SelectionDAGISel.cpp revision 7394a7c0c27d498fe7ff0760eeefdb83bb54a795
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/CFG.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GCMetadata.h"
27#include "llvm/CodeGen/GCStrategy.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/DebugInfo.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/InlineAsm.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/IR/Intrinsics.h"
43#include "llvm/IR/LLVMContext.h"
44#include "llvm/IR/Module.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/Timer.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/Target/TargetInstrInfo.h"
51#include "llvm/Target/TargetIntrinsicInfo.h"
52#include "llvm/Target/TargetLibraryInfo.h"
53#include "llvm/Target/TargetLowering.h"
54#include "llvm/Target/TargetMachine.h"
55#include "llvm/Target/TargetOptions.h"
56#include "llvm/Target/TargetRegisterInfo.h"
57#include "llvm/Target/TargetSubtargetInfo.h"
58#include "llvm/Transforms/Utils/BasicBlockUtils.h"
59#include <algorithm>
60using namespace llvm;
61
62STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
63STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
64STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
65STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
66STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
67STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
68STATISTIC(NumFastIselFailLowerArguments,
69          "Number of entry blocks where fast isel failed to lower arguments");
70
71#ifndef NDEBUG
72static cl::opt<bool>
73EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
74          cl::desc("Enable extra verbose messages in the \"fast\" "
75                   "instruction selector"));
76
77  // Terminators
78STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
79STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
80STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
81STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
82STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
83STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
84STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
85
86  // Standard binary operators...
87STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
88STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
89STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
90STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
91STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
92STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
93STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
94STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
95STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
96STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
97STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
98STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
99
100  // Logical operators...
101STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
102STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
103STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
104
105  // Memory instructions...
106STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
107STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
108STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
109STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
110STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
111STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
112STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
113
114  // Convert instructions...
115STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
116STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
117STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
118STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
119STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
120STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
121STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
122STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
123STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
124STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
125STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
126STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
127
128  // Other instructions...
129STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
130STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
131STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
132STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
133STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
134STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
135STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
136STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
137STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
138STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
139STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
140STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
141STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
142STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
143STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
144#endif
145
146static cl::opt<bool>
147EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
148          cl::desc("Enable verbose messages in the \"fast\" "
149                   "instruction selector"));
150static cl::opt<bool>
151EnableFastISelAbort("fast-isel-abort", cl::Hidden,
152          cl::desc("Enable abort calls when \"fast\" instruction selection "
153                   "fails to lower an instruction"));
154static cl::opt<bool>
155EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
156          cl::desc("Enable abort calls when \"fast\" instruction selection "
157                   "fails to lower a formal argument"));
158
159static cl::opt<bool>
160UseMBPI("use-mbpi",
161        cl::desc("use Machine Branch Probability Info"),
162        cl::init(true), cl::Hidden);
163
164#ifndef NDEBUG
165static cl::opt<bool>
166ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
167          cl::desc("Pop up a window to show dags before the first "
168                   "dag combine pass"));
169static cl::opt<bool>
170ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
171          cl::desc("Pop up a window to show dags before legalize types"));
172static cl::opt<bool>
173ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
174          cl::desc("Pop up a window to show dags before legalize"));
175static cl::opt<bool>
176ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
177          cl::desc("Pop up a window to show dags before the second "
178                   "dag combine pass"));
179static cl::opt<bool>
180ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
181          cl::desc("Pop up a window to show dags before the post legalize types"
182                   " dag combine pass"));
183static cl::opt<bool>
184ViewISelDAGs("view-isel-dags", cl::Hidden,
185          cl::desc("Pop up a window to show isel dags as they are selected"));
186static cl::opt<bool>
187ViewSchedDAGs("view-sched-dags", cl::Hidden,
188          cl::desc("Pop up a window to show sched dags as they are processed"));
189static cl::opt<bool>
190ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
191      cl::desc("Pop up a window to show SUnit dags after they are processed"));
192#else
193static const bool ViewDAGCombine1 = false,
194                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
195                  ViewDAGCombine2 = false,
196                  ViewDAGCombineLT = false,
197                  ViewISelDAGs = false, ViewSchedDAGs = false,
198                  ViewSUnitDAGs = false;
199#endif
200
201//===---------------------------------------------------------------------===//
202///
203/// RegisterScheduler class - Track the registration of instruction schedulers.
204///
205//===---------------------------------------------------------------------===//
206MachinePassRegistry RegisterScheduler::Registry;
207
208//===---------------------------------------------------------------------===//
209///
210/// ISHeuristic command line option for instruction schedulers.
211///
212//===---------------------------------------------------------------------===//
213static cl::opt<RegisterScheduler::FunctionPassCtor, false,
214               RegisterPassParser<RegisterScheduler> >
215ISHeuristic("pre-RA-sched",
216            cl::init(&createDefaultScheduler),
217            cl::desc("Instruction schedulers available (before register"
218                     " allocation):"));
219
220static RegisterScheduler
221defaultListDAGScheduler("default", "Best scheduler for the target",
222                        createDefaultScheduler);
223
224namespace llvm {
225  //===--------------------------------------------------------------------===//
226  /// createDefaultScheduler - This creates an instruction scheduler appropriate
227  /// for the target.
228  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
229                                             CodeGenOpt::Level OptLevel) {
230    const TargetLowering *TLI = IS->getTargetLowering();
231    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
232
233    if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() ||
234        TLI->getSchedulingPreference() == Sched::Source)
235      return createSourceListDAGScheduler(IS, OptLevel);
236    if (TLI->getSchedulingPreference() == Sched::RegPressure)
237      return createBURRListDAGScheduler(IS, OptLevel);
238    if (TLI->getSchedulingPreference() == Sched::Hybrid)
239      return createHybridListDAGScheduler(IS, OptLevel);
240    if (TLI->getSchedulingPreference() == Sched::VLIW)
241      return createVLIWDAGScheduler(IS, OptLevel);
242    assert(TLI->getSchedulingPreference() == Sched::ILP &&
243           "Unknown sched type!");
244    return createILPListDAGScheduler(IS, OptLevel);
245  }
246}
247
248// EmitInstrWithCustomInserter - This method should be implemented by targets
249// that mark instructions with the 'usesCustomInserter' flag.  These
250// instructions are special in various ways, which require special support to
251// insert.  The specified MachineInstr is created but not inserted into any
252// basic blocks, and this method is called to expand it into a sequence of
253// instructions, potentially also creating new basic blocks and control flow.
254// When new basic blocks are inserted and the edges from MBB to its successors
255// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
256// DenseMap.
257MachineBasicBlock *
258TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
259                                            MachineBasicBlock *MBB) const {
260#ifndef NDEBUG
261  dbgs() << "If a target marks an instruction with "
262          "'usesCustomInserter', it must implement "
263          "TargetLowering::EmitInstrWithCustomInserter!";
264#endif
265  llvm_unreachable(0);
266}
267
268void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
269                                                   SDNode *Node) const {
270  assert(!MI->hasPostISelHook() &&
271         "If a target marks an instruction with 'hasPostISelHook', "
272         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
273}
274
275//===----------------------------------------------------------------------===//
276// SelectionDAGISel code
277//===----------------------------------------------------------------------===//
278
279SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
280                                   CodeGenOpt::Level OL) :
281  MachineFunctionPass(ID), TM(tm),
282  FuncInfo(new FunctionLoweringInfo(TM)),
283  CurDAG(new SelectionDAG(tm, OL)),
284  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
285  GFI(),
286  OptLevel(OL),
287  DAGSize(0) {
288    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
289    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
290    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
291    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
292  }
293
294SelectionDAGISel::~SelectionDAGISel() {
295  delete SDB;
296  delete CurDAG;
297  delete FuncInfo;
298}
299
300void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
301  AU.addRequired<AliasAnalysis>();
302  AU.addPreserved<AliasAnalysis>();
303  AU.addRequired<GCModuleInfo>();
304  AU.addPreserved<GCModuleInfo>();
305  AU.addRequired<TargetLibraryInfo>();
306  if (UseMBPI && OptLevel != CodeGenOpt::None)
307    AU.addRequired<BranchProbabilityInfo>();
308  MachineFunctionPass::getAnalysisUsage(AU);
309}
310
311/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
312/// may trap on it.  In this case we have to split the edge so that the path
313/// through the predecessor block that doesn't go to the phi block doesn't
314/// execute the possibly trapping instruction.
315///
316/// This is required for correctness, so it must be done at -O0.
317///
318static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
319  // Loop for blocks with phi nodes.
320  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
321    PHINode *PN = dyn_cast<PHINode>(BB->begin());
322    if (PN == 0) continue;
323
324  ReprocessBlock:
325    // For each block with a PHI node, check to see if any of the input values
326    // are potentially trapping constant expressions.  Constant expressions are
327    // the only potentially trapping value that can occur as the argument to a
328    // PHI.
329    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
330      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
331        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
332        if (CE == 0 || !CE->canTrap()) continue;
333
334        // The only case we have to worry about is when the edge is critical.
335        // Since this block has a PHI Node, we assume it has multiple input
336        // edges: check to see if the pred has multiple successors.
337        BasicBlock *Pred = PN->getIncomingBlock(i);
338        if (Pred->getTerminator()->getNumSuccessors() == 1)
339          continue;
340
341        // Okay, we have to split this edge.
342        SplitCriticalEdge(Pred->getTerminator(),
343                          GetSuccessorNumber(Pred, BB), SDISel, true);
344        goto ReprocessBlock;
345      }
346  }
347}
348
349bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
350  // Do some sanity-checking on the command-line options.
351  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
352         "-fast-isel-verbose requires -fast-isel");
353  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
354         "-fast-isel-abort requires -fast-isel");
355
356  const Function &Fn = *mf.getFunction();
357  const TargetInstrInfo &TII = *TM.getInstrInfo();
358  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
359
360  MF = &mf;
361  RegInfo = &MF->getRegInfo();
362  AA = &getAnalysis<AliasAnalysis>();
363  LibInfo = &getAnalysis<TargetLibraryInfo>();
364  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
365  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
366
367  TargetSubtargetInfo &ST =
368    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
369  ST.resetSubtargetFeatures(MF);
370  TM.resetTargetOptions(MF);
371
372  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
373
374  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
375
376  CurDAG->init(*MF, TTI);
377  FuncInfo->set(Fn, *MF);
378
379  if (UseMBPI && OptLevel != CodeGenOpt::None)
380    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
381  else
382    FuncInfo->BPI = 0;
383
384  SDB->init(GFI, *AA, LibInfo);
385
386  MF->setHasMSInlineAsm(false);
387  SelectAllBasicBlocks(Fn);
388
389  // If the first basic block in the function has live ins that need to be
390  // copied into vregs, emit the copies into the top of the block before
391  // emitting the code for the block.
392  MachineBasicBlock *EntryMBB = MF->begin();
393  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
394
395  DenseMap<unsigned, unsigned> LiveInMap;
396  if (!FuncInfo->ArgDbgValues.empty())
397    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
398           E = RegInfo->livein_end(); LI != E; ++LI)
399      if (LI->second)
400        LiveInMap.insert(std::make_pair(LI->first, LI->second));
401
402  // Insert DBG_VALUE instructions for function arguments to the entry block.
403  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
404    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
405    bool hasFI = MI->getOperand(0).isFI();
406    unsigned Reg = hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
407    if (TargetRegisterInfo::isPhysicalRegister(Reg))
408      EntryMBB->insert(EntryMBB->begin(), MI);
409    else {
410      MachineInstr *Def = RegInfo->getVRegDef(Reg);
411      MachineBasicBlock::iterator InsertPos = Def;
412      // FIXME: VR def may not be in entry block.
413      Def->getParent()->insert(llvm::next(InsertPos), MI);
414    }
415
416    // If Reg is live-in then update debug info to track its copy in a vreg.
417    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
418    if (LDI != LiveInMap.end()) {
419      assert(!hasFI && "There's no handling of frame pointer updating here yet "
420                       "- add if needed");
421      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
422      MachineBasicBlock::iterator InsertPos = Def;
423      const MDNode *Variable =
424        MI->getOperand(MI->getNumOperands()-1).getMetadata();
425      bool IsIndirect = MI->isIndirectDebugValue();
426      unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
427      // Def is never a terminator here, so it is ok to increment InsertPos.
