SelectionDAGISel.cpp revision 76dd96eda05c0dc7dfc62b5b5fbdd20aae86808b
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "SelectionDAGBuild.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/ScheduleDAG.h"
39#include "llvm/CodeGen/SchedulerRegistry.h"
40#include "llvm/CodeGen/SelectionDAG.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetData.h"
43#include "llvm/Target/TargetFrameInfo.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/Timer.h"
52#include <algorithm>
53using namespace llvm;
54
55static cl::opt<bool>
56EnableValueProp("enable-value-prop", cl::Hidden);
57static cl::opt<bool>
58EnableLegalizeTypes("enable-legalize-types", cl::Hidden);
59static cl::opt<bool>
60EnableFastISel("fast-isel", cl::Hidden,
61          cl::desc("Enable the experimental \"fast\" instruction selector"));
62static cl::opt<bool>
63EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
64          cl::desc("Enable verbose messages in the experimental \"fast\" "
65                   "instruction selector"));
66static cl::opt<bool>
67EnableFastISelAbort("fast-isel-abort", cl::Hidden,
68          cl::desc("Enable abort calls when \"fast\" instruction fails"));
69static cl::opt<bool>
70SchedLiveInCopies("schedule-livein-copies",
71                  cl::desc("Schedule copies of livein registers"),
72                  cl::init(false));
73
74#ifndef NDEBUG
75static cl::opt<bool>
76ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the first "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before legalize types"));
82static cl::opt<bool>
83ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize"));
85static cl::opt<bool>
86ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before the second "
88                   "dag combine pass"));
89static cl::opt<bool>
90ViewISelDAGs("view-isel-dags", cl::Hidden,
91          cl::desc("Pop up a window to show isel dags as they are selected"));
92static cl::opt<bool>
93ViewSchedDAGs("view-sched-dags", cl::Hidden,
94          cl::desc("Pop up a window to show sched dags as they are processed"));
95static cl::opt<bool>
96ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
97      cl::desc("Pop up a window to show SUnit dags after they are processed"));
98#else
99static const bool ViewDAGCombine1 = false,
100                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
101                  ViewDAGCombine2 = false,
102                  ViewISelDAGs = false, ViewSchedDAGs = false,
103                  ViewSUnitDAGs = false;
104#endif
105
106//===---------------------------------------------------------------------===//
107///
108/// RegisterScheduler class - Track the registration of instruction schedulers.
109///
110//===---------------------------------------------------------------------===//
111MachinePassRegistry RegisterScheduler::Registry;
112
113//===---------------------------------------------------------------------===//
114///
115/// ISHeuristic command line option for instruction schedulers.
116///
117//===---------------------------------------------------------------------===//
118static cl::opt<RegisterScheduler::FunctionPassCtor, false,
119               RegisterPassParser<RegisterScheduler> >
120ISHeuristic("pre-RA-sched",
121            cl::init(&createDefaultScheduler),
122            cl::desc("Instruction schedulers available (before register"
123                     " allocation):"));
124
125static RegisterScheduler
126defaultListDAGScheduler("default", "  Best scheduler for the target",
127                        createDefaultScheduler);
128
129namespace llvm {
130  //===--------------------------------------------------------------------===//
131  /// createDefaultScheduler - This creates an instruction scheduler appropriate
132  /// for the target.
133  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
134                                      SelectionDAG *DAG,
135                                      MachineBasicBlock *BB,
136                                      bool Fast) {
137    TargetLowering &TLI = IS->getTargetLowering();
138
139    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
140      return createTDListDAGScheduler(IS, DAG, BB, Fast);
141    } else {
142      assert(TLI.getSchedulingPreference() ==
143           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
144      return createBURRListDAGScheduler(IS, DAG, BB, Fast);
145    }
146  }
147}
148
149// EmitInstrWithCustomInserter - This method should be implemented by targets
150// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
151// instructions are special in various ways, which require special support to
152// insert.  The specified MachineInstr is created but not inserted into any
153// basic blocks, and the scheduler passes ownership of it to this method.
154MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
155                                                       MachineBasicBlock *MBB) {
156  cerr << "If a target marks an instruction with "
157       << "'usesCustomDAGSchedInserter', it must implement "
158       << "TargetLowering::EmitInstrWithCustomInserter!\n";
159  abort();
160  return 0;
161}
162
163/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
164/// physical register has only a single copy use, then coalesced the copy
165/// if possible.
