SelectionDAGISel.cpp revision 6ac8df7f611b5b129af7192ad931862fc8169aae
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/Timer.h"
49#include <algorithm>
50using namespace llvm;
51
52static cl::opt<bool>
53EnableValueProp("enable-value-prop", cl::Hidden);
54static cl::opt<bool>
55EnableLegalizeTypes("enable-legalize-types", cl::Hidden);
56static cl::opt<bool>
57DisableCorrectBranchFolding("disable-correct-folding", cl::init(false),
58                            cl::Hidden);
59
60
61#ifndef NDEBUG
62static cl::opt<bool>
63ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
64          cl::desc("Pop up a window to show dags before the first "
65                   "dag combine pass"));
66static cl::opt<bool>
67ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
68          cl::desc("Pop up a window to show dags before legalize types"));
69static cl::opt<bool>
70ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
71          cl::desc("Pop up a window to show dags before legalize"));
72static cl::opt<bool>
73ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
74          cl::desc("Pop up a window to show dags before the second "
75                   "dag combine pass"));
76static cl::opt<bool>
77ViewISelDAGs("view-isel-dags", cl::Hidden,
78          cl::desc("Pop up a window to show isel dags as they are selected"));
79static cl::opt<bool>
80ViewSchedDAGs("view-sched-dags", cl::Hidden,
81          cl::desc("Pop up a window to show sched dags as they are processed"));
82static cl::opt<bool>
83ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
84      cl::desc("Pop up a window to show SUnit dags after they are processed"));
85#else
86static const bool ViewDAGCombine1 = false,
87                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
88                  ViewDAGCombine2 = false,
89                  ViewISelDAGs = false, ViewSchedDAGs = false,
90                  ViewSUnitDAGs = false;
91#endif
92
93//===---------------------------------------------------------------------===//
94///
95/// RegisterScheduler class - Track the registration of instruction schedulers.
96///
97//===---------------------------------------------------------------------===//
98MachinePassRegistry RegisterScheduler::Registry;
99
100//===---------------------------------------------------------------------===//
101///
102/// ISHeuristic command line option for instruction schedulers.
103///
104//===---------------------------------------------------------------------===//
105static cl::opt<RegisterScheduler::FunctionPassCtor, false,
106               RegisterPassParser<RegisterScheduler> >
107ISHeuristic("pre-RA-sched",
108            cl::init(&createDefaultScheduler),
109            cl::desc("Instruction schedulers available (before register"
110                     " allocation):"));
111
112static RegisterScheduler
113defaultListDAGScheduler("default", "  Best scheduler for the target",
114                        createDefaultScheduler);
115
116namespace { struct SDISelAsmOperandInfo; }
117
118/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
119/// insertvalue or extractvalue indices that identify a member, return
120/// the linearized index of the start of the member.
121///
122static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
123                                   const unsigned *Indices,
124                                   const unsigned *IndicesEnd,
125                                   unsigned CurIndex = 0) {
126  // Base case: We're done.
127  if (Indices && Indices == IndicesEnd)
128    return CurIndex;
129
130  // Given a struct type, recursively traverse the elements.
131  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
132    for (StructType::element_iterator EB = STy->element_begin(),
133                                      EI = EB,
134                                      EE = STy->element_end();
135        EI != EE; ++EI) {
136      if (Indices && *Indices == unsigned(EI - EB))
137        return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
138      CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
139    }
140  }
141  // Given an array type, recursively traverse the elements.
142  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
143    const Type *EltTy = ATy->getElementType();
144    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
145      if (Indices && *Indices == i)
146        return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
147      CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
148    }
149  }
150  // We haven't found the type we're looking for, so keep searching.
151  return CurIndex + 1;
152}
153
154/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
155/// MVTs that represent all the individual underlying
156/// non-aggregate types that comprise it.
157///
158/// If Offsets is non-null, it points to a vector to be filled in
159/// with the in-memory offsets of each of the individual values.
160///
161static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
162                            SmallVectorImpl<MVT> &ValueVTs,
163                            SmallVectorImpl<uint64_t> *Offsets = 0,
164                            uint64_t StartingOffset = 0) {
165  // Given a struct type, recursively traverse the elements.
166  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
167    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
168    for (StructType::element_iterator EB = STy->element_begin(),
169                                      EI = EB,
170                                      EE = STy->element_end();
171         EI != EE; ++EI)
172      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
173                      StartingOffset + SL->getElementOffset(EI - EB));
174    return;
175  }
176  // Given an array type, recursively traverse the elements.
177  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
178    const Type *EltTy = ATy->getElementType();
179    uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
180    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
181      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
182                      StartingOffset + i * EltSize);
183    return;
184  }
185  // Base case: we can get an MVT for this LLVM IR type.
186  ValueVTs.push_back(TLI.getValueType(Ty));
187  if (Offsets)
188    Offsets->push_back(StartingOffset);
189}
190
191namespace {
192  /// RegsForValue - This struct represents the registers (physical or virtual)
193  /// that a particular set of values is assigned, and the type information about
194  /// the value. The most common situation is to represent one value at a time,
195  /// but struct or array values are handled element-wise as multiple values.
196  /// The splitting of aggregates is performed recursively, so that we never
197  /// have aggregate-typed registers. The values at this point do not necessarily
198  /// have legal types, so each value may require one or more registers of some
199  /// legal type.
200  ///
201  struct VISIBILITY_HIDDEN RegsForValue {
202    /// TLI - The TargetLowering object.
203    ///
204    const TargetLowering *TLI;
205
206    /// ValueVTs - The value types of the values, which may not be legal, and
207    /// may need be promoted or synthesized from one or more registers.
208    ///
209    SmallVector<MVT, 4> ValueVTs;
210
211    /// RegVTs - The value types of the registers. This is the same size as
212    /// ValueVTs and it records, for each value, what the type of the assigned
213    /// register or registers are. (Individual values are never synthesized
214    /// from more than one type of register.)
215    ///
216    /// With virtual registers, the contents of RegVTs is redundant with TLI's
217    /// getRegisterType member function, however when with physical registers
218    /// it is necessary to have a separate record of the types.
219    ///
220    SmallVector<MVT, 4> RegVTs;
221
222    /// Regs - This list holds the registers assigned to the values.
223    /// Each legal or promoted value requires one register, and each
224    /// expanded value requires multiple registers.
225    ///
226    SmallVector<unsigned, 4> Regs;
227
228    RegsForValue() : TLI(0) {}
229
230    RegsForValue(const TargetLowering &tli,
231                 const SmallVector<unsigned, 4> &regs,
232                 MVT regvt, MVT valuevt)
233      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
234    RegsForValue(const TargetLowering &tli,
235                 const SmallVector<unsigned, 4> &regs,
236                 const SmallVector<MVT, 4> &regvts,
237                 const SmallVector<MVT, 4> &valuevts)
238      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
239    RegsForValue(const TargetLowering &tli,
240                 unsigned Reg, const Type *Ty) : TLI(&tli) {
241      ComputeValueVTs(tli, Ty, ValueVTs);
242
243      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
244        MVT ValueVT = ValueVTs[Value];
245        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
246        MVT RegisterVT = TLI->getRegisterType(ValueVT);
247        for (unsigned i = 0; i != NumRegs; ++i)
248          Regs.push_back(Reg + i);
249        RegVTs.push_back(RegisterVT);
250        Reg += NumRegs;
251      }
252    }
253
254    /// append - Add the specified values to this one.
255    void append(const RegsForValue &RHS) {
256      TLI = RHS.TLI;
257      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
258      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
259      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
260    }
261
262
263    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
264    /// this value and returns the result as a ValueVTs value.  This uses
265    /// Chain/Flag as the input and updates them for the output Chain/Flag.
266    /// If the Flag pointer is NULL, no flag is used.
267    SDValue getCopyFromRegs(SelectionDAG &DAG,
268                              SDValue &Chain, SDValue *Flag) const;
269
270    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
271    /// specified value into the registers specified by this object.  This uses
272    /// Chain/Flag as the input and updates them for the output Chain/Flag.
273    /// If the Flag pointer is NULL, no flag is used.
274    void getCopyToRegs(SDValue Val, SelectionDAG &DAG,
275                       SDValue &Chain, SDValue *Flag) const;
276
277    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
278    /// operand list.  This adds the code marker and includes the number of
279    /// values added into it.
280    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
281                              std::vector<SDValue> &Ops) const;
282  };
283}
284
285namespace llvm {
286  //===--------------------------------------------------------------------===//
287  /// createDefaultScheduler - This creates an instruction scheduler appropriate
288  /// for the target.
289  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
290                                      SelectionDAG *DAG,
291                                      MachineBasicBlock *BB,
292                                      bool Fast) {
293    TargetLowering &TLI = IS->getTargetLowering();
294
295    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
296      return createTDListDAGScheduler(IS, DAG, BB, Fast);
297    } else {
298      assert(TLI.getSchedulingPreference() ==
299           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
300      return createBURRListDAGScheduler(IS, DAG, BB, Fast);
301    }
302  }
303
304
305  //===--------------------------------------------------------------------===//
306  /// FunctionLoweringInfo - This contains information that is global to a
307  /// function that is used when lowering a region of the function.
308  class FunctionLoweringInfo {
309  public:
310    TargetLowering &TLI;
311    Function &Fn;
312    MachineFunction &MF;
313    MachineRegisterInfo &RegInfo;
314
315    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
316
317    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
318    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
319
320    /// ValueMap - Since we emit code for the function a basic block at a time,
321    /// we must remember which virtual registers hold the values for
322    /// cross-basic-block values.
323    DenseMap<const Value*, unsigned> ValueMap;
324
325    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
326    /// the entry block.  This allows the allocas to be efficiently referenced
327    /// anywhere in the function.
328    std::map<const AllocaInst*, int> StaticAllocaMap;
329
330#ifndef NDEBUG
331    SmallSet<Instruction*, 8> CatchInfoLost;
332    SmallSet<Instruction*, 8> CatchInfoFound;
333#endif
334
335    unsigned MakeReg(MVT VT) {
336      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
337    }
338
339    /// isExportedInst - Return true if the specified value is an instruction
340    /// exported from its block.
341    bool isExportedInst(const Value *V) {
342      return ValueMap.count(V);
343    }
344
345    unsigned CreateRegForValue(const Value *V);
346
347    unsigned InitializeRegForValue(const Value *V) {
348      unsigned &R = ValueMap[V];
349      assert(R == 0 && "Already initialized this value register!");
350      return R = CreateRegForValue(V);
351    }
352
353    struct LiveOutInfo {
354      unsigned NumSignBits;
355      APInt KnownOne, KnownZero;
356      LiveOutInfo() : NumSignBits(0) {}
357    };
358
359    /// LiveOutRegInfo - Information about live out vregs, indexed by their
360    /// register number offset by 'FirstVirtualRegister'.
361    std::vector<LiveOutInfo> LiveOutRegInfo;
362  };
363}
364
365/// isSelector - Return true if this instruction is a call to the
366/// eh.selector intrinsic.
367static bool isSelector(Instruction *I) {
368  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
369    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
370            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
371  return false;
372}
373
374/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
375/// PHI nodes or outside of the basic block that defines it, or used by a
376/// switch or atomic instruction, which may expand to multiple basic blocks.
377static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
378  if (isa<PHINode>(I)) return true;
379  BasicBlock *BB = I->getParent();
380  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
381    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
382        // FIXME: Remove switchinst special case.
383        isa<SwitchInst>(*UI))
384      return true;
385  return false;
386}
387
388/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
389/// entry block, return true.  This includes arguments used by switches, since
390/// the switch may expand into multiple basic blocks.
391static bool isOnlyUsedInEntryBlock(Argument *A) {
392  BasicBlock *Entry = A->getParent()->begin();
393  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
394    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
395      return false;  // Use not in entry block.
396  return true;
397}
398
399FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
400                                           Function &fn, MachineFunction &mf)
401    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
402
403  // Create a vreg for each argument register that is not dead and is used
404  // outside of the entry block for the function.
405  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
406       AI != E; ++AI)
407    if (!isOnlyUsedInEntryBlock(AI))
408      InitializeRegForValue(AI);
409
410  // Initialize the mapping of values to registers.  This is only set up for
411  // instruction values that are used outside of the block that defines
412  // them.
413  Function::iterator BB = Fn.begin(), EB = Fn.end();
414  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
415    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
416      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
417        const Type *Ty = AI->getAllocatedType();
418        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
419        unsigned Align =
420          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
421                   AI->getAlignment());
422
423        TySize *= CUI->getZExtValue();   // Get total allocated size.
424        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
425        StaticAllocaMap[AI] =
426          MF.getFrameInfo()->CreateStackObject(TySize, Align);
427      }
428
429  for (; BB != EB; ++BB)
430    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
431      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
432        if (!isa<AllocaInst>(I) ||
433            !StaticAllocaMap.count(cast<AllocaInst>(I)))
434          InitializeRegForValue(I);
435
436  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
437  // also creates the initial PHI MachineInstrs, though none of the input
438  // operands are populated.
439  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
440    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
441    MBBMap[BB] = MBB;
442    MF.push_back(MBB);
443
444    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
445    // appropriate.
446    PHINode *PN;
447    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
448      if (PN->use_empty()) continue;
449
450      unsigned PHIReg = ValueMap[PN];
451      assert(PHIReg && "PHI node does not have an assigned virtual register!");
452
453      SmallVector<MVT, 4> ValueVTs;
454      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
455      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
456        MVT VT = ValueVTs[vti];
457        unsigned NumRegisters = TLI.getNumRegisters(VT);
458        const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
459        for (unsigned i = 0; i != NumRegisters; ++i)
460          BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
461        PHIReg += NumRegisters;
462      }
463    }
464  }
465}
466
467/// CreateRegForValue - Allocate the appropriate number of virtual registers of
468/// the correctly promoted or expanded types.  Assign these registers
469/// consecutive vreg numbers and return the first assigned number.
470///
471/// In the case that the given value has struct or array type, this function
472/// will assign registers for each member or element.
473///
474unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
475  SmallVector<MVT, 4> ValueVTs;
476  ComputeValueVTs(TLI, V->getType(), ValueVTs);
477
478  unsigned FirstReg = 0;
479  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
480    MVT ValueVT = ValueVTs[Value];
481    MVT RegisterVT = TLI.getRegisterType(ValueVT);
482
483    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
484    for (unsigned i = 0; i != NumRegs; ++i) {
485      unsigned R = MakeReg(RegisterVT);
486      if (!FirstReg) FirstReg = R;
487    }
488  }
489  return FirstReg;
490}
491
492//===----------------------------------------------------------------------===//
493/// SelectionDAGLowering - This is the common target-independent lowering
494/// implementation that is parameterized by a TargetLowering object.
495/// Also, targets can overload any lowering method.
496///
497namespace llvm {
498class SelectionDAGLowering {
499  MachineBasicBlock *CurMBB;
500
501  DenseMap<const Value*, SDValue> NodeMap;
502
503  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
504  /// them up and then emit token factor nodes when possible.  This allows us to
505  /// get simple disambiguation between loads without worrying about alias
506  /// analysis.
507  SmallVector<SDValue, 8> PendingLoads;
508
509  /// PendingExports - CopyToReg nodes that copy values to virtual registers
510  /// for export to other blocks need to be emitted before any terminator
511  /// instruction, but they have no other ordering requirements. We bunch them
512  /// up and the emit a single tokenfactor for them just before terminator
513  /// instructions.
514  std::vector<SDValue> PendingExports;
515
516  /// Case - A struct to record the Value for a switch case, and the
517  /// case's target basic block.
518  struct Case {
519    Constant* Low;
520    Constant* High;
521    MachineBasicBlock* BB;
522
523    Case() : Low(0), High(0), BB(0) { }
524    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
525      Low(low), High(high), BB(bb) { }
526    uint64_t size() const {
527      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
528      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
529      return (rHigh - rLow + 1ULL);
530    }
531  };
532
533  struct CaseBits {
534    uint64_t Mask;
535    MachineBasicBlock* BB;
536    unsigned Bits;
537
538    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
539      Mask(mask), BB(bb), Bits(bits) { }
540  };
541
542  typedef std::vector<Case>           CaseVector;
543  typedef std::vector<CaseBits>       CaseBitsVector;
544  typedef CaseVector::iterator        CaseItr;
545  typedef std::pair<CaseItr, CaseItr> CaseRange;
546
547  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
548  /// of conditional branches.
549  struct CaseRec {
550    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
551    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
552
553    /// CaseBB - The MBB in which to emit the compare and branch
554    MachineBasicBlock *CaseBB;
555    /// LT, GE - If nonzero, we know the current case value must be less-than or
556    /// greater-than-or-equal-to these Constants.
557    Constant *LT;
558    Constant *GE;
559    /// Range - A pair of iterators representing the range of case values to be
560    /// processed at this point in the binary search tree.
561    CaseRange Range;
562  };
563
564  typedef std::vector<CaseRec> CaseRecVector;
565
566  /// The comparison function for sorting the switch case values in the vector.
567  /// WARNING: Case ranges should be disjoint!
568  struct CaseCmp {
569    bool operator () (const Case& C1, const Case& C2) {
570      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
571      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
572      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
573      return CI1->getValue().slt(CI2->getValue());
574    }
575  };
576
577  struct CaseBitsCmp {
578    bool operator () (const CaseBits& C1, const CaseBits& C2) {
579      return C1.Bits > C2.Bits;
580    }
581  };
582
583  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
584
585public:
586  // TLI - This is information that describes the available target features we
587  // need for lowering.  This indicates when operations are unavailable,
588  // implemented with a libcall, etc.
589  TargetLowering &TLI;
590  SelectionDAG &DAG;
591  const TargetData *TD;
592  AliasAnalysis &AA;
593
594  /// SwitchCases - Vector of CaseBlock structures used to communicate
595  /// SwitchInst code generation information.
596  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
597  /// JTCases - Vector of JumpTable structures used to communicate
598  /// SwitchInst code generation information.
599  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
600  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
601
602  /// FuncInfo - Information about the function as a whole.
603  ///
604  FunctionLoweringInfo &FuncInfo;
605
606  /// GCI - Garbage collection metadata for the function.
607  CollectorMetadata *GCI;
608
609  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
610                       AliasAnalysis &aa,
611                       FunctionLoweringInfo &funcinfo,
612                       CollectorMetadata *gci)
613    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
614      FuncInfo(funcinfo), GCI(gci) {
615  }
616
617  /// getRoot - Return the current virtual root of the Selection DAG,
618  /// flushing any PendingLoad items. This must be done before emitting
619  /// a store or any other node that may need to be ordered after any
620  /// prior load instructions.
621  ///
622  SDValue getRoot() {
623    if (PendingLoads.empty())
624      return DAG.getRoot();
625
626    if (PendingLoads.size() == 1) {
627      SDValue Root = PendingLoads[0];
628      DAG.setRoot(Root);
629      PendingLoads.clear();
630      return Root;
631    }
632
633    // Otherwise, we have to make a token factor node.
634    SDValue Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
635                                 &PendingLoads[0], PendingLoads.size());
636    PendingLoads.clear();
637    DAG.setRoot(Root);
638    return Root;
639  }
640
641  /// getControlRoot - Similar to getRoot, but instead of flushing all the
642  /// PendingLoad items, flush all the PendingExports items. It is necessary
643  /// to do this before emitting a terminator instruction.
644  ///
645  SDValue getControlRoot() {
646    SDValue Root = DAG.getRoot();
647
648    if (PendingExports.empty())
649      return Root;
650
651    // Turn all of the CopyToReg chains into one factored node.
652    if (Root.getOpcode() != ISD::EntryToken) {
653      unsigned i = 0, e = PendingExports.size();
654      for (; i != e; ++i) {
655        assert(PendingExports[i].Val->getNumOperands() > 1);
656        if (PendingExports[i].Val->getOperand(0) == Root)
657          break;  // Don't add the root if we already indirectly depend on it.
658      }
659
660      if (i == e)
661        PendingExports.push_back(Root);
662    }
663
664    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
665                       &PendingExports[0],
666                       PendingExports.size());
667    PendingExports.clear();
668    DAG.setRoot(Root);
669    return Root;
670  }
671
672  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
673
674  void visit(Instruction &I) { visit(I.getOpcode(), I); }
675
676  void visit(unsigned Opcode, User &I) {
677    // Note: this doesn't use InstVisitor, because it has to work with
678    // ConstantExpr's in addition to instructions.
679    switch (Opcode) {
680    default: assert(0 && "Unknown instruction type encountered!");
681             abort();
682      // Build the switch statement using the Instruction.def file.
683#define HANDLE_INST(NUM, OPCODE, CLASS) \
684    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
685#include "llvm/Instruction.def"
686    }
687  }
688
689  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
690
691  SDValue getValue(const Value *V);
692
693  void setValue(const Value *V, SDValue NewN) {
694    SDValue &N = NodeMap[V];
695    assert(N.Val == 0 && "Already set a value for this node!");
696    N = NewN;
697  }
698
699  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
700                            std::set<unsigned> &OutputRegs,
701                            std::set<unsigned> &InputRegs);
702
703  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
704                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
705                            unsigned Opc);
706  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
707  void ExportFromCurrentBlock(Value *V);
708  void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall,
709                   MachineBasicBlock *LandingPad = NULL);
710
711  // Terminator instructions.
712  void visitRet(ReturnInst &I);
713  void visitBr(BranchInst &I);
714  void visitSwitch(SwitchInst &I);
715  void visitUnreachable(UnreachableInst &I) { /* noop */ }
716
717  // Helpers for visitSwitch
718  bool handleSmallSwitchRange(CaseRec& CR,
719                              CaseRecVector& WorkList,
720                              Value* SV,
721                              MachineBasicBlock* Default);
722  bool handleJTSwitchCase(CaseRec& CR,
723                          CaseRecVector& WorkList,
724                          Value* SV,
725                          MachineBasicBlock* Default);
726  bool handleBTSplitSwitchCase(CaseRec& CR,
727                               CaseRecVector& WorkList,
728                               Value* SV,
729                               MachineBasicBlock* Default);
730  bool handleBitTestsSwitchCase(CaseRec& CR,
731                                CaseRecVector& WorkList,
732                                Value* SV,
733                                MachineBasicBlock* Default);
734  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
735  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
736  void visitBitTestCase(MachineBasicBlock* NextMBB,
737                        unsigned Reg,
738                        SelectionDAGISel::BitTestCase &B);
739  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
740  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
741                            SelectionDAGISel::JumpTableHeader &JTH);
742
743  // These all get lowered before this pass.
