SelectionDAGISel.cpp revision 6f498b0a8eeb69a9aa20319e2c803b1d58525547
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/Timer.h"
49#include <algorithm>
50using namespace llvm;
51
52static cl::opt<bool>
53EnableValueProp("enable-value-prop", cl::Hidden);
54static cl::opt<bool>
55EnableLegalizeTypes("enable-legalize-types", cl::Hidden);
56
57
58#ifndef NDEBUG
59static cl::opt<bool>
60ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
61          cl::desc("Pop up a window to show dags before the first "
62                   "dag combine pass"));
63static cl::opt<bool>
64ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
65          cl::desc("Pop up a window to show dags before legalize types"));
66static cl::opt<bool>
67ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
68          cl::desc("Pop up a window to show dags before legalize"));
69static cl::opt<bool>
70ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
71          cl::desc("Pop up a window to show dags before the second "
72                   "dag combine pass"));
73static cl::opt<bool>
74ViewISelDAGs("view-isel-dags", cl::Hidden,
75          cl::desc("Pop up a window to show isel dags as they are selected"));
76static cl::opt<bool>
77ViewSchedDAGs("view-sched-dags", cl::Hidden,
78          cl::desc("Pop up a window to show sched dags as they are processed"));
79static cl::opt<bool>
80ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
81      cl::desc("Pop up a window to show SUnit dags after they are processed"));
82#else
83static const bool ViewDAGCombine1 = false,
84                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
85                  ViewDAGCombine2 = false,
86                  ViewISelDAGs = false, ViewSchedDAGs = false,
87                  ViewSUnitDAGs = false;
88#endif
89
90//===---------------------------------------------------------------------===//
91///
92/// RegisterScheduler class - Track the registration of instruction schedulers.
93///
94//===---------------------------------------------------------------------===//
95MachinePassRegistry RegisterScheduler::Registry;
96
97//===---------------------------------------------------------------------===//
98///
99/// ISHeuristic command line option for instruction schedulers.
100///
101//===---------------------------------------------------------------------===//
102static cl::opt<RegisterScheduler::FunctionPassCtor, false,
103               RegisterPassParser<RegisterScheduler> >
104ISHeuristic("pre-RA-sched",
105            cl::init(&createDefaultScheduler),
106            cl::desc("Instruction schedulers available (before register"
107                     " allocation):"));
108
109static RegisterScheduler
110defaultListDAGScheduler("default", "  Best scheduler for the target",
111                        createDefaultScheduler);
112
113namespace { struct SDISelAsmOperandInfo; }
114
115/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
116/// insertvalue or extractvalue indices that identify a member, return
117/// the linearized index of the start of the member.
118///
119static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
120                                   const unsigned *Indices,
121                                   const unsigned *IndicesEnd,
122                                   unsigned CurIndex = 0) {
123  // Base case: We're done.
124  if (Indices && Indices == IndicesEnd)
125    return CurIndex;
126
127  // Given a struct type, recursively traverse the elements.
128  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
129    for (StructType::element_iterator EB = STy->element_begin(),
130                                      EI = EB,
131                                      EE = STy->element_end();
132        EI != EE; ++EI) {
133      if (Indices && *Indices == unsigned(EI - EB))
134        return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
135      CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
136    }
137  }
138  // Given an array type, recursively traverse the elements.
139  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
140    const Type *EltTy = ATy->getElementType();
141    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
142      if (Indices && *Indices == i)
143        return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
144      CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
145    }
146  }
147  // We haven't found the type we're looking for, so keep searching.
148  return CurIndex + 1;
149}
150
151/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
152/// MVTs that represent all the individual underlying
153/// non-aggregate types that comprise it.
154///
155/// If Offsets is non-null, it points to a vector to be filled in
156/// with the in-memory offsets of each of the individual values.
157///
158static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
159                            SmallVectorImpl<MVT> &ValueVTs,
160                            SmallVectorImpl<uint64_t> *Offsets = 0,
161                            uint64_t StartingOffset = 0) {
162  // Given a struct type, recursively traverse the elements.
163  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
164    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
165    for (StructType::element_iterator EB = STy->element_begin(),
166                                      EI = EB,
167                                      EE = STy->element_end();
168         EI != EE; ++EI)
169      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
170                      StartingOffset + SL->getElementOffset(EI - EB));
171    return;
172  }
173  // Given an array type, recursively traverse the elements.
174  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
175    const Type *EltTy = ATy->getElementType();
176    uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
177    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
178      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
179                      StartingOffset + i * EltSize);
180    return;
181  }
182  // Base case: we can get an MVT for this LLVM IR type.
183  ValueVTs.push_back(TLI.getValueType(Ty));
184  if (Offsets)
185    Offsets->push_back(StartingOffset);
186}
187
188namespace {
189  /// RegsForValue - This struct represents the registers (physical or virtual)
190  /// that a particular set of values is assigned, and the type information about
191  /// the value. The most common situation is to represent one value at a time,
192  /// but struct or array values are handled element-wise as multiple values.
193  /// The splitting of aggregates is performed recursively, so that we never
194  /// have aggregate-typed registers. The values at this point do not necessarily
195  /// have legal types, so each value may require one or more registers of some
196  /// legal type.
197  ///
198  struct VISIBILITY_HIDDEN RegsForValue {
199    /// TLI - The TargetLowering object.
200    ///
201    const TargetLowering *TLI;
202
203    /// ValueVTs - The value types of the values, which may not be legal, and
204    /// may need be promoted or synthesized from one or more registers.
205    ///
206    SmallVector<MVT, 4> ValueVTs;
207
208    /// RegVTs - The value types of the registers. This is the same size as
209    /// ValueVTs and it records, for each value, what the type of the assigned
210    /// register or registers are. (Individual values are never synthesized
211    /// from more than one type of register.)
212    ///
213    /// With virtual registers, the contents of RegVTs is redundant with TLI's
214    /// getRegisterType member function, however when with physical registers
215    /// it is necessary to have a separate record of the types.
216    ///
217    SmallVector<MVT, 4> RegVTs;
218
219    /// Regs - This list holds the registers assigned to the values.
220    /// Each legal or promoted value requires one register, and each
221    /// expanded value requires multiple registers.
222    ///
223    SmallVector<unsigned, 4> Regs;
224
225    RegsForValue() : TLI(0) {}
226
227    RegsForValue(const TargetLowering &tli,
228                 const SmallVector<unsigned, 4> &regs,
229                 MVT regvt, MVT valuevt)
230      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
231    RegsForValue(const TargetLowering &tli,
232                 const SmallVector<unsigned, 4> &regs,
233                 const SmallVector<MVT, 4> &regvts,
234                 const SmallVector<MVT, 4> &valuevts)
235      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
236    RegsForValue(const TargetLowering &tli,
237                 unsigned Reg, const Type *Ty) : TLI(&tli) {
238      ComputeValueVTs(tli, Ty, ValueVTs);
239
240      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
241        MVT ValueVT = ValueVTs[Value];
242        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
243        MVT RegisterVT = TLI->getRegisterType(ValueVT);
244        for (unsigned i = 0; i != NumRegs; ++i)
245          Regs.push_back(Reg + i);
246        RegVTs.push_back(RegisterVT);
247        Reg += NumRegs;
248      }
249    }
250
251    /// append - Add the specified values to this one.
252    void append(const RegsForValue &RHS) {
253      TLI = RHS.TLI;
254      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
255      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
256      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
257    }
258
259
260    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
261    /// this value and returns the result as a ValueVTs value.  This uses
262    /// Chain/Flag as the input and updates them for the output Chain/Flag.
263    /// If the Flag pointer is NULL, no flag is used.
264    SDValue getCopyFromRegs(SelectionDAG &DAG,
265                              SDValue &Chain, SDValue *Flag) const;
266
267    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
268    /// specified value into the registers specified by this object.  This uses
269    /// Chain/Flag as the input and updates them for the output Chain/Flag.
270    /// If the Flag pointer is NULL, no flag is used.
271    void getCopyToRegs(SDValue Val, SelectionDAG &DAG,
272                       SDValue &Chain, SDValue *Flag) const;
273
274    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
275    /// operand list.  This adds the code marker and includes the number of
276    /// values added into it.
277    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
278                              std::vector<SDValue> &Ops) const;
279  };
280}
281
282namespace llvm {
283  //===--------------------------------------------------------------------===//
284  /// createDefaultScheduler - This creates an instruction scheduler appropriate
285  /// for the target.
286  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
287                                      SelectionDAG *DAG,
288                                      MachineBasicBlock *BB,
289                                      bool Fast) {
290    TargetLowering &TLI = IS->getTargetLowering();
291
292    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
293      return createTDListDAGScheduler(IS, DAG, BB, Fast);
294    } else {
295      assert(TLI.getSchedulingPreference() ==
296           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
297      return createBURRListDAGScheduler(IS, DAG, BB, Fast);
298    }
299  }
300
301
302  //===--------------------------------------------------------------------===//
303  /// FunctionLoweringInfo - This contains information that is global to a
304  /// function that is used when lowering a region of the function.
305  class FunctionLoweringInfo {
306  public:
307    TargetLowering &TLI;
308    Function &Fn;
309    MachineFunction &MF;
310    MachineRegisterInfo &RegInfo;
311
312    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
313
314    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
315    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
316
317    /// ValueMap - Since we emit code for the function a basic block at a time,
318    /// we must remember which virtual registers hold the values for
319    /// cross-basic-block values.
320    DenseMap<const Value*, unsigned> ValueMap;
321
322    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
323    /// the entry block.  This allows the allocas to be efficiently referenced
324    /// anywhere in the function.
325    std::map<const AllocaInst*, int> StaticAllocaMap;
326
327#ifndef NDEBUG
328    SmallSet<Instruction*, 8> CatchInfoLost;
329    SmallSet<Instruction*, 8> CatchInfoFound;
330#endif
331
332    unsigned MakeReg(MVT VT) {
333      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
334    }
335
336    /// isExportedInst - Return true if the specified value is an instruction
337    /// exported from its block.
338    bool isExportedInst(const Value *V) {
339      return ValueMap.count(V);
340    }
341
342    unsigned CreateRegForValue(const Value *V);
343
344    unsigned InitializeRegForValue(const Value *V) {
345      unsigned &R = ValueMap[V];
346      assert(R == 0 && "Already initialized this value register!");
347      return R = CreateRegForValue(V);
348    }
349
350    struct LiveOutInfo {
351      unsigned NumSignBits;
352      APInt KnownOne, KnownZero;
353      LiveOutInfo() : NumSignBits(0) {}
354    };
355
356    /// LiveOutRegInfo - Information about live out vregs, indexed by their
357    /// register number offset by 'FirstVirtualRegister'.
358    std::vector<LiveOutInfo> LiveOutRegInfo;
359  };
360}
361
362/// isSelector - Return true if this instruction is a call to the
363/// eh.selector intrinsic.
364static bool isSelector(Instruction *I) {
365  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
366    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
367            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
368  return false;
369}
370
371/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
372/// PHI nodes or outside of the basic block that defines it, or used by a
373/// switch or atomic instruction, which may expand to multiple basic blocks.
374static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
375  if (isa<PHINode>(I)) return true;
376  BasicBlock *BB = I->getParent();
377  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
378    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
379        // FIXME: Remove switchinst special case.
380        isa<SwitchInst>(*UI))
381      return true;
382  return false;
383}
384
385/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
386/// entry block, return true.  This includes arguments used by switches, since
387/// the switch may expand into multiple basic blocks.
388static bool isOnlyUsedInEntryBlock(Argument *A) {
389  BasicBlock *Entry = A->getParent()->begin();
390  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
391    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
392      return false;  // Use not in entry block.
393  return true;
394}
395
396FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
397                                           Function &fn, MachineFunction &mf)
398    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
399
400  // Create a vreg for each argument register that is not dead and is used
401  // outside of the entry block for the function.
402  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
403       AI != E; ++AI)
404    if (!isOnlyUsedInEntryBlock(AI))
405      InitializeRegForValue(AI);
406
407  // Initialize the mapping of values to registers.  This is only set up for
408  // instruction values that are used outside of the block that defines
409  // them.
410  Function::iterator BB = Fn.begin(), EB = Fn.end();
411  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
412    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
413      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
414        const Type *Ty = AI->getAllocatedType();
415        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
416        unsigned Align =
417          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
418                   AI->getAlignment());
419
420        TySize *= CUI->getZExtValue();   // Get total allocated size.
421        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
422        StaticAllocaMap[AI] =
423          MF.getFrameInfo()->CreateStackObject(TySize, Align);
424      }
425
426  for (; BB != EB; ++BB)
427    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
428      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
429        if (!isa<AllocaInst>(I) ||
430            !StaticAllocaMap.count(cast<AllocaInst>(I)))
431          InitializeRegForValue(I);
432
433  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
434  // also creates the initial PHI MachineInstrs, though none of the input
435  // operands are populated.
436  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
437    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
438    MBBMap[BB] = MBB;
439    MF.push_back(MBB);
440
441    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
442    // appropriate.
443    PHINode *PN;
444    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
445      if (PN->use_empty()) continue;
446
447      unsigned PHIReg = ValueMap[PN];
448      assert(PHIReg && "PHI node does not have an assigned virtual register!");
449
450      SmallVector<MVT, 4> ValueVTs;
451      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
452      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
453        MVT VT = ValueVTs[vti];
454        unsigned NumRegisters = TLI.getNumRegisters(VT);
455        const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
456        for (unsigned i = 0; i != NumRegisters; ++i)
457          BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
458        PHIReg += NumRegisters;
459      }
460    }
461  }
462}
463
464/// CreateRegForValue - Allocate the appropriate number of virtual registers of
465/// the correctly promoted or expanded types.  Assign these registers
466/// consecutive vreg numbers and return the first assigned number.
467///
468/// In the case that the given value has struct or array type, this function
469/// will assign registers for each member or element.
470///
471unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
472  SmallVector<MVT, 4> ValueVTs;
473  ComputeValueVTs(TLI, V->getType(), ValueVTs);
474
475  unsigned FirstReg = 0;
476  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
477    MVT ValueVT = ValueVTs[Value];
478    MVT RegisterVT = TLI.getRegisterType(ValueVT);
479
480    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
481    for (unsigned i = 0; i != NumRegs; ++i) {
482      unsigned R = MakeReg(RegisterVT);
483      if (!FirstReg) FirstReg = R;
484    }
485  }
486  return FirstReg;
487}
488
489//===----------------------------------------------------------------------===//
490/// SelectionDAGLowering - This is the common target-independent lowering
491/// implementation that is parameterized by a TargetLowering object.
492/// Also, targets can overload any lowering method.
493///
494namespace llvm {
495class SelectionDAGLowering {
496  MachineBasicBlock *CurMBB;
497
498  DenseMap<const Value*, SDValue> NodeMap;
499
500  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
501  /// them up and then emit token factor nodes when possible.  This allows us to
502  /// get simple disambiguation between loads without worrying about alias
503  /// analysis.
504  SmallVector<SDValue, 8> PendingLoads;
505
506  /// PendingExports - CopyToReg nodes that copy values to virtual registers
507  /// for export to other blocks need to be emitted before any terminator
508  /// instruction, but they have no other ordering requirements. We bunch them
509  /// up and the emit a single tokenfactor for them just before terminator
510  /// instructions.
511  std::vector<SDValue> PendingExports;
512
513  /// Case - A struct to record the Value for a switch case, and the
514  /// case's target basic block.
515  struct Case {
516    Constant* Low;
517    Constant* High;
518    MachineBasicBlock* BB;
519
520    Case() : Low(0), High(0), BB(0) { }
521    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
522      Low(low), High(high), BB(bb) { }
523    uint64_t size() const {
524      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
525      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
526      return (rHigh - rLow + 1ULL);
527    }
528  };
529
530  struct CaseBits {
531    uint64_t Mask;
532    MachineBasicBlock* BB;
533    unsigned Bits;
534
535    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
536      Mask(mask), BB(bb), Bits(bits) { }
537  };
538
539  typedef std::vector<Case>           CaseVector;
540  typedef std::vector<CaseBits>       CaseBitsVector;
541  typedef CaseVector::iterator        CaseItr;
542  typedef std::pair<CaseItr, CaseItr> CaseRange;
543
544  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
545  /// of conditional branches.
546  struct CaseRec {
547    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
548    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
549
550    /// CaseBB - The MBB in which to emit the compare and branch
551    MachineBasicBlock *CaseBB;
552    /// LT, GE - If nonzero, we know the current case value must be less-than or
553    /// greater-than-or-equal-to these Constants.
554    Constant *LT;
555    Constant *GE;
556    /// Range - A pair of iterators representing the range of case values to be
557    /// processed at this point in the binary search tree.
558    CaseRange Range;
559  };
560
561  typedef std::vector<CaseRec> CaseRecVector;
562
563  /// The comparison function for sorting the switch case values in the vector.
564  /// WARNING: Case ranges should be disjoint!
565  struct CaseCmp {
566    bool operator () (const Case& C1, const Case& C2) {
567      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
568      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
569      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
570      return CI1->getValue().slt(CI2->getValue());
571    }
572  };
573
574  struct CaseBitsCmp {
575    bool operator () (const CaseBits& C1, const CaseBits& C2) {
576      return C1.Bits > C2.Bits;
577    }
578  };
579
580  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
581
582public:
583  // TLI - This is information that describes the available target features we
584  // need for lowering.  This indicates when operations are unavailable,
585  // implemented with a libcall, etc.
586  TargetLowering &TLI;
587  SelectionDAG &DAG;
588  const TargetData *TD;
589  AliasAnalysis &AA;
590
591  /// SwitchCases - Vector of CaseBlock structures used to communicate
592  /// SwitchInst code generation information.
593  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
594  /// JTCases - Vector of JumpTable structures used to communicate
595  /// SwitchInst code generation information.
596  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
597  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
598
599  /// FuncInfo - Information about the function as a whole.
600  ///
601  FunctionLoweringInfo &FuncInfo;
602
603  /// GCI - Garbage collection metadata for the function.
604  CollectorMetadata *GCI;
605
606  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
607                       AliasAnalysis &aa,
608                       FunctionLoweringInfo &funcinfo,
609                       CollectorMetadata *gci)
610    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
611      FuncInfo(funcinfo), GCI(gci) {
612  }
613
614  /// getRoot - Return the current virtual root of the Selection DAG,
615  /// flushing any PendingLoad items. This must be done before emitting
616  /// a store or any other node that may need to be ordered after any
617  /// prior load instructions.
618  ///
619  SDValue getRoot() {
620    if (PendingLoads.empty())
621      return DAG.getRoot();
622
623    if (PendingLoads.size() == 1) {
624      SDValue Root = PendingLoads[0];
625      DAG.setRoot(Root);
626      PendingLoads.clear();
627      return Root;
628    }
629
630    // Otherwise, we have to make a token factor node.
631    SDValue Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
632                                 &PendingLoads[0], PendingLoads.size());
633    PendingLoads.clear();
634    DAG.setRoot(Root);
635    return Root;
636  }
637
638  /// getControlRoot - Similar to getRoot, but instead of flushing all the
639  /// PendingLoad items, flush all the PendingExports items. It is necessary
640  /// to do this before emitting a terminator instruction.
641  ///
642  SDValue getControlRoot() {
643    SDValue Root = DAG.getRoot();
644
645    if (PendingExports.empty())
646      return Root;
647
648    // Turn all of the CopyToReg chains into one factored node.
649    if (Root.getOpcode() != ISD::EntryToken) {
650      unsigned i = 0, e = PendingExports.size();
651      for (; i != e; ++i) {
652        assert(PendingExports[i].Val->getNumOperands() > 1);
653        if (PendingExports[i].Val->getOperand(0) == Root)
654          break;  // Don't add the root if we already indirectly depend on it.
655      }
656
657      if (i == e)
658        PendingExports.push_back(Root);
659    }
660
661    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
662                       &PendingExports[0],
663                       PendingExports.size());
664    PendingExports.clear();
665    DAG.setRoot(Root);
666    return Root;
667  }
668
669  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
670
671  void visit(Instruction &I) { visit(I.getOpcode(), I); }
672
673  void visit(unsigned Opcode, User &I) {
674    // Note: this doesn't use InstVisitor, because it has to work with
675    // ConstantExpr's in addition to instructions.
676    switch (Opcode) {
677    default: assert(0 && "Unknown instruction type encountered!");
678             abort();
679      // Build the switch statement using the Instruction.def file.
680#define HANDLE_INST(NUM, OPCODE, CLASS) \
681    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
682#include "llvm/Instruction.def"
683    }
684  }
685
686  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
687
688  SDValue getValue(const Value *V);
689
690  void setValue(const Value *V, SDValue NewN) {
691    SDValue &N = NodeMap[V];
692    assert(N.Val == 0 && "Already set a value for this node!");
693    N = NewN;
694  }
695
696  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
697                            std::set<unsigned> &OutputRegs,
698                            std::set<unsigned> &InputRegs);
699
700  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
701                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
702                            unsigned Opc);
703  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
704  void ExportFromCurrentBlock(Value *V);
705  void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall,
706                   MachineBasicBlock *LandingPad = NULL);
707
708  // Terminator instructions.
709  void visitRet(ReturnInst &I);
710  void visitBr(BranchInst &I);
711  void visitSwitch(SwitchInst &I);
712  void visitUnreachable(UnreachableInst &I) { /* noop */ }
713
714  // Helpers for visitSwitch
715  bool handleSmallSwitchRange(CaseRec& CR,
716                              CaseRecVector& WorkList,
717                              Value* SV,
718                              MachineBasicBlock* Default);
719  bool handleJTSwitchCase(CaseRec& CR,
720                          CaseRecVector& WorkList,
721                          Value* SV,
722                          MachineBasicBlock* Default);
723  bool handleBTSplitSwitchCase(CaseRec& CR,
724                               CaseRecVector& WorkList,
725                               Value* SV,
726                               MachineBasicBlock* Default);
727  bool handleBitTestsSwitchCase(CaseRec& CR,
728                                CaseRecVector& WorkList,
729                                Value* SV,
730                                MachineBasicBlock* Default);
731  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
732  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
733  void visitBitTestCase(MachineBasicBlock* NextMBB,
734                        unsigned Reg,
735                        SelectionDAGISel::BitTestCase &B);
736  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
737  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
738                            SelectionDAGISel::JumpTableHeader &JTH);
739
740  // These all get lowered before this pass.