166static void EmitLiveInCopy(MachineBasicBlock *MBB,
167                           MachineBasicBlock::iterator &InsertPos,
168                           unsigned VirtReg, unsigned PhysReg,
169                           const TargetRegisterClass *RC,
170                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
171                           const MachineRegisterInfo &MRI,
172                           const TargetRegisterInfo &TRI,
173                           const TargetInstrInfo &TII) {
174  unsigned NumUses = 0;
175  MachineInstr *UseMI = NULL;
176  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
177         UE = MRI.use_end(); UI != UE; ++UI) {
178    UseMI = &*UI;
179    if (++NumUses > 1)
180      break;
181  }
182
183  // If the number of uses is not one, or the use is not a move instruction,
184  // don't coalesce. Also, only coalesce away a virtual register to virtual
185  // register copy.
186  bool Coalesced = false;
187  unsigned SrcReg, DstReg;
188  if (NumUses == 1 &&
189      TII.isMoveInstr(*UseMI, SrcReg, DstReg) &&
190      TargetRegisterInfo::isVirtualRegister(DstReg)) {
191    VirtReg = DstReg;
192    Coalesced = true;
193  }
194
195  // Now find an ideal location to insert the copy.
196  MachineBasicBlock::iterator Pos = InsertPos;
197  while (Pos != MBB->begin()) {
198    MachineInstr *PrevMI = prior(Pos);
199    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
200    // copyRegToReg might emit multiple instructions to do a copy.
201    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
202    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
203      // This is what the BB looks like right now:
204      // r1024 = mov r0
205      // ...
206      // r1    = mov r1024
207      //
208      // We want to insert "r1025 = mov r1". Inserting this copy below the
209      // move to r1024 makes it impossible for that move to be coalesced.
210      //
211      // r1025 = mov r1
212      // r1024 = mov r0
213      // ...
214      // r1    = mov 1024
215      // r2    = mov 1025
216      break; // Woot! Found a good location.
217    --Pos;
218  }
219
220  TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
221  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
222  if (Coalesced) {
223    if (&*InsertPos == UseMI) ++InsertPos;
224    MBB->erase(UseMI);
225  }
226}
227
228/// EmitLiveInCopies - If this is the first basic block in the function,
229/// and if it has live ins that need to be copied into vregs, emit the
230/// copies into the block.
231static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
232                             const MachineRegisterInfo &MRI,
233                             const TargetRegisterInfo &TRI,
234                             const TargetInstrInfo &TII) {
235  if (SchedLiveInCopies) {
236    // Emit the copies at a heuristically-determined location in the block.
237    DenseMap<MachineInstr*, unsigned> CopyRegMap;
238    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
239    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
240           E = MRI.livein_end(); LI != E; ++LI)
241      if (LI->second) {
242        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
243        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
244                       RC, CopyRegMap, MRI, TRI, TII);
245      }
246  } else {
247    // Emit the copies into the top of the block.
248    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
249           E = MRI.livein_end(); LI != E; ++LI)
250      if (LI->second) {
251        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
252        TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
253                         LI->second, LI->first, RC, RC);
254      }
255  }
256}
257
258//===----------------------------------------------------------------------===//
259// SelectionDAGISel code
260//===----------------------------------------------------------------------===//
261
262SelectionDAGISel::SelectionDAGISel(TargetLowering &tli, bool fast) :
263  FunctionPass(&ID), TLI(tli),
264  FuncInfo(new FunctionLoweringInfo(TLI)),
265  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
266  SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo)),
267  GFI(),
268  Fast(fast),
269  DAGSize(0)
270{}
271
272SelectionDAGISel::~SelectionDAGISel() {
273  delete SDL;
274  delete CurDAG;
275  delete FuncInfo;
276}
277
278unsigned SelectionDAGISel::MakeReg(MVT VT) {
279  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
280}
281
282void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
283  AU.addRequired<AliasAnalysis>();
284  AU.addRequired<GCModuleInfo>();
285  AU.setPreservesAll();
286}
287
288bool SelectionDAGISel::runOnFunction(Function &Fn) {
289  // Do some sanity-checking on the command-line options.
290  assert((!EnableFastISelVerbose || EnableFastISel) &&
291         "-fast-isel-verbose requires -fast-isel");
292  assert((!EnableFastISelAbort || EnableFastISel) &&
293         "-fast-isel-abort requires -fast-isel");
294
295  // Get alias analysis for load/store combining.
296  AA = &getAnalysis<AliasAnalysis>();
297
298  TargetMachine &TM = TLI.getTargetMachine();
299  MachineFunction &MF = MachineFunction::construct(&Fn, TM);
300  const MachineRegisterInfo &MRI = MF.getRegInfo();
301  const TargetInstrInfo &TII = *TM.getInstrInfo();
302  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
303
304  if (MF.getFunction()->hasGC())
305    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(*MF.getFunction());
306  else
307    GFI = 0;
308  RegInfo = &MF.getRegInfo();
309  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
310
311  FuncInfo->set(Fn, MF, EnableFastISel);
312  MachineModuleInfo *MMI = getAnalysisToUpdate<MachineModuleInfo>();
313  CurDAG->init(MF, MMI);
314  SDL->init(GFI, *AA);
315
316  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
317    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
318      // Mark landing pad.
