SelectionDAGISel.cpp revision 6ddf8ed6fe2d0aa5e15f7b9ad7e5049e2223bbd1
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/InlineAsm.h"
23#include "llvm/Instructions.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineDebugInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SchedulerRegistry.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/CodeGen/SSARegMap.h"
35#include "llvm/Target/MRegisterInfo.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Target/TargetFrameInfo.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetLowering.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Target/TargetOptions.h"
42#include "llvm/Transforms/Utils/BasicBlockUtils.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/Compiler.h"
46#include <map>
47#include <set>
48#include <iostream>
49#include <algorithm>
50using namespace llvm;
51
52#ifndef NDEBUG
53static cl::opt<bool>
54ViewISelDAGs("view-isel-dags", cl::Hidden,
55          cl::desc("Pop up a window to show isel dags as they are selected"));
56static cl::opt<bool>
57ViewSchedDAGs("view-sched-dags", cl::Hidden,
58          cl::desc("Pop up a window to show sched dags as they are processed"));
59#else
60static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
61#endif
62
63
64//===---------------------------------------------------------------------===//
65///
66/// RegisterScheduler class - Track the registration of instruction schedulers.
67///
68//===---------------------------------------------------------------------===//
69MachinePassRegistry RegisterScheduler::Registry;
70
71//===---------------------------------------------------------------------===//
72///
73/// ISHeuristic command line option for instruction schedulers.
74///
75//===---------------------------------------------------------------------===//
76namespace {
77  cl::opt<RegisterScheduler::FunctionPassCtor, false,
78          RegisterPassParser<RegisterScheduler> >
79  ISHeuristic("sched",
80              cl::init(&createDefaultScheduler),
81              cl::desc("Instruction schedulers available:"));
82
83  static RegisterScheduler
84  defaultListDAGScheduler("default", "  Best scheduler for the target",
85                          createDefaultScheduler);
86} // namespace
87
88namespace {
89  /// RegsForValue - This struct represents the physical registers that a
90  /// particular value is assigned and the type information about the value.
91  /// This is needed because values can be promoted into larger registers and
92  /// expanded into multiple smaller registers than the value.
93  struct VISIBILITY_HIDDEN RegsForValue {
94    /// Regs - This list hold the register (for legal and promoted values)
95    /// or register set (for expanded values) that the value should be assigned
96    /// to.
97    std::vector<unsigned> Regs;
98
99    /// RegVT - The value type of each register.
100    ///
101    MVT::ValueType RegVT;
102
103    /// ValueVT - The value type of the LLVM value, which may be promoted from
104    /// RegVT or made from merging the two expanded parts.
105    MVT::ValueType ValueVT;
106
107    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
108
109    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
110      : RegVT(regvt), ValueVT(valuevt) {
111        Regs.push_back(Reg);
112    }
113    RegsForValue(const std::vector<unsigned> &regs,
114                 MVT::ValueType regvt, MVT::ValueType valuevt)
115      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
116    }
117
118    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
119    /// this value and returns the result as a ValueVT value.  This uses
120    /// Chain/Flag as the input and updates them for the output Chain/Flag.
121    SDOperand getCopyFromRegs(SelectionDAG &DAG,
122                              SDOperand &Chain, SDOperand &Flag) const;
123
124    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
125    /// specified value into the registers specified by this object.  This uses
126    /// Chain/Flag as the input and updates them for the output Chain/Flag.
127    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
128                       SDOperand &Chain, SDOperand &Flag,
129                       MVT::ValueType PtrVT) const;
130
131    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
132    /// operand list.  This adds the code marker and includes the number of
133    /// values added into it.
134    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
135                              std::vector<SDOperand> &Ops) const;
136  };
137}
138
139namespace llvm {
140  //===--------------------------------------------------------------------===//
141  /// createDefaultScheduler - This creates an instruction scheduler appropriate
142  /// for the target.
143  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
144                                      SelectionDAG *DAG,
145                                      MachineBasicBlock *BB) {
146    TargetLowering &TLI = IS->getTargetLowering();
147
148    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
149      return createTDListDAGScheduler(IS, DAG, BB);
150    } else {
151      assert(TLI.getSchedulingPreference() ==
152           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
153      return createBURRListDAGScheduler(IS, DAG, BB);
154    }
155  }
156
157
158  //===--------------------------------------------------------------------===//
159  /// FunctionLoweringInfo - This contains information that is global to a
160  /// function that is used when lowering a region of the function.
161  class FunctionLoweringInfo {
162  public:
163    TargetLowering &TLI;
164    Function &Fn;
165    MachineFunction &MF;
166    SSARegMap *RegMap;
167
168    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
169
170    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
171    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
172
173    /// ValueMap - Since we emit code for the function a basic block at a time,
174    /// we must remember which virtual registers hold the values for
175    /// cross-basic-block values.
176    std::map<const Value*, unsigned> ValueMap;
177
178    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
179    /// the entry block.  This allows the allocas to be efficiently referenced
180    /// anywhere in the function.
181    std::map<const AllocaInst*, int> StaticAllocaMap;
182
183    unsigned MakeReg(MVT::ValueType VT) {
184      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
185    }
186
187    unsigned CreateRegForValue(const Value *V);
188
189    unsigned InitializeRegForValue(const Value *V) {
190      unsigned &R = ValueMap[V];
191      assert(R == 0 && "Already initialized this value register!");
192      return R = CreateRegForValue(V);
193    }
194  };
195}
196
197/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
198/// PHI nodes or outside of the basic block that defines it, or used by a
199/// switch instruction, which may expand to multiple basic blocks.
200static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
201  if (isa<PHINode>(I)) return true;
202  BasicBlock *BB = I->getParent();
203  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
204    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
205        isa<SwitchInst>(*UI))
206      return true;
207  return false;
208}
209
210/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
211/// entry block, return true.  This includes arguments used by switches, since
212/// the switch may expand into multiple basic blocks.
213static bool isOnlyUsedInEntryBlock(Argument *A) {
214  BasicBlock *Entry = A->getParent()->begin();
215  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
216    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
217      return false;  // Use not in entry block.
218  return true;
219}
220
221FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
222                                           Function &fn, MachineFunction &mf)
223    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
224
225  // Create a vreg for each argument register that is not dead and is used
226  // outside of the entry block for the function.
227  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
228       AI != E; ++AI)
229    if (!isOnlyUsedInEntryBlock(AI))
230      InitializeRegForValue(AI);
231
232  // Initialize the mapping of values to registers.  This is only set up for
233  // instruction values that are used outside of the block that defines
234  // them.
235  Function::iterator BB = Fn.begin(), EB = Fn.end();
236  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
237    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
238      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
239        const Type *Ty = AI->getAllocatedType();
240        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
241        unsigned Align =
242          std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
243                   AI->getAlignment());
244
245        // If the alignment of the value is smaller than the size of the value,
246        // and if the size of the value is particularly small (<= 8 bytes),
247        // round up to the size of the value for potentially better performance.
248        //
249        // FIXME: This could be made better with a preferred alignment hook in
250        // TargetData.  It serves primarily to 8-byte align doubles for X86.
251        if (Align < TySize && TySize <= 8) Align = TySize;
252        TySize *= CUI->getValue();   // Get total allocated size.
253        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
254        StaticAllocaMap[AI] =
255          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
256      }
257
258  for (; BB != EB; ++BB)
259    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
260      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
261        if (!isa<AllocaInst>(I) ||
262            !StaticAllocaMap.count(cast<AllocaInst>(I)))
263          InitializeRegForValue(I);
264
265  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
266  // also creates the initial PHI MachineInstrs, though none of the input
267  // operands are populated.
268  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
269    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
270    MBBMap[BB] = MBB;
271    MF.getBasicBlockList().push_back(MBB);
272
273    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
274    // appropriate.
275    PHINode *PN;
276    for (BasicBlock::iterator I = BB->begin();
277         (PN = dyn_cast<PHINode>(I)); ++I)
278      if (!PN->use_empty()) {
279        MVT::ValueType VT = TLI.getValueType(PN->getType());
280        unsigned NumElements;
281        if (VT != MVT::Vector)
282          NumElements = TLI.getNumElements(VT);
283        else {
284          MVT::ValueType VT1,VT2;
285          NumElements =
286            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
287                                       VT1, VT2);
288        }
289        unsigned PHIReg = ValueMap[PN];
290        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
291        for (unsigned i = 0; i != NumElements; ++i)
292          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
293      }
294  }
295}
296
297/// CreateRegForValue - Allocate the appropriate number of virtual registers of
298/// the correctly promoted or expanded types.  Assign these registers
299/// consecutive vreg numbers and return the first assigned number.
300unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
301  MVT::ValueType VT = TLI.getValueType(V->getType());
302
303  // The number of multiples of registers that we need, to, e.g., split up
304  // a <2 x int64> -> 4 x i32 registers.
305  unsigned NumVectorRegs = 1;
306
307  // If this is a packed type, figure out what type it will decompose into
308  // and how many of the elements it will use.
309  if (VT == MVT::Vector) {
310    const PackedType *PTy = cast<PackedType>(V->getType());
311    unsigned NumElts = PTy->getNumElements();
312    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
313
314    // Divide the input until we get to a supported size.  This will always
315    // end with a scalar if the target doesn't support vectors.
316    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
317      NumElts >>= 1;
318      NumVectorRegs <<= 1;
319    }
320    if (NumElts == 1)
321      VT = EltTy;
322    else
323      VT = getVectorType(EltTy, NumElts);
324  }
325
326  // The common case is that we will only create one register for this
327  // value.  If we have that case, create and return the virtual register.
328  unsigned NV = TLI.getNumElements(VT);
329  if (NV == 1) {
330    // If we are promoting this value, pick the next largest supported type.
331    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
332    unsigned Reg = MakeReg(PromotedType);
333    // If this is a vector of supported or promoted types (e.g. 4 x i16),
334    // create all of the registers.
335    for (unsigned i = 1; i != NumVectorRegs; ++i)
336      MakeReg(PromotedType);
337    return Reg;
338  }
339
340  // If this value is represented with multiple target registers, make sure
341  // to create enough consecutive registers of the right (smaller) type.
342  unsigned NT = VT-1;  // Find the type to use.
343  while (TLI.getNumElements((MVT::ValueType)NT) != 1)
344    --NT;
345
346  unsigned R = MakeReg((MVT::ValueType)NT);
347  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
348    MakeReg((MVT::ValueType)NT);
349  return R;
350}
351
352//===----------------------------------------------------------------------===//
353/// SelectionDAGLowering - This is the common target-independent lowering
354/// implementation that is parameterized by a TargetLowering object.
355/// Also, targets can overload any lowering method.
356///
357namespace llvm {
358class SelectionDAGLowering {
359  MachineBasicBlock *CurMBB;
360
361  std::map<const Value*, SDOperand> NodeMap;
362
363  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
364  /// them up and then emit token factor nodes when possible.  This allows us to
365  /// get simple disambiguation between loads without worrying about alias
366  /// analysis.
367  std::vector<SDOperand> PendingLoads;
368
369  /// Case - A pair of values to record the Value for a switch case, and the
370  /// case's target basic block.
371  typedef std::pair<Constant*, MachineBasicBlock*> Case;
372  typedef std::vector<Case>::iterator              CaseItr;
373  typedef std::pair<CaseItr, CaseItr>              CaseRange;
374
375  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
376  /// of conditional branches.
377  struct CaseRec {
378    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
379    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
380
381    /// CaseBB - The MBB in which to emit the compare and branch
382    MachineBasicBlock *CaseBB;
383    /// LT, GE - If nonzero, we know the current case value must be less-than or
384    /// greater-than-or-equal-to these Constants.
385    Constant *LT;
386    Constant *GE;
387    /// Range - A pair of iterators representing the range of case values to be
388    /// processed at this point in the binary search tree.
389    CaseRange Range;
390  };
391
392  /// The comparison function for sorting Case values.
393  struct CaseCmp {
394    bool operator () (const Case& C1, const Case& C2) {
395      if (const ConstantUInt* U1 = dyn_cast<const ConstantUInt>(C1.first))
396        return U1->getValue() < cast<const ConstantUInt>(C2.first)->getValue();
397
398      const ConstantSInt* S1 = dyn_cast<const ConstantSInt>(C1.first);
399      return S1->getValue() < cast<const ConstantSInt>(C2.first)->getValue();
400    }
401  };
402
403public:
404  // TLI - This is information that describes the available target features we
405  // need for lowering.  This indicates when operations are unavailable,
406  // implemented with a libcall, etc.
407  TargetLowering &TLI;
408  SelectionDAG &DAG;
409  const TargetData *TD;
410
411  /// SwitchCases - Vector of CaseBlock structures used to communicate
412  /// SwitchInst code generation information.
413  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
414  SelectionDAGISel::JumpTable JT;
415
416  /// FuncInfo - Information about the function as a whole.
417  ///
418  FunctionLoweringInfo &FuncInfo;
419
420  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
421                       FunctionLoweringInfo &funcinfo)
422    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
423      JT(0,0,0,0), FuncInfo(funcinfo) {
424  }
425
426  /// getRoot - Return the current virtual root of the Selection DAG.
427  ///
428  SDOperand getRoot() {
429    if (PendingLoads.empty())
430      return DAG.getRoot();
431
432    if (PendingLoads.size() == 1) {
433      SDOperand Root = PendingLoads[0];
434      DAG.setRoot(Root);
435      PendingLoads.clear();
436      return Root;
437    }
438
439    // Otherwise, we have to make a token factor node.
440    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
441                                 &PendingLoads[0], PendingLoads.size());
442    PendingLoads.clear();
443    DAG.setRoot(Root);
444    return Root;
445  }
446
447  void visit(Instruction &I) { visit(I.getOpcode(), I); }
448
449  void visit(unsigned Opcode, User &I) {
450    switch (Opcode) {
451    default: assert(0 && "Unknown instruction type encountered!");
452             abort();
453      // Build the switch statement using the Instruction.def file.
454#define HANDLE_INST(NUM, OPCODE, CLASS) \
455    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
456#include "llvm/Instruction.def"
457    }
458  }
459
460  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
461
462  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
463                        SDOperand SrcValue, SDOperand Root,
464                        bool isVolatile);
465
466  SDOperand getIntPtrConstant(uint64_t Val) {
467    return DAG.getConstant(Val, TLI.getPointerTy());
468  }
469
470  SDOperand getValue(const Value *V);
471
472  const SDOperand &setValue(const Value *V, SDOperand NewN) {
473    SDOperand &N = NodeMap[V];
474    assert(N.Val == 0 && "Already set a value for this node!");
475    return N = NewN;
476  }
477
478  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
479                                    MVT::ValueType VT,
480                                    bool OutReg, bool InReg,
481                                    std::set<unsigned> &OutputRegs,
482                                    std::set<unsigned> &InputRegs);
483
484  // Terminator instructions.
485  void visitRet(ReturnInst &I);
486  void visitBr(BranchInst &I);
487  void visitSwitch(SwitchInst &I);
488  void visitUnreachable(UnreachableInst &I) { /* noop */ }
489
490  // Helper for visitSwitch
491  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
492  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
493
494  // These all get lowered before this pass.
