SelectionDAGISel.cpp revision 6b30792d2d7d142b8192241e6232aee004f745fb
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionAnalysis.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/CodeGen/DwarfWriter.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/Timer.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62static cl::opt<bool>
63EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
64          cl::desc("Enable verbose messages in the \"fast\" "
65                   "instruction selector"));
66static cl::opt<bool>
67EnableFastISelAbort("fast-isel-abort", cl::Hidden,
68          cl::desc("Enable abort calls when \"fast\" instruction fails"));
69static cl::opt<bool>
70SchedLiveInCopies("schedule-livein-copies", cl::Hidden,
71                  cl::desc("Schedule copies of livein registers"),
72                  cl::init(false));
73
74#ifndef NDEBUG
75static cl::opt<bool>
76ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the first "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before legalize types"));
82static cl::opt<bool>
83ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize"));
85static cl::opt<bool>
86ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before the second "
88                   "dag combine pass"));
89static cl::opt<bool>
90ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
91          cl::desc("Pop up a window to show dags before the post legalize types"
92                   " dag combine pass"));
93static cl::opt<bool>
94ViewISelDAGs("view-isel-dags", cl::Hidden,
95          cl::desc("Pop up a window to show isel dags as they are selected"));
96static cl::opt<bool>
97ViewSchedDAGs("view-sched-dags", cl::Hidden,
98          cl::desc("Pop up a window to show sched dags as they are processed"));
99static cl::opt<bool>
100ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
101      cl::desc("Pop up a window to show SUnit dags after they are processed"));
102#else
103static const bool ViewDAGCombine1 = false,
104                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
105                  ViewDAGCombine2 = false,
106                  ViewDAGCombineLT = false,
107                  ViewISelDAGs = false, ViewSchedDAGs = false,
108                  ViewSUnitDAGs = false;
109#endif
110
111//===---------------------------------------------------------------------===//
112///
113/// RegisterScheduler class - Track the registration of instruction schedulers.
114///
115//===---------------------------------------------------------------------===//
116MachinePassRegistry RegisterScheduler::Registry;
117
118//===---------------------------------------------------------------------===//
119///
120/// ISHeuristic command line option for instruction schedulers.
121///
122//===---------------------------------------------------------------------===//
123static cl::opt<RegisterScheduler::FunctionPassCtor, false,
124               RegisterPassParser<RegisterScheduler> >
125ISHeuristic("pre-RA-sched",
126            cl::init(&createDefaultScheduler),
127            cl::desc("Instruction schedulers available (before register"
128                     " allocation):"));
129
130static RegisterScheduler
131defaultListDAGScheduler("default", "Best scheduler for the target",
132                        createDefaultScheduler);
133
134namespace llvm {
135  //===--------------------------------------------------------------------===//
136  /// createDefaultScheduler - This creates an instruction scheduler appropriate
137  /// for the target.
138  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
139                                             CodeGenOpt::Level OptLevel) {
140    const TargetLowering &TLI = IS->getTargetLowering();
141
142    if (OptLevel == CodeGenOpt::None)
143      return createFastDAGScheduler(IS, OptLevel);
144    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
145      return createTDListDAGScheduler(IS, OptLevel);
146    assert(TLI.getSchedulingPreference() ==
147           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
148    return createBURRListDAGScheduler(IS, OptLevel);
149  }
150}
151
152// EmitInstrWithCustomInserter - This method should be implemented by targets
153// that mark instructions with the 'usesCustomInserter' flag.  These
154// instructions are special in various ways, which require special support to
155// insert.  The specified MachineInstr is created but not inserted into any
156// basic blocks, and this method is called to expand it into a sequence of
157// instructions, potentially also creating new basic blocks and control flow.
158// When new basic blocks are inserted and the edges from MBB to its successors
159// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
160// DenseMap.
161MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
162                                                         MachineBasicBlock *MBB,
163                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
164#ifndef NDEBUG
165  dbgs() << "If a target marks an instruction with "
166          "'usesCustomInserter', it must implement "
167          "TargetLowering::EmitInstrWithCustomInserter!";
168#endif
169  llvm_unreachable(0);
170  return 0;
171}
172
173/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
174/// physical register has only a single copy use, then coalesced the copy
175/// if possible.
176static void EmitLiveInCopy(MachineBasicBlock *MBB,
177                           MachineBasicBlock::iterator &InsertPos,
178                           unsigned VirtReg, unsigned PhysReg,
179                           const TargetRegisterClass *RC,
180                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
181                           const MachineRegisterInfo &MRI,
182                           const TargetRegisterInfo &TRI,
183                           const TargetInstrInfo &TII) {
184  unsigned NumUses = 0;
185  MachineInstr *UseMI = NULL;
186  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
187         UE = MRI.use_end(); UI != UE; ++UI) {
188    UseMI = &*UI;
189    if (++NumUses > 1)
190      break;
191  }
192
193  // If the number of uses is not one, or the use is not a move instruction,
194  // don't coalesce. Also, only coalesce away a virtual register to virtual
195  // register copy.
196  bool Coalesced = false;
197  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
198  if (NumUses == 1 &&
199      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
200      TargetRegisterInfo::isVirtualRegister(DstReg)) {
201    VirtReg = DstReg;
202    Coalesced = true;
203  }
204
205  // Now find an ideal location to insert the copy.
206  MachineBasicBlock::iterator Pos = InsertPos;
207  while (Pos != MBB->begin()) {
208    MachineInstr *PrevMI = prior(Pos);
209    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
210    // copyRegToReg might emit multiple instructions to do a copy.
211    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
212    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
213      // This is what the BB looks like right now:
214      // r1024 = mov r0
215      // ...
216      // r1    = mov r1024
217      //
218      // We want to insert "r1025 = mov r1". Inserting this copy below the
219      // move to r1024 makes it impossible for that move to be coalesced.
220      //
221      // r1025 = mov r1
222      // r1024 = mov r0
223      // ...
224      // r1    = mov 1024
225      // r2    = mov 1025
226      break; // Woot! Found a good location.
227    --Pos;
228  }
229
230  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
231  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
232  (void) Emitted;
233
234  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
235  if (Coalesced) {
236    if (&*InsertPos == UseMI) ++InsertPos;
237    MBB->erase(UseMI);
238  }
239}
240
241/// EmitLiveInCopies - If this is the first basic block in the function,
242/// and if it has live ins that need to be copied into vregs, emit the
243/// copies into the block.
244static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
245                             const MachineRegisterInfo &MRI,
246                             const TargetRegisterInfo &TRI,
247                             const TargetInstrInfo &TII) {
248  if (SchedLiveInCopies) {
249    // Emit the copies at a heuristically-determined location in the block.
250    DenseMap<MachineInstr*, unsigned> CopyRegMap;
251    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
252    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
253           E = MRI.livein_end(); LI != E; ++LI)
254      if (LI->second) {
255        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
256        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
257                       RC, CopyRegMap, MRI, TRI, TII);
258      }
259  } else {
260    // Emit the copies into the top of the block.
261    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
262           E = MRI.livein_end(); LI != E; ++LI)
263      if (LI->second) {
264        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
265        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
266                                        LI->second, LI->first, RC, RC);
267        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
268        (void) Emitted;
269      }
270  }
271}
272
273//===----------------------------------------------------------------------===//
274// SelectionDAGISel code
275//===----------------------------------------------------------------------===//
276
277SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
278  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
279  FuncInfo(new FunctionLoweringInfo(TLI)),
280  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
281  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
282  GFI(),
283  OptLevel(OL),
284  DAGSize(0)
285{}
286
287SelectionDAGISel::~SelectionDAGISel() {
288  delete SDB;
289  delete CurDAG;
290  delete FuncInfo;
291}
292
293unsigned SelectionDAGISel::MakeReg(EVT VT) {
294  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
295}
296
297void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
298  AU.addRequired<AliasAnalysis>();
299  AU.addPreserved<AliasAnalysis>();
300  AU.addRequired<GCModuleInfo>();
301  AU.addPreserved<GCModuleInfo>();
302  AU.addRequired<DwarfWriter>();
303  AU.addPreserved<DwarfWriter>();
304  MachineFunctionPass::getAnalysisUsage(AU);
305}
306
307bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
308  Function &Fn = *mf.getFunction();
309
310  // Do some sanity-checking on the command-line options.
311  assert((!EnableFastISelVerbose || EnableFastISel) &&
312         "-fast-isel-verbose requires -fast-isel");
313  assert((!EnableFastISelAbort || EnableFastISel) &&
314         "-fast-isel-abort requires -fast-isel");
315
316  // Get alias analysis for load/store combining.
317  AA = &getAnalysis<AliasAnalysis>();
318
319  MF = &mf;
320  const TargetInstrInfo &TII = *TM.getInstrInfo();
321  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
322
323  if (Fn.hasGC())
324    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
325  else
326    GFI = 0;
327  RegInfo = &MF->getRegInfo();
328  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
329
330  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
331  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
332  CurDAG->init(*MF, MMI, DW);
333  FuncInfo->set(Fn, *MF, EnableFastISel);
334  SDB->init(GFI, *AA);
335
336  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
337    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
338      // Mark landing pad.
339      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
340
341  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
342
343  // If the first basic block in the function has live ins that need to be
344  // copied into vregs, emit the copies into the top of the block before
345  // emitting the code for the block.
346  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
347
348  // Add function live-ins to entry block live-in set.
349  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
350         E = RegInfo->livein_end(); I != E; ++I)
351    MF->begin()->addLiveIn(I->first);
352
353#ifndef NDEBUG
354  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
355         "Not all catch info was assigned to a landing pad!");
356#endif
357
358  FuncInfo->clear();
359
360  return true;
361}
362
363/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
364/// attached with this instruction.
365static void SetDebugLoc(unsigned MDDbgKind, Instruction *I,
366                        SelectionDAGBuilder *SDB,
367                        FastISel *FastIS, MachineFunction *MF) {
368  if (isa<DbgInfoIntrinsic>(I)) return;
369
370  if (MDNode *Dbg = I->getMetadata(MDDbgKind)) {
371    DILocation DILoc(Dbg);
372    DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo());
373
374    SDB->setCurDebugLoc(Loc);
375
376    if (FastIS)
377      FastIS->setCurDebugLoc(Loc);
378
379    // If the function doesn't have a default debug location yet, set
380    // it. This is kind of a hack.