319      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
320
321  SelectAllBasicBlocks(Fn, MF, MMI);
322
323  // If the first basic block in the function has live ins that need to be
324  // copied into vregs, emit the copies into the top of the block before
325  // emitting the code for the block.
326  EmitLiveInCopies(MF.begin(), MRI, TRI, TII);
327
328  // Add function live-ins to entry block live-in set.
329  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
330         E = RegInfo->livein_end(); I != E; ++I)
331    MF.begin()->addLiveIn(I->first);
332
333#ifndef NDEBUG
334  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
335         "Not all catch info was assigned to a landing pad!");
336#endif
337
338  FuncInfo->clear();
339
340  return true;
341}
342
343static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
344                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
345  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
346    if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
347      // Apply the catch info to DestBB.
348      AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
349#ifndef NDEBUG
350      if (!FLI.MBBMap[SrcBB]->isLandingPad())
351        FLI.CatchInfoFound.insert(EHSel);
352#endif
353    }
354}
355
356/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
357/// whether object offset >= 0.
358static bool
359IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDValue Op) {
360  if (!isa<FrameIndexSDNode>(Op)) return false;
361
362  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
363  int FrameIdx =  FrameIdxNode->getIndex();
364  return MFI->isFixedObjectIndex(FrameIdx) &&
365    MFI->getObjectOffset(FrameIdx) >= 0;
366}
367
368/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
369/// possibly be overwritten when lowering the outgoing arguments in a tail
370/// call. Currently the implementation of this call is very conservative and
371/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
372/// virtual registers would be overwritten by direct lowering.
373static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
374                                                    MachineFrameInfo * MFI) {
375  RegisterSDNode * OpReg = NULL;
376  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
377      (Op.getOpcode()== ISD::CopyFromReg &&
378       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
379       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
380      (Op.getOpcode() == ISD::LOAD &&
381       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
382      (Op.getOpcode() == ISD::MERGE_VALUES &&
383       Op.getOperand(Op.getResNo()).getOpcode() == ISD::LOAD &&
384       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.getResNo()).
385                                       getOperand(1))))
386    return true;
387  return false;
388}
389
390/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
391/// DAG and fixes their tailcall attribute operand.
392static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
393                                           TargetLowering& TLI) {
394  SDNode * Ret = NULL;
395  SDValue Terminator = DAG.getRoot();
396
397  // Find RET node.
398  if (Terminator.getOpcode() == ISD::RET) {
399    Ret = Terminator.getNode();
400  }
401
402  // Fix tail call attribute of CALL nodes.
403  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
404         BI = DAG.allnodes_end(); BI != BE; ) {
405    --BI;
406    if (CallSDNode *TheCall = dyn_cast<CallSDNode>(BI)) {
407      SDValue OpRet(Ret, 0);
408      SDValue OpCall(BI, 0);
409      bool isMarkedTailCall = TheCall->isTailCall();
410      // If CALL node has tail call attribute set to true and the call is not
411      // eligible (no RET or the target rejects) the attribute is fixed to
412      // false. The TargetLowering::IsEligibleForTailCallOptimization function
413      // must correctly identify tail call optimizable calls.
414      if (!isMarkedTailCall) continue;
415      if (Ret==NULL ||
416          !TLI.IsEligibleForTailCallOptimization(TheCall, OpRet, DAG)) {
417        // Not eligible. Mark CALL node as non tail call. Note that we
418        // can modify the call node in place since calls are not CSE'd.
419        TheCall->setNotTailCall();
420      } else {
421        // Look for tail call clobbered arguments. Emit a series of
422        // copyto/copyfrom virtual register nodes to protect them.
423        SmallVector<SDValue, 32> Ops;
424        SDValue Chain = TheCall->getChain(), InFlag;
425        Ops.push_back(Chain);
426        Ops.push_back(TheCall->getCallee());
427        for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; ++i) {
428          SDValue Arg = TheCall->getArg(i);
429          bool isByVal = TheCall->getArgFlags(i).isByVal();
430          MachineFunction &MF = DAG.getMachineFunction();
431          MachineFrameInfo *MFI = MF.getFrameInfo();
432          if (!isByVal &&
433              IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
434            MVT VT = Arg.getValueType();
435            unsigned VReg = MF.getRegInfo().
436              createVirtualRegister(TLI.getRegClassFor(VT));
437            Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
438            InFlag = Chain.getValue(1);
439            Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
440            Chain = Arg.getValue(1);
441            InFlag = Arg.getValue(2);
442          }
443          Ops.push_back(Arg);
444          Ops.push_back(TheCall->getArgFlagsVal(i));
445        }
446        // Link in chain of CopyTo/CopyFromReg.