428      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
429              TII.get(TargetOpcode::DBG_VALUE),
430              IsIndirect,
431              LDI->second, Offset, Variable);
432
433      // If this vreg is directly copied into an exported register then
434      // that COPY instructions also need DBG_VALUE, if it is the only
435      // user of LDI->second.
436      MachineInstr *CopyUseMI = NULL;
437      for (MachineRegisterInfo::use_iterator
438             UI = RegInfo->use_begin(LDI->second);
439           MachineInstr *UseMI = UI.skipInstruction();) {
440        if (UseMI->isDebugValue()) continue;
441        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
442          CopyUseMI = UseMI; continue;
443        }
444        // Otherwise this is another use or second copy use.
445        CopyUseMI = NULL; break;
446      }
447      if (CopyUseMI) {
448        MachineInstr *NewMI =
449          BuildMI(*MF, CopyUseMI->getDebugLoc(),
450                  TII.get(TargetOpcode::DBG_VALUE),
451                  IsIndirect,
452                  CopyUseMI->getOperand(0).getReg(),
453                  Offset, Variable);
454        MachineBasicBlock::iterator Pos = CopyUseMI;
455        EntryMBB->insertAfter(Pos, NewMI);
456      }
457    }
458  }
459
460  // Determine if there are any calls in this machine function.
461  MachineFrameInfo *MFI = MF->getFrameInfo();
462  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
463       ++I) {
464
465    if (MFI->hasCalls() && MF->hasMSInlineAsm())
466      break;
467
468    const MachineBasicBlock *MBB = I;
469    for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
470         II != IE; ++II) {
471      const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
472      if ((MCID.isCall() && !MCID.isReturn()) ||
473          II->isStackAligningInlineAsm()) {
474        MFI->setHasCalls(true);
475      }
476      if (II->isMSInlineAsm()) {
477        MF->setHasMSInlineAsm(true);
478      }
479    }
480  }
481
482  // Determine if there is a call to setjmp in the machine function.
483  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
484
485  // Replace forward-declared registers with the registers containing
486  // the desired value.
487  MachineRegisterInfo &MRI = MF->getRegInfo();
488  for (DenseMap<unsigned, unsigned>::iterator
489       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
490       I != E; ++I) {
491    unsigned From = I->first;
492    unsigned To = I->second;
493    // If To is also scheduled to be replaced, find what its ultimate
494    // replacement is.
495    for (;;) {
496      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
497      if (J == E) break;
498      To = J->second;
499    }
500    // Make sure the new register has a sufficiently constrained register class.
501    if (TargetRegisterInfo::isVirtualRegister(From) &&
502        TargetRegisterInfo::isVirtualRegister(To))
503      MRI.constrainRegClass(To, MRI.getRegClass(From));
504    // Replace it.
505    MRI.replaceRegWith(From, To);
506  }
507
508  // Freeze the set of reserved registers now that MachineFrameInfo has been
509  // set up. All the information required by getReservedRegs() should be
510  // available now.
511  MRI.freezeReservedRegs(*MF);
512
513  // Release function-specific state. SDB and CurDAG are already cleared
514  // at this point.
515  FuncInfo->clear();
516
517  return true;
518}
519
520void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
521                                        BasicBlock::const_iterator End,
522                                        bool &HadTailCall) {
523  // Lower all of the non-terminator instructions. If a call is emitted
524  // as a tail call, cease emitting nodes for this block. Terminators
525  // are handled below.
526  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
527    SDB->visit(*I);
528
529  // Make sure the root of the DAG is up-to-date.
530  CurDAG->setRoot(SDB->getControlRoot());
531  HadTailCall = SDB->HasTailCall;
532  SDB->clear();
533
534  // Final step, emit the lowered DAG as machine code.
535  CodeGenAndEmitDAG();
536}
537
538void SelectionDAGISel::ComputeLiveOutVRegInfo() {
539  SmallPtrSet<SDNode*, 128> VisitedNodes;
540  SmallVector<SDNode*, 128> Worklist;
541
542  Worklist.push_back(CurDAG->getRoot().getNode());
543
544  APInt KnownZero;
545  APInt KnownOne;
546
547  do {
548    SDNode *N = Worklist.pop_back_val();
549
550    // If we've already seen this node, ignore it.
551    if (!VisitedNodes.insert(N))
552      continue;
553
554    // Otherwise, add all chain operands to the worklist.
555    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
556      if (N->getOperand(i).getValueType() == MVT::Other)
557        Worklist.push_back(N->getOperand(i).getNode());
558
559    // If this is a CopyToReg with a vreg dest, process it.
560    if (N->getOpcode() != ISD::CopyToReg)
561      continue;
562
563    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
564    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
565      continue;
566
567    // Ignore non-scalar or non-integer values.
568    SDValue Src = N->getOperand(2);
569    EVT SrcVT = Src.getValueType();
570    if (!SrcVT.isInteger() || SrcVT.isVector())
571      continue;
572
573    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
574    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
575    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
576  } while (!Worklist.empty());
577}
578
579void SelectionDAGISel::CodeGenAndEmitDAG() {
580  std::string GroupName;
581  if (TimePassesIsEnabled)
582    GroupName = "Instruction Selection and Scheduling";
583  std::string BlockName;
584  int BlockNumber = -1;
585  (void)BlockNumber;
586#ifdef NDEBUG
587  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
588      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
589      ViewSUnitDAGs)
590#endif
591  {
592    BlockNumber = FuncInfo->MBB->getNumber();
593    BlockName = MF->getName().str() + ":" +
594                FuncInfo->MBB->getBasicBlock()->getName().str();
595  }
596  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
597        << " '" << BlockName << "'\n"; CurDAG->dump());
598
599  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
600
601  // Run the DAG combiner in pre-legalize mode.
602  {
603    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
604    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
605  }
606
607  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
608        << " '" << BlockName << "'\n"; CurDAG->dump());
609
610  // Second step, hack on the DAG until it only uses operations and types that
611  // the target supports.
612  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
613                                               BlockName);
614
615  bool Changed;
616  {
617    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
618    Changed = CurDAG->LegalizeTypes();
619  }
620
621  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
622        << " '" << BlockName << "'\n"; CurDAG->dump());
623
624  if (Changed) {
625    if (ViewDAGCombineLT)
626      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
627
628    // Run the DAG combiner in post-type-legalize mode.
629    {
630      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
631                         TimePassesIsEnabled);
632      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
633    }
634
635    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
636          << " '" << BlockName << "'\n"; CurDAG->dump());
637
638  }
639
640  {
641    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
642    Changed = CurDAG->LegalizeVectors();
643  }
644
645  if (Changed) {
646    {
647      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
648      CurDAG->LegalizeTypes();
649    }
650
651    if (ViewDAGCombineLT)
652      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
653
654    // Run the DAG combiner in post-type-legalize mode.
655    {
656      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
657                         TimePassesIsEnabled);
658      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
659    }
660
661    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
662          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
663  }
664
665  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
666
667  {
668    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
669    CurDAG->Legalize();
670  }
671
672  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
673        << " '" << BlockName << "'\n"; CurDAG->dump());
674
675  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
676
677  // Run the DAG combiner in post-legalize mode.
678  {
679    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
680    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
681  }
682
683  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
684        << " '" << BlockName << "'\n"; CurDAG->dump());
685
686  if (OptLevel != CodeGenOpt::None)
687    ComputeLiveOutVRegInfo();
688
689  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
690
691  // Third, instruction select all of the operations to machine code, adding the
692  // code to the MachineBasicBlock.
693  {
694    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
695    DoInstructionSelection();
696  }
697
698  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
699        << " '" << BlockName << "'\n"; CurDAG->dump());
700
701  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
702
703  // Schedule machine code.
704  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
705  {
706    NamedRegionTimer T("Instruction Scheduling", GroupName,
707                       TimePassesIsEnabled);
708    Scheduler->Run(CurDAG, FuncInfo->MBB);
709  }
710
711  if (ViewSUnitDAGs) Scheduler->viewGraph();
712
713  // Emit machine code to BB.  This can change 'BB' to the last block being
714  // inserted into.
715  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
716  {
717    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
718
719    // FuncInfo->InsertPt is passed by reference and set to the end of the
720    // scheduled instructions.
721    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
722  }
723
724  // If the block was split, make sure we update any references that are used to
725  // update PHI nodes later on.
726  if (FirstMBB != LastMBB)
727    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
728
729  // Free the scheduler state.
730  {
731    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
732                       TimePassesIsEnabled);
733    delete Scheduler;
734  }
735
736  // Free the SelectionDAG state, now that we're finished with it.
737  CurDAG->clear();
738}
739
740namespace {
741/// ISelUpdater - helper class to handle updates of the instruction selection
742/// graph.
743class ISelUpdater : public SelectionDAG::DAGUpdateListener {
744  SelectionDAG::allnodes_iterator &ISelPosition;
745public:
746  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
747    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
748
749  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
750  /// deleted is the current ISelPosition node, update ISelPosition.
751  ///
752  virtual void NodeDeleted(SDNode *N, SDNode *E) {
753    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
754      ++ISelPosition;
755  }
756};
757} // end anonymous namespace
758
759void SelectionDAGISel::DoInstructionSelection() {
760  DEBUG(dbgs() << "===== Instruction selection begins: BB#"
761        << FuncInfo->MBB->getNumber()
762        << " '" << FuncInfo->MBB->getName() << "'\n");
763
764  PreprocessISelDAG();
765
766  // Select target instructions for the DAG.
767  {
768    // Number all nodes with a topological order and set DAGSize.
769    DAGSize = CurDAG->AssignTopologicalOrder();
770
771    // Create a dummy node (which is not added to allnodes), that adds
772    // a reference to the root node, preventing it from being deleted,
773    // and tracking any changes of the root.
774    HandleSDNode Dummy(CurDAG->getRoot());
775    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
776    ++ISelPosition;
777
778    // Make sure that ISelPosition gets properly updated when nodes are deleted
779    // in calls made from this function.
780    ISelUpdater ISU(*CurDAG, ISelPosition);
781
782    // The AllNodes list is now topological-sorted. Visit the
783    // nodes by starting at the end of the list (the root of the
784    // graph) and preceding back toward the beginning (the entry
785    // node).
786    while (ISelPosition != CurDAG->allnodes_begin()) {
787      SDNode *Node = --ISelPosition;
788      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
789      // but there are currently some corner cases that it misses. Also, this
790      // makes it theoretically possible to disable the DAGCombiner.
791      if (Node->use_empty())
792        continue;
793
794      SDNode *ResNode = Select(Node);
795
796      // FIXME: This is pretty gross.  'Select' should be changed to not return
797      // anything at all and this code should be nuked with a tactical strike.
798
799      // If node should not be replaced, continue with the next one.
800      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
801        continue;
802      // Replace node.
803      if (ResNode) {
804        ReplaceUses(Node, ResNode);
805      }
806
807      // If after the replacement this node is not used any more,
808      // remove this dead node.
809      if (Node->use_empty()) // Don't delete EntryToken, etc.
810        CurDAG->RemoveDeadNode(Node);
811    }
812
813    CurDAG->setRoot(Dummy.getValue());
814  }
815
816  DEBUG(dbgs() << "===== Instruction selection ends:\n");
817
818  PostprocessISelDAG();
819}
820
821/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
822/// do other setup for EH landing-pad blocks.
823void SelectionDAGISel::PrepareEHLandingPad() {
824  MachineBasicBlock *MBB = FuncInfo->MBB;
825
826  // Add a label to mark the beginning of the landing pad.  Deletion of the
827  // landing pad can thus be detected via the MachineModuleInfo.
828  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
829
830  // Assign the call site to the landing pad's begin label.
831  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
832
833  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
834  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
835    .addSym(Label);
836
837  // Mark exception register as live in.
838  const TargetLowering *TLI = getTargetLowering();
839  const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy());
840  if (unsigned Reg = TLI->getExceptionPointerRegister())
841    FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
842
843  // Mark exception selector register as live in.
844  if (unsigned Reg = TLI->getExceptionSelectorRegister())
845    FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
846}
847
848/// isFoldedOrDeadInstruction - Return true if the specified instruction is
849/// side-effect free and is either dead or folded into a generated instruction.
850/// Return false if it needs to be emitted.
851static bool isFoldedOrDeadInstruction(const Instruction *I,
852                                      FunctionLoweringInfo *FuncInfo) {
853  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
854         !isa<TerminatorInst>(I) && // Terminators aren't folded.
