SelectionDAGISel.cpp revision 789cb5df9ca61f8a3794a4fbde7cc020fd00a02a
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/TargetTransformInfo.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/FunctionLoweringInfo.h"
25#include "llvm/CodeGen/GCMetadata.h"
26#include "llvm/CodeGen/GCStrategy.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
33#include "llvm/CodeGen/SchedulerRegistry.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/DebugInfo.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/InlineAsm.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/Intrinsics.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/IR/Module.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLibraryInfo.h"
52#include "llvm/Target/TargetLowering.h"
53#include "llvm/Target/TargetMachine.h"
54#include "llvm/Target/TargetOptions.h"
55#include "llvm/Target/TargetRegisterInfo.h"
56#include "llvm/Target/TargetSubtargetInfo.h"
57#include "llvm/Transforms/Utils/BasicBlockUtils.h"
58#include <algorithm>
59using namespace llvm;
60
61STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
62STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
63STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
64STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
65STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
66
67#ifndef NDEBUG
68static cl::opt<bool>
69EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
70          cl::desc("Enable extra verbose messages in the \"fast\" "
71                   "instruction selector"));
72  // Terminators
73STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
74STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
75STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
76STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
77STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
78STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
79STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
80
81  // Standard binary operators...
82STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
83STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
84STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
85STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
86STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
87STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
88STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
89STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
90STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
91STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
92STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
93STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
94
95  // Logical operators...
96STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
97STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
98STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
99
100  // Memory instructions...
101STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
102STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
103STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
104STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
105STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
106STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
107STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
108
109  // Convert instructions...
110STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
111STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
112STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
113STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
114STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
115STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
116STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
117STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
118STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
119STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
120STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
121STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
122
123  // Other instructions...
124STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
125STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
126STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
127STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
128STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
129STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
130STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
131STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
132STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
133STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
134STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
135STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
136STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
137STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
138STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
139#endif
140
141static cl::opt<bool>
142EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
143          cl::desc("Enable verbose messages in the \"fast\" "
144                   "instruction selector"));
145static cl::opt<bool>
146EnableFastISelAbort("fast-isel-abort", cl::Hidden,
147          cl::desc("Enable abort calls when \"fast\" instruction fails"));
148
149static cl::opt<bool>
150UseMBPI("use-mbpi",
151        cl::desc("use Machine Branch Probability Info"),
152        cl::init(true), cl::Hidden);
153
154#ifndef NDEBUG
155static cl::opt<bool>
156ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
157          cl::desc("Pop up a window to show dags before the first "
158                   "dag combine pass"));
159static cl::opt<bool>
160ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
161          cl::desc("Pop up a window to show dags before legalize types"));
162static cl::opt<bool>
163ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
164          cl::desc("Pop up a window to show dags before legalize"));
165static cl::opt<bool>
166ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
167          cl::desc("Pop up a window to show dags before the second "
168                   "dag combine pass"));
169static cl::opt<bool>
170ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
171          cl::desc("Pop up a window to show dags before the post legalize types"
172                   " dag combine pass"));
173static cl::opt<bool>
174ViewISelDAGs("view-isel-dags", cl::Hidden,
175          cl::desc("Pop up a window to show isel dags as they are selected"));
176static cl::opt<bool>
177ViewSchedDAGs("view-sched-dags", cl::Hidden,
178          cl::desc("Pop up a window to show sched dags as they are processed"));
179static cl::opt<bool>
180ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
181      cl::desc("Pop up a window to show SUnit dags after they are processed"));
182#else
183static const bool ViewDAGCombine1 = false,
184                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
185                  ViewDAGCombine2 = false,
186                  ViewDAGCombineLT = false,
187                  ViewISelDAGs = false, ViewSchedDAGs = false,
188                  ViewSUnitDAGs = false;
189#endif
190
191//===---------------------------------------------------------------------===//
192///
193/// RegisterScheduler class - Track the registration of instruction schedulers.
194///
195//===---------------------------------------------------------------------===//
196MachinePassRegistry RegisterScheduler::Registry;
197
198//===---------------------------------------------------------------------===//
199///
200/// ISHeuristic command line option for instruction schedulers.
201///
202//===---------------------------------------------------------------------===//
203static cl::opt<RegisterScheduler::FunctionPassCtor, false,
204               RegisterPassParser<RegisterScheduler> >
205ISHeuristic("pre-RA-sched",
206            cl::init(&createDefaultScheduler),
207            cl::desc("Instruction schedulers available (before register"
208                     " allocation):"));
209
210static RegisterScheduler
211defaultListDAGScheduler("default", "Best scheduler for the target",
212                        createDefaultScheduler);
213
214namespace llvm {
215  //===--------------------------------------------------------------------===//
216  /// createDefaultScheduler - This creates an instruction scheduler appropriate
217  /// for the target.