495  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
496  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
497
498  void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
499  void visitShift(User &I, unsigned Opcode);
500  void visitAdd(User &I) {
501    visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD);
502  }
503  void visitSub(User &I);
504  void visitMul(User &I) {
505    visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL);
506  }
507  void visitDiv(User &I) {
508    const Type *Ty = I.getType();
509    visitBinary(I,
510                Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV,
511                Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV);
512  }
513  void visitRem(User &I) {
514    const Type *Ty = I.getType();
515    visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
516  }
517  void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); }
518  void visitOr (User &I) { visitBinary(I, ISD::OR,  0, ISD::VOR); }
519  void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); }
520  void visitShl(User &I) { visitShift(I, ISD::SHL); }
521  void visitShr(User &I) {
522    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
523  }
524
525  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc,
526                  ISD::CondCode FPOpc);
527  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ,
528                                        ISD::SETOEQ); }
529  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE,
530                                        ISD::SETUNE); }
531  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE,
532                                        ISD::SETOLE); }
533  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE,
534                                        ISD::SETOGE); }
535  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT,
536                                        ISD::SETOLT); }
537  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT,
538                                        ISD::SETOGT); }
539
540  void visitExtractElement(User &I);
541  void visitInsertElement(User &I);
542  void visitShuffleVector(User &I);
543
544  void visitGetElementPtr(User &I);
545  void visitCast(User &I);
546  void visitSelect(User &I);
547
548  void visitMalloc(MallocInst &I);
549  void visitFree(FreeInst &I);
550  void visitAlloca(AllocaInst &I);
551  void visitLoad(LoadInst &I);
552  void visitStore(StoreInst &I);
553  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
554  void visitCall(CallInst &I);
555  void visitInlineAsm(CallInst &I);
556  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
557  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
558
559  void visitVAStart(CallInst &I);
560  void visitVAArg(VAArgInst &I);
561  void visitVAEnd(CallInst &I);
562  void visitVACopy(CallInst &I);
563  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
564
565  void visitMemIntrinsic(CallInst &I, unsigned Op);
566
567  void visitUserOp1(Instruction &I) {
568    assert(0 && "UserOp1 should not exist at instruction selection time!");
569    abort();
570  }
571  void visitUserOp2(Instruction &I) {
572    assert(0 && "UserOp2 should not exist at instruction selection time!");
573    abort();
574  }
575};
576} // end namespace llvm
577
578SDOperand SelectionDAGLowering::getValue(const Value *V) {
579  SDOperand &N = NodeMap[V];
580  if (N.Val) return N;
581
582  const Type *VTy = V->getType();
583  MVT::ValueType VT = TLI.getValueType(VTy);
584  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
585    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
586      visit(CE->getOpcode(), *CE);
587      assert(N.Val && "visit didn't populate the ValueMap!");
588      return N;
589    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
590      return N = DAG.getGlobalAddress(GV, VT);
591    } else if (isa<ConstantPointerNull>(C)) {
592      return N = DAG.getConstant(0, TLI.getPointerTy());
593    } else if (isa<UndefValue>(C)) {
594      if (!isa<PackedType>(VTy))
595        return N = DAG.getNode(ISD::UNDEF, VT);
596
597      // Create a VBUILD_VECTOR of undef nodes.
598      const PackedType *PTy = cast<PackedType>(VTy);
599      unsigned NumElements = PTy->getNumElements();
600      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
601
602      SmallVector<SDOperand, 8> Ops;
603      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
604
605      // Create a VConstant node with generic Vector type.
606      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
607      Ops.push_back(DAG.getValueType(PVT));
608      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
609                             &Ops[0], Ops.size());
610    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
611      return N = DAG.getConstantFP(CFP->getValue(), VT);
612    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
613      unsigned NumElements = PTy->getNumElements();
614      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
615
616      // Now that we know the number and type of the elements, push a
617      // Constant or ConstantFP node onto the ops list for each element of
618      // the packed constant.
619      SmallVector<SDOperand, 8> Ops;
620      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
621        for (unsigned i = 0; i != NumElements; ++i)
622          Ops.push_back(getValue(CP->getOperand(i)));
623      } else {
624        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
625        SDOperand Op;
626        if (MVT::isFloatingPoint(PVT))
627          Op = DAG.getConstantFP(0, PVT);
628        else
629          Op = DAG.getConstant(0, PVT);
630        Ops.assign(NumElements, Op);
631      }
632
633      // Create a VBUILD_VECTOR node with generic Vector type.
634      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
635      Ops.push_back(DAG.getValueType(PVT));
636      return N = DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector,&Ops[0],Ops.size());
637    } else {
638      // Canonicalize all constant ints to be unsigned.
639      return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
640    }
641  }
642
643  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
644    std::map<const AllocaInst*, int>::iterator SI =
645    FuncInfo.StaticAllocaMap.find(AI);
646    if (SI != FuncInfo.StaticAllocaMap.end())
647      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
648  }
649
650  std::map<const Value*, unsigned>::const_iterator VMI =
651      FuncInfo.ValueMap.find(V);
652  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
653
654  unsigned InReg = VMI->second;
655
656  // If this type is not legal, make it so now.
657  if (VT != MVT::Vector) {
658    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
659
660    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
661    if (DestVT < VT) {
662      // Source must be expanded.  This input value is actually coming from the
663      // register pair VMI->second and VMI->second+1.
664      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
665                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
666    } else if (DestVT > VT) { // Promotion case
667      if (MVT::isFloatingPoint(VT))
668        N = DAG.getNode(ISD::FP_ROUND, VT, N);
669      else
670        N = DAG.getNode(ISD::TRUNCATE, VT, N);
671    }
672  } else {
673    // Otherwise, if this is a vector, make it available as a generic vector
674    // here.
675    MVT::ValueType PTyElementVT, PTyLegalElementVT;
676    const PackedType *PTy = cast<PackedType>(VTy);
677    unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT,
678                                             PTyLegalElementVT);
679
680    // Build a VBUILD_VECTOR with the input registers.
681    SmallVector<SDOperand, 8> Ops;
682    if (PTyElementVT == PTyLegalElementVT) {
683      // If the value types are legal, just VBUILD the CopyFromReg nodes.
684      for (unsigned i = 0; i != NE; ++i)
685        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
686                                         PTyElementVT));
687    } else if (PTyElementVT < PTyLegalElementVT) {
688      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
689      for (unsigned i = 0; i != NE; ++i) {
690        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
691                                          PTyElementVT);
692        if (MVT::isFloatingPoint(PTyElementVT))
693          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
694        else
695          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
696        Ops.push_back(Op);
697      }
698    } else {
699      // If the register was expanded, use BUILD_PAIR.
700      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
701      for (unsigned i = 0; i != NE/2; ++i) {
702        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
703                                           PTyElementVT);
704        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
705                                           PTyElementVT);
706        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
707      }
708    }
709
710    Ops.push_back(DAG.getConstant(NE, MVT::i32));
711    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
712    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
713
714    // Finally, use a VBIT_CONVERT to make this available as the appropriate
715    // vector type.
716    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
717                    DAG.getConstant(PTy->getNumElements(),
718                                    MVT::i32),
719                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
720  }
721
722  return N;
723}
724
725
726void SelectionDAGLowering::visitRet(ReturnInst &I) {
727  if (I.getNumOperands() == 0) {
728    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
729    return;
730  }
731  SmallVector<SDOperand, 8> NewValues;
732  NewValues.push_back(getRoot());
733  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
734    SDOperand RetOp = getValue(I.getOperand(i));
735    bool isSigned = I.getOperand(i)->getType()->isSigned();
736
737    // If this is an integer return value, we need to promote it ourselves to
738    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
739    // than sign/zero.
740    // FIXME: C calling convention requires the return type to be promoted to
741    // at least 32-bit. But this is not necessary for non-C calling conventions.
742    if (MVT::isInteger(RetOp.getValueType()) &&
743        RetOp.getValueType() < MVT::i64) {
744      MVT::ValueType TmpVT;
745      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
746        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
747      else
748        TmpVT = MVT::i32;
749
750      if (isSigned)
751        RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
752      else
753        RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
754    }
755    NewValues.push_back(RetOp);
756    NewValues.push_back(DAG.getConstant(isSigned, MVT::i32));
757  }
758  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
759                          &NewValues[0], NewValues.size()));
760}
761
762void SelectionDAGLowering::visitBr(BranchInst &I) {
763  // Update machine-CFG edges.
764  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
765  CurMBB->addSuccessor(Succ0MBB);
766
767  // Figure out which block is immediately after the current one.
768  MachineBasicBlock *NextBlock = 0;
769  MachineFunction::iterator BBI = CurMBB;
770  if (++BBI != CurMBB->getParent()->end())
771    NextBlock = BBI;
772
773  if (I.isUnconditional()) {
774    // If this is not a fall-through branch, emit the branch.
775    if (Succ0MBB != NextBlock)
776      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
777                              DAG.getBasicBlock(Succ0MBB)));
778  } else {
779    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
780    CurMBB->addSuccessor(Succ1MBB);
781
782    SDOperand Cond = getValue(I.getCondition());
783    if (Succ1MBB == NextBlock) {
784      // If the condition is false, fall through.  This means we should branch
785      // if the condition is true to Succ #0.
786      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
787                              Cond, DAG.getBasicBlock(Succ0MBB)));
788    } else if (Succ0MBB == NextBlock) {
789      // If the condition is true, fall through.  This means we should branch if
790      // the condition is false to Succ #1.  Invert the condition first.
791      SDOperand True = DAG.getConstant(1, Cond.getValueType());
792      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
793      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
794                              Cond, DAG.getBasicBlock(Succ1MBB)));
795    } else {
796      std::vector<SDOperand> Ops;
797      Ops.push_back(getRoot());
798      // If the false case is the current basic block, then this is a self
799      // loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it
800      // adds an extra instruction in the loop.  Instead, invert the
801      // condition and emit "Loop: ... br!cond Loop; br Out.
802      if (CurMBB == Succ1MBB) {
803        std::swap(Succ0MBB, Succ1MBB);
804        SDOperand True = DAG.getConstant(1, Cond.getValueType());
805        Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
806      }
807      SDOperand True = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
808                                   DAG.getBasicBlock(Succ0MBB));
809      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, True,
810                              DAG.getBasicBlock(Succ1MBB)));
811    }
812  }
813}
814
815/// visitSwitchCase - Emits the necessary code to represent a single node in
816/// the binary search tree resulting from lowering a switch instruction.
817void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
818  SDOperand SwitchOp = getValue(CB.SwitchV);
819  SDOperand CaseOp = getValue(CB.CaseC);
820  SDOperand Cond = DAG.getSetCC(MVT::i1, SwitchOp, CaseOp, CB.CC);
821
822  // Set NextBlock to be the MBB immediately after the current one, if any.
823  // This is used to avoid emitting unnecessary branches to the next block.
824  MachineBasicBlock *NextBlock = 0;
825  MachineFunction::iterator BBI = CurMBB;
826  if (++BBI != CurMBB->getParent()->end())
827    NextBlock = BBI;
828
829  // If the lhs block is the next block, invert the condition so that we can
830  // fall through to the lhs instead of the rhs block.
831  if (CB.LHSBB == NextBlock) {
832    std::swap(CB.LHSBB, CB.RHSBB);
833    SDOperand True = DAG.getConstant(1, Cond.getValueType());
834    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
835  }
836  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
837                                 DAG.getBasicBlock(CB.LHSBB));
838  if (CB.RHSBB == NextBlock)
839    DAG.setRoot(BrCond);
840  else
841    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
842                            DAG.getBasicBlock(CB.RHSBB)));
843  // Update successor info
844  CurMBB->addSuccessor(CB.LHSBB);
845  CurMBB->addSuccessor(CB.RHSBB);
846}
847
848/// visitSwitchCase - Emits the necessary code to represent a single node in
849/// the binary search tree resulting from lowering a switch instruction.
850void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
851  // FIXME: Need to emit different code for PIC vs. Non-PIC, specifically,
852  // we need to add the address of the jump table to the value loaded, since
853  // the entries in the jump table will be differences rather than absolute
854  // addresses.
855
856  // Emit the code for the jump table
857  MVT::ValueType PTy = TLI.getPointerTy();
858  assert((PTy == MVT::i32 || PTy == MVT::i64) &&
859         "Jump table entries are 32-bit values");
860  // PIC jump table entries are 32-bit values.
861  unsigned EntrySize =
862    (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_)
863    ? 4 : MVT::getSizeInBits(PTy)/8;
864  SDOperand Copy = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
865  SDOperand IDX = DAG.getNode(ISD::MUL, PTy, Copy,
866                              DAG.getConstant(EntrySize, PTy));
867  SDOperand TAB = DAG.getJumpTable(JT.JTI,PTy);
868  SDOperand ADD = DAG.getNode(ISD::ADD, PTy, IDX, TAB);
869  SDOperand LD  = DAG.getLoad(MVT::i32, Copy.getValue(1), ADD,
870                              DAG.getSrcValue(0));
871  if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
872    ADD = DAG.getNode(ISD::ADD, PTy,
873        ((PTy != MVT::i32) ? DAG.getNode(ISD::SIGN_EXTEND, PTy, LD) : LD), TAB);
874    DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), ADD));
875  } else {
876    DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), LD));
877  }
878}
879
880void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
881  // Figure out which block is immediately after the current one.
882  MachineBasicBlock *NextBlock = 0;
883  MachineFunction::iterator BBI = CurMBB;
884  if (++BBI != CurMBB->getParent()->end())
885    NextBlock = BBI;
886
887  // If there is only the default destination, branch to it if it is not the
888  // next basic block.  Otherwise, just fall through.
889  if (I.getNumOperands() == 2) {
890    // Update machine-CFG edges.
891    MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[I.getDefaultDest()];
892    // If this is not a fall-through branch, emit the branch.
893    if (DefaultMBB != NextBlock)
894      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
895                              DAG.getBasicBlock(DefaultMBB)));
896    CurMBB->addSuccessor(DefaultMBB);
897    return;
898  }
899
900  // If there are any non-default case statements, create a vector of Cases
901  // representing each one, and sort the vector so that we can efficiently
902  // create a binary search tree from them.
903  std::vector<Case> Cases;
904  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
905    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
906    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
907  }
908  std::sort(Cases.begin(), Cases.end(), CaseCmp());
909
910  // Get the Value to be switched on and default basic blocks, which will be
911  // inserted into CaseBlock records, representing basic blocks in the binary
912  // search tree.
913  Value *SV = I.getOperand(0);
914  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
915
916  // Get the MachineFunction which holds the current MBB.  This is used during
917  // emission of jump tables, and when inserting any additional MBBs necessary
918  // to represent the switch.
919  MachineFunction *CurMF = CurMBB->getParent();
920  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
921
922  // If the switch has more than 5 blocks, and at least 31.25% dense, and the
923  // target supports indirect branches, then emit a jump table rather than
924  // lowering the switch to a binary tree of conditional branches.
925  if (TLI.isOperationLegal(ISD::BRIND, TLI.getPointerTy()) &&
926      Cases.size() > 5) {
927    uint64_t First = cast<ConstantIntegral>(Cases.front().first)->getRawValue();
928    uint64_t Last  = cast<ConstantIntegral>(Cases.back().first)->getRawValue();
929    double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
930
931    if (Density >= 0.3125) {
932      // Create a new basic block to hold the code for loading the address
933      // of the jump table, and jumping to it.  Update successor information;
934      // we will either branch to the default case for the switch, or the jump
935      // table.