855         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
856         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
857         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
858}
859
860#ifndef NDEBUG
861// Collect per Instruction statistics for fast-isel misses.  Only those
862// instructions that cause the bail are accounted for.  It does not account for
863// instructions higher in the block.  Thus, summing the per instructions stats
864// will not add up to what is reported by NumFastIselFailures.
865static void collectFailStats(const Instruction *I) {
866  switch (I->getOpcode()) {
867  default: assert (0 && "<Invalid operator> ");
868
869  // Terminators
870  case Instruction::Ret:         NumFastIselFailRet++; return;
871  case Instruction::Br:          NumFastIselFailBr++; return;
872  case Instruction::Switch:      NumFastIselFailSwitch++; return;
873  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
874  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
875  case Instruction::Resume:      NumFastIselFailResume++; return;
876  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
877
878  // Standard binary operators...
879  case Instruction::Add:  NumFastIselFailAdd++; return;
880  case Instruction::FAdd: NumFastIselFailFAdd++; return;
881  case Instruction::Sub:  NumFastIselFailSub++; return;
882  case Instruction::FSub: NumFastIselFailFSub++; return;
883  case Instruction::Mul:  NumFastIselFailMul++; return;
884  case Instruction::FMul: NumFastIselFailFMul++; return;
885  case Instruction::UDiv: NumFastIselFailUDiv++; return;
886  case Instruction::SDiv: NumFastIselFailSDiv++; return;
887  case Instruction::FDiv: NumFastIselFailFDiv++; return;
888  case Instruction::URem: NumFastIselFailURem++; return;
889  case Instruction::SRem: NumFastIselFailSRem++; return;
890  case Instruction::FRem: NumFastIselFailFRem++; return;
891
892  // Logical operators...
893  case Instruction::And: NumFastIselFailAnd++; return;
894  case Instruction::Or:  NumFastIselFailOr++; return;
895  case Instruction::Xor: NumFastIselFailXor++; return;
896
897  // Memory instructions...
898  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
899  case Instruction::Load:          NumFastIselFailLoad++; return;
900  case Instruction::Store:         NumFastIselFailStore++; return;
901  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
902  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
903  case Instruction::Fence:         NumFastIselFailFence++; return;
904  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
905
906  // Convert instructions...
907  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
908  case Instruction::ZExt:     NumFastIselFailZExt++; return;
909  case Instruction::SExt:     NumFastIselFailSExt++; return;
910  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
911  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
912  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
913  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
914  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
915  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
916  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
917  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
918  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
919
920  // Other instructions...
921  case Instruction::ICmp:           NumFastIselFailICmp++; return;
922  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
923  case Instruction::PHI:            NumFastIselFailPHI++; return;
924  case Instruction::Select:         NumFastIselFailSelect++; return;
925  case Instruction::Call:           NumFastIselFailCall++; return;
926  case Instruction::Shl:            NumFastIselFailShl++; return;
927  case Instruction::LShr:           NumFastIselFailLShr++; return;
928  case Instruction::AShr:           NumFastIselFailAShr++; return;
929  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
930  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
931  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
932  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
933  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
934  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
935  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
936  }
937}
938#endif
939
940void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
941  // Initialize the Fast-ISel state, if needed.
942  FastISel *FastIS = 0;
943  if (TM.Options.EnableFastISel)
944    FastIS = getTargetLowering()->createFastISel(*FuncInfo, LibInfo);
945
946  // Iterate over all basic blocks in the function.
947  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
948  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
949       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
950    const BasicBlock *LLVMBB = *I;
951
952    if (OptLevel != CodeGenOpt::None) {
953      bool AllPredsVisited = true;
954      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
955           PI != PE; ++PI) {
956        if (!FuncInfo->VisitedBBs.count(*PI)) {
957          AllPredsVisited = false;
958          break;
959        }
960      }
961
962      if (AllPredsVisited) {
963        for (BasicBlock::const_iterator I = LLVMBB->begin();
964             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
965          FuncInfo->ComputePHILiveOutRegInfo(PN);
966      } else {
967        for (BasicBlock::const_iterator I = LLVMBB->begin();
968             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
969          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
970      }
971
972      FuncInfo->VisitedBBs.insert(LLVMBB);
973    }
974
975    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
976    BasicBlock::const_iterator const End = LLVMBB->end();
977    BasicBlock::const_iterator BI = End;
978
979    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
980    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
981
982    // Setup an EH landing-pad block.
983    FuncInfo->ExceptionPointerVirtReg = 0;
984    FuncInfo->ExceptionSelectorVirtReg = 0;
985    if (FuncInfo->MBB->isLandingPad())
986      PrepareEHLandingPad();
987
988    // Before doing SelectionDAG ISel, see if FastISel has been requested.
989    if (FastIS) {
990      FastIS->startNewBlock();
991
992      // Emit code for any incoming arguments. This must happen before
993      // beginning FastISel on the entry block.
994      if (LLVMBB == &Fn.getEntryBlock()) {
995        ++NumEntryBlocks;
996
997        // Lower any arguments needed in this block if this is the entry block.
998        if (!FastIS->LowerArguments()) {
999          // Fast isel failed to lower these arguments
1000          ++NumFastIselFailLowerArguments;
1001          if (EnableFastISelAbortArgs)
1002            llvm_unreachable("FastISel didn't lower all arguments");
1003
1004          // Use SelectionDAG argument lowering
1005          LowerArguments(Fn);
1006          CurDAG->setRoot(SDB->getControlRoot());
1007          SDB->clear();
1008          CodeGenAndEmitDAG();
1009        }
1010
1011        // If we inserted any instructions at the beginning, make a note of
1012        // where they are, so we can be sure to emit subsequent instructions
1013        // after them.
1014        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1015          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1016        else
1017          FastIS->setLastLocalValue(0);
1018      }
1019
1020      unsigned NumFastIselRemaining = std::distance(Begin, End);
1021      // Do FastISel on as many instructions as possible.
1022      for (; BI != Begin; --BI) {
1023        const Instruction *Inst = llvm::prior(BI);
1024
1025        // If we no longer require this instruction, skip it.
1026        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1027          --NumFastIselRemaining;
1028          continue;
1029        }
1030
1031        // Bottom-up: reset the insert pos at the top, after any local-value
1032        // instructions.
1033        FastIS->recomputeInsertPt();
1034
1035        // Try to select the instruction with FastISel.
1036        if (FastIS->SelectInstruction(Inst)) {
1037          --NumFastIselRemaining;
1038          ++NumFastIselSuccess;
1039          // If fast isel succeeded, skip over all the folded instructions, and
1040          // then see if there is a load right before the selected instructions.
1041          // Try to fold the load if so.
1042          const Instruction *BeforeInst = Inst;
1043          while (BeforeInst != Begin) {
1044            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1045            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1046              break;
1047          }
1048          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1049              BeforeInst->hasOneUse() &&
1050              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1051            // If we succeeded, don't re-select the load.
1052            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1053            --NumFastIselRemaining;
1054            ++NumFastIselSuccess;
1055          }
1056          continue;
1057        }
1058
1059#ifndef NDEBUG
1060        if (EnableFastISelVerbose2)
1061          collectFailStats(Inst);
1062#endif
1063
1064        // Then handle certain instructions as single-LLVM-Instruction blocks.
1065        if (isa<CallInst>(Inst)) {
1066
1067          if (EnableFastISelVerbose || EnableFastISelAbort) {
1068            dbgs() << "FastISel missed call: ";
1069            Inst->dump();
1070          }
1071
1072          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1073            unsigned &R = FuncInfo->ValueMap[Inst];
1074            if (!R)
1075              R = FuncInfo->CreateRegs(Inst->getType());
1076          }
1077
1078          bool HadTailCall = false;
1079          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1080          SelectBasicBlock(Inst, BI, HadTailCall);
1081
1082          // If the call was emitted as a tail call, we're done with the block.
1083          // We also need to delete any previously emitted instructions.
1084          if (HadTailCall) {
1085            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1086            --BI;
1087            break;
1088          }
1089
1090          // Recompute NumFastIselRemaining as Selection DAG instruction
1091          // selection may have handled the call, input args, etc.
1092          unsigned RemainingNow = std::distance(Begin, BI);
1093          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1094          NumFastIselRemaining = RemainingNow;
1095          continue;
1096        }
1097
1098        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1099          // Don't abort, and use a different message for terminator misses.
1100          NumFastIselFailures += NumFastIselRemaining;
1101          if (EnableFastISelVerbose || EnableFastISelAbort) {
1102            dbgs() << "FastISel missed terminator: ";
1103            Inst->dump();
1104          }
1105        } else {
1106          NumFastIselFailures += NumFastIselRemaining;
1107          if (EnableFastISelVerbose || EnableFastISelAbort) {
1108            dbgs() << "FastISel miss: ";
1109            Inst->dump();
1110          }
1111          if (EnableFastISelAbort)
1112            // The "fast" selector couldn't handle something and bailed.
1113            // For the purpose of debugging, just abort.
1114            llvm_unreachable("FastISel didn't select the entire block");
1115        }
1116        break;
1117      }
1118
1119      FastIS->recomputeInsertPt();
1120    } else {
1121      // Lower any arguments needed in this block if this is the entry block.
1122      if (LLVMBB == &Fn.getEntryBlock()) {
1123        ++NumEntryBlocks;
1124        LowerArguments(Fn);
1125      }
1126    }
1127
1128    if (Begin != BI)
1129      ++NumDAGBlocks;
1130    else
1131      ++NumFastIselBlocks;
1132
1133    if (Begin != BI) {
1134      // Run SelectionDAG instruction selection on the remainder of the block
1135      // not handled by FastISel. If FastISel is not run, this is the entire
1136      // block.
1137      bool HadTailCall;
1138      SelectBasicBlock(Begin, BI, HadTailCall);
1139    }
1140
1141    FinishBasicBlock();
1142    FuncInfo->PHINodesToUpdate.clear();
1143  }
1144
1145  delete FastIS;
1146  SDB->clearDanglingDebugInfo();
1147  SDB->SPDescriptor.resetPerFunctionState();
1148}
1149
1150/// Given that the input MI is before a partial terminator sequence TSeq, return
1151/// true if M + TSeq also a partial terminator sequence.
1152///
1153/// A Terminator sequence is a sequence of MachineInstrs which at this point in
1154/// lowering copy vregs into physical registers, which are then passed into
1155/// terminator instructors so we can satisfy ABI constraints. A partial
1156/// terminator sequence is an improper subset of a terminator sequence (i.e. it
1157/// may be the whole terminator sequence).
1158static bool MIIsInTerminatorSequence(const MachineInstr *MI) {
1159  // If we do not have a copy or an implicit def, we return true if and only if
1160  // MI is a debug value.
1161  if (!MI->isCopy() && !MI->isImplicitDef())
1162    // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1163    // physical registers if there is debug info associated with the terminator
1164    // of our mbb. We want to include said debug info in our terminator
1165    // sequence, so we return true in that case.
1166    return MI->isDebugValue();
1167
1168  // We have left the terminator sequence if we are not doing one of the
1169  // following:
1170  //
1171  // 1. Copying a vreg into a physical register.
1172  // 2. Copying a vreg into a vreg.
1173  // 3. Defining a register via an implicit def.
1174
1175  // OPI should always be a register definition...
1176  MachineInstr::const_mop_iterator OPI = MI->operands_begin();
1177  if (!OPI->isReg() || !OPI->isDef())
1178    return false;
1179
1180  // Defining any register via an implicit def is always ok.
1181  if (MI->isImplicitDef())
1182    return true;
1183
1184  // Grab the copy source...
1185  MachineInstr::const_mop_iterator OPI2 = OPI;
1186  ++OPI2;
1187  assert(OPI2 != MI->operands_end()
1188         && "Should have a copy implying we should have 2 arguments.");
1189
1190  // Make sure that the copy dest is not a vreg when the copy source is a
1191  // physical register.
1192  if (!OPI2->isReg() ||
1193      (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1194       TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1195    return false;
1196
1197  return true;
1198}
1199
1200/// Find the split point at which to splice the end of BB into its success stack
1201/// protector check machine basic block.