381    if (MF->getDefaultDebugLoc().isUnknown())
382      MF->setDefaultDebugLoc(Loc);
383  }
384}
385
386/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
387static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
388  SDB->setCurDebugLoc(DebugLoc::getUnknownLoc());
389  if (FastIS)
390    FastIS->setCurDebugLoc(DebugLoc::getUnknownLoc());
391}
392
393void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
394                                        BasicBlock::iterator Begin,
395                                        BasicBlock::iterator End,
396                                        bool &HadTailCall) {
397  SDB->setCurrentBasicBlock(BB);
398  unsigned MDDbgKind = LLVMBB->getContext().getMDKindID("dbg");
399
400  // Lower all of the non-terminator instructions. If a call is emitted
401  // as a tail call, cease emitting nodes for this block.
402  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
403    SetDebugLoc(MDDbgKind, I, SDB, 0, MF);
404
405    if (!isa<TerminatorInst>(I)) {
406      SDB->visit(*I);
407
408      // Set the current debug location back to "unknown" so that it doesn't
409      // spuriously apply to subsequent instructions.
410      ResetDebugLoc(SDB, 0);
411    }
412  }
413
414  if (!SDB->HasTailCall) {
415    // Ensure that all instructions which are used outside of their defining
416    // blocks are available as virtual registers.  Invoke is handled elsewhere.
417    for (BasicBlock::iterator I = Begin; I != End; ++I)
418      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
419        SDB->CopyToExportRegsIfNeeded(I);
420
421    // Handle PHI nodes in successor blocks.
422    if (End == LLVMBB->end()) {
423      HandlePHINodesInSuccessorBlocks(LLVMBB);
424
425      // Lower the terminator after the copies are emitted.
426      SetDebugLoc(MDDbgKind, LLVMBB->getTerminator(), SDB, 0, MF);
427      SDB->visit(*LLVMBB->getTerminator());
428      ResetDebugLoc(SDB, 0);
429    }
430  }
431
432  // Make sure the root of the DAG is up-to-date.
433  CurDAG->setRoot(SDB->getControlRoot());
434
435  // Final step, emit the lowered DAG as machine code.
436  CodeGenAndEmitDAG();
437  HadTailCall = SDB->HasTailCall;
438  SDB->clear();
439}
440
441namespace {
442/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
443/// nodes from the worklist.
444class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
445  SmallVector<SDNode*, 128> &Worklist;
446public:
447  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl) : Worklist(wl) {}
448
449  virtual void NodeDeleted(SDNode *N, SDNode *E) {
450    Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
451                   Worklist.end());
452  }
453
454  virtual void NodeUpdated(SDNode *N) {
455    // Ignore updates.
456  }
457};
458}
459
460/// TrivialTruncElim - Eliminate some trivial nops that can result from
461/// ShrinkDemandedOps: (trunc (ext n)) -> n.
462static bool TrivialTruncElim(SDValue Op,
463                             TargetLowering::TargetLoweringOpt &TLO) {
464  SDValue N0 = Op.getOperand(0);
465  EVT VT = Op.getValueType();
466  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
467       N0.getOpcode() == ISD::SIGN_EXTEND ||
468       N0.getOpcode() == ISD::ANY_EXTEND) &&
469      N0.getOperand(0).getValueType() == VT) {
470    return TLO.CombineTo(Op, N0.getOperand(0));
471  }
472  return false;
473}
474
475/// ShrinkDemandedOps - A late transformation pass that shrink expressions
476/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
477/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
478void SelectionDAGISel::ShrinkDemandedOps() {
479  SmallVector<SDNode*, 128> Worklist;
480
481  // Add all the dag nodes to the worklist.
482  Worklist.reserve(CurDAG->allnodes_size());
483  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
484       E = CurDAG->allnodes_end(); I != E; ++I)
485    Worklist.push_back(I);
486
487  APInt Mask;
488  APInt KnownZero;
489  APInt KnownOne;
490
491  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
492  while (!Worklist.empty()) {
493    SDNode *N = Worklist.pop_back_val();
494
495    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
496      CurDAG->DeleteNode(N);
497      continue;
498    }
499
500    // Run ShrinkDemandedOp on scalar binary operations.
501    if (N->getNumValues() == 1 &&
502        N->getValueType(0).isSimple() && N->getValueType(0).isInteger()) {
503      unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
504      APInt Demanded = APInt::getAllOnesValue(BitWidth);
505      APInt KnownZero, KnownOne;
506      if (TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
507                                   KnownZero, KnownOne, TLO) ||
508          (N->getOpcode() == ISD::TRUNCATE &&
509           TrivialTruncElim(SDValue(N, 0), TLO))) {
510        // Revisit the node.
511        Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
512                       Worklist.end());
513        Worklist.push_back(N);
514
515        // Replace the old value with the new one.
516        DEBUG(errs() << "\nReplacing ";
517              TLO.Old.getNode()->dump(CurDAG);
518              errs() << "\nWith: ";
519              TLO.New.getNode()->dump(CurDAG);
520              errs() << '\n');
521
522        Worklist.push_back(TLO.New.getNode());
523
524        SDOPsWorkListRemover DeadNodes(Worklist);
525        CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
526
527        if (TLO.Old.getNode()->use_empty()) {
528          for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
529               i != e; ++i) {
530            SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
531            if (OpNode->hasOneUse()) {
532              Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
533                                         OpNode), Worklist.end());
534              Worklist.push_back(OpNode);
535            }
536          }
537
538          Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
539                                     TLO.Old.getNode()), Worklist.end());
540          CurDAG->DeleteNode(TLO.Old.getNode());
541        }
542      }
543    }
544  }
545}
546
547void SelectionDAGISel::ComputeLiveOutVRegInfo() {
548  SmallPtrSet<SDNode*, 128> VisitedNodes;
549  SmallVector<SDNode*, 128> Worklist;
550
551  Worklist.push_back(CurDAG->getRoot().getNode());
552
553  APInt Mask;
554  APInt KnownZero;
555  APInt KnownOne;
556
557  do {
558    SDNode *N = Worklist.pop_back_val();
559
560    // If we've already seen this node, ignore it.
561    if (!VisitedNodes.insert(N))
562      continue;
563
564    // Otherwise, add all chain operands to the worklist.
565    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
566      if (N->getOperand(i).getValueType() == MVT::Other)
567        Worklist.push_back(N->getOperand(i).getNode());
568
569    // If this is a CopyToReg with a vreg dest, process it.
570    if (N->getOpcode() != ISD::CopyToReg)
571      continue;
572
573    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
574    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
575      continue;
576
577    // Ignore non-scalar or non-integer values.
578    SDValue Src = N->getOperand(2);
579    EVT SrcVT = Src.getValueType();
580    if (!SrcVT.isInteger() || SrcVT.isVector())
581      continue;
582
583    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
584    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
585    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
586
587    // Only install this information if it tells us something.
588    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
589      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
590      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
591        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
592      FunctionLoweringInfo::LiveOutInfo &LOI =
593        FuncInfo->LiveOutRegInfo[DestReg];
594      LOI.NumSignBits = NumSignBits;
595      LOI.KnownOne = KnownOne;
596      LOI.KnownZero = KnownZero;
597    }
598  } while (!Worklist.empty());
599}
600
601void SelectionDAGISel::CodeGenAndEmitDAG() {
602  std::string GroupName;
603  if (TimePassesIsEnabled)
604    GroupName = "Instruction Selection and Scheduling";
605  std::string BlockName;
606  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
607      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
608      ViewSUnitDAGs)
609    BlockName = MF->getFunction()->getNameStr() + ":" +
610                BB->getBasicBlock()->getNameStr();
611
612  DEBUG(dbgs() << "Initial selection DAG:\n");
613  DEBUG(CurDAG->dump());
614
615  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
616
617  // Run the DAG combiner in pre-legalize mode.
618  if (TimePassesIsEnabled) {
619    NamedRegionTimer T("DAG Combining 1", GroupName);
620    CurDAG->Combine(Unrestricted, *AA, OptLevel);
621  } else {
622    CurDAG->Combine(Unrestricted, *AA, OptLevel);
623  }
624
625  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
626  DEBUG(CurDAG->dump());
627
628  // Second step, hack on the DAG until it only uses operations and types that
629  // the target supports.
630  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
631                                               BlockName);
632
633  bool Changed;
634  if (TimePassesIsEnabled) {
635    NamedRegionTimer T("Type Legalization", GroupName);
636    Changed = CurDAG->LegalizeTypes();
637  } else {
638    Changed = CurDAG->LegalizeTypes();
639  }
640
641  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
642  DEBUG(CurDAG->dump());
643
644  if (Changed) {
645    if (ViewDAGCombineLT)
646      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
647
648    // Run the DAG combiner in post-type-legalize mode.
649    if (TimePassesIsEnabled) {
650      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
651      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
652    } else {
653      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
654    }
655
656    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
657    DEBUG(CurDAG->dump());
658  }
659
660  if (TimePassesIsEnabled) {
661    NamedRegionTimer T("Vector Legalization", GroupName);
662    Changed = CurDAG->LegalizeVectors();
663  } else {
664    Changed = CurDAG->LegalizeVectors();
665  }
666
667  if (Changed) {
668    if (TimePassesIsEnabled) {
669      NamedRegionTimer T("Type Legalization 2", GroupName);
670      CurDAG->LegalizeTypes();
671    } else {
672      CurDAG->LegalizeTypes();
673    }
674
675    if (ViewDAGCombineLT)
676      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
677
678    // Run the DAG combiner in post-type-legalize mode.