744  void visitInvoke(InvokeInst &I);
745  void visitUnwind(UnwindInst &I);
746
747  void visitBinary(User &I, unsigned OpCode);
748  void visitShift(User &I, unsigned Opcode);
749  void visitAdd(User &I) {
750    if (I.getType()->isFPOrFPVector())
751      visitBinary(I, ISD::FADD);
752    else
753      visitBinary(I, ISD::ADD);
754  }
755  void visitSub(User &I);
756  void visitMul(User &I) {
757    if (I.getType()->isFPOrFPVector())
758      visitBinary(I, ISD::FMUL);
759    else
760      visitBinary(I, ISD::MUL);
761  }
762  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
763  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
764  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
765  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
766  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
767  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
768  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
769  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
770  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
771  void visitShl (User &I) { visitShift(I, ISD::SHL); }
772  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
773  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
774  void visitICmp(User &I);
775  void visitFCmp(User &I);
776  void visitVICmp(User &I);
777  void visitVFCmp(User &I);
778  // Visit the conversion instructions
779  void visitTrunc(User &I);
780  void visitZExt(User &I);
781  void visitSExt(User &I);
782  void visitFPTrunc(User &I);
783  void visitFPExt(User &I);
784  void visitFPToUI(User &I);
785  void visitFPToSI(User &I);
786  void visitUIToFP(User &I);
787  void visitSIToFP(User &I);
788  void visitPtrToInt(User &I);
789  void visitIntToPtr(User &I);
790  void visitBitCast(User &I);
791
792  void visitExtractElement(User &I);
793  void visitInsertElement(User &I);
794  void visitShuffleVector(User &I);
795
796  void visitExtractValue(ExtractValueInst &I);
797  void visitInsertValue(InsertValueInst &I);
798
799  void visitGetElementPtr(User &I);
800  void visitSelect(User &I);
801
802  void visitMalloc(MallocInst &I);
803  void visitFree(FreeInst &I);
804  void visitAlloca(AllocaInst &I);
805  void visitLoad(LoadInst &I);
806  void visitStore(StoreInst &I);
807  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
808  void visitCall(CallInst &I);
809  void visitInlineAsm(CallSite CS);
810  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
811  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
812
813  void visitVAStart(CallInst &I);
814  void visitVAArg(VAArgInst &I);
815  void visitVAEnd(CallInst &I);
816  void visitVACopy(CallInst &I);
817
818  void visitUserOp1(Instruction &I) {
819    assert(0 && "UserOp1 should not exist at instruction selection time!");
820    abort();
821  }
822  void visitUserOp2(Instruction &I) {
823    assert(0 && "UserOp2 should not exist at instruction selection time!");
824    abort();
825  }
826
827private:
828  inline const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
829
830};
831} // end namespace llvm
832
833
834/// getCopyFromParts - Create a value that contains the specified legal parts
835/// combined into the value they represent.  If the parts combine to a type
836/// larger then ValueVT then AssertOp can be used to specify whether the extra
837/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
838/// (ISD::AssertSext).
839static SDValue getCopyFromParts(SelectionDAG &DAG,
840                                  const SDValue *Parts,
841                                  unsigned NumParts,
842                                  MVT PartVT,
843                                  MVT ValueVT,
844                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
845  assert(NumParts > 0 && "No parts to assemble!");
846  TargetLowering &TLI = DAG.getTargetLoweringInfo();
847  SDValue Val = Parts[0];
848
849  if (NumParts > 1) {
850    // Assemble the value from multiple parts.
851    if (!ValueVT.isVector()) {
852      unsigned PartBits = PartVT.getSizeInBits();
853      unsigned ValueBits = ValueVT.getSizeInBits();
854
855      // Assemble the power of 2 part.
856      unsigned RoundParts = NumParts & (NumParts - 1) ?
857        1 << Log2_32(NumParts) : NumParts;
858      unsigned RoundBits = PartBits * RoundParts;
859      MVT RoundVT = RoundBits == ValueBits ?
860        ValueVT : MVT::getIntegerVT(RoundBits);
861      SDValue Lo, Hi;
862
863      if (RoundParts > 2) {
864        MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
865        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
866        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
867                              PartVT, HalfVT);
868      } else {
869        Lo = Parts[0];
870        Hi = Parts[1];
871      }
872      if (TLI.isBigEndian())
873        std::swap(Lo, Hi);
874      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
875
876      if (RoundParts < NumParts) {
877        // Assemble the trailing non-power-of-2 part.
878        unsigned OddParts = NumParts - RoundParts;
879        MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
880        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
881
882        // Combine the round and odd parts.
883        Lo = Val;
884        if (TLI.isBigEndian())
885          std::swap(Lo, Hi);
886        MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
887        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
888        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
889                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
890                                         TLI.getShiftAmountTy()));
891        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
892        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
893      }
894    } else {
895      // Handle a multi-element vector.
896      MVT IntermediateVT, RegisterVT;
897      unsigned NumIntermediates;
898      unsigned NumRegs =
899        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
900                                   RegisterVT);
901      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
902      NumParts = NumRegs; // Silence a compiler warning.
903      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
904      assert(RegisterVT == Parts[0].getValueType() &&
905             "Part type doesn't match part!");
906
907      // Assemble the parts into intermediate operands.
908      SmallVector<SDValue, 8> Ops(NumIntermediates);
909      if (NumIntermediates == NumParts) {
910        // If the register was not expanded, truncate or copy the value,
911        // as appropriate.
912        for (unsigned i = 0; i != NumParts; ++i)
913          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
914                                    PartVT, IntermediateVT);
915      } else if (NumParts > 0) {
916        // If the intermediate type was expanded, build the intermediate operands
917        // from the parts.
918        assert(NumParts % NumIntermediates == 0 &&
919               "Must expand into a divisible number of parts!");
920        unsigned Factor = NumParts / NumIntermediates;
921        for (unsigned i = 0; i != NumIntermediates; ++i)
922          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
923                                    PartVT, IntermediateVT);
924      }
925
926      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
927      // operands.
928      Val = DAG.getNode(IntermediateVT.isVector() ?
929                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
930                        ValueVT, &Ops[0], NumIntermediates);
931    }
932  }
933
934  // There is now one part, held in Val.  Correct it to match ValueVT.
935  PartVT = Val.getValueType();
936
937  if (PartVT == ValueVT)
938    return Val;
939
940  if (PartVT.isVector()) {
941    assert(ValueVT.isVector() && "Unknown vector conversion!");
942    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
943  }
944
945  if (ValueVT.isVector()) {
946    assert(ValueVT.getVectorElementType() == PartVT &&
947           ValueVT.getVectorNumElements() == 1 &&
948           "Only trivial scalar-to-vector conversions should get here!");
949    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
950  }
951
952  if (PartVT.isInteger() &&
953      ValueVT.isInteger()) {
954    if (ValueVT.bitsLT(PartVT)) {
955      // For a truncate, see if we have any information to
956      // indicate whether the truncated bits will always be
957      // zero or sign-extension.
958      if (AssertOp != ISD::DELETED_NODE)
959        Val = DAG.getNode(AssertOp, PartVT, Val,
960                          DAG.getValueType(ValueVT));
961      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
962    } else {
963      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
964    }
965  }
966
967  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
968    if (ValueVT.bitsLT(Val.getValueType()))
969      // FP_ROUND's are always exact here.
970      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
971                         DAG.getIntPtrConstant(1));
972    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
973  }
974
975  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
976    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
977
978  assert(0 && "Unknown mismatch!");
979  return SDValue();
980}
981
982/// getCopyToParts - Create a series of nodes that contain the specified value
983/// split into legal parts.  If the parts contain more bits than Val, then, for
984/// integers, ExtendKind can be used to specify how to generate the extra bits.
985static void getCopyToParts(SelectionDAG &DAG,
986                           SDValue Val,
987                           SDValue *Parts,
988                           unsigned NumParts,
989                           MVT PartVT,
990                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
991  TargetLowering &TLI = DAG.getTargetLoweringInfo();
992  MVT PtrVT = TLI.getPointerTy();
993  MVT ValueVT = Val.getValueType();
994  unsigned PartBits = PartVT.getSizeInBits();
995  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
996
997  if (!NumParts)
998    return;
999
1000  if (!ValueVT.isVector()) {
1001    if (PartVT == ValueVT) {
1002      assert(NumParts == 1 && "No-op copy with multiple parts!");
1003      Parts[0] = Val;
1004      return;
1005    }
1006
1007    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
1008      // If the parts cover more bits than the value has, promote the value.
1009      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
1010        assert(NumParts == 1 && "Do not know what to promote to!");
1011        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
1012      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
1013        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1014        Val = DAG.getNode(ExtendKind, ValueVT, Val);
1015      } else {
1016        assert(0 && "Unknown mismatch!");
1017      }
1018    } else if (PartBits == ValueVT.getSizeInBits()) {
1019      // Different types of the same size.
1020      assert(NumParts == 1 && PartVT != ValueVT);
1021      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1022    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
1023      // If the parts cover less bits than value has, truncate the value.
1024      if (PartVT.isInteger() && ValueVT.isInteger()) {
1025        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1026        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1027      } else {
1028        assert(0 && "Unknown mismatch!");
1029      }
1030    }
1031
1032    // The value may have changed - recompute ValueVT.
1033    ValueVT = Val.getValueType();
1034    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
1035           "Failed to tile the value with PartVT!");
1036
1037    if (NumParts == 1) {
1038      assert(PartVT == ValueVT && "Type conversion failed!");
1039      Parts[0] = Val;
1040      return;
1041    }
1042
1043    // Expand the value into multiple parts.
1044    if (NumParts & (NumParts - 1)) {
1045      // The number of parts is not a power of 2.  Split off and copy the tail.
1046      assert(PartVT.isInteger() && ValueVT.isInteger() &&
1047             "Do not know what to expand to!");
1048      unsigned RoundParts = 1 << Log2_32(NumParts);
1049      unsigned RoundBits = RoundParts * PartBits;
1050      unsigned OddParts = NumParts - RoundParts;
1051      SDValue OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
1052                                     DAG.getConstant(RoundBits,
1053                                                     TLI.getShiftAmountTy()));
1054      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
1055      if (TLI.isBigEndian())
1056        // The odd parts were reversed by getCopyToParts - unreverse them.
1057        std::reverse(Parts + RoundParts, Parts + NumParts);
1058      NumParts = RoundParts;
1059      ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1060      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1061    }
1062
1063    // The number of parts is a power of 2.  Repeatedly bisect the value using
1064    // EXTRACT_ELEMENT.
1065    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
1066                           MVT::getIntegerVT(ValueVT.getSizeInBits()),
1067                           Val);
1068    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
1069      for (unsigned i = 0; i < NumParts; i += StepSize) {
1070        unsigned ThisBits = StepSize * PartBits / 2;
1071        MVT ThisVT = MVT::getIntegerVT (ThisBits);
1072        SDValue &Part0 = Parts[i];
1073        SDValue &Part1 = Parts[i+StepSize/2];
1074
1075        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1076                            DAG.getConstant(1, PtrVT));
1077        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1078                            DAG.getConstant(0, PtrVT));
1079
1080        if (ThisBits == PartBits && ThisVT != PartVT) {
1081          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
1082          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
1083        }
1084      }
1085    }
1086
1087    if (TLI.isBigEndian())
1088      std::reverse(Parts, Parts + NumParts);
1089
1090    return;
1091  }
1092
1093  // Vector ValueVT.
1094  if (NumParts == 1) {
1095    if (PartVT != ValueVT) {
1096      if (PartVT.isVector()) {
1097        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1098      } else {
1099        assert(ValueVT.getVectorElementType() == PartVT &&
1100               ValueVT.getVectorNumElements() == 1 &&
1101               "Only trivial vector-to-scalar conversions should get here!");
1102        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
1103                          DAG.getConstant(0, PtrVT));
1104      }
1105    }
1106
1107    Parts[0] = Val;
1108    return;
1109  }
1110
1111  // Handle a multi-element vector.
1112  MVT IntermediateVT, RegisterVT;
1113  unsigned NumIntermediates;
1114  unsigned NumRegs =
1115    DAG.getTargetLoweringInfo()
1116      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1117                              RegisterVT);
1118  unsigned NumElements = ValueVT.getVectorNumElements();
1119
1120  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1121  NumParts = NumRegs; // Silence a compiler warning.
1122  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1123
1124  // Split the vector into intermediate operands.
1125  SmallVector<SDValue, 8> Ops(NumIntermediates);
1126  for (unsigned i = 0; i != NumIntermediates; ++i)
1127    if (IntermediateVT.isVector())
1128      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
1129                           IntermediateVT, Val,
1130                           DAG.getConstant(i * (NumElements / NumIntermediates),
1131                                           PtrVT));
1132    else
1133      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
1134                           IntermediateVT, Val,
1135                           DAG.getConstant(i, PtrVT));
1136
1137  // Split the intermediate operands into legal parts.
1138  if (NumParts == NumIntermediates) {
1139    // If the register was not expanded, promote or copy the value,
1140    // as appropriate.
1141    for (unsigned i = 0; i != NumParts; ++i)
1142      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
1143  } else if (NumParts > 0) {
1144    // If the intermediate type was expanded, split each the value into
1145    // legal parts.
1146    assert(NumParts % NumIntermediates == 0 &&
1147           "Must expand into a divisible number of parts!");
1148    unsigned Factor = NumParts / NumIntermediates;
1149    for (unsigned i = 0; i != NumIntermediates; ++i)
1150      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
1151  }
1152}
1153
1154
1155SDValue SelectionDAGLowering::getValue(const Value *V) {
1156  SDValue &N = NodeMap[V];
1157  if (N.Val) return N;
1158
1159  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
1160    MVT VT = TLI.getValueType(V->getType(), true);
1161
1162    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1163      return N = DAG.getConstant(CI->getValue(), VT);
1164
1165    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
1166      return N = DAG.getGlobalAddress(GV, VT);
1167
1168    if (isa<ConstantPointerNull>(C))
1169      return N = DAG.getConstant(0, TLI.getPointerTy());
1170
1171    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1172      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
1173
1174    if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
1175        !V->getType()->isAggregateType())
1176      return N = DAG.getNode(ISD::UNDEF, VT);
1177
1178    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1179      visit(CE->getOpcode(), *CE);
1180      SDValue N1 = NodeMap[V];
1181      assert(N1.Val && "visit didn't populate the ValueMap!");
1182      return N1;
1183    }
1184
1185    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1186      SmallVector<SDValue, 4> Constants;
1187      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1188           OI != OE; ++OI) {
1189        SDNode *Val = getValue(*OI).Val;
1190        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1191          Constants.push_back(SDValue(Val, i));
1192      }
1193      return DAG.getMergeValues(&Constants[0], Constants.size());
1194    }
1195
1196    if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
1197      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1198             "Unknown struct or array constant!");
1199
1200      SmallVector<MVT, 4> ValueVTs;
1201      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1202      unsigned NumElts = ValueVTs.size();
1203      if (NumElts == 0)
1204        return SDValue(); // empty struct
1205      SmallVector<SDValue, 4> Constants(NumElts);
1206      for (unsigned i = 0; i != NumElts; ++i) {
1207        MVT EltVT = ValueVTs[i];
1208        if (isa<UndefValue>(C))
1209          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1210        else if (EltVT.isFloatingPoint())
1211          Constants[i] = DAG.getConstantFP(0, EltVT);
1212        else
1213          Constants[i] = DAG.getConstant(0, EltVT);
1214      }
1215      return DAG.getMergeValues(&Constants[0], NumElts);
1216    }
1217
1218    const VectorType *VecTy = cast<VectorType>(V->getType());
1219    unsigned NumElements = VecTy->getNumElements();
1220
1221    // Now that we know the number and type of the elements, get that number of
1222    // elements into the Ops array based on what kind of constant it is.
1223    SmallVector<SDValue, 16> Ops;
1224    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1225      for (unsigned i = 0; i != NumElements; ++i)
1226        Ops.push_back(getValue(CP->getOperand(i)));
1227    } else {
1228      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1229             "Unknown vector constant!");
1230      MVT EltVT = TLI.getValueType(VecTy->getElementType());
1231
1232      SDValue Op;
1233      if (isa<UndefValue>(C))
1234        Op = DAG.getNode(ISD::UNDEF, EltVT);
1235      else if (EltVT.isFloatingPoint())
1236        Op = DAG.getConstantFP(0, EltVT);
1237      else
1238        Op = DAG.getConstant(0, EltVT);
1239      Ops.assign(NumElements, Op);
1240    }
1241
1242    // Create a BUILD_VECTOR node.
1243    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1244  }
1245
1246  // If this is a static alloca, generate it as the frameindex instead of
1247  // computation.
1248  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1249    std::map<const AllocaInst*, int>::iterator SI =
1250      FuncInfo.StaticAllocaMap.find(AI);
1251    if (SI != FuncInfo.StaticAllocaMap.end())
1252      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1253  }
1254
1255  unsigned InReg = FuncInfo.ValueMap[V];
1256  assert(InReg && "Value not in map!");
1257
1258  RegsForValue RFV(TLI, InReg, V->getType());
1259  SDValue Chain = DAG.getEntryNode();
1260  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1261}
1262
1263
1264void SelectionDAGLowering::visitRet(ReturnInst &I) {
1265  if (I.getNumOperands() == 0) {
1266    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
1267    return;
1268  }
1269
1270  SmallVector<SDValue, 8> NewValues;
1271  NewValues.push_back(getControlRoot());
1272  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1273    SDValue RetOp = getValue(I.getOperand(i));
1274
1275    SmallVector<MVT, 4> ValueVTs;
1276    ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
1277    for (unsigned j = 0, f = ValueVTs.size(); j != f; ++j) {
1278      MVT VT = ValueVTs[j];
1279
1280      // FIXME: C calling convention requires the return type to be promoted to
1281      // at least 32-bit. But this is not necessary for non-C calling conventions.
1282      if (VT.isInteger()) {
1283        MVT MinVT = TLI.getRegisterType(MVT::i32);
1284        if (VT.bitsLT(MinVT))
1285          VT = MinVT;
1286      }
1287
1288      unsigned NumParts = TLI.getNumRegisters(VT);
1289      MVT PartVT = TLI.getRegisterType(VT);
1290      SmallVector<SDValue, 4> Parts(NumParts);
1291      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1292
1293      const Function *F = I.getParent()->getParent();
1294      if (F->paramHasAttr(0, ParamAttr::SExt))
1295        ExtendKind = ISD::SIGN_EXTEND;
1296      else if (F->paramHasAttr(0, ParamAttr::ZExt))
1297        ExtendKind = ISD::ZERO_EXTEND;
1298
1299      getCopyToParts(DAG, SDValue(RetOp.Val, RetOp.ResNo + j),
1300                     &Parts[0], NumParts, PartVT, ExtendKind);
1301
1302      for (unsigned i = 0; i < NumParts; ++i) {
1303        NewValues.push_back(Parts[i]);
1304        NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
1305      }
1306    }
1307  }
1308  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1309                          &NewValues[0], NewValues.size()));
1310}
1311
1312/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1313/// the current basic block, add it to ValueMap now so that we'll get a
1314/// CopyTo/FromReg.
1315void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1316  // No need to export constants.
1317  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1318
1319  // Already exported?
1320  if (FuncInfo.isExportedInst(V)) return;
1321
1322  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1323  CopyValueToVirtualRegister(V, Reg);
1324}
1325
1326bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1327                                                    const BasicBlock *FromBB) {
1328  // The operands of the setcc have to be in this block.  We don't know
1329  // how to export them from some other block.
1330  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1331    // Can export from current BB.
1332    if (VI->getParent() == FromBB)
1333      return true;
1334
1335    // Is already exported, noop.
1336    return FuncInfo.isExportedInst(V);
1337  }
1338
1339  // If this is an argument, we can export it if the BB is the entry block or
1340  // if it is already exported.
1341  if (isa<Argument>(V)) {
1342    if (FromBB == &FromBB->getParent()->getEntryBlock())
1343      return true;
1344
1345    // Otherwise, can only export this if it is already exported.
1346    return FuncInfo.isExportedInst(V);
1347  }
1348
1349  // Otherwise, constants can always be exported.
1350  return true;
1351}
1352
1353static bool InBlock(const Value *V, const BasicBlock *BB) {
1354  if (const Instruction *I = dyn_cast<Instruction>(V))
1355    return I->getParent() == BB;
1356  return true;
1357}
1358
1359/// FindMergedConditions - If Cond is an expression like
1360void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1361                                                MachineBasicBlock *TBB,
1362                                                MachineBasicBlock *FBB,
1363                                                MachineBasicBlock *CurBB,
1364                                                unsigned Opc) {
1365  // If this node is not part of the or/and tree, emit it as a branch.
1366  Instruction *BOp = dyn_cast<Instruction>(Cond);
1367
1368  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1369      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1370      BOp->getParent() != CurBB->getBasicBlock() ||
1371      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1372      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1373    const BasicBlock *BB = CurBB->getBasicBlock();
1374
1375    // If the leaf of the tree is a comparison, merge the condition into
1376    // the caseblock.
1377    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1378        // The operands of the cmp have to be in this block.  We don't know
1379        // how to export them from some other block.  If this is the first block
1380        // of the sequence, no exporting is needed.
1381        (CurBB == CurMBB ||
1382         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1383          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1384      BOp = cast<Instruction>(Cond);
1385      ISD::CondCode Condition;
1386      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1387        switch (IC->getPredicate()) {
1388        default: assert(0 && "Unknown icmp predicate opcode!");
1389        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1390        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1391        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1392        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1393        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1394        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1395        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1396        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1397        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1398        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1399        }
1400      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1401        ISD::CondCode FPC, FOC;
1402        switch (FC->getPredicate()) {
1403        default: assert(0 && "Unknown fcmp predicate opcode!");
1404        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1405        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1406        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1407        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1408        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1409        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1410        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1411        case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
1412        case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
1413        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1414        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1415        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1416        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1417        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1418        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1419        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1420        }
1421        if (FiniteOnlyFPMath())
1422          Condition = FOC;
1423        else
1424          Condition = FPC;
1425      } else {
1426        Condition = ISD::SETEQ; // silence warning.
1427        assert(0 && "Unknown compare instruction");
1428      }
1429
1430      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1431                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1432      SwitchCases.push_back(CB);
1433      return;
1434    }
1435
1436    // Create a CaseBlock record representing this branch.
1437    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1438                                   NULL, TBB, FBB, CurBB);
1439    SwitchCases.push_back(CB);
1440    return;
1441  }
1442
1443
1444  //  Create TmpBB after CurBB.
1445  MachineFunction::iterator BBI = CurBB;
1446  MachineFunction &MF = DAG.getMachineFunction();
1447  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1448  CurBB->getParent()->insert(++BBI, TmpBB);
1449
1450  if (Opc == Instruction::Or) {
1451    // Codegen X | Y as:
1452    //   jmp_if_X TBB
1453    //   jmp TmpBB
1454    // TmpBB:
1455    //   jmp_if_Y TBB
1456    //   jmp FBB
1457    //
1458
1459    // Emit the LHS condition.
1460    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1461
1462    // Emit the RHS condition into TmpBB.
1463    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1464  } else {
1465    assert(Opc == Instruction::And && "Unknown merge op!");
1466    // Codegen X & Y as:
1467    //   jmp_if_X TmpBB
1468    //   jmp FBB
1469    // TmpBB:
1470    //   jmp_if_Y TBB
1471    //   jmp FBB
1472    //
1473    //  This requires creation of TmpBB after CurBB.
1474
1475    // Emit the LHS condition.
1476    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1477
1478    // Emit the RHS condition into TmpBB.
1479    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1480  }
1481}
1482
1483/// If the set of cases should be emitted as a series of branches, return true.
1484/// If we should emit this as a bunch of and/or'd together conditions, return
1485/// false.
1486static bool
1487ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1488  if (Cases.size() != 2) return true;
1489
1490  // If this is two comparisons of the same values or'd or and'd together, they
1491  // will get folded into a single comparison, so don't emit two blocks.
1492  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1493       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1494      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1495       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1496    return false;
1497  }
1498
1499  return true;
1500}
1501
1502void SelectionDAGLowering::visitBr(BranchInst &I) {
1503  // Update machine-CFG edges.
1504  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1505
1506  // Figure out which block is immediately after the current one.
1507  MachineBasicBlock *NextBlock = 0;
1508  MachineFunction::iterator BBI = CurMBB;
1509  if (++BBI != CurMBB->getParent()->end())
1510    NextBlock = BBI;
1511
1512  if (I.isUnconditional()) {
1513    // Update machine-CFG edges.