741  void visitInvoke(InvokeInst &I);
742  void visitUnwind(UnwindInst &I);
743
744  void visitBinary(User &I, unsigned OpCode);
745  void visitShift(User &I, unsigned Opcode);
746  void visitAdd(User &I) {
747    if (I.getType()->isFPOrFPVector())
748      visitBinary(I, ISD::FADD);
749    else
750      visitBinary(I, ISD::ADD);
751  }
752  void visitSub(User &I);
753  void visitMul(User &I) {
754    if (I.getType()->isFPOrFPVector())
755      visitBinary(I, ISD::FMUL);
756    else
757      visitBinary(I, ISD::MUL);
758  }
759  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
760  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
761  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
762  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
763  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
764  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
765  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
766  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
767  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
768  void visitShl (User &I) { visitShift(I, ISD::SHL); }
769  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
770  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
771  void visitICmp(User &I);
772  void visitFCmp(User &I);
773  void visitVICmp(User &I);
774  void visitVFCmp(User &I);
775  // Visit the conversion instructions
776  void visitTrunc(User &I);
777  void visitZExt(User &I);
778  void visitSExt(User &I);
779  void visitFPTrunc(User &I);
780  void visitFPExt(User &I);
781  void visitFPToUI(User &I);
782  void visitFPToSI(User &I);
783  void visitUIToFP(User &I);
784  void visitSIToFP(User &I);
785  void visitPtrToInt(User &I);
786  void visitIntToPtr(User &I);
787  void visitBitCast(User &I);
788
789  void visitExtractElement(User &I);
790  void visitInsertElement(User &I);
791  void visitShuffleVector(User &I);
792
793  void visitExtractValue(ExtractValueInst &I);
794  void visitInsertValue(InsertValueInst &I);
795
796  void visitGetElementPtr(User &I);
797  void visitSelect(User &I);
798
799  void visitMalloc(MallocInst &I);
800  void visitFree(FreeInst &I);
801  void visitAlloca(AllocaInst &I);
802  void visitLoad(LoadInst &I);
803  void visitStore(StoreInst &I);
804  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
805  void visitCall(CallInst &I);
806  void visitInlineAsm(CallSite CS);
807  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
808  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
809
810  void visitVAStart(CallInst &I);
811  void visitVAArg(VAArgInst &I);
812  void visitVAEnd(CallInst &I);
813  void visitVACopy(CallInst &I);
814
815  void visitUserOp1(Instruction &I) {
816    assert(0 && "UserOp1 should not exist at instruction selection time!");
817    abort();
818  }
819  void visitUserOp2(Instruction &I) {
820    assert(0 && "UserOp2 should not exist at instruction selection time!");
821    abort();
822  }
823
824private:
825  inline const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
826
827};
828} // end namespace llvm
829
830
831/// getCopyFromParts - Create a value that contains the specified legal parts
832/// combined into the value they represent.  If the parts combine to a type
833/// larger then ValueVT then AssertOp can be used to specify whether the extra
834/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
835/// (ISD::AssertSext).
836static SDValue getCopyFromParts(SelectionDAG &DAG,
837                                  const SDValue *Parts,
838                                  unsigned NumParts,
839                                  MVT PartVT,
840                                  MVT ValueVT,
841                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
842  assert(NumParts > 0 && "No parts to assemble!");
843  TargetLowering &TLI = DAG.getTargetLoweringInfo();
844  SDValue Val = Parts[0];
845
846  if (NumParts > 1) {
847    // Assemble the value from multiple parts.
848    if (!ValueVT.isVector()) {
849      unsigned PartBits = PartVT.getSizeInBits();
850      unsigned ValueBits = ValueVT.getSizeInBits();
851
852      // Assemble the power of 2 part.
853      unsigned RoundParts = NumParts & (NumParts - 1) ?
854        1 << Log2_32(NumParts) : NumParts;
855      unsigned RoundBits = PartBits * RoundParts;
856      MVT RoundVT = RoundBits == ValueBits ?
857        ValueVT : MVT::getIntegerVT(RoundBits);
858      SDValue Lo, Hi;
859
860      if (RoundParts > 2) {
861        MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
862        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
863        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
864                              PartVT, HalfVT);
865      } else {
866        Lo = Parts[0];
867        Hi = Parts[1];
868      }
869      if (TLI.isBigEndian())
870        std::swap(Lo, Hi);
871      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
872
873      if (RoundParts < NumParts) {
874        // Assemble the trailing non-power-of-2 part.
875        unsigned OddParts = NumParts - RoundParts;
876        MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
877        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
878
879        // Combine the round and odd parts.
880        Lo = Val;
881        if (TLI.isBigEndian())
882          std::swap(Lo, Hi);
883        MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
884        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
885        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
886                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
887                                         TLI.getShiftAmountTy()));
888        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
889        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
890      }
891    } else {
892      // Handle a multi-element vector.
893      MVT IntermediateVT, RegisterVT;
894      unsigned NumIntermediates;
895      unsigned NumRegs =
896        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
897                                   RegisterVT);
898      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
899      NumParts = NumRegs; // Silence a compiler warning.
900      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
901      assert(RegisterVT == Parts[0].getValueType() &&
902             "Part type doesn't match part!");
903
904      // Assemble the parts into intermediate operands.
905      SmallVector<SDValue, 8> Ops(NumIntermediates);
906      if (NumIntermediates == NumParts) {
907        // If the register was not expanded, truncate or copy the value,
908        // as appropriate.
909        for (unsigned i = 0; i != NumParts; ++i)
910          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
911                                    PartVT, IntermediateVT);
912      } else if (NumParts > 0) {
913        // If the intermediate type was expanded, build the intermediate operands
914        // from the parts.
915        assert(NumParts % NumIntermediates == 0 &&
916               "Must expand into a divisible number of parts!");
917        unsigned Factor = NumParts / NumIntermediates;
918        for (unsigned i = 0; i != NumIntermediates; ++i)
919          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
920                                    PartVT, IntermediateVT);
921      }
922
923      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
924      // operands.
925      Val = DAG.getNode(IntermediateVT.isVector() ?
926                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
927                        ValueVT, &Ops[0], NumIntermediates);
928    }
929  }
930
931  // There is now one part, held in Val.  Correct it to match ValueVT.
932  PartVT = Val.getValueType();
933
934  if (PartVT == ValueVT)
935    return Val;
936
937  if (PartVT.isVector()) {
938    assert(ValueVT.isVector() && "Unknown vector conversion!");
939    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
940  }
941
942  if (ValueVT.isVector()) {
943    assert(ValueVT.getVectorElementType() == PartVT &&
944           ValueVT.getVectorNumElements() == 1 &&
945           "Only trivial scalar-to-vector conversions should get here!");
946    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
947  }
948
949  if (PartVT.isInteger() &&
950      ValueVT.isInteger()) {
951    if (ValueVT.bitsLT(PartVT)) {
952      // For a truncate, see if we have any information to
953      // indicate whether the truncated bits will always be
954      // zero or sign-extension.
955      if (AssertOp != ISD::DELETED_NODE)
956        Val = DAG.getNode(AssertOp, PartVT, Val,
957                          DAG.getValueType(ValueVT));
958      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
959    } else {
960      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
961    }
962  }
963
964  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
965    if (ValueVT.bitsLT(Val.getValueType()))
966      // FP_ROUND's are always exact here.
967      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
968                         DAG.getIntPtrConstant(1));
969    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
970  }
971
972  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
973    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
974
975  assert(0 && "Unknown mismatch!");
976  return SDValue();
977}
978
979/// getCopyToParts - Create a series of nodes that contain the specified value
980/// split into legal parts.  If the parts contain more bits than Val, then, for
981/// integers, ExtendKind can be used to specify how to generate the extra bits.
982static void getCopyToParts(SelectionDAG &DAG,
983                           SDValue Val,
984                           SDValue *Parts,
985                           unsigned NumParts,
986                           MVT PartVT,
987                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
988  TargetLowering &TLI = DAG.getTargetLoweringInfo();
989  MVT PtrVT = TLI.getPointerTy();
990  MVT ValueVT = Val.getValueType();
991  unsigned PartBits = PartVT.getSizeInBits();
992  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
993
994  if (!NumParts)
995    return;
996
997  if (!ValueVT.isVector()) {
998    if (PartVT == ValueVT) {
999      assert(NumParts == 1 && "No-op copy with multiple parts!");
1000      Parts[0] = Val;
1001      return;
1002    }
1003
1004    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
1005      // If the parts cover more bits than the value has, promote the value.
1006      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
1007        assert(NumParts == 1 && "Do not know what to promote to!");
1008        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
1009      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
1010        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1011        Val = DAG.getNode(ExtendKind, ValueVT, Val);
1012      } else {
1013        assert(0 && "Unknown mismatch!");
1014      }
1015    } else if (PartBits == ValueVT.getSizeInBits()) {
1016      // Different types of the same size.
1017      assert(NumParts == 1 && PartVT != ValueVT);
1018      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1019    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
1020      // If the parts cover less bits than value has, truncate the value.
1021      if (PartVT.isInteger() && ValueVT.isInteger()) {
1022        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1023        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1024      } else {
1025        assert(0 && "Unknown mismatch!");
1026      }
1027    }
1028
1029    // The value may have changed - recompute ValueVT.
1030    ValueVT = Val.getValueType();
1031    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
1032           "Failed to tile the value with PartVT!");
1033
1034    if (NumParts == 1) {
1035      assert(PartVT == ValueVT && "Type conversion failed!");
1036      Parts[0] = Val;
1037      return;
1038    }
1039
1040    // Expand the value into multiple parts.
1041    if (NumParts & (NumParts - 1)) {
1042      // The number of parts is not a power of 2.  Split off and copy the tail.
1043      assert(PartVT.isInteger() && ValueVT.isInteger() &&
1044             "Do not know what to expand to!");
1045      unsigned RoundParts = 1 << Log2_32(NumParts);
1046      unsigned RoundBits = RoundParts * PartBits;
1047      unsigned OddParts = NumParts - RoundParts;
1048      SDValue OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
1049                                     DAG.getConstant(RoundBits,
1050                                                     TLI.getShiftAmountTy()));
1051      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
1052      if (TLI.isBigEndian())
1053        // The odd parts were reversed by getCopyToParts - unreverse them.
1054        std::reverse(Parts + RoundParts, Parts + NumParts);
1055      NumParts = RoundParts;
1056      ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1057      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1058    }
1059
1060    // The number of parts is a power of 2.  Repeatedly bisect the value using
1061    // EXTRACT_ELEMENT.
1062    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
1063                           MVT::getIntegerVT(ValueVT.getSizeInBits()),
1064                           Val);
1065    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
1066      for (unsigned i = 0; i < NumParts; i += StepSize) {
1067        unsigned ThisBits = StepSize * PartBits / 2;
1068        MVT ThisVT = MVT::getIntegerVT (ThisBits);
1069        SDValue &Part0 = Parts[i];
1070        SDValue &Part1 = Parts[i+StepSize/2];
1071
1072        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1073                            DAG.getConstant(1, PtrVT));
1074        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1075                            DAG.getConstant(0, PtrVT));
1076
1077        if (ThisBits == PartBits && ThisVT != PartVT) {
1078          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
1079          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
1080        }
1081      }
1082    }
1083
1084    if (TLI.isBigEndian())
1085      std::reverse(Parts, Parts + NumParts);
1086
1087    return;
1088  }
1089
1090  // Vector ValueVT.
1091  if (NumParts == 1) {
1092    if (PartVT != ValueVT) {
1093      if (PartVT.isVector()) {
1094        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1095      } else {
1096        assert(ValueVT.getVectorElementType() == PartVT &&
1097               ValueVT.getVectorNumElements() == 1 &&
1098               "Only trivial vector-to-scalar conversions should get here!");
1099        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
1100                          DAG.getConstant(0, PtrVT));
1101      }
1102    }
1103
1104    Parts[0] = Val;
1105    return;
1106  }
1107
1108  // Handle a multi-element vector.
1109  MVT IntermediateVT, RegisterVT;
1110  unsigned NumIntermediates;
1111  unsigned NumRegs =
1112    DAG.getTargetLoweringInfo()
1113      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1114                              RegisterVT);
1115  unsigned NumElements = ValueVT.getVectorNumElements();
1116
1117  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1118  NumParts = NumRegs; // Silence a compiler warning.
1119  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1120
1121  // Split the vector into intermediate operands.
1122  SmallVector<SDValue, 8> Ops(NumIntermediates);
1123  for (unsigned i = 0; i != NumIntermediates; ++i)
1124    if (IntermediateVT.isVector())
1125      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
1126                           IntermediateVT, Val,
1127                           DAG.getConstant(i * (NumElements / NumIntermediates),
1128                                           PtrVT));
1129    else
1130      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
1131                           IntermediateVT, Val,
1132                           DAG.getConstant(i, PtrVT));
1133
1134  // Split the intermediate operands into legal parts.
1135  if (NumParts == NumIntermediates) {
1136    // If the register was not expanded, promote or copy the value,
1137    // as appropriate.
1138    for (unsigned i = 0; i != NumParts; ++i)
1139      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
1140  } else if (NumParts > 0) {
1141    // If the intermediate type was expanded, split each the value into
1142    // legal parts.
1143    assert(NumParts % NumIntermediates == 0 &&
1144           "Must expand into a divisible number of parts!");
1145    unsigned Factor = NumParts / NumIntermediates;
1146    for (unsigned i = 0; i != NumIntermediates; ++i)
1147      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
1148  }
1149}
1150
1151
1152SDValue SelectionDAGLowering::getValue(const Value *V) {
1153  SDValue &N = NodeMap[V];
1154  if (N.Val) return N;
1155
1156  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
1157    MVT VT = TLI.getValueType(V->getType(), true);
1158
1159    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1160      return N = DAG.getConstant(CI->getValue(), VT);
1161
1162    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
1163      return N = DAG.getGlobalAddress(GV, VT);
1164
1165    if (isa<ConstantPointerNull>(C))
1166      return N = DAG.getConstant(0, TLI.getPointerTy());
1167
1168    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1169      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
1170
1171    if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
1172        !V->getType()->isAggregateType())
1173      return N = DAG.getNode(ISD::UNDEF, VT);
1174
1175    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1176      visit(CE->getOpcode(), *CE);
1177      SDValue N1 = NodeMap[V];
1178      assert(N1.Val && "visit didn't populate the ValueMap!");
1179      return N1;
1180    }
1181
1182    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1183      SmallVector<SDValue, 4> Constants;
1184      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1185           OI != OE; ++OI) {
1186        SDNode *Val = getValue(*OI).Val;
1187        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1188          Constants.push_back(SDValue(Val, i));
1189      }
1190      return DAG.getMergeValues(&Constants[0], Constants.size());
1191    }
1192
1193    if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
1194      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1195             "Unknown struct or array constant!");
1196
1197      SmallVector<MVT, 4> ValueVTs;
1198      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1199      unsigned NumElts = ValueVTs.size();
1200      if (NumElts == 0)
1201        return SDValue(); // empty struct
1202      SmallVector<SDValue, 4> Constants(NumElts);
1203      for (unsigned i = 0; i != NumElts; ++i) {
1204        MVT EltVT = ValueVTs[i];
1205        if (isa<UndefValue>(C))
1206          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1207        else if (EltVT.isFloatingPoint())
1208          Constants[i] = DAG.getConstantFP(0, EltVT);
1209        else
1210          Constants[i] = DAG.getConstant(0, EltVT);
1211      }
1212      return DAG.getMergeValues(&Constants[0], NumElts);
1213    }
1214
1215    const VectorType *VecTy = cast<VectorType>(V->getType());
1216    unsigned NumElements = VecTy->getNumElements();
1217
1218    // Now that we know the number and type of the elements, get that number of
1219    // elements into the Ops array based on what kind of constant it is.
1220    SmallVector<SDValue, 16> Ops;
1221    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1222      for (unsigned i = 0; i != NumElements; ++i)
1223        Ops.push_back(getValue(CP->getOperand(i)));
1224    } else {
1225      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1226             "Unknown vector constant!");
1227      MVT EltVT = TLI.getValueType(VecTy->getElementType());
1228
1229      SDValue Op;
1230      if (isa<UndefValue>(C))
1231        Op = DAG.getNode(ISD::UNDEF, EltVT);
1232      else if (EltVT.isFloatingPoint())
1233        Op = DAG.getConstantFP(0, EltVT);
1234      else
1235        Op = DAG.getConstant(0, EltVT);
1236      Ops.assign(NumElements, Op);
1237    }
1238
1239    // Create a BUILD_VECTOR node.
1240    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1241  }
1242
1243  // If this is a static alloca, generate it as the frameindex instead of
1244  // computation.
1245  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1246    std::map<const AllocaInst*, int>::iterator SI =
1247      FuncInfo.StaticAllocaMap.find(AI);
1248    if (SI != FuncInfo.StaticAllocaMap.end())
1249      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1250  }
1251
1252  unsigned InReg = FuncInfo.ValueMap[V];
1253  assert(InReg && "Value not in map!");
1254
1255  RegsForValue RFV(TLI, InReg, V->getType());
1256  SDValue Chain = DAG.getEntryNode();
1257  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1258}
1259
1260
1261void SelectionDAGLowering::visitRet(ReturnInst &I) {
1262  if (I.getNumOperands() == 0) {
1263    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
1264    return;
1265  }
1266
1267  SmallVector<SDValue, 8> NewValues;
1268  NewValues.push_back(getControlRoot());
1269  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1270    SDValue RetOp = getValue(I.getOperand(i));
1271
1272    SmallVector<MVT, 4> ValueVTs;
1273    ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
1274    for (unsigned j = 0, f = ValueVTs.size(); j != f; ++j) {
1275      MVT VT = ValueVTs[j];
1276
1277      // FIXME: C calling convention requires the return type to be promoted to
1278      // at least 32-bit. But this is not necessary for non-C calling conventions.
1279      if (VT.isInteger()) {
1280        MVT MinVT = TLI.getRegisterType(MVT::i32);
1281        if (VT.bitsLT(MinVT))
1282          VT = MinVT;
1283      }
1284
1285      unsigned NumParts = TLI.getNumRegisters(VT);
1286      MVT PartVT = TLI.getRegisterType(VT);
1287      SmallVector<SDValue, 4> Parts(NumParts);
1288      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1289
1290      const Function *F = I.getParent()->getParent();
1291      if (F->paramHasAttr(0, ParamAttr::SExt))
1292        ExtendKind = ISD::SIGN_EXTEND;
1293      else if (F->paramHasAttr(0, ParamAttr::ZExt))
1294        ExtendKind = ISD::ZERO_EXTEND;
1295
1296      getCopyToParts(DAG, SDValue(RetOp.Val, RetOp.ResNo + j),
1297                     &Parts[0], NumParts, PartVT, ExtendKind);
1298
1299      for (unsigned i = 0; i < NumParts; ++i) {
1300        NewValues.push_back(Parts[i]);
1301        NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
1302      }
1303    }
1304  }
1305  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1306                          &NewValues[0], NewValues.size()));
1307}
1308
1309/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1310/// the current basic block, add it to ValueMap now so that we'll get a
1311/// CopyTo/FromReg.
1312void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1313  // No need to export constants.
1314  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1315
1316  // Already exported?
1317  if (FuncInfo.isExportedInst(V)) return;
1318
1319  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1320  CopyValueToVirtualRegister(V, Reg);
1321}
1322
1323bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1324                                                    const BasicBlock *FromBB) {
1325  // The operands of the setcc have to be in this block.  We don't know
1326  // how to export them from some other block.
1327  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1328    // Can export from current BB.
1329    if (VI->getParent() == FromBB)
1330      return true;
1331
1332    // Is already exported, noop.
1333    return FuncInfo.isExportedInst(V);
1334  }
1335
1336  // If this is an argument, we can export it if the BB is the entry block or
1337  // if it is already exported.
1338  if (isa<Argument>(V)) {
1339    if (FromBB == &FromBB->getParent()->getEntryBlock())
1340      return true;
1341
1342    // Otherwise, can only export this if it is already exported.
1343    return FuncInfo.isExportedInst(V);
1344  }
1345
1346  // Otherwise, constants can always be exported.
1347  return true;
1348}
1349
1350static bool InBlock(const Value *V, const BasicBlock *BB) {
1351  if (const Instruction *I = dyn_cast<Instruction>(V))
1352    return I->getParent() == BB;
1353  return true;
1354}
1355
1356/// FindMergedConditions - If Cond is an expression like
1357void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1358                                                MachineBasicBlock *TBB,
1359                                                MachineBasicBlock *FBB,
1360                                                MachineBasicBlock *CurBB,
1361                                                unsigned Opc) {
1362  // If this node is not part of the or/and tree, emit it as a branch.
1363  Instruction *BOp = dyn_cast<Instruction>(Cond);
1364
1365  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1366      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1367      BOp->getParent() != CurBB->getBasicBlock() ||
1368      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1369      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1370    const BasicBlock *BB = CurBB->getBasicBlock();
1371
1372    // If the leaf of the tree is a comparison, merge the condition into
1373    // the caseblock.
1374    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1375        // The operands of the cmp have to be in this block.  We don't know
1376        // how to export them from some other block.  If this is the first block
1377        // of the sequence, no exporting is needed.
1378        (CurBB == CurMBB ||
1379         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1380          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1381      BOp = cast<Instruction>(Cond);
1382      ISD::CondCode Condition;
1383      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1384        switch (IC->getPredicate()) {
1385        default: assert(0 && "Unknown icmp predicate opcode!");
1386        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1387        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1388        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1389        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1390        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1391        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1392        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1393        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1394        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1395        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1396        }
1397      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1398        ISD::CondCode FPC, FOC;
1399        switch (FC->getPredicate()) {
1400        default: assert(0 && "Unknown fcmp predicate opcode!");
1401        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1402        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1403        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1404        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1405        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1406        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1407        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1408        case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
1409        case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
1410        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1411        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1412        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1413        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1414        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1415        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1416        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1417        }
1418        if (FiniteOnlyFPMath())
1419          Condition = FOC;
1420        else
1421          Condition = FPC;
1422      } else {
1423        Condition = ISD::SETEQ; // silence warning.
1424        assert(0 && "Unknown compare instruction");
1425      }
1426
1427      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1428                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1429      SwitchCases.push_back(CB);
1430      return;
1431    }
1432
1433    // Create a CaseBlock record representing this branch.
1434    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1435                                   NULL, TBB, FBB, CurBB);
1436    SwitchCases.push_back(CB);
1437    return;
1438  }
1439
1440
1441  //  Create TmpBB after CurBB.
1442  MachineFunction::iterator BBI = CurBB;
1443  MachineFunction &MF = DAG.getMachineFunction();
1444  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1445  CurBB->getParent()->insert(++BBI, TmpBB);
1446
1447  if (Opc == Instruction::Or) {
1448    // Codegen X | Y as:
1449    //   jmp_if_X TBB
1450    //   jmp TmpBB
1451    // TmpBB:
1452    //   jmp_if_Y TBB
1453    //   jmp FBB
1454    //
1455
1456    // Emit the LHS condition.
1457    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1458
1459    // Emit the RHS condition into TmpBB.
1460    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1461  } else {
1462    assert(Opc == Instruction::And && "Unknown merge op!");
1463    // Codegen X & Y as:
1464    //   jmp_if_X TmpBB
1465    //   jmp FBB
1466    // TmpBB:
1467    //   jmp_if_Y TBB
1468    //   jmp FBB
1469    //
1470    //  This requires creation of TmpBB after CurBB.
1471
1472    // Emit the LHS condition.
1473    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1474
1475    // Emit the RHS condition into TmpBB.
1476    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1477  }
1478}
1479
1480/// If the set of cases should be emitted as a series of branches, return true.
1481/// If we should emit this as a bunch of and/or'd together conditions, return
1482/// false.
1483static bool
1484ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1485  if (Cases.size() != 2) return true;
1486
1487  // If this is two comparisons of the same values or'd or and'd together, they
1488  // will get folded into a single comparison, so don't emit two blocks.
1489  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1490       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1491      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1492       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1493    return false;
1494  }
1495
1496  return true;
1497}
1498
1499void SelectionDAGLowering::visitBr(BranchInst &I) {
1500  // Update machine-CFG edges.
1501  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1502
1503  // Figure out which block is immediately after the current one.
1504  MachineBasicBlock *NextBlock = 0;
1505  MachineFunction::iterator BBI = CurMBB;
1506  if (++BBI != CurMBB->getParent()->end())
1507    NextBlock = BBI;
1508
1509  if (I.isUnconditional()) {
1510    // Update machine-CFG edges.