679    if (TimePassesIsEnabled) {
680      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
681      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
682    } else {
683      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
684    }
685
686    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
687    DEBUG(CurDAG->dump());
688  }
689
690  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
691
692  if (TimePassesIsEnabled) {
693    NamedRegionTimer T("DAG Legalization", GroupName);
694    CurDAG->Legalize(OptLevel);
695  } else {
696    CurDAG->Legalize(OptLevel);
697  }
698
699  DEBUG(dbgs() << "Legalized selection DAG:\n");
700  DEBUG(CurDAG->dump());
701
702  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
703
704  // Run the DAG combiner in post-legalize mode.
705  if (TimePassesIsEnabled) {
706    NamedRegionTimer T("DAG Combining 2", GroupName);
707    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
708  } else {
709    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
710  }
711
712  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
713  DEBUG(CurDAG->dump());
714
715  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
716
717  if (OptLevel != CodeGenOpt::None) {
718    ShrinkDemandedOps();
719    ComputeLiveOutVRegInfo();
720  }
721
722  // Third, instruction select all of the operations to machine code, adding the
723  // code to the MachineBasicBlock.
724  if (TimePassesIsEnabled) {
725    NamedRegionTimer T("Instruction Selection", GroupName);
726    InstructionSelect();
727  } else {
728    InstructionSelect();
729  }
730
731  DEBUG(dbgs() << "Selected selection DAG:\n");
732  DEBUG(CurDAG->dump());
733
734  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
735
736  // Schedule machine code.
737  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
738  if (TimePassesIsEnabled) {
739    NamedRegionTimer T("Instruction Scheduling", GroupName);
740    Scheduler->Run(CurDAG, BB, BB->end());
741  } else {
742    Scheduler->Run(CurDAG, BB, BB->end());
743  }
744
745  if (ViewSUnitDAGs) Scheduler->viewGraph();
746
747  // Emit machine code to BB.  This can change 'BB' to the last block being
748  // inserted into.
749  if (TimePassesIsEnabled) {
750    NamedRegionTimer T("Instruction Creation", GroupName);
751    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
752  } else {
753    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
754  }
755
756  // Free the scheduler state.
757  if (TimePassesIsEnabled) {
758    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
759    delete Scheduler;
760  } else {
761    delete Scheduler;
762  }
763
764  DEBUG(dbgs() << "Selected machine code:\n");
765  DEBUG(BB->dump());
766}
767
768void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
769                                            MachineFunction &MF,
770                                            MachineModuleInfo *MMI,
771                                            DwarfWriter *DW,
772                                            const TargetInstrInfo &TII) {
773  // Initialize the Fast-ISel state, if needed.
774  FastISel *FastIS = 0;
775  if (EnableFastISel)
776    FastIS = TLI.createFastISel(MF, MMI, DW,
777                                FuncInfo->ValueMap,
778                                FuncInfo->MBBMap,
779                                FuncInfo->StaticAllocaMap
780#ifndef NDEBUG
781                                , FuncInfo->CatchInfoLost
782#endif
783                                );
784
785  unsigned MDDbgKind = Fn.getContext().getMDKindID("dbg");
786
787  // Iterate over all basic blocks in the function.
788  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
789    BasicBlock *LLVMBB = &*I;
790    BB = FuncInfo->MBBMap[LLVMBB];
791
792    BasicBlock::iterator const Begin = LLVMBB->begin();
793    BasicBlock::iterator const End = LLVMBB->end();
794    BasicBlock::iterator BI = Begin;
795
796    // Lower any arguments needed in this block if this is the entry block.
797    bool SuppressFastISel = false;
798    if (LLVMBB == &Fn.getEntryBlock()) {
799      LowerArguments(LLVMBB);
800
801      // If any of the arguments has the byval attribute, forgo
802      // fast-isel in the entry block.
803      if (FastIS) {
804        unsigned j = 1;
805        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
806             I != E; ++I, ++j)
807          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
808            if (EnableFastISelVerbose || EnableFastISelAbort)
809              dbgs() << "FastISel skips entry block due to byval argument\n";
810            SuppressFastISel = true;
811            break;
812          }
813      }
814    }
815
816    if (MMI && BB->isLandingPad()) {
817      // Add a label to mark the beginning of the landing pad.  Deletion of the
818      // landing pad can thus be detected via the MachineModuleInfo.
819      unsigned LabelID = MMI->addLandingPad(BB);
820
821      const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL);
822      BuildMI(BB, SDB->getCurDebugLoc(), II).addImm(LabelID);
823
824      // Mark exception register as live in.
825      unsigned Reg = TLI.getExceptionAddressRegister();
826      if (Reg) BB->addLiveIn(Reg);
827
828      // Mark exception selector register as live in.
829      Reg = TLI.getExceptionSelectorRegister();
830      if (Reg) BB->addLiveIn(Reg);
831
832      // FIXME: Hack around an exception handling flaw (PR1508): the personality
833      // function and list of typeids logically belong to the invoke (or, if you
834      // like, the basic block containing the invoke), and need to be associated
835      // with it in the dwarf exception handling tables.  Currently however the
836      // information is provided by an intrinsic (eh.selector) that can be moved
837      // to unexpected places by the optimizers: if the unwind edge is critical,
838      // then breaking it can result in the intrinsics being in the successor of
839      // the landing pad, not the landing pad itself.  This results
840      // in exceptions not being caught because no typeids are associated with
841      // the invoke.  This may not be the only way things can go wrong, but it
842      // is the only way we try to work around for the moment.
843      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
844
845      if (Br && Br->isUnconditional()) { // Critical edge?
846        BasicBlock::iterator I, E;
847        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
848          if (isa<EHSelectorInst>(I))
849            break;
850
851        if (I == E)
852          // No catch info found - try to extract some from the successor.
853          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
854      }
855    }
856
857    // Before doing SelectionDAG ISel, see if FastISel has been requested.
858    if (FastIS && !SuppressFastISel) {
859      // Emit code for any incoming arguments. This must happen before
860      // beginning FastISel on the entry block.
861      if (LLVMBB == &Fn.getEntryBlock()) {
862        CurDAG->setRoot(SDB->getControlRoot());
863        CodeGenAndEmitDAG();
864        SDB->clear();
865      }
866      FastIS->startNewBlock(BB);
867      // Do FastISel on as many instructions as possible.
868      for (; BI != End; ++BI) {
869        // Just before the terminator instruction, insert instructions to
870        // feed PHI nodes in successor blocks.
871        if (isa<TerminatorInst>(BI))
872          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
873            ResetDebugLoc(SDB, FastIS);
874            if (EnableFastISelVerbose || EnableFastISelAbort) {
875              dbgs() << "FastISel miss: ";
876              BI->dump();
877            }
878            assert(!EnableFastISelAbort &&
879                   "FastISel didn't handle a PHI in a successor");
880            break;
881          }
882
883        SetDebugLoc(MDDbgKind, BI, SDB, FastIS, &MF);
884
885        // Try to select the instruction with FastISel.
886        if (FastIS->SelectInstruction(BI)) {
887          ResetDebugLoc(SDB, FastIS);
888          continue;
889        }
890
891        // Clear out the debug location so that it doesn't carry over to
892        // unrelated instructions.
893        ResetDebugLoc(SDB, FastIS);
894
895        // Then handle certain instructions as single-LLVM-Instruction blocks.
896        if (isa<CallInst>(BI)) {
897          if (EnableFastISelVerbose || EnableFastISelAbort) {
898            dbgs() << "FastISel missed call: ";
899            BI->dump();
900          }
901
902          if (!BI->getType()->isVoidTy()) {
903            unsigned &R = FuncInfo->ValueMap[BI];
904            if (!R)
905              R = FuncInfo->CreateRegForValue(BI);
906          }
907
908          bool HadTailCall = false;
909          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
910
911          // If the call was emitted as a tail call, we're done with the block.
912          if (HadTailCall) {
913            BI = End;
914            break;
915          }
916
917          // If the instruction was codegen'd with multiple blocks,
918          // inform the FastISel object where to resume inserting.
919          FastIS->setCurrentBlock(BB);
920          continue;
921        }
922
923        // Otherwise, give up on FastISel for the rest of the block.
924        // For now, be a little lenient about non-branch terminators.
925        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
926          if (EnableFastISelVerbose || EnableFastISelAbort) {
927            dbgs() << "FastISel miss: ";
928            BI->dump();
929          }
930          if (EnableFastISelAbort)
931            // The "fast" selector couldn't handle something and bailed.
932            // For the purpose of debugging, just abort.
933            llvm_unreachable("FastISel didn't select the entire block");
934        }
935        break;
936      }
937    }
938
939    // Run SelectionDAG instruction selection on the remainder of the block
940    // not handled by FastISel. If FastISel is not run, this is the entire
941    // block.
942    if (BI != End) {
943      bool HadTailCall;
944      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
945    }
946
947    FinishBasicBlock();
948  }
949
950  delete FastIS;
951}
952
953void
954SelectionDAGISel::FinishBasicBlock() {
955
956  DEBUG(dbgs() << "Target-post-processed machine code:\n");
957  DEBUG(BB->dump());
958
959  DEBUG(dbgs() << "Total amount of phi nodes to update: "
960               << SDB->PHINodesToUpdate.size() << "\n");
961  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
962          dbgs() << "Node " << i << " : ("
963                 << SDB->PHINodesToUpdate[i].first
964                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
965
966  // Next, now that we know what the last MBB the LLVM BB expanded is, update
967  // PHI nodes in successors.