936      MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
937      CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
938      CurMBB->addSuccessor(Default);
939      CurMBB->addSuccessor(JumpTableBB);
940
941      // Subtract the lowest switch case value from the value being switched on
942      // and conditional branch to default mbb if the result is greater than the
943      // difference between smallest and largest cases.
944      SDOperand SwitchOp = getValue(SV);
945      MVT::ValueType VT = SwitchOp.getValueType();
946      SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
947                                  DAG.getConstant(First, VT));
948
949      // The SDNode we just created, which holds the value being switched on
950      // minus the the smallest case value, needs to be copied to a virtual
951      // register so it can be used as an index into the jump table in a
952      // subsequent basic block.  This value may be smaller or larger than the
953      // target's pointer type, and therefore require extension or truncating.
954      if (VT > TLI.getPointerTy())
955        SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
956      else
957        SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
958      unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
959      SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
960
961      // Emit the range check for the jump table, and branch to the default
962      // block for the switch statement if the value being switched on exceeds
963      // the largest case in the switch.
964      SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
965                                   DAG.getConstant(Last-First,VT), ISD::SETUGT);
966      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
967                              DAG.getBasicBlock(Default)));
968
969      // Build a vector of destination BBs, corresponding to each target
970      // of the jump table.  If the value of the jump table slot corresponds to
971      // a case statement, push the case's BB onto the vector, otherwise, push
972      // the default BB.
973      std::set<MachineBasicBlock*> UniqueBBs;
974      std::vector<MachineBasicBlock*> DestBBs;
975      uint64_t TEI = First;
976      for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI) {
977        if (cast<ConstantIntegral>(ii->first)->getRawValue() == TEI) {
978          DestBBs.push_back(ii->second);
979          UniqueBBs.insert(ii->second);
980          ++ii;
981        } else {
982          DestBBs.push_back(Default);
983          UniqueBBs.insert(Default);
984        }
985      }
986
987      // Update successor info
988      for (std::set<MachineBasicBlock*>::iterator ii = UniqueBBs.begin(),
989           ee = UniqueBBs.end(); ii != ee; ++ii)
990        JumpTableBB->addSuccessor(*ii);
991
992      // Create a jump table index for this jump table, or return an existing
993      // one.
994      unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
995
996      // Set the jump table information so that we can codegen it as a second
997      // MachineBasicBlock
998      JT.Reg = JumpTableReg;
999      JT.JTI = JTI;
1000      JT.MBB = JumpTableBB;
1001      JT.Default = Default;
1002      return;
1003    }
1004  }
1005
1006  // Push the initial CaseRec onto the worklist
1007  std::vector<CaseRec> CaseVec;
1008  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1009
1010  while (!CaseVec.empty()) {
1011    // Grab a record representing a case range to process off the worklist
1012    CaseRec CR = CaseVec.back();
1013    CaseVec.pop_back();
1014
1015    // Size is the number of Cases represented by this range.  If Size is 1,
1016    // then we are processing a leaf of the binary search tree.  Otherwise,
1017    // we need to pick a pivot, and push left and right ranges onto the
1018    // worklist.
1019    unsigned Size = CR.Range.second - CR.Range.first;
1020
1021    if (Size == 1) {
1022      // Create a CaseBlock record representing a conditional branch to
1023      // the Case's target mbb if the value being switched on SV is equal
1024      // to C.  Otherwise, branch to default.
1025      Constant *C = CR.Range.first->first;
1026      MachineBasicBlock *Target = CR.Range.first->second;
1027      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
1028                                     CR.CaseBB);
1029      // If the MBB representing the leaf node is the current MBB, then just
1030      // call visitSwitchCase to emit the code into the current block.
1031      // Otherwise, push the CaseBlock onto the vector to be later processed
1032      // by SDISel, and insert the node's MBB before the next MBB.
1033      if (CR.CaseBB == CurMBB)
1034        visitSwitchCase(CB);
1035      else {
1036        SwitchCases.push_back(CB);
1037        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
1038      }
1039    } else {
1040      // split case range at pivot
1041      CaseItr Pivot = CR.Range.first + (Size / 2);
1042      CaseRange LHSR(CR.Range.first, Pivot);
1043      CaseRange RHSR(Pivot, CR.Range.second);
1044      Constant *C = Pivot->first;
1045      MachineBasicBlock *RHSBB = 0, *LHSBB = 0;
1046      // We know that we branch to the LHS if the Value being switched on is
1047      // less than the Pivot value, C.  We use this to optimize our binary
1048      // tree a bit, by recognizing that if SV is greater than or equal to the
1049      // LHS's Case Value, and that Case Value is exactly one less than the
1050      // Pivot's Value, then we can branch directly to the LHS's Target,
1051      // rather than creating a leaf node for it.
1052      if ((LHSR.second - LHSR.first) == 1 &&
1053          LHSR.first->first == CR.GE &&
1054          cast<ConstantIntegral>(C)->getRawValue() ==
1055          (cast<ConstantIntegral>(CR.GE)->getRawValue() + 1ULL)) {
1056        LHSBB = LHSR.first->second;
1057      } else {
1058        LHSBB = new MachineBasicBlock(LLVMBB);
1059        CaseVec.push_back(CaseRec(LHSBB,C,CR.GE,LHSR));
1060      }
1061      // Similar to the optimization above, if the Value being switched on is
1062      // known to be less than the Constant CR.LT, and the current Case Value
1063      // is CR.LT - 1, then we can branch directly to the target block for
1064      // the current Case Value, rather than emitting a RHS leaf node for it.
1065      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1066          cast<ConstantIntegral>(RHSR.first->first)->getRawValue() ==
1067          (cast<ConstantIntegral>(CR.LT)->getRawValue() - 1ULL)) {
1068        RHSBB = RHSR.first->second;
1069      } else {
1070        RHSBB = new MachineBasicBlock(LLVMBB);
1071        CaseVec.push_back(CaseRec(RHSBB,CR.LT,C,RHSR));
1072      }
1073      // Create a CaseBlock record representing a conditional branch to
1074      // the LHS node if the value being switched on SV is less than C.
1075      // Otherwise, branch to LHS.
1076      ISD::CondCode CC = C->getType()->isSigned() ? ISD::SETLT : ISD::SETULT;
1077      SelectionDAGISel::CaseBlock CB(CC, SV, C, LHSBB, RHSBB, CR.CaseBB);
1078      if (CR.CaseBB == CurMBB)
1079        visitSwitchCase(CB);
1080      else {
1081        SwitchCases.push_back(CB);
1082        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
1083      }
1084    }
1085  }
1086}
1087
1088void SelectionDAGLowering::visitSub(User &I) {
1089  // -0.0 - X --> fneg
1090  if (I.getType()->isFloatingPoint()) {
1091    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1092      if (CFP->isExactlyValue(-0.0)) {
1093        SDOperand Op2 = getValue(I.getOperand(1));
1094        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1095        return;
1096      }
1097  }
1098  visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
1099}
1100
1101void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp,
1102                                       unsigned VecOp) {
1103  const Type *Ty = I.getType();
1104  SDOperand Op1 = getValue(I.getOperand(0));
1105  SDOperand Op2 = getValue(I.getOperand(1));
1106
1107  if (Ty->isIntegral()) {
1108    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
1109  } else if (Ty->isFloatingPoint()) {
1110    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
1111  } else {
1112    const PackedType *PTy = cast<PackedType>(Ty);
1113    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
1114    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
1115    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
1116  }
1117}
1118
1119void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1120  SDOperand Op1 = getValue(I.getOperand(0));
1121  SDOperand Op2 = getValue(I.getOperand(1));
1122
1123  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1124
1125  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1126}
1127
1128void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
1129                                      ISD::CondCode UnsignedOpcode,
1130                                      ISD::CondCode FPOpcode) {
1131  SDOperand Op1 = getValue(I.getOperand(0));
1132  SDOperand Op2 = getValue(I.getOperand(1));
1133  ISD::CondCode Opcode = SignedOpcode;
1134  if (!FiniteOnlyFPMath() && I.getOperand(0)->getType()->isFloatingPoint())
1135    Opcode = FPOpcode;
1136  else if (I.getOperand(0)->getType()->isUnsigned())
1137    Opcode = UnsignedOpcode;
1138  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1139}
1140
1141void SelectionDAGLowering::visitSelect(User &I) {
1142  SDOperand Cond     = getValue(I.getOperand(0));
1143  SDOperand TrueVal  = getValue(I.getOperand(1));
1144  SDOperand FalseVal = getValue(I.getOperand(2));
1145  if (!isa<PackedType>(I.getType())) {
1146    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1147                             TrueVal, FalseVal));
1148  } else {
1149    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1150                             *(TrueVal.Val->op_end()-2),
1151                             *(TrueVal.Val->op_end()-1)));
1152  }
1153}
1154
1155void SelectionDAGLowering::visitCast(User &I) {
1156  SDOperand N = getValue(I.getOperand(0));
1157  MVT::ValueType SrcVT = N.getValueType();
1158  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1159
1160  if (DestVT == MVT::Vector) {
1161    // This is a cast to a vector from something else.  This is always a bit
1162    // convert.  Get information about the input vector.
1163    const PackedType *DestTy = cast<PackedType>(I.getType());
1164    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1165    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1166                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1167                             DAG.getValueType(EltVT)));
1168  } else if (SrcVT == DestVT) {
1169    setValue(&I, N);  // noop cast.
1170  } else if (DestVT == MVT::i1) {
1171    // Cast to bool is a comparison against zero, not truncation to zero.
1172    SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) :
1173                                       DAG.getConstantFP(0.0, N.getValueType());
1174    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
1175  } else if (isInteger(SrcVT)) {
1176    if (isInteger(DestVT)) {        // Int -> Int cast
1177      if (DestVT < SrcVT)   // Truncating cast?
1178        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1179      else if (I.getOperand(0)->getType()->isSigned())
1180        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1181      else
1182        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1183    } else if (isFloatingPoint(DestVT)) {           // Int -> FP cast
1184      if (I.getOperand(0)->getType()->isSigned())
1185        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1186      else
1187        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1188    } else {
1189      assert(0 && "Unknown cast!");
1190    }
1191  } else if (isFloatingPoint(SrcVT)) {
1192    if (isFloatingPoint(DestVT)) {  // FP -> FP cast
1193      if (DestVT < SrcVT)   // Rounding cast?
1194        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1195      else
1196        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1197    } else if (isInteger(DestVT)) {        // FP -> Int cast.
1198      if (I.getType()->isSigned())
1199        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1200      else
1201        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1202    } else {
1203      assert(0 && "Unknown cast!");
1204    }
1205  } else {
1206    assert(SrcVT == MVT::Vector && "Unknown cast!");
1207    assert(DestVT != MVT::Vector && "Casts to vector already handled!");
1208    // This is a cast from a vector to something else.  This is always a bit
1209    // convert.  Get information about the input vector.
1210    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1211  }
1212}
1213
1214void SelectionDAGLowering::visitInsertElement(User &I) {
1215  SDOperand InVec = getValue(I.getOperand(0));
1216  SDOperand InVal = getValue(I.getOperand(1));
1217  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1218                                getValue(I.getOperand(2)));
1219
1220  SDOperand Num = *(InVec.Val->op_end()-2);
1221  SDOperand Typ = *(InVec.Val->op_end()-1);
1222  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1223                           InVec, InVal, InIdx, Num, Typ));
1224}
1225
1226void SelectionDAGLowering::visitExtractElement(User &I) {
1227  SDOperand InVec = getValue(I.getOperand(0));
1228  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1229                                getValue(I.getOperand(1)));
1230  SDOperand Typ = *(InVec.Val->op_end()-1);
1231  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1232                           TLI.getValueType(I.getType()), InVec, InIdx));
1233}
1234
1235void SelectionDAGLowering::visitShuffleVector(User &I) {
1236  SDOperand V1   = getValue(I.getOperand(0));
1237  SDOperand V2   = getValue(I.getOperand(1));
1238  SDOperand Mask = getValue(I.getOperand(2));
1239
1240  SDOperand Num = *(V1.Val->op_end()-2);
1241  SDOperand Typ = *(V2.Val->op_end()-1);
1242  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1243                           V1, V2, Mask, Num, Typ));
1244}
1245
1246
1247void SelectionDAGLowering::visitGetElementPtr(User &I) {
1248  SDOperand N = getValue(I.getOperand(0));
1249  const Type *Ty = I.getOperand(0)->getType();
1250
1251  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1252       OI != E; ++OI) {
1253    Value *Idx = *OI;
1254    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1255      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
1256      if (Field) {
1257        // N = N + Offset
1258        uint64_t Offset = TD->getStructLayout(StTy)->MemberOffsets[Field];
1259        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1260                        getIntPtrConstant(Offset));
1261      }
1262      Ty = StTy->getElementType(Field);
1263    } else {
1264      Ty = cast<SequentialType>(Ty)->getElementType();
1265
1266      // If this is a constant subscript, handle it quickly.
1267      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1268        if (CI->getRawValue() == 0) continue;
1269
1270        uint64_t Offs;
1271        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
1272          Offs = (int64_t)TD->getTypeSize(Ty)*CSI->getValue();
1273        else
1274          Offs = TD->getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
1275        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1276        continue;
1277      }
1278
1279      // N = N + Idx * ElementSize;
1280      uint64_t ElementSize = TD->getTypeSize(Ty);
1281      SDOperand IdxN = getValue(Idx);
1282
1283      // If the index is smaller or larger than intptr_t, truncate or extend
1284      // it.
1285      if (IdxN.getValueType() < N.getValueType()) {
1286        if (Idx->getType()->isSigned())
1287          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1288        else
1289          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
1290      } else if (IdxN.getValueType() > N.getValueType())
1291        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1292
1293      // If this is a multiply by a power of two, turn it into a shl
1294      // immediately.  This is a very common case.
1295      if (isPowerOf2_64(ElementSize)) {
1296        unsigned Amt = Log2_64(ElementSize);
1297        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1298                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1299        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1300        continue;
1301      }
1302
1303      SDOperand Scale = getIntPtrConstant(ElementSize);
1304      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1305      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1306    }
1307  }
1308  setValue(&I, N);
1309}
1310
1311void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1312  // If this is a fixed sized alloca in the entry block of the function,
1313  // allocate it statically on the stack.
1314  if (FuncInfo.StaticAllocaMap.count(&I))
1315    return;   // getValue will auto-populate this.
1316
1317  const Type *Ty = I.getAllocatedType();
1318  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
1319  unsigned Align = std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
1320                            I.getAlignment());
1321
1322  SDOperand AllocSize = getValue(I.getArraySize());
1323  MVT::ValueType IntPtr = TLI.getPointerTy();
1324  if (IntPtr < AllocSize.getValueType())
1325    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1326  else if (IntPtr > AllocSize.getValueType())
1327    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1328
1329  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1330                          getIntPtrConstant(TySize));
1331
1332  // Handle alignment.  If the requested alignment is less than or equal to the
1333  // stack alignment, ignore it and round the size of the allocation up to the
1334  // stack alignment size.  If the size is greater than the stack alignment, we
1335  // note this in the DYNAMIC_STACKALLOC node.
1336  unsigned StackAlign =
1337    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1338  if (Align <= StackAlign) {
1339    Align = 0;
1340    // Add SA-1 to the size.
1341    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1342                            getIntPtrConstant(StackAlign-1));
1343    // Mask out the low bits for alignment purposes.