218  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
219                                             CodeGenOpt::Level OptLevel) {
220    const TargetLowering &TLI = IS->getTargetLowering();
221    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
222
223    if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() ||
224        TLI.getSchedulingPreference() == Sched::Source)
225      return createSourceListDAGScheduler(IS, OptLevel);
226    if (TLI.getSchedulingPreference() == Sched::RegPressure)
227      return createBURRListDAGScheduler(IS, OptLevel);
228    if (TLI.getSchedulingPreference() == Sched::Hybrid)
229      return createHybridListDAGScheduler(IS, OptLevel);
230    if (TLI.getSchedulingPreference() == Sched::VLIW)
231      return createVLIWDAGScheduler(IS, OptLevel);
232    assert(TLI.getSchedulingPreference() == Sched::ILP &&
233           "Unknown sched type!");
234    return createILPListDAGScheduler(IS, OptLevel);
235  }
236}
237
238// EmitInstrWithCustomInserter - This method should be implemented by targets
239// that mark instructions with the 'usesCustomInserter' flag.  These
240// instructions are special in various ways, which require special support to
241// insert.  The specified MachineInstr is created but not inserted into any
242// basic blocks, and this method is called to expand it into a sequence of
243// instructions, potentially also creating new basic blocks and control flow.
244// When new basic blocks are inserted and the edges from MBB to its successors
245// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
246// DenseMap.
247MachineBasicBlock *
248TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
249                                            MachineBasicBlock *MBB) const {
250#ifndef NDEBUG
251  dbgs() << "If a target marks an instruction with "
252          "'usesCustomInserter', it must implement "
253          "TargetLowering::EmitInstrWithCustomInserter!";
254#endif
255  llvm_unreachable(0);
256}
257
258void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
259                                                   SDNode *Node) const {
260  assert(!MI->hasPostISelHook() &&
261         "If a target marks an instruction with 'hasPostISelHook', "
262         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
263}
264
265//===----------------------------------------------------------------------===//
266// SelectionDAGISel code
267//===----------------------------------------------------------------------===//
268
269SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
270                                   CodeGenOpt::Level OL) :
271  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
272  FuncInfo(new FunctionLoweringInfo(TLI)),
273  CurDAG(new SelectionDAG(tm, OL)),
274  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
275  GFI(),
276  OptLevel(OL),
277  DAGSize(0) {
278    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
279    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
280    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
281    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
282  }
283
284SelectionDAGISel::~SelectionDAGISel() {
285  delete SDB;
286  delete CurDAG;
287  delete FuncInfo;
288}
289
290void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
291  AU.addRequired<AliasAnalysis>();
292  AU.addPreserved<AliasAnalysis>();
293  AU.addRequired<GCModuleInfo>();
294  AU.addPreserved<GCModuleInfo>();
295  AU.addRequired<TargetLibraryInfo>();
296  if (UseMBPI && OptLevel != CodeGenOpt::None)
297    AU.addRequired<BranchProbabilityInfo>();
298  MachineFunctionPass::getAnalysisUsage(AU);
299}
300
301/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
302/// may trap on it.  In this case we have to split the edge so that the path
303/// through the predecessor block that doesn't go to the phi block doesn't
304/// execute the possibly trapping instruction.
305///
306/// This is required for correctness, so it must be done at -O0.
307///
308static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
309  // Loop for blocks with phi nodes.
310  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
311    PHINode *PN = dyn_cast<PHINode>(BB->begin());
312    if (PN == 0) continue;
313
314  ReprocessBlock:
315    // For each block with a PHI node, check to see if any of the input values
316    // are potentially trapping constant expressions.  Constant expressions are
317    // the only potentially trapping value that can occur as the argument to a
318    // PHI.
319    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
320      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
321        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
322        if (CE == 0 || !CE->canTrap()) continue;
323
324        // The only case we have to worry about is when the edge is critical.
325        // Since this block has a PHI Node, we assume it has multiple input
326        // edges: check to see if the pred has multiple successors.
327        BasicBlock *Pred = PN->getIncomingBlock(i);
328        if (Pred->getTerminator()->getNumSuccessors() == 1)
329          continue;
330
331        // Okay, we have to split this edge.
332        SplitCriticalEdge(Pred->getTerminator(),
333                          GetSuccessorNumber(Pred, BB), SDISel, true);
334        goto ReprocessBlock;
335      }
336  }
337}
338
339bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
340  // Do some sanity-checking on the command-line options.
341  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
342         "-fast-isel-verbose requires -fast-isel");
343  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
344         "-fast-isel-abort requires -fast-isel");
345
346  const Function &Fn = *mf.getFunction();
347  const TargetInstrInfo &TII = *TM.getInstrInfo();
348  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
349
350  MF = &mf;
351  RegInfo = &MF->getRegInfo();
352  AA = &getAnalysis<AliasAnalysis>();
353  LibInfo = &getAnalysis<TargetLibraryInfo>();
354  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
355  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
356
357  TargetSubtargetInfo &ST =
358    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
359  ST.resetSubtargetFeatures(MF);
360
361  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
362
363  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
364
365  CurDAG->init(*MF, TTI);
366  FuncInfo->set(Fn, *MF);
367
368  if (UseMBPI && OptLevel != CodeGenOpt::None)
369    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
370  else
371    FuncInfo->BPI = 0;
372
373  SDB->init(GFI, *AA, LibInfo);
374
375  SelectAllBasicBlocks(Fn);
376
377  // If the first basic block in the function has live ins that need to be
378  // copied into vregs, emit the copies into the top of the block before
379  // emitting the code for the block.