1202///
1203/// On many platforms, due to ABI constraints, terminators, even before register
1204/// allocation, use physical registers. This creates an issue for us since
1205/// physical registers at this point can not travel across basic
1206/// blocks. Luckily, selectiondag always moves physical registers into vregs
1207/// when they enter functions and moves them through a sequence of copies back
1208/// into the physical registers right before the terminator creating a
1209/// ``Terminator Sequence''. This function is searching for the beginning of the
1210/// terminator sequence so that we can ensure that we splice off not just the
1211/// terminator, but additionally the copies that move the vregs into the
1212/// physical registers.
1213static MachineBasicBlock::iterator
1214FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) {
1215  MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1216  //
1217  if (SplitPoint == BB->begin())
1218    return SplitPoint;
1219
1220  MachineBasicBlock::iterator Start = BB->begin();
1221  MachineBasicBlock::iterator Previous = SplitPoint;
1222  --Previous;
1223
1224  while (MIIsInTerminatorSequence(Previous)) {
1225    SplitPoint = Previous;
1226    if (Previous == Start)
1227      break;
1228    --Previous;
1229  }
1230
1231  return SplitPoint;
1232}
1233
1234void
1235SelectionDAGISel::FinishBasicBlock() {
1236
1237  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1238               << FuncInfo->PHINodesToUpdate.size() << "\n";
1239        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1240          dbgs() << "Node " << i << " : ("
1241                 << FuncInfo->PHINodesToUpdate[i].first
1242                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1243
1244  const bool MustUpdatePHINodes = SDB->SwitchCases.empty() &&
1245                                  SDB->JTCases.empty() &&
1246                                  SDB->BitTestCases.empty();
1247
1248  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1249  // PHI nodes in successors.
1250  if (MustUpdatePHINodes) {
1251    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1252      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1253      assert(PHI->isPHI() &&
1254             "This is not a machine PHI node that we are updating!");
1255      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1256        continue;
1257      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1258    }
1259  }
1260
1261  // Handle stack protector.
1262  if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1263    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1264    MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1265
1266    // Find the split point to split the parent mbb. At the same time copy all
1267    // physical registers used in the tail of parent mbb into virtual registers
1268    // before the split point and back into physical registers after the split
1269    // point. This prevents us needing to deal with Live-ins and many other
1270    // register allocation issues caused by us splitting the parent mbb. The
1271    // register allocator will clean up said virtual copies later on.
1272    MachineBasicBlock::iterator SplitPoint =
1273      FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc());
1274
1275    // Splice the terminator of ParentMBB into SuccessMBB.
1276    SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1277                       SplitPoint,
1278                       ParentMBB->end());
1279
1280    // Add compare/jump on neq/jump to the parent BB.
1281    FuncInfo->MBB = ParentMBB;
1282    FuncInfo->InsertPt = ParentMBB->end();
1283    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1284    CurDAG->setRoot(SDB->getRoot());
1285    SDB->clear();
1286    CodeGenAndEmitDAG();
1287
1288    // CodeGen Failure MBB if we have not codegened it yet.
1289    MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1290    if (!FailureMBB->size()) {
1291      FuncInfo->MBB = FailureMBB;
1292      FuncInfo->InsertPt = FailureMBB->end();
1293      SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1294      CurDAG->setRoot(SDB->getRoot());
1295      SDB->clear();
1296      CodeGenAndEmitDAG();
1297    }
1298
1299    // Clear the Per-BB State.
1300    SDB->SPDescriptor.resetPerBBState();
1301  }
1302
1303  // If we updated PHI Nodes, return early.
1304  if (MustUpdatePHINodes)
1305    return;
1306
1307  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1308    // Lower header first, if it wasn't already lowered
1309    if (!SDB->BitTestCases[i].Emitted) {
1310      // Set the current basic block to the mbb we wish to insert the code into
1311      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1312      FuncInfo->InsertPt = FuncInfo->MBB->end();
1313      // Emit the code
1314      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1315      CurDAG->setRoot(SDB->getRoot());
1316      SDB->clear();
1317      CodeGenAndEmitDAG();
1318    }
1319
1320    uint32_t UnhandledWeight = 0;
1321    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1322      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1323
1324    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1325      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1326      // Set the current basic block to the mbb we wish to insert the code into
1327      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1328      FuncInfo->InsertPt = FuncInfo->MBB->end();
1329      // Emit the code
1330      if (j+1 != ej)
1331        SDB->visitBitTestCase(SDB->BitTestCases[i],
1332                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1333                              UnhandledWeight,
1334                              SDB->BitTestCases[i].Reg,
1335                              SDB->BitTestCases[i].Cases[j],
1336                              FuncInfo->MBB);
1337      else
1338        SDB->visitBitTestCase(SDB->BitTestCases[i],
1339                              SDB->BitTestCases[i].Default,
1340                              UnhandledWeight,
1341                              SDB->BitTestCases[i].Reg,
1342                              SDB->BitTestCases[i].Cases[j],
1343                              FuncInfo->MBB);
1344
1345
1346      CurDAG->setRoot(SDB->getRoot());
1347      SDB->clear();
1348      CodeGenAndEmitDAG();
1349    }
1350
1351    // Update PHI Nodes
1352    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1353         pi != pe; ++pi) {
1354      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1355      MachineBasicBlock *PHIBB = PHI->getParent();
1356      assert(PHI->isPHI() &&
1357             "This is not a machine PHI node that we are updating!");
1358      // This is "default" BB. We have two jumps to it. From "header" BB and
1359      // from last "case" BB.
1360      if (PHIBB == SDB->BitTestCases[i].Default)
1361        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1362           .addMBB(SDB->BitTestCases[i].Parent)
1363           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1364           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1365      // One of "cases" BB.
1366      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1367           j != ej; ++j) {
1368        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1369        if (cBB->isSuccessor(PHIBB))
1370          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1371      }
1372    }
1373  }
1374  SDB->BitTestCases.clear();
1375
1376  // If the JumpTable record is filled in, then we need to emit a jump table.
1377  // Updating the PHI nodes is tricky in this case, since we need to determine
1378  // whether the PHI is a successor of the range check MBB or the jump table MBB
1379  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1380    // Lower header first, if it wasn't already lowered
1381    if (!SDB->JTCases[i].first.Emitted) {
1382      // Set the current basic block to the mbb we wish to insert the code into
1383      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1384      FuncInfo->InsertPt = FuncInfo->MBB->end();
1385      // Emit the code
1386      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1387                                FuncInfo->MBB);
1388      CurDAG->setRoot(SDB->getRoot());
1389      SDB->clear();
1390      CodeGenAndEmitDAG();
1391    }
1392
1393    // Set the current basic block to the mbb we wish to insert the code into
1394    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1395    FuncInfo->InsertPt = FuncInfo->MBB->end();
1396    // Emit the code
1397    SDB->visitJumpTable(SDB->JTCases[i].second);
1398    CurDAG->setRoot(SDB->getRoot());
1399    SDB->clear();
1400    CodeGenAndEmitDAG();
1401
1402    // Update PHI Nodes
1403    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1404         pi != pe; ++pi) {
1405      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1406      MachineBasicBlock *PHIBB = PHI->getParent();
1407      assert(PHI->isPHI() &&
1408             "This is not a machine PHI node that we are updating!");
1409      // "default" BB. We can go there only from header BB.
1410      if (PHIBB == SDB->JTCases[i].second.Default)
1411        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1412           .addMBB(SDB->JTCases[i].first.HeaderBB);
1413      // JT BB. Just iterate over successors here
1414      if (FuncInfo->MBB->isSuccessor(PHIBB))
1415        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1416    }
1417  }
1418  SDB->JTCases.clear();
1419
1420  // If the switch block involved a branch to one of the actual successors, we
1421  // need to update PHI nodes in that block.
1422  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1423    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1424    assert(PHI->isPHI() &&
1425           "This is not a machine PHI node that we are updating!");
1426    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1427      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1428  }
1429
1430  // If we generated any switch lowering information, build and codegen any
1431  // additional DAGs necessary.
1432  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1433    // Set the current basic block to the mbb we wish to insert the code into
1434    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1435    FuncInfo->InsertPt = FuncInfo->MBB->end();
1436
1437    // Determine the unique successors.
1438    SmallVector<MachineBasicBlock *, 2> Succs;
1439    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1440    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1441      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1442
1443    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1444    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1445    CurDAG->setRoot(SDB->getRoot());
1446    SDB->clear();
1447    CodeGenAndEmitDAG();
1448
1449    // Remember the last block, now that any splitting is done, for use in
1450    // populating PHI nodes in successors.
1451    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1452
1453    // Handle any PHI nodes in successors of this chunk, as if we were coming
1454    // from the original BB before switch expansion.  Note that PHI nodes can
1455    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1456    // handle them the right number of times.
1457    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1458      FuncInfo->MBB = Succs[i];
1459      FuncInfo->InsertPt = FuncInfo->MBB->end();
1460      // FuncInfo->MBB may have been removed from the CFG if a branch was
1461      // constant folded.
1462      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1463        for (MachineBasicBlock::iterator
1464             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1465             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1466          MachineInstrBuilder PHI(*MF, MBBI);
1467          // This value for this PHI node is recorded in PHINodesToUpdate.
1468          for (unsigned pn = 0; ; ++pn) {
1469            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1470                   "Didn't find PHI entry!");
1471            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1472              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1473              break;
1474            }
1475          }
1476        }
1477      }
1478    }
1479  }
1480  SDB->SwitchCases.clear();
1481}
1482
1483
1484/// Create the scheduler. If a specific scheduler was specified
1485/// via the SchedulerRegistry, use it, otherwise select the
1486/// one preferred by the target.
1487///
1488ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1489  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1490
1491  if (!Ctor) {
1492    Ctor = ISHeuristic;
1493    RegisterScheduler::setDefault(Ctor);
1494  }
1495
1496  return Ctor(this, OptLevel);
1497}
1498
1499//===----------------------------------------------------------------------===//
1500// Helper functions used by the generated instruction selector.
1501//===----------------------------------------------------------------------===//
1502// Calls to these methods are generated by tblgen.
1503
1504/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1505/// the dag combiner simplified the 255, we still want to match.  RHS is the
1506/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1507/// specified in the .td file (e.g. 255).
1508bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1509                                    int64_t DesiredMaskS) const {
1510  const APInt &ActualMask = RHS->getAPIntValue();
1511  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1512
1513  // If the actual mask exactly matches, success!
1514  if (ActualMask == DesiredMask)
1515    return true;
1516
1517  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1518  if (ActualMask.intersects(~DesiredMask))
1519    return false;
1520
1521  // Otherwise, the DAG Combiner may have proven that the value coming in is
1522  // either already zero or is not demanded.  Check for known zero input bits.
1523  APInt NeededMask = DesiredMask & ~ActualMask;
1524  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1525    return true;
1526
1527  // TODO: check to see if missing bits are just not demanded.
1528
1529  // Otherwise, this pattern doesn't match.
1530  return false;
1531}
1532
1533/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1534/// the dag combiner simplified the 255, we still want to match.  RHS is the
1535/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1536/// specified in the .td file (e.g. 255).
1537bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1538                                   int64_t DesiredMaskS) const {
1539  const APInt &ActualMask = RHS->getAPIntValue();
1540  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1541
1542  // If the actual mask exactly matches, success!
1543  if (ActualMask == DesiredMask)
1544    return true;
1545
1546  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1547  if (ActualMask.intersects(~DesiredMask))
1548    return false;
1549
1550  // Otherwise, the DAG Combiner may have proven that the value coming in is
1551  // either already zero or is not demanded.  Check for known zero input bits.
1552  APInt NeededMask = DesiredMask & ~ActualMask;
1553
1554  APInt KnownZero, KnownOne;
1555  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1556
1557  // If all the missing bits in the or are already known to be set, match!
1558  if ((NeededMask & KnownOne) == NeededMask)
1559    return true;
1560
1561  // TODO: check to see if missing bits are just not demanded.
1562
1563  // Otherwise, this pattern doesn't match.
1564  return false;
1565}
1566
1567
1568/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1569/// by tblgen.  Others should not call it.
1570void SelectionDAGISel::
1571SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1572  std::vector<SDValue> InOps;
1573  std::swap(InOps, Ops);
1574
1575  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1576  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1577  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1578  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1579
1580  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1581  if (InOps[e-1].getValueType() == MVT::Glue)
1582    --e;  // Don't process a glue operand if it is here.
1583
1584  while (i != e) {
1585    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1586    if (!InlineAsm::isMemKind(Flags)) {
1587      // Just skip over this operand, copying the operands verbatim.
