SelectionDAGISel.cpp revision 6b6b6ef1677fa71b1072c2911b4c1f9524a558c9
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/CodeGen/ScheduleDAG.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/MachineDebugInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SchedulerRegistry.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/CodeGen/SSARegMap.h"
35#include "llvm/Target/MRegisterInfo.h"
36#include "llvm/Target/TargetAsmInfo.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Target/TargetFrameInfo.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61
62//===---------------------------------------------------------------------===//
63///
64/// RegisterScheduler class - Track the registration of instruction schedulers.
65///
66//===---------------------------------------------------------------------===//
67MachinePassRegistry RegisterScheduler::Registry;
68
69//===---------------------------------------------------------------------===//
70///
71/// ISHeuristic command line option for instruction schedulers.
72///
73//===---------------------------------------------------------------------===//
74namespace {
75  cl::opt<RegisterScheduler::FunctionPassCtor, false,
76          RegisterPassParser<RegisterScheduler> >
77  ISHeuristic("sched",
78              cl::init(&createDefaultScheduler),
79              cl::desc("Instruction schedulers available:"));
80
81  static RegisterScheduler
82  defaultListDAGScheduler("default", "  Best scheduler for the target",
83                          createDefaultScheduler);
84} // namespace
85
86namespace {
87  /// RegsForValue - This struct represents the physical registers that a
88  /// particular value is assigned and the type information about the value.
89  /// This is needed because values can be promoted into larger registers and
90  /// expanded into multiple smaller registers than the value.
91  struct VISIBILITY_HIDDEN RegsForValue {
92    /// Regs - This list hold the register (for legal and promoted values)
93    /// or register set (for expanded values) that the value should be assigned
94    /// to.
95    std::vector<unsigned> Regs;
96
97    /// RegVT - The value type of each register.
98    ///
99    MVT::ValueType RegVT;
100
101    /// ValueVT - The value type of the LLVM value, which may be promoted from
102    /// RegVT or made from merging the two expanded parts.
103    MVT::ValueType ValueVT;
104
105    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
106
107    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
108      : RegVT(regvt), ValueVT(valuevt) {
109        Regs.push_back(Reg);
110    }
111    RegsForValue(const std::vector<unsigned> &regs,
112                 MVT::ValueType regvt, MVT::ValueType valuevt)
113      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
114    }
115
116    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
117    /// this value and returns the result as a ValueVT value.  This uses
118    /// Chain/Flag as the input and updates them for the output Chain/Flag.
119    SDOperand getCopyFromRegs(SelectionDAG &DAG,
120                              SDOperand &Chain, SDOperand &Flag) const;
121
122    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
123    /// specified value into the registers specified by this object.  This uses
124    /// Chain/Flag as the input and updates them for the output Chain/Flag.
125    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
126                       SDOperand &Chain, SDOperand &Flag,
127                       MVT::ValueType PtrVT) const;
128
129    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
130    /// operand list.  This adds the code marker and includes the number of
131    /// values added into it.
132    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
133                              std::vector<SDOperand> &Ops) const;
134  };
135}
136
137namespace llvm {
138  //===--------------------------------------------------------------------===//
139  /// createDefaultScheduler - This creates an instruction scheduler appropriate
140  /// for the target.
141  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
142                                      SelectionDAG *DAG,
143                                      MachineBasicBlock *BB) {
144    TargetLowering &TLI = IS->getTargetLowering();
145
146    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
147      return createTDListDAGScheduler(IS, DAG, BB);
148    } else {
149      assert(TLI.getSchedulingPreference() ==
150           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
151      return createBURRListDAGScheduler(IS, DAG, BB);
152    }
153  }
154
155
156  //===--------------------------------------------------------------------===//
157  /// FunctionLoweringInfo - This contains information that is global to a
158  /// function that is used when lowering a region of the function.
159  class FunctionLoweringInfo {
160  public:
161    TargetLowering &TLI;
162    Function &Fn;
163    MachineFunction &MF;
164    SSARegMap *RegMap;
165
166    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
167
168    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
169    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
170
171    /// ValueMap - Since we emit code for the function a basic block at a time,
172    /// we must remember which virtual registers hold the values for
173    /// cross-basic-block values.
174    std::map<const Value*, unsigned> ValueMap;
175
176    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
177    /// the entry block.  This allows the allocas to be efficiently referenced
178    /// anywhere in the function.
179    std::map<const AllocaInst*, int> StaticAllocaMap;
180
181    unsigned MakeReg(MVT::ValueType VT) {
182      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
183    }
184
185    /// isExportedInst - Return true if the specified value is an instruction
186    /// exported from its block.
187    bool isExportedInst(const Value *V) {
188      return ValueMap.count(V);
189    }
190
191    unsigned CreateRegForValue(const Value *V);
192
193    unsigned InitializeRegForValue(const Value *V) {
194      unsigned &R = ValueMap[V];
195      assert(R == 0 && "Already initialized this value register!");
196      return R = CreateRegForValue(V);
197    }
198  };
199}
200
201/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
202/// PHI nodes or outside of the basic block that defines it, or used by a
203/// switch instruction, which may expand to multiple basic blocks.
204static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
205  if (isa<PHINode>(I)) return true;
206  BasicBlock *BB = I->getParent();
207  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
208    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
209        // FIXME: Remove switchinst special case.
210        isa<SwitchInst>(*UI))
211      return true;
212  return false;
213}
214
215/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
216/// entry block, return true.  This includes arguments used by switches, since
217/// the switch may expand into multiple basic blocks.
218static bool isOnlyUsedInEntryBlock(Argument *A) {
219  BasicBlock *Entry = A->getParent()->begin();
220  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
221    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
222      return false;  // Use not in entry block.
223  return true;
224}
225
226FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
227                                           Function &fn, MachineFunction &mf)
228    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
229
230  // Create a vreg for each argument register that is not dead and is used
231  // outside of the entry block for the function.
232  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
233       AI != E; ++AI)
234    if (!isOnlyUsedInEntryBlock(AI))
235      InitializeRegForValue(AI);
236
237  // Initialize the mapping of values to registers.  This is only set up for
238  // instruction values that are used outside of the block that defines
239  // them.
240  Function::iterator BB = Fn.begin(), EB = Fn.end();
241  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
242    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
243      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
244        const Type *Ty = AI->getAllocatedType();
245        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
246        unsigned Align =
247          std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
248                   AI->getAlignment());
249
250        // If the alignment of the value is smaller than the size of the
251        // value, and if the size of the value is particularly small
252        // (<= 8 bytes), round up to the size of the value for potentially
253        // better performance.
254        //
255        // FIXME: This could be made better with a preferred alignment hook in
256        // TargetData.  It serves primarily to 8-byte align doubles for X86.
257        if (Align < TySize && TySize <= 8) Align = TySize;
258        TySize *= CUI->getZExtValue();   // Get total allocated size.
259        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
260        StaticAllocaMap[AI] =
261          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
262      }
263
264  for (; BB != EB; ++BB)
265    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
266      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
267        if (!isa<AllocaInst>(I) ||
268            !StaticAllocaMap.count(cast<AllocaInst>(I)))
269          InitializeRegForValue(I);
270
271  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
272  // also creates the initial PHI MachineInstrs, though none of the input
273  // operands are populated.
274  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
275    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
276    MBBMap[BB] = MBB;
277    MF.getBasicBlockList().push_back(MBB);
278
279    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
280    // appropriate.
281    PHINode *PN;
282    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
283      if (PN->use_empty()) continue;
284
285      MVT::ValueType VT = TLI.getValueType(PN->getType());
286      unsigned NumElements;
287      if (VT != MVT::Vector)
288        NumElements = TLI.getNumElements(VT);
289      else {
290        MVT::ValueType VT1,VT2;
291        NumElements =
292          TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
293                                     VT1, VT2);
294      }
295      unsigned PHIReg = ValueMap[PN];
296      assert(PHIReg && "PHI node does not have an assigned virtual register!");
297      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
298      for (unsigned i = 0; i != NumElements; ++i)
299        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
300    }
301  }
302}
303
304/// CreateRegForValue - Allocate the appropriate number of virtual registers of
305/// the correctly promoted or expanded types.  Assign these registers
306/// consecutive vreg numbers and return the first assigned number.
307unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
308  MVT::ValueType VT = TLI.getValueType(V->getType());
309
310  // The number of multiples of registers that we need, to, e.g., split up
311  // a <2 x int64> -> 4 x i32 registers.
312  unsigned NumVectorRegs = 1;
313
314  // If this is a packed type, figure out what type it will decompose into
315  // and how many of the elements it will use.
316  if (VT == MVT::Vector) {
317    const PackedType *PTy = cast<PackedType>(V->getType());
318    unsigned NumElts = PTy->getNumElements();
319    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
320
321    // Divide the input until we get to a supported size.  This will always
322    // end with a scalar if the target doesn't support vectors.
323    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
324      NumElts >>= 1;
325      NumVectorRegs <<= 1;
326    }
327    if (NumElts == 1)
328      VT = EltTy;
329    else
330      VT = getVectorType(EltTy, NumElts);
331  }
332
333  // The common case is that we will only create one register for this
334  // value.  If we have that case, create and return the virtual register.
335  unsigned NV = TLI.getNumElements(VT);
336  if (NV == 1) {
337    // If we are promoting this value, pick the next largest supported type.
338    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
339    unsigned Reg = MakeReg(PromotedType);
340    // If this is a vector of supported or promoted types (e.g. 4 x i16),
341    // create all of the registers.
342    for (unsigned i = 1; i != NumVectorRegs; ++i)
343      MakeReg(PromotedType);
344    return Reg;
345  }
346
347  // If this value is represented with multiple target registers, make sure
348  // to create enough consecutive registers of the right (smaller) type.
349  VT = TLI.getTypeToExpandTo(VT);
350  unsigned R = MakeReg(VT);
351  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
352    MakeReg(VT);
353  return R;
354}
355
356//===----------------------------------------------------------------------===//
357/// SelectionDAGLowering - This is the common target-independent lowering
358/// implementation that is parameterized by a TargetLowering object.
359/// Also, targets can overload any lowering method.
360///
361namespace llvm {
362class SelectionDAGLowering {
363  MachineBasicBlock *CurMBB;
364
365  std::map<const Value*, SDOperand> NodeMap;
366
367  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
368  /// them up and then emit token factor nodes when possible.  This allows us to
369  /// get simple disambiguation between loads without worrying about alias
370  /// analysis.
371  std::vector<SDOperand> PendingLoads;
372
373  /// Case - A pair of values to record the Value for a switch case, and the
374  /// case's target basic block.
375  typedef std::pair<Constant*, MachineBasicBlock*> Case;
376  typedef std::vector<Case>::iterator              CaseItr;
377  typedef std::pair<CaseItr, CaseItr>              CaseRange;
378
379  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
380  /// of conditional branches.
381  struct CaseRec {
382    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
383    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
384
385    /// CaseBB - The MBB in which to emit the compare and branch
386    MachineBasicBlock *CaseBB;
387    /// LT, GE - If nonzero, we know the current case value must be less-than or
388    /// greater-than-or-equal-to these Constants.
389    Constant *LT;
390    Constant *GE;
391    /// Range - A pair of iterators representing the range of case values to be
392    /// processed at this point in the binary search tree.
393    CaseRange Range;
394  };
395
396  /// The comparison function for sorting Case values.
397  struct CaseCmp {
398    bool operator () (const Case& C1, const Case& C2) {
399      assert(isa<ConstantInt>(C1.first) && isa<ConstantInt>(C2.first));
400      return cast<const ConstantInt>(C1.first)->getSExtValue() <
401        cast<const ConstantInt>(C2.first)->getSExtValue();
402    }
403  };
404
405public:
406  // TLI - This is information that describes the available target features we
407  // need for lowering.  This indicates when operations are unavailable,
408  // implemented with a libcall, etc.
409  TargetLowering &TLI;
410  SelectionDAG &DAG;
411  const TargetData *TD;
412
413  /// SwitchCases - Vector of CaseBlock structures used to communicate
414  /// SwitchInst code generation information.
415  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
416  SelectionDAGISel::JumpTable JT;
417
418  /// FuncInfo - Information about the function as a whole.
419  ///
420  FunctionLoweringInfo &FuncInfo;
421
422  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
423                       FunctionLoweringInfo &funcinfo)
424    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
425      JT(0,0,0,0), FuncInfo(funcinfo) {
426  }
427
428  /// getRoot - Return the current virtual root of the Selection DAG.
429  ///
430  SDOperand getRoot() {
431    if (PendingLoads.empty())
432      return DAG.getRoot();
433
434    if (PendingLoads.size() == 1) {
435      SDOperand Root = PendingLoads[0];
436      DAG.setRoot(Root);
437      PendingLoads.clear();
438      return Root;
439    }
440
441    // Otherwise, we have to make a token factor node.
442    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
443                                 &PendingLoads[0], PendingLoads.size());
444    PendingLoads.clear();
445    DAG.setRoot(Root);
446    return Root;
447  }
448
449  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
450
451  void visit(Instruction &I) { visit(I.getOpcode(), I); }
452
453  void visit(unsigned Opcode, User &I) {
454    // Note: this doesn't use InstVisitor, because it has to work with
455    // ConstantExpr's in addition to instructions.
456    switch (Opcode) {
457    default: assert(0 && "Unknown instruction type encountered!");
458             abort();
459      // Build the switch statement using the Instruction.def file.
460#define HANDLE_INST(NUM, OPCODE, CLASS) \
461    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
462#include "llvm/Instruction.def"
463    }
464  }
465
466  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
467
468  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
469                        const Value *SV, SDOperand Root,
470                        bool isVolatile);
471
472  SDOperand getIntPtrConstant(uint64_t Val) {
473    return DAG.getConstant(Val, TLI.getPointerTy());
474  }
475
476  SDOperand getValue(const Value *V);
477
478  const SDOperand &setValue(const Value *V, SDOperand NewN) {
479    SDOperand &N = NodeMap[V];
480    assert(N.Val == 0 && "Already set a value for this node!");
481    return N = NewN;
482  }
483
484  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
485                                    MVT::ValueType VT,
486                                    bool OutReg, bool InReg,
487                                    std::set<unsigned> &OutputRegs,
488                                    std::set<unsigned> &InputRegs);
489
490  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
491                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
492                            unsigned Opc);
493  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
494  void ExportFromCurrentBlock(Value *V);
495
496  // Terminator instructions.
497  void visitRet(ReturnInst &I);
498  void visitBr(BranchInst &I);
499  void visitSwitch(SwitchInst &I);
500  void visitUnreachable(UnreachableInst &I) { /* noop */ }
501
502  // Helper for visitSwitch
503  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
504  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
505
506  // These all get lowered before this pass.
507  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
508  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
509
510  void visitIntBinary(User &I, unsigned IntOp, unsigned VecOp);
511  void visitFPBinary(User &I, unsigned FPOp, unsigned VecOp);
512  void visitShift(User &I, unsigned Opcode);
513  void visitAdd(User &I) {
514    if (I.getType()->isFloatingPoint())
515      visitFPBinary(I, ISD::FADD, ISD::VADD);
516    else
517      visitIntBinary(I, ISD::ADD, ISD::VADD);
518  }
519  void visitSub(User &I);
520  void visitMul(User &I) {
521    if (I.getType()->isFloatingPoint())
522      visitFPBinary(I, ISD::FMUL, ISD::VMUL);
523    else
524      visitIntBinary(I, ISD::MUL, ISD::VMUL);
525  }
526  void visitURem(User &I) { visitIntBinary(I, ISD::UREM, 0); }
527  void visitSRem(User &I) { visitIntBinary(I, ISD::SREM, 0); }
528  void visitFRem(User &I) { visitFPBinary (I, ISD::FREM, 0); }
529  void visitUDiv(User &I) { visitIntBinary(I, ISD::UDIV, ISD::VUDIV); }
530  void visitSDiv(User &I) { visitIntBinary(I, ISD::SDIV, ISD::VSDIV); }
531  void visitFDiv(User &I) { visitFPBinary (I, ISD::FDIV, ISD::VSDIV); }
532  void visitAnd(User &I) { visitIntBinary(I, ISD::AND, ISD::VAND); }
533  void visitOr (User &I) { visitIntBinary(I, ISD::OR,  ISD::VOR); }
534  void visitXor(User &I) { visitIntBinary(I, ISD::XOR, ISD::VXOR); }
535  void visitShl(User &I) { visitShift(I, ISD::SHL); }
536  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
537  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
538  void visitICmp(User &I);
539  void visitFCmp(User &I);
540  // Visit the conversion instructions
541  void visitTrunc(User &I);
542  void visitZExt(User &I);
543  void visitSExt(User &I);
544  void visitFPTrunc(User &I);
545  void visitFPExt(User &I);
546  void visitFPToUI(User &I);
547  void visitFPToSI(User &I);
548  void visitUIToFP(User &I);
549  void visitSIToFP(User &I);
550  void visitPtrToInt(User &I);
551  void visitIntToPtr(User &I);
552  void visitBitCast(User &I);
553
554  void visitExtractElement(User &I);
555  void visitInsertElement(User &I);
556  void visitShuffleVector(User &I);
557
558  void visitGetElementPtr(User &I);
559  void visitSelect(User &I);
560
561  void visitMalloc(MallocInst &I);
562  void visitFree(FreeInst &I);
563  void visitAlloca(AllocaInst &I);
564  void visitLoad(LoadInst &I);
565  void visitStore(StoreInst &I);
566  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
567  void visitCall(CallInst &I);
568  void visitInlineAsm(CallInst &I);
569  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
570  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
571
572  void visitVAStart(CallInst &I);
573  void visitVAArg(VAArgInst &I);
574  void visitVAEnd(CallInst &I);
575  void visitVACopy(CallInst &I);
576  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
577
578  void visitMemIntrinsic(CallInst &I, unsigned Op);
579
580  void visitUserOp1(Instruction &I) {
581    assert(0 && "UserOp1 should not exist at instruction selection time!");
582    abort();
583  }
584  void visitUserOp2(Instruction &I) {
585    assert(0 && "UserOp2 should not exist at instruction selection time!");
586    abort();
587  }
588};
589} // end namespace llvm
590
591SDOperand SelectionDAGLowering::getValue(const Value *V) {
592  SDOperand &N = NodeMap[V];
593  if (N.Val) return N;
594
595  const Type *VTy = V->getType();
596  MVT::ValueType VT = TLI.getValueType(VTy);
597  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
598    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
599      visit(CE->getOpcode(), *CE);
600      assert(N.Val && "visit didn't populate the ValueMap!");
601      return N;
602    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
603      return N = DAG.getGlobalAddress(GV, VT);
604    } else if (isa<ConstantPointerNull>(C)) {
605      return N = DAG.getConstant(0, TLI.getPointerTy());
606    } else if (isa<UndefValue>(C)) {
607      if (!isa<PackedType>(VTy))
608        return N = DAG.getNode(ISD::UNDEF, VT);
609
610      // Create a VBUILD_VECTOR of undef nodes.