380  MachineBasicBlock *EntryMBB = MF->begin();
381  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
382
383  DenseMap<unsigned, unsigned> LiveInMap;
384  if (!FuncInfo->ArgDbgValues.empty())
385    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
386           E = RegInfo->livein_end(); LI != E; ++LI)
387      if (LI->second)
388        LiveInMap.insert(std::make_pair(LI->first, LI->second));
389
390  // Insert DBG_VALUE instructions for function arguments to the entry block.
391  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
392    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
393    unsigned Reg = MI->getOperand(0).getReg();
394    if (TargetRegisterInfo::isPhysicalRegister(Reg))
395      EntryMBB->insert(EntryMBB->begin(), MI);
396    else {
397      MachineInstr *Def = RegInfo->getVRegDef(Reg);
398      MachineBasicBlock::iterator InsertPos = Def;
399      // FIXME: VR def may not be in entry block.
400      Def->getParent()->insert(llvm::next(InsertPos), MI);
401    }
402
403    // If Reg is live-in then update debug info to track its copy in a vreg.
404    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
405    if (LDI != LiveInMap.end()) {
406      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
407      MachineBasicBlock::iterator InsertPos = Def;
408      const MDNode *Variable =
409        MI->getOperand(MI->getNumOperands()-1).getMetadata();
410      unsigned Offset = MI->getOperand(1).getImm();
411      // Def is never a terminator here, so it is ok to increment InsertPos.
412      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
413              TII.get(TargetOpcode::DBG_VALUE))
414        .addReg(LDI->second, RegState::Debug)
415        .addImm(Offset).addMetadata(Variable);
416
417      // If this vreg is directly copied into an exported register then
418      // that COPY instructions also need DBG_VALUE, if it is the only
419      // user of LDI->second.
420      MachineInstr *CopyUseMI = NULL;
421      for (MachineRegisterInfo::use_iterator
422             UI = RegInfo->use_begin(LDI->second);
423           MachineInstr *UseMI = UI.skipInstruction();) {
424        if (UseMI->isDebugValue()) continue;
425        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
426          CopyUseMI = UseMI; continue;
427        }
428        // Otherwise this is another use or second copy use.
429        CopyUseMI = NULL; break;
430      }
431      if (CopyUseMI) {
432        MachineInstr *NewMI =
433          BuildMI(*MF, CopyUseMI->getDebugLoc(),
434                  TII.get(TargetOpcode::DBG_VALUE))
435          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
436          .addImm(Offset).addMetadata(Variable);
437        MachineBasicBlock::iterator Pos = CopyUseMI;
438        EntryMBB->insertAfter(Pos, NewMI);
439      }
440    }
441  }
442
443  // Determine if there are any calls in this machine function.
444  MachineFrameInfo *MFI = MF->getFrameInfo();
445  if (!MFI->hasCalls()) {
446    for (MachineFunction::const_iterator
447           I = MF->begin(), E = MF->end(); I != E; ++I) {
448      const MachineBasicBlock *MBB = I;
449      for (MachineBasicBlock::const_iterator
450             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
451        const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
452
453        if ((MCID.isCall() && !MCID.isReturn()) ||
454            II->isStackAligningInlineAsm()) {
455          MFI->setHasCalls(true);
456          goto done;
457        }
458      }
459    }
460  }
461
462  done:
463  // Determine if there is a call to setjmp in the machine function.
464  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
465
466  // Replace forward-declared registers with the registers containing
467  // the desired value.
468  MachineRegisterInfo &MRI = MF->getRegInfo();
469  for (DenseMap<unsigned, unsigned>::iterator
470       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
471       I != E; ++I) {
472    unsigned From = I->first;
473    unsigned To = I->second;
474    // If To is also scheduled to be replaced, find what its ultimate
475    // replacement is.
476    for (;;) {
477      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
478      if (J == E) break;
479      To = J->second;
480    }
481    // Replace it.
482    MRI.replaceRegWith(From, To);
483  }
484
485  // Freeze the set of reserved registers now that MachineFrameInfo has been
486  // set up. All the information required by getReservedRegs() should be
487  // available now.
488  MRI.freezeReservedRegs(*MF);
489
490  // Release function-specific state. SDB and CurDAG are already cleared
491  // at this point.
492  FuncInfo->clear();
493
494  return true;
495}
496
497void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
498                                        BasicBlock::const_iterator End,
499                                        bool &HadTailCall) {
500  // Lower all of the non-terminator instructions. If a call is emitted
501  // as a tail call, cease emitting nodes for this block. Terminators
502  // are handled below.