1344    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1345                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1346  }
1347
1348  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
1349  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
1350                                                    MVT::Other);
1351  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
1352  DAG.setRoot(setValue(&I, DSA).getValue(1));
1353
1354  // Inform the Frame Information that we have just allocated a variable-sized
1355  // object.
1356  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1357}
1358
1359void SelectionDAGLowering::visitLoad(LoadInst &I) {
1360  SDOperand Ptr = getValue(I.getOperand(0));
1361
1362  SDOperand Root;
1363  if (I.isVolatile())
1364    Root = getRoot();
1365  else {
1366    // Do not serialize non-volatile loads against each other.
1367    Root = DAG.getRoot();
1368  }
1369
1370  setValue(&I, getLoadFrom(I.getType(), Ptr, DAG.getSrcValue(I.getOperand(0)),
1371                           Root, I.isVolatile()));
1372}
1373
1374SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1375                                            SDOperand SrcValue, SDOperand Root,
1376                                            bool isVolatile) {
1377  SDOperand L;
1378  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1379    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1380    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr, SrcValue);
1381  } else {
1382    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SrcValue);
1383  }
1384
1385  if (isVolatile)
1386    DAG.setRoot(L.getValue(1));
1387  else
1388    PendingLoads.push_back(L.getValue(1));
1389
1390  return L;
1391}
1392
1393
1394void SelectionDAGLowering::visitStore(StoreInst &I) {
1395  Value *SrcV = I.getOperand(0);
1396  SDOperand Src = getValue(SrcV);
1397  SDOperand Ptr = getValue(I.getOperand(1));
1398  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
1399                          DAG.getSrcValue(I.getOperand(1))));
1400}
1401
1402/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1403/// access memory and has no other side effects at all.
1404static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1405#define GET_NO_MEMORY_INTRINSICS
1406#include "llvm/Intrinsics.gen"
1407#undef GET_NO_MEMORY_INTRINSICS
1408  return false;
1409}
1410
1411// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
1412// have any side-effects or if it only reads memory.
1413static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
1414#define GET_SIDE_EFFECT_INFO
1415#include "llvm/Intrinsics.gen"
1416#undef GET_SIDE_EFFECT_INFO
1417  return false;
1418}
1419
1420/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1421/// node.
1422void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1423                                                unsigned Intrinsic) {
1424  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1425  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
1426
1427  // Build the operand list.
1428  SmallVector<SDOperand, 8> Ops;
1429  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
1430    if (OnlyLoad) {
1431      // We don't need to serialize loads against other loads.
1432      Ops.push_back(DAG.getRoot());
1433    } else {
1434      Ops.push_back(getRoot());
1435    }
1436  }
1437
1438  // Add the intrinsic ID as an integer operand.
1439  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1440
1441  // Add all operands of the call to the operand list.
1442  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1443    SDOperand Op = getValue(I.getOperand(i));
1444
1445    // If this is a vector type, force it to the right packed type.
1446    if (Op.getValueType() == MVT::Vector) {
1447      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1448      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1449
1450      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1451      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1452      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1453    }
1454
1455    assert(TLI.isTypeLegal(Op.getValueType()) &&
1456           "Intrinsic uses a non-legal type?");
1457    Ops.push_back(Op);
1458  }
1459
1460  std::vector<MVT::ValueType> VTs;
1461  if (I.getType() != Type::VoidTy) {
1462    MVT::ValueType VT = TLI.getValueType(I.getType());
1463    if (VT == MVT::Vector) {
1464      const PackedType *DestTy = cast<PackedType>(I.getType());
1465      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1466
1467      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1468      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1469    }
1470
1471    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1472    VTs.push_back(VT);
1473  }
1474  if (HasChain)
1475    VTs.push_back(MVT::Other);
1476
1477  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
1478
1479  // Create the node.
1480  SDOperand Result;
1481  if (!HasChain)
1482    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
1483                         &Ops[0], Ops.size());
1484  else if (I.getType() != Type::VoidTy)
1485    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
1486                         &Ops[0], Ops.size());
1487  else
1488    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
1489                         &Ops[0], Ops.size());
1490
1491  if (HasChain) {
1492    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
1493    if (OnlyLoad)
1494      PendingLoads.push_back(Chain);
1495    else
1496      DAG.setRoot(Chain);
1497  }
1498  if (I.getType() != Type::VoidTy) {
1499    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1500      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1501      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1502                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1503                           DAG.getValueType(EVT));
1504    }
1505    setValue(&I, Result);
1506  }
1507}
1508
1509/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1510/// we want to emit this as a call to a named external function, return the name
1511/// otherwise lower it and return null.
1512const char *
1513SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1514  switch (Intrinsic) {
1515  default:
1516    // By default, turn this into a target intrinsic node.
1517    visitTargetIntrinsic(I, Intrinsic);
1518    return 0;
1519  case Intrinsic::vastart:  visitVAStart(I); return 0;
1520  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1521  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1522  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1523  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1524  case Intrinsic::setjmp:
1525    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1526    break;
1527  case Intrinsic::longjmp:
1528    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1529    break;
1530  case Intrinsic::memcpy_i32:
1531  case Intrinsic::memcpy_i64:
1532    visitMemIntrinsic(I, ISD::MEMCPY);
1533    return 0;
1534  case Intrinsic::memset_i32:
1535  case Intrinsic::memset_i64:
1536    visitMemIntrinsic(I, ISD::MEMSET);
1537    return 0;
1538  case Intrinsic::memmove_i32:
1539  case Intrinsic::memmove_i64:
1540    visitMemIntrinsic(I, ISD::MEMMOVE);
1541    return 0;
1542
1543  case Intrinsic::dbg_stoppoint: {
1544    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1545    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1546    if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
1547      SDOperand Ops[5];
1548
1549      Ops[0] = getRoot();
1550      Ops[1] = getValue(SPI.getLineValue());
1551      Ops[2] = getValue(SPI.getColumnValue());
1552
1553      DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
1554      assert(DD && "Not a debug information descriptor");
1555      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1556
1557      Ops[3] = DAG.getString(CompileUnit->getFileName());
1558      Ops[4] = DAG.getString(CompileUnit->getDirectory());
1559
1560      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
1561    }
1562
1563    return 0;
1564  }
1565  case Intrinsic::dbg_region_start: {
1566    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1567    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1568    if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
1569      unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
1570      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, getRoot(),
1571                              DAG.getConstant(LabelID, MVT::i32)));
1572    }
1573
1574    return 0;
1575  }
1576  case Intrinsic::dbg_region_end: {
1577    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1578    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
1579    if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
1580      unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
1581      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
1582                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
1583    }
1584
1585    return 0;
1586  }
1587  case Intrinsic::dbg_func_start: {
1588    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1589    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
1590    if (DebugInfo && FSI.getSubprogram() &&
1591        DebugInfo->Verify(FSI.getSubprogram())) {
1592      unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
1593      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
1594                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
1595    }
1596
1597    return 0;
1598  }
1599  case Intrinsic::dbg_declare: {
1600    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1601    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
1602    if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) {
1603      SDOperand AddressOp  = getValue(DI.getAddress());
1604      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
1605        DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
1606    }
1607
1608    return 0;
1609  }
1610
1611  case Intrinsic::isunordered_f32:
1612  case Intrinsic::isunordered_f64:
1613    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
1614                              getValue(I.getOperand(2)), ISD::SETUO));
1615    return 0;
1616
1617  case Intrinsic::sqrt_f32:
1618  case Intrinsic::sqrt_f64:
1619    setValue(&I, DAG.getNode(ISD::FSQRT,
1620                             getValue(I.getOperand(1)).getValueType(),
1621                             getValue(I.getOperand(1))));
1622    return 0;
1623  case Intrinsic::powi_f32:
1624  case Intrinsic::powi_f64:
1625    setValue(&I, DAG.getNode(ISD::FPOWI,
1626                             getValue(I.getOperand(1)).getValueType(),
1627                             getValue(I.getOperand(1)),
1628                             getValue(I.getOperand(2))));
1629    return 0;
1630  case Intrinsic::pcmarker: {
1631    SDOperand Tmp = getValue(I.getOperand(1));
1632    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
1633    return 0;
1634  }
1635  case Intrinsic::readcyclecounter: {
1636    SDOperand Op = getRoot();
1637    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
1638                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
1639                                &Op, 1);
1640    setValue(&I, Tmp);
1641    DAG.setRoot(Tmp.getValue(1));
1642    return 0;
1643  }
1644  case Intrinsic::bswap_i16:
1645  case Intrinsic::bswap_i32:
1646  case Intrinsic::bswap_i64:
1647    setValue(&I, DAG.getNode(ISD::BSWAP,
1648                             getValue(I.getOperand(1)).getValueType(),
1649                             getValue(I.getOperand(1))));
1650    return 0;
1651  case Intrinsic::cttz_i8:
1652  case Intrinsic::cttz_i16:
1653  case Intrinsic::cttz_i32:
1654  case Intrinsic::cttz_i64:
1655    setValue(&I, DAG.getNode(ISD::CTTZ,
1656                             getValue(I.getOperand(1)).getValueType(),
1657                             getValue(I.getOperand(1))));
1658    return 0;
1659  case Intrinsic::ctlz_i8:
1660  case Intrinsic::ctlz_i16:
1661  case Intrinsic::ctlz_i32:
1662  case Intrinsic::ctlz_i64:
1663    setValue(&I, DAG.getNode(ISD::CTLZ,
1664                             getValue(I.getOperand(1)).getValueType(),
1665                             getValue(I.getOperand(1))));
1666    return 0;
1667  case Intrinsic::ctpop_i8:
1668  case Intrinsic::ctpop_i16:
1669  case Intrinsic::ctpop_i32:
1670  case Intrinsic::ctpop_i64:
1671    setValue(&I, DAG.getNode(ISD::CTPOP,
1672                             getValue(I.getOperand(1)).getValueType(),
1673                             getValue(I.getOperand(1))));
1674    return 0;
1675  case Intrinsic::stacksave: {
1676    SDOperand Op = getRoot();
1677    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
1678              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
1679    setValue(&I, Tmp);
1680    DAG.setRoot(Tmp.getValue(1));
1681    return 0;
1682  }
1683  case Intrinsic::stackrestore: {
1684    SDOperand Tmp = getValue(I.getOperand(1));
1685    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
1686    return 0;
1687  }
1688  case Intrinsic::prefetch:
1689    // FIXME: Currently discarding prefetches.
1690    return 0;
1691  }
1692}
1693
1694
1695void SelectionDAGLowering::visitCall(CallInst &I) {
1696  const char *RenameFn = 0;
1697  if (Function *F = I.getCalledFunction()) {
1698    if (F->isExternal())
1699      if (unsigned IID = F->getIntrinsicID()) {
1700        RenameFn = visitIntrinsicCall(I, IID);
1701        if (!RenameFn)
1702          return;
1703      } else {    // Not an LLVM intrinsic.
1704        const std::string &Name = F->getName();
1705        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
1706          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
1707              I.getOperand(1)->getType()->isFloatingPoint() &&
1708              I.getType() == I.getOperand(1)->getType() &&
1709              I.getType() == I.getOperand(2)->getType()) {
1710            SDOperand LHS = getValue(I.getOperand(1));
1711            SDOperand RHS = getValue(I.getOperand(2));
1712            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
1713                                     LHS, RHS));
1714            return;
1715          }
1716        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
1717          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1718              I.getOperand(1)->getType()->isFloatingPoint() &&
1719              I.getType() == I.getOperand(1)->getType()) {
1720            SDOperand Tmp = getValue(I.getOperand(1));
1721            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
1722            return;
1723          }
1724        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
1725          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1726              I.getOperand(1)->getType()->isFloatingPoint() &&
1727              I.getType() == I.getOperand(1)->getType()) {
1728            SDOperand Tmp = getValue(I.getOperand(1));
1729            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
1730            return;
1731          }
1732        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
1733          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1734              I.getOperand(1)->getType()->isFloatingPoint() &&
1735              I.getType() == I.getOperand(1)->getType()) {
1736            SDOperand Tmp = getValue(I.getOperand(1));
1737            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
1738            return;
1739          }
1740        }
1741      }
1742  } else if (isa<InlineAsm>(I.getOperand(0))) {
1743    visitInlineAsm(I);
1744    return;
1745  }
1746
1747  SDOperand Callee;
1748  if (!RenameFn)
1749    Callee = getValue(I.getOperand(0));
1750  else
1751    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
1752  std::vector<std::pair<SDOperand, const Type*> > Args;
1753  Args.reserve(I.getNumOperands());
1754  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1755    Value *Arg = I.getOperand(i);
1756    SDOperand ArgNode = getValue(Arg);
1757    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
1758  }
1759
1760  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
1761  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1762
1763  std::pair<SDOperand,SDOperand> Result =
1764    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
1765                    I.isTailCall(), Callee, Args, DAG);
1766  if (I.getType() != Type::VoidTy)
1767    setValue(&I, Result.first);
1768  DAG.setRoot(Result.second);
1769}
1770
1771SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
1772                                        SDOperand &Chain, SDOperand &Flag)const{
1773  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
1774  Chain = Val.getValue(1);
1775  Flag  = Val.getValue(2);
1776
1777  // If the result was expanded, copy from the top part.
1778  if (Regs.size() > 1) {
1779    assert(Regs.size() == 2 &&
1780           "Cannot expand to more than 2 elts yet!");
1781    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
1782    Chain = Val.getValue(1);
1783    Flag  = Val.getValue(2);
1784    if (DAG.getTargetLoweringInfo().isLittleEndian())
1785      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
1786    else
1787      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
1788  }
1789
1790  // Otherwise, if the return value was promoted or extended, truncate it to the
1791  // appropriate type.
1792  if (RegVT == ValueVT)
1793    return Val;
1794
1795  if (MVT::isInteger(RegVT)) {
1796    if (ValueVT < RegVT)
1797      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1798    else
1799      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
1800  } else {
1801    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
1802  }
1803}
1804
1805/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
1806/// specified value into the registers specified by this object.  This uses
1807/// Chain/Flag as the input and updates them for the output Chain/Flag.
1808void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
1809                                 SDOperand &Chain, SDOperand &Flag,
1810                                 MVT::ValueType PtrVT) const {
1811  if (Regs.size() == 1) {
1812    // If there is a single register and the types differ, this must be
1813    // a promotion.
1814    if (RegVT != ValueVT) {
1815      if (MVT::isInteger(RegVT)) {
1816        if (RegVT < ValueVT)
1817          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
1818        else
1819          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
1820      } else
1821        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
1822    }
1823    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
1824    Flag = Chain.getValue(1);
1825  } else {
1826    std::vector<unsigned> R(Regs);
1827    if (!DAG.getTargetLoweringInfo().isLittleEndian())
1828      std::reverse(R.begin(), R.end());
1829
1830    for (unsigned i = 0, e = R.size(); i != e; ++i) {
1831      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
1832                                   DAG.getConstant(i, PtrVT));
1833      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
1834      Flag = Chain.getValue(1);
1835    }
1836  }
1837}
1838
1839/// AddInlineAsmOperands - Add this value to the specified inlineasm node
1840/// operand list.  This adds the code marker and includes the number of
1841/// values added into it.
1842void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
1843                                        std::vector<SDOperand> &Ops) const {
1844  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
1845  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1846    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
1847}
1848
1849/// isAllocatableRegister - If the specified register is safe to allocate,
1850/// i.e. it isn't a stack pointer or some other special register, return the
1851/// register class for the register.  Otherwise, return null.