611      const PackedType *PTy = cast<PackedType>(VTy);
612      unsigned NumElements = PTy->getNumElements();
613      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
614
615      SmallVector<SDOperand, 8> Ops;
616      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
617
618      // Create a VConstant node with generic Vector type.
619      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
620      Ops.push_back(DAG.getValueType(PVT));
621      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
622                             &Ops[0], Ops.size());
623    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
624      return N = DAG.getConstantFP(CFP->getValue(), VT);
625    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
626      unsigned NumElements = PTy->getNumElements();
627      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
628
629      // Now that we know the number and type of the elements, push a
630      // Constant or ConstantFP node onto the ops list for each element of
631      // the packed constant.
632      SmallVector<SDOperand, 8> Ops;
633      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
634        for (unsigned i = 0; i != NumElements; ++i)
635          Ops.push_back(getValue(CP->getOperand(i)));
636      } else {
637        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
638        SDOperand Op;
639        if (MVT::isFloatingPoint(PVT))
640          Op = DAG.getConstantFP(0, PVT);
641        else
642          Op = DAG.getConstant(0, PVT);
643        Ops.assign(NumElements, Op);
644      }
645
646      // Create a VBUILD_VECTOR node with generic Vector type.
647      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
648      Ops.push_back(DAG.getValueType(PVT));
649      return N = DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector,&Ops[0],Ops.size());
650    } else {
651      // Canonicalize all constant ints to be unsigned.
652      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
653    }
654  }
655
656  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
657    std::map<const AllocaInst*, int>::iterator SI =
658    FuncInfo.StaticAllocaMap.find(AI);
659    if (SI != FuncInfo.StaticAllocaMap.end())
660      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
661  }
662
663  std::map<const Value*, unsigned>::const_iterator VMI =
664      FuncInfo.ValueMap.find(V);
665  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
666
667  unsigned InReg = VMI->second;
668
669  // If this type is not legal, make it so now.
670  if (VT != MVT::Vector) {
671    if (TLI.getTypeAction(VT) == TargetLowering::Expand) {
672      // Source must be expanded.  This input value is actually coming from the
673      // register pair VMI->second and VMI->second+1.
674      MVT::ValueType DestVT = TLI.getTypeToExpandTo(VT);
675      unsigned NumVals = TLI.getNumElements(VT);
676      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
677      if (NumVals == 1)
678        N = DAG.getNode(ISD::BIT_CONVERT, VT, N);
679      else {
680        assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
681        N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
682                       DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
683      }
684    } else {
685      MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
686      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
687      if (TLI.getTypeAction(VT) == TargetLowering::Promote) // Promotion case
688        N = MVT::isFloatingPoint(VT)
689          ? DAG.getNode(ISD::FP_ROUND, VT, N)
690          : DAG.getNode(ISD::TRUNCATE, VT, N);
691    }
692  } else {
693    // Otherwise, if this is a vector, make it available as a generic vector
694    // here.
695    MVT::ValueType PTyElementVT, PTyLegalElementVT;
696    const PackedType *PTy = cast<PackedType>(VTy);
697    unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT,
698                                             PTyLegalElementVT);
699
700    // Build a VBUILD_VECTOR with the input registers.
701    SmallVector<SDOperand, 8> Ops;
702    if (PTyElementVT == PTyLegalElementVT) {
703      // If the value types are legal, just VBUILD the CopyFromReg nodes.
704      for (unsigned i = 0; i != NE; ++i)
705        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
706                                         PTyElementVT));
707    } else if (PTyElementVT < PTyLegalElementVT) {
708      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
709      for (unsigned i = 0; i != NE; ++i) {
710        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
711                                          PTyElementVT);
712        if (MVT::isFloatingPoint(PTyElementVT))
713          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
714        else
715          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
716        Ops.push_back(Op);
717      }
718    } else {
719      // If the register was expanded, use BUILD_PAIR.
720      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
721      for (unsigned i = 0; i != NE/2; ++i) {
722        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
723                                           PTyElementVT);
724        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
725                                           PTyElementVT);
726        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
727      }
728    }
729
730    Ops.push_back(DAG.getConstant(NE, MVT::i32));
731    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
732    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
733
734    // Finally, use a VBIT_CONVERT to make this available as the appropriate
735    // vector type.
736    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
737                    DAG.getConstant(PTy->getNumElements(),
738                                    MVT::i32),
739                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
740  }
741
742  return N;
743}
744
745
746void SelectionDAGLowering::visitRet(ReturnInst &I) {
747  if (I.getNumOperands() == 0) {
748    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
749    return;
750  }
751  SmallVector<SDOperand, 8> NewValues;
752  NewValues.push_back(getRoot());
753  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
754    SDOperand RetOp = getValue(I.getOperand(i));
755
756    // If this is an integer return value, we need to promote it ourselves to
757    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
758    // than sign/zero.
759    // FIXME: C calling convention requires the return type to be promoted to
760    // at least 32-bit. But this is not necessary for non-C calling conventions.
761    if (MVT::isInteger(RetOp.getValueType()) &&
762        RetOp.getValueType() < MVT::i64) {
763      MVT::ValueType TmpVT;
764      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
765        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
766      else
767        TmpVT = MVT::i32;
768      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
769      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
770      if (FTy->paramHasAttr(0, FunctionType::SExtAttribute))
771        ExtendKind = ISD::SIGN_EXTEND;
772      if (FTy->paramHasAttr(0, FunctionType::ZExtAttribute))
773        ExtendKind = ISD::ZERO_EXTEND;
774      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
775    }
776    NewValues.push_back(RetOp);
777    NewValues.push_back(DAG.getConstant(false, MVT::i32));
778  }
779  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
780                          &NewValues[0], NewValues.size()));
781}
782
783/// ExportFromCurrentBlock - If this condition isn't known to be exported from
784/// the current basic block, add it to ValueMap now so that we'll get a
785/// CopyTo/FromReg.
786void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
787  // No need to export constants.
788  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
789
790  // Already exported?
791  if (FuncInfo.isExportedInst(V)) return;
792
793  unsigned Reg = FuncInfo.InitializeRegForValue(V);
794  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
795}
796
797bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
798                                                    const BasicBlock *FromBB) {
799  // The operands of the setcc have to be in this block.  We don't know
800  // how to export them from some other block.
801  if (Instruction *VI = dyn_cast<Instruction>(V)) {
802    // Can export from current BB.
803    if (VI->getParent() == FromBB)
804      return true;
805
806    // Is already exported, noop.
807    return FuncInfo.isExportedInst(V);
808  }
809
810  // If this is an argument, we can export it if the BB is the entry block or
811  // if it is already exported.
812  if (isa<Argument>(V)) {
813    if (FromBB == &FromBB->getParent()->getEntryBlock())
814      return true;
815
816    // Otherwise, can only export this if it is already exported.
817    return FuncInfo.isExportedInst(V);
818  }
819
820  // Otherwise, constants can always be exported.
821  return true;
822}
823
824static bool InBlock(const Value *V, const BasicBlock *BB) {
825  if (const Instruction *I = dyn_cast<Instruction>(V))
826    return I->getParent() == BB;
827  return true;
828}
829
830/// FindMergedConditions - If Cond is an expression like
831void SelectionDAGLowering::FindMergedConditions(Value *Cond,
832                                                MachineBasicBlock *TBB,
833                                                MachineBasicBlock *FBB,
834                                                MachineBasicBlock *CurBB,
835                                                unsigned Opc) {
836  // If this node is not part of the or/and tree, emit it as a branch.
837  Instruction *BOp = dyn_cast<Instruction>(Cond);
838
839  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
840      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
841      BOp->getParent() != CurBB->getBasicBlock() ||
842      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
843      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
844    const BasicBlock *BB = CurBB->getBasicBlock();
845
846    // If the leaf of the tree is a comparison, merge the condition into
847    // the caseblock.
848    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
849        // The operands of the cmp have to be in this block.  We don't know
850        // how to export them from some other block.  If this is the first block
851        // of the sequence, no exporting is needed.
852        (CurBB == CurMBB ||
853         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
854          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
855      BOp = cast<Instruction>(Cond);
856      ISD::CondCode Condition;
857      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
858        switch (IC->getPredicate()) {
859        default: assert(0 && "Unknown icmp predicate opcode!");
860        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
861        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
862        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
863        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
864        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
865        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
866        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
867        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
868        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
869        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
870        }
871      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
872        ISD::CondCode FPC, FOC;
873        switch (FC->getPredicate()) {
874        default: assert(0 && "Unknown fcmp predicate opcode!");
875        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
876        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
877        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
878        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
879        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
880        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
881        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
882        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
883        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
884        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
885        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
886        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
887        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
888        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
889        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
890        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
891        }
892        if (FiniteOnlyFPMath())
893          Condition = FOC;
894        else
895          Condition = FPC;
896      } else {
897        assert(0 && "Unknown compare instruction");
898      }
899
900      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
901                                     BOp->getOperand(1), TBB, FBB, CurBB);
902      SwitchCases.push_back(CB);
903      return;
904    }
905
906    // Create a CaseBlock record representing this branch.
907    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
908                                   TBB, FBB, CurBB);
909    SwitchCases.push_back(CB);
910    return;
911  }
912
913
914  //  Create TmpBB after CurBB.
915  MachineFunction::iterator BBI = CurBB;
916  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
917  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
918
919  if (Opc == Instruction::Or) {
920    // Codegen X | Y as:
921    //   jmp_if_X TBB
922    //   jmp TmpBB
923    // TmpBB:
924    //   jmp_if_Y TBB
925    //   jmp FBB
926    //
927
928    // Emit the LHS condition.
929    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
930
931    // Emit the RHS condition into TmpBB.
932    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
933  } else {
934    assert(Opc == Instruction::And && "Unknown merge op!");
935    // Codegen X & Y as:
936    //   jmp_if_X TmpBB
937    //   jmp FBB
938    // TmpBB:
939    //   jmp_if_Y TBB
940    //   jmp FBB
941    //
942    //  This requires creation of TmpBB after CurBB.
943
944    // Emit the LHS condition.
945    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
946
947    // Emit the RHS condition into TmpBB.
948    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
949  }
950}
951
952/// If the set of cases should be emitted as a series of branches, return true.
953/// If we should emit this as a bunch of and/or'd together conditions, return
954/// false.
955static bool
956ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
957  if (Cases.size() != 2) return true;
958
959  // If this is two comparisons of the same values or'd or and'd together, they
960  // will get folded into a single comparison, so don't emit two blocks.
961  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
962       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
963      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
964       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
965    return false;
966  }
967
968  return true;
969}
970
971void SelectionDAGLowering::visitBr(BranchInst &I) {
972  // Update machine-CFG edges.
973  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
974
975  // Figure out which block is immediately after the current one.
976  MachineBasicBlock *NextBlock = 0;
977  MachineFunction::iterator BBI = CurMBB;
978  if (++BBI != CurMBB->getParent()->end())
979    NextBlock = BBI;
980
981  if (I.isUnconditional()) {
982    // If this is not a fall-through branch, emit the branch.
983    if (Succ0MBB != NextBlock)
984      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
985                              DAG.getBasicBlock(Succ0MBB)));
986
987    // Update machine-CFG edges.
988    CurMBB->addSuccessor(Succ0MBB);
989
990    return;
991  }
992
993  // If this condition is one of the special cases we handle, do special stuff
994  // now.
995  Value *CondVal = I.getCondition();
996  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
997
998  // If this is a series of conditions that are or'd or and'd together, emit
999  // this as a sequence of branches instead of setcc's with and/or operations.
1000  // For example, instead of something like:
1001  //     cmp A, B
1002  //     C = seteq
1003  //     cmp D, E
1004  //     F = setle
1005  //     or C, F
1006  //     jnz foo
1007  // Emit:
1008  //     cmp A, B
1009  //     je foo
1010  //     cmp D, E
1011  //     jle foo
1012  //
1013  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1014    if (BOp->hasOneUse() &&
1015        (BOp->getOpcode() == Instruction::And ||
1016         BOp->getOpcode() == Instruction::Or)) {
1017      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1018      // If the compares in later blocks need to use values not currently
1019      // exported from this block, export them now.  This block should always
1020      // be the first entry.
1021      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1022
1023      // Allow some cases to be rejected.
1024      if (ShouldEmitAsBranches(SwitchCases)) {
1025        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1026          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1027          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1028        }
1029
1030        // Emit the branch for this block.
1031        visitSwitchCase(SwitchCases[0]);
1032        SwitchCases.erase(SwitchCases.begin());
1033        return;
1034      }
1035
1036      // Okay, we decided not to do this, remove any inserted MBB's and clear
1037      // SwitchCases.
1038      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1039        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1040
1041      SwitchCases.clear();
1042    }
1043  }
1044
1045  // Create a CaseBlock record representing this branch.
1046  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1047                                 Succ0MBB, Succ1MBB, CurMBB);
1048  // Use visitSwitchCase to actually insert the fast branch sequence for this
1049  // cond branch.
1050  visitSwitchCase(CB);
1051}
1052
1053/// visitSwitchCase - Emits the necessary code to represent a single node in
1054/// the binary search tree resulting from lowering a switch instruction.
1055void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1056  SDOperand Cond;
1057  SDOperand CondLHS = getValue(CB.CmpLHS);
1058
1059  // Build the setcc now, fold "(X == true)" to X and "(X == false)" to !X to
1060  // handle common cases produced by branch lowering.
1061  if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1062    Cond = CondLHS;
1063  else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1064    SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1065    Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1066  } else
1067    Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1068
1069  // Set NextBlock to be the MBB immediately after the current one, if any.
1070  // This is used to avoid emitting unnecessary branches to the next block.
1071  MachineBasicBlock *NextBlock = 0;
1072  MachineFunction::iterator BBI = CurMBB;
1073  if (++BBI != CurMBB->getParent()->end())
1074    NextBlock = BBI;
1075
1076  // If the lhs block is the next block, invert the condition so that we can
1077  // fall through to the lhs instead of the rhs block.
1078  if (CB.TrueBB == NextBlock) {
1079    std::swap(CB.TrueBB, CB.FalseBB);
1080    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1081    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1082  }
1083  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1084                                 DAG.getBasicBlock(CB.TrueBB));
1085  if (CB.FalseBB == NextBlock)
1086    DAG.setRoot(BrCond);
1087  else
1088    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1089                            DAG.getBasicBlock(CB.FalseBB)));
1090  // Update successor info
1091  CurMBB->addSuccessor(CB.TrueBB);
1092  CurMBB->addSuccessor(CB.FalseBB);
1093}
1094
1095void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1096  // Emit the code for the jump table
1097  MVT::ValueType PTy = TLI.getPointerTy();
1098  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1099  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1100  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1101                          Table, Index));
1102  return;
1103}
1104
1105void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
1106  // Figure out which block is immediately after the current one.
1107  MachineBasicBlock *NextBlock = 0;
1108  MachineFunction::iterator BBI = CurMBB;
1109
1110  if (++BBI != CurMBB->getParent()->end())
1111    NextBlock = BBI;
1112
1113  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
1114
1115  // If there is only the default destination, branch to it if it is not the
1116  // next basic block.  Otherwise, just fall through.
1117  if (I.getNumOperands() == 2) {
1118    // Update machine-CFG edges.
1119
1120    // If this is not a fall-through branch, emit the branch.
1121    if (Default != NextBlock)
1122      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1123                              DAG.getBasicBlock(Default)));
1124
1125    CurMBB->addSuccessor(Default);
1126    return;
1127  }
1128
1129  // If there are any non-default case statements, create a vector of Cases
1130  // representing each one, and sort the vector so that we can efficiently
1131  // create a binary search tree from them.
1132  std::vector<Case> Cases;
1133
1134  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
1135    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
1136    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
1137  }
1138
1139  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1140
1141  // Get the Value to be switched on and default basic blocks, which will be
1142  // inserted into CaseBlock records, representing basic blocks in the binary
1143  // search tree.
1144  Value *SV = I.getOperand(0);
1145
1146  // Get the MachineFunction which holds the current MBB.  This is used during
1147  // emission of jump tables, and when inserting any additional MBBs necessary
1148  // to represent the switch.
1149  MachineFunction *CurMF = CurMBB->getParent();
1150  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
1151
1152  // If the switch has few cases (two or less) emit a series of specific
1153  // tests.
1154  if (Cases.size() < 3) {
1155    // TODO: If any two of the cases has the same destination, and if one value
1156    // is the same as the other, but has one bit unset that the other has set,
1157    // use bit manipulation to do two compares at once.  For example:
1158    // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1159
1160    // Rearrange the case blocks so that the last one falls through if possible.
1161    if (NextBlock && Default != NextBlock && Cases.back().second != NextBlock) {
1162      // The last case block won't fall through into 'NextBlock' if we emit the
1163      // branches in this order.  See if rearranging a case value would help.