1588      Ops.insert(Ops.end(), InOps.begin()+i,
1589                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1590      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1591    } else {
1592      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1593             "Memory operand with multiple values?");
1594      // Otherwise, this is a memory operand.  Ask the target to select it.
1595      std::vector<SDValue> SelOps;
1596      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1597        report_fatal_error("Could not match memory address.  Inline asm"
1598                           " failure!");
1599
1600      // Add this to the output node.
1601      unsigned NewFlags =
1602        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1603      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1604      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1605      i += 2;
1606    }
1607  }
1608
1609  // Add the glue input back if present.
1610  if (e != InOps.size())
1611    Ops.push_back(InOps.back());
1612}
1613
1614/// findGlueUse - Return use of MVT::Glue value produced by the specified
1615/// SDNode.
1616///
1617static SDNode *findGlueUse(SDNode *N) {
1618  unsigned FlagResNo = N->getNumValues()-1;
1619  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1620    SDUse &Use = I.getUse();
1621    if (Use.getResNo() == FlagResNo)
1622      return Use.getUser();
1623  }
1624  return NULL;
1625}
1626
1627/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1628/// This function recursively traverses up the operand chain, ignoring
1629/// certain nodes.
1630static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1631                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1632                          bool IgnoreChains) {
1633  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1634  // greater than all of its (recursive) operands.  If we scan to a point where
1635  // 'use' is smaller than the node we're scanning for, then we know we will
1636  // never find it.
1637  //
1638  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1639  // happen because we scan down to newly selected nodes in the case of glue
1640  // uses.
1641  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1642    return false;
1643
1644  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1645  // won't fail if we scan it again.
1646  if (!Visited.insert(Use))
1647    return false;
1648
1649  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1650    // Ignore chain uses, they are validated by HandleMergeInputChains.
1651    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1652      continue;
1653
1654    SDNode *N = Use->getOperand(i).getNode();
1655    if (N == Def) {
1656      if (Use == ImmedUse || Use == Root)
1657        continue;  // We are not looking for immediate use.
1658      assert(N != Root);
1659      return true;
1660    }
1661
1662    // Traverse up the operand chain.
1663    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1664      return true;
1665  }
1666  return false;
1667}
1668
1669/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1670/// operand node N of U during instruction selection that starts at Root.
1671bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1672                                          SDNode *Root) const {
1673  if (OptLevel == CodeGenOpt::None) return false;
1674  return N.hasOneUse();
1675}
1676
1677/// IsLegalToFold - Returns true if the specific operand node N of
1678/// U can be folded during instruction selection that starts at Root.
1679bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1680                                     CodeGenOpt::Level OptLevel,
1681                                     bool IgnoreChains) {
1682  if (OptLevel == CodeGenOpt::None) return false;
1683
1684  // If Root use can somehow reach N through a path that that doesn't contain
1685  // U then folding N would create a cycle. e.g. In the following
1686  // diagram, Root can reach N through X. If N is folded into into Root, then
1687  // X is both a predecessor and a successor of U.
1688  //
1689  //          [N*]           //
1690  //         ^   ^           //
1691  //        /     \          //
1692  //      [U*]    [X]?       //
1693  //        ^     ^          //
1694  //         \   /           //
1695  //          \ /            //
1696  //         [Root*]         //
1697  //
1698  // * indicates nodes to be folded together.
1699  //
1700  // If Root produces glue, then it gets (even more) interesting. Since it
1701  // will be "glued" together with its glue use in the scheduler, we need to
1702  // check if it might reach N.
1703  //
1704  //          [N*]           //
1705  //         ^   ^           //
1706  //        /     \          //
1707  //      [U*]    [X]?       //
1708  //        ^       ^        //
1709  //         \       \       //
1710  //          \      |       //
1711  //         [Root*] |       //
1712  //          ^      |       //
1713  //          f      |       //
1714  //          |      /       //
1715  //         [Y]    /        //
1716  //           ^   /         //
1717  //           f  /          //
1718  //           | /           //
1719  //          [GU]           //
1720  //
1721  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1722  // (call it Fold), then X is a predecessor of GU and a successor of
1723  // Fold. But since Fold and GU are glued together, this will create
1724  // a cycle in the scheduling graph.
1725
1726  // If the node has glue, walk down the graph to the "lowest" node in the
1727  // glueged set.
1728  EVT VT = Root->getValueType(Root->getNumValues()-1);
1729  while (VT == MVT::Glue) {
1730    SDNode *GU = findGlueUse(Root);
1731    if (GU == NULL)
1732      break;
1733    Root = GU;
1734    VT = Root->getValueType(Root->getNumValues()-1);
1735
1736    // If our query node has a glue result with a use, we've walked up it.  If
1737    // the user (which has already been selected) has a chain or indirectly uses
1738    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1739    // this, we cannot ignore chains in this predicate.
1740    IgnoreChains = false;
1741  }
1742
1743
1744  SmallPtrSet<SDNode*, 16> Visited;
1745  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1746}
1747
1748SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1749  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1750  SelectInlineAsmMemoryOperands(Ops);
1751
1752  EVT VTs[] = { MVT::Other, MVT::Glue };
1753  SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
1754                                VTs, &Ops[0], Ops.size());
1755  New->setNodeId(-1);
1756  return New.getNode();
1757}
1758
1759SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1760  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1761}
1762
1763/// GetVBR - decode a vbr encoding whose top bit is set.
1764LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1765GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1766  assert(Val >= 128 && "Not a VBR");
1767  Val &= 127;  // Remove first vbr bit.
1768
1769  unsigned Shift = 7;
1770  uint64_t NextBits;
1771  do {
1772    NextBits = MatcherTable[Idx++];
1773    Val |= (NextBits&127) << Shift;
1774    Shift += 7;
1775  } while (NextBits & 128);
1776
1777  return Val;
1778}
1779
1780
1781/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1782/// interior glue and chain results to use the new glue and chain results.
1783void SelectionDAGISel::
1784UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1785                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1786                    SDValue InputGlue,
1787                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1788                    bool isMorphNodeTo) {
1789  SmallVector<SDNode*, 4> NowDeadNodes;
1790
1791  // Now that all the normal results are replaced, we replace the chain and
1792  // glue results if present.
1793  if (!ChainNodesMatched.empty()) {
1794    assert(InputChain.getNode() != 0 &&
1795           "Matched input chains but didn't produce a chain");
1796    // Loop over all of the nodes we matched that produced a chain result.
1797    // Replace all the chain results with the final chain we ended up with.
1798    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1799      SDNode *ChainNode = ChainNodesMatched[i];
1800
1801      // If this node was already deleted, don't look at it.
1802      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1803        continue;
1804
1805      // Don't replace the results of the root node if we're doing a
1806      // MorphNodeTo.
1807      if (ChainNode == NodeToMatch && isMorphNodeTo)
1808        continue;
1809
1810      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1811      if (ChainVal.getValueType() == MVT::Glue)
1812        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1813      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1814      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1815
1816      // If the node became dead and we haven't already seen it, delete it.
1817      if (ChainNode->use_empty() &&
1818          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1819        NowDeadNodes.push_back(ChainNode);
1820    }
1821  }
1822
1823  // If the result produces glue, update any glue results in the matched
1824  // pattern with the glue result.
1825  if (InputGlue.getNode() != 0) {
1826    // Handle any interior nodes explicitly marked.
1827    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1828      SDNode *FRN = GlueResultNodesMatched[i];
1829
1830      // If this node was already deleted, don't look at it.
1831      if (FRN->getOpcode() == ISD::DELETED_NODE)
1832        continue;
1833
1834      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1835             "Doesn't have a glue result");
1836      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1837                                        InputGlue);
1838
1839      // If the node became dead and we haven't already seen it, delete it.
1840      if (FRN->use_empty() &&
1841          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1842        NowDeadNodes.push_back(FRN);
1843    }
1844  }
1845
1846  if (!NowDeadNodes.empty())
1847    CurDAG->RemoveDeadNodes(NowDeadNodes);
1848
1849  DEBUG(dbgs() << "ISEL: Match complete!\n");
1850}
1851
1852enum ChainResult {
1853  CR_Simple,
1854  CR_InducesCycle,
1855  CR_LeadsToInteriorNode
1856};
1857
1858/// WalkChainUsers - Walk down the users of the specified chained node that is
1859/// part of the pattern we're matching, looking at all of the users we find.
1860/// This determines whether something is an interior node, whether we have a
1861/// non-pattern node in between two pattern nodes (which prevent folding because
1862/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1863/// between pattern nodes (in which case the TF becomes part of the pattern).
1864///
1865/// The walk we do here is guaranteed to be small because we quickly get down to
1866/// already selected nodes "below" us.
1867static ChainResult
1868WalkChainUsers(const SDNode *ChainedNode,
1869               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1870               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1871  ChainResult Result = CR_Simple;
1872
1873  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1874         E = ChainedNode->use_end(); UI != E; ++UI) {
1875    // Make sure the use is of the chain, not some other value we produce.
1876    if (UI.getUse().getValueType() != MVT::Other) continue;
1877
1878    SDNode *User = *UI;
1879
1880    if (User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1881      continue;
1882
1883    // If we see an already-selected machine node, then we've gone beyond the
1884    // pattern that we're selecting down into the already selected chunk of the
1885    // DAG.
1886    unsigned UserOpcode = User->getOpcode();
1887    if (User->isMachineOpcode() ||
1888        UserOpcode == ISD::CopyToReg ||
1889        UserOpcode == ISD::CopyFromReg ||
1890        UserOpcode == ISD::INLINEASM ||
1891        UserOpcode == ISD::EH_LABEL ||
1892        UserOpcode == ISD::LIFETIME_START ||
1893        UserOpcode == ISD::LIFETIME_END) {
1894      // If their node ID got reset to -1 then they've already been selected.
1895      // Treat them like a MachineOpcode.
1896      if (User->getNodeId() == -1)
1897        continue;
1898    }
1899
1900    // If we have a TokenFactor, we handle it specially.
1901    if (User->getOpcode() != ISD::TokenFactor) {
1902      // If the node isn't a token factor and isn't part of our pattern, then it
1903      // must be a random chained node in between two nodes we're selecting.
1904      // This happens when we have something like:
1905      //   x = load ptr
1906      //   call
1907      //   y = x+4
1908      //   store y -> ptr
1909      // Because we structurally match the load/store as a read/modify/write,
1910      // but the call is chained between them.  We cannot fold in this case
1911      // because it would induce a cycle in the graph.
1912      if (!std::count(ChainedNodesInPattern.begin(),
1913                      ChainedNodesInPattern.end(), User))
1914        return CR_InducesCycle;
1915
1916      // Otherwise we found a node that is part of our pattern.  For example in:
1917      //   x = load ptr
1918      //   y = x+4
1919      //   store y -> ptr
1920      // This would happen when we're scanning down from the load and see the
1921      // store as a user.  Record that there is a use of ChainedNode that is
1922      // part of the pattern and keep scanning uses.
1923      Result = CR_LeadsToInteriorNode;
1924      InteriorChainedNodes.push_back(User);
1925      continue;
1926    }
1927
1928    // If we found a TokenFactor, there are two cases to consider: first if the
1929    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1930    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1931    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1932    //     [Load chain]
1933    //         ^
1934    //         |
1935    //       [Load]
1936    //       ^    ^
1937    //       |    \                    DAG's like cheese
1938    //      /       \                       do you?
1939    //     /         |
1940    // [TokenFactor] [Op]
1941    //     ^          ^
1942    //     |          |
1943    //      \        /
1944    //       \      /
1945    //       [Store]
1946    //
1947    // In this case, the TokenFactor becomes part of our match and we rewrite it
1948    // as a new TokenFactor.
1949    //
1950    // To distinguish these two cases, do a recursive walk down the uses.
1951    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1952    case CR_Simple:
1953      // If the uses of the TokenFactor are just already-selected nodes, ignore
1954      // it, it is "below" our pattern.
1955      continue;
1956    case CR_InducesCycle:
1957      // If the uses of the TokenFactor lead to nodes that are not part of our
1958      // pattern that are not selected, folding would turn this into a cycle,
1959      // bail out now.
1960      return CR_InducesCycle;
1961    case CR_LeadsToInteriorNode:
1962      break;  // Otherwise, keep processing.
1963    }
1964
1965    // Okay, we know we're in the interesting interior case.  The TokenFactor
1966    // is now going to be considered part of the pattern so that we rewrite its
1967    // uses (it may have uses that are not part of the pattern) with the
1968    // ultimate chain result of the generated code.  We will also add its chain
1969    // inputs as inputs to the ultimate TokenFactor we create.