503  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
504    SDB->visit(*I);
505
506  // Make sure the root of the DAG is up-to-date.
507  CurDAG->setRoot(SDB->getControlRoot());
508  HadTailCall = SDB->HasTailCall;
509  SDB->clear();
510
511  // Final step, emit the lowered DAG as machine code.
512  CodeGenAndEmitDAG();
513}
514
515void SelectionDAGISel::ComputeLiveOutVRegInfo() {
516  SmallPtrSet<SDNode*, 128> VisitedNodes;
517  SmallVector<SDNode*, 128> Worklist;
518
519  Worklist.push_back(CurDAG->getRoot().getNode());
520
521  APInt KnownZero;
522  APInt KnownOne;
523
524  do {
525    SDNode *N = Worklist.pop_back_val();
526
527    // If we've already seen this node, ignore it.
528    if (!VisitedNodes.insert(N))
529      continue;
530
531    // Otherwise, add all chain operands to the worklist.
532    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
533      if (N->getOperand(i).getValueType() == MVT::Other)
534        Worklist.push_back(N->getOperand(i).getNode());
535
536    // If this is a CopyToReg with a vreg dest, process it.
537    if (N->getOpcode() != ISD::CopyToReg)
538      continue;
539
540    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
541    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
542      continue;
543
544    // Ignore non-scalar or non-integer values.
545    SDValue Src = N->getOperand(2);
546    EVT SrcVT = Src.getValueType();
547    if (!SrcVT.isInteger() || SrcVT.isVector())
548      continue;
549
550    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
551    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
552    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
553  } while (!Worklist.empty());
554}
555
556void SelectionDAGISel::CodeGenAndEmitDAG() {
557  std::string GroupName;
558  if (TimePassesIsEnabled)
559    GroupName = "Instruction Selection and Scheduling";
560  std::string BlockName;
561  int BlockNumber = -1;
562  (void)BlockNumber;
563#ifdef NDEBUG
564  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
565      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
566      ViewSUnitDAGs)
567#endif
568  {
569    BlockNumber = FuncInfo->MBB->getNumber();
570    BlockName = MF->getName().str() + ":" +
571                FuncInfo->MBB->getBasicBlock()->getName().str();
572  }
573  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
574        << " '" << BlockName << "'\n"; CurDAG->dump());
575
576  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
577
578  // Run the DAG combiner in pre-legalize mode.
579  {
580    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
581    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
582  }
583
584  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
585        << " '" << BlockName << "'\n"; CurDAG->dump());
586
587  // Second step, hack on the DAG until it only uses operations and types that
588  // the target supports.
589  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
590                                               BlockName);
591
592  bool Changed;
593  {
594    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
595    Changed = CurDAG->LegalizeTypes();
596  }
597
598  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
599        << " '" << BlockName << "'\n"; CurDAG->dump());
600
601  if (Changed) {
602    if (ViewDAGCombineLT)
603      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
604
605    // Run the DAG combiner in post-type-legalize mode.
606    {
607      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
608                         TimePassesIsEnabled);
609      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
610    }
611
612    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
613          << " '" << BlockName << "'\n"; CurDAG->dump());
614  }
615
616  {
617    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
618    Changed = CurDAG->LegalizeVectors();
619  }
620
621  if (Changed) {
622    {
623      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
624      CurDAG->LegalizeTypes();
625    }
626
627    if (ViewDAGCombineLT)
628      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
629
630    // Run the DAG combiner in post-type-legalize mode.
631    {
632      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
633                         TimePassesIsEnabled);
634      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
635    }
636
637    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
638          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
639  }
640
641  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
642
643  {
644    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
645    CurDAG->Legalize();
646  }
647
648  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
649        << " '" << BlockName << "'\n"; CurDAG->dump());
650
651  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
652
653  // Run the DAG combiner in post-legalize mode.
654  {
655    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
656    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
657  }
658
659  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
660        << " '" << BlockName << "'\n"; CurDAG->dump());
661
662  if (OptLevel != CodeGenOpt::None)
663    ComputeLiveOutVRegInfo();
664
665  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
666
667  // Third, instruction select all of the operations to machine code, adding the
668  // code to the MachineBasicBlock.
669  {
670    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
671    DoInstructionSelection();
672  }
673
674  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
675        << " '" << BlockName << "'\n"; CurDAG->dump());
676
677  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
678
679  // Schedule machine code.
680  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
681  {
682    NamedRegionTimer T("Instruction Scheduling", GroupName,
683                       TimePassesIsEnabled);
684    Scheduler->Run(CurDAG, FuncInfo->MBB);
685  }
686
687  if (ViewSUnitDAGs) Scheduler->viewGraph();
688
689  // Emit machine code to BB.  This can change 'BB' to the last block being
690  // inserted into.
691  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
692  {
693    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
694
695    // FuncInfo->InsertPt is passed by reference and set to the end of the
696    // scheduled instructions.
697    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
698  }
699
700  // If the block was split, make sure we update any references that are used to
701  // update PHI nodes later on.