447        Ops[0] = Chain;
448        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
449      }
450    }
451  }
452}
453
454void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
455                                        BasicBlock::iterator Begin,
456                                        BasicBlock::iterator End) {
457  SDL->setCurrentBasicBlock(BB);
458
459  MachineModuleInfo *MMI = CurDAG->getMachineModuleInfo();
460
461  if (MMI && BB->isLandingPad()) {
462    // Add a label to mark the beginning of the landing pad.  Deletion of the
463    // landing pad can thus be detected via the MachineModuleInfo.
464    unsigned LabelID = MMI->addLandingPad(BB);
465    CurDAG->setRoot(CurDAG->getLabel(ISD::EH_LABEL,
466                                     CurDAG->getEntryNode(), LabelID));
467
468    // Mark exception register as live in.
469    unsigned Reg = TLI.getExceptionAddressRegister();
470    if (Reg) BB->addLiveIn(Reg);
471
472    // Mark exception selector register as live in.
473    Reg = TLI.getExceptionSelectorRegister();
474    if (Reg) BB->addLiveIn(Reg);
475
476    // FIXME: Hack around an exception handling flaw (PR1508): the personality
477    // function and list of typeids logically belong to the invoke (or, if you
478    // like, the basic block containing the invoke), and need to be associated
479    // with it in the dwarf exception handling tables.  Currently however the
480    // information is provided by an intrinsic (eh.selector) that can be moved
481    // to unexpected places by the optimizers: if the unwind edge is critical,
482    // then breaking it can result in the intrinsics being in the successor of
483    // the landing pad, not the landing pad itself.  This results in exceptions
484    // not being caught because no typeids are associated with the invoke.
485    // This may not be the only way things can go wrong, but it is the only way
486    // we try to work around for the moment.
487    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
488
489    if (Br && Br->isUnconditional()) { // Critical edge?
490      BasicBlock::iterator I, E;
491      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
492        if (isa<EHSelectorInst>(I))
493          break;
494
495      if (I == E)
496        // No catch info found - try to extract some from the successor.
497        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
498    }
499  }
500
501  // Lower all of the non-terminator instructions.
502  for (BasicBlock::iterator I = Begin; I != End; ++I)
503    if (!isa<TerminatorInst>(I))
504      SDL->visit(*I);
505
506  // Ensure that all instructions which are used outside of their defining
507  // blocks are available as virtual registers.  Invoke is handled elsewhere.
508  for (BasicBlock::iterator I = Begin; I != End; ++I)
509    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
510      DenseMap<const Value*,unsigned>::iterator VMI =FuncInfo->ValueMap.find(I);
511      if (VMI != FuncInfo->ValueMap.end())
512        SDL->CopyValueToVirtualRegister(I, VMI->second);
513    }
514
515  // Handle PHI nodes in successor blocks.
516  if (End == LLVMBB->end()) {
517    HandlePHINodesInSuccessorBlocks(LLVMBB);
518
519    // Lower the terminator after the copies are emitted.
520    SDL->visit(*LLVMBB->getTerminator());
521  }
522
523  // Make sure the root of the DAG is up-to-date.
524  CurDAG->setRoot(SDL->getControlRoot());
525
526  // Check whether calls in this block are real tail calls. Fix up CALL nodes
527  // with correct tailcall attribute so that the target can rely on the tailcall
528  // attribute indicating whether the call is really eligible for tail call
529  // optimization.
530  if (PerformTailCallOpt)
531    CheckDAGForTailCallsAndFixThem(*CurDAG, TLI);
532
533  // Final step, emit the lowered DAG as machine code.
534  CodeGenAndEmitDAG();
535  SDL->clear();
536}
537
538void SelectionDAGISel::ComputeLiveOutVRegInfo() {
539  SmallPtrSet<SDNode*, 128> VisitedNodes;
540  SmallVector<SDNode*, 128> Worklist;
541
542  Worklist.push_back(CurDAG->getRoot().getNode());
543
544  APInt Mask;
545  APInt KnownZero;
546  APInt KnownOne;
547
548  while (!Worklist.empty()) {
549    SDNode *N = Worklist.back();
550    Worklist.pop_back();
551
552    // If we've already seen this node, ignore it.
553    if (!VisitedNodes.insert(N))
554      continue;
555
556    // Otherwise, add all chain operands to the worklist.
557    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
558      if (N->getOperand(i).getValueType() == MVT::Other)
559        Worklist.push_back(N->getOperand(i).getNode());
560
561    // If this is a CopyToReg with a vreg dest, process it.
562    if (N->getOpcode() != ISD::CopyToReg)
563      continue;
564
565    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
566    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
567      continue;
568
569    // Ignore non-scalar or non-integer values.