1970    Result = CR_LeadsToInteriorNode;
1971    ChainedNodesInPattern.push_back(User);
1972    InteriorChainedNodes.push_back(User);
1973    continue;
1974  }
1975
1976  return Result;
1977}
1978
1979/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1980/// operation for when the pattern matched at least one node with a chains.  The
1981/// input vector contains a list of all of the chained nodes that we match.  We
1982/// must determine if this is a valid thing to cover (i.e. matching it won't
1983/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1984/// be used as the input node chain for the generated nodes.
1985static SDValue
1986HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1987                       SelectionDAG *CurDAG) {
1988  // Walk all of the chained nodes we've matched, recursively scanning down the
1989  // users of the chain result. This adds any TokenFactor nodes that are caught
1990  // in between chained nodes to the chained and interior nodes list.
1991  SmallVector<SDNode*, 3> InteriorChainedNodes;
1992  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1993    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1994                       InteriorChainedNodes) == CR_InducesCycle)
1995      return SDValue(); // Would induce a cycle.
1996  }
1997
1998  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1999  // that we are interested in.  Form our input TokenFactor node.
2000  SmallVector<SDValue, 3> InputChains;
2001  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2002    // Add the input chain of this node to the InputChains list (which will be
2003    // the operands of the generated TokenFactor) if it's not an interior node.
2004    SDNode *N = ChainNodesMatched[i];
2005    if (N->getOpcode() != ISD::TokenFactor) {
2006      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
2007        continue;
2008
2009      // Otherwise, add the input chain.
2010      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
2011      assert(InChain.getValueType() == MVT::Other && "Not a chain");
2012      InputChains.push_back(InChain);
2013      continue;
2014    }
2015
2016    // If we have a token factor, we want to add all inputs of the token factor
2017    // that are not part of the pattern we're matching.
2018    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
2019      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
2020                      N->getOperand(op).getNode()))
2021        InputChains.push_back(N->getOperand(op));
2022    }
2023  }
2024
2025  SDValue Res;
2026  if (InputChains.size() == 1)
2027    return InputChains[0];
2028  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2029                         MVT::Other, &InputChains[0], InputChains.size());
2030}
2031
2032/// MorphNode - Handle morphing a node in place for the selector.
2033SDNode *SelectionDAGISel::
2034MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2035          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
2036  // It is possible we're using MorphNodeTo to replace a node with no
2037  // normal results with one that has a normal result (or we could be
2038  // adding a chain) and the input could have glue and chains as well.
2039  // In this case we need to shift the operands down.
2040  // FIXME: This is a horrible hack and broken in obscure cases, no worse
2041  // than the old isel though.
2042  int OldGlueResultNo = -1, OldChainResultNo = -1;
2043
2044  unsigned NTMNumResults = Node->getNumValues();
2045  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2046    OldGlueResultNo = NTMNumResults-1;
2047    if (NTMNumResults != 1 &&
2048        Node->getValueType(NTMNumResults-2) == MVT::Other)
2049      OldChainResultNo = NTMNumResults-2;
2050  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2051    OldChainResultNo = NTMNumResults-1;
2052
2053  // Call the underlying SelectionDAG routine to do the transmogrification. Note
2054  // that this deletes operands of the old node that become dead.
2055  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
2056
2057  // MorphNodeTo can operate in two ways: if an existing node with the
2058  // specified operands exists, it can just return it.  Otherwise, it
2059  // updates the node in place to have the requested operands.
2060  if (Res == Node) {
2061    // If we updated the node in place, reset the node ID.  To the isel,
2062    // this should be just like a newly allocated machine node.
2063    Res->setNodeId(-1);
2064  }
2065
2066  unsigned ResNumResults = Res->getNumValues();
2067  // Move the glue if needed.
2068  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2069      (unsigned)OldGlueResultNo != ResNumResults-1)
2070    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2071                                      SDValue(Res, ResNumResults-1));
2072
2073  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2074    --ResNumResults;
2075
2076  // Move the chain reference if needed.
2077  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2078      (unsigned)OldChainResultNo != ResNumResults-1)
2079    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2080                                      SDValue(Res, ResNumResults-1));
2081
2082  // Otherwise, no replacement happened because the node already exists. Replace
2083  // Uses of the old node with the new one.
2084  if (Res != Node)
2085    CurDAG->ReplaceAllUsesWith(Node, Res);
2086
2087  return Res;
2088}
2089
2090/// CheckSame - Implements OP_CheckSame.
2091LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2092CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2093          SDValue N,
2094          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2095  // Accept if it is exactly the same as a previously recorded node.
2096  unsigned RecNo = MatcherTable[MatcherIndex++];
2097  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2098  return N == RecordedNodes[RecNo].first;
2099}
2100
2101/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2102LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2103CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2104                      const SelectionDAGISel &SDISel) {
2105  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2106}
2107
2108/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2109LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2110CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2111                   const SelectionDAGISel &SDISel, SDNode *N) {
2112  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2113}
2114
2115LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2116CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2117            SDNode *N) {
2118  uint16_t Opc = MatcherTable[MatcherIndex++];
2119  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2120  return N->getOpcode() == Opc;
2121}
2122
2123LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2124CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2125          SDValue N, const TargetLowering *TLI) {
2126  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2127  if (N.getValueType() == VT) return true;
2128
2129  // Handle the case when VT is iPTR.
2130  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy();
2131}
2132
2133LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2134CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2135               SDValue N, const TargetLowering *TLI,
2136               unsigned ChildNo) {
2137  if (ChildNo >= N.getNumOperands())
2138    return false;  // Match fails if out of range child #.
2139  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2140}
2141
2142LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2143CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2144              SDValue N) {
2145  return cast<CondCodeSDNode>(N)->get() ==
2146      (ISD::CondCode)MatcherTable[MatcherIndex++];
2147}
2148
2149LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2150CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2151               SDValue N, const TargetLowering *TLI) {
2152  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2153  if (cast<VTSDNode>(N)->getVT() == VT)
2154    return true;
2155
2156  // Handle the case when VT is iPTR.
2157  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy();
2158}
2159
2160LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2161CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2162             SDValue N) {
2163  int64_t Val = MatcherTable[MatcherIndex++];
2164  if (Val & 128)
2165    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2166
2167  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2168  return C != 0 && C->getSExtValue() == Val;
2169}
2170
2171LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2172CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2173            SDValue N, const SelectionDAGISel &SDISel) {
2174  int64_t Val = MatcherTable[MatcherIndex++];
2175  if (Val & 128)
2176    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2177
2178  if (N->getOpcode() != ISD::AND) return false;
2179
2180  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2181  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2182}
2183
2184LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2185CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2186           SDValue N, const SelectionDAGISel &SDISel) {
2187  int64_t Val = MatcherTable[MatcherIndex++];
2188  if (Val & 128)
2189    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2190
2191  if (N->getOpcode() != ISD::OR) return false;
2192
2193  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2194  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2195}
2196
2197/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2198/// scope, evaluate the current node.  If the current predicate is known to
2199/// fail, set Result=true and return anything.  If the current predicate is
2200/// known to pass, set Result=false and return the MatcherIndex to continue
2201/// with.  If the current predicate is unknown, set Result=false and return the
2202/// MatcherIndex to continue with.
2203static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2204                                       unsigned Index, SDValue N,
2205                                       bool &Result,
2206                                       const SelectionDAGISel &SDISel,
2207                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2208  switch (Table[Index++]) {
2209  default:
2210    Result = false;
2211    return Index-1;  // Could not evaluate this predicate.
2212  case SelectionDAGISel::OPC_CheckSame:
2213    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2214    return Index;
2215  case SelectionDAGISel::OPC_CheckPatternPredicate:
2216    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2217    return Index;
2218  case SelectionDAGISel::OPC_CheckPredicate:
2219    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2220    return Index;
2221  case SelectionDAGISel::OPC_CheckOpcode:
2222    Result = !::CheckOpcode(Table, Index, N.getNode());
2223    return Index;
2224  case SelectionDAGISel::OPC_CheckType:
2225    Result = !::CheckType(Table, Index, N, SDISel.getTargetLowering());
2226    return Index;
2227  case SelectionDAGISel::OPC_CheckChild0Type:
2228  case SelectionDAGISel::OPC_CheckChild1Type:
2229  case SelectionDAGISel::OPC_CheckChild2Type:
2230  case SelectionDAGISel::OPC_CheckChild3Type:
2231  case SelectionDAGISel::OPC_CheckChild4Type:
2232  case SelectionDAGISel::OPC_CheckChild5Type:
2233  case SelectionDAGISel::OPC_CheckChild6Type:
2234  case SelectionDAGISel::OPC_CheckChild7Type:
2235    Result = !::CheckChildType(Table, Index, N, SDISel.getTargetLowering(),
2236                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2237    return Index;
2238  case SelectionDAGISel::OPC_CheckCondCode:
2239    Result = !::CheckCondCode(Table, Index, N);
2240    return Index;
2241  case SelectionDAGISel::OPC_CheckValueType:
2242    Result = !::CheckValueType(Table, Index, N, SDISel.getTargetLowering());
2243    return Index;
2244  case SelectionDAGISel::OPC_CheckInteger:
2245    Result = !::CheckInteger(Table, Index, N);
2246    return Index;
2247  case SelectionDAGISel::OPC_CheckAndImm:
2248    Result = !::CheckAndImm(Table, Index, N, SDISel);
2249    return Index;
2250  case SelectionDAGISel::OPC_CheckOrImm:
2251    Result = !::CheckOrImm(Table, Index, N, SDISel);
2252    return Index;
2253  }
2254}
2255
2256namespace {
2257
2258struct MatchScope {
2259  /// FailIndex - If this match fails, this is the index to continue with.
2260  unsigned FailIndex;
2261
2262  /// NodeStack - The node stack when the scope was formed.
2263  SmallVector<SDValue, 4> NodeStack;
2264
2265  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2266  unsigned NumRecordedNodes;
2267
2268  /// NumMatchedMemRefs - The number of matched memref entries.
2269  unsigned NumMatchedMemRefs;
2270
2271  /// InputChain/InputGlue - The current chain/glue
2272  SDValue InputChain, InputGlue;
2273
2274  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2275  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2276};
2277
2278}
2279
2280SDNode *SelectionDAGISel::
2281SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2282                 unsigned TableSize) {
2283  // FIXME: Should these even be selected?  Handle these cases in the caller?
2284  switch (NodeToMatch->getOpcode()) {
2285  default:
2286    break;
2287  case ISD::EntryToken:       // These nodes remain the same.
2288  case ISD::BasicBlock:
2289  case ISD::Register:
2290  case ISD::RegisterMask:
2291  //case ISD::VALUETYPE:
2292  //case ISD::CONDCODE:
2293  case ISD::HANDLENODE:
2294  case ISD::MDNODE_SDNODE:
2295  case ISD::TargetConstant:
2296  case ISD::TargetConstantFP:
2297  case ISD::TargetConstantPool:
2298  case ISD::TargetFrameIndex:
2299  case ISD::TargetExternalSymbol:
2300  case ISD::TargetBlockAddress:
2301  case ISD::TargetJumpTable:
2302  case ISD::TargetGlobalTLSAddress:
2303  case ISD::TargetGlobalAddress:
2304  case ISD::TokenFactor:
2305  case ISD::CopyFromReg:
2306  case ISD::CopyToReg:
2307  case ISD::EH_LABEL:
2308  case ISD::LIFETIME_START:
2309  case ISD::LIFETIME_END:
2310    NodeToMatch->setNodeId(-1); // Mark selected.
2311    return 0;
2312  case ISD::AssertSext:
2313  case ISD::AssertZext:
2314    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2315                                      NodeToMatch->getOperand(0));
2316    return 0;
2317  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2318  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2319  }
2320
2321  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2322
2323  // Set up the node stack with NodeToMatch as the only node on the stack.
2324  SmallVector<SDValue, 8> NodeStack;
2325  SDValue N = SDValue(NodeToMatch, 0);
2326  NodeStack.push_back(N);
2327
2328  // MatchScopes - Scopes used when matching, if a match failure happens, this
2329  // indicates where to continue checking.
2330  SmallVector<MatchScope, 8> MatchScopes;
2331
2332  // RecordedNodes - This is the set of nodes that have been recorded by the
2333  // state machine.  The second value is the parent of the node, or null if the
2334  // root is recorded.