1164      for (unsigned i = 0, e = Cases.size()-1; i != e; ++i) {
1165        if (Cases[i].second == NextBlock) {
1166          std::swap(Cases[i], Cases.back());
1167          break;
1168        }
1169      }
1170    }
1171
1172    // Create a CaseBlock record representing a conditional branch to
1173    // the Case's target mbb if the value being switched on SV is equal
1174    // to C.
1175    MachineBasicBlock *CurBlock = CurMBB;
1176    for (unsigned i = 0, e = Cases.size(); i != e; ++i) {
1177      MachineBasicBlock *FallThrough;
1178      if (i != e-1) {
1179        FallThrough = new MachineBasicBlock(CurMBB->getBasicBlock());
1180        CurMF->getBasicBlockList().insert(BBI, FallThrough);
1181      } else {
1182        // If the last case doesn't match, go to the default block.
1183        FallThrough = Default;
1184      }
1185
1186      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, Cases[i].first,
1187                                     Cases[i].second, FallThrough, CurBlock);
1188
1189      // If emitting the first comparison, just call visitSwitchCase to emit the
1190      // code into the current block.  Otherwise, push the CaseBlock onto the
1191      // vector to be later processed by SDISel, and insert the node's MBB
1192      // before the next MBB.
1193      if (CurBlock == CurMBB)
1194        visitSwitchCase(CB);
1195      else
1196        SwitchCases.push_back(CB);
1197
1198      CurBlock = FallThrough;
1199    }
1200    return;
1201  }
1202
1203  // If the switch has more than 5 blocks, and at least 31.25% dense, and the
1204  // target supports indirect branches, then emit a jump table rather than
1205  // lowering the switch to a binary tree of conditional branches.
1206  if ((TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1207       TLI.isOperationLegal(ISD::BRIND, MVT::Other)) &&
1208      Cases.size() > 5) {
1209    uint64_t First =cast<ConstantInt>(Cases.front().first)->getZExtValue();
1210    uint64_t Last  = cast<ConstantInt>(Cases.back().first)->getZExtValue();
1211    double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
1212
1213    if (Density >= 0.3125) {
1214      // Create a new basic block to hold the code for loading the address
1215      // of the jump table, and jumping to it.  Update successor information;
1216      // we will either branch to the default case for the switch, or the jump
1217      // table.
1218      MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1219      CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1220      CurMBB->addSuccessor(Default);
1221      CurMBB->addSuccessor(JumpTableBB);
1222
1223      // Subtract the lowest switch case value from the value being switched on
1224      // and conditional branch to default mbb if the result is greater than the
1225      // difference between smallest and largest cases.
1226      SDOperand SwitchOp = getValue(SV);
1227      MVT::ValueType VT = SwitchOp.getValueType();
1228      SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1229                                  DAG.getConstant(First, VT));
1230
1231      // The SDNode we just created, which holds the value being switched on
1232      // minus the the smallest case value, needs to be copied to a virtual
1233      // register so it can be used as an index into the jump table in a
1234      // subsequent basic block.  This value may be smaller or larger than the
1235      // target's pointer type, and therefore require extension or truncating.
1236      if (VT > TLI.getPointerTy())
1237        SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1238      else
1239        SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1240
1241      unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1242      SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1243
1244      // Emit the range check for the jump table, and branch to the default
1245      // block for the switch statement if the value being switched on exceeds
1246      // the largest case in the switch.
1247      SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1248                                   DAG.getConstant(Last-First,VT), ISD::SETUGT);
1249      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1250                              DAG.getBasicBlock(Default)));
1251
1252      // Build a vector of destination BBs, corresponding to each target
1253      // of the jump table.  If the value of the jump table slot corresponds to
1254      // a case statement, push the case's BB onto the vector, otherwise, push
1255      // the default BB.
1256      std::vector<MachineBasicBlock*> DestBBs;
1257      uint64_t TEI = First;
1258      for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI)
1259        if (cast<ConstantInt>(ii->first)->getZExtValue() == TEI) {
1260          DestBBs.push_back(ii->second);
1261          ++ii;
1262        } else {
1263          DestBBs.push_back(Default);
1264        }
1265
1266      // Update successor info.  Add one edge to each unique successor.
1267      // Vector bool would be better, but vector<bool> is really slow.
1268      std::vector<unsigned char> SuccsHandled;
1269      SuccsHandled.resize(CurMBB->getParent()->getNumBlockIDs());
1270
1271      for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1272           E = DestBBs.end(); I != E; ++I) {
1273        if (!SuccsHandled[(*I)->getNumber()]) {
1274          SuccsHandled[(*I)->getNumber()] = true;
1275          JumpTableBB->addSuccessor(*I);
1276        }
1277      }
1278
1279      // Create a jump table index for this jump table, or return an existing
1280      // one.
1281      unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1282
1283      // Set the jump table information so that we can codegen it as a second
1284      // MachineBasicBlock
1285      JT.Reg = JumpTableReg;
1286      JT.JTI = JTI;
1287      JT.MBB = JumpTableBB;
1288      JT.Default = Default;
1289      return;
1290    }
1291  }
1292
1293  // Push the initial CaseRec onto the worklist
1294  std::vector<CaseRec> CaseVec;
1295  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1296
1297  while (!CaseVec.empty()) {
1298    // Grab a record representing a case range to process off the worklist
1299    CaseRec CR = CaseVec.back();
1300    CaseVec.pop_back();
1301
1302    // Size is the number of Cases represented by this range.  If Size is 1,
1303    // then we are processing a leaf of the binary search tree.  Otherwise,
1304    // we need to pick a pivot, and push left and right ranges onto the
1305    // worklist.
1306    unsigned Size = CR.Range.second - CR.Range.first;
1307
1308    if (Size == 1) {
1309      // Create a CaseBlock record representing a conditional branch to
1310      // the Case's target mbb if the value being switched on SV is equal
1311      // to C.  Otherwise, branch to default.
1312      Constant *C = CR.Range.first->first;
1313      MachineBasicBlock *Target = CR.Range.first->second;
1314      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
1315                                     CR.CaseBB);
1316
1317      // If the MBB representing the leaf node is the current MBB, then just
1318      // call visitSwitchCase to emit the code into the current block.
1319      // Otherwise, push the CaseBlock onto the vector to be later processed
1320      // by SDISel, and insert the node's MBB before the next MBB.
1321      if (CR.CaseBB == CurMBB)
1322        visitSwitchCase(CB);
1323      else
1324        SwitchCases.push_back(CB);
1325    } else {
1326      // split case range at pivot
1327      CaseItr Pivot = CR.Range.first + (Size / 2);
1328      CaseRange LHSR(CR.Range.first, Pivot);
1329      CaseRange RHSR(Pivot, CR.Range.second);
1330      Constant *C = Pivot->first;
1331      MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1332
1333      // We know that we branch to the LHS if the Value being switched on is
1334      // less than the Pivot value, C.  We use this to optimize our binary
1335      // tree a bit, by recognizing that if SV is greater than or equal to the
1336      // LHS's Case Value, and that Case Value is exactly one less than the
1337      // Pivot's Value, then we can branch directly to the LHS's Target,
1338      // rather than creating a leaf node for it.
1339      if ((LHSR.second - LHSR.first) == 1 &&
1340          LHSR.first->first == CR.GE &&
1341          cast<ConstantInt>(C)->getZExtValue() ==
1342          (cast<ConstantInt>(CR.GE)->getZExtValue() + 1ULL)) {
1343        TrueBB = LHSR.first->second;
1344      } else {
1345        TrueBB = new MachineBasicBlock(LLVMBB);
1346        CurMF->getBasicBlockList().insert(BBI, TrueBB);
1347        CaseVec.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1348      }
1349
1350      // Similar to the optimization above, if the Value being switched on is
1351      // known to be less than the Constant CR.LT, and the current Case Value
1352      // is CR.LT - 1, then we can branch directly to the target block for
1353      // the current Case Value, rather than emitting a RHS leaf node for it.
1354      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1355          cast<ConstantInt>(RHSR.first->first)->getZExtValue() ==
1356          (cast<ConstantInt>(CR.LT)->getZExtValue() - 1ULL)) {
1357        FalseBB = RHSR.first->second;
1358      } else {
1359        FalseBB = new MachineBasicBlock(LLVMBB);
1360        CurMF->getBasicBlockList().insert(BBI, FalseBB);
1361        CaseVec.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1362      }
1363
1364      // Create a CaseBlock record representing a conditional branch to
1365      // the LHS node if the value being switched on SV is less than C.
1366      // Otherwise, branch to LHS.
1367      ISD::CondCode CC =  ISD::SETLT;
1368      SelectionDAGISel::CaseBlock CB(CC, SV, C, TrueBB, FalseBB, CR.CaseBB);
1369
1370      if (CR.CaseBB == CurMBB)
1371        visitSwitchCase(CB);
1372      else
1373        SwitchCases.push_back(CB);
1374    }
1375  }
1376}
1377
1378void SelectionDAGLowering::visitSub(User &I) {
1379  // -0.0 - X --> fneg
1380  if (I.getType()->isFloatingPoint()) {
1381    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1382      if (CFP->isExactlyValue(-0.0)) {
1383        SDOperand Op2 = getValue(I.getOperand(1));
1384        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1385        return;
1386      }
1387    visitFPBinary(I, ISD::FSUB, ISD::VSUB);
1388  } else
1389    visitIntBinary(I, ISD::SUB, ISD::VSUB);
1390}
1391
1392void
1393SelectionDAGLowering::visitIntBinary(User &I, unsigned IntOp, unsigned VecOp) {
1394  const Type *Ty = I.getType();
1395  SDOperand Op1 = getValue(I.getOperand(0));
1396  SDOperand Op2 = getValue(I.getOperand(1));
1397
1398  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1399    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
1400    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
1401    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
1402  } else {
1403    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
1404  }
1405}
1406
1407void
1408SelectionDAGLowering::visitFPBinary(User &I, unsigned FPOp, unsigned VecOp) {
1409  const Type *Ty = I.getType();
1410  SDOperand Op1 = getValue(I.getOperand(0));
1411  SDOperand Op2 = getValue(I.getOperand(1));
1412
1413  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1414    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
1415    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
1416    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
1417  } else {
1418    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
1419  }
1420}
1421
1422void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1423  SDOperand Op1 = getValue(I.getOperand(0));
1424  SDOperand Op2 = getValue(I.getOperand(1));
1425
1426  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1427
1428  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1429}
1430
1431void SelectionDAGLowering::visitICmp(User &I) {
1432  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
1433  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
1434    predicate = IC->getPredicate();
1435  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
1436    predicate = ICmpInst::Predicate(IC->getPredicate());
1437  SDOperand Op1 = getValue(I.getOperand(0));
1438  SDOperand Op2 = getValue(I.getOperand(1));
1439  ISD::CondCode Opcode;
1440  switch (predicate) {
1441    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
1442    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
1443    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
1444    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
1445    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
1446    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
1447    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
1448    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
1449    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
1450    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
1451    default:
1452      assert(!"Invalid ICmp predicate value");
1453      Opcode = ISD::SETEQ;
1454      break;
1455  }
1456  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1457}
1458
1459void SelectionDAGLowering::visitFCmp(User &I) {
1460  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
1461  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
1462    predicate = FC->getPredicate();
1463  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
1464    predicate = FCmpInst::Predicate(FC->getPredicate());
1465  SDOperand Op1 = getValue(I.getOperand(0));
1466  SDOperand Op2 = getValue(I.getOperand(1));
1467  ISD::CondCode Condition, FOC, FPC;
1468  switch (predicate) {
1469    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1470    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1471    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1472    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1473    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1474    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1475    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1476    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1477    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1478    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1479    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1480    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1481    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1482    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1483    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1484    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1485    default:
1486      assert(!"Invalid FCmp predicate value");
1487      FOC = FPC = ISD::SETFALSE;
1488      break;
1489  }
1490  if (FiniteOnlyFPMath())
1491    Condition = FOC;
1492  else
1493    Condition = FPC;
1494  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
1495}
1496
1497void SelectionDAGLowering::visitSelect(User &I) {
1498  SDOperand Cond     = getValue(I.getOperand(0));
1499  SDOperand TrueVal  = getValue(I.getOperand(1));
1500  SDOperand FalseVal = getValue(I.getOperand(2));
1501  if (!isa<PackedType>(I.getType())) {
1502    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1503                             TrueVal, FalseVal));
1504  } else {
1505    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1506                             *(TrueVal.Val->op_end()-2),
1507                             *(TrueVal.Val->op_end()-1)));
1508  }
1509}
1510
1511
1512void SelectionDAGLowering::visitTrunc(User &I) {
1513  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
1514  SDOperand N = getValue(I.getOperand(0));
1515  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1516  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1517}
1518
1519void SelectionDAGLowering::visitZExt(User &I) {
1520  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1521  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
1522  SDOperand N = getValue(I.getOperand(0));
1523  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1524  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1525}
1526
1527void SelectionDAGLowering::visitSExt(User &I) {
1528  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1529  // SExt also can't be a cast to bool for same reason. So, nothing much to do
1530  SDOperand N = getValue(I.getOperand(0));
1531  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1532  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1533}
1534
1535void SelectionDAGLowering::visitFPTrunc(User &I) {
1536  // FPTrunc is never a no-op cast, no need to check
1537  SDOperand N = getValue(I.getOperand(0));
1538  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1539  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1540}
1541
1542void SelectionDAGLowering::visitFPExt(User &I){
1543  // FPTrunc is never a no-op cast, no need to check
1544  SDOperand N = getValue(I.getOperand(0));
1545  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1546  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1547}
1548
1549void SelectionDAGLowering::visitFPToUI(User &I) {
1550  // FPToUI is never a no-op cast, no need to check
1551  SDOperand N = getValue(I.getOperand(0));
1552  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1553  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1554}
1555
1556void SelectionDAGLowering::visitFPToSI(User &I) {
1557  // FPToSI is never a no-op cast, no need to check
1558  SDOperand N = getValue(I.getOperand(0));
1559  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1560  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1561}
1562
1563void SelectionDAGLowering::visitUIToFP(User &I) {
1564  // UIToFP is never a no-op cast, no need to check
1565  SDOperand N = getValue(I.getOperand(0));
1566  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1567  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1568}
1569
1570void SelectionDAGLowering::visitSIToFP(User &I){
1571  // UIToFP is never a no-op cast, no need to check
1572  SDOperand N = getValue(I.getOperand(0));
1573  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1574  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1575}
1576
1577void SelectionDAGLowering::visitPtrToInt(User &I) {
1578  // What to do depends on the size of the integer and the size of the pointer.
1579  // We can either truncate, zero extend, or no-op, accordingly.
1580  SDOperand N = getValue(I.getOperand(0));
1581  MVT::ValueType SrcVT = N.getValueType();
1582  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1583  SDOperand Result;
1584  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1585    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
1586  else
1587    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1588    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
1589  setValue(&I, Result);
1590}
1591
1592void SelectionDAGLowering::visitIntToPtr(User &I) {
1593  // What to do depends on the size of the integer and the size of the pointer.
1594  // We can either truncate, zero extend, or no-op, accordingly.
1595  SDOperand N = getValue(I.getOperand(0));
1596  MVT::ValueType SrcVT = N.getValueType();
1597  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1598  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1599    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1600  else
1601    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1602    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1603}
1604
1605void SelectionDAGLowering::visitBitCast(User &I) {
1606  SDOperand N = getValue(I.getOperand(0));
1607  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1608  if (DestVT == MVT::Vector) {
1609    // This is a cast to a vector from something else.
1610    // Get information about the output vector.
1611    const PackedType *DestTy = cast<PackedType>(I.getType());
1612    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1613    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1614                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1615                             DAG.getValueType(EltVT)));
1616    return;
1617  }
1618  MVT::ValueType SrcVT = N.getValueType();
1619  if (SrcVT == MVT::Vector) {
1620    // This is a cast from a vctor to something else.
1621    // Get information about the input vector.
1622    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1623    return;
1624  }
1625
1626  // BitCast assures us that source and destination are the same size so this
1627  // is either a BIT_CONVERT or a no-op.
1628  if (DestVT != N.getValueType())
1629    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
1630  else
1631    setValue(&I, N); // noop cast.
1632}
1633
1634void SelectionDAGLowering::visitInsertElement(User &I) {
1635  SDOperand InVec = getValue(I.getOperand(0));
1636  SDOperand InVal = getValue(I.getOperand(1));
1637  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1638                                getValue(I.getOperand(2)));
1639
1640  SDOperand Num = *(InVec.Val->op_end()-2);
1641  SDOperand Typ = *(InVec.Val->op_end()-1);
1642  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1643                           InVec, InVal, InIdx, Num, Typ));
1644}
1645
1646void SelectionDAGLowering::visitExtractElement(User &I) {
1647  SDOperand InVec = getValue(I.getOperand(0));
1648  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1649                                getValue(I.getOperand(1)));
1650  SDOperand Typ = *(InVec.Val->op_end()-1);
1651  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1652                           TLI.getValueType(I.getType()), InVec, InIdx));
1653}
1654
1655void SelectionDAGLowering::visitShuffleVector(User &I) {
1656  SDOperand V1   = getValue(I.getOperand(0));
1657  SDOperand V2   = getValue(I.getOperand(1));
1658  SDOperand Mask = getValue(I.getOperand(2));
1659
1660  SDOperand Num = *(V1.Val->op_end()-2);
1661  SDOperand Typ = *(V2.Val->op_end()-1);
1662  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1663                           V1, V2, Mask, Num, Typ));
1664}
1665
1666
1667void SelectionDAGLowering::visitGetElementPtr(User &I) {
1668  SDOperand N = getValue(I.getOperand(0));
1669  const Type *Ty = I.getOperand(0)->getType();
1670
1671  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1672       OI != E; ++OI) {
1673    Value *Idx = *OI;
1674    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1675      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
1676      if (Field) {
1677        // N = N + Offset
1678        uint64_t Offset = TD->getStructLayout(StTy)->MemberOffsets[Field];
1679        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1680                        getIntPtrConstant(Offset));
1681      }
1682      Ty = StTy->getElementType(Field);
1683    } else {
1684      Ty = cast<SequentialType>(Ty)->getElementType();
1685
1686      // If this is a constant subscript, handle it quickly.