570    SDValue Src = N->getOperand(2);
571    MVT SrcVT = Src.getValueType();
572    if (!SrcVT.isInteger() || SrcVT.isVector())
573      continue;
574
575    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
576    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
577    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
578
579    // Only install this information if it tells us something.
580    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
581      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
582      FunctionLoweringInfo &FLI = CurDAG->getFunctionLoweringInfo();
583      if (DestReg >= FLI.LiveOutRegInfo.size())
584        FLI.LiveOutRegInfo.resize(DestReg+1);
585      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
586      LOI.NumSignBits = NumSignBits;
587      LOI.KnownOne = NumSignBits;
588      LOI.KnownZero = NumSignBits;
589    }
590  }
591}
592
593void SelectionDAGISel::CodeGenAndEmitDAG() {
594  std::string GroupName;
595  if (TimePassesIsEnabled)
596    GroupName = "Instruction Selection and Scheduling";
597  std::string BlockName;
598  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
599      ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs)
600    BlockName = CurDAG->getMachineFunction().getFunction()->getName() + ':' +
601                BB->getBasicBlock()->getName();
602
603  DOUT << "Initial selection DAG:\n";
604  DEBUG(CurDAG->dump());
605
606  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
607
608  // Run the DAG combiner in pre-legalize mode.
609  if (TimePassesIsEnabled) {
610    NamedRegionTimer T("DAG Combining 1", GroupName);
611    CurDAG->Combine(false, *AA, Fast);
612  } else {
613    CurDAG->Combine(false, *AA, Fast);
614  }
615
616  DOUT << "Optimized lowered selection DAG:\n";
617  DEBUG(CurDAG->dump());
618
619  // Second step, hack on the DAG until it only uses operations and types that
620  // the target supports.
621  if (EnableLegalizeTypes) {// Enable this some day.
622    if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
623                                                 BlockName);
624
625    if (TimePassesIsEnabled) {
626      NamedRegionTimer T("Type Legalization", GroupName);
627      CurDAG->LegalizeTypes();
628    } else {
629      CurDAG->LegalizeTypes();
630    }
631
632    DOUT << "Type-legalized selection DAG:\n";
633    DEBUG(CurDAG->dump());
634
635    // TODO: enable a dag combine pass here.
636  }
637
638  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
639
640  if (TimePassesIsEnabled) {
641    NamedRegionTimer T("DAG Legalization", GroupName);
642    CurDAG->Legalize();
643  } else {
644    CurDAG->Legalize();
645  }
646
647  DOUT << "Legalized selection DAG:\n";
648  DEBUG(CurDAG->dump());
649
650  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
651
652  // Run the DAG combiner in post-legalize mode.
653  if (TimePassesIsEnabled) {
654    NamedRegionTimer T("DAG Combining 2", GroupName);
655    CurDAG->Combine(true, *AA, Fast);
656  } else {
657    CurDAG->Combine(true, *AA, Fast);
658  }
659
660  DOUT << "Optimized legalized selection DAG:\n";
661  DEBUG(CurDAG->dump());
662
663  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
664
665  if (!Fast && EnableValueProp)
666    ComputeLiveOutVRegInfo();
667
668  // Third, instruction select all of the operations to machine code, adding the
669  // code to the MachineBasicBlock.
670  if (TimePassesIsEnabled) {
671    NamedRegionTimer T("Instruction Selection", GroupName);
672    InstructionSelect();
673  } else {
674    InstructionSelect();
675  }
676
677  DOUT << "Selected selection DAG:\n";
678  DEBUG(CurDAG->dump());
679
680  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
681
682  // Schedule machine code.
683  ScheduleDAG *Scheduler;
684  if (TimePassesIsEnabled) {
685    NamedRegionTimer T("Instruction Scheduling", GroupName);
686    Scheduler = Schedule();
687  } else {
688    Scheduler = Schedule();
689  }
690
691  if (ViewSUnitDAGs) Scheduler->viewGraph();
692
693  // Emit machine code to BB.  This can change 'BB' to the last block being
694  // inserted into.
695  if (TimePassesIsEnabled) {
696    NamedRegionTimer T("Instruction Creation", GroupName);
697    BB = Scheduler->EmitSchedule();
698  } else {
699    BB = Scheduler->EmitSchedule();
700  }
701
702  // Free the scheduler state.
703  if (TimePassesIsEnabled) {
704    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
705    delete Scheduler;
706  } else {
707    delete Scheduler;
708  }
709
710  DOUT << "Selected machine code:\n";
711  DEBUG(BB->dump());
712}
713
714void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF,
715                                            MachineModuleInfo *MMI) {
716  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
717    BasicBlock *LLVMBB = &*I;
718    BB = FuncInfo->MBBMap[LLVMBB];
719
720    BasicBlock::iterator const Begin = LLVMBB->begin();
721    BasicBlock::iterator const End = LLVMBB->end();
722    BasicBlock::iterator BI = Begin;
723
724    // Lower any arguments needed in this block if this is the entry block.