702  if (FirstMBB != LastMBB)
703    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
704
705  // Free the scheduler state.
706  {
707    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
708                       TimePassesIsEnabled);
709    delete Scheduler;
710  }
711
712  // Free the SelectionDAG state, now that we're finished with it.
713  CurDAG->clear();
714}
715
716namespace {
717/// ISelUpdater - helper class to handle updates of the instruction selection
718/// graph.
719class ISelUpdater : public SelectionDAG::DAGUpdateListener {
720  SelectionDAG::allnodes_iterator &ISelPosition;
721public:
722  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
723    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
724
725  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
726  /// deleted is the current ISelPosition node, update ISelPosition.
727  ///
728  virtual void NodeDeleted(SDNode *N, SDNode *E) {
729    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
730      ++ISelPosition;
731  }
732};
733} // end anonymous namespace
734
735void SelectionDAGISel::DoInstructionSelection() {
736  DEBUG(errs() << "===== Instruction selection begins: BB#"
737        << FuncInfo->MBB->getNumber()
738        << " '" << FuncInfo->MBB->getName() << "'\n");
739
740  PreprocessISelDAG();
741
742  // Select target instructions for the DAG.
743  {
744    // Number all nodes with a topological order and set DAGSize.
745    DAGSize = CurDAG->AssignTopologicalOrder();
746
747    // Create a dummy node (which is not added to allnodes), that adds
748    // a reference to the root node, preventing it from being deleted,
749    // and tracking any changes of the root.
750    HandleSDNode Dummy(CurDAG->getRoot());
751    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
752    ++ISelPosition;
753
754    // Make sure that ISelPosition gets properly updated when nodes are deleted
755    // in calls made from this function.
756    ISelUpdater ISU(*CurDAG, ISelPosition);
757
758    // The AllNodes list is now topological-sorted. Visit the
759    // nodes by starting at the end of the list (the root of the
760    // graph) and preceding back toward the beginning (the entry
761    // node).
762    while (ISelPosition != CurDAG->allnodes_begin()) {
763      SDNode *Node = --ISelPosition;
764      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
765      // but there are currently some corner cases that it misses. Also, this
766      // makes it theoretically possible to disable the DAGCombiner.
767      if (Node->use_empty())
768        continue;
769
770      SDNode *ResNode = Select(Node);
771
772      // FIXME: This is pretty gross.  'Select' should be changed to not return
773      // anything at all and this code should be nuked with a tactical strike.
774
775      // If node should not be replaced, continue with the next one.
776      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
777        continue;
778      // Replace node.
779      if (ResNode)
780        ReplaceUses(Node, ResNode);
781
782      // If after the replacement this node is not used any more,
783      // remove this dead node.
784      if (Node->use_empty()) // Don't delete EntryToken, etc.
785        CurDAG->RemoveDeadNode(Node);
786    }
787
788    CurDAG->setRoot(Dummy.getValue());
789  }
790
791  DEBUG(errs() << "===== Instruction selection ends:\n");
792
793  PostprocessISelDAG();
794}
795
796/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
797/// do other setup for EH landing-pad blocks.
798void SelectionDAGISel::PrepareEHLandingPad() {
799  MachineBasicBlock *MBB = FuncInfo->MBB;
800
801  // Add a label to mark the beginning of the landing pad.  Deletion of the
802  // landing pad can thus be detected via the MachineModuleInfo.
803  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
804
805  // Assign the call site to the landing pad's begin label.
806  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
807
808  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
809  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
810    .addSym(Label);
811
812  // Mark exception register as live in.
813  unsigned Reg = TLI.getExceptionPointerRegister();
814  if (Reg) MBB->addLiveIn(Reg);
815
816  // Mark exception selector register as live in.
817  Reg = TLI.getExceptionSelectorRegister();
818  if (Reg) MBB->addLiveIn(Reg);
819}
820
821/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
822/// load into the specified FoldInst.  Note that we could have a sequence where
823/// multiple LLVM IR instructions are folded into the same machineinstr.  For
824/// example we could have:
825///   A: x = load i32 *P
826///   B: y = icmp A, 42
827///   C: br y, ...
828///
829/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
830/// any other folded instructions) because it is between A and C.
831///
832/// If we succeed in folding the load into the operation, return true.
833///
834bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
835                                             const Instruction *FoldInst,
836                                             FastISel *FastIS) {
837  // We know that the load has a single use, but don't know what it is.  If it
838  // isn't one of the folded instructions, then we can't succeed here.  Handle
839  // this by scanning the single-use users of the load until we get to FoldInst.
840  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
841
842  const Instruction *TheUser = LI->use_back();
843  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
844         // Stay in the right block.
845         TheUser->getParent() == FoldInst->getParent() &&
846         --MaxUsers) {  // Don't scan too far.
847    // If there are multiple or no uses of this instruction, then bail out.
848    if (!TheUser->hasOneUse())
849      return false;
850
851    TheUser = TheUser->use_back();
852  }
853
854  // If we didn't find the fold instruction, then we failed to collapse the
855  // sequence.