1687      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1688        if (CI->getZExtValue() == 0) continue;
1689        uint64_t Offs =
1690            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
1691        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1692        continue;
1693      }
1694
1695      // N = N + Idx * ElementSize;
1696      uint64_t ElementSize = TD->getTypeSize(Ty);
1697      SDOperand IdxN = getValue(Idx);
1698
1699      // If the index is smaller or larger than intptr_t, truncate or extend
1700      // it.
1701      if (IdxN.getValueType() < N.getValueType()) {
1702        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1703      } else if (IdxN.getValueType() > N.getValueType())
1704        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1705
1706      // If this is a multiply by a power of two, turn it into a shl
1707      // immediately.  This is a very common case.
1708      if (isPowerOf2_64(ElementSize)) {
1709        unsigned Amt = Log2_64(ElementSize);
1710        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1711                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1712        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1713        continue;
1714      }
1715
1716      SDOperand Scale = getIntPtrConstant(ElementSize);
1717      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1718      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1719    }
1720  }
1721  setValue(&I, N);
1722}
1723
1724void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1725  // If this is a fixed sized alloca in the entry block of the function,
1726  // allocate it statically on the stack.
1727  if (FuncInfo.StaticAllocaMap.count(&I))
1728    return;   // getValue will auto-populate this.
1729
1730  const Type *Ty = I.getAllocatedType();
1731  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
1732  unsigned Align = std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
1733                            I.getAlignment());
1734
1735  SDOperand AllocSize = getValue(I.getArraySize());
1736  MVT::ValueType IntPtr = TLI.getPointerTy();
1737  if (IntPtr < AllocSize.getValueType())
1738    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1739  else if (IntPtr > AllocSize.getValueType())
1740    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1741
1742  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1743                          getIntPtrConstant(TySize));
1744
1745  // Handle alignment.  If the requested alignment is less than or equal to the
1746  // stack alignment, ignore it and round the size of the allocation up to the
1747  // stack alignment size.  If the size is greater than the stack alignment, we
1748  // note this in the DYNAMIC_STACKALLOC node.
1749  unsigned StackAlign =
1750    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1751  if (Align <= StackAlign) {
1752    Align = 0;
1753    // Add SA-1 to the size.
1754    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1755                            getIntPtrConstant(StackAlign-1));
1756    // Mask out the low bits for alignment purposes.
1757    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1758                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1759  }
1760
1761  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
1762  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
1763                                                    MVT::Other);
1764  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
1765  DAG.setRoot(setValue(&I, DSA).getValue(1));
1766
1767  // Inform the Frame Information that we have just allocated a variable-sized
1768  // object.
1769  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1770}
1771
1772void SelectionDAGLowering::visitLoad(LoadInst &I) {
1773  SDOperand Ptr = getValue(I.getOperand(0));
1774
1775  SDOperand Root;
1776  if (I.isVolatile())
1777    Root = getRoot();
1778  else {
1779    // Do not serialize non-volatile loads against each other.
1780    Root = DAG.getRoot();
1781  }
1782
1783  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
1784                           Root, I.isVolatile()));
1785}
1786
1787SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1788                                            const Value *SV, SDOperand Root,
1789                                            bool isVolatile) {
1790  SDOperand L;
1791  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1792    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1793    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
1794                       DAG.getSrcValue(SV));
1795  } else {
1796    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0, isVolatile);
1797  }
1798
1799  if (isVolatile)
1800    DAG.setRoot(L.getValue(1));
1801  else
1802    PendingLoads.push_back(L.getValue(1));
1803
1804  return L;
1805}
1806
1807
1808void SelectionDAGLowering::visitStore(StoreInst &I) {
1809  Value *SrcV = I.getOperand(0);
1810  SDOperand Src = getValue(SrcV);
1811  SDOperand Ptr = getValue(I.getOperand(1));
1812  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
1813                           I.isVolatile()));
1814}
1815
1816/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1817/// access memory and has no other side effects at all.
1818static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1819#define GET_NO_MEMORY_INTRINSICS
1820#include "llvm/Intrinsics.gen"
1821#undef GET_NO_MEMORY_INTRINSICS
1822  return false;
1823}
1824
1825// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
1826// have any side-effects or if it only reads memory.
1827static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
1828#define GET_SIDE_EFFECT_INFO
1829#include "llvm/Intrinsics.gen"
1830#undef GET_SIDE_EFFECT_INFO
1831  return false;
1832}
1833
1834/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1835/// node.
1836void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1837                                                unsigned Intrinsic) {
1838  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1839  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
1840
1841  // Build the operand list.
1842  SmallVector<SDOperand, 8> Ops;
1843  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
1844    if (OnlyLoad) {
1845      // We don't need to serialize loads against other loads.
1846      Ops.push_back(DAG.getRoot());
1847    } else {
1848      Ops.push_back(getRoot());
1849    }
1850  }
1851
1852  // Add the intrinsic ID as an integer operand.
1853  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1854
1855  // Add all operands of the call to the operand list.
1856  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1857    SDOperand Op = getValue(I.getOperand(i));
1858
1859    // If this is a vector type, force it to the right packed type.
1860    if (Op.getValueType() == MVT::Vector) {
1861      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1862      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1863
1864      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1865      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1866      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1867    }
1868
1869    assert(TLI.isTypeLegal(Op.getValueType()) &&
1870           "Intrinsic uses a non-legal type?");
1871    Ops.push_back(Op);
1872  }
1873
1874  std::vector<MVT::ValueType> VTs;
1875  if (I.getType() != Type::VoidTy) {
1876    MVT::ValueType VT = TLI.getValueType(I.getType());
1877    if (VT == MVT::Vector) {
1878      const PackedType *DestTy = cast<PackedType>(I.getType());
1879      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1880
1881      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1882      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1883    }
1884
1885    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1886    VTs.push_back(VT);
1887  }
1888  if (HasChain)
1889    VTs.push_back(MVT::Other);
1890
1891  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
1892
1893  // Create the node.
1894  SDOperand Result;
1895  if (!HasChain)
1896    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
1897                         &Ops[0], Ops.size());
1898  else if (I.getType() != Type::VoidTy)
1899    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
1900                         &Ops[0], Ops.size());
1901  else
1902    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
1903                         &Ops[0], Ops.size());
1904
1905  if (HasChain) {
1906    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
1907    if (OnlyLoad)
1908      PendingLoads.push_back(Chain);
1909    else
1910      DAG.setRoot(Chain);
1911  }
1912  if (I.getType() != Type::VoidTy) {
1913    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1914      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1915      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1916                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1917                           DAG.getValueType(EVT));
1918    }
1919    setValue(&I, Result);
1920  }
1921}
1922
1923/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1924/// we want to emit this as a call to a named external function, return the name
1925/// otherwise lower it and return null.
1926const char *
1927SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1928  switch (Intrinsic) {
1929  default:
1930    // By default, turn this into a target intrinsic node.
1931    visitTargetIntrinsic(I, Intrinsic);
1932    return 0;
1933  case Intrinsic::vastart:  visitVAStart(I); return 0;
1934  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1935  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1936  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1937  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1938  case Intrinsic::setjmp:
1939    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
1940    break;
1941  case Intrinsic::longjmp:
1942    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
1943    break;
1944  case Intrinsic::memcpy_i32:
1945  case Intrinsic::memcpy_i64:
1946    visitMemIntrinsic(I, ISD::MEMCPY);
1947    return 0;
1948  case Intrinsic::memset_i32:
1949  case Intrinsic::memset_i64:
1950    visitMemIntrinsic(I, ISD::MEMSET);
1951    return 0;
1952  case Intrinsic::memmove_i32:
1953  case Intrinsic::memmove_i64:
1954    visitMemIntrinsic(I, ISD::MEMMOVE);
1955    return 0;
1956
1957  case Intrinsic::dbg_stoppoint: {
1958    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1959    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1960    if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
1961      SDOperand Ops[5];
1962
1963      Ops[0] = getRoot();
1964      Ops[1] = getValue(SPI.getLineValue());
1965      Ops[2] = getValue(SPI.getColumnValue());
1966
1967      DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
1968      assert(DD && "Not a debug information descriptor");
1969      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1970
1971      Ops[3] = DAG.getString(CompileUnit->getFileName());
1972      Ops[4] = DAG.getString(CompileUnit->getDirectory());
1973
1974      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
1975    }
1976
1977    return 0;
1978  }
1979  case Intrinsic::dbg_region_start: {
1980    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1981    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1982    if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
1983      unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
1984      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, getRoot(),
1985                              DAG.getConstant(LabelID, MVT::i32)));
1986    }
1987
1988    return 0;
1989  }
1990  case Intrinsic::dbg_region_end: {
1991    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1992    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
1993    if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
1994      unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
1995      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
1996                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
1997    }
1998
1999    return 0;
2000  }
2001  case Intrinsic::dbg_func_start: {
2002    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
2003    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2004    if (DebugInfo && FSI.getSubprogram() &&
2005        DebugInfo->Verify(FSI.getSubprogram())) {
2006      unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
2007      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
2008                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2009    }
2010
2011    return 0;
2012  }
2013  case Intrinsic::dbg_declare: {
2014    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
2015    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2016    if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) {
2017      SDOperand AddressOp  = getValue(DI.getAddress());
2018      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2019        DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
2020    }
2021
2022    return 0;
2023  }
2024
2025  case Intrinsic::sqrt_f32:
2026  case Intrinsic::sqrt_f64:
2027    setValue(&I, DAG.getNode(ISD::FSQRT,
2028                             getValue(I.getOperand(1)).getValueType(),
2029                             getValue(I.getOperand(1))));
2030    return 0;
2031  case Intrinsic::powi_f32:
2032  case Intrinsic::powi_f64:
2033    setValue(&I, DAG.getNode(ISD::FPOWI,
2034                             getValue(I.getOperand(1)).getValueType(),
2035                             getValue(I.getOperand(1)),
2036                             getValue(I.getOperand(2))));
2037    return 0;
2038  case Intrinsic::pcmarker: {
2039    SDOperand Tmp = getValue(I.getOperand(1));
2040    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2041    return 0;
2042  }
2043  case Intrinsic::readcyclecounter: {
2044    SDOperand Op = getRoot();
2045    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2046                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2047                                &Op, 1);
2048    setValue(&I, Tmp);
2049    DAG.setRoot(Tmp.getValue(1));
2050    return 0;
2051  }
2052  case Intrinsic::bswap_i16:
2053  case Intrinsic::bswap_i32:
2054  case Intrinsic::bswap_i64:
2055    setValue(&I, DAG.getNode(ISD::BSWAP,
2056                             getValue(I.getOperand(1)).getValueType(),
2057                             getValue(I.getOperand(1))));
2058    return 0;
2059  case Intrinsic::cttz_i8:
2060  case Intrinsic::cttz_i16:
2061  case Intrinsic::cttz_i32:
2062  case Intrinsic::cttz_i64:
2063    setValue(&I, DAG.getNode(ISD::CTTZ,
2064                             getValue(I.getOperand(1)).getValueType(),
2065                             getValue(I.getOperand(1))));
2066    return 0;
2067  case Intrinsic::ctlz_i8:
2068  case Intrinsic::ctlz_i16:
2069  case Intrinsic::ctlz_i32:
2070  case Intrinsic::ctlz_i64:
2071    setValue(&I, DAG.getNode(ISD::CTLZ,
2072                             getValue(I.getOperand(1)).getValueType(),
2073                             getValue(I.getOperand(1))));
2074    return 0;
2075  case Intrinsic::ctpop_i8:
2076  case Intrinsic::ctpop_i16:
2077  case Intrinsic::ctpop_i32:
2078  case Intrinsic::ctpop_i64:
2079    setValue(&I, DAG.getNode(ISD::CTPOP,
2080                             getValue(I.getOperand(1)).getValueType(),
2081                             getValue(I.getOperand(1))));
2082    return 0;
2083  case Intrinsic::stacksave: {
2084    SDOperand Op = getRoot();
2085    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2086              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2087    setValue(&I, Tmp);
2088    DAG.setRoot(Tmp.getValue(1));
2089    return 0;
2090  }
2091  case Intrinsic::stackrestore: {
2092    SDOperand Tmp = getValue(I.getOperand(1));
2093    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2094    return 0;
2095  }
2096  case Intrinsic::prefetch:
2097    // FIXME: Currently discarding prefetches.
2098    return 0;
2099  }
2100}
2101
2102
2103void SelectionDAGLowering::visitCall(CallInst &I) {
2104  const char *RenameFn = 0;
2105  if (Function *F = I.getCalledFunction()) {
2106    if (F->isExternal())
2107      if (unsigned IID = F->getIntrinsicID()) {
2108        RenameFn = visitIntrinsicCall(I, IID);
2109        if (!RenameFn)
2110          return;
2111      } else {    // Not an LLVM intrinsic.
2112        const std::string &Name = F->getName();
2113        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2114          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2115              I.getOperand(1)->getType()->isFloatingPoint() &&
2116              I.getType() == I.getOperand(1)->getType() &&
2117              I.getType() == I.getOperand(2)->getType()) {
2118            SDOperand LHS = getValue(I.getOperand(1));
2119            SDOperand RHS = getValue(I.getOperand(2));
2120            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2121                                     LHS, RHS));
2122            return;
2123          }
2124        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2125          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2126              I.getOperand(1)->getType()->isFloatingPoint() &&
2127              I.getType() == I.getOperand(1)->getType()) {
2128            SDOperand Tmp = getValue(I.getOperand(1));
2129            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2130            return;
2131          }
2132        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2133          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2134              I.getOperand(1)->getType()->isFloatingPoint() &&
2135              I.getType() == I.getOperand(1)->getType()) {
2136            SDOperand Tmp = getValue(I.getOperand(1));
2137            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2138            return;
2139          }
2140        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2141          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2142              I.getOperand(1)->getType()->isFloatingPoint() &&
2143              I.getType() == I.getOperand(1)->getType()) {
2144            SDOperand Tmp = getValue(I.getOperand(1));
2145            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2146            return;
2147          }
2148        }
2149      }
2150  } else if (isa<InlineAsm>(I.getOperand(0))) {
2151    visitInlineAsm(I);
2152    return;
2153  }
2154
2155  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
2156  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2157
2158  SDOperand Callee;
2159  if (!RenameFn)
2160    Callee = getValue(I.getOperand(0));
2161  else
2162    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2163  TargetLowering::ArgListTy Args;
2164  TargetLowering::ArgListEntry Entry;
2165  Args.reserve(I.getNumOperands());
2166  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2167    Value *Arg = I.getOperand(i);
2168    SDOperand ArgNode = getValue(Arg);
2169    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2170    Entry.isSigned = FTy->paramHasAttr(i, FunctionType::SExtAttribute);
2171    Args.push_back(Entry);
2172  }
2173
2174  std::pair<SDOperand,SDOperand> Result =
2175    TLI.LowerCallTo(getRoot(), I.getType(),
2176                    FTy->paramHasAttr(0,FunctionType::SExtAttribute),
2177                    FTy->isVarArg(), I.getCallingConv(), I.isTailCall(),
2178                    Callee, Args, DAG);
2179  if (I.getType() != Type::VoidTy)
2180    setValue(&I, Result.first);
2181  DAG.setRoot(Result.second);
2182}
2183
2184SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2185                                        SDOperand &Chain, SDOperand &Flag)const{
2186  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
2187  Chain = Val.getValue(1);
2188  Flag  = Val.getValue(2);
2189
2190  // If the result was expanded, copy from the top part.
2191  if (Regs.size() > 1) {
2192    assert(Regs.size() == 2 &&
2193           "Cannot expand to more than 2 elts yet!");
2194    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
2195    Chain = Hi.getValue(1);
2196    Flag  = Hi.getValue(2);
2197    if (DAG.getTargetLoweringInfo().isLittleEndian())
2198      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
2199    else
2200      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
2201  }
2202
2203  // Otherwise, if the return value was promoted or extended, truncate it to the
2204  // appropriate type.
2205  if (RegVT == ValueVT)
2206    return Val;
2207
2208  if (MVT::isInteger(RegVT)) {
2209    if (ValueVT < RegVT)
2210      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
2211    else
2212      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
2213  } else {
2214    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
2215  }
2216}
2217
2218/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2219/// specified value into the registers specified by this object.  This uses
2220/// Chain/Flag as the input and updates them for the output Chain/Flag.
2221void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2222                                 SDOperand &Chain, SDOperand &Flag,
2223                                 MVT::ValueType PtrVT) const {
2224  if (Regs.size() == 1) {
2225    // If there is a single register and the types differ, this must be
2226    // a promotion.
2227    if (RegVT != ValueVT) {
2228      if (MVT::isInteger(RegVT)) {
2229        if (RegVT < ValueVT)
2230          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
2231        else
2232          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
2233      } else
2234        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
2235    }
2236    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
2237    Flag = Chain.getValue(1);
2238  } else {
2239    std::vector<unsigned> R(Regs);
2240    if (!DAG.getTargetLoweringInfo().isLittleEndian())
2241      std::reverse(R.begin(), R.end());
2242
2243    for (unsigned i = 0, e = R.size(); i != e; ++i) {
2244      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
2245                                   DAG.getConstant(i, PtrVT));
2246      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
2247      Flag = Chain.getValue(1);
2248    }
2249  }
2250}
2251
2252/// AddInlineAsmOperands - Add this value to the specified inlineasm node
2253/// operand list.  This adds the code marker and includes the number of
2254/// values added into it.
2255void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
2256                                        std::vector<SDOperand> &Ops) const {
2257  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
2258  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
2259    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
2260}
2261
2262/// isAllocatableRegister - If the specified register is safe to allocate,
2263/// i.e. it isn't a stack pointer or some other special register, return the
2264/// register class for the register.  Otherwise, return null.