725    if (LLVMBB == &Fn.getEntryBlock())
726      LowerArguments(LLVMBB);
727
728    // Before doing SelectionDAG ISel, see if FastISel has been requested.
729    // FastISel doesn't support EH landing pads, which require special handling.
730    if (EnableFastISel && !BB->isLandingPad()) {
731      if (FastISel *F = TLI.createFastISel(*FuncInfo->MF, MMI,
732                                           FuncInfo->ValueMap,
733                                           FuncInfo->MBBMap,
734                                           FuncInfo->StaticAllocaMap)) {
735        // Emit code for any incoming arguments. This must happen before
736        // beginning FastISel on the entry block.
737        if (LLVMBB == &Fn.getEntryBlock()) {
738          CurDAG->setRoot(SDL->getControlRoot());
739          CodeGenAndEmitDAG();
740          SDL->clear();
741        }
742        F->setCurrentBlock(BB);
743        // Do FastISel on as many instructions as possible.
744        for (; BI != End; ++BI) {
745          // Just before the terminator instruction, insert instructions to
746          // feed PHI nodes in successor blocks.
747          if (isa<TerminatorInst>(BI))
748            if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, F)) {
749              if (EnableFastISelVerbose || EnableFastISelAbort) {
750                cerr << "FastISel miss: ";
751                BI->dump();
752              }
753              if (EnableFastISelAbort)
754                assert(0 && "FastISel didn't handle a PHI in a successor");
755              break;
756            }
757
758          // First try normal tablegen-generated "fast" selection.
759          if (F->SelectInstruction(BI))
760            continue;
761
762          // Next, try calling the target to attempt to handle the instruction.
763          if (F->TargetSelectInstruction(BI))
764            continue;
765
766          // Then handle certain instructions as single-LLVM-Instruction blocks.
767          if (isa<CallInst>(BI)) {
768            if (BI->getType() != Type::VoidTy) {
769              unsigned &R = FuncInfo->ValueMap[BI];
770              if (!R)
771                R = FuncInfo->CreateRegForValue(BI);
772            }
773
774            SelectBasicBlock(LLVMBB, BI, next(BI));
775            continue;
776          }
777
778          // Otherwise, give up on FastISel for the rest of the block.
779          // For now, be a little lenient about non-branch terminators.
780          if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
781            if (EnableFastISelVerbose || EnableFastISelAbort) {
782              cerr << "FastISel miss: ";
783              BI->dump();
784            }
785            if (EnableFastISelAbort)
786              // The "fast" selector couldn't handle something and bailed.
787              // For the purpose of debugging, just abort.
788              assert(0 && "FastISel didn't select the entire block");
789          }
790          break;
791        }
792        delete F;
793      }
794    }
795
796    // Run SelectionDAG instruction selection on the remainder of the block
797    // not handled by FastISel. If FastISel is not run, this is the entire
798    // block.
799    if (BI != End)
800      SelectBasicBlock(LLVMBB, BI, End);
801
802    FinishBasicBlock();
803  }
804}
805
806void
807SelectionDAGISel::FinishBasicBlock() {
808
809  // Perform target specific isel post processing.
810  InstructionSelectPostProcessing();
811
812  DOUT << "Target-post-processed machine code:\n";
813  DEBUG(BB->dump());
814
815  DOUT << "Total amount of phi nodes to update: "
816       << SDL->PHINodesToUpdate.size() << "\n";
817  DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
818          DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
819               << ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
820
821  // Next, now that we know what the last MBB the LLVM BB expanded is, update
822  // PHI nodes in successors.
823  if (SDL->SwitchCases.empty() &&
824      SDL->JTCases.empty() &&
825      SDL->BitTestCases.empty()) {
826    for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
827      MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
828      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
829             "This is not a machine PHI node that we are updating!");
830      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
831                                                false));
832      PHI->addOperand(MachineOperand::CreateMBB(BB));
833    }
834    SDL->PHINodesToUpdate.clear();
835    return;
836  }
837
838  for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) {
839    // Lower header first, if it wasn't already lowered
840    if (!SDL->BitTestCases[i].Emitted) {
841      // Set the current basic block to the mbb we wish to insert the code into
842      BB = SDL->BitTestCases[i].Parent;
843      SDL->setCurrentBasicBlock(BB);
844      // Emit the code
845      SDL->visitBitTestHeader(SDL->BitTestCases[i]);
846      CurDAG->setRoot(SDL->getRoot());
847      CodeGenAndEmitDAG();
848      SDL->clear();
849    }
850
851    for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
852      // Set the current basic block to the mbb we wish to insert the code into
853      BB = SDL->BitTestCases[i].Cases[j].ThisBB;
854      SDL->setCurrentBasicBlock(BB);
855      // Emit the code
856      if (j+1 != ej)
857        SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB,
858                              SDL->BitTestCases[i].Reg,
859                              SDL->BitTestCases[i].Cases[j]);
860      else
861        SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
862                              SDL->BitTestCases[i].Reg,
863                              SDL->BitTestCases[i].Cases[j]);
864
865
866      CurDAG->setRoot(SDL->getRoot());
867      CodeGenAndEmitDAG();
868      SDL->clear();
869    }
870
871    // Update PHI Nodes
872    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
873      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
874      MachineBasicBlock *PHIBB = PHI->getParent();
875      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
876             "This is not a machine PHI node that we are updating!");
877      // This is "default" BB. We have two jumps to it. From "header" BB and
878      // from last "case" BB.
