the current basic block to the mbb we wish to insert the code into
4997      BB = BitTestCases[i].Parent;
4998      HSDL.setCurrentBasicBlock(BB);
4999      // Emit the code
5000      HSDL.visitBitTestHeader(BitTestCases[i]);
5001      HSDAG.setRoot(HSDL.getRoot());
5002      CodeGenAndEmitDAG(HSDAG);
5003    }
5004
5005    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5006      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
5007      CurDAG = &BSDAG;
5008      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
5009      // Set the current basic block to the mbb we wish to insert the code into
5010      BB = BitTestCases[i].Cases[j].ThisBB;
5011      BSDL.setCurrentBasicBlock(BB);
5012      // Emit the code
5013      if (j+1 != ej)
5014        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
5015                              BitTestCases[i].Reg,
5016                              BitTestCases[i].Cases[j]);
5017      else
5018        BSDL.visitBitTestCase(BitTestCases[i].Default,
5019                              BitTestCases[i].Reg,
5020                              BitTestCases[i].Cases[j]);
5021
5022
5023      BSDAG.setRoot(BSDL.getRoot());
5024      CodeGenAndEmitDAG(BSDAG);
5025    }
5026
5027    // Update PHI Nodes
5028    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5029      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5030      MachineBasicBlock *PHIBB = PHI->getParent();
5031      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5032             "This is not a machine PHI node that we are updating!");
5033      // This is "default" BB. We have two jumps to it. From "header" BB and
5034      // from last "case" BB.
5035      if (PHIBB == BitTestCases[i].Default) {
5036        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5037                                                  false));
5038        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
5039        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5040                                                  false));
5041        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
5042                                                  back().ThisBB));
5043      }
5044      // One of "cases" BB.
5045      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5046        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
5047        if (cBB->succ_end() !=
5048            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
5049          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5050                                                    false));
5051          PHI->addOperand(MachineOperand::CreateMBB(cBB));
5052        }
5053      }
5054    }
5055  }
5056
5057  // If the JumpTable record is filled in, then we need to emit a jump table.
5058  // Updating the PHI nodes is tricky in this case, since we need to determine
5059  // whether the PHI is a successor of the range check MBB or the jump table MBB
5060  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
5061    // Lower header first, if it wasn't already lowered
5062    if (!JTCases[i].first.Emitted) {
5063      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
5064      CurDAG = &HSDAG;
5065      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5066      // Set the current basic block to the mbb we wish to insert the code into
5067      BB = JTCases[i].first.HeaderBB;
5068      HSDL.setCurrentBasicBlock(BB);
5069      // Emit the code
5070      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
5071      HSDAG.setRoot(HSDL.getRoot());
5072      CodeGenAndEmitDAG(HSDAG);
5073    }
5074
5075    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
5076    CurDAG = &JSDAG;
5077    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
5078    // Set the current basic block to the mbb we wish to insert the code into
5079    BB = JTCases[i].second.MBB;
5080    JSDL.setCurrentBasicBlock(BB);
5081    // Emit the code
5082    JSDL.visitJumpTable(JTCases[i].second);
5083    JSDAG.setRoot(JSDL.getRoot());
5084    CodeGenAndEmitDAG(JSDAG);
5085
5086    // Update PHI Nodes
5087    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5088      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5089      MachineBasicBlock *PHIBB = PHI->getParent();
5090      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5091             "This is not a machine PHI node that we are updating!");
5092      // "default" BB. We can go there only from header BB.
5093      if (PHIBB == JTCases[i].second.Default) {
5094        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5095                                                  false));
5096        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
5097      }
5098      // JT BB. Just iterate over successors here
5099      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
5100        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5101                                                  false));
5102        PHI->addOperand(MachineOperand::CreateMBB(BB));
5103      }
5104    }
5105  }
5106
5107  // If the switch block involved a branch to one of the actual successors, we
5108  // need to update PHI nodes in that block.
5109  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5110    MachineInstr *PHI = PHINodesToUpdate[i].first;
5111    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5112           "This is not a machine PHI node that we are updating!");
5113    if (BB->isSuccessor(PHI->getParent())) {
5114      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5115                                                false));
5116      PHI->addOperand(MachineOperand::CreateMBB(BB));
5117    }
5118  }
5119
5120  // If we generated any switch lowering information, build and codegen any
5121  // additional DAGs necessary.
5122  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
5123    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
5124    CurDAG = &SDAG;
5125    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
5126
5127    // Set the current basic block to the mbb we wish to insert the code into
5128    BB = SwitchCases[i].ThisBB;
5129    SDL.setCurrentBasicBlock(BB);
5130
5131    // Emit the code
5132    SDL.visitSwitchCase(SwitchCases[i]);
5133    SDAG.setRoot(SDL.getRoot());
5134    CodeGenAndEmitDAG(SDAG);
5135
5136    // Handle any PHI nodes in successors of this chunk, as if we were coming
5137    // from the original BB before switch expansion.  Note that PHI nodes can
5138    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5139    // handle them the right number of times.