2265static const TargetRegisterClass *
2266isAllocatableRegister(unsigned Reg, MachineFunction &MF,
2267                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
2268  MVT::ValueType FoundVT = MVT::Other;
2269  const TargetRegisterClass *FoundRC = 0;
2270  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
2271       E = MRI->regclass_end(); RCI != E; ++RCI) {
2272    MVT::ValueType ThisVT = MVT::Other;
2273
2274    const TargetRegisterClass *RC = *RCI;
2275    // If none of the the value types for this register class are valid, we
2276    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2277    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2278         I != E; ++I) {
2279      if (TLI.isTypeLegal(*I)) {
2280        // If we have already found this register in a different register class,
2281        // choose the one with the largest VT specified.  For example, on
2282        // PowerPC, we favor f64 register classes over f32.
2283        if (FoundVT == MVT::Other ||
2284            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
2285          ThisVT = *I;
2286          break;
2287        }
2288      }
2289    }
2290
2291    if (ThisVT == MVT::Other) continue;
2292
2293    // NOTE: This isn't ideal.  In particular, this might allocate the
2294    // frame pointer in functions that need it (due to them not being taken
2295    // out of allocation, because a variable sized allocation hasn't been seen
2296    // yet).  This is a slight code pessimization, but should still work.
2297    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
2298         E = RC->allocation_order_end(MF); I != E; ++I)
2299      if (*I == Reg) {
2300        // We found a matching register class.  Keep looking at others in case
2301        // we find one with larger registers that this physreg is also in.
2302        FoundRC = RC;
2303        FoundVT = ThisVT;
2304        break;
2305      }
2306  }
2307  return FoundRC;
2308}
2309
2310RegsForValue SelectionDAGLowering::
2311GetRegistersForValue(const std::string &ConstrCode,
2312                     MVT::ValueType VT, bool isOutReg, bool isInReg,
2313                     std::set<unsigned> &OutputRegs,
2314                     std::set<unsigned> &InputRegs) {
2315  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
2316    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
2317  std::vector<unsigned> Regs;
2318
2319  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
2320  MVT::ValueType RegVT;
2321  MVT::ValueType ValueVT = VT;
2322
2323  // If this is a constraint for a specific physical register, like {r17},
2324  // assign it now.
2325  if (PhysReg.first) {
2326    if (VT == MVT::Other)
2327      ValueVT = *PhysReg.second->vt_begin();
2328
2329    // Get the actual register value type.  This is important, because the user
2330    // may have asked for (e.g.) the AX register in i32 type.  We need to
2331    // remember that AX is actually i16 to get the right extension.
2332    RegVT = *PhysReg.second->vt_begin();
2333
2334    // This is a explicit reference to a physical register.
2335    Regs.push_back(PhysReg.first);
2336
2337    // If this is an expanded reference, add the rest of the regs to Regs.
2338    if (NumRegs != 1) {
2339      TargetRegisterClass::iterator I = PhysReg.second->begin();
2340      TargetRegisterClass::iterator E = PhysReg.second->end();
2341      for (; *I != PhysReg.first; ++I)
2342        assert(I != E && "Didn't find reg!");
2343
2344      // Already added the first reg.
2345      --NumRegs; ++I;
2346      for (; NumRegs; --NumRegs, ++I) {
2347        assert(I != E && "Ran out of registers to allocate!");
2348        Regs.push_back(*I);
2349      }
2350    }
2351    return RegsForValue(Regs, RegVT, ValueVT);
2352  }
2353
2354  // Otherwise, if this was a reference to an LLVM register class, create vregs
2355  // for this reference.
2356  std::vector<unsigned> RegClassRegs;
2357  if (PhysReg.second) {
2358    // If this is an early clobber or tied register, our regalloc doesn't know
2359    // how to maintain the constraint.  If it isn't, go ahead and create vreg
2360    // and let the regalloc do the right thing.
2361    if (!isOutReg || !isInReg) {
2362      if (VT == MVT::Other)
2363        ValueVT = *PhysReg.second->vt_begin();
2364      RegVT = *PhysReg.second->vt_begin();
2365
2366      // Create the appropriate number of virtual registers.
2367      SSARegMap *RegMap = DAG.getMachineFunction().getSSARegMap();
2368      for (; NumRegs; --NumRegs)
2369        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
2370
2371      return RegsForValue(Regs, RegVT, ValueVT);
2372    }
2373
2374    // Otherwise, we can't allocate it.  Let the code below figure out how to
2375    // maintain these constraints.
2376    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
2377
2378  } else {
2379    // This is a reference to a register class that doesn't directly correspond
2380    // to an LLVM register class.  Allocate NumRegs consecutive, available,
2381    // registers from the class.
2382    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
2383  }
2384
2385  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
2386  MachineFunction &MF = *CurMBB->getParent();
2387  unsigned NumAllocated = 0;
2388  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
2389    unsigned Reg = RegClassRegs[i];
2390    // See if this register is available.
2391    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
2392        (isInReg  && InputRegs.count(Reg))) {    // Already used.
2393      // Make sure we find consecutive registers.
2394      NumAllocated = 0;
2395      continue;
2396    }
2397
2398    // Check to see if this register is allocatable (i.e. don't give out the
2399    // stack pointer).
2400    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
2401    if (!RC) {
2402      // Make sure we find consecutive registers.
2403      NumAllocated = 0;
2404      continue;
2405    }
2406
2407    // Okay, this register is good, we can use it.
2408    ++NumAllocated;
2409
2410    // If we allocated enough consecutive
2411    if (NumAllocated == NumRegs) {
2412      unsigned RegStart = (i-NumAllocated)+1;
2413      unsigned RegEnd   = i+1;
2414      // Mark all of the allocated registers used.
2415      for (unsigned i = RegStart; i != RegEnd; ++i) {
2416        unsigned Reg = RegClassRegs[i];
2417        Regs.push_back(Reg);
2418        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
2419        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
2420      }
2421
2422      return RegsForValue(Regs, *RC->vt_begin(), VT);
2423    }
2424  }
2425
2426  // Otherwise, we couldn't allocate enough registers for this.
2427  return RegsForValue();
2428}
2429
2430
2431/// visitInlineAsm - Handle a call to an InlineAsm object.
2432///
2433void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
2434  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
2435
2436  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
2437                                                 MVT::Other);
2438
2439  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
2440  std::vector<MVT::ValueType> ConstraintVTs;
2441
2442  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
2443  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
2444  /// if it is a def of that register.
2445  std::vector<SDOperand> AsmNodeOperands;
2446  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
2447  AsmNodeOperands.push_back(AsmStr);
2448
2449  SDOperand Chain = getRoot();
2450  SDOperand Flag;
2451
2452  // We fully assign registers here at isel time.  This is not optimal, but
2453  // should work.  For register classes that correspond to LLVM classes, we
2454  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
2455  // over the constraints, collecting fixed registers that we know we can't use.
2456  std::set<unsigned> OutputRegs, InputRegs;
2457  unsigned OpNum = 1;
2458  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2459    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2460    std::string &ConstraintCode = Constraints[i].Codes[0];
2461
2462    MVT::ValueType OpVT;
2463
2464    // Compute the value type for each operand and add it to ConstraintVTs.
2465    switch (Constraints[i].Type) {
2466    case InlineAsm::isOutput:
2467      if (!Constraints[i].isIndirectOutput) {
2468        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2469        OpVT = TLI.getValueType(I.getType());
2470      } else {
2471        const Type *OpTy = I.getOperand(OpNum)->getType();
2472        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2473        OpNum++;  // Consumes a call operand.
2474      }
2475      break;
2476    case InlineAsm::isInput:
2477      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2478      OpNum++;  // Consumes a call operand.
2479      break;
2480    case InlineAsm::isClobber:
2481      OpVT = MVT::Other;
2482      break;
2483    }
2484
2485    ConstraintVTs.push_back(OpVT);
2486
2487    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2488      continue;  // Not assigned a fixed reg.
2489
2490    // Build a list of regs that this operand uses.  This always has a single
2491    // element for promoted/expanded operands.
2492    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2493                                             false, false,
2494                                             OutputRegs, InputRegs);
2495
2496    switch (Constraints[i].Type) {
2497    case InlineAsm::isOutput:
2498      // We can't assign any other output to this register.
2499      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2500      // If this is an early-clobber output, it cannot be assigned to the same
2501      // value as the input reg.
2502      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2503        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2504      break;
2505    case InlineAsm::isInput:
2506      // We can't assign any other input to this register.
2507      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2508      break;
2509    case InlineAsm::isClobber:
2510      // Clobbered regs cannot be used as inputs or outputs.
2511      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2512      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2513      break;
2514    }
2515  }
2516
2517  // Loop over all of the inputs, copying the operand values into the
2518  // appropriate registers and processing the output regs.
2519  RegsForValue RetValRegs;
2520  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2521  OpNum = 1;
2522
2523  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2524    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2525    std::string &ConstraintCode = Constraints[i].Codes[0];
2526
2527    switch (Constraints[i].Type) {
2528    case InlineAsm::isOutput: {
2529      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2530      if (ConstraintCode.size() == 1)   // not a physreg name.
2531        CTy = TLI.getConstraintType(ConstraintCode[0]);
2532
2533      if (CTy == TargetLowering::C_Memory) {
2534        // Memory output.
2535        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2536
2537        // Check that the operand (the address to store to) isn't a float.
2538        if (!MVT::isInteger(InOperandVal.getValueType()))
2539          assert(0 && "MATCH FAIL!");
2540
2541        if (!Constraints[i].isIndirectOutput)
2542          assert(0 && "MATCH FAIL!");
2543
2544        OpNum++;  // Consumes a call operand.
2545
2546        // Extend/truncate to the right pointer type if needed.
2547        MVT::ValueType PtrType = TLI.getPointerTy();
2548        if (InOperandVal.getValueType() < PtrType)
2549          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2550        else if (InOperandVal.getValueType() > PtrType)
2551          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2552
2553        // Add information to the INLINEASM node to know about this output.
2554        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2555        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2556        AsmNodeOperands.push_back(InOperandVal);
2557        break;
2558      }
2559
2560      // Otherwise, this is a register output.
2561      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2562
2563      // If this is an early-clobber output, or if there is an input
2564      // constraint that matches this, we need to reserve the input register
2565      // so no other inputs allocate to it.
2566      bool UsesInputRegister = false;
2567      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2568        UsesInputRegister = true;
2569
2570      // Copy the output from the appropriate register.  Find a register that
2571      // we can use.
2572      RegsForValue Regs =
2573        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2574                             true, UsesInputRegister,
2575                             OutputRegs, InputRegs);
2576      if (Regs.Regs.empty()) {
2577        cerr << "Couldn't allocate output reg for contraint '"
2578             << ConstraintCode << "'!\n";
2579        exit(1);
2580      }
2581
2582      if (!Constraints[i].isIndirectOutput) {
2583        assert(RetValRegs.Regs.empty() &&
2584               "Cannot have multiple output constraints yet!");
2585        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2586        RetValRegs = Regs;
2587      } else {
2588        IndirectStoresToEmit.push_back(std::make_pair(Regs,
2589                                                      I.getOperand(OpNum)));
2590        OpNum++;  // Consumes a call operand.
2591      }
2592
2593      // Add information to the INLINEASM node to know that this register is
2594      // set.
2595      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
2596      break;
2597    }
2598    case InlineAsm::isInput: {
2599      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2600      OpNum++;  // Consumes a call operand.
2601
2602      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
2603        // If this is required to match an output register we have already set,
2604        // just use its register.
2605        unsigned OperandNo = atoi(ConstraintCode.c_str());
2606
2607        // Scan until we find the definition we already emitted of this operand.
2608        // When we find it, create a RegsForValue operand.
2609        unsigned CurOp = 2;  // The first operand.
2610        for (; OperandNo; --OperandNo) {
2611          // Advance to the next operand.
2612          unsigned NumOps =
2613            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2614          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
2615                  (NumOps & 7) == 4 /*MEM*/) &&
2616                 "Skipped past definitions?");
2617          CurOp += (NumOps>>3)+1;
2618        }
2619
2620        unsigned NumOps =
2621          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2622        assert((NumOps & 7) == 2 /*REGDEF*/ &&
2623               "Skipped past definitions?");
2624
2625        // Add NumOps>>3 registers to MatchedRegs.
2626        RegsForValue MatchedRegs;
2627        MatchedRegs.ValueVT = InOperandVal.getValueType();
2628        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
2629        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
2630          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
2631          MatchedRegs.Regs.push_back(Reg);
2632        }
2633
2634        // Use the produced MatchedRegs object to
2635        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
2636                                  TLI.getPointerTy());
2637        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2638        break;
2639      }
2640
2641      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2642      if (ConstraintCode.size() == 1)   // not a physreg name.
2643        CTy = TLI.getConstraintType(ConstraintCode[0]);
2644
2645      if (CTy == TargetLowering::C_Other) {
2646        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
2647                                                       ConstraintCode[0], DAG);
2648        if (!InOperandVal.Val) {
2649          cerr << "Invalid operand for inline asm constraint '"
2650               << ConstraintCode << "'!\n";
2651          exit(1);
2652        }
2653
2654        // Add information to the INLINEASM node to know about this input.
2655        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2656        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2657        AsmNodeOperands.push_back(InOperandVal);
2658        break;
2659      } else if (CTy == TargetLowering::C_Memory) {
2660        // Memory input.
2661
2662        // Check that the operand isn't a float.
2663        if (!MVT::isInteger(InOperandVal.getValueType()))
2664          assert(0 && "MATCH FAIL!");
2665
2666        // Extend/truncate to the right pointer type if needed.
2667        MVT::ValueType PtrType = TLI.getPointerTy();
2668        if (InOperandVal.getValueType() < PtrType)
2669          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2670        else if (InOperandVal.getValueType() > PtrType)
2671          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2672
2673        // Add information to the INLINEASM node to know about this input.
2674        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2675        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2676        AsmNodeOperands.push_back(InOperandVal);
2677        break;
2678      }
2679
2680      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2681
2682      // Copy the input into the appropriate registers.
2683      RegsForValue InRegs =
2684        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2685                             false, true, OutputRegs, InputRegs);
2686      // FIXME: should be match fail.
2687      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2688
2689      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
2690
2691      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2692      break;
2693    }
2694    case InlineAsm::isClobber: {
2695      RegsForValue ClobberedRegs =
2696        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2697                             OutputRegs, InputRegs);
2698      // Add the clobbered value to the operand list, so that the register
2699      // allocator is aware that the physreg got clobbered.
2700      if (!ClobberedRegs.Regs.empty())
2701        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2702      break;
2703    }
2704    }
2705  }
2706
2707  // Finish up input operands.
2708  AsmNodeOperands[0] = Chain;
2709  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2710
2711  Chain = DAG.getNode(ISD::INLINEASM,
2712                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
2713                      &AsmNodeOperands[0], AsmNodeOperands.size());
2714  Flag = Chain.getValue(1);
2715
2716  // If this asm returns a register value, copy the result from that register
2717  // and set it as the value of the call.
2718  if (!RetValRegs.Regs.empty())
2719    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2720
2721  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2722
2723  // Process indirect outputs, first output all of the flagged copies out of
2724  // physregs.
2725  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2726    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2727    Value *Ptr = IndirectStoresToEmit[i].second;
2728    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2729    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2730  }
2731
2732  // Emit the non-flagged stores from the physregs.
2733  SmallVector<SDOperand, 8> OutChains;
2734  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2735    OutChains.push_back(DAG.getStore(Chain,  StoresToEmit[i].first,
2736                                    getValue(StoresToEmit[i].second),
2737                                    StoresToEmit[i].second, 0));
2738  if (!OutChains.empty())
2739    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2740                        &OutChains[0], OutChains.size());
2741  DAG.setRoot(Chain);
2742}
2743
2744
2745void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2746  SDOperand Src = getValue(I.getOperand(0));
2747
2748  MVT::ValueType IntPtr = TLI.getPointerTy();
2749
2750  if (IntPtr < Src.getValueType())
2751    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2752  else if (IntPtr > Src.getValueType())
2753    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2754
2755  // Scale the source by the type size.
2756  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
2757  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2758                    Src, getIntPtrConstant(ElementSize));
2759
2760  TargetLowering::ArgListTy Args;
2761  TargetLowering::ArgListEntry Entry;
2762  Entry.Node = Src;
2763  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2764  Entry.isSigned = false;
2765  Args.push_back(Entry);
2766
2767  std::pair<SDOperand,SDOperand> Result =
2768    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
2769                    DAG.getExternalSymbol("malloc", IntPtr),
2770                    Args, DAG);
2771  setValue(&I, Result.first);  // Pointers always fit in registers
2772  DAG.setRoot(Result.second);
2773}
2774
2775void SelectionDAGLowering::visitFree(FreeInst &I) {
2776  TargetLowering::ArgListTy Args;
2777  TargetLowering::ArgListEntry Entry;
2778  Entry.Node = getValue(I.getOperand(0));
2779  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2780  Entry.isSigned = false;
2781  Args.push_back(Entry);
2782  MVT::ValueType IntPtr = TLI.getPointerTy();
2783  std::pair<SDOperand,SDOperand> Result =
2784    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
2785                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2786  DAG.setRoot(Result.second);
2787}
2788
2789// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2790// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2791// instructions are special in various ways, which require special support to
2792// insert.  The specified MachineInstr is created but not inserted into any
2793// basic blocks, and the scheduler passes ownership of it to this method.