879      if (PHIBB == SDL->BitTestCases[i].Default) {
880        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
881                                                  false));
882        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent));
883        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
884                                                  false));
885        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases.
886                                                  back().ThisBB));
887      }
888      // One of "cases" BB.
889      for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size();
890           j != ej; ++j) {
891        MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB;
892        if (cBB->succ_end() !=
893            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
894          PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
895                                                    false));
896          PHI->addOperand(MachineOperand::CreateMBB(cBB));
897        }
898      }
899    }
900  }
901  SDL->BitTestCases.clear();
902
903  // If the JumpTable record is filled in, then we need to emit a jump table.
904  // Updating the PHI nodes is tricky in this case, since we need to determine
905  // whether the PHI is a successor of the range check MBB or the jump table MBB
906  for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) {
907    // Lower header first, if it wasn't already lowered
908    if (!SDL->JTCases[i].first.Emitted) {
909      // Set the current basic block to the mbb we wish to insert the code into
910      BB = SDL->JTCases[i].first.HeaderBB;
911      SDL->setCurrentBasicBlock(BB);
912      // Emit the code
913      SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first);
914      CurDAG->setRoot(SDL->getRoot());
915      CodeGenAndEmitDAG();
916      SDL->clear();
917    }
918
919    // Set the current basic block to the mbb we wish to insert the code into
920    BB = SDL->JTCases[i].second.MBB;
921    SDL->setCurrentBasicBlock(BB);
922    // Emit the code
923    SDL->visitJumpTable(SDL->JTCases[i].second);
924    CurDAG->setRoot(SDL->getRoot());
925    CodeGenAndEmitDAG();
926    SDL->clear();
927
928    // Update PHI Nodes
929    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
930      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
931      MachineBasicBlock *PHIBB = PHI->getParent();
932      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
933             "This is not a machine PHI node that we are updating!");
934      // "default" BB. We can go there only from header BB.
935      if (PHIBB == SDL->JTCases[i].second.Default) {
936        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
937                                                  false));
938        PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
939      }
940      // JT BB. Just iterate over successors here
941      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
942        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
943                                                  false));
944        PHI->addOperand(MachineOperand::CreateMBB(BB));
945      }
946    }
947  }
948  SDL->JTCases.clear();
949
950  // If the switch block involved a branch to one of the actual successors, we
951  // need to update PHI nodes in that block.
952  for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
953    MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
954    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
955           "This is not a machine PHI node that we are updating!");
956    if (BB->isSuccessor(PHI->getParent())) {
957      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
958                                                false));
959      PHI->addOperand(MachineOperand::CreateMBB(BB));
960    }
961  }
962
963  // If we generated any switch lowering information, build and codegen any
964  // additional DAGs necessary.
965  for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
966    // Set the current basic block to the mbb we wish to insert the code into
967    BB = SDL->SwitchCases[i].ThisBB;
968    SDL->setCurrentBasicBlock(BB);
969
970    // Emit the code
971    SDL->visitSwitchCase(SDL->SwitchCases[i]);
972    CurDAG->setRoot(SDL->getRoot());
973    CodeGenAndEmitDAG();
974    SDL->clear();
975
976    // Handle any PHI nodes in successors of this chunk, as if we were coming
977    // from the original BB before switch expansion.  Note that PHI nodes can
978    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
979    // handle them the right number of times.
980    while ((BB = SDL->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
981      for (MachineBasicBlock::iterator Phi = BB->begin();
982           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
983        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
984        for (unsigned pn = 0; ; ++pn) {
985          assert(pn != SDL->PHINodesToUpdate.size() &&
986                 "Didn't find PHI entry!");
987          if (SDL->PHINodesToUpdate[pn].first == Phi) {
988            Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
989                                                      second, false));
990            Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
991            break;
992          }
993        }
994      }
995
996      // Don't process RHS if same block as LHS.