1511    CurMBB->addSuccessor(Succ0MBB);
1512
1513    // If this is not a fall-through branch, emit the branch.
1514    if (Succ0MBB != NextBlock)
1515      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1516                              DAG.getBasicBlock(Succ0MBB)));
1517    return;
1518  }
1519
1520  // If this condition is one of the special cases we handle, do special stuff
1521  // now.
1522  Value *CondVal = I.getCondition();
1523  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1524
1525  // If this is a series of conditions that are or'd or and'd together, emit
1526  // this as a sequence of branches instead of setcc's with and/or operations.
1527  // For example, instead of something like:
1528  //     cmp A, B
1529  //     C = seteq
1530  //     cmp D, E
1531  //     F = setle
1532  //     or C, F
1533  //     jnz foo
1534  // Emit:
1535  //     cmp A, B
1536  //     je foo
1537  //     cmp D, E
1538  //     jle foo
1539  //
1540  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1541    if (BOp->hasOneUse() &&
1542        (BOp->getOpcode() == Instruction::And ||
1543         BOp->getOpcode() == Instruction::Or)) {
1544      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1545      // If the compares in later blocks need to use values not currently
1546      // exported from this block, export them now.  This block should always
1547      // be the first entry.
1548      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1549
1550      // Allow some cases to be rejected.
1551      if (ShouldEmitAsBranches(SwitchCases)) {
1552        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1553          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1554          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1555        }
1556
1557        // Emit the branch for this block.
1558        visitSwitchCase(SwitchCases[0]);
1559        SwitchCases.erase(SwitchCases.begin());
1560        return;
1561      }
1562
1563      // Okay, we decided not to do this, remove any inserted MBB's and clear
1564      // SwitchCases.
1565      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1566        CurMBB->getParent()->erase(SwitchCases[i].ThisBB);
1567
1568      SwitchCases.clear();
1569    }
1570  }
1571
1572  // Create a CaseBlock record representing this branch.
1573  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1574                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1575  // Use visitSwitchCase to actually insert the fast branch sequence for this
1576  // cond branch.
1577  visitSwitchCase(CB);
1578}
1579
1580/// visitSwitchCase - Emits the necessary code to represent a single node in
1581/// the binary search tree resulting from lowering a switch instruction.
1582void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1583  SDValue Cond;
1584  SDValue CondLHS = getValue(CB.CmpLHS);
1585
1586  // Build the setcc now.
1587  if (CB.CmpMHS == NULL) {
1588    // Fold "(X == true)" to X and "(X == false)" to !X to
1589    // handle common cases produced by branch lowering.
1590    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1591      Cond = CondLHS;
1592    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1593      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1594      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1595    } else
1596      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1597  } else {
1598    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1599
1600    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1601    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1602
1603    SDValue CmpOp = getValue(CB.CmpMHS);
1604    MVT VT = CmpOp.getValueType();
1605
1606    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1607      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1608    } else {
1609      SDValue SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1610      Cond = DAG.getSetCC(MVT::i1, SUB,
1611                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1612    }
1613  }
1614
1615  // Update successor info
1616  CurMBB->addSuccessor(CB.TrueBB);
1617  CurMBB->addSuccessor(CB.FalseBB);
1618
1619  // Set NextBlock to be the MBB immediately after the current one, if any.
1620  // This is used to avoid emitting unnecessary branches to the next block.
1621  MachineBasicBlock *NextBlock = 0;
1622  MachineFunction::iterator BBI = CurMBB;
1623  if (++BBI != CurMBB->getParent()->end())
1624    NextBlock = BBI;
1625
1626  // If the lhs block is the next block, invert the condition so that we can
1627  // fall through to the lhs instead of the rhs block.
1628  if (CB.TrueBB == NextBlock) {
1629    std::swap(CB.TrueBB, CB.FalseBB);
1630    SDValue True = DAG.getConstant(1, Cond.getValueType());
1631    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1632  }
1633  SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1634                                 DAG.getBasicBlock(CB.TrueBB));
1635  if (CB.FalseBB == NextBlock)
1636    DAG.setRoot(BrCond);
1637  else
1638    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1639                            DAG.getBasicBlock(CB.FalseBB)));
1640}
1641
1642/// visitJumpTable - Emit JumpTable node in the current MBB
1643void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1644  // Emit the code for the jump table
1645  assert(JT.Reg != -1U && "Should lower JT Header first!");
1646  MVT PTy = TLI.getPointerTy();
1647  SDValue Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1648  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1649  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1650                          Table, Index));
1651  return;
1652}
1653
1654/// visitJumpTableHeader - This function emits necessary code to produce index
1655/// in the JumpTable from switch case.
1656void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1657                                         SelectionDAGISel::JumpTableHeader &JTH) {
1658  // Subtract the lowest switch case value from the value being switched on
1659  // and conditional branch to default mbb if the result is greater than the
1660  // difference between smallest and largest cases.
1661  SDValue SwitchOp = getValue(JTH.SValue);
1662  MVT VT = SwitchOp.getValueType();
1663  SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1664                              DAG.getConstant(JTH.First, VT));
1665
1666  // The SDNode we just created, which holds the value being switched on
1667  // minus the the smallest case value, needs to be copied to a virtual
1668  // register so it can be used as an index into the jump table in a
1669  // subsequent basic block.  This value may be smaller or larger than the
1670  // target's pointer type, and therefore require extension or truncating.
1671  if (VT.bitsGT(TLI.getPointerTy()))
1672    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1673  else
1674    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1675
1676  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1677  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1678  JT.Reg = JumpTableReg;
1679
1680  // Emit the range check for the jump table, and branch to the default
1681  // block for the switch statement if the value being switched on exceeds
1682  // the largest case in the switch.
1683  SDValue CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1684                               DAG.getConstant(JTH.Last-JTH.First,VT),
1685                               ISD::SETUGT);
1686
1687  // Set NextBlock to be the MBB immediately after the current one, if any.
1688  // This is used to avoid emitting unnecessary branches to the next block.
1689  MachineBasicBlock *NextBlock = 0;
1690  MachineFunction::iterator BBI = CurMBB;
1691  if (++BBI != CurMBB->getParent()->end())
1692    NextBlock = BBI;
1693
1694  SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1695                                 DAG.getBasicBlock(JT.Default));
1696
1697  if (JT.MBB == NextBlock)
1698    DAG.setRoot(BrCond);
1699  else
1700    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1701                            DAG.getBasicBlock(JT.MBB)));
1702
1703  return;
1704}
1705
1706/// visitBitTestHeader - This function emits necessary code to produce value
1707/// suitable for "bit tests"
1708void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1709  // Subtract the minimum value
1710  SDValue SwitchOp = getValue(B.SValue);
1711  MVT VT = SwitchOp.getValueType();
1712  SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1713                              DAG.getConstant(B.First, VT));
1714
1715  // Check range
1716  SDValue RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1717                                    DAG.getConstant(B.Range, VT),
1718                                    ISD::SETUGT);
1719
1720  SDValue ShiftOp;
1721  if (VT.bitsGT(TLI.getShiftAmountTy()))
1722    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1723  else
1724    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1725
1726  // Make desired shift
1727  SDValue SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1728                                    DAG.getConstant(1, TLI.getPointerTy()),
1729                                    ShiftOp);
1730
1731  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1732  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1733  B.Reg = SwitchReg;
1734
1735  // Set NextBlock to be the MBB immediately after the current one, if any.
1736  // This is used to avoid emitting unnecessary branches to the next block.
1737  MachineBasicBlock *NextBlock = 0;
1738  MachineFunction::iterator BBI = CurMBB;
1739  if (++BBI != CurMBB->getParent()->end())
1740    NextBlock = BBI;
1741
1742  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1743
1744  CurMBB->addSuccessor(B.Default);
1745  CurMBB->addSuccessor(MBB);
1746
1747  SDValue BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1748                                  DAG.getBasicBlock(B.Default));
1749
1750  if (MBB == NextBlock)
1751    DAG.setRoot(BrRange);
1752  else
1753    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1754                            DAG.getBasicBlock(MBB)));
1755
1756  return;
1757}
1758
1759/// visitBitTestCase - this function produces one "bit test"
1760void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1761                                            unsigned Reg,
1762                                            SelectionDAGISel::BitTestCase &B) {
1763  // Emit bit tests and jumps
1764  SDValue SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
1765                                           TLI.getPointerTy());
1766
1767  SDValue AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
1768                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1769  SDValue AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1770                                  DAG.getConstant(0, TLI.getPointerTy()),
1771                                  ISD::SETNE);
1772
1773  CurMBB->addSuccessor(B.TargetBB);
1774  CurMBB->addSuccessor(NextMBB);
1775
1776  SDValue BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1777                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1778
1779  // Set NextBlock to be the MBB immediately after the current one, if any.
1780  // This is used to avoid emitting unnecessary branches to the next block.
1781  MachineBasicBlock *NextBlock = 0;
1782  MachineFunction::iterator BBI = CurMBB;
1783  if (++BBI != CurMBB->getParent()->end())
1784    NextBlock = BBI;
1785
1786  if (NextMBB == NextBlock)
1787    DAG.setRoot(BrAnd);
1788  else
1789    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1790                            DAG.getBasicBlock(NextMBB)));
1791
1792  return;
1793}
1794
1795void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1796  // Retrieve successors.
1797  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1798  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1799
1800  if (isa<InlineAsm>(I.getCalledValue()))
1801    visitInlineAsm(&I);
1802  else
1803    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1804
1805  // If the value of the invoke is used outside of its defining block, make it
1806  // available as a virtual register.
1807  if (!I.use_empty()) {
1808    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1809    if (VMI != FuncInfo.ValueMap.end())
1810      CopyValueToVirtualRegister(&I, VMI->second);
1811  }
1812
1813  // Update successor info
1814  CurMBB->addSuccessor(Return);
1815  CurMBB->addSuccessor(LandingPad);
1816
1817  // Drop into normal successor.
1818  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1819                          DAG.getBasicBlock(Return)));
1820}
1821
1822void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1823}
1824
1825/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1826/// small case ranges).
1827bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1828                                                  CaseRecVector& WorkList,
1829                                                  Value* SV,
1830                                                  MachineBasicBlock* Default) {
1831  Case& BackCase  = *(CR.Range.second-1);
1832
1833  // Size is the number of Cases represented by this range.
1834  unsigned Size = CR.Range.second - CR.Range.first;
1835  if (Size > 3)
1836    return false;
1837
1838  // Get the MachineFunction which holds the current MBB.  This is used when
1839  // inserting any additional MBBs necessary to represent the switch.
1840  MachineFunction *CurMF = CurMBB->getParent();
1841
1842  // Figure out which block is immediately after the current one.
1843  MachineBasicBlock *NextBlock = 0;
1844  MachineFunction::iterator BBI = CR.CaseBB;
1845
1846  if (++BBI != CurMBB->getParent()->end())
1847    NextBlock = BBI;
1848
1849  // TODO: If any two of the cases has the same destination, and if one value
1850  // is the same as the other, but has one bit unset that the other has set,
1851  // use bit manipulation to do two compares at once.  For example:
1852  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1853
1854  // Rearrange the case blocks so that the last one falls through if possible.
1855  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1856    // The last case block won't fall through into 'NextBlock' if we emit the
1857    // branches in this order.  See if rearranging a case value would help.
1858    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1859      if (I->BB == NextBlock) {
1860        std::swap(*I, BackCase);
1861        break;
1862      }
1863    }
1864  }
1865
1866  // Create a CaseBlock record representing a conditional branch to
1867  // the Case's target mbb if the value being switched on SV is equal
1868  // to C.
1869  MachineBasicBlock *CurBlock = CR.CaseBB;
1870  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1871    MachineBasicBlock *FallThrough;
1872    if (I != E-1) {
1873      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1874      CurMF->insert(BBI, FallThrough);
1875    } else {
1876      // If the last case doesn't match, go to the default block.
1877      FallThrough = Default;
1878    }
1879
1880    Value *RHS, *LHS, *MHS;
1881    ISD::CondCode CC;
1882    if (I->High == I->Low) {
1883      // This is just small small case range :) containing exactly 1 case
1884      CC = ISD::SETEQ;
1885      LHS = SV; RHS = I->High; MHS = NULL;
1886    } else {
1887      CC = ISD::SETLE;
1888      LHS = I->Low; MHS = SV; RHS = I->High;
1889    }
1890    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1891                                   I->BB, FallThrough, CurBlock);
1892
1893    // If emitting the first comparison, just call visitSwitchCase to emit the
1894    // code into the current block.  Otherwise, push the CaseBlock onto the
1895    // vector to be later processed by SDISel, and insert the node's MBB
1896    // before the next MBB.
1897    if (CurBlock == CurMBB)
1898      visitSwitchCase(CB);
1899    else
1900      SwitchCases.push_back(CB);
1901
1902    CurBlock = FallThrough;
1903  }
1904
1905  return true;
1906}
1907
1908static inline bool areJTsAllowed(const TargetLowering &TLI) {
1909  return !DisableJumpTables &&
1910          (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1911           TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1912}
1913
1914/// handleJTSwitchCase - Emit jumptable for current switch case range
1915bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1916                                              CaseRecVector& WorkList,
1917                                              Value* SV,
1918                                              MachineBasicBlock* Default) {
1919  Case& FrontCase = *CR.Range.first;
1920  Case& BackCase  = *(CR.Range.second-1);
1921
1922  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1923  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1924
1925  uint64_t TSize = 0;
1926  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1927       I!=E; ++I)
1928    TSize += I->size();
1929
1930  if (!areJTsAllowed(TLI) || TSize <= 3)
1931    return false;
1932
1933  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1934  if (Density < 0.4)
1935    return false;
1936
1937  DOUT << "Lowering jump table\n"
1938       << "First entry: " << First << ". Last entry: " << Last << "\n"
1939       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1940
1941  // Get the MachineFunction which holds the current MBB.  This is used when
1942  // inserting any additional MBBs necessary to represent the switch.
1943  MachineFunction *CurMF = CurMBB->getParent();
1944
1945  // Figure out which block is immediately after the current one.
1946  MachineBasicBlock *NextBlock = 0;
1947  MachineFunction::iterator BBI = CR.CaseBB;
1948
1949  if (++BBI != CurMBB->getParent()->end())
1950    NextBlock = BBI;
1951
1952  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1953
1954  // Create a new basic block to hold the code for loading the address
1955  // of the jump table, and jumping to it.  Update successor information;
1956  // we will either branch to the default case for the switch, or the jump
1957  // table.
1958  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1959  CurMF->insert(BBI, JumpTableBB);
1960  CR.CaseBB->addSuccessor(Default);
1961  CR.CaseBB->addSuccessor(JumpTableBB);
1962
1963  // Build a vector of destination BBs, corresponding to each target
1964  // of the jump table. If the value of the jump table slot corresponds to
1965  // a case statement, push the case's BB onto the vector, otherwise, push
1966  // the default BB.
1967  std::vector<MachineBasicBlock*> DestBBs;
1968  int64_t TEI = First;
1969  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1970    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1971    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1972
1973    if ((Low <= TEI) && (TEI <= High)) {
1974      DestBBs.push_back(I->BB);
1975      if (TEI==High)
1976        ++I;
1977    } else {
1978      DestBBs.push_back(Default);
1979    }
1980  }
1981
1982  // Update successor info. Add one edge to each unique successor.
1983  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1984  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1985         E = DestBBs.end(); I != E; ++I) {
1986    if (!SuccsHandled[(*I)->getNumber()]) {
1987      SuccsHandled[(*I)->getNumber()] = true;
1988      JumpTableBB->addSuccessor(*I);
1989    }
1990  }
1991
1992  // Create a jump table index for this jump table, or return an existing
1993  // one.
1994  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1995
1996  // Set the jump table information so that we can codegen it as a second
1997  // MachineBasicBlock
1998  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1999  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
2000                                        (CR.CaseBB == CurMBB));
2001  if (CR.CaseBB == CurMBB)
2002    visitJumpTableHeader(JT, JTH);
2003
2004  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
2005
2006  return true;
2007}
2008
2009/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2010/// 2 subtrees.
2011bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
2012                                                   CaseRecVector& WorkList,
2013                                                   Value* SV,
2014                                                   MachineBasicBlock* Default) {
2015  // Get the MachineFunction which holds the current MBB.  This is used when
2016  // inserting any additional MBBs necessary to represent the switch.
2017  MachineFunction *CurMF = CurMBB->getParent();
2018
2019  // Figure out which block is immediately after the current one.
2020  MachineBasicBlock *NextBlock = 0;
2021  MachineFunction::iterator BBI = CR.CaseBB;
2022
2023  if (++BBI != CurMBB->getParent()->end())
2024    NextBlock = BBI;
2025
2026  Case& FrontCase = *CR.Range.first;
2027  Case& BackCase  = *(CR.Range.second-1);
2028  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2029
2030  // Size is the number of Cases represented by this range.
2031  unsigned Size = CR.Range.second - CR.Range.first;
2032
2033  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
2034  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
2035  double FMetric = 0;
2036  CaseItr Pivot = CR.Range.first + Size/2;
2037
2038  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2039  // (heuristically) allow us to emit JumpTable's later.
2040  uint64_t TSize = 0;
2041  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2042       I!=E; ++I)
2043    TSize += I->size();
2044
2045  uint64_t LSize = FrontCase.size();
2046  uint64_t RSize = TSize-LSize;
2047  DOUT << "Selecting best pivot: \n"
2048       << "First: " << First << ", Last: " << Last <<"\n"
2049       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
2050  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2051       J!=E; ++I, ++J) {
2052    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
2053    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
2054    assert((RBegin-LEnd>=1) && "Invalid case distance");
2055    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
2056    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
2057    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
2058    // Should always split in some non-trivial place
2059    DOUT <<"=>Step\n"
2060         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
2061         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
2062         << "Metric: " << Metric << "\n";
2063    if (FMetric < Metric) {
2064      Pivot = J;
2065      FMetric = Metric;
2066      DOUT << "Current metric set to: " << FMetric << "\n";
2067    }
2068
2069    LSize += J->size();
2070    RSize -= J->size();
2071  }
2072  if (areJTsAllowed(TLI)) {
2073    // If our case is dense we *really* should handle it earlier!
2074    assert((FMetric > 0) && "Should handle dense range earlier!");
2075  } else {
2076    Pivot = CR.Range.first + Size/2;
2077  }
2078
2079  CaseRange LHSR(CR.Range.first, Pivot);
2080  CaseRange RHSR(Pivot, CR.Range.second);
2081  Constant *C = Pivot->Low;
2082  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2083
2084  // We know that we branch to the LHS if the Value being switched on is
2085  // less than the Pivot value, C.  We use this to optimize our binary
2086  // tree a bit, by recognizing that if SV is greater than or equal to the
2087  // LHS's Case Value, and that Case Value is exactly one less than the
2088  // Pivot's Value, then we can branch directly to the LHS's Target,
2089  // rather than creating a leaf node for it.
2090  if ((LHSR.second - LHSR.first) == 1 &&
2091      LHSR.first->High == CR.GE &&
2092      cast<ConstantInt>(C)->getSExtValue() ==
2093      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
2094    TrueBB = LHSR.first->BB;
2095  } else {
2096    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2097    CurMF->insert(BBI, TrueBB);
2098    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2099  }
2100
2101  // Similar to the optimization above, if the Value being switched on is
2102  // known to be less than the Constant CR.LT, and the current Case Value
2103  // is CR.LT - 1, then we can branch directly to the target block for
2104  // the current Case Value, rather than emitting a RHS leaf node for it.
2105  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2106      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
2107      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
2108    FalseBB = RHSR.first->BB;
2109  } else {
2110    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2111    CurMF->insert(BBI, FalseBB);
2112    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2113  }
2114
2115  // Create a CaseBlock record representing a conditional branch to
2116  // the LHS node if the value being switched on SV is less than C.
2117  // Otherwise, branch to LHS.
2118  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
2119                                 TrueBB, FalseBB, CR.CaseBB);
2120
2121  if (CR.CaseBB == CurMBB)
2122    visitSwitchCase(CB);
2123  else
2124    SwitchCases.push_back(CB);
2125
2126  return true;
2127}
2128
2129/// handleBitTestsSwitchCase - if current case range has few destination and
2130/// range span less, than machine word bitwidth, encode case range into series
2131/// of masks and emit bit tests with these masks.
2132bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
2133                                                    CaseRecVector& WorkList,
2134                                                    Value* SV,
2135                                                    MachineBasicBlock* Default){
2136  unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
2137
2138  Case& FrontCase = *CR.Range.first;
2139  Case& BackCase  = *(CR.Range.second-1);
2140
2141  // Get the MachineFunction which holds the current MBB.  This is used when
2142  // inserting any additional MBBs necessary to represent the switch.
2143  MachineFunction *CurMF = CurMBB->getParent();
2144
2145  unsigned numCmps = 0;
2146  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2147       I!=E; ++I) {
2148    // Single case counts one, case range - two.
2149    if (I->Low == I->High)
2150      numCmps +=1;
2151    else
2152      numCmps +=2;
2153  }
2154
2155  // Count unique destinations
2156  SmallSet<MachineBasicBlock*, 4> Dests;
2157  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2158    Dests.insert(I->BB);
2159    if (Dests.size() > 3)
2160      // Don't bother the code below, if there are too much unique destinations
2161      return false;
2162  }
2163  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
2164       << "Total number of comparisons: " << numCmps << "\n";
2165
2166  // Compute span of values.
2167  Constant* minValue = FrontCase.Low;
2168  Constant* maxValue = BackCase.High;
2169  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
2170                   cast<ConstantInt>(minValue)->getSExtValue();
2171  DOUT << "Compare range: " << range << "\n"
2172       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
2173       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
2174
2175  if (range>=IntPtrBits ||
2176      (!(Dests.size() == 1 && numCmps >= 3) &&
2177       !(Dests.size() == 2 && numCmps >= 5) &&
2178       !(Dests.size() >= 3 && numCmps >= 6)))
2179    return false;
2180
2181  DOUT << "Emitting bit tests\n";
2182  int64_t lowBound = 0;
2183
2184  // Optimize the case where all the case values fit in a
2185  // word without having to subtract minValue. In this case,
2186  // we can optimize away the subtraction.
2187  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
2188      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
2189    range = cast<ConstantInt>(maxValue)->getSExtValue();
2190  } else {
2191    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
2192  }
2193
2194  CaseBitsVector CasesBits;
2195  unsigned i, count = 0;
2196
2197  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2198    MachineBasicBlock* Dest = I->BB;
2199    for (i = 0; i < count; ++i)
2200      if (Dest == CasesBits[i].BB)
2201        break;
2202
2203    if (i == count) {
2204      assert((count < 3) && "Too much destinations to test!");
2205      CasesBits.push_back(CaseBits(0, Dest, 0));
2206      count++;
2207    }
2208
2209    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2210    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2211
2212    for (uint64_t j = lo; j <= hi; j++) {
2213      CasesBits[i].Mask |=  1ULL << j;
2214      CasesBits[i].Bits++;
2215    }
2216
2217  }
2218  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2219
2220  SelectionDAGISel::BitTestInfo BTC;
2221
2222  // Figure out which block is immediately after the current one.