2794MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2795                                                       MachineBasicBlock *MBB) {
2796  cerr << "If a target marks an instruction with "
2797       << "'usesCustomDAGSchedInserter', it must implement "
2798       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
2799  abort();
2800  return 0;
2801}
2802
2803void SelectionDAGLowering::visitVAStart(CallInst &I) {
2804  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2805                          getValue(I.getOperand(1)),
2806                          DAG.getSrcValue(I.getOperand(1))));
2807}
2808
2809void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2810  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2811                             getValue(I.getOperand(0)),
2812                             DAG.getSrcValue(I.getOperand(0)));
2813  setValue(&I, V);
2814  DAG.setRoot(V.getValue(1));
2815}
2816
2817void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2818  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2819                          getValue(I.getOperand(1)),
2820                          DAG.getSrcValue(I.getOperand(1))));
2821}
2822
2823void SelectionDAGLowering::visitVACopy(CallInst &I) {
2824  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2825                          getValue(I.getOperand(1)),
2826                          getValue(I.getOperand(2)),
2827                          DAG.getSrcValue(I.getOperand(1)),
2828                          DAG.getSrcValue(I.getOperand(2))));
2829}
2830
2831/// ExpandScalarFormalArgs - Recursively expand the formal_argument node, either
2832/// bit_convert it or join a pair of them with a BUILD_PAIR when appropriate.
2833static SDOperand ExpandScalarFormalArgs(MVT::ValueType VT, SDNode *Arg,
2834                                        unsigned &i, SelectionDAG &DAG,
2835                                        TargetLowering &TLI) {
2836  if (TLI.getTypeAction(VT) != TargetLowering::Expand)
2837    return SDOperand(Arg, i++);
2838
2839  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
2840  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
2841  if (NumVals == 1) {
2842    return DAG.getNode(ISD::BIT_CONVERT, VT,
2843                       ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI));
2844  } else if (NumVals == 2) {
2845    SDOperand Lo = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
2846    SDOperand Hi = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
2847    if (!TLI.isLittleEndian())
2848      std::swap(Lo, Hi);
2849    return DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
2850  } else {
2851    // Value scalarized into many values.  Unimp for now.
2852    assert(0 && "Cannot expand i64 -> i16 yet!");
2853  }
2854  return SDOperand();
2855}
2856
2857/// TargetLowering::LowerArguments - This is the default LowerArguments
2858/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
2859/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
2860/// integrated into SDISel.
2861std::vector<SDOperand>
2862TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
2863  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
2864  std::vector<SDOperand> Ops;
2865  Ops.push_back(DAG.getRoot());
2866  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
2867  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
2868
2869  // Add one result value for each formal argument.
2870  std::vector<MVT::ValueType> RetVals;
2871  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2872    MVT::ValueType VT = getValueType(I->getType());
2873
2874    switch (getTypeAction(VT)) {
2875    default: assert(0 && "Unknown type action!");
2876    case Legal:
2877      RetVals.push_back(VT);
2878      break;
2879    case Promote:
2880      RetVals.push_back(getTypeToTransformTo(VT));
2881      break;
2882    case Expand:
2883      if (VT != MVT::Vector) {
2884        // If this is a large integer, it needs to be broken up into small
2885        // integers.  Figure out what the destination type is and how many small
2886        // integers it turns into.
2887        MVT::ValueType NVT = getTypeToExpandTo(VT);
2888        unsigned NumVals = getNumElements(VT);
2889        for (unsigned i = 0; i != NumVals; ++i)
2890          RetVals.push_back(NVT);
2891      } else {
2892        // Otherwise, this is a vector type.  We only support legal vectors
2893        // right now.
2894        unsigned NumElems = cast<PackedType>(I->getType())->getNumElements();
2895        const Type *EltTy = cast<PackedType>(I->getType())->getElementType();
2896
2897        // Figure out if there is a Packed type corresponding to this Vector
2898        // type.  If so, convert to the packed type.
2899        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2900        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2901          RetVals.push_back(TVT);
2902        } else {
2903          assert(0 && "Don't support illegal by-val vector arguments yet!");
2904        }
2905      }
2906      break;
2907    }
2908  }
2909
2910  RetVals.push_back(MVT::Other);
2911
2912  // Create the node.
2913  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
2914                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
2915                               &Ops[0], Ops.size()).Val;
2916
2917  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
2918
2919  // Set up the return result vector.
2920  Ops.clear();
2921  const FunctionType *FTy = F.getFunctionType();
2922  unsigned i = 0;
2923  unsigned Idx = 1;
2924  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
2925      ++I, ++Idx) {
2926    MVT::ValueType VT = getValueType(I->getType());
2927
2928    switch (getTypeAction(VT)) {
2929    default: assert(0 && "Unknown type action!");
2930    case Legal:
2931      Ops.push_back(SDOperand(Result, i++));
2932      break;
2933    case Promote: {
2934      SDOperand Op(Result, i++);
2935      if (MVT::isInteger(VT)) {
2936        if (FTy->paramHasAttr(Idx, FunctionType::SExtAttribute))
2937          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
2938                           DAG.getValueType(VT));
2939        else if (FTy->paramHasAttr(Idx, FunctionType::ZExtAttribute))
2940          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
2941                           DAG.getValueType(VT));
2942        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2943      } else {
2944        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2945        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
2946      }
2947      Ops.push_back(Op);
2948      break;
2949    }
2950    case Expand:
2951      if (VT != MVT::Vector) {
2952        // If this is a large integer or a floating point node that needs to be
2953        // expanded, it needs to be reassembled from small integers.  Figure out
2954        // what the source elt type is and how many small integers it is.
2955        Ops.push_back(ExpandScalarFormalArgs(VT, Result, i, DAG, *this));
2956      } else {
2957        // Otherwise, this is a vector type.  We only support legal vectors
2958        // right now.
2959        const PackedType *PTy = cast<PackedType>(I->getType());
2960        unsigned NumElems = PTy->getNumElements();
2961        const Type *EltTy = PTy->getElementType();
2962
2963        // Figure out if there is a Packed type corresponding to this Vector
2964        // type.  If so, convert to the packed type.
2965        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2966        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2967          SDOperand N = SDOperand(Result, i++);
2968          // Handle copies from generic vectors to registers.
2969          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
2970                          DAG.getConstant(NumElems, MVT::i32),
2971                          DAG.getValueType(getValueType(EltTy)));
2972          Ops.push_back(N);
2973        } else {
2974          assert(0 && "Don't support illegal by-val vector arguments yet!");
2975          abort();
2976        }
2977      }
2978      break;
2979    }
2980  }
2981  return Ops;
2982}
2983
2984
2985/// ExpandScalarCallArgs - Recursively expand call argument node by
2986/// bit_converting it or extract a pair of elements from the larger  node.
2987static void ExpandScalarCallArgs(MVT::ValueType VT, SDOperand Arg,
2988                                 bool isSigned,
2989                                 SmallVector<SDOperand, 32> &Ops,
2990                                 SelectionDAG &DAG,
2991                                 TargetLowering &TLI) {
2992  if (TLI.getTypeAction(VT) != TargetLowering::Expand) {
2993    Ops.push_back(Arg);
2994    Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2995    return;
2996  }
2997
2998  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
2999  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3000  if (NumVals == 1) {
3001    Arg = DAG.getNode(ISD::BIT_CONVERT, EVT, Arg);
3002    ExpandScalarCallArgs(EVT, Arg, isSigned, Ops, DAG, TLI);
3003  } else if (NumVals == 2) {
3004    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3005                               DAG.getConstant(0, TLI.getPointerTy()));
3006    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3007                               DAG.getConstant(1, TLI.getPointerTy()));
3008    if (!TLI.isLittleEndian())
3009      std::swap(Lo, Hi);
3010    ExpandScalarCallArgs(EVT, Lo, isSigned, Ops, DAG, TLI);
3011    ExpandScalarCallArgs(EVT, Hi, isSigned, Ops, DAG, TLI);
3012  } else {
3013    // Value scalarized into many values.  Unimp for now.
3014    assert(0 && "Cannot expand i64 -> i16 yet!");
3015  }
3016}
3017
3018/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3019/// implementation, which just inserts an ISD::CALL node, which is later custom
3020/// lowered by the target to something concrete.  FIXME: When all targets are
3021/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3022std::pair<SDOperand, SDOperand>
3023TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3024                            bool RetTyIsSigned, bool isVarArg,
3025                            unsigned CallingConv, bool isTailCall,
3026                            SDOperand Callee,
3027                            ArgListTy &Args, SelectionDAG &DAG) {
3028  SmallVector<SDOperand, 32> Ops;
3029  Ops.push_back(Chain);   // Op#0 - Chain
3030  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3031  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3032  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3033  Ops.push_back(Callee);
3034
3035  // Handle all of the outgoing arguments.
3036  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3037    MVT::ValueType VT = getValueType(Args[i].Ty);
3038    SDOperand Op = Args[i].Node;
3039    bool isSigned = Args[i].isSigned;
3040    switch (getTypeAction(VT)) {
3041    default: assert(0 && "Unknown type action!");
3042    case Legal:
3043      Ops.push_back(Op);
3044      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
3045      break;
3046    case Promote:
3047      if (MVT::isInteger(VT)) {
3048        unsigned ExtOp = isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3049        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3050      } else {
3051        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3052        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
3053      }
3054      Ops.push_back(Op);
3055      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
3056      break;
3057    case Expand:
3058      if (VT != MVT::Vector) {
3059        // If this is a large integer, it needs to be broken down into small
3060        // integers.  Figure out what the source elt type is and how many small
3061        // integers it is.
3062        ExpandScalarCallArgs(VT, Op, isSigned, Ops, DAG, *this);
3063      } else {
3064        // Otherwise, this is a vector type.  We only support legal vectors
3065        // right now.
3066        const PackedType *PTy = cast<PackedType>(Args[i].Ty);
3067        unsigned NumElems = PTy->getNumElements();
3068        const Type *EltTy = PTy->getElementType();
3069
3070        // Figure out if there is a Packed type corresponding to this Vector
3071        // type.  If so, convert to the packed type.
3072        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3073        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3074          // Insert a VBIT_CONVERT of the MVT::Vector type to the packed type.
3075          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
3076          Ops.push_back(Op);
3077          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
3078        } else {
3079          assert(0 && "Don't support illegal by-val vector call args yet!");
3080          abort();
3081        }
3082      }
3083      break;
3084    }
3085  }
3086
3087  // Figure out the result value types.
3088  SmallVector<MVT::ValueType, 4> RetTys;
3089
3090  if (RetTy != Type::VoidTy) {
3091    MVT::ValueType VT = getValueType(RetTy);
3092    switch (getTypeAction(VT)) {
3093    default: assert(0 && "Unknown type action!");
3094    case Legal:
3095      RetTys.push_back(VT);
3096      break;
3097    case Promote:
3098      RetTys.push_back(getTypeToTransformTo(VT));
3099      break;
3100    case Expand:
3101      if (VT != MVT::Vector) {
3102        // If this is a large integer, it needs to be reassembled from small
3103        // integers.  Figure out what the source elt type is and how many small
3104        // integers it is.
3105        MVT::ValueType NVT = getTypeToExpandTo(VT);
3106        unsigned NumVals = getNumElements(VT);
3107        for (unsigned i = 0; i != NumVals; ++i)
3108          RetTys.push_back(NVT);
3109      } else {
3110        // Otherwise, this is a vector type.  We only support legal vectors
3111        // right now.
3112        const PackedType *PTy = cast<PackedType>(RetTy);
3113        unsigned NumElems = PTy->getNumElements();
3114        const Type *EltTy = PTy->getElementType();
3115
3116        // Figure out if there is a Packed type corresponding to this Vector
3117        // type.  If so, convert to the packed type.
3118        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3119        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3120          RetTys.push_back(TVT);
3121        } else {
3122          assert(0 && "Don't support illegal by-val vector call results yet!");
3123          abort();
3124        }
3125      }
3126    }
3127  }
3128
3129  RetTys.push_back(MVT::Other);  // Always has a chain.
3130
3131  // Finally, create the CALL node.
3132  SDOperand Res = DAG.getNode(ISD::CALL,
3133                              DAG.getVTList(&RetTys[0], RetTys.size()),
3134                              &Ops[0], Ops.size());
3135
3136  // This returns a pair of operands.  The first element is the
3137  // return value for the function (if RetTy is not VoidTy).  The second
3138  // element is the outgoing token chain.
3139  SDOperand ResVal;
3140  if (RetTys.size() != 1) {
3141    MVT::ValueType VT = getValueType(RetTy);
3142    if (RetTys.size() == 2) {
3143      ResVal = Res;
3144
3145      // If this value was promoted, truncate it down.
3146      if (ResVal.getValueType() != VT) {
3147        if (VT == MVT::Vector) {
3148          // Insert a VBITCONVERT to convert from the packed result type to the
3149          // MVT::Vector type.
3150          unsigned NumElems = cast<PackedType>(RetTy)->getNumElements();
3151          const Type *EltTy = cast<PackedType>(RetTy)->getElementType();
3152
3153          // Figure out if there is a Packed type corresponding to this Vector
3154          // type.  If so, convert to the packed type.
3155          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3156          if (TVT != MVT::Other && isTypeLegal(TVT)) {
3157            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
3158            // "N x PTyElementVT" MVT::Vector type.
3159            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
3160                                 DAG.getConstant(NumElems, MVT::i32),
3161                                 DAG.getValueType(getValueType(EltTy)));
3162          } else {
3163            abort();
3164          }
3165        } else if (MVT::isInteger(VT)) {
3166          unsigned AssertOp = ISD::AssertSext;
3167          if (!RetTyIsSigned)
3168            AssertOp = ISD::AssertZext;
3169          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
3170                               DAG.getValueType(VT));
3171          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
3172        } else {
3173          assert(MVT::isFloatingPoint(VT));
3174          if (getTypeAction(VT) == Expand)
3175            ResVal = DAG.getNode(ISD::BIT_CONVERT, VT, ResVal);
3176          else
3177            ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
3178        }
3179      }
3180    } else if (RetTys.size() == 3) {
3181      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
3182                           Res.getValue(0), Res.getValue(1));
3183
3184    } else {
3185      assert(0 && "Case not handled yet!");
3186    }
3187  }
3188
3189  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
3190}
3191
3192
3193
3194// It is always conservatively correct for llvm.returnaddress and
3195// llvm.frameaddress to return 0.
3196//
3197// FIXME: Change this to insert a FRAMEADDR/RETURNADDR node, and have that be
3198// expanded to 0 if the target wants.
3199std::pair<SDOperand, SDOperand>
3200TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
3201                                        unsigned Depth, SelectionDAG &DAG) {
3202  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
3203}
3204
3205SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3206  assert(0 && "LowerOperation not implemented for this target!");
3207  abort();
3208  return SDOperand();
3209}
3210
3211SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
3212                                                 SelectionDAG &DAG) {
3213  assert(0 && "CustomPromoteOperation not implemented for this target!");
3214  abort();
3215  return SDOperand();
3216}
3217
3218void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
3219  unsigned Depth = (unsigned)cast<ConstantInt>(I.getOperand(1))->getZExtValue();
3220  std::pair<SDOperand,SDOperand> Result =
3221    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
3222  setValue(&I, Result.first);
3223  DAG.setRoot(Result.second);
3224}
3225
3226/// getMemsetValue - Vectorized representation of the memset value
3227/// operand.
3228static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
3229                                SelectionDAG &DAG) {
3230  MVT::ValueType CurVT = VT;
3231  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3232    uint64_t Val   = C->getValue() & 255;
3233    unsigned Shift = 8;
3234    while (CurVT != MVT::i8) {
3235      Val = (Val << Shift) | Val;
3236      Shift <<= 1;
3237      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3238    }
3239    return DAG.getConstant(Val, VT);
3240  } else {
3241    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
3242    unsigned Shift = 8;
3243    while (CurVT != MVT::i8) {
3244      Value =
3245        DAG.getNode(ISD::OR, VT,
3246                    DAG.getNode(ISD::SHL, VT, Value,
3247                                DAG.getConstant(Shift, MVT::i8)), Value);
3248      Shift <<= 1;
3249      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3250    }
3251
3252    return Value;
3253  }
3254}
3255
3256/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3257/// used when a memcpy is turned into a memset when the source is a constant
3258/// string ptr.
3259static SDOperand getMemsetStringVal(MVT::ValueType VT,
3260                                    SelectionDAG &DAG, TargetLowering &TLI,
3261                                    std::string &Str, unsigned Offset) {
3262  uint64_t Val = 0;
3263  unsigned MSB = getSizeInBits(VT) / 8;
3264  if (TLI.isLittleEndian())
3265    Offset = Offset + MSB - 1;
3266  for (unsigned i = 0; i != MSB; ++i) {
3267    Val = (Val << 8) | (unsigned char)Str[Offset];
3268    Offset += TLI.isLittleEndian() ? -1 : 1;
3269  }
3270  return DAG.getConstant(Val, VT);
3271}
3272
3273/// getMemBasePlusOffset - Returns base and offset node for the
3274static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
3275                                      SelectionDAG &DAG, TargetLowering &TLI) {
3276  MVT::ValueType VT = Base.getValueType();
3277  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
3278}
3279
3280/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3281/// to replace the memset / memcpy is below the threshold. It also returns the
3282/// types of the sequence of  memory ops to perform memset / memcpy.
3283static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
3284                                     unsigned Limit, uint64_t Size,
3285                                     unsigned Align, TargetLowering &TLI) {
3286  MVT::ValueType VT;
3287
3288  if (TLI.allowsUnalignedMemoryAccesses()) {
3289    VT = MVT::i64;
3290  } else {
3291    switch (Align & 7) {
3292    case 0:
3293      VT = MVT::i64;
3294      break;
3295    case 4:
3296      VT = MVT::i32;
3297      break;
3298    case 2:
3299      VT = MVT::i16;
3300      break;
3301    default:
3302      VT = MVT::i8;
3303      break;
3304    }
3305  }
3306
3307  MVT::ValueType LVT = MVT::i64;
3308  while (!TLI.isTypeLegal(LVT))
3309    LVT = (MVT::ValueType)((unsigned)LVT - 1);
3310  assert(MVT::isInteger(LVT));
3311
3312  if (VT > LVT)
3313    VT = LVT;
3314
3315  unsigned NumMemOps = 0;
3316  while (Size != 0) {
3317    unsigned VTSize = getSizeInBits(VT) / 8;
3318    while (VTSize > Size) {
3319      VT = (MVT::ValueType)((unsigned)VT - 1);
3320      VTSize >>= 1;
3321    }
3322    assert(MVT::isInteger(VT));
3323
3324    if (++NumMemOps > Limit)
3325      return false;
3326    MemOps.push_back(VT);
3327    Size -= VTSize;
3328  }
3329
3330  return true;
3331}
3332
3333void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
3334  SDOperand Op1 = getValue(I.getOperand(1));
3335  SDOperand Op2 = getValue(I.getOperand(2));
3336  SDOperand Op3 = getValue(I.getOperand(3));
3337  SDOperand Op4 = getValue(I.getOperand(4));
3338  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
3339  if (Align == 0) Align = 1;
3340
3341  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
3342    std::vector<MVT::ValueType> MemOps;
3343
3344    // Expand memset / memcpy to a series of load / store ops
3345    // if the size operand falls below a certain threshold.