968  if (SDB->SwitchCases.empty() &&
969      SDB->JTCases.empty() &&
970      SDB->BitTestCases.empty()) {
971    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
972      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
973      assert(PHI->isPHI() &&
974             "This is not a machine PHI node that we are updating!");
975      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
976                                                false));
977      PHI->addOperand(MachineOperand::CreateMBB(BB));
978    }
979    SDB->PHINodesToUpdate.clear();
980    return;
981  }
982
983  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
984    // Lower header first, if it wasn't already lowered
985    if (!SDB->BitTestCases[i].Emitted) {
986      // Set the current basic block to the mbb we wish to insert the code into
987      BB = SDB->BitTestCases[i].Parent;
988      SDB->setCurrentBasicBlock(BB);
989      // Emit the code
990      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
991      CurDAG->setRoot(SDB->getRoot());
992      CodeGenAndEmitDAG();
993      SDB->clear();
994    }
995
996    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
997      // Set the current basic block to the mbb we wish to insert the code into
998      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
999      SDB->setCurrentBasicBlock(BB);
1000      // Emit the code
1001      if (j+1 != ej)
1002        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
1003                              SDB->BitTestCases[i].Reg,
1004                              SDB->BitTestCases[i].Cases[j]);
1005      else
1006        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
1007                              SDB->BitTestCases[i].Reg,
1008                              SDB->BitTestCases[i].Cases[j]);
1009
1010
1011      CurDAG->setRoot(SDB->getRoot());
1012      CodeGenAndEmitDAG();
1013      SDB->clear();
1014    }
1015
1016    // Update PHI Nodes
1017    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1018      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1019      MachineBasicBlock *PHIBB = PHI->getParent();
1020      assert(PHI->isPHI() &&
1021             "This is not a machine PHI node that we are updating!");
1022      // This is "default" BB. We have two jumps to it. From "header" BB and
1023      // from last "case" BB.
1024      if (PHIBB == SDB->BitTestCases[i].Default) {
1025        PHI->addOperand(MachineOperand::
1026                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1027        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1028        PHI->addOperand(MachineOperand::
1029                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1030        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1031                                                  back().ThisBB));
1032      }
1033      // One of "cases" BB.
1034      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1035           j != ej; ++j) {
1036        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1037        if (cBB->isSuccessor(PHIBB)) {
1038          PHI->addOperand(MachineOperand::
1039                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1040          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1041        }
1042      }
1043    }
1044  }
1045  SDB->BitTestCases.clear();
1046
1047  // If the JumpTable record is filled in, then we need to emit a jump table.
1048  // Updating the PHI nodes is tricky in this case, since we need to determine
1049  // whether the PHI is a successor of the range check MBB or the jump table MBB
1050  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1051    // Lower header first, if it wasn't already lowered
1052    if (!SDB->JTCases[i].first.Emitted) {
1053      // Set the current basic block to the mbb we wish to insert the code into
1054      BB = SDB->JTCases[i].first.HeaderBB;
1055      SDB->setCurrentBasicBlock(BB);
1056      // Emit the code
1057      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
1058      CurDAG->setRoot(SDB->getRoot());
1059      CodeGenAndEmitDAG();
1060      SDB->clear();
1061    }
1062
1063    // Set the current basic block to the mbb we wish to insert the code into
1064    BB = SDB->JTCases[i].second.MBB;
1065    SDB->setCurrentBasicBlock(BB);
1066    // Emit the code
1067    SDB->visitJumpTable(SDB->JTCases[i].second);
1068    CurDAG->setRoot(SDB->getRoot());
1069    CodeGenAndEmitDAG();
1070    SDB->clear();
1071
1072    // Update PHI Nodes
1073    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1074      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1075      MachineBasicBlock *PHIBB = PHI->getParent();
1076      assert(PHI->isPHI() &&
1077             "This is not a machine PHI node that we are updating!");
1078      // "default" BB. We can go there only from header BB.
1079      if (PHIBB == SDB->JTCases[i].second.Default) {
1080        PHI->addOperand
1081          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1082        PHI->addOperand
1083          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1084      }
1085      // JT BB. Just iterate over successors here
1086      if (BB->isSuccessor(PHIBB)) {
1087        PHI->addOperand
1088          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1089        PHI->addOperand(MachineOperand::CreateMBB(BB));
1090      }
1091    }
1092  }
1093  SDB->JTCases.clear();
1094
1095  // If the switch block involved a branch to one of the actual successors, we
1096  // need to update PHI nodes in that block.
1097  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1098    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1099    assert(PHI->isPHI() &&
1100           "This is not a machine PHI node that we are updating!");
1101    if (BB->isSuccessor(PHI->getParent())) {
1102      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1103                                                false));
1104      PHI->addOperand(MachineOperand::CreateMBB(BB));
1105    }
1106  }
1107
1108  // If we generated any switch lowering information, build and codegen any
1109  // additional DAGs necessary.
1110  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1111    // Set the current basic block to the mbb we wish to insert the code into
1112    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1113    SDB->setCurrentBasicBlock(BB);
1114
1115    // Emit the code
1116    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1117    CurDAG->setRoot(SDB->getRoot());
1118    CodeGenAndEmitDAG();
1119
1120    // Handle any PHI nodes in successors of this chunk, as if we were coming
1121    // from the original BB before switch expansion.  Note that PHI nodes can
1122    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1123    // handle them the right number of times.
1124    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1125      // If new BB's are created during scheduling, the edges may have been
1126      // updated. That is, the edge from ThisBB to BB may have been split and
1127      // BB's predecessor is now another block.
1128      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1129        SDB->EdgeMapping.find(BB);
1130      if (EI != SDB->EdgeMapping.end())
1131        ThisBB = EI->second;
1132
1133      // BB may have been removed from the CFG if a branch was constant folded.
1134      if (ThisBB->isSuccessor(BB)) {
1135        for (MachineBasicBlock::iterator Phi = BB->begin();
1136             Phi != BB->end() && Phi->isPHI();
1137             ++Phi) {
1138          // This value for this PHI node is recorded in PHINodesToUpdate.
1139          for (unsigned pn = 0; ; ++pn) {
1140            assert(pn != SDB->PHINodesToUpdate.size() &&
1141                   "Didn't find PHI entry!");
1142            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1143              Phi->addOperand(MachineOperand::
1144                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1145                                        false));
1146              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1147              break;
1148            }
1149          }
1150        }
1151      }
1152
1153      // Don't process RHS if same block as LHS.
1154      if (BB == SDB->SwitchCases[i].FalseBB)
1155        SDB->SwitchCases[i].FalseBB = 0;
1156
1157      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1158      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1159      SDB->SwitchCases[i].FalseBB = 0;
1160    }
1161    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1162    SDB->clear();
1163  }
1164  SDB->SwitchCases.clear();
1165
1166  SDB->PHINodesToUpdate.clear();
1167}
1168
1169
1170/// Create the scheduler. If a specific scheduler was specified
1171/// via the SchedulerRegistry, use it, otherwise select the
1172/// one preferred by the target.
1173///
1174ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1175  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1176
1177  if (!Ctor) {
1178    Ctor = ISHeuristic;
1179    RegisterScheduler::setDefault(Ctor);
1180  }
1181
1182  return Ctor(this, OptLevel);
1183}
1184
1185ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1186  return new ScheduleHazardRecognizer();
1187}
1188
1189//===----------------------------------------------------------------------===//
1190// Helper functions used by the generated instruction selector.
1191//===----------------------------------------------------------------------===//
1192// Calls to these methods are generated by tblgen.
1193
1194/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1195/// the dag combiner simplified the 255, we still want to match.  RHS is the
1196/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1197/// specified in the .td file (e.g. 255).
1198bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1199                                    int64_t DesiredMaskS) const {
1200  const APInt &ActualMask = RHS->getAPIntValue();
1201  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1202
1203  // If the actual mask exactly matches, success!
1204  if (ActualMask == DesiredMask)
1205    return true;
1206
1207  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1208  if (ActualMask.intersects(~DesiredMask))
1209    return false;
1210
1211  // Otherwise, the DAG Combiner may have proven that the value coming in is
1212  // either already zero or is not demanded.  Check for known zero input bits.
1213  APInt NeededMask = DesiredMask & ~ActualMask;
1214  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1215    return true;
1216
1217  // TODO: check to see if missing bits are just not demanded.
1218
1219  // Otherwise, this pattern doesn't match.
1220  return false;
1221}
1222
1223/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1224/// the dag combiner simplified the 255, we still want to match.  RHS is the
1225/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1226/// specified in the .td file (e.g. 255).
1227bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1228                                   int64_t DesiredMaskS) const {
1229  const APInt &ActualMask = RHS->getAPIntValue();
1230  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1231
1232  // If the actual mask exactly matches, success!
1233  if (ActualMask == DesiredMask)
1234    return true;
1235
1236  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1237  if (ActualMask.intersects(~DesiredMask))
1238    return false;
1239
1240  // Otherwise, the DAG Combiner may have proven that the value coming in is
1241  // either already zero or is not demanded.  Check for known zero input bits.
1242  APInt NeededMask = DesiredMask & ~ActualMask;
1243
1244  APInt KnownZero, KnownOne;
1245  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1246
1247  // If all the missing bits in the or are already known to be set, match!
1248  if ((NeededMask & KnownOne) == NeededMask)
1249    return true;
1250
1251  // TODO: check to see if missing bits are just not demanded.
1252
1253  // Otherwise, this pattern doesn't match.
1254  return false;
1255}
1256
1257
1258/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1259/// by tblgen.  Others should not call it.
1260void SelectionDAGISel::
1261SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1262  std::vector<SDValue> InOps;
1263  std::swap(InOps, Ops);
1264
1265  Ops.push_back(InOps[0]);  // input chain.
1266  Ops.push_back(InOps[1]);  // input asm string.
1267
1268  unsigned i = 2, e = InOps.size();
1269  if (InOps[e-1].getValueType() == MVT::Flag)
1270    --e;  // Don't process a flag operand if it is here.
1271
1272  while (i != e) {
1273    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1274    if ((Flags & 7) != 4 /*MEM*/) {
1275      // Just skip over this operand, copying the operands verbatim.
1276      Ops.insert(Ops.end(), InOps.begin()+i,
1277                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1278      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1279    } else {
1280      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1281             "Memory operand with multiple values?");
1282      // Otherwise, this is a memory operand.  Ask the target to select it.
1283      std::vector<SDValue> SelOps;
1284      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1285        llvm_report_error("Could not match memory address.  Inline asm"
1286                          " failure!");
1287      }
1288
1289      // Add this to the output node.
1290      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1291                                              MVT::i32));
1292      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1293      i += 2;
1294    }
1295  }
1296
1297  // Add the flag input back if present.
1298  if (e != InOps.size())
1299    Ops.push_back(InOps.back());
1300}
1301
1302/// findFlagUse - Return use of EVT::Flag value produced by the specified
1303/// SDNode.