2223  MachineFunction::iterator BBI = CR.CaseBB;
2224  ++BBI;
2225
2226  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2227
2228  DOUT << "Cases:\n";
2229  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2230    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2231         << ", BB: " << CasesBits[i].BB << "\n";
2232
2233    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2234    CurMF->insert(BBI, CaseBB);
2235    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
2236                                                CaseBB,
2237                                                CasesBits[i].BB));
2238  }
2239
2240  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
2241                                     -1U, (CR.CaseBB == CurMBB),
2242                                     CR.CaseBB, Default, BTC);
2243
2244  if (CR.CaseBB == CurMBB)
2245    visitBitTestHeader(BTB);
2246
2247  BitTestCases.push_back(BTB);
2248
2249  return true;
2250}
2251
2252
2253/// Clusterify - Transform simple list of Cases into list of CaseRange's
2254unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2255                                          const SwitchInst& SI) {
2256  unsigned numCmps = 0;
2257
2258  // Start with "simple" cases
2259  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2260    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2261    Cases.push_back(Case(SI.getSuccessorValue(i),
2262                         SI.getSuccessorValue(i),
2263                         SMBB));
2264  }
2265  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2266
2267  // Merge case into clusters
2268  if (Cases.size()>=2)
2269    // Must recompute end() each iteration because it may be
2270    // invalidated by erase if we hold on to it
2271    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2272      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2273      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2274      MachineBasicBlock* nextBB = J->BB;
2275      MachineBasicBlock* currentBB = I->BB;
2276
2277      // If the two neighboring cases go to the same destination, merge them
2278      // into a single case.
2279      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2280        I->High = J->High;
2281        J = Cases.erase(J);
2282      } else {
2283        I = J++;
2284      }
2285    }
2286
2287  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2288    if (I->Low != I->High)
2289      // A range counts double, since it requires two compares.
2290      ++numCmps;
2291  }
2292
2293  return numCmps;
2294}
2295
2296void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2297  // Figure out which block is immediately after the current one.
2298  MachineBasicBlock *NextBlock = 0;
2299  MachineFunction::iterator BBI = CurMBB;
2300
2301  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2302
2303  // If there is only the default destination, branch to it if it is not the
2304  // next basic block.  Otherwise, just fall through.
2305  if (SI.getNumOperands() == 2) {
2306    // Update machine-CFG edges.
2307
2308    // If this is not a fall-through branch, emit the branch.
2309    CurMBB->addSuccessor(Default);
2310    if (Default != NextBlock)
2311      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2312                              DAG.getBasicBlock(Default)));
2313
2314    return;
2315  }
2316
2317  // If there are any non-default case statements, create a vector of Cases
2318  // representing each one, and sort the vector so that we can efficiently
2319  // create a binary search tree from them.
2320  CaseVector Cases;
2321  unsigned numCmps = Clusterify(Cases, SI);
2322  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2323       << ". Total compares: " << numCmps << "\n";
2324
2325  // Get the Value to be switched on and default basic blocks, which will be
2326  // inserted into CaseBlock records, representing basic blocks in the binary
2327  // search tree.
2328  Value *SV = SI.getOperand(0);
2329
2330  // Push the initial CaseRec onto the worklist
2331  CaseRecVector WorkList;
2332  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2333
2334  while (!WorkList.empty()) {
2335    // Grab a record representing a case range to process off the worklist
2336    CaseRec CR = WorkList.back();
2337    WorkList.pop_back();
2338
2339    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2340      continue;
2341
2342    // If the range has few cases (two or less) emit a series of specific
2343    // tests.
2344    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2345      continue;
2346
2347    // If the switch has more than 5 blocks, and at least 40% dense, and the
2348    // target supports indirect branches, then emit a jump table rather than
2349    // lowering the switch to a binary tree of conditional branches.
2350    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2351      continue;
2352
2353    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2354    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2355    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2356  }
2357}
2358
2359
2360void SelectionDAGLowering::visitSub(User &I) {
2361  // -0.0 - X --> fneg
2362  const Type *Ty = I.getType();
2363  if (isa<VectorType>(Ty)) {
2364    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2365      const VectorType *DestTy = cast<VectorType>(I.getType());
2366      const Type *ElTy = DestTy->getElementType();
2367      if (ElTy->isFloatingPoint()) {
2368        unsigned VL = DestTy->getNumElements();
2369        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2370        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2371        if (CV == CNZ) {
2372          SDValue Op2 = getValue(I.getOperand(1));
2373          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2374          return;
2375        }
2376      }
2377    }
2378  }
2379  if (Ty->isFloatingPoint()) {
2380    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2381      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2382        SDValue Op2 = getValue(I.getOperand(1));
2383        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2384        return;
2385      }
2386  }
2387
2388  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2389}
2390
2391void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2392  SDValue Op1 = getValue(I.getOperand(0));
2393  SDValue Op2 = getValue(I.getOperand(1));
2394
2395  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2396}
2397
2398void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2399  SDValue Op1 = getValue(I.getOperand(0));
2400  SDValue Op2 = getValue(I.getOperand(1));
2401  if (!isa<VectorType>(I.getType())) {
2402    if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
2403      Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2404    else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
2405      Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2406  }
2407
2408  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2409}
2410
2411void SelectionDAGLowering::visitICmp(User &I) {
2412  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2413  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2414    predicate = IC->getPredicate();
2415  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2416    predicate = ICmpInst::Predicate(IC->getPredicate());
2417  SDValue Op1 = getValue(I.getOperand(0));
2418  SDValue Op2 = getValue(I.getOperand(1));
2419  ISD::CondCode Opcode;
2420  switch (predicate) {
2421    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2422    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2423    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2424    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2425    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2426    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2427    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2428    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2429    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2430    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2431    default:
2432      assert(!"Invalid ICmp predicate value");
2433      Opcode = ISD::SETEQ;
2434      break;
2435  }
2436  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2437}
2438
2439void SelectionDAGLowering::visitFCmp(User &I) {
2440  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2441  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2442    predicate = FC->getPredicate();
2443  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2444    predicate = FCmpInst::Predicate(FC->getPredicate());
2445  SDValue Op1 = getValue(I.getOperand(0));
2446  SDValue Op2 = getValue(I.getOperand(1));
2447  ISD::CondCode Condition, FOC, FPC;
2448  switch (predicate) {
2449    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2450    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2451    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2452    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2453    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2454    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2455    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2456    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2457    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2458    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2459    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2460    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2461    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2462    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2463    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2464    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2465    default:
2466      assert(!"Invalid FCmp predicate value");
2467      FOC = FPC = ISD::SETFALSE;
2468      break;
2469  }
2470  if (FiniteOnlyFPMath())
2471    Condition = FOC;
2472  else
2473    Condition = FPC;
2474  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2475}
2476
2477void SelectionDAGLowering::visitVICmp(User &I) {
2478  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2479  if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2480    predicate = IC->getPredicate();
2481  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2482    predicate = ICmpInst::Predicate(IC->getPredicate());
2483  SDValue Op1 = getValue(I.getOperand(0));
2484  SDValue Op2 = getValue(I.getOperand(1));
2485  ISD::CondCode Opcode;
2486  switch (predicate) {
2487    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2488    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2489    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2490    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2491    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2492    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2493    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2494    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2495    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2496    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2497    default:
2498      assert(!"Invalid ICmp predicate value");
2499      Opcode = ISD::SETEQ;
2500      break;
2501  }
2502  setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2503}
2504
2505void SelectionDAGLowering::visitVFCmp(User &I) {
2506  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2507  if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2508    predicate = FC->getPredicate();
2509  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2510    predicate = FCmpInst::Predicate(FC->getPredicate());
2511  SDValue Op1 = getValue(I.getOperand(0));
2512  SDValue Op2 = getValue(I.getOperand(1));
2513  ISD::CondCode Condition, FOC, FPC;
2514  switch (predicate) {
2515    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2516    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2517    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2518    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2519    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2520    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2521    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2522    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2523    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2524    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2525    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2526    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2527    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2528    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2529    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2530    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2531    default:
2532      assert(!"Invalid VFCmp predicate value");
2533      FOC = FPC = ISD::SETFALSE;
2534      break;
2535  }
2536  if (FiniteOnlyFPMath())
2537    Condition = FOC;
2538  else
2539    Condition = FPC;
2540
2541  MVT DestVT = TLI.getValueType(I.getType());
2542
2543  setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2544}
2545
2546void SelectionDAGLowering::visitSelect(User &I) {
2547  SDValue Cond     = getValue(I.getOperand(0));
2548  SDValue TrueVal  = getValue(I.getOperand(1));
2549  SDValue FalseVal = getValue(I.getOperand(2));
2550  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2551                           TrueVal, FalseVal));
2552}
2553
2554
2555void SelectionDAGLowering::visitTrunc(User &I) {
2556  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2557  SDValue N = getValue(I.getOperand(0));
2558  MVT DestVT = TLI.getValueType(I.getType());
2559  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2560}
2561
2562void SelectionDAGLowering::visitZExt(User &I) {
2563  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2564  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2565  SDValue N = getValue(I.getOperand(0));
2566  MVT DestVT = TLI.getValueType(I.getType());
2567  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2568}
2569
2570void SelectionDAGLowering::visitSExt(User &I) {
2571  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2572  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2573  SDValue N = getValue(I.getOperand(0));
2574  MVT DestVT = TLI.getValueType(I.getType());
2575  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2576}
2577
2578void SelectionDAGLowering::visitFPTrunc(User &I) {
2579  // FPTrunc is never a no-op cast, no need to check
2580  SDValue N = getValue(I.getOperand(0));
2581  MVT DestVT = TLI.getValueType(I.getType());
2582  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2583}
2584
2585void SelectionDAGLowering::visitFPExt(User &I){
2586  // FPTrunc is never a no-op cast, no need to check
2587  SDValue N = getValue(I.getOperand(0));
2588  MVT DestVT = TLI.getValueType(I.getType());
2589  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2590}
2591
2592void SelectionDAGLowering::visitFPToUI(User &I) {
2593  // FPToUI is never a no-op cast, no need to check
2594  SDValue N = getValue(I.getOperand(0));
2595  MVT DestVT = TLI.getValueType(I.getType());
2596  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2597}
2598
2599void SelectionDAGLowering::visitFPToSI(User &I) {
2600  // FPToSI is never a no-op cast, no need to check
2601  SDValue N = getValue(I.getOperand(0));
2602  MVT DestVT = TLI.getValueType(I.getType());
2603  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2604}
2605
2606void SelectionDAGLowering::visitUIToFP(User &I) {
2607  // UIToFP is never a no-op cast, no need to check
2608  SDValue N = getValue(I.getOperand(0));
2609  MVT DestVT = TLI.getValueType(I.getType());
2610  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2611}
2612
2613void SelectionDAGLowering::visitSIToFP(User &I){
2614  // UIToFP is never a no-op cast, no need to check
2615  SDValue N = getValue(I.getOperand(0));
2616  MVT DestVT = TLI.getValueType(I.getType());
2617  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2618}
2619
2620void SelectionDAGLowering::visitPtrToInt(User &I) {
2621  // What to do depends on the size of the integer and the size of the pointer.
2622  // We can either truncate, zero extend, or no-op, accordingly.
2623  SDValue N = getValue(I.getOperand(0));
2624  MVT SrcVT = N.getValueType();
2625  MVT DestVT = TLI.getValueType(I.getType());
2626  SDValue Result;
2627  if (DestVT.bitsLT(SrcVT))
2628    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2629  else
2630    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2631    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2632  setValue(&I, Result);
2633}
2634
2635void SelectionDAGLowering::visitIntToPtr(User &I) {
2636  // What to do depends on the size of the integer and the size of the pointer.
2637  // We can either truncate, zero extend, or no-op, accordingly.
2638  SDValue N = getValue(I.getOperand(0));
2639  MVT SrcVT = N.getValueType();
2640  MVT DestVT = TLI.getValueType(I.getType());
2641  if (DestVT.bitsLT(SrcVT))
2642    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2643  else
2644    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2645    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2646}
2647
2648void SelectionDAGLowering::visitBitCast(User &I) {
2649  SDValue N = getValue(I.getOperand(0));
2650  MVT DestVT = TLI.getValueType(I.getType());
2651
2652  // BitCast assures us that source and destination are the same size so this
2653  // is either a BIT_CONVERT or a no-op.
2654  if (DestVT != N.getValueType())
2655    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2656  else
2657    setValue(&I, N); // noop cast.
2658}
2659
2660void SelectionDAGLowering::visitInsertElement(User &I) {
2661  SDValue InVec = getValue(I.getOperand(0));
2662  SDValue InVal = getValue(I.getOperand(1));
2663  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2664                                getValue(I.getOperand(2)));
2665
2666  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2667                           TLI.getValueType(I.getType()),
2668                           InVec, InVal, InIdx));
2669}
2670
2671void SelectionDAGLowering::visitExtractElement(User &I) {
2672  SDValue InVec = getValue(I.getOperand(0));
2673  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2674                                getValue(I.getOperand(1)));
2675  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2676                           TLI.getValueType(I.getType()), InVec, InIdx));
2677}
2678
2679void SelectionDAGLowering::visitShuffleVector(User &I) {
2680  SDValue V1   = getValue(I.getOperand(0));
2681  SDValue V2   = getValue(I.getOperand(1));
2682  SDValue Mask = getValue(I.getOperand(2));
2683
2684  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2685                           TLI.getValueType(I.getType()),
2686                           V1, V2, Mask));
2687}
2688
2689void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
2690  const Value *Op0 = I.getOperand(0);
2691  const Value *Op1 = I.getOperand(1);
2692  const Type *AggTy = I.getType();
2693  const Type *ValTy = Op1->getType();
2694  bool IntoUndef = isa<UndefValue>(Op0);
2695  bool FromUndef = isa<UndefValue>(Op1);
2696
2697  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2698                                            I.idx_begin(), I.idx_end());
2699
2700  SmallVector<MVT, 4> AggValueVTs;
2701  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2702  SmallVector<MVT, 4> ValValueVTs;
2703  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2704
2705  unsigned NumAggValues = AggValueVTs.size();
2706  unsigned NumValValues = ValValueVTs.size();
2707  SmallVector<SDValue, 4> Values(NumAggValues);
2708
2709  SDValue Agg = getValue(Op0);
2710  SDValue Val = getValue(Op1);
2711  unsigned i = 0;
2712  // Copy the beginning value(s) from the original aggregate.
2713  for (; i != LinearIndex; ++i)
2714    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2715                SDValue(Agg.Val, Agg.ResNo + i);
2716  // Copy values from the inserted value(s).
2717  for (; i != LinearIndex + NumValValues; ++i)
2718    Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2719                SDValue(Val.Val, Val.ResNo + i - LinearIndex);
2720  // Copy remaining value(s) from the original aggregate.
2721  for (; i != NumAggValues; ++i)
2722    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2723                SDValue(Agg.Val, Agg.ResNo + i);
2724
2725  setValue(&I, DAG.getMergeValues(DAG.getVTList(&AggValueVTs[0], NumAggValues),
2726                                  &Values[0], NumAggValues));
2727}
2728
2729void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
2730  const Value *Op0 = I.getOperand(0);
2731  const Type *AggTy = Op0->getType();
2732  const Type *ValTy = I.getType();
2733  bool OutOfUndef = isa<UndefValue>(Op0);
2734
2735  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2736                                            I.idx_begin(), I.idx_end());
2737
2738  SmallVector<MVT, 4> ValValueVTs;
2739  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2740
2741  unsigned NumValValues = ValValueVTs.size();
2742  SmallVector<SDValue, 4> Values(NumValValues);
2743
2744  SDValue Agg = getValue(Op0);
2745  // Copy out the selected value(s).
2746  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2747    Values[i - LinearIndex] =
2748      OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.Val->getValueType(Agg.ResNo + i)) :
2749                   SDValue(Agg.Val, Agg.ResNo + i);
2750
2751  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValValueVTs[0], NumValValues),
2752                                  &Values[0], NumValValues));
2753}
2754
2755
2756void SelectionDAGLowering::visitGetElementPtr(User &I) {
2757  SDValue N = getValue(I.getOperand(0));
2758  const Type *Ty = I.getOperand(0)->getType();
2759
2760  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2761       OI != E; ++OI) {
2762    Value *Idx = *OI;
2763    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2764      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2765      if (Field) {
2766        // N = N + Offset
2767        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2768        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2769                        DAG.getIntPtrConstant(Offset));
2770      }
2771      Ty = StTy->getElementType(Field);
2772    } else {
2773      Ty = cast<SequentialType>(Ty)->getElementType();
2774
2775      // If this is a constant subscript, handle it quickly.
2776      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2777        if (CI->getZExtValue() == 0) continue;
2778        uint64_t Offs =
2779            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2780        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2781                        DAG.getIntPtrConstant(Offs));
2782        continue;
2783      }
2784
2785      // N = N + Idx * ElementSize;
2786      uint64_t ElementSize = TD->getABITypeSize(Ty);
2787      SDValue IdxN = getValue(Idx);
2788
2789      // If the index is smaller or larger than intptr_t, truncate or extend
2790      // it.
2791      if (IdxN.getValueType().bitsLT(N.getValueType())) {
2792        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2793      } else if (IdxN.getValueType().bitsGT(N.getValueType()))
2794        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2795
2796      // If this is a multiply by a power of two, turn it into a shl
2797      // immediately.  This is a very common case.
2798      if (isPowerOf2_64(ElementSize)) {
2799        unsigned Amt = Log2_64(ElementSize);
2800        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2801                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2802        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2803        continue;
2804      }
2805
2806      SDValue Scale = DAG.getIntPtrConstant(ElementSize);
2807      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2808      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2809    }
2810  }
2811  setValue(&I, N);
2812}
2813
2814void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2815  // If this is a fixed sized alloca in the entry block of the function,
2816  // allocate it statically on the stack.
2817  if (FuncInfo.StaticAllocaMap.count(&I))
2818    return;   // getValue will auto-populate this.
2819
2820  const Type *Ty = I.getAllocatedType();
2821  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2822  unsigned Align =
2823    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2824             I.getAlignment());
2825
2826  SDValue AllocSize = getValue(I.getArraySize());
2827  MVT IntPtr = TLI.getPointerTy();
2828  if (IntPtr.bitsLT(AllocSize.getValueType()))
2829    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2830  else if (IntPtr.bitsGT(AllocSize.getValueType()))
2831    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2832
2833  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2834                          DAG.getIntPtrConstant(TySize));
2835
2836  // Handle alignment.  If the requested alignment is less than or equal to
2837  // the stack alignment, ignore it.  If the size is greater than or equal to
2838  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2839  unsigned StackAlign =
2840    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2841  if (Align <= StackAlign)
2842    Align = 0;
2843
2844  // Round the size of the allocation up to the stack alignment size
2845  // by add SA-1 to the size.
2846  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2847                          DAG.getIntPtrConstant(StackAlign-1));
2848  // Mask out the low bits for alignment purposes.
2849  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2850                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2851
2852  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2853  const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2854                                                    MVT::Other);
2855  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2856  setValue(&I, DSA);
2857  DAG.setRoot(DSA.getValue(1));
2858
2859  // Inform the Frame Information that we have just allocated a variable-sized
2860  // object.
2861  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2862}
2863
2864void SelectionDAGLowering::visitLoad(LoadInst &I) {
2865  const Value *SV = I.getOperand(0);
2866  SDValue Ptr = getValue(SV);
2867
2868  const Type *Ty = I.getType();
2869  bool isVolatile = I.isVolatile();
2870  unsigned Alignment = I.getAlignment();
2871
2872  SmallVector<MVT, 4> ValueVTs;
2873  SmallVector<uint64_t, 4> Offsets;
2874  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2875  unsigned NumValues = ValueVTs.size();
2876  if (NumValues == 0)
2877    return;
2878
2879  SDValue Root;
2880  bool ConstantMemory = false;
2881  if (I.isVolatile())
2882    // Serialize volatile loads with other side effects.
2883    Root = getRoot();
2884  else if (AA.pointsToConstantMemory(SV)) {
2885    // Do not serialize (non-volatile) loads of constant memory with anything.
2886    Root = DAG.getEntryNode();
2887    ConstantMemory = true;
2888  } else {
2889    // Do not serialize non-volatile loads against each other.
2890    Root = DAG.getRoot();
2891  }
2892
2893  SmallVector<SDValue, 4> Values(NumValues);
2894  SmallVector<SDValue, 4> Chains(NumValues);
2895  MVT PtrVT = Ptr.getValueType();
2896  for (unsigned i = 0; i != NumValues; ++i) {
2897    SDValue L = DAG.getLoad(ValueVTs[i], Root,
2898                              DAG.getNode(ISD::ADD, PtrVT, Ptr,
2899                                          DAG.getConstant(Offsets[i], PtrVT)),
2900                              SV, Offsets[i],
2901                              isVolatile, Alignment);
2902    Values[i] = L;
2903    Chains[i] = L.getValue(1);
2904  }
2905
2906  if (!ConstantMemory) {
2907    SDValue Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2908                                  &Chains[0], NumValues);
2909    if (isVolatile)
2910      DAG.setRoot(Chain);
2911    else
2912      PendingLoads.push_back(Chain);
2913  }
2914
2915  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues),
2916                                  &Values[0], NumValues));
2917}
2918
2919
2920void SelectionDAGLowering::visitStore(StoreInst &I) {
2921  Value *SrcV = I.getOperand(0);
2922  Value *PtrV = I.getOperand(1);
2923
2924  SmallVector<MVT, 4> ValueVTs;
2925  SmallVector<uint64_t, 4> Offsets;
2926  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2927  unsigned NumValues = ValueVTs.size();
2928  if (NumValues == 0)
2929    return;
2930
2931  // Get the lowered operands. Note that we do this after
2932  // checking if NumResults is zero, because with zero results
2933  // the operands won't have values in the map.
2934  SDValue Src = getValue(SrcV);
2935  SDValue Ptr = getValue(PtrV);
2936
2937  SDValue Root = getRoot();
2938  SmallVector<SDValue, 4> Chains(NumValues);
2939  MVT PtrVT = Ptr.getValueType();
2940  bool isVolatile = I.isVolatile();
2941  unsigned Alignment = I.getAlignment();
2942  for (unsigned i = 0; i != NumValues; ++i)
2943    Chains[i] = DAG.getStore(Root, SDValue(Src.Val, Src.ResNo + i),
2944                             DAG.getNode(ISD::ADD, PtrVT, Ptr,
2945                                         DAG.getConstant(Offsets[i], PtrVT)),
2946                             PtrV, Offsets[i],
2947                             isVolatile, Alignment);
2948
2949  DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
2950}
2951
2952/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2953/// node.
2954void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2955                                                unsigned Intrinsic) {
2956  bool HasChain = !I.doesNotAccessMemory();
2957  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2958
2959  // Build the operand list.
2960  SmallVector<SDValue, 8> Ops;
2961  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2962    if (OnlyLoad) {
2963      // We don't need to serialize loads against other loads.
2964      Ops.push_back(DAG.getRoot());
2965    } else {
2966      Ops.push_back(getRoot());
2967    }
2968  }
2969
2970  // Add the intrinsic ID as an integer operand.
2971  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2972
2973  // Add all operands of the call to the operand list.
2974  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2975    SDValue Op = getValue(I.getOperand(i));
2976    assert(TLI.isTypeLegal(Op.getValueType()) &&
2977           "Intrinsic uses a non-legal type?");
2978    Ops.push_back(Op);
2979  }
2980
2981  std::vector<MVT> VTs;
2982  if (I.getType() != Type::VoidTy) {
2983    MVT VT = TLI.getValueType(I.getType());
2984    if (VT.isVector()) {
2985      const VectorType *DestTy = cast<VectorType>(I.getType());
2986      MVT EltVT = TLI.getValueType(DestTy->getElementType());
2987
2988      VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
2989      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2990    }
2991
2992    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2993    VTs.push_back(VT);
2994  }
2995  if (HasChain)
2996    VTs.push_back(MVT::Other);
2997
2998  const MVT *VTList = DAG.getNodeValueTypes(VTs);
2999
3000  // Create the node.