5140    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5141      for (MachineBasicBlock::iterator Phi = BB->begin();
5142           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5143        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5144        for (unsigned pn = 0; ; ++pn) {
5145          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5146          if (PHINodesToUpdate[pn].first == Phi) {
5147            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5148                                                      second, false));
5149            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5150            break;
5151          }
5152        }
5153      }
5154
5155      // Don't process RHS if same block as LHS.
5156      if (BB == SwitchCases[i].FalseBB)
5157        SwitchCases[i].FalseBB = 0;
5158
5159      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5160      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5161      SwitchCases[i].FalseBB = 0;
5162    }
5163    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5164  }
5165}
5166
5167
5168//===----------------------------------------------------------------------===//
5169/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
5170/// target node in the graph.
5171void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
5172  if (ViewSchedDAGs) DAG.viewGraph();
5173
5174  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5175
5176  if (!Ctor) {
5177    Ctor = ISHeuristic;
5178    RegisterScheduler::setDefault(Ctor);
5179  }
5180
5181  ScheduleDAG *SL = Ctor(this, &DAG, BB);
5182  BB = SL->Run();
5183
5184  if (ViewSUnitDAGs) SL->viewGraph();
5185
5186  delete SL;
5187}
5188
5189
5190HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5191  return new HazardRecognizer();
5192}
5193
5194//===----------------------------------------------------------------------===//
5195// Helper functions used by the generated instruction selector.
5196//===----------------------------------------------------------------------===//
5197// Calls to these methods are generated by tblgen.
5198
5199/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5200/// the dag combiner simplified the 255, we still want to match.  RHS is the
5201/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5202/// specified in the .td file (e.g. 255).
5203bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
5204                                    int64_t DesiredMaskS) const {
5205  uint64_t ActualMask = RHS->getValue();
5206  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5207
5208  // If the actual mask exactly matches, success!
5209  if (ActualMask == DesiredMask)
5210    return true;
5211
5212  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5213  if (ActualMask & ~DesiredMask)
5214    return false;
5215
5216  // Otherwise, the DAG Combiner may have proven that the value coming in is
5217  // either already zero or is not demanded.  Check for known zero input bits.
5218  uint64_t NeededMask = DesiredMask & ~ActualMask;
5219  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5220    return true;
5221
5222  // TODO: check to see if missing bits are just not demanded.
5223
5224  // Otherwise, this pattern doesn't match.
5225  return false;
5226}
5227
5228/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5229/// the dag combiner simplified the 255, we still want to match.  RHS is the
5230/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5231/// specified in the .td file (e.g. 255).
5232bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5233                                    int64_t DesiredMaskS) const {
5234  uint64_t ActualMask = RHS->getValue();
5235  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5236
5237  // If the actual mask exactly matches, success!
5238  if (ActualMask == DesiredMask)
5239    return true;
5240
5241  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5242  if (ActualMask & ~DesiredMask)
5243    return false;
5244
5245  // Otherwise, the DAG Combiner may have proven that the value coming in is
5246  // either already zero or is not demanded.  Check for known zero input bits.
5247  uint64_t NeededMask = DesiredMask & ~ActualMask;
5248
5249  uint64_t KnownZero, KnownOne;
5250  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5251
5252  // If all the missing bits in the or are already known to be set, match!
5253  if ((NeededMask & KnownOne) == NeededMask)
5254    return true;
5255
5256  // TODO: check to see if missing bits are just not demanded.
5257
5258  // Otherwise, this pattern doesn't match.
5259  return false;
5260}
5261
5262
5263/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5264/// by tblgen.  Others should not call it.
5265void SelectionDAGISel::
5266SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5267  std::vector<SDOperand> InOps;
5268  std::swap(InOps, Ops);
5269
5270  Ops.push_back(InOps[0]);  // input chain.
5271  Ops.push_back(InOps[1]);  // input asm string.
5272
5273  unsigned i = 2, e = InOps.size();
5274  if (InOps[e-1].getValueType() == MVT::Flag)
5275    --e;  // Don't process a flag operand if it is here.
5276
5277  while (i != e) {
5278    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5279    if ((Flags & 7) != 4 /*MEM*/) {
5280      // Just skip over this operand, copying the operands verbatim.
5281      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5282      i += (Flags >> 3) + 1;
5283    } else {
5284      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5285      // Otherwise, this is a memory operand.  Ask the target to select it.
5286      std::vector<SDOperand> SelOps;
5287      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5288        cerr << "Could not match memory address.  Inline asm failure!\n";
5289        exit(1);
5290      }
5291
5292      // Add this to the output node.
5293      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5294      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5295                                          IntPtrTy));
5296      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5297      i += 2;
5298    }
5299  }
5300
5301  // Add the flag input back if present.
5302  if (e != InOps.size())
5303    Ops.push_back(InOps.back());
5304}
5305
5306char SelectionDAGISel::ID = 0;
5307