1514    CurMBB->addSuccessor(Succ0MBB);
1515
1516    // If this is not a fall-through branch, emit the branch.
1517    if (Succ0MBB != NextBlock)
1518      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1519                              DAG.getBasicBlock(Succ0MBB)));
1520    return;
1521  }
1522
1523  // If this condition is one of the special cases we handle, do special stuff
1524  // now.
1525  Value *CondVal = I.getCondition();
1526  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1527
1528  // If this is a series of conditions that are or'd or and'd together, emit
1529  // this as a sequence of branches instead of setcc's with and/or operations.
1530  // For example, instead of something like:
1531  //     cmp A, B
1532  //     C = seteq
1533  //     cmp D, E
1534  //     F = setle
1535  //     or C, F
1536  //     jnz foo
1537  // Emit:
1538  //     cmp A, B
1539  //     je foo
1540  //     cmp D, E
1541  //     jle foo
1542  //
1543  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1544    if (BOp->hasOneUse() &&
1545        (BOp->getOpcode() == Instruction::And ||
1546         BOp->getOpcode() == Instruction::Or)) {
1547      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1548      // If the compares in later blocks need to use values not currently
1549      // exported from this block, export them now.  This block should always
1550      // be the first entry.
1551      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1552
1553      // Allow some cases to be rejected.
1554      if (ShouldEmitAsBranches(SwitchCases)) {
1555        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1556          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1557          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1558        }
1559
1560        // Emit the branch for this block.
1561        visitSwitchCase(SwitchCases[0]);
1562        SwitchCases.erase(SwitchCases.begin());
1563        return;
1564      }
1565
1566      // Okay, we decided not to do this, remove any inserted MBB's and clear
1567      // SwitchCases.
1568      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1569        CurMBB->getParent()->erase(SwitchCases[i].ThisBB);
1570
1571      SwitchCases.clear();
1572    }
1573  }
1574
1575  // Create a CaseBlock record representing this branch.
1576  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1577                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1578  // Use visitSwitchCase to actually insert the fast branch sequence for this
1579  // cond branch.
1580  visitSwitchCase(CB);
1581}
1582
1583/// visitSwitchCase - Emits the necessary code to represent a single node in
1584/// the binary search tree resulting from lowering a switch instruction.
1585void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1586  SDValue Cond;
1587  SDValue CondLHS = getValue(CB.CmpLHS);
1588
1589  // Build the setcc now.
1590  if (CB.CmpMHS == NULL) {
1591    // Fold "(X == true)" to X and "(X == false)" to !X to
1592    // handle common cases produced by branch lowering.
1593    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1594      Cond = CondLHS;
1595    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1596      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1597      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1598    } else
1599      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1600  } else {
1601    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1602
1603    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1604    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1605
1606    SDValue CmpOp = getValue(CB.CmpMHS);
1607    MVT VT = CmpOp.getValueType();
1608
1609    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1610      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1611    } else {
1612      SDValue SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1613      Cond = DAG.getSetCC(MVT::i1, SUB,
1614                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1615    }
1616  }
1617
1618  // Update successor info
1619  CurMBB->addSuccessor(CB.TrueBB);
1620  CurMBB->addSuccessor(CB.FalseBB);
1621
1622  // Set NextBlock to be the MBB immediately after the current one, if any.
1623  // This is used to avoid emitting unnecessary branches to the next block.
1624  MachineBasicBlock *NextBlock = 0;
1625  MachineFunction::iterator BBI = CurMBB;
1626  if (++BBI != CurMBB->getParent()->end())
1627    NextBlock = BBI;
1628
1629  // If the lhs block is the next block, invert the condition so that we can
1630  // fall through to the lhs instead of the rhs block.
1631  if (CB.TrueBB == NextBlock) {
1632    std::swap(CB.TrueBB, CB.FalseBB);
1633    SDValue True = DAG.getConstant(1, Cond.getValueType());
1634    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1635  }
1636  SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1637                                 DAG.getBasicBlock(CB.TrueBB));
1638
1639  // If the branch was constant folded, fix up the CFG.
1640  if (BrCond.getOpcode() == ISD::BR) {
1641    if (!DisableCorrectBranchFolding)
1642      CurMBB->removeSuccessor(CB.FalseBB);
1643    DAG.setRoot(BrCond);
1644  } else {
1645    // Otherwise, go ahead and insert the false branch.
1646    if (BrCond == getControlRoot())
1647      if (!DisableCorrectBranchFolding)
1648        CurMBB->removeSuccessor(CB.TrueBB);
1649
1650    if (CB.FalseBB == NextBlock)
1651      DAG.setRoot(BrCond);
1652    else
1653      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1654                              DAG.getBasicBlock(CB.FalseBB)));
1655  }
1656}
1657
1658/// visitJumpTable - Emit JumpTable node in the current MBB
1659void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1660  // Emit the code for the jump table
1661  assert(JT.Reg != -1U && "Should lower JT Header first!");
1662  MVT PTy = TLI.getPointerTy();
1663  SDValue Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1664  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1665  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1666                          Table, Index));
1667  return;
1668}
1669
1670/// visitJumpTableHeader - This function emits necessary code to produce index
1671/// in the JumpTable from switch case.
1672void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1673                                         SelectionDAGISel::JumpTableHeader &JTH) {
1674  // Subtract the lowest switch case value from the value being switched on
1675  // and conditional branch to default mbb if the result is greater than the
1676  // difference between smallest and largest cases.
1677  SDValue SwitchOp = getValue(JTH.SValue);
1678  MVT VT = SwitchOp.getValueType();
1679  SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1680                              DAG.getConstant(JTH.First, VT));
1681
1682  // The SDNode we just created, which holds the value being switched on
1683  // minus the the smallest case value, needs to be copied to a virtual
1684  // register so it can be used as an index into the jump table in a
1685  // subsequent basic block.  This value may be smaller or larger than the
1686  // target's pointer type, and therefore require extension or truncating.
1687  if (VT.bitsGT(TLI.getPointerTy()))
1688    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1689  else
1690    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1691
1692  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1693  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1694  JT.Reg = JumpTableReg;
1695
1696  // Emit the range check for the jump table, and branch to the default
1697  // block for the switch statement if the value being switched on exceeds
1698  // the largest case in the switch.
1699  SDValue CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1700                               DAG.getConstant(JTH.Last-JTH.First,VT),
1701                               ISD::SETUGT);
1702
1703  // Set NextBlock to be the MBB immediately after the current one, if any.
1704  // This is used to avoid emitting unnecessary branches to the next block.
1705  MachineBasicBlock *NextBlock = 0;
1706  MachineFunction::iterator BBI = CurMBB;
1707  if (++BBI != CurMBB->getParent()->end())
1708    NextBlock = BBI;
1709
1710  SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1711                                 DAG.getBasicBlock(JT.Default));
1712
1713  if (JT.MBB == NextBlock)
1714    DAG.setRoot(BrCond);
1715  else
1716    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1717                            DAG.getBasicBlock(JT.MBB)));
1718
1719  return;
1720}
1721
1722/// visitBitTestHeader - This function emits necessary code to produce value
1723/// suitable for "bit tests"
1724void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1725  // Subtract the minimum value
1726  SDValue SwitchOp = getValue(B.SValue);
1727  MVT VT = SwitchOp.getValueType();
1728  SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1729                              DAG.getConstant(B.First, VT));
1730
1731  // Check range
1732  SDValue RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1733                                    DAG.getConstant(B.Range, VT),
1734                                    ISD::SETUGT);
1735
1736  SDValue ShiftOp;
1737  if (VT.bitsGT(TLI.getShiftAmountTy()))
1738    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1739  else
1740    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1741
1742  // Make desired shift
1743  SDValue SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1744                                    DAG.getConstant(1, TLI.getPointerTy()),
1745                                    ShiftOp);
1746
1747  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1748  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1749  B.Reg = SwitchReg;
1750
1751  // Set NextBlock to be the MBB immediately after the current one, if any.
1752  // This is used to avoid emitting unnecessary branches to the next block.
1753  MachineBasicBlock *NextBlock = 0;
1754  MachineFunction::iterator BBI = CurMBB;
1755  if (++BBI != CurMBB->getParent()->end())
1756    NextBlock = BBI;
1757
1758  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1759
1760  CurMBB->addSuccessor(B.Default);
1761  CurMBB->addSuccessor(MBB);
1762
1763  SDValue BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1764                                  DAG.getBasicBlock(B.Default));
1765
1766  if (MBB == NextBlock)
1767    DAG.setRoot(BrRange);
1768  else
1769    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1770                            DAG.getBasicBlock(MBB)));
1771
1772  return;
1773}
1774
1775/// visitBitTestCase - this function produces one "bit test"
1776void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1777                                            unsigned Reg,
1778                                            SelectionDAGISel::BitTestCase &B) {
1779  // Emit bit tests and jumps
1780  SDValue SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
1781                                           TLI.getPointerTy());
1782
1783  SDValue AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
1784                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1785  SDValue AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1786                                  DAG.getConstant(0, TLI.getPointerTy()),
1787                                  ISD::SETNE);
1788
1789  CurMBB->addSuccessor(B.TargetBB);
1790  CurMBB->addSuccessor(NextMBB);
1791
1792  SDValue BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1793                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1794
1795  // Set NextBlock to be the MBB immediately after the current one, if any.
1796  // This is used to avoid emitting unnecessary branches to the next block.
1797  MachineBasicBlock *NextBlock = 0;
1798  MachineFunction::iterator BBI = CurMBB;
1799  if (++BBI != CurMBB->getParent()->end())
1800    NextBlock = BBI;
1801
1802  if (NextMBB == NextBlock)
1803    DAG.setRoot(BrAnd);
1804  else
1805    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1806                            DAG.getBasicBlock(NextMBB)));
1807
1808  return;
1809}
1810
1811void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1812  // Retrieve successors.
1813  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1814  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1815
1816  if (isa<InlineAsm>(I.getCalledValue()))
1817    visitInlineAsm(&I);
1818  else
1819    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1820
1821  // If the value of the invoke is used outside of its defining block, make it
1822  // available as a virtual register.
1823  if (!I.use_empty()) {
1824    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1825    if (VMI != FuncInfo.ValueMap.end())
1826      CopyValueToVirtualRegister(&I, VMI->second);
1827  }
1828
1829  // Update successor info
1830  CurMBB->addSuccessor(Return);
1831  CurMBB->addSuccessor(LandingPad);
1832
1833  // Drop into normal successor.
1834  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1835                          DAG.getBasicBlock(Return)));
1836}
1837
1838void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1839}
1840
1841/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1842/// small case ranges).
1843bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1844                                                  CaseRecVector& WorkList,
1845                                                  Value* SV,
1846                                                  MachineBasicBlock* Default) {
1847  Case& BackCase  = *(CR.Range.second-1);
1848
1849  // Size is the number of Cases represented by this range.
1850  unsigned Size = CR.Range.second - CR.Range.first;
1851  if (Size > 3)
1852    return false;
1853
1854  // Get the MachineFunction which holds the current MBB.  This is used when
1855  // inserting any additional MBBs necessary to represent the switch.
1856  MachineFunction *CurMF = CurMBB->getParent();
1857
1858  // Figure out which block is immediately after the current one.
1859  MachineBasicBlock *NextBlock = 0;
1860  MachineFunction::iterator BBI = CR.CaseBB;
1861
1862  if (++BBI != CurMBB->getParent()->end())
1863    NextBlock = BBI;
1864
1865  // TODO: If any two of the cases has the same destination, and if one value
1866  // is the same as the other, but has one bit unset that the other has set,
1867  // use bit manipulation to do two compares at once.  For example:
1868  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1869
1870  // Rearrange the case blocks so that the last one falls through if possible.
1871  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1872    // The last case block won't fall through into 'NextBlock' if we emit the
1873    // branches in this order.  See if rearranging a case value would help.
1874    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1875      if (I->BB == NextBlock) {
1876        std::swap(*I, BackCase);
1877        break;
1878      }
1879    }
1880  }
1881
1882  // Create a CaseBlock record representing a conditional branch to
1883  // the Case's target mbb if the value being switched on SV is equal
1884  // to C.
1885  MachineBasicBlock *CurBlock = CR.CaseBB;
1886  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1887    MachineBasicBlock *FallThrough;
1888    if (I != E-1) {
1889      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1890      CurMF->insert(BBI, FallThrough);
1891    } else {
1892      // If the last case doesn't match, go to the default block.
1893      FallThrough = Default;
1894    }
1895
1896    Value *RHS, *LHS, *MHS;
1897    ISD::CondCode CC;
1898    if (I->High == I->Low) {
1899      // This is just small small case range :) containing exactly 1 case
1900      CC = ISD::SETEQ;
1901      LHS = SV; RHS = I->High; MHS = NULL;
1902    } else {
1903      CC = ISD::SETLE;
1904      LHS = I->Low; MHS = SV; RHS = I->High;
1905    }
1906    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1907                                   I->BB, FallThrough, CurBlock);
1908
1909    // If emitting the first comparison, just call visitSwitchCase to emit the
1910    // code into the current block.  Otherwise, push the CaseBlock onto the
1911    // vector to be later processed by SDISel, and insert the node's MBB
1912    // before the next MBB.
1913    if (CurBlock == CurMBB)
1914      visitSwitchCase(CB);
1915    else
1916      SwitchCases.push_back(CB);
1917
1918    CurBlock = FallThrough;
1919  }
1920
1921  return true;
1922}
1923
1924static inline bool areJTsAllowed(const TargetLowering &TLI) {
1925  return !DisableJumpTables &&
1926          (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1927           TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1928}
1929
1930/// handleJTSwitchCase - Emit jumptable for current switch case range
1931bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1932                                              CaseRecVector& WorkList,
1933                                              Value* SV,
1934                                              MachineBasicBlock* Default) {
1935  Case& FrontCase = *CR.Range.first;
1936  Case& BackCase  = *(CR.Range.second-1);
1937
1938  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1939  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1940
1941  uint64_t TSize = 0;
1942  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1943       I!=E; ++I)
1944    TSize += I->size();
1945
1946  if (!areJTsAllowed(TLI) || TSize <= 3)
1947    return false;
1948
1949  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1950  if (Density < 0.4)
1951    return false;
1952
1953  DOUT << "Lowering jump table\n"
1954       << "First entry: " << First << ". Last entry: " << Last << "\n"
1955       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1956
1957  // Get the MachineFunction which holds the current MBB.  This is used when
1958  // inserting any additional MBBs necessary to represent the switch.
1959  MachineFunction *CurMF = CurMBB->getParent();
1960
1961  // Figure out which block is immediately after the current one.
1962  MachineBasicBlock *NextBlock = 0;
1963  MachineFunction::iterator BBI = CR.CaseBB;
1964
1965  if (++BBI != CurMBB->getParent()->end())
1966    NextBlock = BBI;
1967
1968  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1969
1970  // Create a new basic block to hold the code for loading the address
1971  // of the jump table, and jumping to it.  Update successor information;
1972  // we will either branch to the default case for the switch, or the jump
1973  // table.
1974  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1975  CurMF->insert(BBI, JumpTableBB);
1976  CR.CaseBB->addSuccessor(Default);
1977  CR.CaseBB->addSuccessor(JumpTableBB);
1978
1979  // Build a vector of destination BBs, corresponding to each target
1980  // of the jump table. If the value of the jump table slot corresponds to
1981  // a case statement, push the case's BB onto the vector, otherwise, push
1982  // the default BB.
1983  std::vector<MachineBasicBlock*> DestBBs;
1984  int64_t TEI = First;
1985  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1986    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1987    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1988
1989    if ((Low <= TEI) && (TEI <= High)) {
1990      DestBBs.push_back(I->BB);
1991      if (TEI==High)
1992        ++I;
1993    } else {
1994      DestBBs.push_back(Default);
1995    }
1996  }
1997
1998  // Update successor info. Add one edge to each unique successor.
1999  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2000  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2001         E = DestBBs.end(); I != E; ++I) {
2002    if (!SuccsHandled[(*I)->getNumber()]) {
2003      SuccsHandled[(*I)->getNumber()] = true;
2004      JumpTableBB->addSuccessor(*I);
2005    }
2006  }
2007
2008  // Create a jump table index for this jump table, or return an existing
2009  // one.
2010  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
2011
2012  // Set the jump table information so that we can codegen it as a second
2013  // MachineBasicBlock
2014  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
2015  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
2016                                        (CR.CaseBB == CurMBB));
2017  if (CR.CaseBB == CurMBB)
2018    visitJumpTableHeader(JT, JTH);
2019
2020  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
2021
2022  return true;
2023}
2024
2025/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2026/// 2 subtrees.
2027bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
2028                                                   CaseRecVector& WorkList,
2029                                                   Value* SV,
2030                                                   MachineBasicBlock* Default) {
2031  // Get the MachineFunction which holds the current MBB.  This is used when
2032  // inserting any additional MBBs necessary to represent the switch.
2033  MachineFunction *CurMF = CurMBB->getParent();
2034
2035  // Figure out which block is immediately after the current one.
2036  MachineBasicBlock *NextBlock = 0;
2037  MachineFunction::iterator BBI = CR.CaseBB;
2038
2039  if (++BBI != CurMBB->getParent()->end())
2040    NextBlock = BBI;
2041
2042  Case& FrontCase = *CR.Range.first;
2043  Case& BackCase  = *(CR.Range.second-1);
2044  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2045
2046  // Size is the number of Cases represented by this range.
2047  unsigned Size = CR.Range.second - CR.Range.first;
2048
2049  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
2050  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
2051  double FMetric = 0;
2052  CaseItr Pivot = CR.Range.first + Size/2;
2053
2054  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2055  // (heuristically) allow us to emit JumpTable's later.
2056  uint64_t TSize = 0;
2057  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2058       I!=E; ++I)
2059    TSize += I->size();
2060
2061  uint64_t LSize = FrontCase.size();
2062  uint64_t RSize = TSize-LSize;
2063  DOUT << "Selecting best pivot: \n"
2064       << "First: " << First << ", Last: " << Last <<"\n"
2065       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
2066  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2067       J!=E; ++I, ++J) {
2068    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
2069    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
2070    assert((RBegin-LEnd>=1) && "Invalid case distance");
2071    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
2072    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
2073    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
2074    // Should always split in some non-trivial place
2075    DOUT <<"=>Step\n"
2076         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
2077         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
2078         << "Metric: " << Metric << "\n";
2079    if (FMetric < Metric) {
2080      Pivot = J;
2081      FMetric = Metric;
2082      DOUT << "Current metric set to: " << FMetric << "\n";
2083    }
2084
2085    LSize += J->size();
2086    RSize -= J->size();
2087  }
2088  if (areJTsAllowed(TLI)) {
2089    // If our case is dense we *really* should handle it earlier!
2090    assert((FMetric > 0) && "Should handle dense range earlier!");
2091  } else {
2092    Pivot = CR.Range.first + Size/2;
2093  }
2094
2095  CaseRange LHSR(CR.Range.first, Pivot);
2096  CaseRange RHSR(Pivot, CR.Range.second);
2097  Constant *C = Pivot->Low;
2098  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2099
2100  // We know that we branch to the LHS if the Value being switched on is
2101  // less than the Pivot value, C.  We use this to optimize our binary
2102  // tree a bit, by recognizing that if SV is greater than or equal to the
2103  // LHS's Case Value, and that Case Value is exactly one less than the
2104  // Pivot's Value, then we can branch directly to the LHS's Target,
2105  // rather than creating a leaf node for it.
2106  if ((LHSR.second - LHSR.first) == 1 &&
2107      LHSR.first->High == CR.GE &&
2108      cast<ConstantInt>(C)->getSExtValue() ==
2109      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
2110    TrueBB = LHSR.first->BB;
2111  } else {
2112    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2113    CurMF->insert(BBI, TrueBB);
2114    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2115  }
2116
2117  // Similar to the optimization above, if the Value being switched on is
2118  // known to be less than the Constant CR.LT, and the current Case Value
2119  // is CR.LT - 1, then we can branch directly to the target block for
2120  // the current Case Value, rather than emitting a RHS leaf node for it.
2121  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2122      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
2123      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
2124    FalseBB = RHSR.first->BB;
2125  } else {
2126    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2127    CurMF->insert(BBI, FalseBB);
2128    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2129  }
2130
2131  // Create a CaseBlock record representing a conditional branch to
2132  // the LHS node if the value being switched on SV is less than C.
2133  // Otherwise, branch to LHS.
2134  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
2135                                 TrueBB, FalseBB, CR.CaseBB);
2136
2137  if (CR.CaseBB == CurMBB)
2138    visitSwitchCase(CB);
2139  else
2140    SwitchCases.push_back(CB);
2141
2142  return true;
2143}
2144
2145/// handleBitTestsSwitchCase - if current case range has few destination and
2146/// range span less, than machine word bitwidth, encode case range into series
2147/// of masks and emit bit tests with these masks.
2148bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
2149                                                    CaseRecVector& WorkList,
2150                                                    Value* SV,
2151                                                    MachineBasicBlock* Default){
2152  unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
2153
2154  Case& FrontCase = *CR.Range.first;
2155  Case& BackCase  = *(CR.Range.second-1);
2156
2157  // Get the MachineFunction which holds the current MBB.  This is used when
2158  // inserting any additional MBBs necessary to represent the switch.
2159  MachineFunction *CurMF = CurMBB->getParent();
2160
2161  unsigned numCmps = 0;
2162  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2163       I!=E; ++I) {
2164    // Single case counts one, case range - two.
2165    if (I->Low == I->High)
2166      numCmps +=1;
2167    else
2168      numCmps +=2;
2169  }
2170
2171  // Count unique destinations
2172  SmallSet<MachineBasicBlock*, 4> Dests;
2173  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2174    Dests.insert(I->BB);
2175    if (Dests.size() > 3)
2176      // Don't bother the code below, if there are too much unique destinations
2177      return false;
2178  }
2179  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
2180       << "Total number of comparisons: " << numCmps << "\n";
2181
2182  // Compute span of values.
2183  Constant* minValue = FrontCase.Low;
2184  Constant* maxValue = BackCase.High;
2185  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
2186                   cast<ConstantInt>(minValue)->getSExtValue();
2187  DOUT << "Compare range: " << range << "\n"
2188       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
2189       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
2190
2191  if (range>=IntPtrBits ||
2192      (!(Dests.size() == 1 && numCmps >= 3) &&
2193       !(Dests.size() == 2 && numCmps >= 5) &&
2194       !(Dests.size() >= 3 && numCmps >= 6)))
2195    return false;
2196
2197  DOUT << "Emitting bit tests\n";
2198  int64_t lowBound = 0;
2199
2200  // Optimize the case where all the case values fit in a
2201  // word without having to subtract minValue. In this case,
2202  // we can optimize away the subtraction.
2203  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
2204      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
2205    range = cast<ConstantInt>(maxValue)->getSExtValue();
2206  } else {
2207    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
2208  }
2209
2210  CaseBitsVector CasesBits;
2211  unsigned i, count = 0;
2212
2213  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2214    MachineBasicBlock* Dest = I->BB;
2215    for (i = 0; i < count; ++i)
2216      if (Dest == CasesBits[i].BB)
2217        break;
2218
2219    if (i == count) {
2220      assert((count < 3) && "Too much destinations to test!");
2221      CasesBits.push_back(CaseBits(0, Dest, 0));
2222      count++;
2223    }
2224
2225    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2226    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2227
2228    for (uint64_t j = lo; j <= hi; j++) {
2229      CasesBits[i].Mask |=  1ULL << j;
2230      CasesBits[i].Bits++;
2231    }
2232
2233  }
2234  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2235
2236  SelectionDAGISel::BitTestInfo BTC;
2237
2238  // Figure out which block is immediately after the current one.