3001  SDValue Result;
3002  if (!HasChain)
3003    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
3004                         &Ops[0], Ops.size());
3005  else if (I.getType() != Type::VoidTy)
3006    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
3007                         &Ops[0], Ops.size());
3008  else
3009    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
3010                         &Ops[0], Ops.size());
3011
3012  if (HasChain) {
3013    SDValue Chain = Result.getValue(Result.Val->getNumValues()-1);
3014    if (OnlyLoad)
3015      PendingLoads.push_back(Chain);
3016    else
3017      DAG.setRoot(Chain);
3018  }
3019  if (I.getType() != Type::VoidTy) {
3020    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3021      MVT VT = TLI.getValueType(PTy);
3022      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
3023    }
3024    setValue(&I, Result);
3025  }
3026}
3027
3028/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
3029static GlobalVariable *ExtractTypeInfo (Value *V) {
3030  V = V->stripPointerCasts();
3031  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3032  assert ((GV || isa<ConstantPointerNull>(V)) &&
3033          "TypeInfo must be a global variable or NULL");
3034  return GV;
3035}
3036
3037/// addCatchInfo - Extract the personality and type infos from an eh.selector
3038/// call, and add them to the specified machine basic block.
3039static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
3040                         MachineBasicBlock *MBB) {
3041  // Inform the MachineModuleInfo of the personality for this landing pad.
3042  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
3043  assert(CE->getOpcode() == Instruction::BitCast &&
3044         isa<Function>(CE->getOperand(0)) &&
3045         "Personality should be a function");
3046  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
3047
3048  // Gather all the type infos for this landing pad and pass them along to
3049  // MachineModuleInfo.
3050  std::vector<GlobalVariable *> TyInfo;
3051  unsigned N = I.getNumOperands();
3052
3053  for (unsigned i = N - 1; i > 2; --i) {
3054    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
3055      unsigned FilterLength = CI->getZExtValue();
3056      unsigned FirstCatch = i + FilterLength + !FilterLength;
3057      assert (FirstCatch <= N && "Invalid filter length");
3058
3059      if (FirstCatch < N) {
3060        TyInfo.reserve(N - FirstCatch);
3061        for (unsigned j = FirstCatch; j < N; ++j)
3062          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3063        MMI->addCatchTypeInfo(MBB, TyInfo);
3064        TyInfo.clear();
3065      }
3066
3067      if (!FilterLength) {
3068        // Cleanup.
3069        MMI->addCleanup(MBB);
3070      } else {
3071        // Filter.
3072        TyInfo.reserve(FilterLength - 1);
3073        for (unsigned j = i + 1; j < FirstCatch; ++j)
3074          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3075        MMI->addFilterTypeInfo(MBB, TyInfo);
3076        TyInfo.clear();
3077      }
3078
3079      N = i;
3080    }
3081  }
3082
3083  if (N > 3) {
3084    TyInfo.reserve(N - 3);
3085    for (unsigned j = 3; j < N; ++j)
3086      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3087    MMI->addCatchTypeInfo(MBB, TyInfo);
3088  }
3089}
3090
3091
3092/// Inlined utility function to implement binary input atomic intrinsics for
3093// visitIntrinsicCall: I is a call instruction
3094//                     Op is the associated NodeType for I
3095const char *
3096SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3097  SDValue Root = getRoot();
3098  SDValue L = DAG.getAtomic(Op, Root,
3099                              getValue(I.getOperand(1)),
3100                              getValue(I.getOperand(2)),
3101                              I.getOperand(1));
3102  setValue(&I, L);
3103  DAG.setRoot(L.getValue(1));
3104  return 0;
3105}
3106
3107/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3108/// we want to emit this as a call to a named external function, return the name
3109/// otherwise lower it and return null.
3110const char *
3111SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3112  switch (Intrinsic) {
3113  default:
3114    // By default, turn this into a target intrinsic node.
3115    visitTargetIntrinsic(I, Intrinsic);
3116    return 0;
3117  case Intrinsic::vastart:  visitVAStart(I); return 0;
3118  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3119  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3120  case Intrinsic::returnaddress:
3121    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
3122                             getValue(I.getOperand(1))));
3123    return 0;
3124  case Intrinsic::frameaddress:
3125    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
3126                             getValue(I.getOperand(1))));
3127    return 0;
3128  case Intrinsic::setjmp:
3129    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3130    break;
3131  case Intrinsic::longjmp:
3132    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3133    break;
3134  case Intrinsic::memcpy_i32:
3135  case Intrinsic::memcpy_i64: {
3136    SDValue Op1 = getValue(I.getOperand(1));
3137    SDValue Op2 = getValue(I.getOperand(2));
3138    SDValue Op3 = getValue(I.getOperand(3));
3139    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3140    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3141                              I.getOperand(1), 0, I.getOperand(2), 0));
3142    return 0;
3143  }
3144  case Intrinsic::memset_i32:
3145  case Intrinsic::memset_i64: {
3146    SDValue Op1 = getValue(I.getOperand(1));
3147    SDValue Op2 = getValue(I.getOperand(2));
3148    SDValue Op3 = getValue(I.getOperand(3));
3149    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3150    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
3151                              I.getOperand(1), 0));
3152    return 0;
3153  }
3154  case Intrinsic::memmove_i32:
3155  case Intrinsic::memmove_i64: {
3156    SDValue Op1 = getValue(I.getOperand(1));
3157    SDValue Op2 = getValue(I.getOperand(2));
3158    SDValue Op3 = getValue(I.getOperand(3));
3159    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3160
3161    // If the source and destination are known to not be aliases, we can
3162    // lower memmove as memcpy.
3163    uint64_t Size = -1ULL;
3164    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3165      Size = C->getValue();
3166    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3167        AliasAnalysis::NoAlias) {
3168      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3169                                I.getOperand(1), 0, I.getOperand(2), 0));
3170      return 0;
3171    }
3172
3173    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
3174                               I.getOperand(1), 0, I.getOperand(2), 0));
3175    return 0;
3176  }
3177  case Intrinsic::dbg_stoppoint: {
3178    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3179    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3180    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
3181      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
3182      assert(DD && "Not a debug information descriptor");
3183      DAG.setRoot(DAG.getDbgStopPoint(getRoot(),
3184                                      SPI.getLine(),
3185                                      SPI.getColumn(),
3186                                      cast<CompileUnitDesc>(DD)));
3187    }
3188
3189    return 0;
3190  }
3191  case Intrinsic::dbg_region_start: {
3192    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3193    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
3194    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
3195      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
3196      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3197    }
3198
3199    return 0;
3200  }
3201  case Intrinsic::dbg_region_end: {
3202    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3203    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
3204    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
3205      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
3206      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3207    }
3208
3209    return 0;
3210  }
3211  case Intrinsic::dbg_func_start: {
3212    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3213    if (!MMI) return 0;
3214    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
3215    Value *SP = FSI.getSubprogram();
3216    if (SP && MMI->Verify(SP)) {
3217      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3218      // what (most?) gdb expects.
3219      DebugInfoDesc *DD = MMI->getDescFor(SP);
3220      assert(DD && "Not a debug information descriptor");
3221      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
3222      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
3223      unsigned SrcFile = MMI->RecordSource(CompileUnit);
3224      // Record the source line but does create a label. It will be emitted
3225      // at asm emission time.
3226      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
3227    }
3228
3229    return 0;
3230  }
3231  case Intrinsic::dbg_declare: {
3232    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3233    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3234    Value *Variable = DI.getVariable();
3235    if (MMI && Variable && MMI->Verify(Variable))
3236      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3237                              getValue(DI.getAddress()), getValue(Variable)));
3238    return 0;
3239  }
3240
3241  case Intrinsic::eh_exception: {
3242    if (!CurMBB->isLandingPad()) {
3243      // FIXME: Mark exception register as live in.  Hack for PR1508.
3244      unsigned Reg = TLI.getExceptionAddressRegister();
3245      if (Reg) CurMBB->addLiveIn(Reg);
3246    }
3247    // Insert the EXCEPTIONADDR instruction.
3248    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3249    SDValue Ops[1];
3250    Ops[0] = DAG.getRoot();
3251    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3252    setValue(&I, Op);
3253    DAG.setRoot(Op.getValue(1));
3254    return 0;
3255  }
3256
3257  case Intrinsic::eh_selector_i32:
3258  case Intrinsic::eh_selector_i64: {
3259    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3260    MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3261                         MVT::i32 : MVT::i64);
3262
3263    if (MMI) {
3264      if (CurMBB->isLandingPad())
3265        addCatchInfo(I, MMI, CurMBB);
3266      else {
3267#ifndef NDEBUG
3268        FuncInfo.CatchInfoLost.insert(&I);
3269#endif
3270        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3271        unsigned Reg = TLI.getExceptionSelectorRegister();
3272        if (Reg) CurMBB->addLiveIn(Reg);
3273      }
3274
3275      // Insert the EHSELECTION instruction.
3276      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3277      SDValue Ops[2];
3278      Ops[0] = getValue(I.getOperand(1));
3279      Ops[1] = getRoot();
3280      SDValue Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3281      setValue(&I, Op);
3282      DAG.setRoot(Op.getValue(1));
3283    } else {
3284      setValue(&I, DAG.getConstant(0, VT));
3285    }
3286
3287    return 0;
3288  }
3289
3290  case Intrinsic::eh_typeid_for_i32:
3291  case Intrinsic::eh_typeid_for_i64: {
3292    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3293    MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3294                         MVT::i32 : MVT::i64);
3295
3296    if (MMI) {
3297      // Find the type id for the given typeinfo.
3298      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3299
3300      unsigned TypeID = MMI->getTypeIDFor(GV);
3301      setValue(&I, DAG.getConstant(TypeID, VT));
3302    } else {
3303      // Return something different to eh_selector.
3304      setValue(&I, DAG.getConstant(1, VT));
3305    }
3306
3307    return 0;
3308  }
3309
3310  case Intrinsic::eh_return: {
3311    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3312
3313    if (MMI) {
3314      MMI->setCallsEHReturn(true);
3315      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3316                              MVT::Other,
3317                              getControlRoot(),
3318                              getValue(I.getOperand(1)),
3319                              getValue(I.getOperand(2))));
3320    } else {
3321      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3322    }
3323
3324    return 0;
3325  }
3326
3327   case Intrinsic::eh_unwind_init: {
3328     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3329       MMI->setCallsUnwindInit(true);
3330     }
3331
3332     return 0;
3333   }
3334
3335   case Intrinsic::eh_dwarf_cfa: {
3336     MVT VT = getValue(I.getOperand(1)).getValueType();
3337     SDValue CfaArg;
3338     if (VT.bitsGT(TLI.getPointerTy()))
3339       CfaArg = DAG.getNode(ISD::TRUNCATE,
3340                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3341     else
3342       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3343                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3344
3345     SDValue Offset = DAG.getNode(ISD::ADD,
3346                                    TLI.getPointerTy(),
3347                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3348                                                TLI.getPointerTy()),
3349                                    CfaArg);
3350     setValue(&I, DAG.getNode(ISD::ADD,
3351                              TLI.getPointerTy(),
3352                              DAG.getNode(ISD::FRAMEADDR,
3353                                          TLI.getPointerTy(),
3354                                          DAG.getConstant(0,
3355                                                          TLI.getPointerTy())),
3356                              Offset));
3357     return 0;
3358  }
3359
3360  case Intrinsic::sqrt:
3361    setValue(&I, DAG.getNode(ISD::FSQRT,
3362                             getValue(I.getOperand(1)).getValueType(),
3363                             getValue(I.getOperand(1))));
3364    return 0;
3365  case Intrinsic::powi:
3366    setValue(&I, DAG.getNode(ISD::FPOWI,
3367                             getValue(I.getOperand(1)).getValueType(),
3368                             getValue(I.getOperand(1)),
3369                             getValue(I.getOperand(2))));
3370    return 0;
3371  case Intrinsic::sin:
3372    setValue(&I, DAG.getNode(ISD::FSIN,
3373                             getValue(I.getOperand(1)).getValueType(),
3374                             getValue(I.getOperand(1))));
3375    return 0;
3376  case Intrinsic::cos:
3377    setValue(&I, DAG.getNode(ISD::FCOS,
3378                             getValue(I.getOperand(1)).getValueType(),
3379                             getValue(I.getOperand(1))));
3380    return 0;
3381  case Intrinsic::pow:
3382    setValue(&I, DAG.getNode(ISD::FPOW,
3383                             getValue(I.getOperand(1)).getValueType(),
3384                             getValue(I.getOperand(1)),
3385                             getValue(I.getOperand(2))));
3386    return 0;
3387  case Intrinsic::pcmarker: {
3388    SDValue Tmp = getValue(I.getOperand(1));
3389    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3390    return 0;
3391  }
3392  case Intrinsic::readcyclecounter: {
3393    SDValue Op = getRoot();
3394    SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3395                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3396                                &Op, 1);
3397    setValue(&I, Tmp);
3398    DAG.setRoot(Tmp.getValue(1));
3399    return 0;
3400  }
3401  case Intrinsic::part_select: {
3402    // Currently not implemented: just abort
3403    assert(0 && "part_select intrinsic not implemented");
3404    abort();
3405  }
3406  case Intrinsic::part_set: {
3407    // Currently not implemented: just abort
3408    assert(0 && "part_set intrinsic not implemented");
3409    abort();
3410  }
3411  case Intrinsic::bswap:
3412    setValue(&I, DAG.getNode(ISD::BSWAP,
3413                             getValue(I.getOperand(1)).getValueType(),
3414                             getValue(I.getOperand(1))));
3415    return 0;
3416  case Intrinsic::cttz: {
3417    SDValue Arg = getValue(I.getOperand(1));
3418    MVT Ty = Arg.getValueType();
3419    SDValue result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3420    setValue(&I, result);
3421    return 0;
3422  }
3423  case Intrinsic::ctlz: {
3424    SDValue Arg = getValue(I.getOperand(1));
3425    MVT Ty = Arg.getValueType();
3426    SDValue result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3427    setValue(&I, result);
3428    return 0;
3429  }
3430  case Intrinsic::ctpop: {
3431    SDValue Arg = getValue(I.getOperand(1));
3432    MVT Ty = Arg.getValueType();
3433    SDValue result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3434    setValue(&I, result);
3435    return 0;
3436  }
3437  case Intrinsic::stacksave: {
3438    SDValue Op = getRoot();
3439    SDValue Tmp = DAG.getNode(ISD::STACKSAVE,
3440              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3441    setValue(&I, Tmp);
3442    DAG.setRoot(Tmp.getValue(1));
3443    return 0;
3444  }
3445  case Intrinsic::stackrestore: {
3446    SDValue Tmp = getValue(I.getOperand(1));
3447    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3448    return 0;
3449  }
3450  case Intrinsic::var_annotation:
3451    // Discard annotate attributes
3452    return 0;
3453
3454  case Intrinsic::init_trampoline: {
3455    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
3456
3457    SDValue Ops[6];
3458    Ops[0] = getRoot();
3459    Ops[1] = getValue(I.getOperand(1));
3460    Ops[2] = getValue(I.getOperand(2));
3461    Ops[3] = getValue(I.getOperand(3));
3462    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3463    Ops[5] = DAG.getSrcValue(F);
3464
3465    SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE,
3466                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3467                                                      MVT::Other), 2,
3468                                Ops, 6);
3469
3470    setValue(&I, Tmp);
3471    DAG.setRoot(Tmp.getValue(1));
3472    return 0;
3473  }
3474
3475  case Intrinsic::gcroot:
3476    if (GCI) {
3477      Value *Alloca = I.getOperand(1);
3478      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3479
3480      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3481      GCI->addStackRoot(FI->getIndex(), TypeMap);
3482    }
3483    return 0;
3484
3485  case Intrinsic::gcread:
3486  case Intrinsic::gcwrite:
3487    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3488    return 0;
3489
3490  case Intrinsic::flt_rounds: {
3491    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3492    return 0;
3493  }
3494
3495  case Intrinsic::trap: {
3496    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3497    return 0;
3498  }
3499  case Intrinsic::prefetch: {
3500    SDValue Ops[4];
3501    Ops[0] = getRoot();
3502    Ops[1] = getValue(I.getOperand(1));
3503    Ops[2] = getValue(I.getOperand(2));
3504    Ops[3] = getValue(I.getOperand(3));
3505    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3506    return 0;
3507  }
3508
3509  case Intrinsic::memory_barrier: {
3510    SDValue Ops[6];
3511    Ops[0] = getRoot();
3512    for (int x = 1; x < 6; ++x)
3513      Ops[x] = getValue(I.getOperand(x));
3514
3515    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3516    return 0;
3517  }
3518  case Intrinsic::atomic_cmp_swap: {
3519    SDValue Root = getRoot();
3520    SDValue L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, Root,
3521                                getValue(I.getOperand(1)),
3522                                getValue(I.getOperand(2)),
3523                                getValue(I.getOperand(3)),
3524                                I.getOperand(1));
3525    setValue(&I, L);
3526    DAG.setRoot(L.getValue(1));
3527    return 0;
3528  }
3529  case Intrinsic::atomic_load_add:
3530    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
3531  case Intrinsic::atomic_load_sub:
3532    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
3533  case Intrinsic::atomic_load_and:
3534    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
3535  case Intrinsic::atomic_load_or:
3536    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
3537  case Intrinsic::atomic_load_xor:
3538    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
3539  case Intrinsic::atomic_load_nand:
3540    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
3541  case Intrinsic::atomic_load_min:
3542    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
3543  case Intrinsic::atomic_load_max:
3544    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
3545  case Intrinsic::atomic_load_umin:
3546    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
3547  case Intrinsic::atomic_load_umax:
3548      return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
3549  case Intrinsic::atomic_swap:
3550    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
3551  }
3552}
3553
3554
3555void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
3556                                       bool IsTailCall,
3557                                       MachineBasicBlock *LandingPad) {
3558  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3559  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3560  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3561  unsigned BeginLabel = 0, EndLabel = 0;
3562
3563  TargetLowering::ArgListTy Args;
3564  TargetLowering::ArgListEntry Entry;
3565  Args.reserve(CS.arg_size());
3566  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3567       i != e; ++i) {
3568    SDValue ArgNode = getValue(*i);
3569    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3570
3571    unsigned attrInd = i - CS.arg_begin() + 1;
3572    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3573    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3574    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3575    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3576    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3577    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3578    Entry.Alignment = CS.getParamAlignment(attrInd);
3579    Args.push_back(Entry);
3580  }
3581
3582  if (LandingPad && MMI) {
3583    // Insert a label before the invoke call to mark the try range.  This can be
3584    // used to detect deletion of the invoke via the MachineModuleInfo.
3585    BeginLabel = MMI->NextLabelID();
3586    // Both PendingLoads and PendingExports must be flushed here;
3587    // this call might not return.
3588    (void)getRoot();
3589    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel));
3590  }
3591
3592  std::pair<SDValue,SDValue> Result =
3593    TLI.LowerCallTo(getRoot(), CS.getType(),
3594                    CS.paramHasAttr(0, ParamAttr::SExt),
3595                    CS.paramHasAttr(0, ParamAttr::ZExt),
3596                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3597                    Callee, Args, DAG);
3598  if (CS.getType() != Type::VoidTy)
3599    setValue(CS.getInstruction(), Result.first);
3600  DAG.setRoot(Result.second);
3601
3602  if (LandingPad && MMI) {
3603    // Insert a label at the end of the invoke call to mark the try range.  This
3604    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3605    EndLabel = MMI->NextLabelID();
3606    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel));
3607
3608    // Inform MachineModuleInfo of range.
3609    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3610  }
3611}
3612
3613
3614void SelectionDAGLowering::visitCall(CallInst &I) {
3615  const char *RenameFn = 0;
3616  if (Function *F = I.getCalledFunction()) {
3617    if (F->isDeclaration()) {
3618      if (unsigned IID = F->getIntrinsicID()) {
3619        RenameFn = visitIntrinsicCall(I, IID);
3620        if (!RenameFn)
3621          return;
3622      }
3623    }
3624
3625    // Check for well-known libc/libm calls.  If the function is internal, it
3626    // can't be a library call.
3627    unsigned NameLen = F->getNameLen();
3628    if (!F->hasInternalLinkage() && NameLen) {
3629      const char *NameStr = F->getNameStart();
3630      if (NameStr[0] == 'c' &&
3631          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3632           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3633        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3634            I.getOperand(1)->getType()->isFloatingPoint() &&
3635            I.getType() == I.getOperand(1)->getType() &&
3636            I.getType() == I.getOperand(2)->getType()) {
3637          SDValue LHS = getValue(I.getOperand(1));
3638          SDValue RHS = getValue(I.getOperand(2));
3639          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3640                                   LHS, RHS));
3641          return;
3642        }
3643      } else if (NameStr[0] == 'f' &&
3644                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3645                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3646                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3647        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3648            I.getOperand(1)->getType()->isFloatingPoint() &&
3649            I.getType() == I.getOperand(1)->getType()) {
3650          SDValue Tmp = getValue(I.getOperand(1));
3651          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3652          return;
3653        }
3654      } else if (NameStr[0] == 's' &&
3655                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3656                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3657                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3658        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3659            I.getOperand(1)->getType()->isFloatingPoint() &&
3660            I.getType() == I.getOperand(1)->getType()) {
3661          SDValue Tmp = getValue(I.getOperand(1));
3662          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3663          return;
3664        }
3665      } else if (NameStr[0] == 'c' &&
3666                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3667                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3668                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3669        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3670            I.getOperand(1)->getType()->isFloatingPoint() &&
3671            I.getType() == I.getOperand(1)->getType()) {
3672          SDValue Tmp = getValue(I.getOperand(1));
3673          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3674          return;
3675        }
3676      }
3677    }
3678  } else if (isa<InlineAsm>(I.getOperand(0))) {
3679    visitInlineAsm(&I);
3680    return;
3681  }
3682
3683  SDValue Callee;
3684  if (!RenameFn)
3685    Callee = getValue(I.getOperand(0));
3686  else
3687    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3688
3689  LowerCallTo(&I, Callee, I.isTailCall());
3690}
3691
3692
3693/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3694/// this value and returns the result as a ValueVT value.  This uses
3695/// Chain/Flag as the input and updates them for the output Chain/Flag.
3696/// If the Flag pointer is NULL, no flag is used.
3697SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3698                                      SDValue &Chain,
3699                                      SDValue *Flag) const {
3700  // Assemble the legal parts into the final values.
3701  SmallVector<SDValue, 4> Values(ValueVTs.size());
3702  SmallVector<SDValue, 8> Parts;
3703  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3704    // Copy the legal parts from the registers.
3705    MVT ValueVT = ValueVTs[Value];
3706    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
3707    MVT RegisterVT = RegVTs[Value];
3708
3709    Parts.resize(NumRegs);
3710    for (unsigned i = 0; i != NumRegs; ++i) {
3711      SDValue P;
3712      if (Flag == 0)
3713        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
3714      else {
3715        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
3716        *Flag = P.getValue(2);
3717      }
3718      Chain = P.getValue(1);
3719
3720      // If the source register was virtual and if we know something about it,
3721      // add an assert node.