997      if (BB == SDL->SwitchCases[i].FalseBB)
998        SDL->SwitchCases[i].FalseBB = 0;
999
1000      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1001      SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
1002      SDL->SwitchCases[i].FalseBB = 0;
1003    }
1004    assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
1005  }
1006  SDL->SwitchCases.clear();
1007
1008  SDL->PHINodesToUpdate.clear();
1009}
1010
1011
1012/// Schedule - Pick a safe ordering for instructions for each
1013/// target node in the graph.
1014///
1015ScheduleDAG *SelectionDAGISel::Schedule() {
1016  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1017
1018  if (!Ctor) {
1019    Ctor = ISHeuristic;
1020    RegisterScheduler::setDefault(Ctor);
1021  }
1022
1023  ScheduleDAG *Scheduler = Ctor(this, CurDAG, BB, Fast);
1024  Scheduler->Run();
1025
1026  return Scheduler;
1027}
1028
1029
1030HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1031  return new HazardRecognizer();
1032}
1033
1034//===----------------------------------------------------------------------===//
1035// Helper functions used by the generated instruction selector.
1036//===----------------------------------------------------------------------===//
1037// Calls to these methods are generated by tblgen.
1038
1039/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1040/// the dag combiner simplified the 255, we still want to match.  RHS is the
1041/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1042/// specified in the .td file (e.g. 255).
1043bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1044                                    int64_t DesiredMaskS) const {
1045  const APInt &ActualMask = RHS->getAPIntValue();
1046  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1047
1048  // If the actual mask exactly matches, success!
1049  if (ActualMask == DesiredMask)
1050    return true;
1051
1052  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1053  if (ActualMask.intersects(~DesiredMask))
1054    return false;
1055
1056  // Otherwise, the DAG Combiner may have proven that the value coming in is
1057  // either already zero or is not demanded.  Check for known zero input bits.
1058  APInt NeededMask = DesiredMask & ~ActualMask;
1059  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1060    return true;
1061
1062  // TODO: check to see if missing bits are just not demanded.
1063
1064  // Otherwise, this pattern doesn't match.
1065  return false;
1066}
1067
1068/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1069/// the dag combiner simplified the 255, we still want to match.  RHS is the
1070/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1071/// specified in the .td file (e.g. 255).
1072bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1073                                   int64_t DesiredMaskS) const {
1074  const APInt &ActualMask = RHS->getAPIntValue();
1075  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1076
1077  // If the actual mask exactly matches, success!
1078  if (ActualMask == DesiredMask)
1079    return true;
1080
1081  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1082  if (ActualMask.intersects(~DesiredMask))
1083    return false;
1084
1085  // Otherwise, the DAG Combiner may have proven that the value coming in is
1086  // either already zero or is not demanded.  Check for known zero input bits.
1087  APInt NeededMask = DesiredMask & ~ActualMask;
1088
1089  APInt KnownZero, KnownOne;
1090  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1091
1092  // If all the missing bits in the or are already known to be set, match!
1093  if ((NeededMask & KnownOne) == NeededMask)
1094    return true;
1095
1096  // TODO: check to see if missing bits are just not demanded.
1097
1098  // Otherwise, this pattern doesn't match.
1099  return false;
1100}
1101
1102
1103/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1104/// by tblgen.  Others should not call it.
1105void SelectionDAGISel::
1106SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1107  std::vector<SDValue> InOps;
1108  std::swap(InOps, Ops);
1109
1110  Ops.push_back(InOps[0]);  // input chain.
1111  Ops.push_back(InOps[1]);  // input asm string.
1112
1113  unsigned i = 2, e = InOps.size();
1114  if (InOps[e-1].getValueType() == MVT::Flag)
1115    --e;  // Don't process a flag operand if it is here.
1116
1117  while (i != e) {
1118    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1119    if ((Flags & 7) != 4 /*MEM*/ &&
1120        (Flags & 7) != 7 /*MEM OVERLAPS EARLYCLOBBER*/) {
1121      // Just skip over this operand, copying the operands verbatim.
1122      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
1123      i += (Flags >> 3) + 1;
1124    } else {
1125      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
1126      // Otherwise, this is a memory operand.  Ask the target to select it.
1127      std::vector<SDValue> SelOps;
1128      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1129        cerr << "Could not match memory address.  Inline asm failure!\n";
1130        exit(1);
1131      }
1132
1133      // Add this to the output node.
1134      MVT IntPtrTy = CurDAG->getTargetLoweringInfo().getPointerTy();
1135      Ops.push_back(CurDAG->getTargetConstant((Flags & 7) | (SelOps.size()<< 3),
1136                                              IntPtrTy));
1137      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1138      i += 2;
1139    }
1140  }
1141
1142  // Add the flag input back if present.
1143  if (e != InOps.size())
1144    Ops.push_back(InOps.back());
1145}
1146
1147char SelectionDAGISel::ID = 0;
1148