1852static const TargetRegisterClass *
1853isAllocatableRegister(unsigned Reg, MachineFunction &MF,
1854                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
1855  MVT::ValueType FoundVT = MVT::Other;
1856  const TargetRegisterClass *FoundRC = 0;
1857  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
1858       E = MRI->regclass_end(); RCI != E; ++RCI) {
1859    MVT::ValueType ThisVT = MVT::Other;
1860
1861    const TargetRegisterClass *RC = *RCI;
1862    // If none of the the value types for this register class are valid, we
1863    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1864    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1865         I != E; ++I) {
1866      if (TLI.isTypeLegal(*I)) {
1867        // If we have already found this register in a different register class,
1868        // choose the one with the largest VT specified.  For example, on
1869        // PowerPC, we favor f64 register classes over f32.
1870        if (FoundVT == MVT::Other ||
1871            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
1872          ThisVT = *I;
1873          break;
1874        }
1875      }
1876    }
1877
1878    if (ThisVT == MVT::Other) continue;
1879
1880    // NOTE: This isn't ideal.  In particular, this might allocate the
1881    // frame pointer in functions that need it (due to them not being taken
1882    // out of allocation, because a variable sized allocation hasn't been seen
1883    // yet).  This is a slight code pessimization, but should still work.
1884    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
1885         E = RC->allocation_order_end(MF); I != E; ++I)
1886      if (*I == Reg) {
1887        // We found a matching register class.  Keep looking at others in case
1888        // we find one with larger registers that this physreg is also in.
1889        FoundRC = RC;
1890        FoundVT = ThisVT;
1891        break;
1892      }
1893  }
1894  return FoundRC;
1895}
1896
1897RegsForValue SelectionDAGLowering::
1898GetRegistersForValue(const std::string &ConstrCode,
1899                     MVT::ValueType VT, bool isOutReg, bool isInReg,
1900                     std::set<unsigned> &OutputRegs,
1901                     std::set<unsigned> &InputRegs) {
1902  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
1903    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
1904  std::vector<unsigned> Regs;
1905
1906  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
1907  MVT::ValueType RegVT;
1908  MVT::ValueType ValueVT = VT;
1909
1910  if (PhysReg.first) {
1911    if (VT == MVT::Other)
1912      ValueVT = *PhysReg.second->vt_begin();
1913
1914    // Get the actual register value type.  This is important, because the user
1915    // may have asked for (e.g.) the AX register in i32 type.  We need to
1916    // remember that AX is actually i16 to get the right extension.
1917    RegVT = *PhysReg.second->vt_begin();
1918
1919    // This is a explicit reference to a physical register.
1920    Regs.push_back(PhysReg.first);
1921
1922    // If this is an expanded reference, add the rest of the regs to Regs.
1923    if (NumRegs != 1) {
1924      TargetRegisterClass::iterator I = PhysReg.second->begin();
1925      TargetRegisterClass::iterator E = PhysReg.second->end();
1926      for (; *I != PhysReg.first; ++I)
1927        assert(I != E && "Didn't find reg!");
1928
1929      // Already added the first reg.
1930      --NumRegs; ++I;
1931      for (; NumRegs; --NumRegs, ++I) {
1932        assert(I != E && "Ran out of registers to allocate!");
1933        Regs.push_back(*I);
1934      }
1935    }
1936    return RegsForValue(Regs, RegVT, ValueVT);
1937  }
1938
1939  // This is a reference to a register class.  Allocate NumRegs consecutive,
1940  // available, registers from the class.
1941  std::vector<unsigned> RegClassRegs =
1942    TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
1943
1944  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
1945  MachineFunction &MF = *CurMBB->getParent();
1946  unsigned NumAllocated = 0;
1947  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
1948    unsigned Reg = RegClassRegs[i];
1949    // See if this register is available.
1950    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
1951        (isInReg  && InputRegs.count(Reg))) {    // Already used.
1952      // Make sure we find consecutive registers.
1953      NumAllocated = 0;
1954      continue;
1955    }
1956
1957    // Check to see if this register is allocatable (i.e. don't give out the
1958    // stack pointer).
1959    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
1960    if (!RC) {
1961      // Make sure we find consecutive registers.
1962      NumAllocated = 0;
1963      continue;
1964    }
1965
1966    // Okay, this register is good, we can use it.
1967    ++NumAllocated;
1968
1969    // If we allocated enough consecutive
1970    if (NumAllocated == NumRegs) {
1971      unsigned RegStart = (i-NumAllocated)+1;
1972      unsigned RegEnd   = i+1;
1973      // Mark all of the allocated registers used.
1974      for (unsigned i = RegStart; i != RegEnd; ++i) {
1975        unsigned Reg = RegClassRegs[i];
1976        Regs.push_back(Reg);
1977        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
1978        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
1979      }
1980
1981      return RegsForValue(Regs, *RC->vt_begin(), VT);
1982    }
1983  }
1984
1985  // Otherwise, we couldn't allocate enough registers for this.
1986  return RegsForValue();
1987}
1988
1989
1990/// visitInlineAsm - Handle a call to an InlineAsm object.
1991///
1992void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
1993  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
1994
1995  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
1996                                                 MVT::Other);
1997
1998  // Note, we treat inline asms both with and without side-effects as the same.
1999  // If an inline asm doesn't have side effects and doesn't access memory, we
2000  // could not choose to not chain it.
2001  bool hasSideEffects = IA->hasSideEffects();
2002
2003  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
2004  std::vector<MVT::ValueType> ConstraintVTs;
2005
2006  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
2007  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
2008  /// if it is a def of that register.
2009  std::vector<SDOperand> AsmNodeOperands;
2010  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
2011  AsmNodeOperands.push_back(AsmStr);
2012
2013  SDOperand Chain = getRoot();
2014  SDOperand Flag;
2015
2016  // We fully assign registers here at isel time.  This is not optimal, but
2017  // should work.  For register classes that correspond to LLVM classes, we
2018  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
2019  // over the constraints, collecting fixed registers that we know we can't use.
2020  std::set<unsigned> OutputRegs, InputRegs;
2021  unsigned OpNum = 1;
2022  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2023    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2024    std::string &ConstraintCode = Constraints[i].Codes[0];
2025
2026    MVT::ValueType OpVT;
2027
2028    // Compute the value type for each operand and add it to ConstraintVTs.
2029    switch (Constraints[i].Type) {
2030    case InlineAsm::isOutput:
2031      if (!Constraints[i].isIndirectOutput) {
2032        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2033        OpVT = TLI.getValueType(I.getType());
2034      } else {
2035        const Type *OpTy = I.getOperand(OpNum)->getType();
2036        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2037        OpNum++;  // Consumes a call operand.
2038      }
2039      break;
2040    case InlineAsm::isInput:
2041      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2042      OpNum++;  // Consumes a call operand.
2043      break;
2044    case InlineAsm::isClobber:
2045      OpVT = MVT::Other;
2046      break;
2047    }
2048
2049    ConstraintVTs.push_back(OpVT);
2050
2051    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2052      continue;  // Not assigned a fixed reg.
2053
2054    // Build a list of regs that this operand uses.  This always has a single
2055    // element for promoted/expanded operands.
2056    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2057                                             false, false,
2058                                             OutputRegs, InputRegs);
2059
2060    switch (Constraints[i].Type) {
2061    case InlineAsm::isOutput:
2062      // We can't assign any other output to this register.
2063      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2064      // If this is an early-clobber output, it cannot be assigned to the same
2065      // value as the input reg.
2066      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2067        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2068      break;
2069    case InlineAsm::isInput:
2070      // We can't assign any other input to this register.
2071      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2072      break;
2073    case InlineAsm::isClobber:
2074      // Clobbered regs cannot be used as inputs or outputs.
2075      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2076      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2077      break;
2078    }
2079  }
2080
2081  // Loop over all of the inputs, copying the operand values into the
2082  // appropriate registers and processing the output regs.
2083  RegsForValue RetValRegs;
2084  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2085  OpNum = 1;
2086
2087  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2088    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2089    std::string &ConstraintCode = Constraints[i].Codes[0];
2090
2091    switch (Constraints[i].Type) {
2092    case InlineAsm::isOutput: {
2093      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2094      if (ConstraintCode.size() == 1)   // not a physreg name.
2095        CTy = TLI.getConstraintType(ConstraintCode[0]);
2096
2097      if (CTy == TargetLowering::C_Memory) {
2098        // Memory output.
2099        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2100
2101        // Check that the operand (the address to store to) isn't a float.
2102        if (!MVT::isInteger(InOperandVal.getValueType()))
2103          assert(0 && "MATCH FAIL!");
2104
2105        if (!Constraints[i].isIndirectOutput)
2106          assert(0 && "MATCH FAIL!");
2107
2108        OpNum++;  // Consumes a call operand.
2109
2110        // Extend/truncate to the right pointer type if needed.
2111        MVT::ValueType PtrType = TLI.getPointerTy();
2112        if (InOperandVal.getValueType() < PtrType)
2113          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2114        else if (InOperandVal.getValueType() > PtrType)
2115          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2116
2117        // Add information to the INLINEASM node to know about this output.
2118        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2119        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2120        AsmNodeOperands.push_back(InOperandVal);
2121        break;
2122      }
2123
2124      // Otherwise, this is a register output.
2125      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2126
2127      // If this is an early-clobber output, or if there is an input
2128      // constraint that matches this, we need to reserve the input register
2129      // so no other inputs allocate to it.
2130      bool UsesInputRegister = false;
2131      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2132        UsesInputRegister = true;
2133
2134      // Copy the output from the appropriate register.  Find a register that
2135      // we can use.
2136      RegsForValue Regs =
2137        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2138                             true, UsesInputRegister,
2139                             OutputRegs, InputRegs);
2140      assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
2141
2142      if (!Constraints[i].isIndirectOutput) {
2143        assert(RetValRegs.Regs.empty() &&
2144               "Cannot have multiple output constraints yet!");
2145        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2146        RetValRegs = Regs;
2147      } else {
2148        IndirectStoresToEmit.push_back(std::make_pair(Regs,
2149                                                      I.getOperand(OpNum)));
2150        OpNum++;  // Consumes a call operand.
2151      }
2152
2153      // Add information to the INLINEASM node to know that this register is
2154      // set.
2155      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
2156      break;
2157    }
2158    case InlineAsm::isInput: {
2159      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2160      OpNum++;  // Consumes a call operand.
2161
2162      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
2163        // If this is required to match an output register we have already set,
2164        // just use its register.
2165        unsigned OperandNo = atoi(ConstraintCode.c_str());
2166
2167        // Scan until we find the definition we already emitted of this operand.
2168        // When we find it, create a RegsForValue operand.
2169        unsigned CurOp = 2;  // The first operand.
2170        for (; OperandNo; --OperandNo) {
2171          // Advance to the next operand.
2172          unsigned NumOps =
2173            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2174          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
2175                  (NumOps & 7) == 4 /*MEM*/) &&
2176                 "Skipped past definitions?");
2177          CurOp += (NumOps>>3)+1;
2178        }
2179
2180        unsigned NumOps =
2181          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2182        assert((NumOps & 7) == 2 /*REGDEF*/ &&
2183               "Skipped past definitions?");
2184
2185        // Add NumOps>>3 registers to MatchedRegs.
2186        RegsForValue MatchedRegs;
2187        MatchedRegs.ValueVT = InOperandVal.getValueType();
2188        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
2189        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
2190          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
2191          MatchedRegs.Regs.push_back(Reg);
2192        }
2193
2194        // Use the produced MatchedRegs object to
2195        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
2196                                  TLI.getPointerTy());
2197        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2198        break;
2199      }
2200
2201      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2202      if (ConstraintCode.size() == 1)   // not a physreg name.
2203        CTy = TLI.getConstraintType(ConstraintCode[0]);
2204
2205      if (CTy == TargetLowering::C_Other) {
2206        if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
2207          assert(0 && "MATCH FAIL!");
2208
2209        // Add information to the INLINEASM node to know about this input.
2210        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2211        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2212        AsmNodeOperands.push_back(InOperandVal);
2213        break;
2214      } else if (CTy == TargetLowering::C_Memory) {
2215        // Memory input.
2216
2217        // Check that the operand isn't a float.
2218        if (!MVT::isInteger(InOperandVal.getValueType()))
2219          assert(0 && "MATCH FAIL!");
2220
2221        // Extend/truncate to the right pointer type if needed.
2222        MVT::ValueType PtrType = TLI.getPointerTy();
2223        if (InOperandVal.getValueType() < PtrType)
2224          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2225        else if (InOperandVal.getValueType() > PtrType)
2226          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2227
2228        // Add information to the INLINEASM node to know about this input.
2229        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2230        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2231        AsmNodeOperands.push_back(InOperandVal);
2232        break;
2233      }
2234
2235      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2236
2237      // Copy the input into the appropriate registers.
2238      RegsForValue InRegs =
2239        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2240                             false, true, OutputRegs, InputRegs);
2241      // FIXME: should be match fail.
2242      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2243
2244      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
2245
2246      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2247      break;
2248    }
2249    case InlineAsm::isClobber: {
2250      RegsForValue ClobberedRegs =
2251        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2252                             OutputRegs, InputRegs);
2253      // Add the clobbered value to the operand list, so that the register
2254      // allocator is aware that the physreg got clobbered.
2255      if (!ClobberedRegs.Regs.empty())
2256        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2257      break;
2258    }
2259    }
2260  }
2261
2262  // Finish up input operands.
2263  AsmNodeOperands[0] = Chain;
2264  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2265
2266  Chain = DAG.getNode(ISD::INLINEASM,
2267                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
2268                      &AsmNodeOperands[0], AsmNodeOperands.size());
2269  Flag = Chain.getValue(1);
2270
2271  // If this asm returns a register value, copy the result from that register
2272  // and set it as the value of the call.
2273  if (!RetValRegs.Regs.empty())
2274    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2275
2276  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2277
2278  // Process indirect outputs, first output all of the flagged copies out of
2279  // physregs.
2280  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2281    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2282    Value *Ptr = IndirectStoresToEmit[i].second;
2283    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2284    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2285  }
2286
2287  // Emit the non-flagged stores from the physregs.
2288  SmallVector<SDOperand, 8> OutChains;
2289  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2290    OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
2291                                    StoresToEmit[i].first,
2292                                    getValue(StoresToEmit[i].second),
2293                                    DAG.getSrcValue(StoresToEmit[i].second)));
2294  if (!OutChains.empty())
2295    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2296                        &OutChains[0], OutChains.size());
2297  DAG.setRoot(Chain);
2298}
2299
2300
2301void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2302  SDOperand Src = getValue(I.getOperand(0));
2303
2304  MVT::ValueType IntPtr = TLI.getPointerTy();
2305
2306  if (IntPtr < Src.getValueType())
2307    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2308  else if (IntPtr > Src.getValueType())
2309    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2310
2311  // Scale the source by the type size.