1304///
1305static SDNode *findFlagUse(SDNode *N) {
1306  unsigned FlagResNo = N->getNumValues()-1;
1307  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1308    SDUse &Use = I.getUse();
1309    if (Use.getResNo() == FlagResNo)
1310      return Use.getUser();
1311  }
1312  return NULL;
1313}
1314
1315/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1316/// This function recursively traverses up the operand chain, ignoring
1317/// certain nodes.
1318static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1319                          SDNode *Root,
1320                          SmallPtrSet<SDNode*, 16> &Visited) {
1321  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1322  // greater than all of its (recursive) operands.  If we scan to a point where
1323  // 'use' is smaller than the node we're scanning for, then we know we will
1324  // never find it.
1325  //
1326  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1327  // happen because we scan down to newly selected nodes in the case of flag
1328  // uses.
1329  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1330    return false;
1331
1332  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1333  // won't fail if we scan it again.
1334  if (!Visited.insert(Use))
1335    return false;
1336
1337  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1338    SDNode *N = Use->getOperand(i).getNode();
1339    if (N == Def) {
1340      if (Use == ImmedUse || Use == Root)
1341        continue;  // We are not looking for immediate use.
1342      assert(N != Root);
1343      return true;
1344    }
1345
1346    // Traverse up the operand chain.
1347    if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
1348      return true;
1349  }
1350  return false;
1351}
1352
1353/// isNonImmUse - Start searching from Root up the DAG to check is Def can
1354/// be reached. Return true if that's the case. However, ignore direct uses
1355/// by ImmedUse (which would be U in the example illustrated in
1356/// IsLegalToFold) and by Root (which can happen in the store case).
1357/// FIXME: to be really generic, we should allow direct use by any node
1358/// that is being folded. But realisticly since we only fold loads which
1359/// have one non-chain use, we only need to watch out for load/op/store
1360/// and load/op/cmp case where the root (store / cmp) may reach the load via
1361/// its chain operand.
1362static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
1363  SmallPtrSet<SDNode*, 16> Visited;
1364  return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
1365}
1366
1367/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1368/// operand node N of U during instruction selection that starts at Root.
1369bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1370                                          SDNode *Root) const {
1371  if (OptLevel == CodeGenOpt::None) return false;
1372  return N.hasOneUse();
1373}
1374
1375/// IsLegalToFold - Returns true if the specific operand node N of
1376/// U can be folded during instruction selection that starts at Root.
1377bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root) const {
1378  if (OptLevel == CodeGenOpt::None) return false;
1379
1380  // If Root use can somehow reach N through a path that that doesn't contain
1381  // U then folding N would create a cycle. e.g. In the following
1382  // diagram, Root can reach N through X. If N is folded into into Root, then
1383  // X is both a predecessor and a successor of U.
1384  //
1385  //          [N*]           //
1386  //         ^   ^           //
1387  //        /     \          //
1388  //      [U*]    [X]?       //
1389  //        ^     ^          //
1390  //         \   /           //
1391  //          \ /            //
1392  //         [Root*]         //
1393  //
1394  // * indicates nodes to be folded together.
1395  //
1396  // If Root produces a flag, then it gets (even more) interesting. Since it
1397  // will be "glued" together with its flag use in the scheduler, we need to
1398  // check if it might reach N.
1399  //
1400  //          [N*]           //
1401  //         ^   ^           //
1402  //        /     \          //
1403  //      [U*]    [X]?       //
1404  //        ^       ^        //
1405  //         \       \       //
1406  //          \      |       //
1407  //         [Root*] |       //
1408  //          ^      |       //
1409  //          f      |       //
1410  //          |      /       //
1411  //         [Y]    /        //
1412  //           ^   /         //
1413  //           f  /          //
1414  //           | /           //
1415  //          [FU]           //
1416  //
1417  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1418  // (call it Fold), then X is a predecessor of FU and a successor of
1419  // Fold. But since Fold and FU are flagged together, this will create
1420  // a cycle in the scheduling graph.
1421
1422  EVT VT = Root->getValueType(Root->getNumValues()-1);
1423  while (VT == MVT::Flag) {
1424    SDNode *FU = findFlagUse(Root);
1425    if (FU == NULL)
1426      break;
1427    Root = FU;
1428    VT = Root->getValueType(Root->getNumValues()-1);
1429  }
1430
1431  return !isNonImmUse(Root, N.getNode(), U);
1432}
1433
1434SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1435  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1436  SelectInlineAsmMemoryOperands(Ops);
1437
1438  std::vector<EVT> VTs;
1439  VTs.push_back(MVT::Other);
1440  VTs.push_back(MVT::Flag);
1441  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1442                                VTs, &Ops[0], Ops.size());
1443  return New.getNode();
1444}
1445
1446SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1447  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1448}
1449
1450SDNode *SelectionDAGISel::Select_EH_LABEL(SDNode *N) {
1451  SDValue Chain = N->getOperand(0);
1452  unsigned C = cast<LabelSDNode>(N)->getLabelID();
1453  SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);
1454  return CurDAG->SelectNodeTo(N, TargetOpcode::EH_LABEL,
1455                              MVT::Other, Tmp, Chain);
1456}
1457
1458
1459/// ChainNotReachable - Returns true if Chain does not reach Op.
1460static bool ChainNotReachable(SDNode *Chain, SDNode *Op) {
1461  if (Chain->getOpcode() == ISD::EntryToken)
1462    return true;
1463  if (Chain->getOpcode() == ISD::TokenFactor)
1464    return false;
1465  if (Chain->getNumOperands() > 0) {
1466    SDValue C0 = Chain->getOperand(0);
1467    if (C0.getValueType() == MVT::Other)
1468      return C0.getNode() != Op && ChainNotReachable(C0.getNode(), Op);
1469  }
1470  return true;
1471}
1472
1473/// IsChainCompatible - Returns true if Chain is Op or Chain does not reach Op.
1474/// This is used to ensure that there are no nodes trapped between Chain, which
1475/// is the first chain node discovered in a pattern and Op, a later node, that
1476/// will not be selected into the pattern.
1477static bool IsChainCompatible(SDNode *Chain, SDNode *Op) {
1478  return Chain == Op || ChainNotReachable(Chain, Op);
1479}
1480
1481
1482/// GetVBR - decode a vbr encoding whose top bit is set.
1483ALWAYS_INLINE static uint64_t
1484GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1485  assert(Val >= 128 && "Not a VBR");
1486  Val &= 127;  // Remove first vbr bit.
1487
1488  unsigned Shift = 7;
1489  uint64_t NextBits;
1490  do {
1491    NextBits = MatcherTable[Idx++];
1492    Val |= (NextBits&127) << Shift;
1493    Shift += 7;
1494  } while (NextBits & 128);
1495
1496  return Val;
1497}
1498
1499/// ISelUpdater - helper class to handle updates of the
1500/// instruciton selection graph.
1501namespace {
1502class ISelUpdater : public SelectionDAG::DAGUpdateListener {
1503  SelectionDAG::allnodes_iterator &ISelPosition;
1504public:
1505  explicit ISelUpdater(SelectionDAG::allnodes_iterator &isp)
1506  : ISelPosition(isp) {}
1507
1508  /// NodeDeleted - Handle nodes deleted from the graph. If the
1509  /// node being deleted is the current ISelPosition node, update
1510  /// ISelPosition.
1511  ///
1512  virtual void NodeDeleted(SDNode *N, SDNode *E) {
1513    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1514      ++ISelPosition;
1515  }
1516
1517  /// NodeUpdated - Ignore updates for now.
1518  virtual void NodeUpdated(SDNode *N) {}
1519};
1520}
1521
1522#if 0
1523/// ReplaceUses - replace all uses of the old node F with the use
1524/// of the new node T.
1525static void ReplaceUses(SDValue F, SDValue T) {
1526  ISelUpdater ISU(ISelPosition);
1527  CurDAG->ReplaceAllUsesOfValueWith(F, T, &ISU);
1528}
1529#endif
1530
1531/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1532/// interior flag and chain results to use the new flag and chain results.
1533static void UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1534                              const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1535                                 SDValue InputFlag,
1536                         const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1537                                 bool isMorphNodeTo, SelectionDAG *CurDAG) {
1538  // Now that all the normal results are replaced, we replace the chain and
1539  // flag results if present.
1540  if (!ChainNodesMatched.empty()) {
1541    assert(InputChain.getNode() != 0 &&
1542           "Matched input chains but didn't produce a chain");
1543    // Loop over all of the nodes we matched that produced a chain result.
1544    // Replace all the chain results with the final chain we ended up with.
1545    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1546      SDNode *ChainNode = ChainNodesMatched[i];
1547
1548      // Don't replace the results of the root node if we're doing a
1549      // MorphNodeTo.
1550      if (ChainNode == NodeToMatch && isMorphNodeTo)
1551        continue;
1552
1553      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1554      if (ChainVal.getValueType() == MVT::Flag)
1555        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1556      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1557      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1558    }
1559  }
1560
1561  // If the result produces a flag, update any flag results in the matched
1562  // pattern with the flag result.
1563  if (InputFlag.getNode() != 0) {
1564    // Handle any interior nodes explicitly marked.
1565    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1566      SDNode *FRN = FlagResultNodesMatched[i];
1567      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1568             "Doesn't have a flag result");
1569      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1570                                        InputFlag);
1571    }
1572  }
1573
1574  DEBUG(errs() << "ISEL: Match complete!\n");
1575}
1576
1577/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1578/// operation for when the pattern matched multiple nodes with chains.
1579static SDValue
1580HandleMergeInputChains(const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1581                       SelectionDAG *CurDAG) {
1582  assert(ChainNodesMatched.size() > 1 &&
1583         "Should only happen for multi chain node case");
1584
1585  // Walk all the chained nodes, adding the input chains if they are not in
1586  // ChainedNodes (and this, not in the matched pattern).  This is an N^2
1587  // algorithm, but # chains is usually 2 here, at most 3 for MSP430.