856  if (TheUser != FoldInst)
857    return false;
858
859  // Don't try to fold volatile loads.  Target has to deal with alignment
860  // constraints.
861  if (LI->isVolatile()) return false;
862
863  // Figure out which vreg this is going into.  If there is no assigned vreg yet
864  // then there actually was no reference to it.  Perhaps the load is referenced
865  // by a dead instruction.
866  unsigned LoadReg = FastIS->getRegForValue(LI);
867  if (LoadReg == 0)
868    return false;
869
870  // Check to see what the uses of this vreg are.  If it has no uses, or more
871  // than one use (at the machine instr level) then we can't fold it.
872  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
873  if (RI == RegInfo->reg_end())
874    return false;
875
876  // See if there is exactly one use of the vreg.  If there are multiple uses,
877  // then the instruction got lowered to multiple machine instructions or the
878  // use of the loaded value ended up being multiple operands of the result, in
879  // either case, we can't fold this.
880  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
881  if (PostRI != RegInfo->reg_end())
882    return false;
883
884  assert(RI.getOperand().isUse() &&
885         "The only use of the vreg must be a use, we haven't emitted the def!");
886
887  MachineInstr *User = &*RI;
888
889  // Set the insertion point properly.  Folding the load can cause generation of
890  // other random instructions (like sign extends) for addressing modes, make
891  // sure they get inserted in a logical place before the new instruction.
892  FuncInfo->InsertPt = User;
893  FuncInfo->MBB = User->getParent();
894
895  // Ask the target to try folding the load.
896  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
897}
898
899/// isFoldedOrDeadInstruction - Return true if the specified instruction is
900/// side-effect free and is either dead or folded into a generated instruction.
901/// Return false if it needs to be emitted.
902static bool isFoldedOrDeadInstruction(const Instruction *I,
903                                      FunctionLoweringInfo *FuncInfo) {
904  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
905         !isa<TerminatorInst>(I) && // Terminators aren't folded.
906         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
907         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
908         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
909}
910
911#ifndef NDEBUG
912// Collect per Instruction statistics for fast-isel misses.  Only those
913// instructions that cause the bail are accounted for.  It does not account for
914// instructions higher in the block.  Thus, summing the per instructions stats
915// will not add up to what is reported by NumFastIselFailures.
916static void collectFailStats(const Instruction *I) {
917  switch (I->getOpcode()) {
918  default: assert (0 && "<Invalid operator> ");
919
920  // Terminators
921  case Instruction::Ret:         NumFastIselFailRet++; return;
922  case Instruction::Br:          NumFastIselFailBr++; return;
923  case Instruction::Switch:      NumFastIselFailSwitch++; return;
924  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
925  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
926  case Instruction::Resume:      NumFastIselFailResume++; return;
927  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
928
929  // Standard binary operators...
930  case Instruction::Add:  NumFastIselFailAdd++; return;
931  case Instruction::FAdd: NumFastIselFailFAdd++; return;
932  case Instruction::Sub:  NumFastIselFailSub++; return;
933  case Instruction::FSub: NumFastIselFailFSub++; return;
934  case Instruction::Mul:  NumFastIselFailMul++; return;
935  case Instruction::FMul: NumFastIselFailFMul++; return;
936  case Instruction::UDiv: NumFastIselFailUDiv++; return;
937  case Instruction::SDiv: NumFastIselFailSDiv++; return;
938  case Instruction::FDiv: NumFastIselFailFDiv++; return;
939  case Instruction::URem: NumFastIselFailURem++; return;
940  case Instruction::SRem: NumFastIselFailSRem++; return;
941  case Instruction::FRem: NumFastIselFailFRem++; return;
942
943  // Logical operators...
944  case Instruction::And: NumFastIselFailAnd++; return;
945  case Instruction::Or:  NumFastIselFailOr++; return;
946  case Instruction::Xor: NumFastIselFailXor++; return;
947
948  // Memory instructions...
949  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
950  case Instruction::Load:          NumFastIselFailLoad++; return;
951  case Instruction::Store:         NumFastIselFailStore++; return;
952  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
953  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
954  case Instruction::Fence:         NumFastIselFailFence++; return;
955  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
956
957  // Convert instructions...
958  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
959  case Instruction::ZExt:     NumFastIselFailZExt++; return;
960  case Instruction::SExt:     NumFastIselFailSExt++; return;
961  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
962  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
963  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
964  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
965  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
966  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
967  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
968  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
969  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
970
971  // Other instructions...
972  case Instruction::ICmp:           NumFastIselFailICmp++; return;
973  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
974  case Instruction::PHI:            NumFastIselFailPHI++; return;
975  case Instruction::Select:         NumFastIselFailSelect++; return;
976  case Instruction::Call:           NumFastIselFailCall++; return;
977  case Instruction::Shl:            NumFastIselFailShl++; return;
978  case Instruction::LShr:           NumFastIselFailLShr++; return;
979  case Instruction::AShr:           NumFastIselFailAShr++; return;
980  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
981  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
982  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
983  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
984  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
985  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
986  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
987  }
988}
989#endif
990
991void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
992  // Initialize the Fast-ISel state, if needed.