2312  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
2313  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2314                    Src, getIntPtrConstant(ElementSize));
2315
2316  std::vector<std::pair<SDOperand, const Type*> > Args;
2317  Args.push_back(std::make_pair(Src, TLI.getTargetData()->getIntPtrType()));
2318
2319  std::pair<SDOperand,SDOperand> Result =
2320    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
2321                    DAG.getExternalSymbol("malloc", IntPtr),
2322                    Args, DAG);
2323  setValue(&I, Result.first);  // Pointers always fit in registers
2324  DAG.setRoot(Result.second);
2325}
2326
2327void SelectionDAGLowering::visitFree(FreeInst &I) {
2328  std::vector<std::pair<SDOperand, const Type*> > Args;
2329  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
2330                                TLI.getTargetData()->getIntPtrType()));
2331  MVT::ValueType IntPtr = TLI.getPointerTy();
2332  std::pair<SDOperand,SDOperand> Result =
2333    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
2334                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2335  DAG.setRoot(Result.second);
2336}
2337
2338// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2339// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2340// instructions are special in various ways, which require special support to
2341// insert.  The specified MachineInstr is created but not inserted into any
2342// basic blocks, and the scheduler passes ownership of it to this method.
2343MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2344                                                       MachineBasicBlock *MBB) {
2345  std::cerr << "If a target marks an instruction with "
2346               "'usesCustomDAGSchedInserter', it must implement "
2347               "TargetLowering::InsertAtEndOfBasicBlock!\n";
2348  abort();
2349  return 0;
2350}
2351
2352void SelectionDAGLowering::visitVAStart(CallInst &I) {
2353  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2354                          getValue(I.getOperand(1)),
2355                          DAG.getSrcValue(I.getOperand(1))));
2356}
2357
2358void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2359  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2360                             getValue(I.getOperand(0)),
2361                             DAG.getSrcValue(I.getOperand(0)));
2362  setValue(&I, V);
2363  DAG.setRoot(V.getValue(1));
2364}
2365
2366void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2367  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2368                          getValue(I.getOperand(1)),
2369                          DAG.getSrcValue(I.getOperand(1))));
2370}
2371
2372void SelectionDAGLowering::visitVACopy(CallInst &I) {
2373  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2374                          getValue(I.getOperand(1)),
2375                          getValue(I.getOperand(2)),
2376                          DAG.getSrcValue(I.getOperand(1)),
2377                          DAG.getSrcValue(I.getOperand(2))));
2378}
2379
2380/// TargetLowering::LowerArguments - This is the default LowerArguments
2381/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
2382/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
2383/// integrated into SDISel.
2384std::vector<SDOperand>
2385TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
2386  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
2387  std::vector<SDOperand> Ops;
2388  Ops.push_back(DAG.getRoot());
2389  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
2390  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
2391
2392  // Add one result value for each formal argument.
2393  std::vector<MVT::ValueType> RetVals;
2394  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2395    MVT::ValueType VT = getValueType(I->getType());
2396
2397    switch (getTypeAction(VT)) {
2398    default: assert(0 && "Unknown type action!");
2399    case Legal:
2400      RetVals.push_back(VT);
2401      break;
2402    case Promote:
2403      RetVals.push_back(getTypeToTransformTo(VT));
2404      break;
2405    case Expand:
2406      if (VT != MVT::Vector) {
2407        // If this is a large integer, it needs to be broken up into small
2408        // integers.  Figure out what the destination type is and how many small
2409        // integers it turns into.
2410        MVT::ValueType NVT = getTypeToTransformTo(VT);
2411        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2412        for (unsigned i = 0; i != NumVals; ++i)
2413          RetVals.push_back(NVT);
2414      } else {
2415        // Otherwise, this is a vector type.  We only support legal vectors
2416        // right now.
2417        unsigned NumElems = cast<PackedType>(I->getType())->getNumElements();
2418        const Type *EltTy = cast<PackedType>(I->getType())->getElementType();
2419
2420        // Figure out if there is a Packed type corresponding to this Vector
2421        // type.  If so, convert to the packed type.
2422        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2423        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2424          RetVals.push_back(TVT);
2425        } else {
2426          assert(0 && "Don't support illegal by-val vector arguments yet!");
2427        }
2428      }
2429      break;
2430    }
2431  }
2432
2433  RetVals.push_back(MVT::Other);
2434
2435  // Create the node.
2436  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
2437                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
2438                               &Ops[0], Ops.size()).Val;
2439
2440  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
2441
2442  // Set up the return result vector.
2443  Ops.clear();
2444  unsigned i = 0;
2445  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2446    MVT::ValueType VT = getValueType(I->getType());
2447
2448    switch (getTypeAction(VT)) {
2449    default: assert(0 && "Unknown type action!");
2450    case Legal:
2451      Ops.push_back(SDOperand(Result, i++));
2452      break;
2453    case Promote: {
2454      SDOperand Op(Result, i++);
2455      if (MVT::isInteger(VT)) {
2456        unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext
2457                                                     : ISD::AssertZext;
2458        Op = DAG.getNode(AssertOp, Op.getValueType(), Op, DAG.getValueType(VT));
2459        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2460      } else {
2461        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2462        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
2463      }
2464      Ops.push_back(Op);
2465      break;
2466    }
2467    case Expand:
2468      if (VT != MVT::Vector) {
2469        // If this is a large integer, it needs to be reassembled from small
2470        // integers.  Figure out what the source elt type is and how many small
2471        // integers it is.
2472        MVT::ValueType NVT = getTypeToTransformTo(VT);
2473        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2474        if (NumVals == 2) {
2475          SDOperand Lo = SDOperand(Result, i++);
2476          SDOperand Hi = SDOperand(Result, i++);
2477
2478          if (!isLittleEndian())
2479            std::swap(Lo, Hi);
2480
2481          Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi));
2482        } else {
2483          // Value scalarized into many values.  Unimp for now.
2484          assert(0 && "Cannot expand i64 -> i16 yet!");
2485        }
2486      } else {
2487        // Otherwise, this is a vector type.  We only support legal vectors
2488        // right now.
2489        const PackedType *PTy = cast<PackedType>(I->getType());
2490        unsigned NumElems = PTy->getNumElements();
2491        const Type *EltTy = PTy->getElementType();
2492
2493        // Figure out if there is a Packed type corresponding to this Vector
2494        // type.  If so, convert to the packed type.
2495        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2496        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2497          SDOperand N = SDOperand(Result, i++);
2498          // Handle copies from generic vectors to registers.
2499          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
2500                          DAG.getConstant(NumElems, MVT::i32),
2501                          DAG.getValueType(getValueType(EltTy)));
2502          Ops.push_back(N);
2503        } else {
2504          assert(0 && "Don't support illegal by-val vector arguments yet!");
2505          abort();
2506        }
2507      }
2508      break;
2509    }
2510  }
2511  return Ops;
2512}
2513
2514
2515/// TargetLowering::LowerCallTo - This is the default LowerCallTo
2516/// implementation, which just inserts an ISD::CALL node, which is later custom
2517/// lowered by the target to something concrete.  FIXME: When all targets are
2518/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
2519std::pair<SDOperand, SDOperand>
2520TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
2521                            unsigned CallingConv, bool isTailCall,
2522                            SDOperand Callee,
2523                            ArgListTy &Args, SelectionDAG &DAG) {
2524  SmallVector<SDOperand, 32> Ops;
2525  Ops.push_back(Chain);   // Op#0 - Chain
2526  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
2527  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
2528  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
2529  Ops.push_back(Callee);
2530
2531  // Handle all of the outgoing arguments.
2532  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
2533    MVT::ValueType VT = getValueType(Args[i].second);
2534    SDOperand Op = Args[i].first;
2535    bool isSigned = Args[i].second->isSigned();
2536    switch (getTypeAction(VT)) {
2537    default: assert(0 && "Unknown type action!");
2538    case Legal:
2539      Ops.push_back(Op);
2540      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2541      break;
2542    case Promote:
2543      if (MVT::isInteger(VT)) {
2544        unsigned ExtOp = isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2545        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
2546      } else {
2547        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2548        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
2549      }
2550      Ops.push_back(Op);
2551      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2552      break;
2553    case Expand:
2554      if (VT != MVT::Vector) {
2555        // If this is a large integer, it needs to be broken down into small
2556        // integers.  Figure out what the source elt type is and how many small
2557        // integers it is.
2558        MVT::ValueType NVT = getTypeToTransformTo(VT);
2559        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2560        if (NumVals == 2) {
2561          SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
2562                                     DAG.getConstant(0, getPointerTy()));
2563          SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
2564                                     DAG.getConstant(1, getPointerTy()));
2565          if (!isLittleEndian())
2566            std::swap(Lo, Hi);
2567
2568          Ops.push_back(Lo);
2569          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2570          Ops.push_back(Hi);
2571          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2572        } else {
2573          // Value scalarized into many values.  Unimp for now.
2574          assert(0 && "Cannot expand i64 -> i16 yet!");
2575        }
2576      } else {
2577        // Otherwise, this is a vector type.  We only support legal vectors
2578        // right now.
2579        const PackedType *PTy = cast<PackedType>(Args[i].second);
2580        unsigned NumElems = PTy->getNumElements();
2581        const Type *EltTy = PTy->getElementType();
2582
2583        // Figure out if there is a Packed type corresponding to this Vector
2584        // type.  If so, convert to the packed type.
2585        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2586        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2587          // Insert a VBIT_CONVERT of the MVT::Vector type to the packed type.
2588          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
2589          Ops.push_back(Op);
2590          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2591        } else {
2592          assert(0 && "Don't support illegal by-val vector call args yet!");
2593          abort();
2594        }
2595      }
2596      break;
2597    }
2598  }
2599
2600  // Figure out the result value types.
2601  SmallVector<MVT::ValueType, 4> RetTys;
2602
2603  if (RetTy != Type::VoidTy) {
2604    MVT::ValueType VT = getValueType(RetTy);
2605    switch (getTypeAction(VT)) {
2606    default: assert(0 && "Unknown type action!");
2607    case Legal:
2608      RetTys.push_back(VT);
2609      break;
2610    case Promote:
2611      RetTys.push_back(getTypeToTransformTo(VT));
2612      break;
2613    case Expand:
2614      if (VT != MVT::Vector) {
2615        // If this is a large integer, it needs to be reassembled from small
2616        // integers.  Figure out what the source elt type is and how many small
2617        // integers it is.
2618        MVT::ValueType NVT = getTypeToTransformTo(VT);
2619        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2620        for (unsigned i = 0; i != NumVals; ++i)
2621          RetTys.push_back(NVT);
2622      } else {
2623        // Otherwise, this is a vector type.  We only support legal vectors
2624        // right now.
2625        const PackedType *PTy = cast<PackedType>(RetTy);
2626        unsigned NumElems = PTy->getNumElements();
2627        const Type *EltTy = PTy->getElementType();
2628
2629        // Figure out if there is a Packed type corresponding to this Vector
2630        // type.  If so, convert to the packed type.
2631        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2632        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2633          RetTys.push_back(TVT);
2634        } else {
2635          assert(0 && "Don't support illegal by-val vector call results yet!");
2636          abort();
2637        }
2638      }
2639    }
2640  }
2641
2642  RetTys.push_back(MVT::Other);  // Always has a chain.
2643
2644  // Finally, create the CALL node.
2645  SDOperand Res = DAG.getNode(ISD::CALL,
2646                              DAG.getVTList(&RetTys[0], RetTys.size()),
2647                              &Ops[0], Ops.size());
2648
2649  // This returns a pair of operands.  The first element is the
2650  // return value for the function (if RetTy is not VoidTy).  The second
2651  // element is the outgoing token chain.
2652  SDOperand ResVal;
2653  if (RetTys.size() != 1) {
2654    MVT::ValueType VT = getValueType(RetTy);
2655    if (RetTys.size() == 2) {
2656      ResVal = Res;
2657
2658      // If this value was promoted, truncate it down.
2659      if (ResVal.getValueType() != VT) {
2660        if (VT == MVT::Vector) {
2661          // Insert a VBITCONVERT to convert from the packed result type to the
2662          // MVT::Vector type.
2663          unsigned NumElems = cast<PackedType>(RetTy)->getNumElements();
2664          const Type *EltTy = cast<PackedType>(RetTy)->getElementType();
2665
2666          // Figure out if there is a Packed type corresponding to this Vector
2667          // type.  If so, convert to the packed type.
2668          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2669          if (TVT != MVT::Other && isTypeLegal(TVT)) {
2670            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
2671            // "N x PTyElementVT" MVT::Vector type.
2672            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
2673                                 DAG.getConstant(NumElems, MVT::i32),
2674                                 DAG.getValueType(getValueType(EltTy)));
2675          } else {
2676            abort();
2677          }
2678        } else if (MVT::isInteger(VT)) {
2679          unsigned AssertOp = RetTy->isSigned() ?
2680                                  ISD::AssertSext : ISD::AssertZext;
2681          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
2682                               DAG.getValueType(VT));
2683          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
2684        } else {
2685          assert(MVT::isFloatingPoint(VT));
2686          ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
2687        }
2688      }
2689    } else if (RetTys.size() == 3) {
2690      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
2691                           Res.getValue(0), Res.getValue(1));
2692
2693    } else {
2694      assert(0 && "Case not handled yet!");
2695    }
2696  }
2697
2698  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
2699}
2700
2701
2702
2703// It is always conservatively correct for llvm.returnaddress and
2704// llvm.frameaddress to return 0.
2705//
2706// FIXME: Change this to insert a FRAMEADDR/RETURNADDR node, and have that be
2707// expanded to 0 if the target wants.
2708std::pair<SDOperand, SDOperand>
2709TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
2710                                        unsigned Depth, SelectionDAG &DAG) {
2711  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
2712}
2713
2714SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2715  assert(0 && "LowerOperation not implemented for this target!");
2716  abort();
2717  return SDOperand();
2718}
2719
2720SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
2721                                                 SelectionDAG &DAG) {
2722  assert(0 && "CustomPromoteOperation not implemented for this target!");
2723  abort();
2724  return SDOperand();
2725}
2726
2727void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
2728  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
2729  std::pair<SDOperand,SDOperand> Result =
2730    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
2731  setValue(&I, Result.first);
2732  DAG.setRoot(Result.second);
2733}
2734
2735/// getMemsetValue - Vectorized representation of the memset value
2736/// operand.
2737static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2738                                SelectionDAG &DAG) {
2739  MVT::ValueType CurVT = VT;
2740  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2741    uint64_t Val   = C->getValue() & 255;
2742    unsigned Shift = 8;
2743    while (CurVT != MVT::i8) {
2744      Val = (Val << Shift) | Val;
2745      Shift <<= 1;
2746      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2747    }
2748    return DAG.getConstant(Val, VT);
2749  } else {
2750    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2751    unsigned Shift = 8;
2752    while (CurVT != MVT::i8) {
2753      Value =
2754        DAG.getNode(ISD::OR, VT,
2755                    DAG.getNode(ISD::SHL, VT, Value,
2756                                DAG.getConstant(Shift, MVT::i8)), Value);
2757      Shift <<= 1;
2758      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2759    }
2760
2761    return Value;
2762  }
2763}
2764
2765/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2766/// used when a memcpy is turned into a memset when the source is a constant
2767/// string ptr.
2768static SDOperand getMemsetStringVal(MVT::ValueType VT,
2769                                    SelectionDAG &DAG, TargetLowering &TLI,
2770                                    std::string &Str, unsigned Offset) {
2771  MVT::ValueType CurVT = VT;
2772  uint64_t Val = 0;
2773  unsigned MSB = getSizeInBits(VT) / 8;
2774  if (TLI.isLittleEndian())
2775    Offset = Offset + MSB - 1;
2776  for (unsigned i = 0; i != MSB; ++i) {
2777    Val = (Val << 8) | Str[Offset];
2778    Offset += TLI.isLittleEndian() ? -1 : 1;
2779  }
2780  return DAG.getConstant(Val, VT);
2781}
2782
2783/// getMemBasePlusOffset - Returns base and offset node for the
2784static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2785                                      SelectionDAG &DAG, TargetLowering &TLI) {
2786  MVT::ValueType VT = Base.getValueType();
2787  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2788}
2789
2790/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2791/// to replace the memset / memcpy is below the threshold. It also returns the
2792/// types of the sequence of  memory ops to perform memset / memcpy.