3346    SmallVector<SDOperand, 8> OutChains;
3347    switch (Op) {
3348    default: break;  // Do nothing for now.
3349    case ISD::MEMSET: {
3350      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
3351                                   Size->getValue(), Align, TLI)) {
3352        unsigned NumMemOps = MemOps.size();
3353        unsigned Offset = 0;
3354        for (unsigned i = 0; i < NumMemOps; i++) {
3355          MVT::ValueType VT = MemOps[i];
3356          unsigned VTSize = getSizeInBits(VT) / 8;
3357          SDOperand Value = getMemsetValue(Op2, VT, DAG);
3358          SDOperand Store = DAG.getStore(getRoot(), Value,
3359                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
3360                                         I.getOperand(1), Offset);
3361          OutChains.push_back(Store);
3362          Offset += VTSize;
3363        }
3364      }
3365      break;
3366    }
3367    case ISD::MEMCPY: {
3368      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
3369                                   Size->getValue(), Align, TLI)) {
3370        unsigned NumMemOps = MemOps.size();
3371        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
3372        GlobalAddressSDNode *G = NULL;
3373        std::string Str;
3374        bool CopyFromStr = false;
3375
3376        if (Op2.getOpcode() == ISD::GlobalAddress)
3377          G = cast<GlobalAddressSDNode>(Op2);
3378        else if (Op2.getOpcode() == ISD::ADD &&
3379                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3380                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
3381          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
3382          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
3383        }
3384        if (G) {
3385          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3386          if (GV && GV->isConstant()) {
3387            Str = GV->getStringValue(false);
3388            if (!Str.empty()) {
3389              CopyFromStr = true;
3390              SrcOff += SrcDelta;
3391            }
3392          }
3393        }
3394
3395        for (unsigned i = 0; i < NumMemOps; i++) {
3396          MVT::ValueType VT = MemOps[i];
3397          unsigned VTSize = getSizeInBits(VT) / 8;
3398          SDOperand Value, Chain, Store;
3399
3400          if (CopyFromStr) {
3401            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3402            Chain = getRoot();
3403            Store =
3404              DAG.getStore(Chain, Value,
3405                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3406                           I.getOperand(1), DstOff);
3407          } else {
3408            Value = DAG.getLoad(VT, getRoot(),
3409                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
3410                        I.getOperand(2), SrcOff);
3411            Chain = Value.getValue(1);
3412            Store =
3413              DAG.getStore(Chain, Value,
3414                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3415                           I.getOperand(1), DstOff);
3416          }
3417          OutChains.push_back(Store);
3418          SrcOff += VTSize;
3419          DstOff += VTSize;
3420        }
3421      }
3422      break;
3423    }
3424    }
3425
3426    if (!OutChains.empty()) {
3427      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3428                  &OutChains[0], OutChains.size()));
3429      return;
3430    }
3431  }
3432
3433  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
3434}
3435
3436//===----------------------------------------------------------------------===//
3437// SelectionDAGISel code
3438//===----------------------------------------------------------------------===//
3439
3440unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
3441  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
3442}
3443
3444void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
3445  // FIXME: we only modify the CFG to split critical edges.  This
3446  // updates dom and loop info.
3447  AU.addRequired<AliasAnalysis>();
3448}
3449
3450
3451/// OptimizeNoopCopyExpression - We have determined that the specified cast
3452/// instruction is a noop copy (e.g. it's casting from one pointer type to
3453/// another, int->uint, or int->sbyte on PPC.
3454///
3455/// Return true if any changes are made.
3456static bool OptimizeNoopCopyExpression(CastInst *CI) {
3457  BasicBlock *DefBB = CI->getParent();
3458
3459  /// InsertedCasts - Only insert a cast in each block once.
3460  std::map<BasicBlock*, CastInst*> InsertedCasts;
3461
3462  bool MadeChange = false;
3463  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
3464       UI != E; ) {
3465    Use &TheUse = UI.getUse();
3466    Instruction *User = cast<Instruction>(*UI);
3467
3468    // Figure out which BB this cast is used in.  For PHI's this is the
3469    // appropriate predecessor block.
3470    BasicBlock *UserBB = User->getParent();
3471    if (PHINode *PN = dyn_cast<PHINode>(User)) {
3472      unsigned OpVal = UI.getOperandNo()/2;
3473      UserBB = PN->getIncomingBlock(OpVal);
3474    }
3475
3476    // Preincrement use iterator so we don't invalidate it.
3477    ++UI;
3478
3479    // If this user is in the same block as the cast, don't change the cast.
3480    if (UserBB == DefBB) continue;
3481
3482    // If we have already inserted a cast into this block, use it.
3483    CastInst *&InsertedCast = InsertedCasts[UserBB];
3484
3485    if (!InsertedCast) {
3486      BasicBlock::iterator InsertPt = UserBB->begin();
3487      while (isa<PHINode>(InsertPt)) ++InsertPt;
3488
3489      InsertedCast =
3490        CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
3491                         InsertPt);
3492      MadeChange = true;
3493    }
3494
3495    // Replace a use of the cast with a use of the new casat.
3496    TheUse = InsertedCast;
3497  }
3498
3499  // If we removed all uses, nuke the cast.
3500  if (CI->use_empty())
3501    CI->eraseFromParent();
3502
3503  return MadeChange;
3504}
3505
3506/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
3507/// casting to the type of GEPI.
3508static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
3509                                         Instruction *GEPI, Value *Ptr,
3510                                         Value *PtrOffset) {
3511  if (V) return V;   // Already computed.
3512
3513  // Figure out the insertion point
3514  BasicBlock::iterator InsertPt;
3515  if (BB == GEPI->getParent()) {
3516    // If GEP is already inserted into BB, insert right after the GEP.
3517    InsertPt = GEPI;
3518    ++InsertPt;
3519  } else {
3520    // Otherwise, insert at the top of BB, after any PHI nodes
3521    InsertPt = BB->begin();
3522    while (isa<PHINode>(InsertPt)) ++InsertPt;
3523  }
3524
3525  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
3526  // BB so that there is only one value live across basic blocks (the cast
3527  // operand).
3528  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
3529    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
3530      Ptr = CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(),
3531                             "", InsertPt);
3532
3533  // Add the offset, cast it to the right type.
3534  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
3535  // Ptr is an integer type, GEPI is pointer type ==> IntToPtr
3536  return V = CastInst::create(Instruction::IntToPtr, Ptr, GEPI->getType(),
3537                              "", InsertPt);
3538}
3539
3540/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
3541/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
3542/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
3543/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
3544/// sink PtrOffset into user blocks where doing so will likely allow us to fold
3545/// the constant add into a load or store instruction.  Additionally, if a user
3546/// is a pointer-pointer cast, we look through it to find its users.
3547static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
3548                                 Constant *PtrOffset, BasicBlock *DefBB,
3549                                 GetElementPtrInst *GEPI,
3550                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
3551  while (!RepPtr->use_empty()) {
3552    Instruction *User = cast<Instruction>(RepPtr->use_back());
3553
3554    // If the user is a Pointer-Pointer cast, recurse. Only BitCast can be
3555    // used for a Pointer-Pointer cast.
3556    if (isa<BitCastInst>(User)) {
3557      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3558
3559      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
3560      // could invalidate an iterator.
3561      User->setOperand(0, UndefValue::get(RepPtr->getType()));
3562      continue;
3563    }
3564
3565    // If this is a load of the pointer, or a store through the pointer, emit
3566    // the increment into the load/store block.
3567    Instruction *NewVal;
3568    if (isa<LoadInst>(User) ||
3569        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
3570      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
3571                                    User->getParent(), GEPI,
3572                                    Ptr, PtrOffset);
3573    } else {
3574      // If this use is not foldable into the addressing mode, use a version
3575      // emitted in the GEP block.
3576      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
3577                                    Ptr, PtrOffset);
3578    }
3579
3580    if (GEPI->getType() != RepPtr->getType()) {
3581      BasicBlock::iterator IP = NewVal;
3582      ++IP;
3583      // NewVal must be a GEP which must be pointer type, so BitCast
3584      NewVal = new BitCastInst(NewVal, RepPtr->getType(), "", IP);
3585    }
3586    User->replaceUsesOfWith(RepPtr, NewVal);
3587  }
3588}
3589
3590
3591/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
3592/// selection, we want to be a bit careful about some things.  In particular, if
3593/// we have a GEP instruction that is used in a different block than it is
3594/// defined, the addressing expression of the GEP cannot be folded into loads or
3595/// stores that use it.  In this case, decompose the GEP and move constant
3596/// indices into blocks that use it.
3597static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
3598                                  const TargetData *TD) {
3599  // If this GEP is only used inside the block it is defined in, there is no
3600  // need to rewrite it.
3601  bool isUsedOutsideDefBB = false;
3602  BasicBlock *DefBB = GEPI->getParent();
3603  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
3604       UI != E; ++UI) {
3605    if (cast<Instruction>(*UI)->getParent() != DefBB) {
3606      isUsedOutsideDefBB = true;
3607      break;
3608    }
3609  }
3610  if (!isUsedOutsideDefBB) return false;
3611
3612  // If this GEP has no non-zero constant indices, there is nothing we can do,
3613  // ignore it.
3614  bool hasConstantIndex = false;
3615  bool hasVariableIndex = false;
3616  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3617       E = GEPI->op_end(); OI != E; ++OI) {
3618    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
3619      if (CI->getZExtValue()) {
3620        hasConstantIndex = true;
3621        break;
3622      }
3623    } else {
3624      hasVariableIndex = true;
3625    }
3626  }
3627
3628  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
3629  if (!hasConstantIndex && !hasVariableIndex) {
3630    /// The GEP operand must be a pointer, so must its result -> BitCast
3631    Value *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
3632                             GEPI->getName(), GEPI);
3633    GEPI->replaceAllUsesWith(NC);
3634    GEPI->eraseFromParent();
3635    return true;
3636  }
3637
3638  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
3639  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
3640    return false;
3641
3642  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
3643  // constant offset (which we now know is non-zero) and deal with it later.
3644  uint64_t ConstantOffset = 0;
3645  const Type *UIntPtrTy = TD->getIntPtrType();
3646  Value *Ptr = new PtrToIntInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
3647  const Type *Ty = GEPI->getOperand(0)->getType();
3648
3649  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3650       E = GEPI->op_end(); OI != E; ++OI) {
3651    Value *Idx = *OI;
3652    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
3653      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3654      if (Field)
3655        ConstantOffset += TD->getStructLayout(StTy)->MemberOffsets[Field];
3656      Ty = StTy->getElementType(Field);
3657    } else {
3658      Ty = cast<SequentialType>(Ty)->getElementType();
3659
3660      // Handle constant subscripts.
3661      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3662        if (CI->getZExtValue() == 0) continue;
3663        ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CI->getSExtValue();
3664        continue;
3665      }
3666
3667      // Ptr = Ptr + Idx * ElementSize;
3668
3669      // Cast Idx to UIntPtrTy if needed.
3670      Idx = CastInst::createIntegerCast(Idx, UIntPtrTy, true/*SExt*/, "", GEPI);
3671
3672      uint64_t ElementSize = TD->getTypeSize(Ty);
3673      // Mask off bits that should not be set.
3674      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3675      Constant *SizeCst = ConstantInt::get(UIntPtrTy, ElementSize);
3676
3677      // Multiply by the element size and add to the base.
3678      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
3679      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
3680    }
3681  }
3682
3683  // Make sure that the offset fits in uintptr_t.
3684  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3685  Constant *PtrOffset = ConstantInt::get(UIntPtrTy, ConstantOffset);
3686
3687  // Okay, we have now emitted all of the variable index parts to the BB that
3688  // the GEP is defined in.  Loop over all of the using instructions, inserting
3689  // an "add Ptr, ConstantOffset" into each block that uses it and update the
3690  // instruction to use the newly computed value, making GEPI dead.  When the
3691  // user is a load or store instruction address, we emit the add into the user
3692  // block, otherwise we use a canonical version right next to the gep (these
3693  // won't be foldable as addresses, so we might as well share the computation).
3694
3695  std::map<BasicBlock*,Instruction*> InsertedExprs;
3696  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3697
3698  // Finally, the GEP is dead, remove it.
3699  GEPI->eraseFromParent();
3700
3701  return true;
3702}
3703
3704
3705/// SplitEdgeNicely - Split the critical edge from TI to it's specified
3706/// successor if it will improve codegen.  We only do this if the successor has
3707/// phi nodes (otherwise critical edges are ok).  If there is already another
3708/// predecessor of the succ that is empty (and thus has no phi nodes), use it
3709/// instead of introducing a new block.
3710static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
3711  BasicBlock *TIBB = TI->getParent();
3712  BasicBlock *Dest = TI->getSuccessor(SuccNum);
3713  assert(isa<PHINode>(Dest->begin()) &&
3714         "This should only be called if Dest has a PHI!");
3715
3716  /// TIPHIValues - This array is lazily computed to determine the values of
3717  /// PHIs in Dest that TI would provide.
3718  std::vector<Value*> TIPHIValues;
3719
3720  // Check to see if Dest has any blocks that can be used as a split edge for
3721  // this terminator.
3722  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
3723    BasicBlock *Pred = *PI;
3724    // To be usable, the pred has to end with an uncond branch to the dest.
3725    BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
3726    if (!PredBr || !PredBr->isUnconditional() ||
3727        // Must be empty other than the branch.
3728        &Pred->front() != PredBr)
3729      continue;
3730
3731    // Finally, since we know that Dest has phi nodes in it, we have to make
3732    // sure that jumping to Pred will have the same affect as going to Dest in
3733    // terms of PHI values.
3734    PHINode *PN;
3735    unsigned PHINo = 0;
3736    bool FoundMatch = true;
3737    for (BasicBlock::iterator I = Dest->begin();
3738         (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
3739      if (PHINo == TIPHIValues.size())
3740        TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
3741
3742      // If the PHI entry doesn't work, we can't use this pred.
3743      if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
3744        FoundMatch = false;
3745        break;
3746      }
3747    }
3748
3749    // If we found a workable predecessor, change TI to branch to Succ.
3750    if (FoundMatch) {
3751      Dest->removePredecessor(TIBB);
3752      TI->setSuccessor(SuccNum, Pred);
3753      return;
3754    }
3755  }
3756
3757  SplitCriticalEdge(TI, SuccNum, P, true);
3758}
3759
3760
3761bool SelectionDAGISel::runOnFunction(Function &Fn) {
3762  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
3763  RegMap = MF.getSSARegMap();
3764  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
3765
3766  // First, split all critical edges.
3767  //
3768  // In this pass we also look for GEP and cast instructions that are used
3769  // across basic blocks and rewrite them to improve basic-block-at-a-time
3770  // selection.
3771  //
3772  bool MadeChange = true;
3773  while (MadeChange) {
3774    MadeChange = false;
3775  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
3776    // Split all critical edges where the dest block has a PHI.
3777    TerminatorInst *BBTI = BB->getTerminator();
3778    if (BBTI->getNumSuccessors() > 1) {
3779      for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
3780        if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
3781            isCriticalEdge(BBTI, i, true))
3782          SplitEdgeNicely(BBTI, i, this);
3783    }
3784
3785
3786    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3787      Instruction *I = BBI++;
3788
3789      if (CallInst *CI = dyn_cast<CallInst>(I)) {
3790        // If we found an inline asm expession, and if the target knows how to
3791        // lower it to normal LLVM code, do so now.
3792        if (isa<InlineAsm>(CI->getCalledValue()))
3793          if (const TargetAsmInfo *TAI =
3794                TLI.getTargetMachine().getTargetAsmInfo()) {
3795            if (TAI->ExpandInlineAsm(CI))
3796              BBI = BB->begin();
3797          }
3798      } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
3799        MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
3800      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
3801        // If the source of the cast is a constant, then this should have
3802        // already been constant folded.  The only reason NOT to constant fold
3803        // it is if something (e.g. LSR) was careful to place the constant
3804        // evaluation in a block other than then one that uses it (e.g. to hoist
3805        // the address of globals out of a loop).  If this is the case, we don't
3806        // want to forward-subst the cast.
3807        if (isa<Constant>(CI->getOperand(0)))
3808          continue;
3809
3810        // If this is a noop copy, sink it into user blocks to reduce the number
3811        // of virtual registers that must be created and coallesced.
3812        MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
3813        MVT::ValueType DstVT = TLI.getValueType(CI->getType());
3814
3815        // This is an fp<->int conversion?
3816        if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
3817          continue;
3818
3819        // If this is an extension, it will be a zero or sign extension, which
3820        // isn't a noop.
3821        if (SrcVT < DstVT) continue;
3822
3823        // If these values will be promoted, find out what they will be promoted
3824        // to.  This helps us consider truncates on PPC as noop copies when they
3825        // are.
3826        if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
3827          SrcVT = TLI.getTypeToTransformTo(SrcVT);
3828        if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
3829          DstVT = TLI.getTypeToTransformTo(DstVT);
3830
3831        // If, after promotion, these are the same types, this is a noop copy.