993  FastISel *FastIS = 0;
994  if (TM.Options.EnableFastISel)
995    FastIS = TLI.createFastISel(*FuncInfo, LibInfo);
996
997  // Iterate over all basic blocks in the function.
998  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
999  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
1000       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
1001    const BasicBlock *LLVMBB = *I;
1002
1003    if (OptLevel != CodeGenOpt::None) {
1004      bool AllPredsVisited = true;
1005      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1006           PI != PE; ++PI) {
1007        if (!FuncInfo->VisitedBBs.count(*PI)) {
1008          AllPredsVisited = false;
1009          break;
1010        }
1011      }
1012
1013      if (AllPredsVisited) {
1014        for (BasicBlock::const_iterator I = LLVMBB->begin();
1015             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1016          FuncInfo->ComputePHILiveOutRegInfo(PN);
1017      } else {
1018        for (BasicBlock::const_iterator I = LLVMBB->begin();
1019             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1020          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
1021      }
1022
1023      FuncInfo->VisitedBBs.insert(LLVMBB);
1024    }
1025
1026    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1027    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1028
1029    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
1030    BasicBlock::const_iterator const End = LLVMBB->end();
1031    BasicBlock::const_iterator BI = End;
1032
1033    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1034
1035    // Setup an EH landing-pad block.
1036    if (FuncInfo->MBB->isLandingPad())
1037      PrepareEHLandingPad();
1038
1039    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1040    if (FastIS) {
1041      FastIS->startNewBlock();
1042
1043      // Emit code for any incoming arguments. This must happen before
1044      // beginning FastISel on the entry block.
1045      if (LLVMBB == &Fn.getEntryBlock()) {
1046        // Lower any arguments needed in this block if this is the entry block.
1047        if (!FastIS->LowerArguments()) {
1048          // Call target indepedent SDISel argument lowering code if the target
1049          // specific routine is not successful.
1050          LowerArguments(LLVMBB);
1051          CurDAG->setRoot(SDB->getControlRoot());
1052          SDB->clear();
1053          CodeGenAndEmitDAG();
1054        }
1055
1056        // If we inserted any instructions at the beginning, make a note of
1057        // where they are, so we can be sure to emit subsequent instructions
1058        // after them.
1059        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1060          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1061        else
1062          FastIS->setLastLocalValue(0);
1063      }
1064
1065      unsigned NumFastIselRemaining = std::distance(Begin, End);
1066      // Do FastISel on as many instructions as possible.
1067      for (; BI != Begin; --BI) {
1068        const Instruction *Inst = llvm::prior(BI);
1069
1070        // If we no longer require this instruction, skip it.
1071        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1072          --NumFastIselRemaining;
1073          continue;
1074        }
1075
1076        // Bottom-up: reset the insert pos at the top, after any local-value
1077        // instructions.
1078        FastIS->recomputeInsertPt();
1079
1080        // Try to select the instruction with FastISel.
1081        if (FastIS->SelectInstruction(Inst)) {
1082          --NumFastIselRemaining;
1083          ++NumFastIselSuccess;
1084          // If fast isel succeeded, skip over all the folded instructions, and
1085          // then see if there is a load right before the selected instructions.
1086          // Try to fold the load if so.
1087          const Instruction *BeforeInst = Inst;
1088          while (BeforeInst != Begin) {
1089            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1090            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1091              break;
1092          }
1093          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1094              BeforeInst->hasOneUse() &&
1095              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) {
1096            // If we succeeded, don't re-select the load.
1097            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1098            --NumFastIselRemaining;
1099            ++NumFastIselSuccess;
1100          }
1101          continue;
1102        }
1103
1104#ifndef NDEBUG
1105        if (EnableFastISelVerbose2)
1106          collectFailStats(Inst);
1107#endif
1108
1109        // Then handle certain instructions as single-LLVM-Instruction blocks.
1110        if (isa<CallInst>(Inst)) {
1111
1112          if (EnableFastISelVerbose || EnableFastISelAbort) {
1113            dbgs() << "FastISel missed call: ";
1114            Inst->dump();
1115          }
1116
1117          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1118            unsigned &R = FuncInfo->ValueMap[Inst];
1119            if (!R)
1120              R = FuncInfo->CreateRegs(Inst->getType());
1121          }
1122
1123          bool HadTailCall = false;
1124          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1125          SelectBasicBlock(Inst, BI, HadTailCall);
1126
1127          // If the call was emitted as a tail call, we're done with the block.
1128          // We also need to delete any previously emitted instructions.
1129          if (HadTailCall) {
1130            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1131            --BI;
1132            break;
1133          }
1134
1135          // Recompute NumFastIselRemaining as Selection DAG instruction
1136          // selection may have handled the call, input args, etc.
1137          unsigned RemainingNow = std::distance(Begin, BI);
1138          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1139          NumFastIselRemaining = RemainingNow;
1140          continue;
1141        }
1142
1143        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1144          // Don't abort, and use a different message for terminator misses.