2793static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2794                                     unsigned Limit, uint64_t Size,
2795                                     unsigned Align, TargetLowering &TLI) {
2796  MVT::ValueType VT;
2797
2798  if (TLI.allowsUnalignedMemoryAccesses()) {
2799    VT = MVT::i64;
2800  } else {
2801    switch (Align & 7) {
2802    case 0:
2803      VT = MVT::i64;
2804      break;
2805    case 4:
2806      VT = MVT::i32;
2807      break;
2808    case 2:
2809      VT = MVT::i16;
2810      break;
2811    default:
2812      VT = MVT::i8;
2813      break;
2814    }
2815  }
2816
2817  MVT::ValueType LVT = MVT::i64;
2818  while (!TLI.isTypeLegal(LVT))
2819    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2820  assert(MVT::isInteger(LVT));
2821
2822  if (VT > LVT)
2823    VT = LVT;
2824
2825  unsigned NumMemOps = 0;
2826  while (Size != 0) {
2827    unsigned VTSize = getSizeInBits(VT) / 8;
2828    while (VTSize > Size) {
2829      VT = (MVT::ValueType)((unsigned)VT - 1);
2830      VTSize >>= 1;
2831    }
2832    assert(MVT::isInteger(VT));
2833
2834    if (++NumMemOps > Limit)
2835      return false;
2836    MemOps.push_back(VT);
2837    Size -= VTSize;
2838  }
2839
2840  return true;
2841}
2842
2843void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
2844  SDOperand Op1 = getValue(I.getOperand(1));
2845  SDOperand Op2 = getValue(I.getOperand(2));
2846  SDOperand Op3 = getValue(I.getOperand(3));
2847  SDOperand Op4 = getValue(I.getOperand(4));
2848  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
2849  if (Align == 0) Align = 1;
2850
2851  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
2852    std::vector<MVT::ValueType> MemOps;
2853
2854    // Expand memset / memcpy to a series of load / store ops
2855    // if the size operand falls below a certain threshold.
2856    SmallVector<SDOperand, 8> OutChains;
2857    switch (Op) {
2858    default: break;  // Do nothing for now.
2859    case ISD::MEMSET: {
2860      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2861                                   Size->getValue(), Align, TLI)) {
2862        unsigned NumMemOps = MemOps.size();
2863        unsigned Offset = 0;
2864        for (unsigned i = 0; i < NumMemOps; i++) {
2865          MVT::ValueType VT = MemOps[i];
2866          unsigned VTSize = getSizeInBits(VT) / 8;
2867          SDOperand Value = getMemsetValue(Op2, VT, DAG);
2868          SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, getRoot(),
2869                                        Value,
2870                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
2871                                      DAG.getSrcValue(I.getOperand(1), Offset));
2872          OutChains.push_back(Store);
2873          Offset += VTSize;
2874        }
2875      }
2876      break;
2877    }
2878    case ISD::MEMCPY: {
2879      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
2880                                   Size->getValue(), Align, TLI)) {
2881        unsigned NumMemOps = MemOps.size();
2882        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
2883        GlobalAddressSDNode *G = NULL;
2884        std::string Str;
2885        bool CopyFromStr = false;
2886
2887        if (Op2.getOpcode() == ISD::GlobalAddress)
2888          G = cast<GlobalAddressSDNode>(Op2);
2889        else if (Op2.getOpcode() == ISD::ADD &&
2890                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2891                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
2892          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
2893          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
2894        }
2895        if (G) {
2896          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2897          if (GV) {
2898            Str = GV->getStringValue(false);
2899            if (!Str.empty()) {
2900              CopyFromStr = true;
2901              SrcOff += SrcDelta;
2902            }
2903          }
2904        }
2905
2906        for (unsigned i = 0; i < NumMemOps; i++) {
2907          MVT::ValueType VT = MemOps[i];
2908          unsigned VTSize = getSizeInBits(VT) / 8;
2909          SDOperand Value, Chain, Store;
2910
2911          if (CopyFromStr) {
2912            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2913            Chain = getRoot();
2914            Store =
2915              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2916                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2917                          DAG.getSrcValue(I.getOperand(1), DstOff));
2918          } else {
2919            Value = DAG.getLoad(VT, getRoot(),
2920                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
2921                        DAG.getSrcValue(I.getOperand(2), SrcOff));
2922            Chain = Value.getValue(1);
2923            Store =
2924              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2925                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2926                          DAG.getSrcValue(I.getOperand(1), DstOff));
2927          }
2928          OutChains.push_back(Store);
2929          SrcOff += VTSize;
2930          DstOff += VTSize;
2931        }
2932      }
2933      break;
2934    }
2935    }
2936
2937    if (!OutChains.empty()) {
2938      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
2939                  &OutChains[0], OutChains.size()));
2940      return;
2941    }
2942  }
2943
2944  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
2945}
2946
2947//===----------------------------------------------------------------------===//
2948// SelectionDAGISel code
2949//===----------------------------------------------------------------------===//
2950
2951unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
2952  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
2953}
2954
2955void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
2956  // FIXME: we only modify the CFG to split critical edges.  This
2957  // updates dom and loop info.
2958}
2959
2960
2961/// OptimizeNoopCopyExpression - We have determined that the specified cast
2962/// instruction is a noop copy (e.g. it's casting from one pointer type to
2963/// another, int->uint, or int->sbyte on PPC.
2964///
2965/// Return true if any changes are made.
2966static bool OptimizeNoopCopyExpression(CastInst *CI) {
2967  BasicBlock *DefBB = CI->getParent();
2968
2969  /// InsertedCasts - Only insert a cast in each block once.
2970  std::map<BasicBlock*, CastInst*> InsertedCasts;
2971
2972  bool MadeChange = false;
2973  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
2974       UI != E; ) {
2975    Use &TheUse = UI.getUse();
2976    Instruction *User = cast<Instruction>(*UI);
2977
2978    // Figure out which BB this cast is used in.  For PHI's this is the
2979    // appropriate predecessor block.
2980    BasicBlock *UserBB = User->getParent();
2981    if (PHINode *PN = dyn_cast<PHINode>(User)) {
2982      unsigned OpVal = UI.getOperandNo()/2;
2983      UserBB = PN->getIncomingBlock(OpVal);
2984    }
2985
2986    // Preincrement use iterator so we don't invalidate it.
2987    ++UI;
2988
2989    // If this user is in the same block as the cast, don't change the cast.
2990    if (UserBB == DefBB) continue;
2991
2992    // If we have already inserted a cast into this block, use it.
2993    CastInst *&InsertedCast = InsertedCasts[UserBB];
2994
2995    if (!InsertedCast) {
2996      BasicBlock::iterator InsertPt = UserBB->begin();
2997      while (isa<PHINode>(InsertPt)) ++InsertPt;
2998
2999      InsertedCast =
3000        new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
3001      MadeChange = true;
3002    }
3003
3004    // Replace a use of the cast with a use of the new casat.
3005    TheUse = InsertedCast;
3006  }
3007
3008  // If we removed all uses, nuke the cast.
3009  if (CI->use_empty())
3010    CI->eraseFromParent();
3011
3012  return MadeChange;
3013}
3014
3015/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
3016/// casting to the type of GEPI.
3017static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
3018                                         Instruction *GEPI, Value *Ptr,
3019                                         Value *PtrOffset) {
3020  if (V) return V;   // Already computed.
3021
3022  BasicBlock::iterator InsertPt;
3023  if (BB == GEPI->getParent()) {
3024    // If insert into the GEP's block, insert right after the GEP.
3025    InsertPt = GEPI;
3026    ++InsertPt;
3027  } else {
3028    // Otherwise, insert at the top of BB, after any PHI nodes
3029    InsertPt = BB->begin();
3030    while (isa<PHINode>(InsertPt)) ++InsertPt;
3031  }
3032
3033  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
3034  // BB so that there is only one value live across basic blocks (the cast
3035  // operand).
3036  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
3037    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
3038      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
3039
3040  // Add the offset, cast it to the right type.
3041  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
3042  return V = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
3043}
3044
3045/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
3046/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
3047/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
3048/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
3049/// sink PtrOffset into user blocks where doing so will likely allow us to fold
3050/// the constant add into a load or store instruction.  Additionally, if a user
3051/// is a pointer-pointer cast, we look through it to find its users.
3052static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
3053                                 Constant *PtrOffset, BasicBlock *DefBB,
3054                                 GetElementPtrInst *GEPI,
3055                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
3056  while (!RepPtr->use_empty()) {
3057    Instruction *User = cast<Instruction>(RepPtr->use_back());
3058
3059    // If the user is a Pointer-Pointer cast, recurse.
3060    if (isa<CastInst>(User) && isa<PointerType>(User->getType())) {
3061      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3062
3063      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
3064      // could invalidate an iterator.
3065      User->setOperand(0, UndefValue::get(RepPtr->getType()));
3066      continue;
3067    }
3068
3069    // If this is a load of the pointer, or a store through the pointer, emit
3070    // the increment into the load/store block.
3071    Instruction *NewVal;
3072    if (isa<LoadInst>(User) ||
3073        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
3074      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
3075                                    User->getParent(), GEPI,
3076                                    Ptr, PtrOffset);
3077    } else {
3078      // If this use is not foldable into the addressing mode, use a version
3079      // emitted in the GEP block.
3080      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
3081                                    Ptr, PtrOffset);
3082    }
3083
3084    if (GEPI->getType() != RepPtr->getType()) {
3085      BasicBlock::iterator IP = NewVal;
3086      ++IP;
3087      NewVal = new CastInst(NewVal, RepPtr->getType(), "", IP);
3088    }
3089    User->replaceUsesOfWith(RepPtr, NewVal);
3090  }
3091}
3092
3093
3094/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
3095/// selection, we want to be a bit careful about some things.  In particular, if
3096/// we have a GEP instruction that is used in a different block than it is
3097/// defined, the addressing expression of the GEP cannot be folded into loads or
3098/// stores that use it.  In this case, decompose the GEP and move constant
3099/// indices into blocks that use it.
3100static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
3101                                  const TargetData *TD) {
3102  // If this GEP is only used inside the block it is defined in, there is no
3103  // need to rewrite it.
3104  bool isUsedOutsideDefBB = false;
3105  BasicBlock *DefBB = GEPI->getParent();
3106  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
3107       UI != E; ++UI) {
3108    if (cast<Instruction>(*UI)->getParent() != DefBB) {
3109      isUsedOutsideDefBB = true;
3110      break;
3111    }
3112  }
3113  if (!isUsedOutsideDefBB) return false;
3114
3115  // If this GEP has no non-zero constant indices, there is nothing we can do,
3116  // ignore it.
3117  bool hasConstantIndex = false;
3118  bool hasVariableIndex = false;
3119  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3120       E = GEPI->op_end(); OI != E; ++OI) {
3121    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
3122      if (CI->getRawValue()) {
3123        hasConstantIndex = true;
3124        break;
3125      }
3126    } else {
3127      hasVariableIndex = true;
3128    }
3129  }
3130
3131  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
3132  if (!hasConstantIndex && !hasVariableIndex) {
3133    Value *NC = new CastInst(GEPI->getOperand(0), GEPI->getType(),
3134                             GEPI->getName(), GEPI);
3135    GEPI->replaceAllUsesWith(NC);
3136    GEPI->eraseFromParent();
3137    return true;
3138  }
3139
3140  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
3141  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
3142    return false;
3143
3144  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
3145  // constant offset (which we now know is non-zero) and deal with it later.
3146  uint64_t ConstantOffset = 0;
3147  const Type *UIntPtrTy = TD->getIntPtrType();
3148  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
3149  const Type *Ty = GEPI->getOperand(0)->getType();
3150
3151  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3152       E = GEPI->op_end(); OI != E; ++OI) {
3153    Value *Idx = *OI;
3154    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
3155      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
3156      if (Field)
3157        ConstantOffset += TD->getStructLayout(StTy)->MemberOffsets[Field];
3158      Ty = StTy->getElementType(Field);
3159    } else {
3160      Ty = cast<SequentialType>(Ty)->getElementType();
3161
3162      // Handle constant subscripts.
3163      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3164        if (CI->getRawValue() == 0) continue;
3165
3166        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
3167          ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CSI->getValue();
3168        else
3169          ConstantOffset+=TD->getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
3170        continue;
3171      }
3172
3173      // Ptr = Ptr + Idx * ElementSize;
3174
3175      // Cast Idx to UIntPtrTy if needed.
3176      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
3177
3178      uint64_t ElementSize = TD->getTypeSize(Ty);
3179      // Mask off bits that should not be set.
3180      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3181      Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
3182
3183      // Multiply by the element size and add to the base.
3184      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
3185      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
3186    }
3187  }
3188
3189  // Make sure that the offset fits in uintptr_t.
3190  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3191  Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
3192
3193  // Okay, we have now emitted all of the variable index parts to the BB that
3194  // the GEP is defined in.  Loop over all of the using instructions, inserting
3195  // an "add Ptr, ConstantOffset" into each block that uses it and update the
3196  // instruction to use the newly computed value, making GEPI dead.  When the
3197  // user is a load or store instruction address, we emit the add into the user
3198  // block, otherwise we use a canonical version right next to the gep (these
3199  // won't be foldable as addresses, so we might as well share the computation).
3200
3201  std::map<BasicBlock*,Instruction*> InsertedExprs;
3202  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3203
3204  // Finally, the GEP is dead, remove it.
3205  GEPI->eraseFromParent();
3206
3207  return true;
3208}
3209
3210bool SelectionDAGISel::runOnFunction(Function &Fn) {
3211  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
3212  RegMap = MF.getSSARegMap();
3213  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
3214
3215  // First, split all critical edges for PHI nodes with incoming values that are
3216  // constants, this way the load of the constant into a vreg will not be placed
3217  // into MBBs that are used some other way.
3218  //
3219  // In this pass we also look for GEP and cast instructions that are used
3220  // across basic blocks and rewrite them to improve basic-block-at-a-time
3221  // selection.
3222  //
3223  //
3224  bool MadeChange = true;
3225  while (MadeChange) {
3226    MadeChange = false;
3227  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
3228    PHINode *PN;
3229    BasicBlock::iterator BBI;
3230    for (BBI = BB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI)
3231      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3232        if (isa<Constant>(PN->getIncomingValue(i)))
3233          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
3234
3235    for (BasicBlock::iterator E = BB->end(); BBI != E; ) {
3236      Instruction *I = BBI++;
3237      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
3238        MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
3239      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
3240        // If this is a noop copy, sink it into user blocks to reduce the number
3241        // of virtual registers that must be created and coallesced.
3242        MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
3243        MVT::ValueType DstVT = TLI.getValueType(CI->getType());
3244
3245        // This is an fp<->int conversion?
3246        if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
3247          continue;
3248
3249        // If this is an extension, it will be a zero or sign extension, which
3250        // isn't a noop.
3251        if (SrcVT < DstVT) continue;
3252
3253        // If these values will be promoted, find out what they will be promoted
3254        // to.  This helps us consider truncates on PPC as noop copies when they
3255        // are.