2335  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2336
2337  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2338  // pattern.
2339  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2340
2341  // These are the current input chain and glue for use when generating nodes.
2342  // Various Emit operations change these.  For example, emitting a copytoreg
2343  // uses and updates these.
2344  SDValue InputChain, InputGlue;
2345
2346  // ChainNodesMatched - If a pattern matches nodes that have input/output
2347  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2348  // which ones they are.  The result is captured into this list so that we can
2349  // update the chain results when the pattern is complete.
2350  SmallVector<SDNode*, 3> ChainNodesMatched;
2351  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2352
2353  DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2354        NodeToMatch->dump(CurDAG);
2355        dbgs() << '\n');
2356
2357  // Determine where to start the interpreter.  Normally we start at opcode #0,
2358  // but if the state machine starts with an OPC_SwitchOpcode, then we
2359  // accelerate the first lookup (which is guaranteed to be hot) with the
2360  // OpcodeOffset table.
2361  unsigned MatcherIndex = 0;
2362
2363  if (!OpcodeOffset.empty()) {
2364    // Already computed the OpcodeOffset table, just index into it.
2365    if (N.getOpcode() < OpcodeOffset.size())
2366      MatcherIndex = OpcodeOffset[N.getOpcode()];
2367    DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2368
2369  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2370    // Otherwise, the table isn't computed, but the state machine does start
2371    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2372    // is the first time we're selecting an instruction.
2373    unsigned Idx = 1;
2374    while (1) {
2375      // Get the size of this case.
2376      unsigned CaseSize = MatcherTable[Idx++];
2377      if (CaseSize & 128)
2378        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2379      if (CaseSize == 0) break;
2380
2381      // Get the opcode, add the index to the table.
2382      uint16_t Opc = MatcherTable[Idx++];
2383      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2384      if (Opc >= OpcodeOffset.size())
2385        OpcodeOffset.resize((Opc+1)*2);
2386      OpcodeOffset[Opc] = Idx;
2387      Idx += CaseSize;
2388    }
2389
2390    // Okay, do the lookup for the first opcode.
2391    if (N.getOpcode() < OpcodeOffset.size())
2392      MatcherIndex = OpcodeOffset[N.getOpcode()];
2393  }
2394
2395  while (1) {
2396    assert(MatcherIndex < TableSize && "Invalid index");
2397#ifndef NDEBUG
2398    unsigned CurrentOpcodeIndex = MatcherIndex;
2399#endif
2400    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2401    switch (Opcode) {
2402    case OPC_Scope: {
2403      // Okay, the semantics of this operation are that we should push a scope
2404      // then evaluate the first child.  However, pushing a scope only to have
2405      // the first check fail (which then pops it) is inefficient.  If we can
2406      // determine immediately that the first check (or first several) will
2407      // immediately fail, don't even bother pushing a scope for them.
2408      unsigned FailIndex;
2409
2410      while (1) {
2411        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2412        if (NumToSkip & 128)
2413          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2414        // Found the end of the scope with no match.
2415        if (NumToSkip == 0) {
2416          FailIndex = 0;
2417          break;
2418        }
2419
2420        FailIndex = MatcherIndex+NumToSkip;
2421
2422        unsigned MatcherIndexOfPredicate = MatcherIndex;
2423        (void)MatcherIndexOfPredicate; // silence warning.
2424
2425        // If we can't evaluate this predicate without pushing a scope (e.g. if
2426        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2427        // push the scope and evaluate the full predicate chain.
2428        bool Result;
2429        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2430                                              Result, *this, RecordedNodes);
2431        if (!Result)
2432          break;
2433
2434        DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
2435                     << "index " << MatcherIndexOfPredicate
2436                     << ", continuing at " << FailIndex << "\n");
2437        ++NumDAGIselRetries;
2438
2439        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2440        // move to the next case.
2441        MatcherIndex = FailIndex;
2442      }
2443
2444      // If the whole scope failed to match, bail.
2445      if (FailIndex == 0) break;
2446
2447      // Push a MatchScope which indicates where to go if the first child fails
2448      // to match.
2449      MatchScope NewEntry;
2450      NewEntry.FailIndex = FailIndex;
2451      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2452      NewEntry.NumRecordedNodes = RecordedNodes.size();
2453      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2454      NewEntry.InputChain = InputChain;
2455      NewEntry.InputGlue = InputGlue;
2456      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2457      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2458      MatchScopes.push_back(NewEntry);
2459      continue;
2460    }
2461    case OPC_RecordNode: {
2462      // Remember this node, it may end up being an operand in the pattern.
2463      SDNode *Parent = 0;
2464      if (NodeStack.size() > 1)
2465        Parent = NodeStack[NodeStack.size()-2].getNode();
2466      RecordedNodes.push_back(std::make_pair(N, Parent));
2467      continue;
2468    }
2469
2470    case OPC_RecordChild0: case OPC_RecordChild1:
2471    case OPC_RecordChild2: case OPC_RecordChild3:
2472    case OPC_RecordChild4: case OPC_RecordChild5:
2473    case OPC_RecordChild6: case OPC_RecordChild7: {
2474      unsigned ChildNo = Opcode-OPC_RecordChild0;
2475      if (ChildNo >= N.getNumOperands())
2476        break;  // Match fails if out of range child #.
2477
2478      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2479                                             N.getNode()));
2480      continue;
2481    }
2482    case OPC_RecordMemRef:
2483      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2484      continue;
2485
2486    case OPC_CaptureGlueInput:
2487      // If the current node has an input glue, capture it in InputGlue.
2488      if (N->getNumOperands() != 0 &&
2489          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2490        InputGlue = N->getOperand(N->getNumOperands()-1);
2491      continue;
2492
2493    case OPC_MoveChild: {
2494      unsigned ChildNo = MatcherTable[MatcherIndex++];
2495      if (ChildNo >= N.getNumOperands())
2496        break;  // Match fails if out of range child #.
2497      N = N.getOperand(ChildNo);
2498      NodeStack.push_back(N);
2499      continue;
2500    }
2501
2502    case OPC_MoveParent:
2503      // Pop the current node off the NodeStack.
2504      NodeStack.pop_back();
2505      assert(!NodeStack.empty() && "Node stack imbalance!");
2506      N = NodeStack.back();
2507      continue;
2508
2509    case OPC_CheckSame:
2510      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2511      continue;
2512    case OPC_CheckPatternPredicate:
2513      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2514      continue;
2515    case OPC_CheckPredicate:
2516      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2517                                N.getNode()))
2518        break;
2519      continue;
2520    case OPC_CheckComplexPat: {
2521      unsigned CPNum = MatcherTable[MatcherIndex++];
2522      unsigned RecNo = MatcherTable[MatcherIndex++];
2523      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2524      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2525                               RecordedNodes[RecNo].first, CPNum,
2526                               RecordedNodes))
2527        break;
2528      continue;
2529    }
2530    case OPC_CheckOpcode:
2531      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2532      continue;
2533
2534    case OPC_CheckType:
2535      if (!::CheckType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2536        break;
2537      continue;
2538
2539    case OPC_SwitchOpcode: {
2540      unsigned CurNodeOpcode = N.getOpcode();
2541      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2542      unsigned CaseSize;
2543      while (1) {
2544        // Get the size of this case.
2545        CaseSize = MatcherTable[MatcherIndex++];
2546        if (CaseSize & 128)
2547          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2548        if (CaseSize == 0) break;
2549
2550        uint16_t Opc = MatcherTable[MatcherIndex++];
2551        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2552
2553        // If the opcode matches, then we will execute this case.
2554        if (CurNodeOpcode == Opc)
2555          break;
2556
2557        // Otherwise, skip over this case.
2558        MatcherIndex += CaseSize;
2559      }
2560
2561      // If no cases matched, bail out.
2562      if (CaseSize == 0) break;
2563
2564      // Otherwise, execute the case we found.
2565      DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
2566                   << " to " << MatcherIndex << "\n");
2567      continue;
2568    }
2569
2570    case OPC_SwitchType: {
2571      MVT CurNodeVT = N.getSimpleValueType();
2572      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2573      unsigned CaseSize;
2574      while (1) {
2575        // Get the size of this case.
2576        CaseSize = MatcherTable[MatcherIndex++];
2577        if (CaseSize & 128)
2578          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2579        if (CaseSize == 0) break;
2580
2581        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2582        if (CaseVT == MVT::iPTR)
2583          CaseVT = getTargetLowering()->getPointerTy();
2584
2585        // If the VT matches, then we will execute this case.
2586        if (CurNodeVT == CaseVT)
2587          break;
2588
2589        // Otherwise, skip over this case.
2590        MatcherIndex += CaseSize;
2591      }
2592
2593      // If no cases matched, bail out.
2594      if (CaseSize == 0) break;
2595
2596      // Otherwise, execute the case we found.
2597      DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2598                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2599      continue;
2600    }
2601    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2602    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2603    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2604    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2605      if (!::CheckChildType(MatcherTable, MatcherIndex, N, getTargetLowering(),
2606                            Opcode-OPC_CheckChild0Type))
2607        break;
2608      continue;
2609    case OPC_CheckCondCode:
2610      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2611      continue;
2612    case OPC_CheckValueType:
2613      if (!::CheckValueType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2614        break;
2615      continue;
2616    case OPC_CheckInteger:
2617      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2618      continue;
2619    case OPC_CheckAndImm:
2620      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2621      continue;
2622    case OPC_CheckOrImm:
2623      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2624      continue;
2625
2626    case OPC_CheckFoldableChainNode: {
2627      assert(NodeStack.size() != 1 && "No parent node");
2628      // Verify that all intermediate nodes between the root and this one have
2629      // a single use.
2630      bool HasMultipleUses = false;
2631      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2632        if (!NodeStack[i].hasOneUse()) {
2633          HasMultipleUses = true;
2634          break;
2635        }
2636      if (HasMultipleUses) break;
2637
2638      // Check to see that the target thinks this is profitable to fold and that
2639      // we can fold it without inducing cycles in the graph.
2640      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2641                              NodeToMatch) ||
2642          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2643                         NodeToMatch, OptLevel,
2644                         true/*We validate our own chains*/))
2645        break;
2646
2647      continue;
2648    }
2649    case OPC_EmitInteger: {
2650      MVT::SimpleValueType VT =
2651        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2652      int64_t Val = MatcherTable[MatcherIndex++];
2653      if (Val & 128)
2654        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2655      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2656                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2657      continue;
2658    }
2659    case OPC_EmitRegister: {
2660      MVT::SimpleValueType VT =
2661        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2662      unsigned RegNo = MatcherTable[MatcherIndex++];
2663      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2664                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2665      continue;
2666    }
2667    case OPC_EmitRegister2: {
2668      // For targets w/ more than 256 register names, the register enum
2669      // values are stored in two bytes in the matcher table (just like
2670      // opcodes).
2671      MVT::SimpleValueType VT =
2672        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2673      unsigned RegNo = MatcherTable[MatcherIndex++];
2674      RegNo |= MatcherTable[MatcherIndex++] << 8;
2675      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2676                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2677      continue;
2678    }
2679
2680    case OPC_EmitConvertToTarget:  {
2681      // Convert from IMM/FPIMM to target version.
2682      unsigned RecNo = MatcherTable[MatcherIndex++];
2683      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2684      SDValue Imm = RecordedNodes[RecNo].first;
2685
2686      if (Imm->getOpcode() == ISD::Constant) {
2687        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
2688        Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
2689      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2690        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2691        Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
2692      }
2693
2694      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2695      continue;
2696    }
2697
2698    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2699    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2700      // These are space-optimized forms of OPC_EmitMergeInputChains.
2701      assert(InputChain.getNode() == 0 &&
2702             "EmitMergeInputChains should be the first chain producing node");
2703      assert(ChainNodesMatched.empty() &&
2704             "Should only have one EmitMergeInputChains per match");
2705
2706      // Read all of the chained nodes.
2707      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2708      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2709      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2710
2711      // FIXME: What if other value results of the node have uses not matched
2712      // by this pattern?
2713      if (ChainNodesMatched.back() != NodeToMatch &&
2714          !RecordedNodes[RecNo].first.hasOneUse()) {
2715        ChainNodesMatched.clear();
2716        break;
2717      }
2718
2719      // Merge the input chains if they are not intra-pattern references.