2239  MachineFunction::iterator BBI = CR.CaseBB;
2240  ++BBI;
2241
2242  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2243
2244  DOUT << "Cases:\n";
2245  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2246    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2247         << ", BB: " << CasesBits[i].BB << "\n";
2248
2249    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2250    CurMF->insert(BBI, CaseBB);
2251    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
2252                                                CaseBB,
2253                                                CasesBits[i].BB));
2254  }
2255
2256  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
2257                                     -1U, (CR.CaseBB == CurMBB),
2258                                     CR.CaseBB, Default, BTC);
2259
2260  if (CR.CaseBB == CurMBB)
2261    visitBitTestHeader(BTB);
2262
2263  BitTestCases.push_back(BTB);
2264
2265  return true;
2266}
2267
2268
2269/// Clusterify - Transform simple list of Cases into list of CaseRange's
2270unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2271                                          const SwitchInst& SI) {
2272  unsigned numCmps = 0;
2273
2274  // Start with "simple" cases
2275  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2276    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2277    Cases.push_back(Case(SI.getSuccessorValue(i),
2278                         SI.getSuccessorValue(i),
2279                         SMBB));
2280  }
2281  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2282
2283  // Merge case into clusters
2284  if (Cases.size()>=2)
2285    // Must recompute end() each iteration because it may be
2286    // invalidated by erase if we hold on to it
2287    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2288      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2289      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2290      MachineBasicBlock* nextBB = J->BB;
2291      MachineBasicBlock* currentBB = I->BB;
2292
2293      // If the two neighboring cases go to the same destination, merge them
2294      // into a single case.
2295      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2296        I->High = J->High;
2297        J = Cases.erase(J);
2298      } else {
2299        I = J++;
2300      }
2301    }
2302
2303  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2304    if (I->Low != I->High)
2305      // A range counts double, since it requires two compares.
2306      ++numCmps;
2307  }
2308
2309  return numCmps;
2310}
2311
2312void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2313  // Figure out which block is immediately after the current one.
2314  MachineBasicBlock *NextBlock = 0;
2315  MachineFunction::iterator BBI = CurMBB;
2316
2317  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2318
2319  // If there is only the default destination, branch to it if it is not the
2320  // next basic block.  Otherwise, just fall through.
2321  if (SI.getNumOperands() == 2) {
2322    // Update machine-CFG edges.
2323
2324    // If this is not a fall-through branch, emit the branch.
2325    CurMBB->addSuccessor(Default);
2326    if (Default != NextBlock)
2327      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2328                              DAG.getBasicBlock(Default)));
2329
2330    return;
2331  }
2332
2333  // If there are any non-default case statements, create a vector of Cases
2334  // representing each one, and sort the vector so that we can efficiently
2335  // create a binary search tree from them.
2336  CaseVector Cases;
2337  unsigned numCmps = Clusterify(Cases, SI);
2338  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2339       << ". Total compares: " << numCmps << "\n";
2340
2341  // Get the Value to be switched on and default basic blocks, which will be
2342  // inserted into CaseBlock records, representing basic blocks in the binary
2343  // search tree.
2344  Value *SV = SI.getOperand(0);
2345
2346  // Push the initial CaseRec onto the worklist
2347  CaseRecVector WorkList;
2348  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2349
2350  while (!WorkList.empty()) {
2351    // Grab a record representing a case range to process off the worklist
2352    CaseRec CR = WorkList.back();
2353    WorkList.pop_back();
2354
2355    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2356      continue;
2357
2358    // If the range has few cases (two or less) emit a series of specific
2359    // tests.
2360    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2361      continue;
2362
2363    // If the switch has more than 5 blocks, and at least 40% dense, and the
2364    // target supports indirect branches, then emit a jump table rather than
2365    // lowering the switch to a binary tree of conditional branches.
2366    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2367      continue;
2368
2369    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2370    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2371    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2372  }
2373}
2374
2375
2376void SelectionDAGLowering::visitSub(User &I) {
2377  // -0.0 - X --> fneg
2378  const Type *Ty = I.getType();
2379  if (isa<VectorType>(Ty)) {
2380    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2381      const VectorType *DestTy = cast<VectorType>(I.getType());
2382      const Type *ElTy = DestTy->getElementType();
2383      if (ElTy->isFloatingPoint()) {
2384        unsigned VL = DestTy->getNumElements();
2385        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2386        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2387        if (CV == CNZ) {
2388          SDValue Op2 = getValue(I.getOperand(1));
2389          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2390          return;
2391        }
2392      }
2393    }
2394  }
2395  if (Ty->isFloatingPoint()) {
2396    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2397      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2398        SDValue Op2 = getValue(I.getOperand(1));
2399        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2400        return;
2401      }
2402  }
2403
2404  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2405}
2406
2407void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2408  SDValue Op1 = getValue(I.getOperand(0));
2409  SDValue Op2 = getValue(I.getOperand(1));
2410
2411  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2412}
2413
2414void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2415  SDValue Op1 = getValue(I.getOperand(0));
2416  SDValue Op2 = getValue(I.getOperand(1));
2417  if (!isa<VectorType>(I.getType())) {
2418    if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
2419      Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2420    else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
2421      Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2422  }
2423
2424  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2425}
2426
2427void SelectionDAGLowering::visitICmp(User &I) {
2428  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2429  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2430    predicate = IC->getPredicate();
2431  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2432    predicate = ICmpInst::Predicate(IC->getPredicate());
2433  SDValue Op1 = getValue(I.getOperand(0));
2434  SDValue Op2 = getValue(I.getOperand(1));
2435  ISD::CondCode Opcode;
2436  switch (predicate) {
2437    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2438    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2439    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2440    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2441    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2442    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2443    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2444    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2445    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2446    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2447    default:
2448      assert(!"Invalid ICmp predicate value");
2449      Opcode = ISD::SETEQ;
2450      break;
2451  }
2452  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2453}
2454
2455void SelectionDAGLowering::visitFCmp(User &I) {
2456  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2457  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2458    predicate = FC->getPredicate();
2459  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2460    predicate = FCmpInst::Predicate(FC->getPredicate());
2461  SDValue Op1 = getValue(I.getOperand(0));
2462  SDValue Op2 = getValue(I.getOperand(1));
2463  ISD::CondCode Condition, FOC, FPC;
2464  switch (predicate) {
2465    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2466    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2467    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2468    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2469    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2470    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2471    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2472    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2473    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2474    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2475    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2476    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2477    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2478    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2479    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2480    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2481    default:
2482      assert(!"Invalid FCmp predicate value");
2483      FOC = FPC = ISD::SETFALSE;
2484      break;
2485  }
2486  if (FiniteOnlyFPMath())
2487    Condition = FOC;
2488  else
2489    Condition = FPC;
2490  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2491}
2492
2493void SelectionDAGLowering::visitVICmp(User &I) {
2494  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2495  if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2496    predicate = IC->getPredicate();
2497  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2498    predicate = ICmpInst::Predicate(IC->getPredicate());
2499  SDValue Op1 = getValue(I.getOperand(0));
2500  SDValue Op2 = getValue(I.getOperand(1));
2501  ISD::CondCode Opcode;
2502  switch (predicate) {
2503    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2504    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2505    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2506    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2507    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2508    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2509    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2510    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2511    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2512    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2513    default:
2514      assert(!"Invalid ICmp predicate value");
2515      Opcode = ISD::SETEQ;
2516      break;
2517  }
2518  setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2519}
2520
2521void SelectionDAGLowering::visitVFCmp(User &I) {
2522  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2523  if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2524    predicate = FC->getPredicate();
2525  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2526    predicate = FCmpInst::Predicate(FC->getPredicate());
2527  SDValue Op1 = getValue(I.getOperand(0));
2528  SDValue Op2 = getValue(I.getOperand(1));
2529  ISD::CondCode Condition, FOC, FPC;
2530  switch (predicate) {
2531    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2532    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2533    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2534    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2535    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2536    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2537    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2538    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2539    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2540    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2541    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2542    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2543    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2544    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2545    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2546    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2547    default:
2548      assert(!"Invalid VFCmp predicate value");
2549      FOC = FPC = ISD::SETFALSE;
2550      break;
2551  }
2552  if (FiniteOnlyFPMath())
2553    Condition = FOC;
2554  else
2555    Condition = FPC;
2556
2557  MVT DestVT = TLI.getValueType(I.getType());
2558
2559  setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2560}
2561
2562void SelectionDAGLowering::visitSelect(User &I) {
2563  SDValue Cond     = getValue(I.getOperand(0));
2564  SDValue TrueVal  = getValue(I.getOperand(1));
2565  SDValue FalseVal = getValue(I.getOperand(2));
2566  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2567                           TrueVal, FalseVal));
2568}
2569
2570
2571void SelectionDAGLowering::visitTrunc(User &I) {
2572  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2573  SDValue N = getValue(I.getOperand(0));
2574  MVT DestVT = TLI.getValueType(I.getType());
2575  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2576}
2577
2578void SelectionDAGLowering::visitZExt(User &I) {
2579  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2580  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2581  SDValue N = getValue(I.getOperand(0));
2582  MVT DestVT = TLI.getValueType(I.getType());
2583  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2584}
2585
2586void SelectionDAGLowering::visitSExt(User &I) {
2587  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2588  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2589  SDValue N = getValue(I.getOperand(0));
2590  MVT DestVT = TLI.getValueType(I.getType());
2591  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2592}
2593
2594void SelectionDAGLowering::visitFPTrunc(User &I) {
2595  // FPTrunc is never a no-op cast, no need to check
2596  SDValue N = getValue(I.getOperand(0));
2597  MVT DestVT = TLI.getValueType(I.getType());
2598  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2599}
2600
2601void SelectionDAGLowering::visitFPExt(User &I){
2602  // FPTrunc is never a no-op cast, no need to check
2603  SDValue N = getValue(I.getOperand(0));
2604  MVT DestVT = TLI.getValueType(I.getType());
2605  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2606}
2607
2608void SelectionDAGLowering::visitFPToUI(User &I) {
2609  // FPToUI is never a no-op cast, no need to check
2610  SDValue N = getValue(I.getOperand(0));
2611  MVT DestVT = TLI.getValueType(I.getType());
2612  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2613}
2614
2615void SelectionDAGLowering::visitFPToSI(User &I) {
2616  // FPToSI is never a no-op cast, no need to check
2617  SDValue N = getValue(I.getOperand(0));
2618  MVT DestVT = TLI.getValueType(I.getType());
2619  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2620}
2621
2622void SelectionDAGLowering::visitUIToFP(User &I) {
2623  // UIToFP is never a no-op cast, no need to check
2624  SDValue N = getValue(I.getOperand(0));
2625  MVT DestVT = TLI.getValueType(I.getType());
2626  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2627}
2628
2629void SelectionDAGLowering::visitSIToFP(User &I){
2630  // UIToFP is never a no-op cast, no need to check
2631  SDValue N = getValue(I.getOperand(0));
2632  MVT DestVT = TLI.getValueType(I.getType());
2633  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2634}
2635
2636void SelectionDAGLowering::visitPtrToInt(User &I) {
2637  // What to do depends on the size of the integer and the size of the pointer.
2638  // We can either truncate, zero extend, or no-op, accordingly.
2639  SDValue N = getValue(I.getOperand(0));
2640  MVT SrcVT = N.getValueType();
2641  MVT DestVT = TLI.getValueType(I.getType());
2642  SDValue Result;
2643  if (DestVT.bitsLT(SrcVT))
2644    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2645  else
2646    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2647    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2648  setValue(&I, Result);
2649}
2650
2651void SelectionDAGLowering::visitIntToPtr(User &I) {
2652  // What to do depends on the size of the integer and the size of the pointer.
2653  // We can either truncate, zero extend, or no-op, accordingly.
2654  SDValue N = getValue(I.getOperand(0));
2655  MVT SrcVT = N.getValueType();
2656  MVT DestVT = TLI.getValueType(I.getType());
2657  if (DestVT.bitsLT(SrcVT))
2658    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2659  else
2660    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2661    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2662}
2663
2664void SelectionDAGLowering::visitBitCast(User &I) {
2665  SDValue N = getValue(I.getOperand(0));
2666  MVT DestVT = TLI.getValueType(I.getType());
2667
2668  // BitCast assures us that source and destination are the same size so this
2669  // is either a BIT_CONVERT or a no-op.
2670  if (DestVT != N.getValueType())
2671    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2672  else
2673    setValue(&I, N); // noop cast.
2674}
2675
2676void SelectionDAGLowering::visitInsertElement(User &I) {
2677  SDValue InVec = getValue(I.getOperand(0));
2678  SDValue InVal = getValue(I.getOperand(1));
2679  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2680                                getValue(I.getOperand(2)));
2681
2682  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2683                           TLI.getValueType(I.getType()),
2684                           InVec, InVal, InIdx));
2685}
2686
2687void SelectionDAGLowering::visitExtractElement(User &I) {
2688  SDValue InVec = getValue(I.getOperand(0));
2689  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2690                                getValue(I.getOperand(1)));
2691  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2692                           TLI.getValueType(I.getType()), InVec, InIdx));
2693}
2694
2695void SelectionDAGLowering::visitShuffleVector(User &I) {
2696  SDValue V1   = getValue(I.getOperand(0));
2697  SDValue V2   = getValue(I.getOperand(1));
2698  SDValue Mask = getValue(I.getOperand(2));
2699
2700  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2701                           TLI.getValueType(I.getType()),
2702                           V1, V2, Mask));
2703}
2704
2705void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
2706  const Value *Op0 = I.getOperand(0);
2707  const Value *Op1 = I.getOperand(1);
2708  const Type *AggTy = I.getType();
2709  const Type *ValTy = Op1->getType();
2710  bool IntoUndef = isa<UndefValue>(Op0);
2711  bool FromUndef = isa<UndefValue>(Op1);
2712
2713  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2714                                            I.idx_begin(), I.idx_end());
2715
2716  SmallVector<MVT, 4> AggValueVTs;
2717  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2718  SmallVector<MVT, 4> ValValueVTs;
2719  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2720
2721  unsigned NumAggValues = AggValueVTs.size();
2722  unsigned NumValValues = ValValueVTs.size();
2723  SmallVector<SDValue, 4> Values(NumAggValues);
2724
2725  SDValue Agg = getValue(Op0);
2726  SDValue Val = getValue(Op1);
2727  unsigned i = 0;
2728  // Copy the beginning value(s) from the original aggregate.
2729  for (; i != LinearIndex; ++i)
2730    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2731                SDValue(Agg.Val, Agg.ResNo + i);
2732  // Copy values from the inserted value(s).
2733  for (; i != LinearIndex + NumValValues; ++i)
2734    Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2735                SDValue(Val.Val, Val.ResNo + i - LinearIndex);
2736  // Copy remaining value(s) from the original aggregate.
2737  for (; i != NumAggValues; ++i)
2738    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2739                SDValue(Agg.Val, Agg.ResNo + i);
2740
2741  setValue(&I, DAG.getMergeValues(DAG.getVTList(&AggValueVTs[0], NumAggValues),
2742                                  &Values[0], NumAggValues));
2743}
2744
2745void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
2746  const Value *Op0 = I.getOperand(0);
2747  const Type *AggTy = Op0->getType();
2748  const Type *ValTy = I.getType();
2749  bool OutOfUndef = isa<UndefValue>(Op0);
2750
2751  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2752                                            I.idx_begin(), I.idx_end());
2753
2754  SmallVector<MVT, 4> ValValueVTs;
2755  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2756
2757  unsigned NumValValues = ValValueVTs.size();
2758  SmallVector<SDValue, 4> Values(NumValValues);
2759
2760  SDValue Agg = getValue(Op0);
2761  // Copy out the selected value(s).
2762  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2763    Values[i - LinearIndex] =
2764      OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.Val->getValueType(Agg.ResNo + i)) :
2765                   SDValue(Agg.Val, Agg.ResNo + i);
2766
2767  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValValueVTs[0], NumValValues),
2768                                  &Values[0], NumValValues));
2769}
2770
2771
2772void SelectionDAGLowering::visitGetElementPtr(User &I) {
2773  SDValue N = getValue(I.getOperand(0));
2774  const Type *Ty = I.getOperand(0)->getType();
2775
2776  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2777       OI != E; ++OI) {
2778    Value *Idx = *OI;
2779    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2780      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2781      if (Field) {
2782        // N = N + Offset
2783        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2784        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2785                        DAG.getIntPtrConstant(Offset));
2786      }
2787      Ty = StTy->getElementType(Field);
2788    } else {
2789      Ty = cast<SequentialType>(Ty)->getElementType();
2790
2791      // If this is a constant subscript, handle it quickly.
2792      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2793        if (CI->getZExtValue() == 0) continue;
2794        uint64_t Offs =
2795            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2796        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2797                        DAG.getIntPtrConstant(Offs));
2798        continue;
2799      }
2800
2801      // N = N + Idx * ElementSize;
2802      uint64_t ElementSize = TD->getABITypeSize(Ty);
2803      SDValue IdxN = getValue(Idx);
2804
2805      // If the index is smaller or larger than intptr_t, truncate or extend
2806      // it.
2807      if (IdxN.getValueType().bitsLT(N.getValueType())) {
2808        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2809      } else if (IdxN.getValueType().bitsGT(N.getValueType()))
2810        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2811
2812      // If this is a multiply by a power of two, turn it into a shl
2813      // immediately.  This is a very common case.
2814      if (isPowerOf2_64(ElementSize)) {
2815        unsigned Amt = Log2_64(ElementSize);
2816        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2817                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2818        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2819        continue;
2820      }
2821
2822      SDValue Scale = DAG.getIntPtrConstant(ElementSize);
2823      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2824      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2825    }
2826  }
2827  setValue(&I, N);
2828}
2829
2830void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2831  // If this is a fixed sized alloca in the entry block of the function,
2832  // allocate it statically on the stack.
2833  if (FuncInfo.StaticAllocaMap.count(&I))
2834    return;   // getValue will auto-populate this.
2835
2836  const Type *Ty = I.getAllocatedType();
2837  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2838  unsigned Align =
2839    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2840             I.getAlignment());
2841
2842  SDValue AllocSize = getValue(I.getArraySize());
2843  MVT IntPtr = TLI.getPointerTy();
2844  if (IntPtr.bitsLT(AllocSize.getValueType()))
2845    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2846  else if (IntPtr.bitsGT(AllocSize.getValueType()))
2847    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2848
2849  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2850                          DAG.getIntPtrConstant(TySize));
2851
2852  // Handle alignment.  If the requested alignment is less than or equal to
2853  // the stack alignment, ignore it.  If the size is greater than or equal to
2854  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2855  unsigned StackAlign =
2856    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2857  if (Align <= StackAlign)
2858    Align = 0;
2859
2860  // Round the size of the allocation up to the stack alignment size
2861  // by add SA-1 to the size.
2862  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2863                          DAG.getIntPtrConstant(StackAlign-1));
2864  // Mask out the low bits for alignment purposes.
2865  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2866                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2867
2868  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2869  const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2870                                                    MVT::Other);
2871  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2872  setValue(&I, DSA);
2873  DAG.setRoot(DSA.getValue(1));
2874
2875  // Inform the Frame Information that we have just allocated a variable-sized
2876  // object.
2877  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2878}
2879
2880void SelectionDAGLowering::visitLoad(LoadInst &I) {
2881  const Value *SV = I.getOperand(0);
2882  SDValue Ptr = getValue(SV);
2883
2884  const Type *Ty = I.getType();
2885  bool isVolatile = I.isVolatile();
2886  unsigned Alignment = I.getAlignment();
2887
2888  SmallVector<MVT, 4> ValueVTs;
2889  SmallVector<uint64_t, 4> Offsets;
2890  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2891  unsigned NumValues = ValueVTs.size();
2892  if (NumValues == 0)
2893    return;
2894
2895  SDValue Root;
2896  bool ConstantMemory = false;
2897  if (I.isVolatile())
2898    // Serialize volatile loads with other side effects.
2899    Root = getRoot();
2900  else if (AA.pointsToConstantMemory(SV)) {
2901    // Do not serialize (non-volatile) loads of constant memory with anything.
2902    Root = DAG.getEntryNode();
2903    ConstantMemory = true;
2904  } else {
2905    // Do not serialize non-volatile loads against each other.
2906    Root = DAG.getRoot();
2907  }
2908
2909  SmallVector<SDValue, 4> Values(NumValues);
2910  SmallVector<SDValue, 4> Chains(NumValues);
2911  MVT PtrVT = Ptr.getValueType();
2912  for (unsigned i = 0; i != NumValues; ++i) {
2913    SDValue L = DAG.getLoad(ValueVTs[i], Root,
2914                              DAG.getNode(ISD::ADD, PtrVT, Ptr,
2915                                          DAG.getConstant(Offsets[i], PtrVT)),
2916                              SV, Offsets[i],
2917                              isVolatile, Alignment);
2918    Values[i] = L;
2919    Chains[i] = L.getValue(1);
2920  }
2921
2922  if (!ConstantMemory) {
2923    SDValue Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2924                                  &Chains[0], NumValues);
2925    if (isVolatile)
2926      DAG.setRoot(Chain);
2927    else
2928      PendingLoads.push_back(Chain);
2929  }
2930
2931  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues),
2932                                  &Values[0], NumValues));
2933}
2934
2935
2936void SelectionDAGLowering::visitStore(StoreInst &I) {
2937  Value *SrcV = I.getOperand(0);
2938  Value *PtrV = I.getOperand(1);
2939
2940  SmallVector<MVT, 4> ValueVTs;
2941  SmallVector<uint64_t, 4> Offsets;
2942  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2943  unsigned NumValues = ValueVTs.size();
2944  if (NumValues == 0)
2945    return;
2946
2947  // Get the lowered operands. Note that we do this after
2948  // checking if NumResults is zero, because with zero results
2949  // the operands won't have values in the map.
2950  SDValue Src = getValue(SrcV);
2951  SDValue Ptr = getValue(PtrV);
2952
2953  SDValue Root = getRoot();
2954  SmallVector<SDValue, 4> Chains(NumValues);
2955  MVT PtrVT = Ptr.getValueType();
2956  bool isVolatile = I.isVolatile();
2957  unsigned Alignment = I.getAlignment();
2958  for (unsigned i = 0; i != NumValues; ++i)
2959    Chains[i] = DAG.getStore(Root, SDValue(Src.Val, Src.ResNo + i),
2960                             DAG.getNode(ISD::ADD, PtrVT, Ptr,
2961                                         DAG.getConstant(Offsets[i], PtrVT)),
2962                             PtrV, Offsets[i],
2963                             isVolatile, Alignment);
2964
2965  DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
2966}
2967
2968/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2969/// node.
2970void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2971                                                unsigned Intrinsic) {
2972  bool HasChain = !I.doesNotAccessMemory();
2973  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2974
2975  // Build the operand list.
2976  SmallVector<SDValue, 8> Ops;
2977  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2978    if (OnlyLoad) {
2979      // We don't need to serialize loads against other loads.
2980      Ops.push_back(DAG.getRoot());
2981    } else {
2982      Ops.push_back(getRoot());
2983    }
2984  }
2985
2986  // Add the intrinsic ID as an integer operand.
2987  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2988
2989  // Add all operands of the call to the operand list.