3722      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
3723          RegisterVT.isInteger() && !RegisterVT.isVector()) {
3724        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
3725        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
3726        if (FLI.LiveOutRegInfo.size() > SlotNo) {
3727          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
3728
3729          unsigned RegSize = RegisterVT.getSizeInBits();
3730          unsigned NumSignBits = LOI.NumSignBits;
3731          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
3732
3733          // FIXME: We capture more information than the dag can represent.  For
3734          // now, just use the tightest assertzext/assertsext possible.
3735          bool isSExt = true;
3736          MVT FromVT(MVT::Other);
3737          if (NumSignBits == RegSize)
3738            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
3739          else if (NumZeroBits >= RegSize-1)
3740            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
3741          else if (NumSignBits > RegSize-8)
3742            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
3743          else if (NumZeroBits >= RegSize-9)
3744            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
3745          else if (NumSignBits > RegSize-16)
3746            isSExt = true, FromVT = MVT::i16;   // ASSERT SEXT 16
3747          else if (NumZeroBits >= RegSize-17)
3748            isSExt = false, FromVT = MVT::i16;  // ASSERT ZEXT 16
3749          else if (NumSignBits > RegSize-32)
3750            isSExt = true, FromVT = MVT::i32;   // ASSERT SEXT 32
3751          else if (NumZeroBits >= RegSize-33)
3752            isSExt = false, FromVT = MVT::i32;  // ASSERT ZEXT 32
3753
3754          if (FromVT != MVT::Other) {
3755            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
3756                            RegisterVT, P, DAG.getValueType(FromVT));
3757
3758          }
3759        }
3760      }
3761
3762      Parts[Part+i] = P;
3763    }
3764
3765    Values[Value] = getCopyFromParts(DAG, &Parts[Part], NumRegs, RegisterVT,
3766                                     ValueVT);
3767    Part += NumRegs;
3768  }
3769
3770  return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
3771                            &Values[0], ValueVTs.size());
3772}
3773
3774/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3775/// specified value into the registers specified by this object.  This uses
3776/// Chain/Flag as the input and updates them for the output Chain/Flag.
3777/// If the Flag pointer is NULL, no flag is used.
3778void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
3779                                 SDValue &Chain, SDValue *Flag) const {
3780  // Get the list of the values's legal parts.
3781  unsigned NumRegs = Regs.size();
3782  SmallVector<SDValue, 8> Parts(NumRegs);
3783  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3784    MVT ValueVT = ValueVTs[Value];
3785    unsigned NumParts = TLI->getNumRegisters(ValueVT);
3786    MVT RegisterVT = RegVTs[Value];
3787
3788    getCopyToParts(DAG, Val.getValue(Val.ResNo + Value),
3789                   &Parts[Part], NumParts, RegisterVT);
3790    Part += NumParts;
3791  }
3792
3793  // Copy the parts into the registers.
3794  SmallVector<SDValue, 8> Chains(NumRegs);
3795  for (unsigned i = 0; i != NumRegs; ++i) {
3796    SDValue Part;
3797    if (Flag == 0)
3798      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3799    else {
3800      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
3801      *Flag = Part.getValue(1);
3802    }
3803    Chains[i] = Part.getValue(0);
3804  }
3805
3806  if (NumRegs == 1 || Flag)
3807    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
3808    // flagged to it. That is the CopyToReg nodes and the user are considered
3809    // a single scheduling unit. If we create a TokenFactor and return it as
3810    // chain, then the TokenFactor is both a predecessor (operand) of the
3811    // user as well as a successor (the TF operands are flagged to the user).
3812    // c1, f1 = CopyToReg
3813    // c2, f2 = CopyToReg
3814    // c3     = TokenFactor c1, c2
3815    // ...
3816    //        = op c3, ..., f2
3817    Chain = Chains[NumRegs-1];
3818  else
3819    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
3820}
3821
3822/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3823/// operand list.  This adds the code marker and includes the number of
3824/// values added into it.
3825void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3826                                        std::vector<SDValue> &Ops) const {
3827  MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3828  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3829  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
3830    unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
3831    MVT RegisterVT = RegVTs[Value];
3832    for (unsigned i = 0; i != NumRegs; ++i)
3833      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
3834  }
3835}
3836
3837/// isAllocatableRegister - If the specified register is safe to allocate,
3838/// i.e. it isn't a stack pointer or some other special register, return the
3839/// register class for the register.  Otherwise, return null.
3840static const TargetRegisterClass *
3841isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3842                      const TargetLowering &TLI,
3843                      const TargetRegisterInfo *TRI) {
3844  MVT FoundVT = MVT::Other;
3845  const TargetRegisterClass *FoundRC = 0;
3846  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3847       E = TRI->regclass_end(); RCI != E; ++RCI) {
3848    MVT ThisVT = MVT::Other;
3849
3850    const TargetRegisterClass *RC = *RCI;
3851    // If none of the the value types for this register class are valid, we
3852    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3853    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3854         I != E; ++I) {
3855      if (TLI.isTypeLegal(*I)) {
3856        // If we have already found this register in a different register class,
3857        // choose the one with the largest VT specified.  For example, on
3858        // PowerPC, we favor f64 register classes over f32.
3859        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
3860          ThisVT = *I;
3861          break;
3862        }
3863      }
3864    }
3865
3866    if (ThisVT == MVT::Other) continue;
3867
3868    // NOTE: This isn't ideal.  In particular, this might allocate the
3869    // frame pointer in functions that need it (due to them not being taken
3870    // out of allocation, because a variable sized allocation hasn't been seen
3871    // yet).  This is a slight code pessimization, but should still work.
3872    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3873         E = RC->allocation_order_end(MF); I != E; ++I)
3874      if (*I == Reg) {
3875        // We found a matching register class.  Keep looking at others in case
3876        // we find one with larger registers that this physreg is also in.
3877        FoundRC = RC;
3878        FoundVT = ThisVT;
3879        break;
3880      }
3881  }
3882  return FoundRC;
3883}
3884
3885
3886namespace {
3887/// AsmOperandInfo - This contains information for each constraint that we are
3888/// lowering.
3889struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
3890  /// CallOperand - If this is the result output operand or a clobber
3891  /// this is null, otherwise it is the incoming operand to the CallInst.
3892  /// This gets modified as the asm is processed.
3893  SDValue CallOperand;
3894
3895  /// AssignedRegs - If this is a register or register class operand, this
3896  /// contains the set of register corresponding to the operand.
3897  RegsForValue AssignedRegs;
3898
3899  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3900    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
3901  }
3902
3903  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3904  /// busy in OutputRegs/InputRegs.
3905  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3906                         std::set<unsigned> &OutputRegs,
3907                         std::set<unsigned> &InputRegs,
3908                         const TargetRegisterInfo &TRI) const {
3909    if (isOutReg) {
3910      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3911        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3912    }
3913    if (isInReg) {
3914      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3915        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3916    }
3917  }
3918
3919private:
3920  /// MarkRegAndAliases - Mark the specified register and all aliases in the
3921  /// specified set.
3922  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3923                                const TargetRegisterInfo &TRI) {
3924    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3925    Regs.insert(Reg);
3926    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3927      for (; *Aliases; ++Aliases)
3928        Regs.insert(*Aliases);
3929  }
3930};
3931} // end anon namespace.
3932
3933
3934/// GetRegistersForValue - Assign registers (virtual or physical) for the
3935/// specified operand.  We prefer to assign virtual registers, to allow the
3936/// register allocator handle the assignment process.  However, if the asm uses
3937/// features that we can't model on machineinstrs, we have SDISel do the
3938/// allocation.  This produces generally horrible, but correct, code.
3939///
3940///   OpInfo describes the operand.
3941///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
3942///     or any explicitly clobbered registers.
3943///   Input and OutputRegs are the set of already allocated physical registers.
3944///
3945void SelectionDAGLowering::
3946GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
3947                     std::set<unsigned> &OutputRegs,
3948                     std::set<unsigned> &InputRegs) {
3949  // Compute whether this value requires an input register, an output register,
3950  // or both.
3951  bool isOutReg = false;
3952  bool isInReg = false;
3953  switch (OpInfo.Type) {
3954  case InlineAsm::isOutput:
3955    isOutReg = true;
3956
3957    // If this is an early-clobber output, or if there is an input
3958    // constraint that matches this, we need to reserve the input register
3959    // so no other inputs allocate to it.
3960    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3961    break;
3962  case InlineAsm::isInput:
3963    isInReg = true;
3964    isOutReg = false;
3965    break;
3966  case InlineAsm::isClobber:
3967    isOutReg = true;
3968    isInReg = true;
3969    break;
3970  }
3971
3972
3973  MachineFunction &MF = DAG.getMachineFunction();
3974  SmallVector<unsigned, 4> Regs;
3975
3976  // If this is a constraint for a single physreg, or a constraint for a
3977  // register class, find it.
3978  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3979    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3980                                     OpInfo.ConstraintVT);
3981
3982  unsigned NumRegs = 1;
3983  if (OpInfo.ConstraintVT != MVT::Other)
3984    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3985  MVT RegVT;
3986  MVT ValueVT = OpInfo.ConstraintVT;
3987
3988
3989  // If this is a constraint for a specific physical register, like {r17},
3990  // assign it now.
3991  if (PhysReg.first) {
3992    if (OpInfo.ConstraintVT == MVT::Other)
3993      ValueVT = *PhysReg.second->vt_begin();
3994
3995    // Get the actual register value type.  This is important, because the user
3996    // may have asked for (e.g.) the AX register in i32 type.  We need to
3997    // remember that AX is actually i16 to get the right extension.
3998    RegVT = *PhysReg.second->vt_begin();
3999
4000    // This is a explicit reference to a physical register.
4001    Regs.push_back(PhysReg.first);
4002
4003    // If this is an expanded reference, add the rest of the regs to Regs.
4004    if (NumRegs != 1) {
4005      TargetRegisterClass::iterator I = PhysReg.second->begin();
4006      for (; *I != PhysReg.first; ++I)
4007        assert(I != PhysReg.second->end() && "Didn't find reg!");
4008
4009      // Already added the first reg.
4010      --NumRegs; ++I;
4011      for (; NumRegs; --NumRegs, ++I) {
4012        assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
4013        Regs.push_back(*I);
4014      }
4015    }
4016    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4017    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4018    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4019    return;
4020  }
4021
4022  // Otherwise, if this was a reference to an LLVM register class, create vregs
4023  // for this reference.
4024  std::vector<unsigned> RegClassRegs;
4025  const TargetRegisterClass *RC = PhysReg.second;
4026  if (RC) {
4027    // If this is an early clobber or tied register, our regalloc doesn't know
4028    // how to maintain the constraint.  If it isn't, go ahead and create vreg
4029    // and let the regalloc do the right thing.
4030    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
4031        // If there is some other early clobber and this is an input register,
4032        // then we are forced to pre-allocate the input reg so it doesn't
4033        // conflict with the earlyclobber.
4034        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
4035      RegVT = *PhysReg.second->vt_begin();
4036
4037      if (OpInfo.ConstraintVT == MVT::Other)
4038        ValueVT = RegVT;
4039
4040      // Create the appropriate number of virtual registers.
4041      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4042      for (; NumRegs; --NumRegs)
4043        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
4044
4045      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4046      return;
4047    }
4048
4049    // Otherwise, we can't allocate it.  Let the code below figure out how to
4050    // maintain these constraints.
4051    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
4052
4053  } else {
4054    // This is a reference to a register class that doesn't directly correspond
4055    // to an LLVM register class.  Allocate NumRegs consecutive, available,
4056    // registers from the class.
4057    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
4058                                                         OpInfo.ConstraintVT);
4059  }
4060
4061  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4062  unsigned NumAllocated = 0;
4063  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
4064    unsigned Reg = RegClassRegs[i];
4065    // See if this register is available.
4066    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
4067        (isInReg  && InputRegs.count(Reg))) {    // Already used.
4068      // Make sure we find consecutive registers.
4069      NumAllocated = 0;
4070      continue;
4071    }
4072
4073    // Check to see if this register is allocatable (i.e. don't give out the
4074    // stack pointer).
4075    if (RC == 0) {
4076      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
4077      if (!RC) {        // Couldn't allocate this register.
4078        // Reset NumAllocated to make sure we return consecutive registers.
4079        NumAllocated = 0;
4080        continue;
4081      }
4082    }
4083
4084    // Okay, this register is good, we can use it.
4085    ++NumAllocated;
4086
4087    // If we allocated enough consecutive registers, succeed.
4088    if (NumAllocated == NumRegs) {
4089      unsigned RegStart = (i-NumAllocated)+1;
4090      unsigned RegEnd   = i+1;
4091      // Mark all of the allocated registers used.
4092      for (unsigned i = RegStart; i != RegEnd; ++i)
4093        Regs.push_back(RegClassRegs[i]);
4094
4095      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
4096                                         OpInfo.ConstraintVT);
4097      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4098      return;
4099    }
4100  }
4101
4102  // Otherwise, we couldn't allocate enough registers for this.
4103}
4104
4105
4106/// visitInlineAsm - Handle a call to an InlineAsm object.
4107///
4108void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
4109  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4110
4111  /// ConstraintOperands - Information about all of the constraints.
4112  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
4113
4114  SDValue Chain = getRoot();
4115  SDValue Flag;
4116
4117  std::set<unsigned> OutputRegs, InputRegs;
4118
4119  // Do a prepass over the constraints, canonicalizing them, and building up the
4120  // ConstraintOperands list.
4121  std::vector<InlineAsm::ConstraintInfo>
4122    ConstraintInfos = IA->ParseConstraints();
4123
4124  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
4125  // constraint.  If so, we can't let the register allocator allocate any input
4126  // registers, because it will not know to avoid the earlyclobbered output reg.
4127  bool SawEarlyClobber = false;
4128
4129  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
4130  unsigned ResNo = 0;   // ResNo - The result number of the next output.
4131  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4132    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
4133    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
4134
4135    MVT OpVT = MVT::Other;
4136
4137    // Compute the value type for each operand.
4138    switch (OpInfo.Type) {
4139    case InlineAsm::isOutput:
4140      // Indirect outputs just consume an argument.
4141      if (OpInfo.isIndirect) {
4142        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4143        break;
4144      }
4145      // The return value of the call is this value.  As such, there is no
4146      // corresponding argument.
4147      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4148      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
4149        OpVT = TLI.getValueType(STy->getElementType(ResNo));
4150      } else {
4151        assert(ResNo == 0 && "Asm only has one result!");
4152        OpVT = TLI.getValueType(CS.getType());
4153      }
4154      ++ResNo;
4155      break;
4156    case InlineAsm::isInput:
4157      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4158      break;
4159    case InlineAsm::isClobber:
4160      // Nothing to do.
4161      break;
4162    }
4163
4164    // If this is an input or an indirect output, process the call argument.
4165    // BasicBlocks are labels, currently appearing only in asm's.
4166    if (OpInfo.CallOperandVal) {
4167      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
4168        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
4169      else {
4170        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
4171        const Type *OpTy = OpInfo.CallOperandVal->getType();
4172        // If this is an indirect operand, the operand is a pointer to the
4173        // accessed type.
4174        if (OpInfo.isIndirect)
4175          OpTy = cast<PointerType>(OpTy)->getElementType();
4176
4177        // If OpTy is not a single value, it may be a struct/union that we
4178        // can tile with integers.
4179        if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4180          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4181          switch (BitSize) {
4182          default: break;
4183          case 1:
4184          case 8:
4185          case 16:
4186          case 32:
4187          case 64:
4188            OpTy = IntegerType::get(BitSize);
4189            break;
4190          }
4191        }
4192
4193        OpVT = TLI.getValueType(OpTy, true);
4194      }
4195    }
4196
4197    OpInfo.ConstraintVT = OpVT;
4198
4199    // Compute the constraint code and ConstraintType to use.
4200    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
4201
4202    // Keep track of whether we see an earlyclobber.
4203    SawEarlyClobber |= OpInfo.isEarlyClobber;
4204
4205    // If we see a clobber of a register, it is an early clobber.
4206    if (!SawEarlyClobber &&
4207        OpInfo.Type == InlineAsm::isClobber &&
4208        OpInfo.ConstraintType == TargetLowering::C_Register) {
4209      // Note that we want to ignore things that we don't trick here, like
4210      // dirflag, fpsr, flags, etc.
4211      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4212        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4213                                         OpInfo.ConstraintVT);
4214      if (PhysReg.first || PhysReg.second) {
4215        // This is a register we know of.
4216        SawEarlyClobber = true;
4217      }
4218    }
4219
4220    // If this is a memory input, and if the operand is not indirect, do what we
4221    // need to to provide an address for the memory input.
4222    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4223        !OpInfo.isIndirect) {
4224      assert(OpInfo.Type == InlineAsm::isInput &&
4225             "Can only indirectify direct input operands!");
4226
4227      // Memory operands really want the address of the value.  If we don't have
4228      // an indirect input, put it in the constpool if we can, otherwise spill
4229      // it to a stack slot.
4230
4231      // If the operand is a float, integer, or vector constant, spill to a
4232      // constant pool entry to get its address.
4233      Value *OpVal = OpInfo.CallOperandVal;
4234      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
4235          isa<ConstantVector>(OpVal)) {
4236        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
4237                                                 TLI.getPointerTy());
4238      } else {
4239        // Otherwise, create a stack slot and emit a store to it before the
4240        // asm.
4241        const Type *Ty = OpVal->getType();
4242        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
4243        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
4244        MachineFunction &MF = DAG.getMachineFunction();
4245        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
4246        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4247        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
4248        OpInfo.CallOperand = StackSlot;
4249      }
4250
4251      // There is no longer a Value* corresponding to this operand.
4252      OpInfo.CallOperandVal = 0;
4253      // It is now an indirect operand.
4254      OpInfo.isIndirect = true;
4255    }
4256
4257    // If this constraint is for a specific register, allocate it before
4258    // anything else.
4259    if (OpInfo.ConstraintType == TargetLowering::C_Register)
4260      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4261  }
4262  ConstraintInfos.clear();
4263
4264
4265  // Second pass - Loop over all of the operands, assigning virtual or physregs
4266  // to registerclass operands.
4267  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4268    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4269
4270    // C_Register operands have already been allocated, Other/Memory don't need
4271    // to be.
4272    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
4273      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4274  }
4275
4276  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
4277  std::vector<SDValue> AsmNodeOperands;
4278  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
4279  AsmNodeOperands.push_back(
4280          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
4281
4282
4283  // Loop over all of the inputs, copying the operand values into the
4284  // appropriate registers and processing the output regs.
4285  RegsForValue RetValRegs;
4286
4287  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
4288  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
4289
4290  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4291    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4292
4293    switch (OpInfo.Type) {
4294    case InlineAsm::isOutput: {
4295      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
4296          OpInfo.ConstraintType != TargetLowering::C_Register) {
4297        // Memory output, or 'other' output (e.g. 'X' constraint).
4298        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
4299
4300        // Add information to the INLINEASM node to know about this output.
4301        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4302        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4303                                                        TLI.getPointerTy()));
4304        AsmNodeOperands.push_back(OpInfo.CallOperand);
4305        break;
4306      }
4307
4308      // Otherwise, this is a register or register class output.
4309
4310      // Copy the output from the appropriate register.  Find a register that
4311      // we can use.
4312      if (OpInfo.AssignedRegs.Regs.empty()) {
4313        cerr << "Couldn't allocate output reg for constraint '"
4314             << OpInfo.ConstraintCode << "'!\n";
4315        exit(1);
4316      }
4317
4318      // If this is an indirect operand, store through the pointer after the
4319      // asm.
4320      if (OpInfo.isIndirect) {
4321        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
4322                                                      OpInfo.CallOperandVal));
4323      } else {
4324        // This is the result value of the call.
4325        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4326        // Concatenate this output onto the outputs list.
4327        RetValRegs.append(OpInfo.AssignedRegs);
4328      }
4329
4330      // Add information to the INLINEASM node to know that this register is
4331      // set.
4332      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
4333                                               AsmNodeOperands);
4334      break;
4335    }
4336    case InlineAsm::isInput: {
4337      SDValue InOperandVal = OpInfo.CallOperand;
4338
4339      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
4340        // If this is required to match an output register we have already set,
4341        // just use its register.
4342        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
4343
4344        // Scan until we find the definition we already emitted of this operand.
4345        // When we find it, create a RegsForValue operand.
4346        unsigned CurOp = 2;  // The first operand.
4347        for (; OperandNo; --OperandNo) {
4348          // Advance to the next operand.
4349          unsigned NumOps =
4350            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4351          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
4352                  (NumOps & 7) == 4 /*MEM*/) &&
4353                 "Skipped past definitions?");
4354          CurOp += (NumOps>>3)+1;
4355        }
4356
4357        unsigned NumOps =
4358          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4359        if ((NumOps & 7) == 2 /*REGDEF*/) {
4360          // Add NumOps>>3 registers to MatchedRegs.
4361          RegsForValue MatchedRegs;
4362          MatchedRegs.TLI = &TLI;
4363          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
4364          MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
4365          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
4366            unsigned Reg =
4367              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4368            MatchedRegs.Regs.push_back(Reg);
4369          }
4370
4371          // Use the produced MatchedRegs object to
4372          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4373          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
4374          break;
4375        } else {
4376          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
4377          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4378          // Add information to the INLINEASM node to know about this input.
4379          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4380          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4381                                                          TLI.getPointerTy()));
4382          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4383          break;
4384        }
4385      }
4386
4387      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4388        assert(!OpInfo.isIndirect &&
4389               "Don't know how to handle indirect other inputs yet!");
4390
4391        std::vector<SDValue> Ops;
4392        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
4393                                         Ops, DAG);
4394        if (Ops.empty()) {
4395          cerr << "Invalid operand for inline asm constraint '"
4396               << OpInfo.ConstraintCode << "'!\n";
4397          exit(1);
4398        }
4399
4400        // Add information to the INLINEASM node to know about this input.
4401        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4402        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4403                                                        TLI.getPointerTy()));
4404        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4405        break;
4406      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4407        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4408        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4409               "Memory operands expect pointer values");
4410
4411        // Add information to the INLINEASM node to know about this input.
4412        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4413        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4414                                                        TLI.getPointerTy()));
4415        AsmNodeOperands.push_back(InOperandVal);
4416        break;
4417      }
4418
4419      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4420              OpInfo.ConstraintType == TargetLowering::C_Register) &&
4421             "Unknown constraint type!");
4422      assert(!OpInfo.isIndirect &&
4423             "Don't know how to handle indirect register inputs yet!");
4424
4425      // Copy the input into the appropriate registers.
4426      assert(!OpInfo.AssignedRegs.Regs.empty() &&
4427             "Couldn't allocate input reg!");
4428
4429      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4430
4431      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
4432                                               AsmNodeOperands);
4433      break;
4434    }
4435    case InlineAsm::isClobber: {
4436      // Add the clobbered value to the operand list, so that the register
4437      // allocator is aware that the physreg got clobbered.
4438      if (!OpInfo.AssignedRegs.Regs.empty())
4439        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
4440                                                 AsmNodeOperands);
4441      break;
4442    }
4443    }
4444  }
4445
4446  // Finish up input operands.
4447  AsmNodeOperands[0] = Chain;
4448  if (Flag.Val) AsmNodeOperands.push_back(Flag);
4449
4450  Chain = DAG.getNode(ISD::INLINEASM,
4451                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4452                      &AsmNodeOperands[0], AsmNodeOperands.size());
4453  Flag = Chain.getValue(1);
4454
4455  // If this asm returns a register value, copy the result from that register
4456  // and set it as the value of the call.