1588  SmallVector<SDValue, 3> InputChains;
1589  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1590    SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1591    assert(InChain.getValueType() == MVT::Other && "Not a chain");
1592    bool Invalid = false;
1593    for (unsigned j = 0; j != e; ++j)
1594      Invalid |= ChainNodesMatched[j] == InChain.getNode();
1595    if (!Invalid)
1596      InputChains.push_back(InChain);
1597  }
1598
1599  SDValue Res;
1600  if (InputChains.size() == 1)
1601    return InputChains[0];
1602  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1603                         MVT::Other, &InputChains[0], InputChains.size());
1604}
1605
1606struct MatchScope {
1607  /// FailIndex - If this match fails, this is the index to continue with.
1608  unsigned FailIndex;
1609
1610  /// NodeStack - The node stack when the scope was formed.
1611  SmallVector<SDValue, 4> NodeStack;
1612
1613  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1614  unsigned NumRecordedNodes;
1615
1616  /// NumMatchedMemRefs - The number of matched memref entries.
1617  unsigned NumMatchedMemRefs;
1618
1619  /// InputChain/InputFlag - The current chain/flag
1620  SDValue InputChain, InputFlag;
1621
1622  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1623  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1624};
1625
1626SDNode *SelectionDAGISel::
1627SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1628                 unsigned TableSize) {
1629  // FIXME: Should these even be selected?  Handle these cases in the caller?
1630  switch (NodeToMatch->getOpcode()) {
1631  default:
1632    break;
1633  case ISD::EntryToken:       // These nodes remain the same.
1634  case ISD::BasicBlock:
1635  case ISD::Register:
1636  case ISD::HANDLENODE:
1637  case ISD::TargetConstant:
1638  case ISD::TargetConstantFP:
1639  case ISD::TargetConstantPool:
1640  case ISD::TargetFrameIndex:
1641  case ISD::TargetExternalSymbol:
1642  case ISD::TargetBlockAddress:
1643  case ISD::TargetJumpTable:
1644  case ISD::TargetGlobalTLSAddress:
1645  case ISD::TargetGlobalAddress:
1646  case ISD::TokenFactor:
1647  case ISD::CopyFromReg:
1648  case ISD::CopyToReg:
1649    return 0;
1650  case ISD::AssertSext:
1651  case ISD::AssertZext:
1652    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1653                                      NodeToMatch->getOperand(0));
1654    return 0;
1655  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1656  case ISD::EH_LABEL:  return Select_EH_LABEL(NodeToMatch);
1657  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1658  }
1659
1660  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1661
1662  // Set up the node stack with NodeToMatch as the only node on the stack.
1663  SmallVector<SDValue, 8> NodeStack;
1664  SDValue N = SDValue(NodeToMatch, 0);
1665  NodeStack.push_back(N);
1666
1667  // MatchScopes - Scopes used when matching, if a match failure happens, this
1668  // indicates where to continue checking.
1669  SmallVector<MatchScope, 8> MatchScopes;
1670
1671  // RecordedNodes - This is the set of nodes that have been recorded by the
1672  // state machine.
1673  SmallVector<SDValue, 8> RecordedNodes;
1674
1675  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1676  // pattern.
1677  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1678
1679  // These are the current input chain and flag for use when generating nodes.
1680  // Various Emit operations change these.  For example, emitting a copytoreg
1681  // uses and updates these.
1682  SDValue InputChain, InputFlag;
1683
1684  // ChainNodesMatched - If a pattern matches nodes that have input/output
1685  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1686  // which ones they are.  The result is captured into this list so that we can
1687  // update the chain results when the pattern is complete.
1688  SmallVector<SDNode*, 3> ChainNodesMatched;
1689  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1690
1691  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1692        NodeToMatch->dump(CurDAG);
1693        errs() << '\n');
1694
1695  // Determine where to start the interpreter.  Normally we start at opcode #0,
1696  // but if the state machine starts with an OPC_SwitchOpcode, then we
1697  // accelerate the first lookup (which is guaranteed to be hot) with the
1698  // OpcodeOffset table.
1699  unsigned MatcherIndex = 0;
1700
1701  if (!OpcodeOffset.empty()) {
1702    // Already computed the OpcodeOffset table, just index into it.
1703    if (N.getOpcode() < OpcodeOffset.size())
1704      MatcherIndex = OpcodeOffset[N.getOpcode()];
1705    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1706
1707  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1708    // Otherwise, the table isn't computed, but the state machine does start
1709    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1710    // is the first time we're selecting an instruction.
1711    unsigned Idx = 1;
1712    while (1) {
1713      // Get the size of this case.
1714      unsigned CaseSize = MatcherTable[Idx++];
1715      if (CaseSize & 128)
1716        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1717      if (CaseSize == 0) break;
1718
1719      // Get the opcode, add the index to the table.
1720      unsigned Opc = MatcherTable[Idx++];
1721      if (Opc >= OpcodeOffset.size())
1722        OpcodeOffset.resize((Opc+1)*2);
1723      OpcodeOffset[Opc] = Idx;
1724      Idx += CaseSize;
1725    }
1726
1727    // Okay, do the lookup for the first opcode.
1728    if (N.getOpcode() < OpcodeOffset.size())
1729      MatcherIndex = OpcodeOffset[N.getOpcode()];
1730  }
1731
1732  while (1) {
1733    assert(MatcherIndex < TableSize && "Invalid index");
1734    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
1735    switch (Opcode) {
1736    case OPC_Scope: {
1737      unsigned NumToSkip = MatcherTable[MatcherIndex++];
1738      if (NumToSkip & 128)
1739        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
1740      assert(NumToSkip != 0 &&
1741             "First entry of OPC_Scope shouldn't be 0, scope has no children?");
1742
1743      // Push a MatchScope which indicates where to go if the first child fails
1744      // to match.
1745      MatchScope NewEntry;
1746      NewEntry.FailIndex = MatcherIndex+NumToSkip;
1747      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
1748      NewEntry.NumRecordedNodes = RecordedNodes.size();
1749      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
1750      NewEntry.InputChain = InputChain;
1751      NewEntry.InputFlag = InputFlag;
1752      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
1753      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
1754      MatchScopes.push_back(NewEntry);
1755      continue;
1756    }
1757    case OPC_RecordNode:
1758      // Remember this node, it may end up being an operand in the pattern.
1759      RecordedNodes.push_back(N);
1760      continue;
1761
1762    case OPC_RecordChild0: case OPC_RecordChild1:
1763    case OPC_RecordChild2: case OPC_RecordChild3:
1764    case OPC_RecordChild4: case OPC_RecordChild5:
1765    case OPC_RecordChild6: case OPC_RecordChild7: {
1766      unsigned ChildNo = Opcode-OPC_RecordChild0;
1767      if (ChildNo >= N.getNumOperands())
1768        break;  // Match fails if out of range child #.
1769
1770      RecordedNodes.push_back(N->getOperand(ChildNo));
1771      continue;
1772    }
1773    case OPC_RecordMemRef:
1774      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
1775      continue;
1776
1777    case OPC_CaptureFlagInput:
1778      // If the current node has an input flag, capture it in InputFlag.
1779      if (N->getNumOperands() != 0 &&
1780          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
1781        InputFlag = N->getOperand(N->getNumOperands()-1);
1782      continue;
1783
1784    case OPC_MoveChild: {
1785      unsigned ChildNo = MatcherTable[MatcherIndex++];
1786      if (ChildNo >= N.getNumOperands())
1787        break;  // Match fails if out of range child #.
1788      N = N.getOperand(ChildNo);
1789      NodeStack.push_back(N);
1790      continue;
1791    }
1792
1793    case OPC_MoveParent:
1794      // Pop the current node off the NodeStack.
1795      NodeStack.pop_back();
1796      assert(!NodeStack.empty() && "Node stack imbalance!");
1797      N = NodeStack.back();
1798      continue;
1799
1800    case OPC_CheckSame: {
1801      // Accept if it is exactly the same as a previously recorded node.
1802      unsigned RecNo = MatcherTable[MatcherIndex++];
1803      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1804      if (N != RecordedNodes[RecNo]) break;
1805      continue;
1806    }
1807    case OPC_CheckPatternPredicate:
1808      if (!CheckPatternPredicate(MatcherTable[MatcherIndex++])) break;
1809      continue;
1810    case OPC_CheckPredicate:
1811      if (!CheckNodePredicate(N.getNode(), MatcherTable[MatcherIndex++])) break;
1812      continue;
1813    case OPC_CheckComplexPat:
1814      if (!CheckComplexPattern(NodeToMatch, N,
1815                               MatcherTable[MatcherIndex++], RecordedNodes))
1816        break;
1817      continue;
1818    case OPC_CheckOpcode:
1819      if (N->getOpcode() != MatcherTable[MatcherIndex++]) break;
1820      continue;
1821
1822    case OPC_SwitchOpcode: {
1823      unsigned CurNodeOpcode = N.getOpcode();
1824
1825      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
1826
1827      unsigned CaseSize;
1828      while (1) {
1829        // Get the size of this case.
1830        CaseSize = MatcherTable[MatcherIndex++];
1831        if (CaseSize & 128)
1832          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
1833        if (CaseSize == 0) break;
1834
1835        // If the opcode matches, then we will execute this case.
1836        if (CurNodeOpcode == MatcherTable[MatcherIndex++])
1837          break;
1838
1839        // Otherwise, skip over this case.
1840        MatcherIndex += CaseSize;
1841      }
1842
1843      // If we failed to match, bail out.
1844      if (CaseSize == 0) break;
1845
1846      // Otherwise, execute the case we found.
1847      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
1848                   << " to " << MatcherIndex << "\n");
1849      continue;
1850    }
1851
1852    case OPC_CheckType: {
1853      MVT::SimpleValueType VT =
1854        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1855      if (N.getValueType() != VT) {
1856        // Handle the case when VT is iPTR.