2990  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2991    SDValue Op = getValue(I.getOperand(i));
2992    assert(TLI.isTypeLegal(Op.getValueType()) &&
2993           "Intrinsic uses a non-legal type?");
2994    Ops.push_back(Op);
2995  }
2996
2997  std::vector<MVT> VTs;
2998  if (I.getType() != Type::VoidTy) {
2999    MVT VT = TLI.getValueType(I.getType());
3000    if (VT.isVector()) {
3001      const VectorType *DestTy = cast<VectorType>(I.getType());
3002      MVT EltVT = TLI.getValueType(DestTy->getElementType());
3003
3004      VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
3005      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
3006    }
3007
3008    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
3009    VTs.push_back(VT);
3010  }
3011  if (HasChain)
3012    VTs.push_back(MVT::Other);
3013
3014  const MVT *VTList = DAG.getNodeValueTypes(VTs);
3015
3016  // Create the node.
3017  SDValue Result;
3018  if (!HasChain)
3019    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
3020                         &Ops[0], Ops.size());
3021  else if (I.getType() != Type::VoidTy)
3022    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
3023                         &Ops[0], Ops.size());
3024  else
3025    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
3026                         &Ops[0], Ops.size());
3027
3028  if (HasChain) {
3029    SDValue Chain = Result.getValue(Result.Val->getNumValues()-1);
3030    if (OnlyLoad)
3031      PendingLoads.push_back(Chain);
3032    else
3033      DAG.setRoot(Chain);
3034  }
3035  if (I.getType() != Type::VoidTy) {
3036    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3037      MVT VT = TLI.getValueType(PTy);
3038      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
3039    }
3040    setValue(&I, Result);
3041  }
3042}
3043
3044/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
3045static GlobalVariable *ExtractTypeInfo (Value *V) {
3046  V = V->stripPointerCasts();
3047  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3048  assert ((GV || isa<ConstantPointerNull>(V)) &&
3049          "TypeInfo must be a global variable or NULL");
3050  return GV;
3051}
3052
3053/// addCatchInfo - Extract the personality and type infos from an eh.selector
3054/// call, and add them to the specified machine basic block.
3055static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
3056                         MachineBasicBlock *MBB) {
3057  // Inform the MachineModuleInfo of the personality for this landing pad.
3058  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
3059  assert(CE->getOpcode() == Instruction::BitCast &&
3060         isa<Function>(CE->getOperand(0)) &&
3061         "Personality should be a function");
3062  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
3063
3064  // Gather all the type infos for this landing pad and pass them along to
3065  // MachineModuleInfo.
3066  std::vector<GlobalVariable *> TyInfo;
3067  unsigned N = I.getNumOperands();
3068
3069  for (unsigned i = N - 1; i > 2; --i) {
3070    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
3071      unsigned FilterLength = CI->getZExtValue();
3072      unsigned FirstCatch = i + FilterLength + !FilterLength;
3073      assert (FirstCatch <= N && "Invalid filter length");
3074
3075      if (FirstCatch < N) {
3076        TyInfo.reserve(N - FirstCatch);
3077        for (unsigned j = FirstCatch; j < N; ++j)
3078          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3079        MMI->addCatchTypeInfo(MBB, TyInfo);
3080        TyInfo.clear();
3081      }
3082
3083      if (!FilterLength) {
3084        // Cleanup.
3085        MMI->addCleanup(MBB);
3086      } else {
3087        // Filter.
3088        TyInfo.reserve(FilterLength - 1);
3089        for (unsigned j = i + 1; j < FirstCatch; ++j)
3090          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3091        MMI->addFilterTypeInfo(MBB, TyInfo);
3092        TyInfo.clear();
3093      }
3094
3095      N = i;
3096    }
3097  }
3098
3099  if (N > 3) {
3100    TyInfo.reserve(N - 3);
3101    for (unsigned j = 3; j < N; ++j)
3102      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3103    MMI->addCatchTypeInfo(MBB, TyInfo);
3104  }
3105}
3106
3107
3108/// Inlined utility function to implement binary input atomic intrinsics for
3109// visitIntrinsicCall: I is a call instruction
3110//                     Op is the associated NodeType for I
3111const char *
3112SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3113  SDValue Root = getRoot();
3114  SDValue L = DAG.getAtomic(Op, Root,
3115                              getValue(I.getOperand(1)),
3116                              getValue(I.getOperand(2)),
3117                              I.getOperand(1));
3118  setValue(&I, L);
3119  DAG.setRoot(L.getValue(1));
3120  return 0;
3121}
3122
3123/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3124/// we want to emit this as a call to a named external function, return the name
3125/// otherwise lower it and return null.
3126const char *
3127SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3128  switch (Intrinsic) {
3129  default:
3130    // By default, turn this into a target intrinsic node.
3131    visitTargetIntrinsic(I, Intrinsic);
3132    return 0;
3133  case Intrinsic::vastart:  visitVAStart(I); return 0;
3134  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3135  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3136  case Intrinsic::returnaddress:
3137    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
3138                             getValue(I.getOperand(1))));
3139    return 0;
3140  case Intrinsic::frameaddress:
3141    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
3142                             getValue(I.getOperand(1))));
3143    return 0;
3144  case Intrinsic::setjmp:
3145    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3146    break;
3147  case Intrinsic::longjmp:
3148    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3149    break;
3150  case Intrinsic::memcpy_i32:
3151  case Intrinsic::memcpy_i64: {
3152    SDValue Op1 = getValue(I.getOperand(1));
3153    SDValue Op2 = getValue(I.getOperand(2));
3154    SDValue Op3 = getValue(I.getOperand(3));
3155    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3156    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3157                              I.getOperand(1), 0, I.getOperand(2), 0));
3158    return 0;
3159  }
3160  case Intrinsic::memset_i32:
3161  case Intrinsic::memset_i64: {
3162    SDValue Op1 = getValue(I.getOperand(1));
3163    SDValue Op2 = getValue(I.getOperand(2));
3164    SDValue Op3 = getValue(I.getOperand(3));
3165    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3166    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
3167                              I.getOperand(1), 0));
3168    return 0;
3169  }
3170  case Intrinsic::memmove_i32:
3171  case Intrinsic::memmove_i64: {
3172    SDValue Op1 = getValue(I.getOperand(1));
3173    SDValue Op2 = getValue(I.getOperand(2));
3174    SDValue Op3 = getValue(I.getOperand(3));
3175    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3176
3177    // If the source and destination are known to not be aliases, we can
3178    // lower memmove as memcpy.
3179    uint64_t Size = -1ULL;
3180    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3181      Size = C->getValue();
3182    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3183        AliasAnalysis::NoAlias) {
3184      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3185                                I.getOperand(1), 0, I.getOperand(2), 0));
3186      return 0;
3187    }
3188
3189    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
3190                               I.getOperand(1), 0, I.getOperand(2), 0));
3191    return 0;
3192  }
3193  case Intrinsic::dbg_stoppoint: {
3194    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3195    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3196    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
3197      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
3198      assert(DD && "Not a debug information descriptor");
3199      DAG.setRoot(DAG.getDbgStopPoint(getRoot(),
3200                                      SPI.getLine(),
3201                                      SPI.getColumn(),
3202                                      cast<CompileUnitDesc>(DD)));
3203    }
3204
3205    return 0;
3206  }
3207  case Intrinsic::dbg_region_start: {
3208    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3209    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
3210    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
3211      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
3212      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3213    }
3214
3215    return 0;
3216  }
3217  case Intrinsic::dbg_region_end: {
3218    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3219    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
3220    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
3221      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
3222      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3223    }
3224
3225    return 0;
3226  }
3227  case Intrinsic::dbg_func_start: {
3228    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3229    if (!MMI) return 0;
3230    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
3231    Value *SP = FSI.getSubprogram();
3232    if (SP && MMI->Verify(SP)) {
3233      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3234      // what (most?) gdb expects.
3235      DebugInfoDesc *DD = MMI->getDescFor(SP);
3236      assert(DD && "Not a debug information descriptor");
3237      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
3238      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
3239      unsigned SrcFile = MMI->RecordSource(CompileUnit);
3240      // Record the source line but does create a label. It will be emitted
3241      // at asm emission time.
3242      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
3243    }
3244
3245    return 0;
3246  }
3247  case Intrinsic::dbg_declare: {
3248    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3249    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3250    Value *Variable = DI.getVariable();
3251    if (MMI && Variable && MMI->Verify(Variable))
3252      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3253                              getValue(DI.getAddress()), getValue(Variable)));
3254    return 0;
3255  }
3256
3257  case Intrinsic::eh_exception: {
3258    if (!CurMBB->isLandingPad()) {
3259      // FIXME: Mark exception register as live in.  Hack for PR1508.
3260      unsigned Reg = TLI.getExceptionAddressRegister();
3261      if (Reg) CurMBB->addLiveIn(Reg);
3262    }
3263    // Insert the EXCEPTIONADDR instruction.
3264    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3265    SDValue Ops[1];
3266    Ops[0] = DAG.getRoot();
3267    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3268    setValue(&I, Op);
3269    DAG.setRoot(Op.getValue(1));
3270    return 0;
3271  }
3272
3273  case Intrinsic::eh_selector_i32:
3274  case Intrinsic::eh_selector_i64: {
3275    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3276    MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3277                         MVT::i32 : MVT::i64);
3278
3279    if (MMI) {
3280      if (CurMBB->isLandingPad())
3281        addCatchInfo(I, MMI, CurMBB);
3282      else {
3283#ifndef NDEBUG
3284        FuncInfo.CatchInfoLost.insert(&I);
3285#endif
3286        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3287        unsigned Reg = TLI.getExceptionSelectorRegister();
3288        if (Reg) CurMBB->addLiveIn(Reg);
3289      }
3290
3291      // Insert the EHSELECTION instruction.
3292      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3293      SDValue Ops[2];
3294      Ops[0] = getValue(I.getOperand(1));
3295      Ops[1] = getRoot();
3296      SDValue Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3297      setValue(&I, Op);
3298      DAG.setRoot(Op.getValue(1));
3299    } else {
3300      setValue(&I, DAG.getConstant(0, VT));
3301    }
3302
3303    return 0;
3304  }
3305
3306  case Intrinsic::eh_typeid_for_i32:
3307  case Intrinsic::eh_typeid_for_i64: {
3308    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3309    MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3310                         MVT::i32 : MVT::i64);
3311
3312    if (MMI) {
3313      // Find the type id for the given typeinfo.
3314      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3315
3316      unsigned TypeID = MMI->getTypeIDFor(GV);
3317      setValue(&I, DAG.getConstant(TypeID, VT));
3318    } else {
3319      // Return something different to eh_selector.
3320      setValue(&I, DAG.getConstant(1, VT));
3321    }
3322
3323    return 0;
3324  }
3325
3326  case Intrinsic::eh_return: {
3327    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3328
3329    if (MMI) {
3330      MMI->setCallsEHReturn(true);
3331      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3332                              MVT::Other,
3333                              getControlRoot(),
3334                              getValue(I.getOperand(1)),
3335                              getValue(I.getOperand(2))));
3336    } else {
3337      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3338    }
3339
3340    return 0;
3341  }
3342
3343   case Intrinsic::eh_unwind_init: {
3344     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3345       MMI->setCallsUnwindInit(true);
3346     }
3347
3348     return 0;
3349   }
3350
3351   case Intrinsic::eh_dwarf_cfa: {
3352     MVT VT = getValue(I.getOperand(1)).getValueType();
3353     SDValue CfaArg;
3354     if (VT.bitsGT(TLI.getPointerTy()))
3355       CfaArg = DAG.getNode(ISD::TRUNCATE,
3356                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3357     else
3358       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3359                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3360
3361     SDValue Offset = DAG.getNode(ISD::ADD,
3362                                    TLI.getPointerTy(),
3363                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3364                                                TLI.getPointerTy()),
3365                                    CfaArg);
3366     setValue(&I, DAG.getNode(ISD::ADD,
3367                              TLI.getPointerTy(),
3368                              DAG.getNode(ISD::FRAMEADDR,
3369                                          TLI.getPointerTy(),
3370                                          DAG.getConstant(0,
3371                                                          TLI.getPointerTy())),
3372                              Offset));
3373     return 0;
3374  }
3375
3376  case Intrinsic::sqrt:
3377    setValue(&I, DAG.getNode(ISD::FSQRT,
3378                             getValue(I.getOperand(1)).getValueType(),
3379                             getValue(I.getOperand(1))));
3380    return 0;
3381  case Intrinsic::powi:
3382    setValue(&I, DAG.getNode(ISD::FPOWI,
3383                             getValue(I.getOperand(1)).getValueType(),
3384                             getValue(I.getOperand(1)),
3385                             getValue(I.getOperand(2))));
3386    return 0;
3387  case Intrinsic::sin:
3388    setValue(&I, DAG.getNode(ISD::FSIN,
3389                             getValue(I.getOperand(1)).getValueType(),
3390                             getValue(I.getOperand(1))));
3391    return 0;
3392  case Intrinsic::cos:
3393    setValue(&I, DAG.getNode(ISD::FCOS,
3394                             getValue(I.getOperand(1)).getValueType(),
3395                             getValue(I.getOperand(1))));
3396    return 0;
3397  case Intrinsic::pow:
3398    setValue(&I, DAG.getNode(ISD::FPOW,
3399                             getValue(I.getOperand(1)).getValueType(),
3400                             getValue(I.getOperand(1)),
3401                             getValue(I.getOperand(2))));
3402    return 0;
3403  case Intrinsic::pcmarker: {
3404    SDValue Tmp = getValue(I.getOperand(1));
3405    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3406    return 0;
3407  }
3408  case Intrinsic::readcyclecounter: {
3409    SDValue Op = getRoot();
3410    SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3411                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3412                                &Op, 1);
3413    setValue(&I, Tmp);
3414    DAG.setRoot(Tmp.getValue(1));
3415    return 0;
3416  }
3417  case Intrinsic::part_select: {
3418    // Currently not implemented: just abort
3419    assert(0 && "part_select intrinsic not implemented");
3420    abort();
3421  }
3422  case Intrinsic::part_set: {
3423    // Currently not implemented: just abort
3424    assert(0 && "part_set intrinsic not implemented");
3425    abort();
3426  }
3427  case Intrinsic::bswap:
3428    setValue(&I, DAG.getNode(ISD::BSWAP,
3429                             getValue(I.getOperand(1)).getValueType(),
3430                             getValue(I.getOperand(1))));
3431    return 0;
3432  case Intrinsic::cttz: {
3433    SDValue Arg = getValue(I.getOperand(1));
3434    MVT Ty = Arg.getValueType();
3435    SDValue result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3436    setValue(&I, result);
3437    return 0;
3438  }
3439  case Intrinsic::ctlz: {
3440    SDValue Arg = getValue(I.getOperand(1));
3441    MVT Ty = Arg.getValueType();
3442    SDValue result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3443    setValue(&I, result);
3444    return 0;
3445  }
3446  case Intrinsic::ctpop: {
3447    SDValue Arg = getValue(I.getOperand(1));
3448    MVT Ty = Arg.getValueType();
3449    SDValue result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3450    setValue(&I, result);
3451    return 0;
3452  }
3453  case Intrinsic::stacksave: {
3454    SDValue Op = getRoot();
3455    SDValue Tmp = DAG.getNode(ISD::STACKSAVE,
3456              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3457    setValue(&I, Tmp);
3458    DAG.setRoot(Tmp.getValue(1));
3459    return 0;
3460  }
3461  case Intrinsic::stackrestore: {
3462    SDValue Tmp = getValue(I.getOperand(1));
3463    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3464    return 0;
3465  }
3466  case Intrinsic::var_annotation:
3467    // Discard annotate attributes
3468    return 0;
3469
3470  case Intrinsic::init_trampoline: {
3471    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
3472
3473    SDValue Ops[6];
3474    Ops[0] = getRoot();
3475    Ops[1] = getValue(I.getOperand(1));
3476    Ops[2] = getValue(I.getOperand(2));
3477    Ops[3] = getValue(I.getOperand(3));
3478    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3479    Ops[5] = DAG.getSrcValue(F);
3480
3481    SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE,
3482                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3483                                                      MVT::Other), 2,
3484                                Ops, 6);
3485
3486    setValue(&I, Tmp);
3487    DAG.setRoot(Tmp.getValue(1));
3488    return 0;
3489  }
3490
3491  case Intrinsic::gcroot:
3492    if (GCI) {
3493      Value *Alloca = I.getOperand(1);
3494      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3495
3496      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3497      GCI->addStackRoot(FI->getIndex(), TypeMap);
3498    }
3499    return 0;
3500
3501  case Intrinsic::gcread:
3502  case Intrinsic::gcwrite:
3503    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3504    return 0;
3505
3506  case Intrinsic::flt_rounds: {
3507    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3508    return 0;
3509  }
3510
3511  case Intrinsic::trap: {
3512    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3513    return 0;
3514  }
3515  case Intrinsic::prefetch: {
3516    SDValue Ops[4];
3517    Ops[0] = getRoot();
3518    Ops[1] = getValue(I.getOperand(1));
3519    Ops[2] = getValue(I.getOperand(2));
3520    Ops[3] = getValue(I.getOperand(3));
3521    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3522    return 0;
3523  }
3524
3525  case Intrinsic::memory_barrier: {
3526    SDValue Ops[6];
3527    Ops[0] = getRoot();
3528    for (int x = 1; x < 6; ++x)
3529      Ops[x] = getValue(I.getOperand(x));
3530
3531    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3532    return 0;
3533  }
3534  case Intrinsic::atomic_cmp_swap: {
3535    SDValue Root = getRoot();
3536    SDValue L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, Root,
3537                                getValue(I.getOperand(1)),
3538                                getValue(I.getOperand(2)),
3539                                getValue(I.getOperand(3)),
3540                                I.getOperand(1));
3541    setValue(&I, L);
3542    DAG.setRoot(L.getValue(1));
3543    return 0;
3544  }
3545  case Intrinsic::atomic_load_add:
3546    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
3547  case Intrinsic::atomic_load_sub:
3548    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
3549  case Intrinsic::atomic_load_and:
3550    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
3551  case Intrinsic::atomic_load_or:
3552    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
3553  case Intrinsic::atomic_load_xor:
3554    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
3555  case Intrinsic::atomic_load_nand:
3556    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
3557  case Intrinsic::atomic_load_min:
3558    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
3559  case Intrinsic::atomic_load_max:
3560    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
3561  case Intrinsic::atomic_load_umin:
3562    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
3563  case Intrinsic::atomic_load_umax:
3564      return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
3565  case Intrinsic::atomic_swap:
3566    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
3567  }
3568}
3569
3570
3571void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
3572                                       bool IsTailCall,
3573                                       MachineBasicBlock *LandingPad) {
3574  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3575  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3576  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3577  unsigned BeginLabel = 0, EndLabel = 0;
3578
3579  TargetLowering::ArgListTy Args;
3580  TargetLowering::ArgListEntry Entry;
3581  Args.reserve(CS.arg_size());
3582  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3583       i != e; ++i) {
3584    SDValue ArgNode = getValue(*i);
3585    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3586
3587    unsigned attrInd = i - CS.arg_begin() + 1;
3588    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3589    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3590    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3591    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3592    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3593    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3594    Entry.Alignment = CS.getParamAlignment(attrInd);
3595    Args.push_back(Entry);
3596  }
3597
3598  if (LandingPad && MMI) {
3599    // Insert a label before the invoke call to mark the try range.  This can be
3600    // used to detect deletion of the invoke via the MachineModuleInfo.
3601    BeginLabel = MMI->NextLabelID();
3602    // Both PendingLoads and PendingExports must be flushed here;
3603    // this call might not return.
3604    (void)getRoot();
3605    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel));
3606  }
3607
3608  std::pair<SDValue,SDValue> Result =
3609    TLI.LowerCallTo(getRoot(), CS.getType(),
3610                    CS.paramHasAttr(0, ParamAttr::SExt),
3611                    CS.paramHasAttr(0, ParamAttr::ZExt),
3612                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3613                    Callee, Args, DAG);
3614  if (CS.getType() != Type::VoidTy)
3615    setValue(CS.getInstruction(), Result.first);
3616  DAG.setRoot(Result.second);
3617
3618  if (LandingPad && MMI) {
3619    // Insert a label at the end of the invoke call to mark the try range.  This
3620    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3621    EndLabel = MMI->NextLabelID();
3622    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel));
3623
3624    // Inform MachineModuleInfo of range.
3625    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3626  }
3627}
3628
3629
3630void SelectionDAGLowering::visitCall(CallInst &I) {
3631  const char *RenameFn = 0;
3632  if (Function *F = I.getCalledFunction()) {
3633    if (F->isDeclaration()) {
3634      if (unsigned IID = F->getIntrinsicID()) {
3635        RenameFn = visitIntrinsicCall(I, IID);
3636        if (!RenameFn)
3637          return;
3638      }
3639    }
3640
3641    // Check for well-known libc/libm calls.  If the function is internal, it
3642    // can't be a library call.
3643    unsigned NameLen = F->getNameLen();
3644    if (!F->hasInternalLinkage() && NameLen) {
3645      const char *NameStr = F->getNameStart();
3646      if (NameStr[0] == 'c' &&
3647          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3648           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3649        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3650            I.getOperand(1)->getType()->isFloatingPoint() &&
3651            I.getType() == I.getOperand(1)->getType() &&
3652            I.getType() == I.getOperand(2)->getType()) {
3653          SDValue LHS = getValue(I.getOperand(1));
3654          SDValue RHS = getValue(I.getOperand(2));
3655          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3656                                   LHS, RHS));
3657          return;
3658        }
3659      } else if (NameStr[0] == 'f' &&
3660                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3661                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3662                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3663        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3664            I.getOperand(1)->getType()->isFloatingPoint() &&
3665            I.getType() == I.getOperand(1)->getType()) {
3666          SDValue Tmp = getValue(I.getOperand(1));
3667          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3668          return;
3669        }
3670      } else if (NameStr[0] == 's' &&
3671                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3672                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3673                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3674        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3675            I.getOperand(1)->getType()->isFloatingPoint() &&
3676            I.getType() == I.getOperand(1)->getType()) {
3677          SDValue Tmp = getValue(I.getOperand(1));
3678          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3679          return;
3680        }
3681      } else if (NameStr[0] == 'c' &&
3682                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3683                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3684                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3685        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3686            I.getOperand(1)->getType()->isFloatingPoint() &&
3687            I.getType() == I.getOperand(1)->getType()) {
3688          SDValue Tmp = getValue(I.getOperand(1));
3689          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3690          return;
3691        }
3692      }
3693    }
3694  } else if (isa<InlineAsm>(I.getOperand(0))) {
3695    visitInlineAsm(&I);
3696    return;
3697  }
3698
3699  SDValue Callee;
3700  if (!RenameFn)
3701    Callee = getValue(I.getOperand(0));
3702  else
3703    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3704
3705  LowerCallTo(&I, Callee, I.isTailCall());
3706}
3707
3708
3709/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3710/// this value and returns the result as a ValueVT value.  This uses
3711/// Chain/Flag as the input and updates them for the output Chain/Flag.
3712/// If the Flag pointer is NULL, no flag is used.
3713SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3714                                      SDValue &Chain,
3715                                      SDValue *Flag) const {
3716  // Assemble the legal parts into the final values.
3717  SmallVector<SDValue, 4> Values(ValueVTs.size());
3718  SmallVector<SDValue, 8> Parts;
3719  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3720    // Copy the legal parts from the registers.
3721    MVT ValueVT = ValueVTs[Value];
3722    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
3723    MVT RegisterVT = RegVTs[Value];
3724
3725    Parts.resize(NumRegs);
3726    for (unsigned i = 0; i != NumRegs; ++i) {
3727      SDValue P;
3728      if (Flag == 0)
3729        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
3730      else {
3731        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
3732        *Flag = P.getValue(2);
3733      }
3734      Chain = P.getValue(1);
3735
3736      // If the source register was virtual and if we know something about it,
3737      // add an assert node.