2720      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2721
2722      if (InputChain.getNode() == 0)
2723        break;  // Failed to merge.
2724      continue;
2725    }
2726
2727    case OPC_EmitMergeInputChains: {
2728      assert(InputChain.getNode() == 0 &&
2729             "EmitMergeInputChains should be the first chain producing node");
2730      // This node gets a list of nodes we matched in the input that have
2731      // chains.  We want to token factor all of the input chains to these nodes
2732      // together.  However, if any of the input chains is actually one of the
2733      // nodes matched in this pattern, then we have an intra-match reference.
2734      // Ignore these because the newly token factored chain should not refer to
2735      // the old nodes.
2736      unsigned NumChains = MatcherTable[MatcherIndex++];
2737      assert(NumChains != 0 && "Can't TF zero chains");
2738
2739      assert(ChainNodesMatched.empty() &&
2740             "Should only have one EmitMergeInputChains per match");
2741
2742      // Read all of the chained nodes.
2743      for (unsigned i = 0; i != NumChains; ++i) {
2744        unsigned RecNo = MatcherTable[MatcherIndex++];
2745        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2746        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2747
2748        // FIXME: What if other value results of the node have uses not matched
2749        // by this pattern?
2750        if (ChainNodesMatched.back() != NodeToMatch &&
2751            !RecordedNodes[RecNo].first.hasOneUse()) {
2752          ChainNodesMatched.clear();
2753          break;
2754        }
2755      }
2756
2757      // If the inner loop broke out, the match fails.
2758      if (ChainNodesMatched.empty())
2759        break;
2760
2761      // Merge the input chains if they are not intra-pattern references.
2762      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2763
2764      if (InputChain.getNode() == 0)
2765        break;  // Failed to merge.
2766
2767      continue;
2768    }
2769
2770    case OPC_EmitCopyToReg: {
2771      unsigned RecNo = MatcherTable[MatcherIndex++];
2772      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2773      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2774
2775      if (InputChain.getNode() == 0)
2776        InputChain = CurDAG->getEntryNode();
2777
2778      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
2779                                        DestPhysReg, RecordedNodes[RecNo].first,
2780                                        InputGlue);
2781
2782      InputGlue = InputChain.getValue(1);
2783      continue;
2784    }
2785
2786    case OPC_EmitNodeXForm: {
2787      unsigned XFormNo = MatcherTable[MatcherIndex++];
2788      unsigned RecNo = MatcherTable[MatcherIndex++];
2789      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2790      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2791      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2792      continue;
2793    }
2794
2795    case OPC_EmitNode:
2796    case OPC_MorphNodeTo: {
2797      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2798      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2799      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2800      // Get the result VT list.
2801      unsigned NumVTs = MatcherTable[MatcherIndex++];
2802      SmallVector<EVT, 4> VTs;
2803      for (unsigned i = 0; i != NumVTs; ++i) {
2804        MVT::SimpleValueType VT =
2805          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2806        if (VT == MVT::iPTR) VT = getTargetLowering()->getPointerTy().SimpleTy;
2807        VTs.push_back(VT);
2808      }
2809
2810      if (EmitNodeInfo & OPFL_Chain)
2811        VTs.push_back(MVT::Other);
2812      if (EmitNodeInfo & OPFL_GlueOutput)
2813        VTs.push_back(MVT::Glue);
2814
2815      // This is hot code, so optimize the two most common cases of 1 and 2
2816      // results.
2817      SDVTList VTList;
2818      if (VTs.size() == 1)
2819        VTList = CurDAG->getVTList(VTs[0]);
2820      else if (VTs.size() == 2)
2821        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2822      else
2823        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2824
2825      // Get the operand list.
2826      unsigned NumOps = MatcherTable[MatcherIndex++];
2827      SmallVector<SDValue, 8> Ops;
2828      for (unsigned i = 0; i != NumOps; ++i) {
2829        unsigned RecNo = MatcherTable[MatcherIndex++];
2830        if (RecNo & 128)
2831          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2832
2833        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2834        Ops.push_back(RecordedNodes[RecNo].first);
2835      }
2836
2837      // If there are variadic operands to add, handle them now.
2838      if (EmitNodeInfo & OPFL_VariadicInfo) {
2839        // Determine the start index to copy from.
2840        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2841        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2842        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2843               "Invalid variadic node");
2844        // Copy all of the variadic operands, not including a potential glue
2845        // input.
2846        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2847             i != e; ++i) {
2848          SDValue V = NodeToMatch->getOperand(i);
2849          if (V.getValueType() == MVT::Glue) break;
2850          Ops.push_back(V);
2851        }
2852      }
2853
2854      // If this has chain/glue inputs, add them.
2855      if (EmitNodeInfo & OPFL_Chain)
2856        Ops.push_back(InputChain);
2857      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2858        Ops.push_back(InputGlue);
2859
2860      // Create the node.
2861      SDNode *Res = 0;
2862      if (Opcode != OPC_MorphNodeTo) {
2863        // If this is a normal EmitNode command, just create the new node and
2864        // add the results to the RecordedNodes list.
2865        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
2866                                     VTList, Ops);
2867
2868        // Add all the non-glue/non-chain results to the RecordedNodes list.
2869        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2870          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2871          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2872                                                             (SDNode*) 0));
2873        }
2874
2875      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2876        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2877                        EmitNodeInfo);
2878      } else {
2879        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2880        // We will visit the equivalent node later.
2881        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2882        return 0;
2883      }
2884
2885      // If the node had chain/glue results, update our notion of the current
2886      // chain and glue.
2887      if (EmitNodeInfo & OPFL_GlueOutput) {
2888        InputGlue = SDValue(Res, VTs.size()-1);
2889        if (EmitNodeInfo & OPFL_Chain)
2890          InputChain = SDValue(Res, VTs.size()-2);
2891      } else if (EmitNodeInfo & OPFL_Chain)
2892        InputChain = SDValue(Res, VTs.size()-1);
2893
2894      // If the OPFL_MemRefs glue is set on this node, slap all of the
2895      // accumulated memrefs onto it.
2896      //
2897      // FIXME: This is vastly incorrect for patterns with multiple outputs
2898      // instructions that access memory and for ComplexPatterns that match
2899      // loads.
2900      if (EmitNodeInfo & OPFL_MemRefs) {
2901        // Only attach load or store memory operands if the generated
2902        // instruction may load or store.
2903        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2904        bool mayLoad = MCID.mayLoad();
2905        bool mayStore = MCID.mayStore();
2906
2907        unsigned NumMemRefs = 0;
2908        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
2909               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2910          if ((*I)->isLoad()) {
2911            if (mayLoad)
2912              ++NumMemRefs;
2913          } else if ((*I)->isStore()) {
2914            if (mayStore)
2915              ++NumMemRefs;
2916          } else {
2917            ++NumMemRefs;
2918          }
2919        }
2920
2921        MachineSDNode::mmo_iterator MemRefs =
2922          MF->allocateMemRefsArray(NumMemRefs);
2923
2924        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2925        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
2926               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2927          if ((*I)->isLoad()) {
2928            if (mayLoad)
2929              *MemRefsPos++ = *I;
2930          } else if ((*I)->isStore()) {
2931            if (mayStore)
2932              *MemRefsPos++ = *I;
2933          } else {
2934            *MemRefsPos++ = *I;
2935          }
2936        }
2937
2938        cast<MachineSDNode>(Res)
2939          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2940      }
2941
2942      DEBUG(dbgs() << "  "
2943                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2944                   << " node: "; Res->dump(CurDAG); dbgs() << "\n");
2945
2946      // If this was a MorphNodeTo then we're completely done!
2947      if (Opcode == OPC_MorphNodeTo) {
2948        // Update chain and glue uses.
2949        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2950                            InputGlue, GlueResultNodesMatched, true);
2951        return Res;
2952      }
2953
2954      continue;
2955    }
2956
2957    case OPC_MarkGlueResults: {
2958      unsigned NumNodes = MatcherTable[MatcherIndex++];
2959
2960      // Read and remember all the glue-result nodes.
2961      for (unsigned i = 0; i != NumNodes; ++i) {
2962        unsigned RecNo = MatcherTable[MatcherIndex++];
2963        if (RecNo & 128)
2964          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2965
2966        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2967        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2968      }
2969      continue;
2970    }
2971
2972    case OPC_CompleteMatch: {
2973      // The match has been completed, and any new nodes (if any) have been
2974      // created.  Patch up references to the matched dag to use the newly
2975      // created nodes.
2976      unsigned NumResults = MatcherTable[MatcherIndex++];
2977
2978      for (unsigned i = 0; i != NumResults; ++i) {
2979        unsigned ResSlot = MatcherTable[MatcherIndex++];
2980        if (ResSlot & 128)
2981          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2982
2983        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2984        SDValue Res = RecordedNodes[ResSlot].first;
2985
2986        assert(i < NodeToMatch->getNumValues() &&
2987               NodeToMatch->getValueType(i) != MVT::Other &&
2988               NodeToMatch->getValueType(i) != MVT::Glue &&
2989               "Invalid number of results to complete!");
2990        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2991                NodeToMatch->getValueType(i) == MVT::iPTR ||
2992                Res.getValueType() == MVT::iPTR ||
2993                NodeToMatch->getValueType(i).getSizeInBits() ==
2994                    Res.getValueType().getSizeInBits()) &&
2995               "invalid replacement");
2996        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2997      }
2998
2999      // If the root node defines glue, add it to the glue nodes to update list.
3000      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
3001        GlueResultNodesMatched.push_back(NodeToMatch);
3002
3003      // Update chain and glue uses.
3004      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3005                          InputGlue, GlueResultNodesMatched, false);
3006
3007      assert(NodeToMatch->use_empty() &&
3008             "Didn't replace all uses of the node?");
3009
3010      // FIXME: We just return here, which interacts correctly with SelectRoot
3011      // above.  We should fix this to not return an SDNode* anymore.
3012      return 0;
3013    }
3014    }
3015
3016    // If the code reached this point, then the match failed.  See if there is
3017    // another child to try in the current 'Scope', otherwise pop it until we
3018    // find a case to check.
3019    DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
3020    ++NumDAGIselRetries;
3021    while (1) {
3022      if (MatchScopes.empty()) {
3023        CannotYetSelect(NodeToMatch);
3024        return 0;
3025      }
3026
3027      // Restore the interpreter state back to the point where the scope was
3028      // formed.
3029      MatchScope &LastScope = MatchScopes.back();
3030      RecordedNodes.resize(LastScope.NumRecordedNodes);
3031      NodeStack.clear();
3032      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3033      N = NodeStack.back();
3034
3035      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3036        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3037      MatcherIndex = LastScope.FailIndex;
3038
3039      DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3040
3041      InputChain = LastScope.InputChain;
3042      InputGlue = LastScope.InputGlue;
3043      if (!LastScope.HasChainNodesMatched)
3044        ChainNodesMatched.clear();
3045      if (!LastScope.HasGlueResultNodesMatched)
3046        GlueResultNodesMatched.clear();
3047
3048      // Check to see what the offset is at the new MatcherIndex.  If it is zero
3049      // we have reached the end of this scope, otherwise we have another child
3050      // in the current scope to try.
3051      unsigned NumToSkip = MatcherTable[MatcherIndex++];
3052      if (NumToSkip & 128)
3053        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3054
3055      // If we have another child in this scope to match, update FailIndex and
3056      // try it.
3057      if (NumToSkip != 0) {
3058        LastScope.FailIndex = MatcherIndex+NumToSkip;
3059        break;
3060      }
3061
3062      // End of this scope, pop it and try the next child in the containing
3063      // scope.
3064      MatchScopes.pop_back();
3065    }
3066  }
3067}
3068
3069
3070
3071void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3072  std::string msg;
3073  raw_string_ostream Msg(msg);
3074  Msg << "Cannot select: ";
3075
3076  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3077      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3078      N->getOpcode() != ISD::INTRINSIC_VOID) {
3079    N->printrFull(Msg, CurDAG);
3080    Msg << "\nIn function: " << MF->getName();
3081  } else {
3082    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3083    unsigned iid =
3084      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3085    if (iid < Intrinsic::num_intrinsics)
3086      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3087    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3088      Msg << "target intrinsic %" << TII->getName(iid);
3089    else
3090      Msg << "unknown intrinsic #" << iid;
3091  }
3092  report_fatal_error(Msg.str());
3093}
3094
3095char SelectionDAGISel::ID = 0;
3096