1857        if (VT != MVT::iPTR || N.getValueType() != TLI.getPointerTy())
1858          break;
1859      }
1860      continue;
1861    }
1862    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
1863    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
1864    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
1865    case OPC_CheckChild6Type: case OPC_CheckChild7Type: {
1866      unsigned ChildNo = Opcode-OPC_CheckChild0Type;
1867      if (ChildNo >= N.getNumOperands())
1868        break;  // Match fails if out of range child #.
1869
1870      MVT::SimpleValueType VT =
1871        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1872      EVT ChildVT = N.getOperand(ChildNo).getValueType();
1873      if (ChildVT != VT) {
1874        // Handle the case when VT is iPTR.
1875        if (VT != MVT::iPTR || ChildVT != TLI.getPointerTy())
1876          break;
1877      }
1878      continue;
1879    }
1880    case OPC_CheckCondCode:
1881      if (cast<CondCodeSDNode>(N)->get() !=
1882          (ISD::CondCode)MatcherTable[MatcherIndex++]) break;
1883      continue;
1884    case OPC_CheckValueType: {
1885      MVT::SimpleValueType VT =
1886        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1887      if (cast<VTSDNode>(N)->getVT() != VT) {
1888        // Handle the case when VT is iPTR.
1889        if (VT != MVT::iPTR || cast<VTSDNode>(N)->getVT() != TLI.getPointerTy())
1890          break;
1891      }
1892      continue;
1893    }
1894    case OPC_CheckInteger: {
1895      int64_t Val = MatcherTable[MatcherIndex++];
1896      if (Val & 128)
1897        Val = GetVBR(Val, MatcherTable, MatcherIndex);
1898
1899      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1900      if (C == 0 || C->getSExtValue() != Val)
1901        break;
1902      continue;
1903    }
1904    case OPC_CheckAndImm: {
1905      int64_t Val = MatcherTable[MatcherIndex++];
1906      if (Val & 128)
1907        Val = GetVBR(Val, MatcherTable, MatcherIndex);
1908
1909      if (N->getOpcode() != ISD::AND) break;
1910      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1911      if (C == 0 || !CheckAndMask(N.getOperand(0), C, Val))
1912        break;
1913      continue;
1914    }
1915    case OPC_CheckOrImm: {
1916      int64_t Val = MatcherTable[MatcherIndex++];
1917      if (Val & 128)
1918        Val = GetVBR(Val, MatcherTable, MatcherIndex);
1919
1920      if (N->getOpcode() != ISD::OR) break;
1921
1922      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1923      if (C == 0 || !CheckOrMask(N.getOperand(0), C, Val))
1924        break;
1925      continue;
1926    }
1927
1928    case OPC_CheckFoldableChainNode: {
1929      assert(NodeStack.size() != 1 && "No parent node");
1930      // Verify that all intermediate nodes between the root and this one have
1931      // a single use.
1932      bool HasMultipleUses = false;
1933      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
1934        if (!NodeStack[i].hasOneUse()) {
1935          HasMultipleUses = true;
1936          break;
1937        }
1938      if (HasMultipleUses) break;
1939
1940      // Check to see that the target thinks this is profitable to fold and that
1941      // we can fold it without inducing cycles in the graph.
1942      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
1943                              NodeToMatch) ||
1944          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
1945                         NodeToMatch))
1946        break;
1947
1948      continue;
1949    }
1950    case OPC_CheckChainCompatible: {
1951      unsigned PrevNode = MatcherTable[MatcherIndex++];
1952      assert(PrevNode < RecordedNodes.size() && "Invalid CheckChainCompatible");
1953      SDValue PrevChainedNode = RecordedNodes[PrevNode];
1954      SDValue ThisChainedNode = RecordedNodes.back();
1955
1956      // We have two nodes with chains, verify that their input chains are good.
1957      assert(PrevChainedNode.getOperand(0).getValueType() == MVT::Other &&
1958             ThisChainedNode.getOperand(0).getValueType() == MVT::Other &&
1959             "Invalid chained nodes");
1960
1961      if (!IsChainCompatible(// Input chain of the previous node.
1962                             PrevChainedNode.getOperand(0).getNode(),
1963                             // Node with chain.
1964                             ThisChainedNode.getNode()))
1965        break;
1966      continue;
1967    }
1968
1969    case OPC_EmitInteger: {
1970      MVT::SimpleValueType VT =
1971        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1972      int64_t Val = MatcherTable[MatcherIndex++];
1973      if (Val & 128)
1974        Val = GetVBR(Val, MatcherTable, MatcherIndex);
1975      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
1976      continue;
1977    }
1978    case OPC_EmitRegister: {
1979      MVT::SimpleValueType VT =
1980        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1981      unsigned RegNo = MatcherTable[MatcherIndex++];
1982      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
1983      continue;
1984    }
1985
1986    case OPC_EmitConvertToTarget:  {
1987      // Convert from IMM/FPIMM to target version.
1988      unsigned RecNo = MatcherTable[MatcherIndex++];
1989      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1990      SDValue Imm = RecordedNodes[RecNo];
1991
1992      if (Imm->getOpcode() == ISD::Constant) {
1993        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
1994        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
1995      } else if (Imm->getOpcode() == ISD::ConstantFP) {
1996        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
1997        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
1998      }
1999
2000      RecordedNodes.push_back(Imm);
2001      continue;
2002    }
2003
2004    case OPC_EmitMergeInputChains: {
2005      assert(InputChain.getNode() == 0 &&
2006             "EmitMergeInputChains should be the first chain producing node");
2007      // This node gets a list of nodes we matched in the input that have
2008      // chains.  We want to token factor all of the input chains to these nodes
2009      // together.  However, if any of the input chains is actually one of the
2010      // nodes matched in this pattern, then we have an intra-match reference.
2011      // Ignore these because the newly token factored chain should not refer to
2012      // the old nodes.
2013      unsigned NumChains = MatcherTable[MatcherIndex++];
2014      assert(NumChains != 0 && "Can't TF zero chains");
2015
2016      assert(ChainNodesMatched.empty() &&
2017             "Should only have one EmitMergeInputChains per match");
2018
2019      // Handle the first chain.
2020      unsigned RecNo = MatcherTable[MatcherIndex++];
2021      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2022      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2023
2024      // If the chained node is not the root, we can't fold it if it has
2025      // multiple uses.
2026      // FIXME: What if other value results of the node have uses not matched by
2027      // this pattern?
2028      if (ChainNodesMatched.back() != NodeToMatch &&
2029          !RecordedNodes[RecNo].hasOneUse()) {
2030        ChainNodesMatched.clear();
2031        break;
2032      }
2033
2034      // The common case here is that we have exactly one chain, which is really
2035      // cheap to handle, just do it.
2036      if (NumChains == 1) {
2037        InputChain = RecordedNodes[RecNo].getOperand(0);
2038        assert(InputChain.getValueType() == MVT::Other && "Not a chain");
2039        continue;
2040      }
2041
2042      // Read all of the chained nodes.
2043      for (unsigned i = 1; i != NumChains; ++i) {
2044        RecNo = MatcherTable[MatcherIndex++];
2045        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2046        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2047
2048        // FIXME: What if other value results of the node have uses not matched
2049        // by this pattern?
2050        if (ChainNodesMatched.back() != NodeToMatch &&
2051            !RecordedNodes[RecNo].hasOneUse()) {
2052          ChainNodesMatched.clear();
2053          break;
2054        }
2055      }
2056
2057      // If the inner loop broke out, the match fails.
2058      if (ChainNodesMatched.empty())
2059        break;
2060
2061      // Merge the input chains if they are not intra-pattern references.
2062      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2063
2064      if (InputChain.getNode() == 0)
2065        break;  // Failed to merge.
2066
2067      continue;
2068    }
2069
2070    case OPC_EmitCopyToReg: {
2071      unsigned RecNo = MatcherTable[MatcherIndex++];
2072      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2073      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2074
2075      if (InputChain.getNode() == 0)
2076        InputChain = CurDAG->getEntryNode();
2077
2078      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2079                                        DestPhysReg, RecordedNodes[RecNo],
2080                                        InputFlag);
2081
2082      InputFlag = InputChain.getValue(1);
2083      continue;
2084    }
2085
2086    case OPC_EmitNodeXForm: {
2087      unsigned XFormNo = MatcherTable[MatcherIndex++];
2088      unsigned RecNo = MatcherTable[MatcherIndex++];
2089      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2090      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2091      continue;
2092    }
2093
2094    case OPC_EmitNode:
2095    case OPC_MorphNodeTo: {
2096      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2097      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2098      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2099      // Get the result VT list.
2100      unsigned NumVTs = MatcherTable[MatcherIndex++];
2101      SmallVector<EVT, 4> VTs;
2102      for (unsigned i = 0; i != NumVTs; ++i) {
2103        MVT::SimpleValueType VT =
2104          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2105        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2106        VTs.push_back(VT);
2107      }
2108
2109      if (EmitNodeInfo & OPFL_Chain)
2110        VTs.push_back(MVT::Other);
2111      if (EmitNodeInfo & OPFL_FlagOutput)
2112        VTs.push_back(MVT::Flag);
2113
2114      // This is hot code, so optimize the two most common cases of 1 and 2
2115      // results.
2116      SDVTList VTList;
2117      if (VTs.size() == 1)
2118        VTList = CurDAG->getVTList(VTs[0]);
2119      else if (VTs.size() == 2)
2120        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2121      else
2122        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2123
2124      // Get the operand list.
2125      unsigned NumOps = MatcherTable[MatcherIndex++];
2126      SmallVector<SDValue, 8> Ops;
2127      for (unsigned i = 0; i != NumOps; ++i) {
2128        unsigned RecNo = MatcherTable[MatcherIndex++];
2129        if (RecNo & 128)
2130          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2131
2132        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2133        Ops.push_back(RecordedNodes[RecNo]);
2134      }
2135
2136      // If there are variadic operands to add, handle them now.
2137      if (EmitNodeInfo & OPFL_VariadicInfo) {
2138        // Determine the start index to copy from.
2139        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2140        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2141        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2142               "Invalid variadic node");
2143        // Copy all of the variadic operands, not including a potential flag
2144        // input.