3738      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
3739          RegisterVT.isInteger() && !RegisterVT.isVector()) {
3740        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
3741        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
3742        if (FLI.LiveOutRegInfo.size() > SlotNo) {
3743          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
3744
3745          unsigned RegSize = RegisterVT.getSizeInBits();
3746          unsigned NumSignBits = LOI.NumSignBits;
3747          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
3748
3749          // FIXME: We capture more information than the dag can represent.  For
3750          // now, just use the tightest assertzext/assertsext possible.
3751          bool isSExt = true;
3752          MVT FromVT(MVT::Other);
3753          if (NumSignBits == RegSize)
3754            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
3755          else if (NumZeroBits >= RegSize-1)
3756            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
3757          else if (NumSignBits > RegSize-8)
3758            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
3759          else if (NumZeroBits >= RegSize-9)
3760            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
3761          else if (NumSignBits > RegSize-16)
3762            isSExt = true, FromVT = MVT::i16;   // ASSERT SEXT 16
3763          else if (NumZeroBits >= RegSize-17)
3764            isSExt = false, FromVT = MVT::i16;  // ASSERT ZEXT 16
3765          else if (NumSignBits > RegSize-32)
3766            isSExt = true, FromVT = MVT::i32;   // ASSERT SEXT 32
3767          else if (NumZeroBits >= RegSize-33)
3768            isSExt = false, FromVT = MVT::i32;  // ASSERT ZEXT 32
3769
3770          if (FromVT != MVT::Other) {
3771            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
3772                            RegisterVT, P, DAG.getValueType(FromVT));
3773
3774          }
3775        }
3776      }
3777
3778      Parts[Part+i] = P;
3779    }
3780
3781    Values[Value] = getCopyFromParts(DAG, &Parts[Part], NumRegs, RegisterVT,
3782                                     ValueVT);
3783    Part += NumRegs;
3784  }
3785
3786  return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
3787                            &Values[0], ValueVTs.size());
3788}
3789
3790/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3791/// specified value into the registers specified by this object.  This uses
3792/// Chain/Flag as the input and updates them for the output Chain/Flag.
3793/// If the Flag pointer is NULL, no flag is used.
3794void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
3795                                 SDValue &Chain, SDValue *Flag) const {
3796  // Get the list of the values's legal parts.
3797  unsigned NumRegs = Regs.size();
3798  SmallVector<SDValue, 8> Parts(NumRegs);
3799  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3800    MVT ValueVT = ValueVTs[Value];
3801    unsigned NumParts = TLI->getNumRegisters(ValueVT);
3802    MVT RegisterVT = RegVTs[Value];
3803
3804    getCopyToParts(DAG, Val.getValue(Val.ResNo + Value),
3805                   &Parts[Part], NumParts, RegisterVT);
3806    Part += NumParts;
3807  }
3808
3809  // Copy the parts into the registers.
3810  SmallVector<SDValue, 8> Chains(NumRegs);
3811  for (unsigned i = 0; i != NumRegs; ++i) {
3812    SDValue Part;
3813    if (Flag == 0)
3814      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3815    else {
3816      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
3817      *Flag = Part.getValue(1);
3818    }
3819    Chains[i] = Part.getValue(0);
3820  }
3821
3822  if (NumRegs == 1 || Flag)
3823    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
3824    // flagged to it. That is the CopyToReg nodes and the user are considered
3825    // a single scheduling unit. If we create a TokenFactor and return it as
3826    // chain, then the TokenFactor is both a predecessor (operand) of the
3827    // user as well as a successor (the TF operands are flagged to the user).
3828    // c1, f1 = CopyToReg
3829    // c2, f2 = CopyToReg
3830    // c3     = TokenFactor c1, c2
3831    // ...
3832    //        = op c3, ..., f2
3833    Chain = Chains[NumRegs-1];
3834  else
3835    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
3836}
3837
3838/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3839/// operand list.  This adds the code marker and includes the number of
3840/// values added into it.
3841void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3842                                        std::vector<SDValue> &Ops) const {
3843  MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3844  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3845  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
3846    unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
3847    MVT RegisterVT = RegVTs[Value];
3848    for (unsigned i = 0; i != NumRegs; ++i)
3849      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
3850  }
3851}
3852
3853/// isAllocatableRegister - If the specified register is safe to allocate,
3854/// i.e. it isn't a stack pointer or some other special register, return the
3855/// register class for the register.  Otherwise, return null.
3856static const TargetRegisterClass *
3857isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3858                      const TargetLowering &TLI,
3859                      const TargetRegisterInfo *TRI) {
3860  MVT FoundVT = MVT::Other;
3861  const TargetRegisterClass *FoundRC = 0;
3862  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3863       E = TRI->regclass_end(); RCI != E; ++RCI) {
3864    MVT ThisVT = MVT::Other;
3865
3866    const TargetRegisterClass *RC = *RCI;
3867    // If none of the the value types for this register class are valid, we
3868    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3869    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3870         I != E; ++I) {
3871      if (TLI.isTypeLegal(*I)) {
3872        // If we have already found this register in a different register class,
3873        // choose the one with the largest VT specified.  For example, on
3874        // PowerPC, we favor f64 register classes over f32.
3875        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
3876          ThisVT = *I;
3877          break;
3878        }
3879      }
3880    }
3881
3882    if (ThisVT == MVT::Other) continue;
3883
3884    // NOTE: This isn't ideal.  In particular, this might allocate the
3885    // frame pointer in functions that need it (due to them not being taken
3886    // out of allocation, because a variable sized allocation hasn't been seen
3887    // yet).  This is a slight code pessimization, but should still work.
3888    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3889         E = RC->allocation_order_end(MF); I != E; ++I)
3890      if (*I == Reg) {
3891        // We found a matching register class.  Keep looking at others in case
3892        // we find one with larger registers that this physreg is also in.
3893        FoundRC = RC;
3894        FoundVT = ThisVT;
3895        break;
3896      }
3897  }
3898  return FoundRC;
3899}
3900
3901
3902namespace {
3903/// AsmOperandInfo - This contains information for each constraint that we are
3904/// lowering.
3905struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
3906  /// CallOperand - If this is the result output operand or a clobber
3907  /// this is null, otherwise it is the incoming operand to the CallInst.
3908  /// This gets modified as the asm is processed.
3909  SDValue CallOperand;
3910
3911  /// AssignedRegs - If this is a register or register class operand, this
3912  /// contains the set of register corresponding to the operand.
3913  RegsForValue AssignedRegs;
3914
3915  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3916    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
3917  }
3918
3919  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3920  /// busy in OutputRegs/InputRegs.
3921  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3922                         std::set<unsigned> &OutputRegs,
3923                         std::set<unsigned> &InputRegs,
3924                         const TargetRegisterInfo &TRI) const {
3925    if (isOutReg) {
3926      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3927        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3928    }
3929    if (isInReg) {
3930      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3931        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3932    }
3933  }
3934
3935private:
3936  /// MarkRegAndAliases - Mark the specified register and all aliases in the
3937  /// specified set.
3938  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3939                                const TargetRegisterInfo &TRI) {
3940    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3941    Regs.insert(Reg);
3942    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3943      for (; *Aliases; ++Aliases)
3944        Regs.insert(*Aliases);
3945  }
3946};
3947} // end anon namespace.
3948
3949
3950/// GetRegistersForValue - Assign registers (virtual or physical) for the
3951/// specified operand.  We prefer to assign virtual registers, to allow the
3952/// register allocator handle the assignment process.  However, if the asm uses
3953/// features that we can't model on machineinstrs, we have SDISel do the
3954/// allocation.  This produces generally horrible, but correct, code.
3955///
3956///   OpInfo describes the operand.
3957///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
3958///     or any explicitly clobbered registers.
3959///   Input and OutputRegs are the set of already allocated physical registers.
3960///
3961void SelectionDAGLowering::
3962GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
3963                     std::set<unsigned> &OutputRegs,
3964                     std::set<unsigned> &InputRegs) {
3965  // Compute whether this value requires an input register, an output register,
3966  // or both.
3967  bool isOutReg = false;
3968  bool isInReg = false;
3969  switch (OpInfo.Type) {
3970  case InlineAsm::isOutput:
3971    isOutReg = true;
3972
3973    // If this is an early-clobber output, or if there is an input
3974    // constraint that matches this, we need to reserve the input register
3975    // so no other inputs allocate to it.
3976    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3977    break;
3978  case InlineAsm::isInput:
3979    isInReg = true;
3980    isOutReg = false;
3981    break;
3982  case InlineAsm::isClobber:
3983    isOutReg = true;
3984    isInReg = true;
3985    break;
3986  }
3987
3988
3989  MachineFunction &MF = DAG.getMachineFunction();
3990  SmallVector<unsigned, 4> Regs;
3991
3992  // If this is a constraint for a single physreg, or a constraint for a
3993  // register class, find it.
3994  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3995    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3996                                     OpInfo.ConstraintVT);
3997
3998  unsigned NumRegs = 1;
3999  if (OpInfo.ConstraintVT != MVT::Other)
4000    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
4001  MVT RegVT;
4002  MVT ValueVT = OpInfo.ConstraintVT;
4003
4004
4005  // If this is a constraint for a specific physical register, like {r17},
4006  // assign it now.
4007  if (PhysReg.first) {
4008    if (OpInfo.ConstraintVT == MVT::Other)
4009      ValueVT = *PhysReg.second->vt_begin();
4010
4011    // Get the actual register value type.  This is important, because the user
4012    // may have asked for (e.g.) the AX register in i32 type.  We need to
4013    // remember that AX is actually i16 to get the right extension.
4014    RegVT = *PhysReg.second->vt_begin();
4015
4016    // This is a explicit reference to a physical register.
4017    Regs.push_back(PhysReg.first);
4018
4019    // If this is an expanded reference, add the rest of the regs to Regs.
4020    if (NumRegs != 1) {
4021      TargetRegisterClass::iterator I = PhysReg.second->begin();
4022      for (; *I != PhysReg.first; ++I)
4023        assert(I != PhysReg.second->end() && "Didn't find reg!");
4024
4025      // Already added the first reg.
4026      --NumRegs; ++I;
4027      for (; NumRegs; --NumRegs, ++I) {
4028        assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
4029        Regs.push_back(*I);
4030      }
4031    }
4032    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4033    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4034    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4035    return;
4036  }
4037
4038  // Otherwise, if this was a reference to an LLVM register class, create vregs
4039  // for this reference.
4040  std::vector<unsigned> RegClassRegs;
4041  const TargetRegisterClass *RC = PhysReg.second;
4042  if (RC) {
4043    // If this is an early clobber or tied register, our regalloc doesn't know
4044    // how to maintain the constraint.  If it isn't, go ahead and create vreg
4045    // and let the regalloc do the right thing.
4046    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
4047        // If there is some other early clobber and this is an input register,
4048        // then we are forced to pre-allocate the input reg so it doesn't
4049        // conflict with the earlyclobber.
4050        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
4051      RegVT = *PhysReg.second->vt_begin();
4052
4053      if (OpInfo.ConstraintVT == MVT::Other)
4054        ValueVT = RegVT;
4055
4056      // Create the appropriate number of virtual registers.
4057      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4058      for (; NumRegs; --NumRegs)
4059        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
4060
4061      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4062      return;
4063    }
4064
4065    // Otherwise, we can't allocate it.  Let the code below figure out how to
4066    // maintain these constraints.
4067    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
4068
4069  } else {
4070    // This is a reference to a register class that doesn't directly correspond
4071    // to an LLVM register class.  Allocate NumRegs consecutive, available,
4072    // registers from the class.
4073    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
4074                                                         OpInfo.ConstraintVT);
4075  }
4076
4077  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4078  unsigned NumAllocated = 0;
4079  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
4080    unsigned Reg = RegClassRegs[i];
4081    // See if this register is available.
4082    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
4083        (isInReg  && InputRegs.count(Reg))) {    // Already used.
4084      // Make sure we find consecutive registers.
4085      NumAllocated = 0;
4086      continue;
4087    }
4088
4089    // Check to see if this register is allocatable (i.e. don't give out the
4090    // stack pointer).
4091    if (RC == 0) {
4092      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
4093      if (!RC) {        // Couldn't allocate this register.
4094        // Reset NumAllocated to make sure we return consecutive registers.
4095        NumAllocated = 0;
4096        continue;
4097      }
4098    }
4099
4100    // Okay, this register is good, we can use it.
4101    ++NumAllocated;
4102
4103    // If we allocated enough consecutive registers, succeed.
4104    if (NumAllocated == NumRegs) {
4105      unsigned RegStart = (i-NumAllocated)+1;
4106      unsigned RegEnd   = i+1;
4107      // Mark all of the allocated registers used.
4108      for (unsigned i = RegStart; i != RegEnd; ++i)
4109        Regs.push_back(RegClassRegs[i]);
4110
4111      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
4112                                         OpInfo.ConstraintVT);
4113      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4114      return;
4115    }
4116  }
4117
4118  // Otherwise, we couldn't allocate enough registers for this.
4119}
4120
4121
4122/// visitInlineAsm - Handle a call to an InlineAsm object.
4123///
4124void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
4125  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4126
4127  /// ConstraintOperands - Information about all of the constraints.
4128  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
4129
4130  SDValue Chain = getRoot();
4131  SDValue Flag;
4132
4133  std::set<unsigned> OutputRegs, InputRegs;
4134
4135  // Do a prepass over the constraints, canonicalizing them, and building up the
4136  // ConstraintOperands list.
4137  std::vector<InlineAsm::ConstraintInfo>
4138    ConstraintInfos = IA->ParseConstraints();
4139
4140  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
4141  // constraint.  If so, we can't let the register allocator allocate any input
4142  // registers, because it will not know to avoid the earlyclobbered output reg.
4143  bool SawEarlyClobber = false;
4144
4145  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
4146  unsigned ResNo = 0;   // ResNo - The result number of the next output.
4147  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4148    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
4149    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
4150
4151    MVT OpVT = MVT::Other;
4152
4153    // Compute the value type for each operand.
4154    switch (OpInfo.Type) {
4155    case InlineAsm::isOutput:
4156      // Indirect outputs just consume an argument.
4157      if (OpInfo.isIndirect) {
4158        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4159        break;
4160      }
4161      // The return value of the call is this value.  As such, there is no
4162      // corresponding argument.
4163      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4164      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
4165        OpVT = TLI.getValueType(STy->getElementType(ResNo));
4166      } else {
4167        assert(ResNo == 0 && "Asm only has one result!");
4168        OpVT = TLI.getValueType(CS.getType());
4169      }
4170      ++ResNo;
4171      break;
4172    case InlineAsm::isInput:
4173      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4174      break;
4175    case InlineAsm::isClobber:
4176      // Nothing to do.
4177      break;
4178    }
4179
4180    // If this is an input or an indirect output, process the call argument.
4181    // BasicBlocks are labels, currently appearing only in asm's.
4182    if (OpInfo.CallOperandVal) {
4183      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
4184        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
4185      else {
4186        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
4187        const Type *OpTy = OpInfo.CallOperandVal->getType();
4188        // If this is an indirect operand, the operand is a pointer to the
4189        // accessed type.
4190        if (OpInfo.isIndirect)
4191          OpTy = cast<PointerType>(OpTy)->getElementType();
4192
4193        // If OpTy is not a single value, it may be a struct/union that we
4194        // can tile with integers.
4195        if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4196          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4197          switch (BitSize) {
4198          default: break;
4199          case 1:
4200          case 8:
4201          case 16:
4202          case 32:
4203          case 64:
4204            OpTy = IntegerType::get(BitSize);
4205            break;
4206          }
4207        }
4208
4209        OpVT = TLI.getValueType(OpTy, true);
4210      }
4211    }
4212
4213    OpInfo.ConstraintVT = OpVT;
4214
4215    // Compute the constraint code and ConstraintType to use.
4216    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
4217
4218    // Keep track of whether we see an earlyclobber.
4219    SawEarlyClobber |= OpInfo.isEarlyClobber;
4220
4221    // If we see a clobber of a register, it is an early clobber.
4222    if (!SawEarlyClobber &&
4223        OpInfo.Type == InlineAsm::isClobber &&
4224        OpInfo.ConstraintType == TargetLowering::C_Register) {
4225      // Note that we want to ignore things that we don't trick here, like
4226      // dirflag, fpsr, flags, etc.
4227      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4228        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4229                                         OpInfo.ConstraintVT);
4230      if (PhysReg.first || PhysReg.second) {
4231        // This is a register we know of.
4232        SawEarlyClobber = true;
4233      }
4234    }
4235
4236    // If this is a memory input, and if the operand is not indirect, do what we
4237    // need to to provide an address for the memory input.
4238    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4239        !OpInfo.isIndirect) {
4240      assert(OpInfo.Type == InlineAsm::isInput &&
4241             "Can only indirectify direct input operands!");
4242
4243      // Memory operands really want the address of the value.  If we don't have
4244      // an indirect input, put it in the constpool if we can, otherwise spill
4245      // it to a stack slot.
4246
4247      // If the operand is a float, integer, or vector constant, spill to a
4248      // constant pool entry to get its address.
4249      Value *OpVal = OpInfo.CallOperandVal;
4250      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
4251          isa<ConstantVector>(OpVal)) {
4252        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
4253                                                 TLI.getPointerTy());
4254      } else {
4255        // Otherwise, create a stack slot and emit a store to it before the
4256        // asm.
4257        const Type *Ty = OpVal->getType();
4258        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
4259        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
4260        MachineFunction &MF = DAG.getMachineFunction();
4261        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
4262        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4263        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
4264        OpInfo.CallOperand = StackSlot;
4265      }
4266
4267      // There is no longer a Value* corresponding to this operand.
4268      OpInfo.CallOperandVal = 0;
4269      // It is now an indirect operand.
4270      OpInfo.isIndirect = true;
4271    }
4272
4273    // If this constraint is for a specific register, allocate it before
4274    // anything else.
4275    if (OpInfo.ConstraintType == TargetLowering::C_Register)
4276      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4277  }
4278  ConstraintInfos.clear();
4279
4280
4281  // Second pass - Loop over all of the operands, assigning virtual or physregs
4282  // to registerclass operands.
4283  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4284    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4285
4286    // C_Register operands have already been allocated, Other/Memory don't need
4287    // to be.
4288    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
4289      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4290  }
4291
4292  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
4293  std::vector<SDValue> AsmNodeOperands;
4294  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
4295  AsmNodeOperands.push_back(
4296          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
4297
4298
4299  // Loop over all of the inputs, copying the operand values into the
4300  // appropriate registers and processing the output regs.
4301  RegsForValue RetValRegs;
4302
4303  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
4304  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
4305
4306  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4307    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4308
4309    switch (OpInfo.Type) {
4310    case InlineAsm::isOutput: {
4311      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
4312          OpInfo.ConstraintType != TargetLowering::C_Register) {
4313        // Memory output, or 'other' output (e.g. 'X' constraint).
4314        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
4315
4316        // Add information to the INLINEASM node to know about this output.
4317        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4318        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4319                                                        TLI.getPointerTy()));
4320        AsmNodeOperands.push_back(OpInfo.CallOperand);
4321        break;
4322      }
4323
4324      // Otherwise, this is a register or register class output.
4325
4326      // Copy the output from the appropriate register.  Find a register that
4327      // we can use.
4328      if (OpInfo.AssignedRegs.Regs.empty()) {
4329        cerr << "Couldn't allocate output reg for constraint '"
4330             << OpInfo.ConstraintCode << "'!\n";
4331        exit(1);
4332      }
4333
4334      // If this is an indirect operand, store through the pointer after the
4335      // asm.
4336      if (OpInfo.isIndirect) {
4337        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
4338                                                      OpInfo.CallOperandVal));
4339      } else {
4340        // This is the result value of the call.
4341        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4342        // Concatenate this output onto the outputs list.
4343        RetValRegs.append(OpInfo.AssignedRegs);
4344      }
4345
4346      // Add information to the INLINEASM node to know that this register is
4347      // set.
4348      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
4349                                               AsmNodeOperands);
4350      break;
4351    }
4352    case InlineAsm::isInput: {
4353      SDValue InOperandVal = OpInfo.CallOperand;
4354
4355      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
4356        // If this is required to match an output register we have already set,
4357        // just use its register.
4358        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
4359
4360        // Scan until we find the definition we already emitted of this operand.
4361        // When we find it, create a RegsForValue operand.
4362        unsigned CurOp = 2;  // The first operand.
4363        for (; OperandNo; --OperandNo) {
4364          // Advance to the next operand.
4365          unsigned NumOps =
4366            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4367          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
4368                  (NumOps & 7) == 4 /*MEM*/) &&
4369                 "Skipped past definitions?");
4370          CurOp += (NumOps>>3)+1;
4371        }
4372
4373        unsigned NumOps =
4374          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4375        if ((NumOps & 7) == 2 /*REGDEF*/) {
4376          // Add NumOps>>3 registers to MatchedRegs.
4377          RegsForValue MatchedRegs;
4378          MatchedRegs.TLI = &TLI;
4379          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
4380          MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
4381          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
4382            unsigned Reg =
4383              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4384            MatchedRegs.Regs.push_back(Reg);
4385          }
4386
4387          // Use the produced MatchedRegs object to
4388          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4389          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
4390          break;
4391        } else {
4392          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
4393          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4394          // Add information to the INLINEASM node to know about this input.
4395          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4396          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4397                                                          TLI.getPointerTy()));
4398          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4399          break;
4400        }
4401      }
4402
4403      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4404        assert(!OpInfo.isIndirect &&
4405               "Don't know how to handle indirect other inputs yet!");
4406
4407        std::vector<SDValue> Ops;
4408        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
4409                                         Ops, DAG);
4410        if (Ops.empty()) {
4411          cerr << "Invalid operand for inline asm constraint '"
4412               << OpInfo.ConstraintCode << "'!\n";
4413          exit(1);
4414        }
4415
4416        // Add information to the INLINEASM node to know about this input.
4417        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4418        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4419                                                        TLI.getPointerTy()));
4420        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4421        break;
4422      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4423        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4424        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4425               "Memory operands expect pointer values");
4426
4427        // Add information to the INLINEASM node to know about this input.
4428        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4429        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4430                                                        TLI.getPointerTy()));
4431        AsmNodeOperands.push_back(InOperandVal);
4432        break;
4433      }
4434
4435      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4436              OpInfo.ConstraintType == TargetLowering::C_Register) &&
4437             "Unknown constraint type!");
4438      assert(!OpInfo.isIndirect &&
4439             "Don't know how to handle indirect register inputs yet!");
4440
4441      // Copy the input into the appropriate registers.
4442      assert(!OpInfo.AssignedRegs.Regs.empty() &&
4443             "Couldn't allocate input reg!");
4444
4445      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4446
4447      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
4448                                               AsmNodeOperands);
4449      break;
4450    }
4451    case InlineAsm::isClobber: {
4452      // Add the clobbered value to the operand list, so that the register
4453      // allocator is aware that the physreg got clobbered.
4454      if (!OpInfo.AssignedRegs.Regs.empty())
4455        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
4456                                                 AsmNodeOperands);
4457      break;
4458    }
4459    }
4460  }
4461
4462  // Finish up input operands.