3256        if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
3257          SrcVT = TLI.getTypeToTransformTo(SrcVT);
3258        if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
3259          DstVT = TLI.getTypeToTransformTo(DstVT);
3260
3261        // If, after promotion, these are the same types, this is a noop copy.
3262        if (SrcVT == DstVT)
3263          MadeChange |= OptimizeNoopCopyExpression(CI);
3264      }
3265    }
3266  }
3267  }
3268
3269  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
3270
3271  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
3272    SelectBasicBlock(I, MF, FuncInfo);
3273
3274  return true;
3275}
3276
3277
3278SDOperand SelectionDAGISel::
3279CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
3280  SDOperand Op = SDL.getValue(V);
3281  assert((Op.getOpcode() != ISD::CopyFromReg ||
3282          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
3283         "Copy from a reg to the same reg!");
3284
3285  // If this type is not legal, we must make sure to not create an invalid
3286  // register use.
3287  MVT::ValueType SrcVT = Op.getValueType();
3288  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
3289  SelectionDAG &DAG = SDL.DAG;
3290  if (SrcVT == DestVT) {
3291    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
3292  } else if (SrcVT == MVT::Vector) {
3293    // Handle copies from generic vectors to registers.
3294    MVT::ValueType PTyElementVT, PTyLegalElementVT;
3295    unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
3296                                             PTyElementVT, PTyLegalElementVT);
3297
3298    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
3299    // MVT::Vector type.
3300    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
3301                     DAG.getConstant(NE, MVT::i32),
3302                     DAG.getValueType(PTyElementVT));
3303
3304    // Loop over all of the elements of the resultant vector,
3305    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
3306    // copying them into output registers.
3307    SmallVector<SDOperand, 8> OutChains;
3308    SDOperand Root = SDL.getRoot();
3309    for (unsigned i = 0; i != NE; ++i) {
3310      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
3311                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
3312      if (PTyElementVT == PTyLegalElementVT) {
3313        // Elements are legal.
3314        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3315      } else if (PTyLegalElementVT > PTyElementVT) {
3316        // Elements are promoted.
3317        if (MVT::isFloatingPoint(PTyLegalElementVT))
3318          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
3319        else
3320          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
3321        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3322      } else {
3323        // Elements are expanded.
3324        // The src value is expanded into multiple registers.
3325        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3326                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
3327        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3328                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
3329        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
3330        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
3331      }
3332    }
3333    return DAG.getNode(ISD::TokenFactor, MVT::Other,
3334                       &OutChains[0], OutChains.size());
3335  } else if (SrcVT < DestVT) {
3336    // The src value is promoted to the register.
3337    if (MVT::isFloatingPoint(SrcVT))
3338      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
3339    else
3340      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
3341    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
3342  } else  {
3343    // The src value is expanded into multiple registers.
3344    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3345                               Op, DAG.getConstant(0, TLI.getPointerTy()));
3346    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3347                               Op, DAG.getConstant(1, TLI.getPointerTy()));
3348    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
3349    return DAG.getCopyToReg(Op, Reg+1, Hi);
3350  }
3351}
3352
3353void SelectionDAGISel::
3354LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
3355               std::vector<SDOperand> &UnorderedChains) {
3356  // If this is the entry block, emit arguments.
3357  Function &F = *BB->getParent();
3358  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
3359  SDOperand OldRoot = SDL.DAG.getRoot();
3360  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
3361
3362  unsigned a = 0;
3363  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
3364       AI != E; ++AI, ++a)
3365    if (!AI->use_empty()) {
3366      SDL.setValue(AI, Args[a]);
3367
3368      // If this argument is live outside of the entry block, insert a copy from
3369      // whereever we got it to the vreg that other BB's will reference it as.
3370      if (FuncInfo.ValueMap.count(AI)) {
3371        SDOperand Copy =
3372          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
3373        UnorderedChains.push_back(Copy);
3374      }
3375    }
3376
3377  // Finally, if the target has anything special to do, allow it to do so.
3378  // FIXME: this should insert code into the DAG!
3379  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
3380}
3381
3382void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
3383       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
3384                                         FunctionLoweringInfo &FuncInfo) {
3385  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
3386
3387  std::vector<SDOperand> UnorderedChains;
3388
3389  // Lower any arguments needed in this block if this is the entry block.
3390  if (LLVMBB == &LLVMBB->getParent()->front())
3391    LowerArguments(LLVMBB, SDL, UnorderedChains);
3392
3393  BB = FuncInfo.MBBMap[LLVMBB];
3394  SDL.setCurrentBasicBlock(BB);
3395
3396  // Lower all of the non-terminator instructions.
3397  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
3398       I != E; ++I)
3399    SDL.visit(*I);
3400
3401  // Ensure that all instructions which are used outside of their defining
3402  // blocks are available as virtual registers.
3403  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
3404    if (!I->use_empty() && !isa<PHINode>(I)) {
3405      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
3406      if (VMI != FuncInfo.ValueMap.end())
3407        UnorderedChains.push_back(
3408                           CopyValueToVirtualRegister(SDL, I, VMI->second));
3409    }
3410
3411  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
3412  // ensure constants are generated when needed.  Remember the virtual registers
3413  // that need to be added to the Machine PHI nodes as input.  We cannot just
3414  // directly add them, because expansion might result in multiple MBB's for one
3415  // BB.  As such, the start of the BB might correspond to a different MBB than
3416  // the end.
3417  //
3418
3419  // Emit constants only once even if used by multiple PHI nodes.
3420  std::map<Constant*, unsigned> ConstantsOut;
3421
3422  // Check successor nodes PHI nodes that expect a constant to be available from
3423  // this block.
3424  TerminatorInst *TI = LLVMBB->getTerminator();
3425  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
3426    BasicBlock *SuccBB = TI->getSuccessor(succ);
3427    if (!isa<PHINode>(SuccBB->begin())) continue;
3428
3429    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
3430    PHINode *PN;
3431
3432    // At this point we know that there is a 1-1 correspondence between LLVM PHI
3433    // nodes and Machine PHI nodes, but the incoming operands have not been
3434    // emitted yet.
3435    for (BasicBlock::iterator I = SuccBB->begin();
3436         (PN = dyn_cast<PHINode>(I)); ++I)
3437      if (!PN->use_empty()) {
3438        unsigned Reg;
3439        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
3440        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
3441          unsigned &RegOut = ConstantsOut[C];
3442          if (RegOut == 0) {
3443            RegOut = FuncInfo.CreateRegForValue(C);
3444            UnorderedChains.push_back(
3445                             CopyValueToVirtualRegister(SDL, C, RegOut));
3446          }
3447          Reg = RegOut;
3448        } else {
3449          Reg = FuncInfo.ValueMap[PHIOp];
3450          if (Reg == 0) {
3451            assert(isa<AllocaInst>(PHIOp) &&
3452                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
3453                   "Didn't codegen value into a register!??");
3454            Reg = FuncInfo.CreateRegForValue(PHIOp);
3455            UnorderedChains.push_back(
3456                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
3457          }
3458        }
3459
3460        // Remember that this register needs to added to the machine PHI node as
3461        // the input for this MBB.
3462        MVT::ValueType VT = TLI.getValueType(PN->getType());
3463        unsigned NumElements;
3464        if (VT != MVT::Vector)
3465          NumElements = TLI.getNumElements(VT);
3466        else {
3467          MVT::ValueType VT1,VT2;
3468          NumElements =
3469            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
3470                                       VT1, VT2);
3471        }
3472        for (unsigned i = 0, e = NumElements; i != e; ++i)
3473          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
3474      }
3475  }
3476  ConstantsOut.clear();
3477
3478  // Turn all of the unordered chains into one factored node.
3479  if (!UnorderedChains.empty()) {
3480    SDOperand Root = SDL.getRoot();
3481    if (Root.getOpcode() != ISD::EntryToken) {
3482      unsigned i = 0, e = UnorderedChains.size();
3483      for (; i != e; ++i) {
3484        assert(UnorderedChains[i].Val->getNumOperands() > 1);
3485        if (UnorderedChains[i].Val->getOperand(0) == Root)
3486          break;  // Don't add the root if we already indirectly depend on it.
3487      }
3488
3489      if (i == e)
3490        UnorderedChains.push_back(Root);
3491    }
3492    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3493                            &UnorderedChains[0], UnorderedChains.size()));
3494  }
3495
3496  // Lower the terminator after the copies are emitted.
3497  SDL.visit(*LLVMBB->getTerminator());
3498
3499  // Copy over any CaseBlock records that may now exist due to SwitchInst
3500  // lowering, as well as any jump table information.
3501  SwitchCases.clear();
3502  SwitchCases = SDL.SwitchCases;
3503  JT = SDL.JT;
3504
3505  // Make sure the root of the DAG is up-to-date.
3506  DAG.setRoot(SDL.getRoot());
3507}
3508
3509void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
3510  // Run the DAG combiner in pre-legalize mode.
3511  DAG.Combine(false);
3512
3513  DEBUG(std::cerr << "Lowered selection DAG:\n");
3514  DEBUG(DAG.dump());
3515
3516  // Second step, hack on the DAG until it only uses operations and types that
3517  // the target supports.
3518  DAG.Legalize();
3519
3520  DEBUG(std::cerr << "Legalized selection DAG:\n");
3521  DEBUG(DAG.dump());
3522
3523  // Run the DAG combiner in post-legalize mode.
3524  DAG.Combine(true);
3525
3526  if (ViewISelDAGs) DAG.viewGraph();
3527
3528  // Third, instruction select all of the operations to machine code, adding the
3529  // code to the MachineBasicBlock.
3530  InstructionSelectBasicBlock(DAG);
3531
3532  DEBUG(std::cerr << "Selected machine code:\n");
3533  DEBUG(BB->dump());
3534}
3535
3536void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
3537                                        FunctionLoweringInfo &FuncInfo) {
3538  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
3539  {
3540    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3541    CurDAG = &DAG;
3542
3543    // First step, lower LLVM code to some DAG.  This DAG may use operations and
3544    // types that are not supported by the target.
3545    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
3546
3547    // Second step, emit the lowered DAG as machine code.
3548    CodeGenAndEmitDAG(DAG);
3549  }
3550
3551  // Next, now that we know what the last MBB the LLVM BB expanded is, update
3552  // PHI nodes in successors.
3553  if (SwitchCases.empty() && JT.Reg == 0) {
3554    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
3555      MachineInstr *PHI = PHINodesToUpdate[i].first;
3556      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3557             "This is not a machine PHI node that we are updating!");
3558      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
3559      PHI->addMachineBasicBlockOperand(BB);
3560    }
3561    return;
3562  }
3563
3564  // If the JumpTable record is filled in, then we need to emit a jump table.
3565  // Updating the PHI nodes is tricky in this case, since we need to determine
3566  // whether the PHI is a successor of the range check MBB or the jump table MBB
3567  if (JT.Reg) {
3568    assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
3569    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3570    CurDAG = &SDAG;
3571    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3572    MachineBasicBlock *RangeBB = BB;
3573    // Set the current basic block to the mbb we wish to insert the code into
3574    BB = JT.MBB;
3575    SDL.setCurrentBasicBlock(BB);
3576    // Emit the code
3577    SDL.visitJumpTable(JT);
3578    SDAG.setRoot(SDL.getRoot());
3579    CodeGenAndEmitDAG(SDAG);
3580    // Update PHI Nodes
3581    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
3582      MachineInstr *PHI = PHINodesToUpdate[pi].first;
3583      MachineBasicBlock *PHIBB = PHI->getParent();
3584      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3585             "This is not a machine PHI node that we are updating!");
3586      if (PHIBB == JT.Default) {
3587        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
3588        PHI->addMachineBasicBlockOperand(RangeBB);
3589      }
3590      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
3591        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
3592        PHI->addMachineBasicBlockOperand(BB);
3593      }
3594    }
3595    return;
3596  }
3597
3598  // If we generated any switch lowering information, build and codegen any
3599  // additional DAGs necessary.
3600  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
3601    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3602    CurDAG = &SDAG;
3603    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3604
3605    // Set the current basic block to the mbb we wish to insert the code into
3606    BB = SwitchCases[i].ThisBB;
3607    SDL.setCurrentBasicBlock(BB);
3608
3609    // Emit the code
3610    SDL.visitSwitchCase(SwitchCases[i]);
3611    SDAG.setRoot(SDL.getRoot());
3612    CodeGenAndEmitDAG(SDAG);
3613
3614    // Handle any PHI nodes in successors of this chunk, as if we were coming
3615    // from the original BB before switch expansion.  Note that PHI nodes can
3616    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
3617    // handle them the right number of times.
3618    while ((BB = SwitchCases[i].LHSBB)) {  // Handle LHS and RHS.
3619      for (MachineBasicBlock::iterator Phi = BB->begin();
3620           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
3621        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
3622        for (unsigned pn = 0; ; ++pn) {
3623          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
3624          if (PHINodesToUpdate[pn].first == Phi) {
3625            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
3626            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
3627            break;
3628          }
3629        }
3630      }
3631
3632      // Don't process RHS if same block as LHS.
3633      if (BB == SwitchCases[i].RHSBB)
3634        SwitchCases[i].RHSBB = 0;
3635
3636      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
3637      SwitchCases[i].LHSBB = SwitchCases[i].RHSBB;
3638      SwitchCases[i].RHSBB = 0;
3639    }
3640    assert(SwitchCases[i].LHSBB == 0 && SwitchCases[i].RHSBB == 0);
3641  }
3642}
3643
3644
3645//===----------------------------------------------------------------------===//
3646/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
3647/// target node in the graph.
3648void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
3649  if (ViewSchedDAGs) DAG.viewGraph();
3650
3651  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
3652
3653  if (!Ctor) {
3654    Ctor = ISHeuristic;
3655    RegisterScheduler::setDefault(Ctor);
3656  }
3657
3658  ScheduleDAG *SL = Ctor(this, &DAG, BB);
3659  BB = SL->Run();
3660  delete SL;
3661}
3662
3663
3664HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
3665  return new HazardRecognizer();
3666}
3667
3668
3669/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
3670/// by tblgen.  Others should not call it.
3671void SelectionDAGISel::
3672SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
3673  std::vector<SDOperand> InOps;
3674  std::swap(InOps, Ops);
3675
3676  Ops.push_back(InOps[0]);  // input chain.
3677  Ops.push_back(InOps[1]);  // input asm string.
3678
3679  unsigned i = 2, e = InOps.size();
3680  if (InOps[e-1].getValueType() == MVT::Flag)
3681    --e;  // Don't process a flag operand if it is here.
3682
3683  while (i != e) {
3684    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
3685    if ((Flags & 7) != 4 /*MEM*/) {
3686      // Just skip over this operand, copying the operands verbatim.
3687      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
3688      i += (Flags >> 3) + 1;
3689    } else {
3690      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
3691      // Otherwise, this is a memory operand.  Ask the target to select it.
3692      std::vector<SDOperand> SelOps;
3693      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
3694        std::cerr << "Could not match memory address.  Inline asm failure!\n";
3695        exit(1);
3696      }
3697
3698      // Add this to the output node.
3699      Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
3700      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
3701      i += 2;
3702    }
3703  }
3704
3705  // Add the flag input back if present.
3706  if (e != InOps.size())
3707    Ops.push_back(InOps.back());
3708}
3709