3832        if (SrcVT == DstVT)
3833          MadeChange |= OptimizeNoopCopyExpression(CI);
3834      }
3835    }
3836  }
3837  }
3838
3839  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
3840
3841  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
3842    SelectBasicBlock(I, MF, FuncInfo);
3843
3844  return true;
3845}
3846
3847SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
3848                                                           unsigned Reg) {
3849  SDOperand Op = getValue(V);
3850  assert((Op.getOpcode() != ISD::CopyFromReg ||
3851          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
3852         "Copy from a reg to the same reg!");
3853
3854  // If this type is not legal, we must make sure to not create an invalid
3855  // register use.
3856  MVT::ValueType SrcVT = Op.getValueType();
3857  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
3858  if (SrcVT == DestVT) {
3859    return DAG.getCopyToReg(getRoot(), Reg, Op);
3860  } else if (SrcVT == MVT::Vector) {
3861    // Handle copies from generic vectors to registers.
3862    MVT::ValueType PTyElementVT, PTyLegalElementVT;
3863    unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
3864                                             PTyElementVT, PTyLegalElementVT);
3865
3866    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
3867    // MVT::Vector type.
3868    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
3869                     DAG.getConstant(NE, MVT::i32),
3870                     DAG.getValueType(PTyElementVT));
3871
3872    // Loop over all of the elements of the resultant vector,
3873    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
3874    // copying them into output registers.
3875    SmallVector<SDOperand, 8> OutChains;
3876    SDOperand Root = getRoot();
3877    for (unsigned i = 0; i != NE; ++i) {
3878      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
3879                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
3880      if (PTyElementVT == PTyLegalElementVT) {
3881        // Elements are legal.
3882        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3883      } else if (PTyLegalElementVT > PTyElementVT) {
3884        // Elements are promoted.
3885        if (MVT::isFloatingPoint(PTyLegalElementVT))
3886          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
3887        else
3888          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
3889        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3890      } else {
3891        // Elements are expanded.
3892        // The src value is expanded into multiple registers.
3893        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3894                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
3895        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3896                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
3897        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
3898        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
3899      }
3900    }
3901    return DAG.getNode(ISD::TokenFactor, MVT::Other,
3902                       &OutChains[0], OutChains.size());
3903  } else if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) {
3904    // The src value is promoted to the register.
3905    if (MVT::isFloatingPoint(SrcVT))
3906      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
3907    else
3908      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
3909    return DAG.getCopyToReg(getRoot(), Reg, Op);
3910  } else  {
3911    DestVT = TLI.getTypeToExpandTo(SrcVT);
3912    unsigned NumVals = TLI.getNumElements(SrcVT);
3913    if (NumVals == 1)
3914      return DAG.getCopyToReg(getRoot(), Reg,
3915                              DAG.getNode(ISD::BIT_CONVERT, DestVT, Op));
3916    assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
3917    // The src value is expanded into multiple registers.
3918    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3919                               Op, DAG.getConstant(0, TLI.getPointerTy()));
3920    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3921                               Op, DAG.getConstant(1, TLI.getPointerTy()));
3922    Op = DAG.getCopyToReg(getRoot(), Reg, Lo);
3923    return DAG.getCopyToReg(Op, Reg+1, Hi);
3924  }
3925}
3926
3927void SelectionDAGISel::
3928LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
3929               std::vector<SDOperand> &UnorderedChains) {
3930  // If this is the entry block, emit arguments.
3931  Function &F = *BB->getParent();
3932  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
3933  SDOperand OldRoot = SDL.DAG.getRoot();
3934  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
3935
3936  unsigned a = 0;
3937  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
3938       AI != E; ++AI, ++a)
3939    if (!AI->use_empty()) {
3940      SDL.setValue(AI, Args[a]);
3941
3942      // If this argument is live outside of the entry block, insert a copy from
3943      // whereever we got it to the vreg that other BB's will reference it as.
3944      if (FuncInfo.ValueMap.count(AI)) {
3945        SDOperand Copy =
3946          SDL.CopyValueToVirtualRegister(AI, FuncInfo.ValueMap[AI]);
3947        UnorderedChains.push_back(Copy);
3948      }
3949    }
3950
3951  // Finally, if the target has anything special to do, allow it to do so.
3952  // FIXME: this should insert code into the DAG!
3953  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
3954}
3955
3956void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
3957       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
3958                                         FunctionLoweringInfo &FuncInfo) {
3959  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
3960
3961  std::vector<SDOperand> UnorderedChains;
3962
3963  // Lower any arguments needed in this block if this is the entry block.
3964  if (LLVMBB == &LLVMBB->getParent()->front())
3965    LowerArguments(LLVMBB, SDL, UnorderedChains);
3966
3967  BB = FuncInfo.MBBMap[LLVMBB];
3968  SDL.setCurrentBasicBlock(BB);
3969
3970  // Lower all of the non-terminator instructions.
3971  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
3972       I != E; ++I)
3973    SDL.visit(*I);
3974
3975  // Ensure that all instructions which are used outside of their defining
3976  // blocks are available as virtual registers.
3977  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
3978    if (!I->use_empty() && !isa<PHINode>(I)) {
3979      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
3980      if (VMI != FuncInfo.ValueMap.end())
3981        UnorderedChains.push_back(
3982                                SDL.CopyValueToVirtualRegister(I, VMI->second));
3983    }
3984
3985  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
3986  // ensure constants are generated when needed.  Remember the virtual registers
3987  // that need to be added to the Machine PHI nodes as input.  We cannot just
3988  // directly add them, because expansion might result in multiple MBB's for one
3989  // BB.  As such, the start of the BB might correspond to a different MBB than
3990  // the end.
3991  //
3992  TerminatorInst *TI = LLVMBB->getTerminator();
3993
3994  // Emit constants only once even if used by multiple PHI nodes.
3995  std::map<Constant*, unsigned> ConstantsOut;
3996
3997  // Vector bool would be better, but vector<bool> is really slow.
3998  std::vector<unsigned char> SuccsHandled;
3999  if (TI->getNumSuccessors())
4000    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4001
4002  // Check successor nodes PHI nodes that expect a constant to be available from
4003  // this block.
4004  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4005    BasicBlock *SuccBB = TI->getSuccessor(succ);
4006    if (!isa<PHINode>(SuccBB->begin())) continue;
4007    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4008
4009    // If this terminator has multiple identical successors (common for
4010    // switches), only handle each succ once.
4011    unsigned SuccMBBNo = SuccMBB->getNumber();
4012    if (SuccsHandled[SuccMBBNo]) continue;
4013    SuccsHandled[SuccMBBNo] = true;
4014
4015    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4016    PHINode *PN;
4017
4018    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4019    // nodes and Machine PHI nodes, but the incoming operands have not been
4020    // emitted yet.
4021    for (BasicBlock::iterator I = SuccBB->begin();
4022         (PN = dyn_cast<PHINode>(I)); ++I) {
4023      // Ignore dead phi's.
4024      if (PN->use_empty()) continue;
4025
4026      unsigned Reg;
4027      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4028
4029      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4030        unsigned &RegOut = ConstantsOut[C];
4031        if (RegOut == 0) {
4032          RegOut = FuncInfo.CreateRegForValue(C);
4033          UnorderedChains.push_back(
4034                           SDL.CopyValueToVirtualRegister(C, RegOut));
4035        }
4036        Reg = RegOut;
4037      } else {
4038        Reg = FuncInfo.ValueMap[PHIOp];
4039        if (Reg == 0) {
4040          assert(isa<AllocaInst>(PHIOp) &&
4041                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4042                 "Didn't codegen value into a register!??");
4043          Reg = FuncInfo.CreateRegForValue(PHIOp);
4044          UnorderedChains.push_back(
4045                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4046        }
4047      }
4048
4049      // Remember that this register needs to added to the machine PHI node as
4050      // the input for this MBB.
4051      MVT::ValueType VT = TLI.getValueType(PN->getType());
4052      unsigned NumElements;
4053      if (VT != MVT::Vector)
4054        NumElements = TLI.getNumElements(VT);
4055      else {
4056        MVT::ValueType VT1,VT2;
4057        NumElements =
4058          TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
4059                                     VT1, VT2);
4060      }
4061      for (unsigned i = 0, e = NumElements; i != e; ++i)
4062        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4063    }
4064  }
4065  ConstantsOut.clear();
4066
4067  // Turn all of the unordered chains into one factored node.
4068  if (!UnorderedChains.empty()) {
4069    SDOperand Root = SDL.getRoot();
4070    if (Root.getOpcode() != ISD::EntryToken) {
4071      unsigned i = 0, e = UnorderedChains.size();
4072      for (; i != e; ++i) {
4073        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4074        if (UnorderedChains[i].Val->getOperand(0) == Root)
4075          break;  // Don't add the root if we already indirectly depend on it.
4076      }
4077
4078      if (i == e)
4079        UnorderedChains.push_back(Root);
4080    }
4081    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4082                            &UnorderedChains[0], UnorderedChains.size()));
4083  }
4084
4085  // Lower the terminator after the copies are emitted.
4086  SDL.visit(*LLVMBB->getTerminator());
4087
4088  // Copy over any CaseBlock records that may now exist due to SwitchInst
4089  // lowering, as well as any jump table information.
4090  SwitchCases.clear();
4091  SwitchCases = SDL.SwitchCases;
4092  JT = SDL.JT;
4093
4094  // Make sure the root of the DAG is up-to-date.
4095  DAG.setRoot(SDL.getRoot());
4096}
4097
4098void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4099  // Get alias analysis for load/store combining.
4100  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4101
4102  // Run the DAG combiner in pre-legalize mode.
4103  DAG.Combine(false, AA);
4104
4105  DOUT << "Lowered selection DAG:\n";
4106  DEBUG(DAG.dump());
4107
4108  // Second step, hack on the DAG until it only uses operations and types that
4109  // the target supports.
4110  DAG.Legalize();
4111
4112  DOUT << "Legalized selection DAG:\n";
4113  DEBUG(DAG.dump());
4114
4115  // Run the DAG combiner in post-legalize mode.
4116  DAG.Combine(true, AA);
4117
4118  if (ViewISelDAGs) DAG.viewGraph();
4119
4120  // Third, instruction select all of the operations to machine code, adding the
4121  // code to the MachineBasicBlock.
4122  InstructionSelectBasicBlock(DAG);
4123
4124  DOUT << "Selected machine code:\n";
4125  DEBUG(BB->dump());
4126}
4127
4128void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4129                                        FunctionLoweringInfo &FuncInfo) {
4130  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4131  {
4132    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
4133    CurDAG = &DAG;
4134
4135    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4136    // types that are not supported by the target.
4137    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4138
4139    // Second step, emit the lowered DAG as machine code.
4140    CodeGenAndEmitDAG(DAG);
4141  }
4142
4143  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4144  // PHI nodes in successors.
4145  if (SwitchCases.empty() && JT.Reg == 0) {
4146    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4147      MachineInstr *PHI = PHINodesToUpdate[i].first;
4148      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4149             "This is not a machine PHI node that we are updating!");
4150      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4151      PHI->addMachineBasicBlockOperand(BB);
4152    }
4153    return;
4154  }
4155
4156  // If the JumpTable record is filled in, then we need to emit a jump table.
4157  // Updating the PHI nodes is tricky in this case, since we need to determine
4158  // whether the PHI is a successor of the range check MBB or the jump table MBB
4159  if (JT.Reg) {
4160    assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
4161    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
4162    CurDAG = &SDAG;
4163    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4164    MachineBasicBlock *RangeBB = BB;
4165    // Set the current basic block to the mbb we wish to insert the code into
4166    BB = JT.MBB;
4167    SDL.setCurrentBasicBlock(BB);
4168    // Emit the code
4169    SDL.visitJumpTable(JT);
4170    SDAG.setRoot(SDL.getRoot());
4171    CodeGenAndEmitDAG(SDAG);
4172    // Update PHI Nodes
4173    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4174      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4175      MachineBasicBlock *PHIBB = PHI->getParent();
4176      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4177             "This is not a machine PHI node that we are updating!");
4178      if (PHIBB == JT.Default) {
4179        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4180        PHI->addMachineBasicBlockOperand(RangeBB);
4181      }
4182      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4183        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4184        PHI->addMachineBasicBlockOperand(BB);
4185      }
4186    }
4187    return;
4188  }
4189
4190  // If the switch block involved a branch to one of the actual successors, we
4191  // need to update PHI nodes in that block.
4192  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4193    MachineInstr *PHI = PHINodesToUpdate[i].first;
4194    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4195           "This is not a machine PHI node that we are updating!");
4196    if (BB->isSuccessor(PHI->getParent())) {
4197      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4198      PHI->addMachineBasicBlockOperand(BB);
4199    }
4200  }
4201
4202  // If we generated any switch lowering information, build and codegen any
4203  // additional DAGs necessary.
4204  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4205    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
4206    CurDAG = &SDAG;
4207    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4208
4209    // Set the current basic block to the mbb we wish to insert the code into
4210    BB = SwitchCases[i].ThisBB;
4211    SDL.setCurrentBasicBlock(BB);
4212
4213    // Emit the code
4214    SDL.visitSwitchCase(SwitchCases[i]);
4215    SDAG.setRoot(SDL.getRoot());
4216    CodeGenAndEmitDAG(SDAG);
4217
4218    // Handle any PHI nodes in successors of this chunk, as if we were coming
4219    // from the original BB before switch expansion.  Note that PHI nodes can
4220    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4221    // handle them the right number of times.
4222    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4223      for (MachineBasicBlock::iterator Phi = BB->begin();
4224           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4225        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4226        for (unsigned pn = 0; ; ++pn) {
4227          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4228          if (PHINodesToUpdate[pn].first == Phi) {
4229            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4230            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4231            break;
4232          }
4233        }
4234      }
4235
4236      // Don't process RHS if same block as LHS.
4237      if (BB == SwitchCases[i].FalseBB)
4238        SwitchCases[i].FalseBB = 0;
4239
4240      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4241      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4242      SwitchCases[i].FalseBB = 0;
4243    }
4244    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4245  }
4246}
4247
4248
4249//===----------------------------------------------------------------------===//
4250/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4251/// target node in the graph.
4252void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4253  if (ViewSchedDAGs) DAG.viewGraph();
4254
4255  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4256
4257  if (!Ctor) {
4258    Ctor = ISHeuristic;
4259    RegisterScheduler::setDefault(Ctor);
4260  }
4261
4262  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4263  BB = SL->Run();
4264  delete SL;
4265}
4266
4267
4268HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4269  return new HazardRecognizer();
4270}
4271
4272//===----------------------------------------------------------------------===//
4273// Helper functions used by the generated instruction selector.
4274//===----------------------------------------------------------------------===//
4275// Calls to these methods are generated by tblgen.
4276
4277/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4278/// the dag combiner simplified the 255, we still want to match.  RHS is the
4279/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4280/// specified in the .td file (e.g. 255).
4281bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4282                                    int64_t DesiredMaskS) {
4283  uint64_t ActualMask = RHS->getValue();
4284  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4285
4286  // If the actual mask exactly matches, success!
4287  if (ActualMask == DesiredMask)
4288    return true;
4289
4290  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4291  if (ActualMask & ~DesiredMask)
4292    return false;
4293
4294  // Otherwise, the DAG Combiner may have proven that the value coming in is
4295  // either already zero or is not demanded.  Check for known zero input bits.
4296  uint64_t NeededMask = DesiredMask & ~ActualMask;
4297  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
4298    return true;
4299
4300  // TODO: check to see if missing bits are just not demanded.
4301
4302  // Otherwise, this pattern doesn't match.
4303  return false;
4304}
4305
4306/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4307/// the dag combiner simplified the 255, we still want to match.  RHS is the
4308/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4309/// specified in the .td file (e.g. 255).
4310bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4311                                    int64_t DesiredMaskS) {
4312  uint64_t ActualMask = RHS->getValue();
4313  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4314
4315  // If the actual mask exactly matches, success!
4316  if (ActualMask == DesiredMask)
4317    return true;
4318
4319  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4320  if (ActualMask & ~DesiredMask)
4321    return false;
4322
4323  // Otherwise, the DAG Combiner may have proven that the value coming in is
4324  // either already zero or is not demanded.  Check for known zero input bits.
4325  uint64_t NeededMask = DesiredMask & ~ActualMask;
4326
4327  uint64_t KnownZero, KnownOne;
4328  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4329
4330  // If all the missing bits in the or are already known to be set, match!
4331  if ((NeededMask & KnownOne) == NeededMask)
4332    return true;
4333
4334  // TODO: check to see if missing bits are just not demanded.
4335
4336  // Otherwise, this pattern doesn't match.
4337  return false;
4338}
4339
4340
4341/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4342/// by tblgen.  Others should not call it.
4343void SelectionDAGISel::
4344SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4345  std::vector<SDOperand> InOps;
4346  std::swap(InOps, Ops);
4347
4348  Ops.push_back(InOps[0]);  // input chain.
4349  Ops.push_back(InOps[1]);  // input asm string.
4350
4351  unsigned i = 2, e = InOps.size();
4352  if (InOps[e-1].getValueType() == MVT::Flag)
4353    --e;  // Don't process a flag operand if it is here.
4354
4355  while (i != e) {
4356    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4357    if ((Flags & 7) != 4 /*MEM*/) {
4358      // Just skip over this operand, copying the operands verbatim.
4359      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4360      i += (Flags >> 3) + 1;
4361    } else {
4362      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4363      // Otherwise, this is a memory operand.  Ask the target to select it.
4364      std::vector<SDOperand> SelOps;
4365      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4366        cerr << "Could not match memory address.  Inline asm failure!\n";
4367        exit(1);
4368      }
4369
4370      // Add this to the output node.
4371      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4372                                          MVT::i32));
4373      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4374      i += 2;
4375    }
4376  }
4377
4378  // Add the flag input back if present.
4379  if (e != InOps.size())
4380    Ops.push_back(InOps.back());
4381}
4382