4463  AsmNodeOperands[0] = Chain;
4464  if (Flag.Val) AsmNodeOperands.push_back(Flag);
4465
4466  Chain = DAG.getNode(ISD::INLINEASM,
4467                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4468                      &AsmNodeOperands[0], AsmNodeOperands.size());
4469  Flag = Chain.getValue(1);
4470
4471  // If this asm returns a register value, copy the result from that register
4472  // and set it as the value of the call.
4473  if (!RetValRegs.Regs.empty()) {
4474    SDValue Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4475
4476    // If any of the results of the inline asm is a vector, it may have the
4477    // wrong width/num elts.  This can happen for register classes that can
4478    // contain multiple different value types.  The preg or vreg allocated may
4479    // not have the same VT as was expected.  Convert it to the right type with
4480    // bit_convert.
4481    if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
4482      for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
4483        if (Val.Val->getValueType(i).isVector())
4484          Val = DAG.getNode(ISD::BIT_CONVERT,
4485                            TLI.getValueType(ResSTy->getElementType(i)), Val);
4486      }
4487    } else {
4488      if (Val.getValueType().isVector())
4489        Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
4490                          Val);
4491    }
4492
4493    setValue(CS.getInstruction(), Val);
4494  }
4495
4496  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
4497
4498  // Process indirect outputs, first output all of the flagged copies out of
4499  // physregs.
4500  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4501    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4502    Value *Ptr = IndirectStoresToEmit[i].second;
4503    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4504    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4505  }
4506
4507  // Emit the non-flagged stores from the physregs.
4508  SmallVector<SDValue, 8> OutChains;
4509  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4510    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4511                                    getValue(StoresToEmit[i].second),
4512                                    StoresToEmit[i].second, 0));
4513  if (!OutChains.empty())
4514    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4515                        &OutChains[0], OutChains.size());
4516  DAG.setRoot(Chain);
4517}
4518
4519
4520void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4521  SDValue Src = getValue(I.getOperand(0));
4522
4523  MVT IntPtr = TLI.getPointerTy();
4524
4525  if (IntPtr.bitsLT(Src.getValueType()))
4526    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4527  else if (IntPtr.bitsGT(Src.getValueType()))
4528    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4529
4530  // Scale the source by the type size.
4531  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4532  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4533                    Src, DAG.getIntPtrConstant(ElementSize));
4534
4535  TargetLowering::ArgListTy Args;
4536  TargetLowering::ArgListEntry Entry;
4537  Entry.Node = Src;
4538  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4539  Args.push_back(Entry);
4540
4541  std::pair<SDValue,SDValue> Result =
4542    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4543                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4544  setValue(&I, Result.first);  // Pointers always fit in registers
4545  DAG.setRoot(Result.second);
4546}
4547
4548void SelectionDAGLowering::visitFree(FreeInst &I) {
4549  TargetLowering::ArgListTy Args;
4550  TargetLowering::ArgListEntry Entry;
4551  Entry.Node = getValue(I.getOperand(0));
4552  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4553  Args.push_back(Entry);
4554  MVT IntPtr = TLI.getPointerTy();
4555  std::pair<SDValue,SDValue> Result =
4556    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4557                    CallingConv::C, true,
4558                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4559  DAG.setRoot(Result.second);
4560}
4561
4562// EmitInstrWithCustomInserter - This method should be implemented by targets
4563// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4564// instructions are special in various ways, which require special support to
4565// insert.  The specified MachineInstr is created but not inserted into any
4566// basic blocks, and the scheduler passes ownership of it to this method.
4567MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4568                                                       MachineBasicBlock *MBB) {
4569  cerr << "If a target marks an instruction with "
4570       << "'usesCustomDAGSchedInserter', it must implement "
4571       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4572  abort();
4573  return 0;
4574}
4575
4576void SelectionDAGLowering::visitVAStart(CallInst &I) {
4577  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4578                          getValue(I.getOperand(1)),
4579                          DAG.getSrcValue(I.getOperand(1))));
4580}
4581
4582void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4583  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4584                             getValue(I.getOperand(0)),
4585                             DAG.getSrcValue(I.getOperand(0)));
4586  setValue(&I, V);
4587  DAG.setRoot(V.getValue(1));
4588}
4589
4590void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4591  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4592                          getValue(I.getOperand(1)),
4593                          DAG.getSrcValue(I.getOperand(1))));
4594}
4595
4596void SelectionDAGLowering::visitVACopy(CallInst &I) {
4597  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4598                          getValue(I.getOperand(1)),
4599                          getValue(I.getOperand(2)),
4600                          DAG.getSrcValue(I.getOperand(1)),
4601                          DAG.getSrcValue(I.getOperand(2))));
4602}
4603
4604/// TargetLowering::LowerArguments - This is the default LowerArguments
4605/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4606/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4607/// integrated into SDISel.
4608void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
4609                                    SmallVectorImpl<SDValue> &ArgValues) {
4610  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4611  SmallVector<SDValue, 3+16> Ops;
4612  Ops.push_back(DAG.getRoot());
4613  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4614  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4615
4616  // Add one result value for each formal argument.
4617  SmallVector<MVT, 16> RetVals;
4618  unsigned j = 1;
4619  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4620       I != E; ++I, ++j) {
4621    SmallVector<MVT, 4> ValueVTs;
4622    ComputeValueVTs(*this, I->getType(), ValueVTs);
4623    for (unsigned Value = 0, NumValues = ValueVTs.size();
4624         Value != NumValues; ++Value) {
4625      MVT VT = ValueVTs[Value];
4626      const Type *ArgTy = VT.getTypeForMVT();
4627      ISD::ArgFlagsTy Flags;
4628      unsigned OriginalAlignment =
4629        getTargetData()->getABITypeAlignment(ArgTy);
4630
4631      if (F.paramHasAttr(j, ParamAttr::ZExt))
4632        Flags.setZExt();
4633      if (F.paramHasAttr(j, ParamAttr::SExt))
4634        Flags.setSExt();
4635      if (F.paramHasAttr(j, ParamAttr::InReg))
4636        Flags.setInReg();
4637      if (F.paramHasAttr(j, ParamAttr::StructRet))
4638        Flags.setSRet();
4639      if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4640        Flags.setByVal();
4641        const PointerType *Ty = cast<PointerType>(I->getType());
4642        const Type *ElementTy = Ty->getElementType();
4643        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4644        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4645        // For ByVal, alignment should be passed from FE.  BE will guess if
4646        // this info is not there but there are cases it cannot get right.
4647        if (F.getParamAlignment(j))
4648          FrameAlign = F.getParamAlignment(j);
4649        Flags.setByValAlign(FrameAlign);
4650        Flags.setByValSize(FrameSize);
4651      }
4652      if (F.paramHasAttr(j, ParamAttr::Nest))
4653        Flags.setNest();
4654      Flags.setOrigAlign(OriginalAlignment);
4655
4656      MVT RegisterVT = getRegisterType(VT);
4657      unsigned NumRegs = getNumRegisters(VT);
4658      for (unsigned i = 0; i != NumRegs; ++i) {
4659        RetVals.push_back(RegisterVT);
4660        ISD::ArgFlagsTy MyFlags = Flags;
4661        if (NumRegs > 1 && i == 0)
4662          MyFlags.setSplit();
4663        // if it isn't first piece, alignment must be 1
4664        else if (i > 0)
4665          MyFlags.setOrigAlign(1);
4666        Ops.push_back(DAG.getArgFlags(MyFlags));
4667      }
4668    }
4669  }
4670
4671  RetVals.push_back(MVT::Other);
4672
4673  // Create the node.
4674  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4675                               DAG.getVTList(&RetVals[0], RetVals.size()),
4676                               &Ops[0], Ops.size()).Val;
4677
4678  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4679  // allows exposing the loads that may be part of the argument access to the
4680  // first DAGCombiner pass.
4681  SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG);
4682
4683  // The number of results should match up, except that the lowered one may have
4684  // an extra flag result.
4685  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4686          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4687           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4688         && "Lowering produced unexpected number of results!");
4689
4690  // The FORMAL_ARGUMENTS node itself is likely no longer needed.
4691  if (Result != TmpRes.Val && Result->use_empty()) {
4692    HandleSDNode Dummy(DAG.getRoot());
4693    DAG.RemoveDeadNode(Result);
4694  }
4695
4696  Result = TmpRes.Val;
4697
4698  unsigned NumArgRegs = Result->getNumValues() - 1;
4699  DAG.setRoot(SDValue(Result, NumArgRegs));
4700
4701  // Set up the return result vector.
4702  unsigned i = 0;
4703  unsigned Idx = 1;
4704  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4705      ++I, ++Idx) {
4706    SmallVector<MVT, 4> ValueVTs;
4707    ComputeValueVTs(*this, I->getType(), ValueVTs);
4708    for (unsigned Value = 0, NumValues = ValueVTs.size();
4709         Value != NumValues; ++Value) {
4710      MVT VT = ValueVTs[Value];
4711      MVT PartVT = getRegisterType(VT);
4712
4713      unsigned NumParts = getNumRegisters(VT);
4714      SmallVector<SDValue, 4> Parts(NumParts);
4715      for (unsigned j = 0; j != NumParts; ++j)
4716        Parts[j] = SDValue(Result, i++);
4717
4718      ISD::NodeType AssertOp = ISD::DELETED_NODE;
4719      if (F.paramHasAttr(Idx, ParamAttr::SExt))
4720        AssertOp = ISD::AssertSext;
4721      else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4722        AssertOp = ISD::AssertZext;
4723
4724      ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4725                                           AssertOp));
4726    }
4727  }
4728  assert(i == NumArgRegs && "Argument register count mismatch!");
4729}
4730
4731
4732/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4733/// implementation, which just inserts an ISD::CALL node, which is later custom
4734/// lowered by the target to something concrete.  FIXME: When all targets are
4735/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4736std::pair<SDValue, SDValue>
4737TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
4738                            bool RetSExt, bool RetZExt, bool isVarArg,
4739                            unsigned CallingConv, bool isTailCall,
4740                            SDValue Callee,
4741                            ArgListTy &Args, SelectionDAG &DAG) {
4742  SmallVector<SDValue, 32> Ops;
4743  Ops.push_back(Chain);   // Op#0 - Chain
4744  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4745  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4746  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4747  Ops.push_back(Callee);
4748
4749  // Handle all of the outgoing arguments.
4750  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4751    SmallVector<MVT, 4> ValueVTs;
4752    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
4753    for (unsigned Value = 0, NumValues = ValueVTs.size();
4754         Value != NumValues; ++Value) {
4755      MVT VT = ValueVTs[Value];
4756      const Type *ArgTy = VT.getTypeForMVT();
4757      SDValue Op = SDValue(Args[i].Node.Val, Args[i].Node.ResNo + Value);
4758      ISD::ArgFlagsTy Flags;
4759      unsigned OriginalAlignment =
4760        getTargetData()->getABITypeAlignment(ArgTy);
4761
4762      if (Args[i].isZExt)
4763        Flags.setZExt();
4764      if (Args[i].isSExt)
4765        Flags.setSExt();
4766      if (Args[i].isInReg)
4767        Flags.setInReg();
4768      if (Args[i].isSRet)
4769        Flags.setSRet();
4770      if (Args[i].isByVal) {
4771        Flags.setByVal();
4772        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4773        const Type *ElementTy = Ty->getElementType();
4774        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4775        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4776        // For ByVal, alignment should come from FE.  BE will guess if this
4777        // info is not there but there are cases it cannot get right.
4778        if (Args[i].Alignment)
4779          FrameAlign = Args[i].Alignment;
4780        Flags.setByValAlign(FrameAlign);
4781        Flags.setByValSize(FrameSize);
4782      }
4783      if (Args[i].isNest)
4784        Flags.setNest();
4785      Flags.setOrigAlign(OriginalAlignment);
4786
4787      MVT PartVT = getRegisterType(VT);
4788      unsigned NumParts = getNumRegisters(VT);
4789      SmallVector<SDValue, 4> Parts(NumParts);
4790      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4791
4792      if (Args[i].isSExt)
4793        ExtendKind = ISD::SIGN_EXTEND;
4794      else if (Args[i].isZExt)
4795        ExtendKind = ISD::ZERO_EXTEND;
4796
4797      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4798
4799      for (unsigned i = 0; i != NumParts; ++i) {
4800        // if it isn't first piece, alignment must be 1
4801        ISD::ArgFlagsTy MyFlags = Flags;
4802        if (NumParts > 1 && i == 0)
4803          MyFlags.setSplit();
4804        else if (i != 0)
4805          MyFlags.setOrigAlign(1);
4806
4807        Ops.push_back(Parts[i]);
4808        Ops.push_back(DAG.getArgFlags(MyFlags));
4809      }
4810    }
4811  }
4812
4813  // Figure out the result value types. We start by making a list of
4814  // the potentially illegal return value types.
4815  SmallVector<MVT, 4> LoweredRetTys;
4816  SmallVector<MVT, 4> RetTys;
4817  ComputeValueVTs(*this, RetTy, RetTys);
4818
4819  // Then we translate that to a list of legal types.
4820  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4821    MVT VT = RetTys[I];
4822    MVT RegisterVT = getRegisterType(VT);
4823    unsigned NumRegs = getNumRegisters(VT);
4824    for (unsigned i = 0; i != NumRegs; ++i)
4825      LoweredRetTys.push_back(RegisterVT);
4826  }
4827
4828  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
4829
4830  // Create the CALL node.
4831  SDValue Res = DAG.getNode(ISD::CALL,
4832                              DAG.getVTList(&LoweredRetTys[0],
4833                                            LoweredRetTys.size()),
4834                              &Ops[0], Ops.size());
4835  Chain = Res.getValue(LoweredRetTys.size() - 1);
4836
4837  // Gather up the call result into a single value.
4838  if (RetTy != Type::VoidTy) {
4839    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4840
4841    if (RetSExt)
4842      AssertOp = ISD::AssertSext;
4843    else if (RetZExt)
4844      AssertOp = ISD::AssertZext;
4845
4846    SmallVector<SDValue, 4> ReturnValues;
4847    unsigned RegNo = 0;
4848    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4849      MVT VT = RetTys[I];
4850      MVT RegisterVT = getRegisterType(VT);
4851      unsigned NumRegs = getNumRegisters(VT);
4852      unsigned RegNoEnd = NumRegs + RegNo;
4853      SmallVector<SDValue, 4> Results;
4854      for (; RegNo != RegNoEnd; ++RegNo)
4855        Results.push_back(Res.getValue(RegNo));
4856      SDValue ReturnValue =
4857        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4858                         AssertOp);
4859      ReturnValues.push_back(ReturnValue);
4860    }
4861    Res = DAG.getMergeValues(DAG.getVTList(&RetTys[0], RetTys.size()),
4862                             &ReturnValues[0], ReturnValues.size());
4863  }
4864
4865  return std::make_pair(Res, Chain);
4866}
4867
4868SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
4869  assert(0 && "LowerOperation not implemented for this target!");
4870  abort();
4871  return SDValue();
4872}
4873
4874
4875//===----------------------------------------------------------------------===//
4876// SelectionDAGISel code
4877//===----------------------------------------------------------------------===//
4878
4879unsigned SelectionDAGISel::MakeReg(MVT VT) {
4880  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4881}
4882
4883void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4884  AU.addRequired<AliasAnalysis>();
4885  AU.addRequired<CollectorModuleMetadata>();
4886  AU.setPreservesAll();
4887}
4888
4889bool SelectionDAGISel::runOnFunction(Function &Fn) {
4890  // Get alias analysis for load/store combining.
4891  AA = &getAnalysis<AliasAnalysis>();
4892
4893  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4894  if (MF.getFunction()->hasCollector())
4895    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4896  else
4897    GCI = 0;
4898  RegInfo = &MF.getRegInfo();
4899  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4900
4901  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4902
4903  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4904    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4905      // Mark landing pad.
4906      FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4907
4908  SelectAllBasicBlocks(Fn, MF, FuncInfo);
4909
4910  // Add function live-ins to entry block live-in set.
4911  BasicBlock *EntryBB = &Fn.getEntryBlock();
4912  BB = FuncInfo.MBBMap[EntryBB];
4913  if (!RegInfo->livein_empty())
4914    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4915           E = RegInfo->livein_end(); I != E; ++I)
4916      BB->addLiveIn(I->first);
4917
4918#ifndef NDEBUG
4919  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4920         "Not all catch info was assigned to a landing pad!");
4921#endif
4922
4923  return true;
4924}
4925
4926void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
4927  SDValue Op = getValue(V);
4928  assert((Op.getOpcode() != ISD::CopyFromReg ||
4929          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4930         "Copy from a reg to the same reg!");
4931  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
4932
4933  RegsForValue RFV(TLI, Reg, V->getType());
4934  SDValue Chain = DAG.getEntryNode();
4935  RFV.getCopyToRegs(Op, DAG, Chain, 0);
4936  PendingExports.push_back(Chain);
4937}
4938
4939void SelectionDAGISel::
4940LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) {
4941  // If this is the entry block, emit arguments.
4942  Function &F = *LLVMBB->getParent();
4943  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4944  SDValue OldRoot = SDL.DAG.getRoot();
4945  SmallVector<SDValue, 16> Args;
4946  TLI.LowerArguments(F, SDL.DAG, Args);
4947
4948  unsigned a = 0;
4949  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4950       AI != E; ++AI) {
4951    SmallVector<MVT, 4> ValueVTs;
4952    ComputeValueVTs(TLI, AI->getType(), ValueVTs);
4953    unsigned NumValues = ValueVTs.size();
4954    if (!AI->use_empty()) {
4955      SDL.setValue(AI, SDL.DAG.getMergeValues(&Args[a], NumValues));
4956      // If this argument is live outside of the entry block, insert a copy from
4957      // whereever we got it to the vreg that other BB's will reference it as.
4958      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4959      if (VMI != FuncInfo.ValueMap.end()) {
4960        SDL.CopyValueToVirtualRegister(AI, VMI->second);
4961      }
4962    }
4963    a += NumValues;
4964  }
4965
4966  // Finally, if the target has anything special to do, allow it to do so.
4967  // FIXME: this should insert code into the DAG!
4968  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4969}
4970
4971static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4972                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4973  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4974    if (isSelector(I)) {
4975      // Apply the catch info to DestBB.
4976      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4977#ifndef NDEBUG
4978      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4979        FLI.CatchInfoFound.insert(I);
4980#endif
4981    }
4982}
4983
4984/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
4985/// whether object offset >= 0.
4986static bool
4987IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDValue Op) {
4988  if (!isa<FrameIndexSDNode>(Op)) return false;
4989
4990  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
4991  int FrameIdx =  FrameIdxNode->getIndex();
4992  return MFI->isFixedObjectIndex(FrameIdx) &&
4993    MFI->getObjectOffset(FrameIdx) >= 0;
4994}
4995
4996/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
4997/// possibly be overwritten when lowering the outgoing arguments in a tail
4998/// call. Currently the implementation of this call is very conservative and
4999/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
5000/// virtual registers would be overwritten by direct lowering.
5001static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
5002                                                    MachineFrameInfo * MFI) {
5003  RegisterSDNode * OpReg = NULL;
5004  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
5005      (Op.getOpcode()== ISD::CopyFromReg &&
5006       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
5007       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
5008      (Op.getOpcode() == ISD::LOAD &&
5009       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
5010      (Op.getOpcode() == ISD::MERGE_VALUES &&
5011       Op.getOperand(Op.ResNo).getOpcode() == ISD::LOAD &&
5012       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.ResNo).
5013                                       getOperand(1))))
5014    return true;
5015  return false;
5016}
5017
5018/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
5019/// DAG and fixes their tailcall attribute operand.
5020static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
5021                                           TargetLowering& TLI) {
5022  SDNode * Ret = NULL;
5023  SDValue Terminator = DAG.getRoot();
5024
5025  // Find RET node.
5026  if (Terminator.getOpcode() == ISD::RET) {
5027    Ret = Terminator.Val;
5028  }
5029
5030  // Fix tail call attribute of CALL nodes.
5031  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
5032         BI = DAG.allnodes_end(); BI != BE; ) {
5033    --BI;
5034    if (BI->getOpcode() == ISD::CALL) {
5035      SDValue OpRet(Ret, 0);
5036      SDValue OpCall(BI, 0);
5037      bool isMarkedTailCall =
5038        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
5039      // If CALL node has tail call attribute set to true and the call is not
5040      // eligible (no RET or the target rejects) the attribute is fixed to
5041      // false. The TargetLowering::IsEligibleForTailCallOptimization function
5042      // must correctly identify tail call optimizable calls.
5043      if (!isMarkedTailCall) continue;
5044      if (Ret==NULL ||
5045          !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
5046        // Not eligible. Mark CALL node as non tail call.
5047        SmallVector<SDValue, 32> Ops;
5048        unsigned idx=0;
5049        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
5050              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5051          if (idx!=3)
5052            Ops.push_back(*I);
5053          else
5054            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
5055        }
5056        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5057      } else {
5058        // Look for tail call clobbered arguments. Emit a series of
5059        // copyto/copyfrom virtual register nodes to protect them.
5060        SmallVector<SDValue, 32> Ops;
5061        SDValue Chain = OpCall.getOperand(0), InFlag;
5062        unsigned idx=0;
5063        for(SDNode::op_iterator I = OpCall.Val->op_begin(),
5064              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5065          SDValue Arg = *I;
5066          if (idx > 4 && (idx % 2)) {
5067            bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
5068              getArgFlags().isByVal();
5069            MachineFunction &MF = DAG.getMachineFunction();
5070            MachineFrameInfo *MFI = MF.getFrameInfo();
5071            if (!isByVal &&
5072                IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
5073              MVT VT = Arg.getValueType();
5074              unsigned VReg = MF.getRegInfo().
5075                createVirtualRegister(TLI.getRegClassFor(VT));
5076              Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
5077              InFlag = Chain.getValue(1);
5078              Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
5079              Chain = Arg.getValue(1);
5080              InFlag = Arg.getValue(2);
5081            }
5082          }
5083          Ops.push_back(Arg);
5084        }
5085        // Link in chain of CopyTo/CopyFromReg.
5086        Ops[0] = Chain;
5087        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5088      }
5089    }
5090  }
5091}
5092
5093void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
5094       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
5095                                         FunctionLoweringInfo &FuncInfo) {
5096  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
5097
5098  // Lower any arguments needed in this block if this is the entry block.
5099  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
5100    LowerArguments(LLVMBB, SDL);
5101
5102  BB = FuncInfo.MBBMap[LLVMBB];
5103  SDL.setCurrentBasicBlock(BB);
5104
5105  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
5106
5107  if (MMI && BB->isLandingPad()) {
5108    // Add a label to mark the beginning of the landing pad.  Deletion of the
5109    // landing pad can thus be detected via the MachineModuleInfo.
5110    unsigned LabelID = MMI->addLandingPad(BB);
5111    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, DAG.getEntryNode(), LabelID));
5112
5113    // Mark exception register as live in.
5114    unsigned Reg = TLI.getExceptionAddressRegister();
5115    if (Reg) BB->addLiveIn(Reg);
5116
5117    // Mark exception selector register as live in.
5118    Reg = TLI.getExceptionSelectorRegister();
5119    if (Reg) BB->addLiveIn(Reg);
5120
5121    // FIXME: Hack around an exception handling flaw (PR1508): the personality
5122    // function and list of typeids logically belong to the invoke (or, if you
5123    // like, the basic block containing the invoke), and need to be associated
5124    // with it in the dwarf exception handling tables.  Currently however the
5125    // information is provided by an intrinsic (eh.selector) that can be moved
5126    // to unexpected places by the optimizers: if the unwind edge is critical,
5127    // then breaking it can result in the intrinsics being in the successor of
5128    // the landing pad, not the landing pad itself.  This results in exceptions
5129    // not being caught because no typeids are associated with the invoke.