4457  if (!RetValRegs.Regs.empty()) {
4458    SDValue Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4459
4460    // If any of the results of the inline asm is a vector, it may have the
4461    // wrong width/num elts.  This can happen for register classes that can
4462    // contain multiple different value types.  The preg or vreg allocated may
4463    // not have the same VT as was expected.  Convert it to the right type with
4464    // bit_convert.
4465    if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
4466      for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
4467        if (Val.Val->getValueType(i).isVector())
4468          Val = DAG.getNode(ISD::BIT_CONVERT,
4469                            TLI.getValueType(ResSTy->getElementType(i)), Val);
4470      }
4471    } else {
4472      if (Val.getValueType().isVector())
4473        Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
4474                          Val);
4475    }
4476
4477    setValue(CS.getInstruction(), Val);
4478  }
4479
4480  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
4481
4482  // Process indirect outputs, first output all of the flagged copies out of
4483  // physregs.
4484  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4485    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4486    Value *Ptr = IndirectStoresToEmit[i].second;
4487    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4488    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4489  }
4490
4491  // Emit the non-flagged stores from the physregs.
4492  SmallVector<SDValue, 8> OutChains;
4493  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4494    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4495                                    getValue(StoresToEmit[i].second),
4496                                    StoresToEmit[i].second, 0));
4497  if (!OutChains.empty())
4498    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4499                        &OutChains[0], OutChains.size());
4500  DAG.setRoot(Chain);
4501}
4502
4503
4504void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4505  SDValue Src = getValue(I.getOperand(0));
4506
4507  MVT IntPtr = TLI.getPointerTy();
4508
4509  if (IntPtr.bitsLT(Src.getValueType()))
4510    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4511  else if (IntPtr.bitsGT(Src.getValueType()))
4512    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4513
4514  // Scale the source by the type size.
4515  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4516  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4517                    Src, DAG.getIntPtrConstant(ElementSize));
4518
4519  TargetLowering::ArgListTy Args;
4520  TargetLowering::ArgListEntry Entry;
4521  Entry.Node = Src;
4522  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4523  Args.push_back(Entry);
4524
4525  std::pair<SDValue,SDValue> Result =
4526    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4527                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4528  setValue(&I, Result.first);  // Pointers always fit in registers
4529  DAG.setRoot(Result.second);
4530}
4531
4532void SelectionDAGLowering::visitFree(FreeInst &I) {
4533  TargetLowering::ArgListTy Args;
4534  TargetLowering::ArgListEntry Entry;
4535  Entry.Node = getValue(I.getOperand(0));
4536  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4537  Args.push_back(Entry);
4538  MVT IntPtr = TLI.getPointerTy();
4539  std::pair<SDValue,SDValue> Result =
4540    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4541                    CallingConv::C, true,
4542                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4543  DAG.setRoot(Result.second);
4544}
4545
4546// EmitInstrWithCustomInserter - This method should be implemented by targets
4547// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4548// instructions are special in various ways, which require special support to
4549// insert.  The specified MachineInstr is created but not inserted into any
4550// basic blocks, and the scheduler passes ownership of it to this method.
4551MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4552                                                       MachineBasicBlock *MBB) {
4553  cerr << "If a target marks an instruction with "
4554       << "'usesCustomDAGSchedInserter', it must implement "
4555       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4556  abort();
4557  return 0;
4558}
4559
4560void SelectionDAGLowering::visitVAStart(CallInst &I) {
4561  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4562                          getValue(I.getOperand(1)),
4563                          DAG.getSrcValue(I.getOperand(1))));
4564}
4565
4566void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4567  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4568                             getValue(I.getOperand(0)),
4569                             DAG.getSrcValue(I.getOperand(0)));
4570  setValue(&I, V);
4571  DAG.setRoot(V.getValue(1));
4572}
4573
4574void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4575  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4576                          getValue(I.getOperand(1)),
4577                          DAG.getSrcValue(I.getOperand(1))));
4578}
4579
4580void SelectionDAGLowering::visitVACopy(CallInst &I) {
4581  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4582                          getValue(I.getOperand(1)),
4583                          getValue(I.getOperand(2)),
4584                          DAG.getSrcValue(I.getOperand(1)),
4585                          DAG.getSrcValue(I.getOperand(2))));
4586}
4587
4588/// TargetLowering::LowerArguments - This is the default LowerArguments
4589/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4590/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4591/// integrated into SDISel.
4592void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
4593                                    SmallVectorImpl<SDValue> &ArgValues) {
4594  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4595  SmallVector<SDValue, 3+16> Ops;
4596  Ops.push_back(DAG.getRoot());
4597  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4598  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4599
4600  // Add one result value for each formal argument.
4601  SmallVector<MVT, 16> RetVals;
4602  unsigned j = 1;
4603  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4604       I != E; ++I, ++j) {
4605    SmallVector<MVT, 4> ValueVTs;
4606    ComputeValueVTs(*this, I->getType(), ValueVTs);
4607    for (unsigned Value = 0, NumValues = ValueVTs.size();
4608         Value != NumValues; ++Value) {
4609      MVT VT = ValueVTs[Value];
4610      const Type *ArgTy = VT.getTypeForMVT();
4611      ISD::ArgFlagsTy Flags;
4612      unsigned OriginalAlignment =
4613        getTargetData()->getABITypeAlignment(ArgTy);
4614
4615      if (F.paramHasAttr(j, ParamAttr::ZExt))
4616        Flags.setZExt();
4617      if (F.paramHasAttr(j, ParamAttr::SExt))
4618        Flags.setSExt();
4619      if (F.paramHasAttr(j, ParamAttr::InReg))
4620        Flags.setInReg();
4621      if (F.paramHasAttr(j, ParamAttr::StructRet))
4622        Flags.setSRet();
4623      if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4624        Flags.setByVal();
4625        const PointerType *Ty = cast<PointerType>(I->getType());
4626        const Type *ElementTy = Ty->getElementType();
4627        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4628        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4629        // For ByVal, alignment should be passed from FE.  BE will guess if
4630        // this info is not there but there are cases it cannot get right.
4631        if (F.getParamAlignment(j))
4632          FrameAlign = F.getParamAlignment(j);
4633        Flags.setByValAlign(FrameAlign);
4634        Flags.setByValSize(FrameSize);
4635      }
4636      if (F.paramHasAttr(j, ParamAttr::Nest))
4637        Flags.setNest();
4638      Flags.setOrigAlign(OriginalAlignment);
4639
4640      MVT RegisterVT = getRegisterType(VT);
4641      unsigned NumRegs = getNumRegisters(VT);
4642      for (unsigned i = 0; i != NumRegs; ++i) {
4643        RetVals.push_back(RegisterVT);
4644        ISD::ArgFlagsTy MyFlags = Flags;
4645        if (NumRegs > 1 && i == 0)
4646          MyFlags.setSplit();
4647        // if it isn't first piece, alignment must be 1
4648        else if (i > 0)
4649          MyFlags.setOrigAlign(1);
4650        Ops.push_back(DAG.getArgFlags(MyFlags));
4651      }
4652    }
4653  }
4654
4655  RetVals.push_back(MVT::Other);
4656
4657  // Create the node.
4658  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4659                               DAG.getVTList(&RetVals[0], RetVals.size()),
4660                               &Ops[0], Ops.size()).Val;
4661
4662  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4663  // allows exposing the loads that may be part of the argument access to the
4664  // first DAGCombiner pass.
4665  SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG);
4666
4667  // The number of results should match up, except that the lowered one may have
4668  // an extra flag result.
4669  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4670          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4671           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4672         && "Lowering produced unexpected number of results!");
4673
4674  // The FORMAL_ARGUMENTS node itself is likely no longer needed.
4675  if (Result != TmpRes.Val && Result->use_empty()) {
4676    HandleSDNode Dummy(DAG.getRoot());
4677    DAG.RemoveDeadNode(Result);
4678  }
4679
4680  Result = TmpRes.Val;
4681
4682  unsigned NumArgRegs = Result->getNumValues() - 1;
4683  DAG.setRoot(SDValue(Result, NumArgRegs));
4684
4685  // Set up the return result vector.
4686  unsigned i = 0;
4687  unsigned Idx = 1;
4688  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4689      ++I, ++Idx) {
4690    SmallVector<MVT, 4> ValueVTs;
4691    ComputeValueVTs(*this, I->getType(), ValueVTs);
4692    for (unsigned Value = 0, NumValues = ValueVTs.size();
4693         Value != NumValues; ++Value) {
4694      MVT VT = ValueVTs[Value];
4695      MVT PartVT = getRegisterType(VT);
4696
4697      unsigned NumParts = getNumRegisters(VT);
4698      SmallVector<SDValue, 4> Parts(NumParts);
4699      for (unsigned j = 0; j != NumParts; ++j)
4700        Parts[j] = SDValue(Result, i++);
4701
4702      ISD::NodeType AssertOp = ISD::DELETED_NODE;
4703      if (F.paramHasAttr(Idx, ParamAttr::SExt))
4704        AssertOp = ISD::AssertSext;
4705      else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4706        AssertOp = ISD::AssertZext;
4707
4708      ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4709                                           AssertOp));
4710    }
4711  }
4712  assert(i == NumArgRegs && "Argument register count mismatch!");
4713}
4714
4715
4716/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4717/// implementation, which just inserts an ISD::CALL node, which is later custom
4718/// lowered by the target to something concrete.  FIXME: When all targets are
4719/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4720std::pair<SDValue, SDValue>
4721TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
4722                            bool RetSExt, bool RetZExt, bool isVarArg,
4723                            unsigned CallingConv, bool isTailCall,
4724                            SDValue Callee,
4725                            ArgListTy &Args, SelectionDAG &DAG) {
4726  SmallVector<SDValue, 32> Ops;
4727  Ops.push_back(Chain);   // Op#0 - Chain
4728  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4729  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4730  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4731  Ops.push_back(Callee);
4732
4733  // Handle all of the outgoing arguments.
4734  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4735    SmallVector<MVT, 4> ValueVTs;
4736    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
4737    for (unsigned Value = 0, NumValues = ValueVTs.size();
4738         Value != NumValues; ++Value) {
4739      MVT VT = ValueVTs[Value];
4740      const Type *ArgTy = VT.getTypeForMVT();
4741      SDValue Op = SDValue(Args[i].Node.Val, Args[i].Node.ResNo + Value);
4742      ISD::ArgFlagsTy Flags;
4743      unsigned OriginalAlignment =
4744        getTargetData()->getABITypeAlignment(ArgTy);
4745
4746      if (Args[i].isZExt)
4747        Flags.setZExt();
4748      if (Args[i].isSExt)
4749        Flags.setSExt();
4750      if (Args[i].isInReg)
4751        Flags.setInReg();
4752      if (Args[i].isSRet)
4753        Flags.setSRet();
4754      if (Args[i].isByVal) {
4755        Flags.setByVal();
4756        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4757        const Type *ElementTy = Ty->getElementType();
4758        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4759        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4760        // For ByVal, alignment should come from FE.  BE will guess if this
4761        // info is not there but there are cases it cannot get right.
4762        if (Args[i].Alignment)
4763          FrameAlign = Args[i].Alignment;
4764        Flags.setByValAlign(FrameAlign);
4765        Flags.setByValSize(FrameSize);
4766      }
4767      if (Args[i].isNest)
4768        Flags.setNest();
4769      Flags.setOrigAlign(OriginalAlignment);
4770
4771      MVT PartVT = getRegisterType(VT);
4772      unsigned NumParts = getNumRegisters(VT);
4773      SmallVector<SDValue, 4> Parts(NumParts);
4774      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4775
4776      if (Args[i].isSExt)
4777        ExtendKind = ISD::SIGN_EXTEND;
4778      else if (Args[i].isZExt)
4779        ExtendKind = ISD::ZERO_EXTEND;
4780
4781      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4782
4783      for (unsigned i = 0; i != NumParts; ++i) {
4784        // if it isn't first piece, alignment must be 1
4785        ISD::ArgFlagsTy MyFlags = Flags;
4786        if (NumParts > 1 && i == 0)
4787          MyFlags.setSplit();
4788        else if (i != 0)
4789          MyFlags.setOrigAlign(1);
4790
4791        Ops.push_back(Parts[i]);
4792        Ops.push_back(DAG.getArgFlags(MyFlags));
4793      }
4794    }
4795  }
4796
4797  // Figure out the result value types. We start by making a list of
4798  // the potentially illegal return value types.
4799  SmallVector<MVT, 4> LoweredRetTys;
4800  SmallVector<MVT, 4> RetTys;
4801  ComputeValueVTs(*this, RetTy, RetTys);
4802
4803  // Then we translate that to a list of legal types.
4804  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4805    MVT VT = RetTys[I];
4806    MVT RegisterVT = getRegisterType(VT);
4807    unsigned NumRegs = getNumRegisters(VT);
4808    for (unsigned i = 0; i != NumRegs; ++i)
4809      LoweredRetTys.push_back(RegisterVT);
4810  }
4811
4812  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
4813
4814  // Create the CALL node.
4815  SDValue Res = DAG.getNode(ISD::CALL,
4816                              DAG.getVTList(&LoweredRetTys[0],
4817                                            LoweredRetTys.size()),
4818                              &Ops[0], Ops.size());
4819  Chain = Res.getValue(LoweredRetTys.size() - 1);
4820
4821  // Gather up the call result into a single value.
4822  if (RetTy != Type::VoidTy) {
4823    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4824
4825    if (RetSExt)
4826      AssertOp = ISD::AssertSext;
4827    else if (RetZExt)
4828      AssertOp = ISD::AssertZext;
4829
4830    SmallVector<SDValue, 4> ReturnValues;
4831    unsigned RegNo = 0;
4832    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4833      MVT VT = RetTys[I];
4834      MVT RegisterVT = getRegisterType(VT);
4835      unsigned NumRegs = getNumRegisters(VT);
4836      unsigned RegNoEnd = NumRegs + RegNo;
4837      SmallVector<SDValue, 4> Results;
4838      for (; RegNo != RegNoEnd; ++RegNo)
4839        Results.push_back(Res.getValue(RegNo));
4840      SDValue ReturnValue =
4841        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4842                         AssertOp);
4843      ReturnValues.push_back(ReturnValue);
4844    }
4845    Res = DAG.getMergeValues(DAG.getVTList(&RetTys[0], RetTys.size()),
4846                             &ReturnValues[0], ReturnValues.size());
4847  }
4848
4849  return std::make_pair(Res, Chain);
4850}
4851
4852SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
4853  assert(0 && "LowerOperation not implemented for this target!");
4854  abort();
4855  return SDValue();
4856}
4857
4858
4859//===----------------------------------------------------------------------===//
4860// SelectionDAGISel code
4861//===----------------------------------------------------------------------===//
4862
4863unsigned SelectionDAGISel::MakeReg(MVT VT) {
4864  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4865}
4866
4867void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4868  AU.addRequired<AliasAnalysis>();
4869  AU.addRequired<CollectorModuleMetadata>();
4870  AU.setPreservesAll();
4871}
4872
4873bool SelectionDAGISel::runOnFunction(Function &Fn) {
4874  // Get alias analysis for load/store combining.
4875  AA = &getAnalysis<AliasAnalysis>();
4876
4877  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4878  if (MF.getFunction()->hasCollector())
4879    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4880  else
4881    GCI = 0;
4882  RegInfo = &MF.getRegInfo();
4883  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4884
4885  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4886
4887  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4888    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4889      // Mark landing pad.
4890      FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4891
4892  SelectAllBasicBlocks(Fn, MF, FuncInfo);
4893
4894  // Add function live-ins to entry block live-in set.
4895  BasicBlock *EntryBB = &Fn.getEntryBlock();
4896  BB = FuncInfo.MBBMap[EntryBB];
4897  if (!RegInfo->livein_empty())
4898    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4899           E = RegInfo->livein_end(); I != E; ++I)
4900      BB->addLiveIn(I->first);
4901
4902#ifndef NDEBUG
4903  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4904         "Not all catch info was assigned to a landing pad!");
4905#endif
4906
4907  return true;
4908}
4909
4910void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
4911  SDValue Op = getValue(V);
4912  assert((Op.getOpcode() != ISD::CopyFromReg ||
4913          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4914         "Copy from a reg to the same reg!");
4915  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
4916
4917  RegsForValue RFV(TLI, Reg, V->getType());
4918  SDValue Chain = DAG.getEntryNode();
4919  RFV.getCopyToRegs(Op, DAG, Chain, 0);
4920  PendingExports.push_back(Chain);
4921}
4922
4923void SelectionDAGISel::
4924LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) {
4925  // If this is the entry block, emit arguments.
4926  Function &F = *LLVMBB->getParent();
4927  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4928  SDValue OldRoot = SDL.DAG.getRoot();
4929  SmallVector<SDValue, 16> Args;
4930  TLI.LowerArguments(F, SDL.DAG, Args);
4931
4932  unsigned a = 0;
4933  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4934       AI != E; ++AI) {
4935    SmallVector<MVT, 4> ValueVTs;
4936    ComputeValueVTs(TLI, AI->getType(), ValueVTs);
4937    unsigned NumValues = ValueVTs.size();
4938    if (!AI->use_empty()) {
4939      SDL.setValue(AI, SDL.DAG.getMergeValues(&Args[a], NumValues));
4940      // If this argument is live outside of the entry block, insert a copy from
4941      // whereever we got it to the vreg that other BB's will reference it as.
4942      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4943      if (VMI != FuncInfo.ValueMap.end()) {
4944        SDL.CopyValueToVirtualRegister(AI, VMI->second);
4945      }
4946    }
4947    a += NumValues;
4948  }
4949
4950  // Finally, if the target has anything special to do, allow it to do so.
4951  // FIXME: this should insert code into the DAG!
4952  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4953}
4954
4955static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4956                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4957  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4958    if (isSelector(I)) {
4959      // Apply the catch info to DestBB.
4960      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4961#ifndef NDEBUG
4962      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4963        FLI.CatchInfoFound.insert(I);
4964#endif
4965    }
4966}
4967
4968/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
4969/// whether object offset >= 0.
4970static bool
4971IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDValue Op) {
4972  if (!isa<FrameIndexSDNode>(Op)) return false;
4973
4974  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
4975  int FrameIdx =  FrameIdxNode->getIndex();
4976  return MFI->isFixedObjectIndex(FrameIdx) &&
4977    MFI->getObjectOffset(FrameIdx) >= 0;
4978}
4979
4980/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
4981/// possibly be overwritten when lowering the outgoing arguments in a tail
4982/// call. Currently the implementation of this call is very conservative and
4983/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
4984/// virtual registers would be overwritten by direct lowering.
4985static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
4986                                                    MachineFrameInfo * MFI) {
4987  RegisterSDNode * OpReg = NULL;
4988  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
4989      (Op.getOpcode()== ISD::CopyFromReg &&
4990       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
4991       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
4992      (Op.getOpcode() == ISD::LOAD &&
4993       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
4994      (Op.getOpcode() == ISD::MERGE_VALUES &&
4995       Op.getOperand(Op.ResNo).getOpcode() == ISD::LOAD &&
4996       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.ResNo).
4997                                       getOperand(1))))
4998    return true;
4999  return false;
5000}
5001
5002/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
5003/// DAG and fixes their tailcall attribute operand.
5004static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
5005                                           TargetLowering& TLI) {
5006  SDNode * Ret = NULL;
5007  SDValue Terminator = DAG.getRoot();
5008
5009  // Find RET node.
5010  if (Terminator.getOpcode() == ISD::RET) {
5011    Ret = Terminator.Val;
5012  }
5013
5014  // Fix tail call attribute of CALL nodes.
5015  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
5016         BI = DAG.allnodes_end(); BI != BE; ) {
5017    --BI;
5018    if (BI->getOpcode() == ISD::CALL) {
5019      SDValue OpRet(Ret, 0);
5020      SDValue OpCall(BI, 0);
5021      bool isMarkedTailCall =
5022        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
5023      // If CALL node has tail call attribute set to true and the call is not
5024      // eligible (no RET or the target rejects) the attribute is fixed to
5025      // false. The TargetLowering::IsEligibleForTailCallOptimization function
5026      // must correctly identify tail call optimizable calls.
5027      if (!isMarkedTailCall) continue;
5028      if (Ret==NULL ||
5029          !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
5030        // Not eligible. Mark CALL node as non tail call.
5031        SmallVector<SDValue, 32> Ops;
5032        unsigned idx=0;
5033        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
5034              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5035          if (idx!=3)
5036            Ops.push_back(*I);
5037          else
5038            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
5039        }
5040        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5041      } else {
5042        // Look for tail call clobbered arguments. Emit a series of
5043        // copyto/copyfrom virtual register nodes to protect them.
5044        SmallVector<SDValue, 32> Ops;
5045        SDValue Chain = OpCall.getOperand(0), InFlag;
5046        unsigned idx=0;
5047        for(SDNode::op_iterator I = OpCall.Val->op_begin(),
5048              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5049          SDValue Arg = *I;
5050          if (idx > 4 && (idx % 2)) {
5051            bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
5052              getArgFlags().isByVal();
5053            MachineFunction &MF = DAG.getMachineFunction();
5054            MachineFrameInfo *MFI = MF.getFrameInfo();
5055            if (!isByVal &&
5056                IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
5057              MVT VT = Arg.getValueType();
5058              unsigned VReg = MF.getRegInfo().
5059                createVirtualRegister(TLI.getRegClassFor(VT));
5060              Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
5061              InFlag = Chain.getValue(1);
5062              Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
5063              Chain = Arg.getValue(1);
5064              InFlag = Arg.getValue(2);
5065            }
5066          }
5067          Ops.push_back(Arg);
5068        }
5069        // Link in chain of CopyTo/CopyFromReg.
5070        Ops[0] = Chain;
5071        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5072      }
5073    }
5074  }
5075}
5076
5077void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
5078       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
5079                                         FunctionLoweringInfo &FuncInfo) {
5080  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
5081
5082  // Lower any arguments needed in this block if this is the entry block.
5083  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
5084    LowerArguments(LLVMBB, SDL);
5085
5086  BB = FuncInfo.MBBMap[LLVMBB];
5087  SDL.setCurrentBasicBlock(BB);
5088
5089  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
5090
5091  if (MMI && BB->isLandingPad()) {
5092    // Add a label to mark the beginning of the landing pad.  Deletion of the
5093    // landing pad can thus be detected via the MachineModuleInfo.
5094    unsigned LabelID = MMI->addLandingPad(BB);
5095    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, DAG.getEntryNode(), LabelID));
5096
5097    // Mark exception register as live in.
5098    unsigned Reg = TLI.getExceptionAddressRegister();
5099    if (Reg) BB->addLiveIn(Reg);
5100
5101    // Mark exception selector register as live in.
5102    Reg = TLI.getExceptionSelectorRegister();
5103    if (Reg) BB->addLiveIn(Reg);
5104
5105    // FIXME: Hack around an exception handling flaw (PR1508): the personality
5106    // function and list of typeids logically belong to the invoke (or, if you
5107    // like, the basic block containing the invoke), and need to be associated
5108    // with it in the dwarf exception handling tables.  Currently however the
5109    // information is provided by an intrinsic (eh.selector) that can be moved
5110    // to unexpected places by the optimizers: if the unwind edge is critical,
5111    // then breaking it can result in the intrinsics being in the successor of
5112    // the landing pad, not the landing pad itself.  This results in exceptions
5113    // not being caught because no typeids are associated with the invoke.