2145        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2146             i != e; ++i) {
2147          SDValue V = NodeToMatch->getOperand(i);
2148          if (V.getValueType() == MVT::Flag) break;
2149          Ops.push_back(V);
2150        }
2151      }
2152
2153      // If this has chain/flag inputs, add them.
2154      if (EmitNodeInfo & OPFL_Chain)
2155        Ops.push_back(InputChain);
2156      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2157        Ops.push_back(InputFlag);
2158
2159      // Create the node.
2160      SDNode *Res = 0;
2161      if (Opcode != OPC_MorphNodeTo) {
2162        // If this is a normal EmitNode command, just create the new node and
2163        // add the results to the RecordedNodes list.
2164        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2165                                     VTList, Ops.data(), Ops.size());
2166
2167        // Add all the non-flag/non-chain results to the RecordedNodes list.
2168        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2169          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2170          RecordedNodes.push_back(SDValue(Res, i));
2171        }
2172
2173      } else {
2174        // It is possible we're using MorphNodeTo to replace a node with no
2175        // normal results with one that has a normal result (or we could be
2176        // adding a chain) and the input could have flags and chains as well.
2177        // In this case we need to shifting the operands down.
2178        // FIXME: This is a horrible hack and broken in obscure cases, no worse
2179        // than the old isel though.  We should sink this into MorphNodeTo.
2180        int OldFlagResultNo = -1, OldChainResultNo = -1;
2181
2182        unsigned NTMNumResults = NodeToMatch->getNumValues();
2183        if (NodeToMatch->getValueType(NTMNumResults-1) == MVT::Flag) {
2184          OldFlagResultNo = NTMNumResults-1;
2185          if (NTMNumResults != 1 &&
2186              NodeToMatch->getValueType(NTMNumResults-2) == MVT::Other)
2187            OldChainResultNo = NTMNumResults-2;
2188        } else if (NodeToMatch->getValueType(NTMNumResults-1) == MVT::Other)
2189          OldChainResultNo = NTMNumResults-1;
2190
2191        Res = CurDAG->MorphNodeTo(NodeToMatch, ~TargetOpc, VTList,
2192                                  Ops.data(), Ops.size());
2193
2194        // MorphNodeTo can operate in two ways: if an existing node with the
2195        // specified operands exists, it can just return it.  Otherwise, it
2196        // updates the node in place to have the requested operands.
2197        if (Res == NodeToMatch) {
2198          // If we updated the node in place, reset the node ID.  To the isel,
2199          // this should be just like a newly allocated machine node.
2200          Res->setNodeId(-1);
2201        }
2202
2203        unsigned ResNumResults = Res->getNumValues();
2204        // Move the flag if needed.
2205        if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
2206            (unsigned)OldFlagResultNo != ResNumResults-1)
2207          CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch,
2208                                                    OldFlagResultNo),
2209                                            SDValue(Res, ResNumResults-1));
2210
2211        if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
2212          --ResNumResults;
2213
2214        // Move the chain reference if needed.
2215        if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2216            (unsigned)OldChainResultNo != ResNumResults-1)
2217          CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch,
2218                                                    OldChainResultNo),
2219                                            SDValue(Res, ResNumResults-1));
2220
2221        if (Res != NodeToMatch) {
2222          // Otherwise, no replacement happened because the node already exists.
2223          CurDAG->ReplaceAllUsesWith(NodeToMatch, Res);
2224        }
2225      }
2226
2227      // If the node had chain/flag results, update our notion of the current
2228      // chain and flag.
2229      if (VTs.back() == MVT::Flag) {
2230        InputFlag = SDValue(Res, VTs.size()-1);
2231        if (EmitNodeInfo & OPFL_Chain)
2232          InputChain = SDValue(Res, VTs.size()-2);
2233      } else if (EmitNodeInfo & OPFL_Chain)
2234        InputChain = SDValue(Res, VTs.size()-1);
2235
2236      // If the OPFL_MemRefs flag is set on this node, slap all of the
2237      // accumulated memrefs onto it.
2238      //
2239      // FIXME: This is vastly incorrect for patterns with multiple outputs
2240      // instructions that access memory and for ComplexPatterns that match
2241      // loads.
2242      if (EmitNodeInfo & OPFL_MemRefs) {
2243        MachineSDNode::mmo_iterator MemRefs =
2244          MF->allocateMemRefsArray(MatchedMemRefs.size());
2245        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2246        cast<MachineSDNode>(Res)
2247          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2248      }
2249
2250      DEBUG(errs() << "  "
2251                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2252                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2253
2254      // If this was a MorphNodeTo then we're completely done!
2255      if (Opcode == OPC_MorphNodeTo) {
2256        // Update chain and flag uses.
2257        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2258                             InputFlag, FlagResultNodesMatched, true, CurDAG);
2259        return 0;
2260      }
2261
2262      continue;
2263    }
2264
2265    case OPC_MarkFlagResults: {
2266      unsigned NumNodes = MatcherTable[MatcherIndex++];
2267
2268      // Read and remember all the flag-result nodes.
2269      for (unsigned i = 0; i != NumNodes; ++i) {
2270        unsigned RecNo = MatcherTable[MatcherIndex++];
2271        if (RecNo & 128)
2272          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2273
2274        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2275        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2276      }
2277      continue;
2278    }
2279
2280    case OPC_CompleteMatch: {
2281      // The match has been completed, and any new nodes (if any) have been
2282      // created.  Patch up references to the matched dag to use the newly
2283      // created nodes.
2284      unsigned NumResults = MatcherTable[MatcherIndex++];
2285
2286      for (unsigned i = 0; i != NumResults; ++i) {
2287        unsigned ResSlot = MatcherTable[MatcherIndex++];
2288        if (ResSlot & 128)
2289          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2290
2291        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2292        SDValue Res = RecordedNodes[ResSlot];
2293
2294        // FIXME2: Eliminate this horrible hack by fixing the 'Gen' program
2295        // after (parallel) on input patterns are removed.  This would also
2296        // allow us to stop encoding #results in OPC_CompleteMatch's table
2297        // entry.
2298        if (NodeToMatch->getNumValues() <= i ||
2299            NodeToMatch->getValueType(i) == MVT::Other ||
2300            NodeToMatch->getValueType(i) == MVT::Flag)
2301          break;
2302        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2303                NodeToMatch->getValueType(i) == MVT::iPTR ||
2304                Res.getValueType() == MVT::iPTR ||
2305                NodeToMatch->getValueType(i).getSizeInBits() ==
2306                    Res.getValueType().getSizeInBits()) &&
2307               "invalid replacement");
2308        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2309      }
2310
2311      // If the root node defines a flag, add it to the flag nodes to update
2312      // list.
2313      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2314        FlagResultNodesMatched.push_back(NodeToMatch);
2315
2316      // Update chain and flag uses.
2317      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2318                           InputFlag, FlagResultNodesMatched, false, CurDAG);
2319
2320      assert(NodeToMatch->use_empty() &&
2321             "Didn't replace all uses of the node?");
2322
2323      // FIXME: We just return here, which interacts correctly with SelectRoot
2324      // above.  We should fix this to not return an SDNode* anymore.
2325      return 0;
2326    }
2327    }
2328
2329    // If the code reached this point, then the match failed.  See if there is
2330    // another child to try in the current 'Scope', otherwise pop it until we
2331    // find a case to check.
2332    while (1) {
2333      if (MatchScopes.empty()) {
2334        CannotYetSelect(NodeToMatch);
2335        return 0;
2336      }
2337
2338      // Restore the interpreter state back to the point where the scope was
2339      // formed.
2340      MatchScope &LastScope = MatchScopes.back();
2341      RecordedNodes.resize(LastScope.NumRecordedNodes);
2342      NodeStack.clear();
2343      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2344      N = NodeStack.back();
2345
2346      DEBUG(errs() << "  Match failed at index " << MatcherIndex
2347                   << " continuing at " << LastScope.FailIndex << "\n");
2348
2349      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2350        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2351      MatcherIndex = LastScope.FailIndex;
2352
2353      InputChain = LastScope.InputChain;
2354      InputFlag = LastScope.InputFlag;
2355      if (!LastScope.HasChainNodesMatched)
2356        ChainNodesMatched.clear();
2357      if (!LastScope.HasFlagResultNodesMatched)
2358        FlagResultNodesMatched.clear();
2359
2360      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2361      // we have reached the end of this scope, otherwise we have another child
2362      // in the current scope to try.
2363      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2364      if (NumToSkip & 128)
2365        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2366
2367      // If we have another child in this scope to match, update FailIndex and
2368      // try it.
2369      if (NumToSkip != 0) {
2370        LastScope.FailIndex = MatcherIndex+NumToSkip;
2371        break;
2372      }
2373
2374      // End of this scope, pop it and try the next child in the containing
2375      // scope.
2376      MatchScopes.pop_back();
2377    }
2378  }
2379}
2380
2381
2382
2383void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2384  if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2385      N->getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2386      N->getOpcode() == ISD::INTRINSIC_VOID)
2387    return CannotYetSelectIntrinsic(N);
2388
2389  std::string msg;
2390  raw_string_ostream Msg(msg);
2391  Msg << "Cannot yet select: ";
2392  N->printrFull(Msg, CurDAG);
2393  llvm_report_error(Msg.str());
2394}
2395
2396void SelectionDAGISel::CannotYetSelectIntrinsic(SDNode *N) {
2397  dbgs() << "Cannot yet select: ";
2398  unsigned iid =
2399    cast<ConstantSDNode>(N->getOperand(N->getOperand(0).getValueType() ==
2400                                       MVT::Other))->getZExtValue();
2401  if (iid < Intrinsic::num_intrinsics)
2402    llvm_report_error("Cannot yet select: intrinsic %" +
2403                      Intrinsic::getName((Intrinsic::ID)iid));
2404  else if (const TargetIntrinsicInfo *tii = TM.getIntrinsicInfo())
2405    llvm_report_error(Twine("Cannot yet select: target intrinsic %") +
2406                      tii->getName(iid));
2407}
2408
2409char SelectionDAGISel::ID = 0;
2410