5130    // This may not be the only way things can go wrong, but it is the only way
5131    // we try to work around for the moment.
5132    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
5133
5134    if (Br && Br->isUnconditional()) { // Critical edge?
5135      BasicBlock::iterator I, E;
5136      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
5137        if (isSelector(I))
5138          break;
5139
5140      if (I == E)
5141        // No catch info found - try to extract some from the successor.
5142        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
5143    }
5144  }
5145
5146  // Lower all of the non-terminator instructions.
5147  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
5148       I != E; ++I)
5149    SDL.visit(*I);
5150
5151  // Ensure that all instructions which are used outside of their defining
5152  // blocks are available as virtual registers.  Invoke is handled elsewhere.
5153  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
5154    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
5155      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
5156      if (VMI != FuncInfo.ValueMap.end())
5157        SDL.CopyValueToVirtualRegister(I, VMI->second);
5158    }
5159
5160  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
5161  // ensure constants are generated when needed.  Remember the virtual registers
5162  // that need to be added to the Machine PHI nodes as input.  We cannot just
5163  // directly add them, because expansion might result in multiple MBB's for one
5164  // BB.  As such, the start of the BB might correspond to a different MBB than
5165  // the end.
5166  //
5167  TerminatorInst *TI = LLVMBB->getTerminator();
5168
5169  // Emit constants only once even if used by multiple PHI nodes.
5170  std::map<Constant*, unsigned> ConstantsOut;
5171
5172  // Vector bool would be better, but vector<bool> is really slow.
5173  std::vector<unsigned char> SuccsHandled;
5174  if (TI->getNumSuccessors())
5175    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
5176
5177  // Check successor nodes' PHI nodes that expect a constant to be available
5178  // from this block.
5179  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5180    BasicBlock *SuccBB = TI->getSuccessor(succ);
5181    if (!isa<PHINode>(SuccBB->begin())) continue;
5182    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
5183
5184    // If this terminator has multiple identical successors (common for
5185    // switches), only handle each succ once.
5186    unsigned SuccMBBNo = SuccMBB->getNumber();
5187    if (SuccsHandled[SuccMBBNo]) continue;
5188    SuccsHandled[SuccMBBNo] = true;
5189
5190    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5191    PHINode *PN;
5192
5193    // At this point we know that there is a 1-1 correspondence between LLVM PHI
5194    // nodes and Machine PHI nodes, but the incoming operands have not been
5195    // emitted yet.
5196    for (BasicBlock::iterator I = SuccBB->begin();
5197         (PN = dyn_cast<PHINode>(I)); ++I) {
5198      // Ignore dead phi's.
5199      if (PN->use_empty()) continue;
5200
5201      unsigned Reg;
5202      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5203
5204      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5205        unsigned &RegOut = ConstantsOut[C];
5206        if (RegOut == 0) {
5207          RegOut = FuncInfo.CreateRegForValue(C);
5208          SDL.CopyValueToVirtualRegister(C, RegOut);
5209        }
5210        Reg = RegOut;
5211      } else {
5212        Reg = FuncInfo.ValueMap[PHIOp];
5213        if (Reg == 0) {
5214          assert(isa<AllocaInst>(PHIOp) &&
5215                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5216                 "Didn't codegen value into a register!??");
5217          Reg = FuncInfo.CreateRegForValue(PHIOp);
5218          SDL.CopyValueToVirtualRegister(PHIOp, Reg);
5219        }
5220      }
5221
5222      // Remember that this register needs to added to the machine PHI node as
5223      // the input for this MBB.
5224      SmallVector<MVT, 4> ValueVTs;
5225      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
5226      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
5227        MVT VT = ValueVTs[vti];
5228        unsigned NumRegisters = TLI.getNumRegisters(VT);
5229        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5230          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5231        Reg += NumRegisters;
5232      }
5233    }
5234  }
5235  ConstantsOut.clear();
5236
5237  // Lower the terminator after the copies are emitted.
5238  SDL.visit(*LLVMBB->getTerminator());
5239
5240  // Copy over any CaseBlock records that may now exist due to SwitchInst
5241  // lowering, as well as any jump table information.
5242  SwitchCases.clear();
5243  SwitchCases = SDL.SwitchCases;
5244  JTCases.clear();
5245  JTCases = SDL.JTCases;
5246  BitTestCases.clear();
5247  BitTestCases = SDL.BitTestCases;
5248
5249  // Make sure the root of the DAG is up-to-date.
5250  DAG.setRoot(SDL.getControlRoot());
5251
5252  // Check whether calls in this block are real tail calls. Fix up CALL nodes
5253  // with correct tailcall attribute so that the target can rely on the tailcall
5254  // attribute indicating whether the call is really eligible for tail call
5255  // optimization.
5256  CheckDAGForTailCallsAndFixThem(DAG, TLI);
5257}
5258
5259void SelectionDAGISel::ComputeLiveOutVRegInfo(SelectionDAG &DAG) {
5260  SmallPtrSet<SDNode*, 128> VisitedNodes;
5261  SmallVector<SDNode*, 128> Worklist;
5262
5263  Worklist.push_back(DAG.getRoot().Val);
5264
5265  APInt Mask;
5266  APInt KnownZero;
5267  APInt KnownOne;
5268
5269  while (!Worklist.empty()) {
5270    SDNode *N = Worklist.back();
5271    Worklist.pop_back();
5272
5273    // If we've already seen this node, ignore it.
5274    if (!VisitedNodes.insert(N))
5275      continue;
5276
5277    // Otherwise, add all chain operands to the worklist.
5278    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5279      if (N->getOperand(i).getValueType() == MVT::Other)
5280        Worklist.push_back(N->getOperand(i).Val);
5281
5282    // If this is a CopyToReg with a vreg dest, process it.
5283    if (N->getOpcode() != ISD::CopyToReg)
5284      continue;
5285
5286    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
5287    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
5288      continue;
5289
5290    // Ignore non-scalar or non-integer values.
5291    SDValue Src = N->getOperand(2);
5292    MVT SrcVT = Src.getValueType();
5293    if (!SrcVT.isInteger() || SrcVT.isVector())
5294      continue;
5295
5296    unsigned NumSignBits = DAG.ComputeNumSignBits(Src);
5297    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
5298    DAG.ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
5299
5300    // Only install this information if it tells us something.
5301    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
5302      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
5303      FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5304      if (DestReg >= FLI.LiveOutRegInfo.size())
5305        FLI.LiveOutRegInfo.resize(DestReg+1);
5306      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
5307      LOI.NumSignBits = NumSignBits;
5308      LOI.KnownOne = NumSignBits;
5309      LOI.KnownZero = NumSignBits;
5310    }
5311  }
5312}
5313
5314void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
5315  std::string GroupName;
5316  if (TimePassesIsEnabled)
5317    GroupName = "Instruction Selection and Scheduling";
5318  std::string BlockName;
5319  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
5320      ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs)
5321    BlockName = DAG.getMachineFunction().getFunction()->getName() + ':' +
5322                BB->getBasicBlock()->getName();
5323
5324  DOUT << "Initial selection DAG:\n";
5325  DEBUG(DAG.dump());
5326
5327  if (ViewDAGCombine1) DAG.viewGraph("dag-combine1 input for " + BlockName);
5328
5329  // Run the DAG combiner in pre-legalize mode.
5330  if (TimePassesIsEnabled) {
5331    NamedRegionTimer T("DAG Combining 1", GroupName);
5332    DAG.Combine(false, *AA);
5333  } else {
5334    DAG.Combine(false, *AA);
5335  }
5336
5337  DOUT << "Optimized lowered selection DAG:\n";
5338  DEBUG(DAG.dump());
5339
5340  // Second step, hack on the DAG until it only uses operations and types that
5341  // the target supports.
5342  if (EnableLegalizeTypes) {// Enable this some day.
5343    if (ViewLegalizeTypesDAGs) DAG.viewGraph("legalize-types input for " +
5344                                             BlockName);
5345
5346    if (TimePassesIsEnabled) {
5347      NamedRegionTimer T("Type Legalization", GroupName);
5348      DAG.LegalizeTypes();
5349    } else {
5350      DAG.LegalizeTypes();
5351    }
5352
5353    DOUT << "Type-legalized selection DAG:\n";
5354    DEBUG(DAG.dump());
5355
5356    // TODO: enable a dag combine pass here.
5357  }
5358
5359  if (ViewLegalizeDAGs) DAG.viewGraph("legalize input for " + BlockName);
5360
5361  if (TimePassesIsEnabled) {
5362    NamedRegionTimer T("DAG Legalization", GroupName);
5363    DAG.Legalize();
5364  } else {
5365    DAG.Legalize();
5366  }
5367
5368  DOUT << "Legalized selection DAG:\n";
5369  DEBUG(DAG.dump());
5370
5371  if (ViewDAGCombine2) DAG.viewGraph("dag-combine2 input for " + BlockName);
5372
5373  // Run the DAG combiner in post-legalize mode.
5374  if (TimePassesIsEnabled) {
5375    NamedRegionTimer T("DAG Combining 2", GroupName);
5376    DAG.Combine(true, *AA);
5377  } else {
5378    DAG.Combine(true, *AA);
5379  }
5380
5381  DOUT << "Optimized legalized selection DAG:\n";
5382  DEBUG(DAG.dump());
5383
5384  if (ViewISelDAGs) DAG.viewGraph("isel input for " + BlockName);
5385
5386  if (!FastISel && EnableValueProp)
5387    ComputeLiveOutVRegInfo(DAG);
5388
5389  // Third, instruction select all of the operations to machine code, adding the
5390  // code to the MachineBasicBlock.
5391  if (TimePassesIsEnabled) {
5392    NamedRegionTimer T("Instruction Selection", GroupName);
5393    InstructionSelect(DAG);
5394  } else {
5395    InstructionSelect(DAG);
5396  }
5397
5398  DOUT << "Selected selection DAG:\n";
5399  DEBUG(DAG.dump());
5400
5401  if (ViewSchedDAGs) DAG.viewGraph("scheduler input for " + BlockName);
5402
5403  // Schedule machine code.
5404  ScheduleDAG *Scheduler;
5405  if (TimePassesIsEnabled) {
5406    NamedRegionTimer T("Instruction Scheduling", GroupName);
5407    Scheduler = Schedule(DAG);
5408  } else {
5409    Scheduler = Schedule(DAG);
5410  }
5411
5412  if (ViewSUnitDAGs) Scheduler->viewGraph();
5413
5414  // Emit machine code to BB.  This can change 'BB' to the last block being
5415  // inserted into.
5416  if (TimePassesIsEnabled) {
5417    NamedRegionTimer T("Instruction Creation", GroupName);
5418    BB = Scheduler->EmitSchedule();
5419  } else {
5420    BB = Scheduler->EmitSchedule();
5421  }
5422
5423  // Free the scheduler state.
5424  if (TimePassesIsEnabled) {
5425    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
5426    delete Scheduler;
5427  } else {
5428    delete Scheduler;
5429  }
5430
5431  // Perform target specific isel post processing.
5432  if (TimePassesIsEnabled) {
5433    NamedRegionTimer T("Instruction Selection Post Processing", GroupName);
5434    InstructionSelectPostProcessing();
5435  } else {
5436    InstructionSelectPostProcessing();
5437  }
5438
5439  DOUT << "Selected machine code:\n";
5440  DEBUG(BB->dump());
5441}
5442
5443void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF,
5444                                            FunctionLoweringInfo &FuncInfo) {
5445  // Define NodeAllocator here so that memory allocation is reused for
5446  // each basic block.
5447  NodeAllocatorType NodeAllocator;
5448
5449  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
5450    SelectBasicBlock(I, MF, FuncInfo, NodeAllocator);
5451}
5452
5453void
5454SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
5455                                   FunctionLoweringInfo &FuncInfo,
5456                                   NodeAllocatorType &NodeAllocator) {
5457  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
5458  {
5459    SelectionDAG DAG(TLI, MF, FuncInfo,
5460                     getAnalysisToUpdate<MachineModuleInfo>(),
5461                     NodeAllocator);
5462    CurDAG = &DAG;
5463
5464    // First step, lower LLVM code to some DAG.  This DAG may use operations and
5465    // types that are not supported by the target.
5466    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
5467
5468    // Second step, emit the lowered DAG as machine code.
5469    CodeGenAndEmitDAG(DAG);
5470  }
5471
5472  DOUT << "Total amount of phi nodes to update: "
5473       << PHINodesToUpdate.size() << "\n";
5474  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
5475          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
5476               << ", " << PHINodesToUpdate[i].second << ")\n";);
5477
5478  // Next, now that we know what the last MBB the LLVM BB expanded is, update
5479  // PHI nodes in successors.
5480  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
5481    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5482      MachineInstr *PHI = PHINodesToUpdate[i].first;
5483      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5484             "This is not a machine PHI node that we are updating!");
5485      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5486                                                false));
5487      PHI->addOperand(MachineOperand::CreateMBB(BB));
5488    }
5489    return;
5490  }
5491
5492  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
5493    // Lower header first, if it wasn't already lowered
5494    if (!BitTestCases[i].Emitted) {
5495      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5496                         getAnalysisToUpdate<MachineModuleInfo>(),
5497                         NodeAllocator);
5498      CurDAG = &HSDAG;
5499      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5500      // Set the current basic block to the mbb we wish to insert the code into
5501      BB = BitTestCases[i].Parent;
5502      HSDL.setCurrentBasicBlock(BB);
5503      // Emit the code
5504      HSDL.visitBitTestHeader(BitTestCases[i]);
5505      HSDAG.setRoot(HSDL.getRoot());
5506      CodeGenAndEmitDAG(HSDAG);
5507    }
5508
5509    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5510      SelectionDAG BSDAG(TLI, MF, FuncInfo,
5511                         getAnalysisToUpdate<MachineModuleInfo>(),
5512                         NodeAllocator);
5513      CurDAG = &BSDAG;
5514      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
5515      // Set the current basic block to the mbb we wish to insert the code into
5516      BB = BitTestCases[i].Cases[j].ThisBB;
5517      BSDL.setCurrentBasicBlock(BB);
5518      // Emit the code
5519      if (j+1 != ej)
5520        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
5521                              BitTestCases[i].Reg,
5522                              BitTestCases[i].Cases[j]);
5523      else
5524        BSDL.visitBitTestCase(BitTestCases[i].Default,
5525                              BitTestCases[i].Reg,
5526                              BitTestCases[i].Cases[j]);
5527
5528
5529      BSDAG.setRoot(BSDL.getRoot());
5530      CodeGenAndEmitDAG(BSDAG);
5531    }
5532
5533    // Update PHI Nodes
5534    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5535      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5536      MachineBasicBlock *PHIBB = PHI->getParent();
5537      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5538             "This is not a machine PHI node that we are updating!");
5539      // This is "default" BB. We have two jumps to it. From "header" BB and
5540      // from last "case" BB.
5541      if (PHIBB == BitTestCases[i].Default) {
5542        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5543                                                  false));
5544        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
5545        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5546                                                  false));
5547        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
5548                                                  back().ThisBB));
5549      }
5550      // One of "cases" BB.
5551      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5552        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
5553        if (cBB->succ_end() !=
5554            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
5555          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5556                                                    false));
5557          PHI->addOperand(MachineOperand::CreateMBB(cBB));
5558        }
5559      }
5560    }
5561  }
5562
5563  // If the JumpTable record is filled in, then we need to emit a jump table.
5564  // Updating the PHI nodes is tricky in this case, since we need to determine
5565  // whether the PHI is a successor of the range check MBB or the jump table MBB
5566  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
5567    // Lower header first, if it wasn't already lowered
5568    if (!JTCases[i].first.Emitted) {
5569      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5570                         getAnalysisToUpdate<MachineModuleInfo>(),
5571                         NodeAllocator);
5572      CurDAG = &HSDAG;
5573      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5574      // Set the current basic block to the mbb we wish to insert the code into
5575      BB = JTCases[i].first.HeaderBB;
5576      HSDL.setCurrentBasicBlock(BB);
5577      // Emit the code
5578      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
5579      HSDAG.setRoot(HSDL.getRoot());
5580      CodeGenAndEmitDAG(HSDAG);
5581    }
5582
5583    SelectionDAG JSDAG(TLI, MF, FuncInfo,
5584                       getAnalysisToUpdate<MachineModuleInfo>(),
5585                       NodeAllocator);
5586    CurDAG = &JSDAG;
5587    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
5588    // Set the current basic block to the mbb we wish to insert the code into
5589    BB = JTCases[i].second.MBB;
5590    JSDL.setCurrentBasicBlock(BB);
5591    // Emit the code
5592    JSDL.visitJumpTable(JTCases[i].second);
5593    JSDAG.setRoot(JSDL.getRoot());
5594    CodeGenAndEmitDAG(JSDAG);
5595
5596    // Update PHI Nodes
5597    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5598      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5599      MachineBasicBlock *PHIBB = PHI->getParent();
5600      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5601             "This is not a machine PHI node that we are updating!");
5602      // "default" BB. We can go there only from header BB.
5603      if (PHIBB == JTCases[i].second.Default) {
5604        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5605                                                  false));
5606        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
5607      }
5608      // JT BB. Just iterate over successors here
5609      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
5610        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5611                                                  false));
5612        PHI->addOperand(MachineOperand::CreateMBB(BB));
5613      }
5614    }
5615  }
5616
5617  // If the switch block involved a branch to one of the actual successors, we
5618  // need to update PHI nodes in that block.
5619  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5620    MachineInstr *PHI = PHINodesToUpdate[i].first;
5621    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5622           "This is not a machine PHI node that we are updating!");
5623    if (BB->isSuccessor(PHI->getParent())) {
5624      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5625                                                false));
5626      PHI->addOperand(MachineOperand::CreateMBB(BB));
5627    }
5628  }
5629
5630  // If we generated any switch lowering information, build and codegen any
5631  // additional DAGs necessary.
5632  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
5633    SelectionDAG SDAG(TLI, MF, FuncInfo,
5634                      getAnalysisToUpdate<MachineModuleInfo>(),
5635                      NodeAllocator);
5636    CurDAG = &SDAG;
5637    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
5638
5639    // Set the current basic block to the mbb we wish to insert the code into
5640    BB = SwitchCases[i].ThisBB;
5641    SDL.setCurrentBasicBlock(BB);
5642
5643    // Emit the code
5644    SDL.visitSwitchCase(SwitchCases[i]);
5645    SDAG.setRoot(SDL.getRoot());
5646    CodeGenAndEmitDAG(SDAG);
5647
5648    // Handle any PHI nodes in successors of this chunk, as if we were coming
5649    // from the original BB before switch expansion.  Note that PHI nodes can
5650    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5651    // handle them the right number of times.
5652    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5653      for (MachineBasicBlock::iterator Phi = BB->begin();
5654           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5655        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5656        for (unsigned pn = 0; ; ++pn) {
5657          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5658          if (PHINodesToUpdate[pn].first == Phi) {
5659            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5660                                                      second, false));
5661            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5662            break;
5663          }
5664        }
5665      }
5666
5667      // Don't process RHS if same block as LHS.
5668      if (BB == SwitchCases[i].FalseBB)
5669        SwitchCases[i].FalseBB = 0;
5670
5671      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5672      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5673      SwitchCases[i].FalseBB = 0;
5674    }
5675    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5676  }
5677}
5678
5679
5680/// Schedule - Pick a safe ordering for instructions for each
5681/// target node in the graph.
5682///
5683ScheduleDAG *SelectionDAGISel::Schedule(SelectionDAG &DAG) {
5684  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5685
5686  if (!Ctor) {
5687    Ctor = ISHeuristic;
5688    RegisterScheduler::setDefault(Ctor);
5689  }
5690
5691  ScheduleDAG *Scheduler = Ctor(this, &DAG, BB, FastISel);
5692  Scheduler->Run();
5693
5694  return Scheduler;
5695}
5696
5697
5698HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5699  return new HazardRecognizer();
5700}
5701
5702//===----------------------------------------------------------------------===//
5703// Helper functions used by the generated instruction selector.
5704//===----------------------------------------------------------------------===//
5705// Calls to these methods are generated by tblgen.
5706
5707/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5708/// the dag combiner simplified the 255, we still want to match.  RHS is the
5709/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5710/// specified in the .td file (e.g. 255).
5711bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
5712                                    int64_t DesiredMaskS) const {
5713  const APInt &ActualMask = RHS->getAPIntValue();
5714  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5715
5716  // If the actual mask exactly matches, success!
5717  if (ActualMask == DesiredMask)
5718    return true;
5719
5720  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5721  if (ActualMask.intersects(~DesiredMask))
5722    return false;
5723
5724  // Otherwise, the DAG Combiner may have proven that the value coming in is
5725  // either already zero or is not demanded.  Check for known zero input bits.
5726  APInt NeededMask = DesiredMask & ~ActualMask;
5727  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5728    return true;
5729
5730  // TODO: check to see if missing bits are just not demanded.
5731
5732  // Otherwise, this pattern doesn't match.
5733  return false;
5734}
5735
5736/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5737/// the dag combiner simplified the 255, we still want to match.  RHS is the
5738/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5739/// specified in the .td file (e.g. 255).
5740bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
5741                                   int64_t DesiredMaskS) const {
5742  const APInt &ActualMask = RHS->getAPIntValue();
5743  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5744
5745  // If the actual mask exactly matches, success!
5746  if (ActualMask == DesiredMask)
5747    return true;
5748
5749  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5750  if (ActualMask.intersects(~DesiredMask))
5751    return false;
5752
5753  // Otherwise, the DAG Combiner may have proven that the value coming in is
5754  // either already zero or is not demanded.  Check for known zero input bits.
5755  APInt NeededMask = DesiredMask & ~ActualMask;
5756
5757  APInt KnownZero, KnownOne;
5758  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5759
5760  // If all the missing bits in the or are already known to be set, match!
5761  if ((NeededMask & KnownOne) == NeededMask)
5762    return true;
5763
5764  // TODO: check to see if missing bits are just not demanded.
5765
5766  // Otherwise, this pattern doesn't match.
5767  return false;
5768}
5769
5770
5771/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5772/// by tblgen.  Others should not call it.
5773void SelectionDAGISel::
5774SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, SelectionDAG &DAG) {
5775  std::vector<SDValue> InOps;
5776  std::swap(InOps, Ops);
5777
5778  Ops.push_back(InOps[0]);  // input chain.
5779  Ops.push_back(InOps[1]);  // input asm string.
5780
5781  unsigned i = 2, e = InOps.size();
5782  if (InOps[e-1].getValueType() == MVT::Flag)
5783    --e;  // Don't process a flag operand if it is here.
5784
5785  while (i != e) {
5786    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5787    if ((Flags & 7) != 4 /*MEM*/) {
5788      // Just skip over this operand, copying the operands verbatim.
5789      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5790      i += (Flags >> 3) + 1;
5791    } else {
5792      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5793      // Otherwise, this is a memory operand.  Ask the target to select it.
5794      std::vector<SDValue> SelOps;
5795      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5796        cerr << "Could not match memory address.  Inline asm failure!\n";
5797        exit(1);
5798      }
5799
5800      // Add this to the output node.
5801      MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5802      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5803                                          IntPtrTy));
5804      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5805      i += 2;
5806    }
5807  }
5808
5809  // Add the flag input back if present.
5810  if (e != InOps.size())
5811    Ops.push_back(InOps.back());
5812}
5813
5814char SelectionDAGISel::ID = 0;
5815