5114    // This may not be the only way things can go wrong, but it is the only way
5115    // we try to work around for the moment.
5116    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
5117
5118    if (Br && Br->isUnconditional()) { // Critical edge?
5119      BasicBlock::iterator I, E;
5120      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
5121        if (isSelector(I))
5122          break;
5123
5124      if (I == E)
5125        // No catch info found - try to extract some from the successor.
5126        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
5127    }
5128  }
5129
5130  // Lower all of the non-terminator instructions.
5131  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
5132       I != E; ++I)
5133    SDL.visit(*I);
5134
5135  // Ensure that all instructions which are used outside of their defining
5136  // blocks are available as virtual registers.  Invoke is handled elsewhere.
5137  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
5138    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
5139      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
5140      if (VMI != FuncInfo.ValueMap.end())
5141        SDL.CopyValueToVirtualRegister(I, VMI->second);
5142    }
5143
5144  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
5145  // ensure constants are generated when needed.  Remember the virtual registers
5146  // that need to be added to the Machine PHI nodes as input.  We cannot just
5147  // directly add them, because expansion might result in multiple MBB's for one
5148  // BB.  As such, the start of the BB might correspond to a different MBB than
5149  // the end.
5150  //
5151  TerminatorInst *TI = LLVMBB->getTerminator();
5152
5153  // Emit constants only once even if used by multiple PHI nodes.
5154  std::map<Constant*, unsigned> ConstantsOut;
5155
5156  // Vector bool would be better, but vector<bool> is really slow.
5157  std::vector<unsigned char> SuccsHandled;
5158  if (TI->getNumSuccessors())
5159    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
5160
5161  // Check successor nodes' PHI nodes that expect a constant to be available
5162  // from this block.
5163  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5164    BasicBlock *SuccBB = TI->getSuccessor(succ);
5165    if (!isa<PHINode>(SuccBB->begin())) continue;
5166    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
5167
5168    // If this terminator has multiple identical successors (common for
5169    // switches), only handle each succ once.
5170    unsigned SuccMBBNo = SuccMBB->getNumber();
5171    if (SuccsHandled[SuccMBBNo]) continue;
5172    SuccsHandled[SuccMBBNo] = true;
5173
5174    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5175    PHINode *PN;
5176
5177    // At this point we know that there is a 1-1 correspondence between LLVM PHI
5178    // nodes and Machine PHI nodes, but the incoming operands have not been
5179    // emitted yet.
5180    for (BasicBlock::iterator I = SuccBB->begin();
5181         (PN = dyn_cast<PHINode>(I)); ++I) {
5182      // Ignore dead phi's.
5183      if (PN->use_empty()) continue;
5184
5185      unsigned Reg;
5186      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5187
5188      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5189        unsigned &RegOut = ConstantsOut[C];
5190        if (RegOut == 0) {
5191          RegOut = FuncInfo.CreateRegForValue(C);
5192          SDL.CopyValueToVirtualRegister(C, RegOut);
5193        }
5194        Reg = RegOut;
5195      } else {
5196        Reg = FuncInfo.ValueMap[PHIOp];
5197        if (Reg == 0) {
5198          assert(isa<AllocaInst>(PHIOp) &&
5199                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5200                 "Didn't codegen value into a register!??");
5201          Reg = FuncInfo.CreateRegForValue(PHIOp);
5202          SDL.CopyValueToVirtualRegister(PHIOp, Reg);
5203        }
5204      }
5205
5206      // Remember that this register needs to added to the machine PHI node as
5207      // the input for this MBB.
5208      SmallVector<MVT, 4> ValueVTs;
5209      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
5210      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
5211        MVT VT = ValueVTs[vti];
5212        unsigned NumRegisters = TLI.getNumRegisters(VT);
5213        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5214          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5215        Reg += NumRegisters;
5216      }
5217    }
5218  }
5219  ConstantsOut.clear();
5220
5221  // Lower the terminator after the copies are emitted.
5222  SDL.visit(*LLVMBB->getTerminator());
5223
5224  // Copy over any CaseBlock records that may now exist due to SwitchInst
5225  // lowering, as well as any jump table information.
5226  SwitchCases.clear();
5227  SwitchCases = SDL.SwitchCases;
5228  JTCases.clear();
5229  JTCases = SDL.JTCases;
5230  BitTestCases.clear();
5231  BitTestCases = SDL.BitTestCases;
5232
5233  // Make sure the root of the DAG is up-to-date.
5234  DAG.setRoot(SDL.getControlRoot());
5235
5236  // Check whether calls in this block are real tail calls. Fix up CALL nodes
5237  // with correct tailcall attribute so that the target can rely on the tailcall
5238  // attribute indicating whether the call is really eligible for tail call
5239  // optimization.
5240  CheckDAGForTailCallsAndFixThem(DAG, TLI);
5241}
5242
5243void SelectionDAGISel::ComputeLiveOutVRegInfo(SelectionDAG &DAG) {
5244  SmallPtrSet<SDNode*, 128> VisitedNodes;
5245  SmallVector<SDNode*, 128> Worklist;
5246
5247  Worklist.push_back(DAG.getRoot().Val);
5248
5249  APInt Mask;
5250  APInt KnownZero;
5251  APInt KnownOne;
5252
5253  while (!Worklist.empty()) {
5254    SDNode *N = Worklist.back();
5255    Worklist.pop_back();
5256
5257    // If we've already seen this node, ignore it.
5258    if (!VisitedNodes.insert(N))
5259      continue;
5260
5261    // Otherwise, add all chain operands to the worklist.
5262    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5263      if (N->getOperand(i).getValueType() == MVT::Other)
5264        Worklist.push_back(N->getOperand(i).Val);
5265
5266    // If this is a CopyToReg with a vreg dest, process it.
5267    if (N->getOpcode() != ISD::CopyToReg)
5268      continue;
5269
5270    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
5271    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
5272      continue;
5273
5274    // Ignore non-scalar or non-integer values.
5275    SDValue Src = N->getOperand(2);
5276    MVT SrcVT = Src.getValueType();
5277    if (!SrcVT.isInteger() || SrcVT.isVector())
5278      continue;
5279
5280    unsigned NumSignBits = DAG.ComputeNumSignBits(Src);
5281    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
5282    DAG.ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
5283
5284    // Only install this information if it tells us something.
5285    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
5286      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
5287      FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5288      if (DestReg >= FLI.LiveOutRegInfo.size())
5289        FLI.LiveOutRegInfo.resize(DestReg+1);
5290      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
5291      LOI.NumSignBits = NumSignBits;
5292      LOI.KnownOne = NumSignBits;
5293      LOI.KnownZero = NumSignBits;
5294    }
5295  }
5296}
5297
5298void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
5299  std::string GroupName;
5300  if (TimePassesIsEnabled)
5301    GroupName = "Instruction Selection and Scheduling";
5302  std::string BlockName;
5303  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
5304      ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs)
5305    BlockName = DAG.getMachineFunction().getFunction()->getName() + ':' +
5306                BB->getBasicBlock()->getName();
5307
5308  DOUT << "Initial selection DAG:\n";
5309  DEBUG(DAG.dump());
5310
5311  if (ViewDAGCombine1) DAG.viewGraph("dag-combine1 input for " + BlockName);
5312
5313  // Run the DAG combiner in pre-legalize mode.
5314  if (TimePassesIsEnabled) {
5315    NamedRegionTimer T("DAG Combining 1", GroupName);
5316    DAG.Combine(false, *AA);
5317  } else {
5318    DAG.Combine(false, *AA);
5319  }
5320
5321  DOUT << "Optimized lowered selection DAG:\n";
5322  DEBUG(DAG.dump());
5323
5324  // Second step, hack on the DAG until it only uses operations and types that
5325  // the target supports.
5326  if (EnableLegalizeTypes) {// Enable this some day.
5327    if (ViewLegalizeTypesDAGs) DAG.viewGraph("legalize-types input for " +
5328                                             BlockName);
5329
5330    if (TimePassesIsEnabled) {
5331      NamedRegionTimer T("Type Legalization", GroupName);
5332      DAG.LegalizeTypes();
5333    } else {
5334      DAG.LegalizeTypes();
5335    }
5336
5337    DOUT << "Type-legalized selection DAG:\n";
5338    DEBUG(DAG.dump());
5339
5340    // TODO: enable a dag combine pass here.
5341  }
5342
5343  if (ViewLegalizeDAGs) DAG.viewGraph("legalize input for " + BlockName);
5344
5345  if (TimePassesIsEnabled) {
5346    NamedRegionTimer T("DAG Legalization", GroupName);
5347    DAG.Legalize();
5348  } else {
5349    DAG.Legalize();
5350  }
5351
5352  DOUT << "Legalized selection DAG:\n";
5353  DEBUG(DAG.dump());
5354
5355  if (ViewDAGCombine2) DAG.viewGraph("dag-combine2 input for " + BlockName);
5356
5357  // Run the DAG combiner in post-legalize mode.
5358  if (TimePassesIsEnabled) {
5359    NamedRegionTimer T("DAG Combining 2", GroupName);
5360    DAG.Combine(true, *AA);
5361  } else {
5362    DAG.Combine(true, *AA);
5363  }
5364
5365  DOUT << "Optimized legalized selection DAG:\n";
5366  DEBUG(DAG.dump());
5367
5368  if (ViewISelDAGs) DAG.viewGraph("isel input for " + BlockName);
5369
5370  if (!FastISel && EnableValueProp)
5371    ComputeLiveOutVRegInfo(DAG);
5372
5373  // Third, instruction select all of the operations to machine code, adding the
5374  // code to the MachineBasicBlock.
5375  if (TimePassesIsEnabled) {
5376    NamedRegionTimer T("Instruction Selection", GroupName);
5377    InstructionSelect(DAG);
5378  } else {
5379    InstructionSelect(DAG);
5380  }
5381
5382  DOUT << "Selected selection DAG:\n";
5383  DEBUG(DAG.dump());
5384
5385  if (ViewSchedDAGs) DAG.viewGraph("scheduler input for " + BlockName);
5386
5387  // Schedule machine code.
5388  ScheduleDAG *Scheduler;
5389  if (TimePassesIsEnabled) {
5390    NamedRegionTimer T("Instruction Scheduling", GroupName);
5391    Scheduler = Schedule(DAG);
5392  } else {
5393    Scheduler = Schedule(DAG);
5394  }
5395
5396  if (ViewSUnitDAGs) Scheduler->viewGraph();
5397
5398  // Emit machine code to BB.  This can change 'BB' to the last block being
5399  // inserted into.
5400  if (TimePassesIsEnabled) {
5401    NamedRegionTimer T("Instruction Creation", GroupName);
5402    BB = Scheduler->EmitSchedule();
5403  } else {
5404    BB = Scheduler->EmitSchedule();
5405  }
5406
5407  // Free the scheduler state.
5408  if (TimePassesIsEnabled) {
5409    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
5410    delete Scheduler;
5411  } else {
5412    delete Scheduler;
5413  }
5414
5415  // Perform target specific isel post processing.
5416  if (TimePassesIsEnabled) {
5417    NamedRegionTimer T("Instruction Selection Post Processing", GroupName);
5418    InstructionSelectPostProcessing();
5419  } else {
5420    InstructionSelectPostProcessing();
5421  }
5422
5423  DOUT << "Selected machine code:\n";
5424  DEBUG(BB->dump());
5425}
5426
5427void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF,
5428                                            FunctionLoweringInfo &FuncInfo) {
5429  // Define NodeAllocator here so that memory allocation is reused for
5430  // each basic block.
5431  NodeAllocatorType NodeAllocator;
5432
5433  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
5434    SelectBasicBlock(I, MF, FuncInfo, NodeAllocator);
5435}
5436
5437void
5438SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
5439                                   FunctionLoweringInfo &FuncInfo,
5440                                   NodeAllocatorType &NodeAllocator) {
5441  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
5442  {
5443    SelectionDAG DAG(TLI, MF, FuncInfo,
5444                     getAnalysisToUpdate<MachineModuleInfo>(),
5445                     NodeAllocator);
5446    CurDAG = &DAG;
5447
5448    // First step, lower LLVM code to some DAG.  This DAG may use operations and
5449    // types that are not supported by the target.
5450    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
5451
5452    // Second step, emit the lowered DAG as machine code.
5453    CodeGenAndEmitDAG(DAG);
5454  }
5455
5456  DOUT << "Total amount of phi nodes to update: "
5457       << PHINodesToUpdate.size() << "\n";
5458  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
5459          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
5460               << ", " << PHINodesToUpdate[i].second << ")\n";);
5461
5462  // Next, now that we know what the last MBB the LLVM BB expanded is, update
5463  // PHI nodes in successors.
5464  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
5465    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5466      MachineInstr *PHI = PHINodesToUpdate[i].first;
5467      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5468             "This is not a machine PHI node that we are updating!");
5469      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5470                                                false));
5471      PHI->addOperand(MachineOperand::CreateMBB(BB));
5472    }
5473    return;
5474  }
5475
5476  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
5477    // Lower header first, if it wasn't already lowered
5478    if (!BitTestCases[i].Emitted) {
5479      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5480                         getAnalysisToUpdate<MachineModuleInfo>(),
5481                         NodeAllocator);
5482      CurDAG = &HSDAG;
5483      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5484      // Set the current basic block to the mbb we wish to insert the code into
5485      BB = BitTestCases[i].Parent;
5486      HSDL.setCurrentBasicBlock(BB);
5487      // Emit the code
5488      HSDL.visitBitTestHeader(BitTestCases[i]);
5489      HSDAG.setRoot(HSDL.getRoot());
5490      CodeGenAndEmitDAG(HSDAG);
5491    }
5492
5493    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5494      SelectionDAG BSDAG(TLI, MF, FuncInfo,
5495                         getAnalysisToUpdate<MachineModuleInfo>(),
5496                         NodeAllocator);
5497      CurDAG = &BSDAG;
5498      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
5499      // Set the current basic block to the mbb we wish to insert the code into
5500      BB = BitTestCases[i].Cases[j].ThisBB;
5501      BSDL.setCurrentBasicBlock(BB);
5502      // Emit the code
5503      if (j+1 != ej)
5504        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
5505                              BitTestCases[i].Reg,
5506                              BitTestCases[i].Cases[j]);
5507      else
5508        BSDL.visitBitTestCase(BitTestCases[i].Default,
5509                              BitTestCases[i].Reg,
5510                              BitTestCases[i].Cases[j]);
5511
5512
5513      BSDAG.setRoot(BSDL.getRoot());
5514      CodeGenAndEmitDAG(BSDAG);
5515    }
5516
5517    // Update PHI Nodes
5518    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5519      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5520      MachineBasicBlock *PHIBB = PHI->getParent();
5521      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5522             "This is not a machine PHI node that we are updating!");
5523      // This is "default" BB. We have two jumps to it. From "header" BB and
5524      // from last "case" BB.
5525      if (PHIBB == BitTestCases[i].Default) {
5526        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5527                                                  false));
5528        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
5529        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5530                                                  false));
5531        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
5532                                                  back().ThisBB));
5533      }
5534      // One of "cases" BB.
5535      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5536        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
5537        if (cBB->succ_end() !=
5538            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
5539          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5540                                                    false));
5541          PHI->addOperand(MachineOperand::CreateMBB(cBB));
5542        }
5543      }
5544    }
5545  }
5546
5547  // If the JumpTable record is filled in, then we need to emit a jump table.
5548  // Updating the PHI nodes is tricky in this case, since we need to determine
5549  // whether the PHI is a successor of the range check MBB or the jump table MBB
5550  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
5551    // Lower header first, if it wasn't already lowered
5552    if (!JTCases[i].first.Emitted) {
5553      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5554                         getAnalysisToUpdate<MachineModuleInfo>(),
5555                         NodeAllocator);
5556      CurDAG = &HSDAG;
5557      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5558      // Set the current basic block to the mbb we wish to insert the code into
5559      BB = JTCases[i].first.HeaderBB;
5560      HSDL.setCurrentBasicBlock(BB);
5561      // Emit the code
5562      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
5563      HSDAG.setRoot(HSDL.getRoot());
5564      CodeGenAndEmitDAG(HSDAG);
5565    }
5566
5567    SelectionDAG JSDAG(TLI, MF, FuncInfo,
5568                       getAnalysisToUpdate<MachineModuleInfo>(),
5569                       NodeAllocator);
5570    CurDAG = &JSDAG;
5571    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
5572    // Set the current basic block to the mbb we wish to insert the code into
5573    BB = JTCases[i].second.MBB;
5574    JSDL.setCurrentBasicBlock(BB);
5575    // Emit the code
5576    JSDL.visitJumpTable(JTCases[i].second);
5577    JSDAG.setRoot(JSDL.getRoot());
5578    CodeGenAndEmitDAG(JSDAG);
5579
5580    // Update PHI Nodes
5581    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5582      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5583      MachineBasicBlock *PHIBB = PHI->getParent();
5584      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5585             "This is not a machine PHI node that we are updating!");
5586      // "default" BB. We can go there only from header BB.
5587      if (PHIBB == JTCases[i].second.Default) {
5588        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5589                                                  false));
5590        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
5591      }
5592      // JT BB. Just iterate over successors here
5593      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
5594        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5595                                                  false));
5596        PHI->addOperand(MachineOperand::CreateMBB(BB));
5597      }
5598    }
5599  }
5600
5601  // If the switch block involved a branch to one of the actual successors, we
5602  // need to update PHI nodes in that block.
5603  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5604    MachineInstr *PHI = PHINodesToUpdate[i].first;
5605    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5606           "This is not a machine PHI node that we are updating!");
5607    if (BB->isSuccessor(PHI->getParent())) {
5608      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5609                                                false));
5610      PHI->addOperand(MachineOperand::CreateMBB(BB));
5611    }
5612  }
5613
5614  // If we generated any switch lowering information, build and codegen any
5615  // additional DAGs necessary.
5616  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
5617    SelectionDAG SDAG(TLI, MF, FuncInfo,
5618                      getAnalysisToUpdate<MachineModuleInfo>(),
5619                      NodeAllocator);
5620    CurDAG = &SDAG;
5621    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
5622
5623    // Set the current basic block to the mbb we wish to insert the code into
5624    BB = SwitchCases[i].ThisBB;
5625    SDL.setCurrentBasicBlock(BB);
5626
5627    // Emit the code
5628    SDL.visitSwitchCase(SwitchCases[i]);
5629    SDAG.setRoot(SDL.getRoot());
5630    CodeGenAndEmitDAG(SDAG);
5631
5632    // Handle any PHI nodes in successors of this chunk, as if we were coming
5633    // from the original BB before switch expansion.  Note that PHI nodes can
5634    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5635    // handle them the right number of times.
5636    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5637      for (MachineBasicBlock::iterator Phi = BB->begin();
5638           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5639        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5640        for (unsigned pn = 0; ; ++pn) {
5641          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5642          if (PHINodesToUpdate[pn].first == Phi) {
5643            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5644                                                      second, false));
5645            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5646            break;
5647          }
5648        }
5649      }
5650
5651      // Don't process RHS if same block as LHS.
5652      if (BB == SwitchCases[i].FalseBB)
5653        SwitchCases[i].FalseBB = 0;
5654
5655      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5656      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5657      SwitchCases[i].FalseBB = 0;
5658    }
5659    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5660  }
5661}
5662
5663
5664/// Schedule - Pick a safe ordering for instructions for each
5665/// target node in the graph.
5666///
5667ScheduleDAG *SelectionDAGISel::Schedule(SelectionDAG &DAG) {
5668  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5669
5670  if (!Ctor) {
5671    Ctor = ISHeuristic;
5672    RegisterScheduler::setDefault(Ctor);
5673  }
5674
5675  ScheduleDAG *Scheduler = Ctor(this, &DAG, BB, FastISel);
5676  Scheduler->Run();
5677
5678  return Scheduler;
5679}
5680
5681
5682HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5683  return new HazardRecognizer();
5684}
5685
5686//===----------------------------------------------------------------------===//
5687// Helper functions used by the generated instruction selector.
5688//===----------------------------------------------------------------------===//
5689// Calls to these methods are generated by tblgen.
5690
5691/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5692/// the dag combiner simplified the 255, we still want to match.  RHS is the
5693/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5694/// specified in the .td file (e.g. 255).
5695bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
5696                                    int64_t DesiredMaskS) const {
5697  const APInt &ActualMask = RHS->getAPIntValue();
5698  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5699
5700  // If the actual mask exactly matches, success!
5701  if (ActualMask == DesiredMask)
5702    return true;
5703
5704  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5705  if (ActualMask.intersects(~DesiredMask))
5706    return false;
5707
5708  // Otherwise, the DAG Combiner may have proven that the value coming in is
5709  // either already zero or is not demanded.  Check for known zero input bits.
5710  APInt NeededMask = DesiredMask & ~ActualMask;
5711  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5712    return true;
5713
5714  // TODO: check to see if missing bits are just not demanded.
5715
5716  // Otherwise, this pattern doesn't match.
5717  return false;
5718}
5719
5720/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5721/// the dag combiner simplified the 255, we still want to match.  RHS is the
5722/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5723/// specified in the .td file (e.g. 255).
5724bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
5725                                   int64_t DesiredMaskS) const {
5726  const APInt &ActualMask = RHS->getAPIntValue();
5727  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5728
5729  // If the actual mask exactly matches, success!
5730  if (ActualMask == DesiredMask)
5731    return true;
5732
5733  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5734  if (ActualMask.intersects(~DesiredMask))
5735    return false;
5736
5737  // Otherwise, the DAG Combiner may have proven that the value coming in is
5738  // either already zero or is not demanded.  Check for known zero input bits.
5739  APInt NeededMask = DesiredMask & ~ActualMask;
5740
5741  APInt KnownZero, KnownOne;
5742  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5743
5744  // If all the missing bits in the or are already known to be set, match!
5745  if ((NeededMask & KnownOne) == NeededMask)
5746    return true;
5747
5748  // TODO: check to see if missing bits are just not demanded.
5749
5750  // Otherwise, this pattern doesn't match.
5751  return false;
5752}
5753
5754
5755/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5756/// by tblgen.  Others should not call it.
5757void SelectionDAGISel::
5758SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, SelectionDAG &DAG) {
5759  std::vector<SDValue> InOps;
5760  std::swap(InOps, Ops);
5761
5762  Ops.push_back(InOps[0]);  // input chain.
5763  Ops.push_back(InOps[1]);  // input asm string.
5764
5765  unsigned i = 2, e = InOps.size();
5766  if (InOps[e-1].getValueType() == MVT::Flag)
5767    --e;  // Don't process a flag operand if it is here.
5768
5769  while (i != e) {
5770    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5771    if ((Flags & 7) != 4 /*MEM*/) {
5772      // Just skip over this operand, copying the operands verbatim.
5773      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5774      i += (Flags >> 3) + 1;
5775    } else {
5776      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5777      // Otherwise, this is a memory operand.  Ask the target to select it.
5778      std::vector<SDValue> SelOps;
5779      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5780        cerr << "Could not match memory address.  Inline asm failure!\n";
5781        exit(1);
5782      }
5783
5784      // Add this to the output node.
5785      MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5786      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5787                                          IntPtrTy));
5788      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5789      i += 2;
5790    }
5791  }
5792
5793  // Add the flag input back if present.
5794  if (e != InOps.size())
5795    Ops.push_back(InOps.back());
5796}
5797
5798char SelectionDAGISel::ID = 0;
5799