1145          NumFastIselFailures += NumFastIselRemaining;
1146          if (EnableFastISelVerbose || EnableFastISelAbort) {
1147            dbgs() << "FastISel missed terminator: ";
1148            Inst->dump();
1149          }
1150        } else {
1151          NumFastIselFailures += NumFastIselRemaining;
1152          if (EnableFastISelVerbose || EnableFastISelAbort) {
1153            dbgs() << "FastISel miss: ";
1154            Inst->dump();
1155          }
1156          if (EnableFastISelAbort)
1157            // The "fast" selector couldn't handle something and bailed.
1158            // For the purpose of debugging, just abort.
1159            llvm_unreachable("FastISel didn't select the entire block");
1160        }
1161        break;
1162      }
1163
1164      FastIS->recomputeInsertPt();
1165    } else {
1166      // Lower any arguments needed in this block if this is the entry block.
1167      if (LLVMBB == &Fn.getEntryBlock())
1168        LowerArguments(LLVMBB);
1169    }
1170
1171    if (Begin != BI)
1172      ++NumDAGBlocks;
1173    else
1174      ++NumFastIselBlocks;
1175
1176    if (Begin != BI) {
1177      // Run SelectionDAG instruction selection on the remainder of the block
1178      // not handled by FastISel. If FastISel is not run, this is the entire
1179      // block.
1180      bool HadTailCall;
1181      SelectBasicBlock(Begin, BI, HadTailCall);
1182    }
1183
1184    FinishBasicBlock();
1185    FuncInfo->PHINodesToUpdate.clear();
1186  }
1187
1188  delete FastIS;
1189  SDB->clearDanglingDebugInfo();
1190}
1191
1192void
1193SelectionDAGISel::FinishBasicBlock() {
1194
1195  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1196               << FuncInfo->PHINodesToUpdate.size() << "\n";
1197        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1198          dbgs() << "Node " << i << " : ("
1199                 << FuncInfo->PHINodesToUpdate[i].first
1200                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1201
1202  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1203  // PHI nodes in successors.
1204  if (SDB->SwitchCases.empty() &&
1205      SDB->JTCases.empty() &&
1206      SDB->BitTestCases.empty()) {
1207    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1208      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1209      assert(PHI->isPHI() &&
1210             "This is not a machine PHI node that we are updating!");
1211      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1212        continue;
1213      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1214    }
1215    return;
1216  }
1217
1218  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1219    // Lower header first, if it wasn't already lowered
1220    if (!SDB->BitTestCases[i].Emitted) {
1221      // Set the current basic block to the mbb we wish to insert the code into
1222      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1223      FuncInfo->InsertPt = FuncInfo->MBB->end();
1224      // Emit the code
1225      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1226      CurDAG->setRoot(SDB->getRoot());
1227      SDB->clear();
1228      CodeGenAndEmitDAG();
1229    }
1230
1231    uint32_t UnhandledWeight = 0;
1232    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1233      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1234
1235    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1236      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1237      // Set the current basic block to the mbb we wish to insert the code into
1238      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1239      FuncInfo->InsertPt = FuncInfo->MBB->end();
1240      // Emit the code
1241      if (j+1 != ej)
1242        SDB->visitBitTestCase(SDB->BitTestCases[i],
1243                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1244                              UnhandledWeight,
1245                              SDB->BitTestCases[i].Reg,
1246                              SDB->BitTestCases[i].Cases[j],
1247                              FuncInfo->MBB);
1248      else
1249        SDB->visitBitTestCase(SDB->BitTestCases[i],
1250                              SDB->BitTestCases[i].Default,
1251                              UnhandledWeight,
1252                              SDB->BitTestCases[i].Reg,
1253                              SDB->BitTestCases[i].Cases[j],
1254                              FuncInfo->MBB);
1255
1256
1257      CurDAG->setRoot(SDB->getRoot());
1258      SDB->clear();
1259      CodeGenAndEmitDAG();
1260    }
1261
1262    // Update PHI Nodes
1263    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1264         pi != pe; ++pi) {
1265      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1266      MachineBasicBlock *PHIBB = PHI->getParent();
1267      assert(PHI->isPHI() &&
1268             "This is not a machine PHI node that we are updating!");
1269      // This is "default" BB. We have two jumps to it. From "header" BB and
1270      // from last "case" BB.
1271      if (PHIBB == SDB->BitTestCases[i].Default)
1272        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1273           .addMBB(SDB->BitTestCases[i].Parent)
1274           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1275           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1276      // One of "cases" BB.
1277      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1278           j != ej; ++j) {
1279        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1280        if (cBB->isSuccessor(PHIBB))
1281          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1282      }
1283    }
1284  }
1285  SDB->BitTestCases.clear();
1286
1287  // If the JumpTable record is filled in, then we need to emit a jump table.
1288  // Updating the PHI nodes is tricky in this case, since we need to determine
1289  // whether the PHI is a successor of the range check MBB or the jump table MBB
1290  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1291    // Lower header first, if it wasn't already lowered
1292    if (!SDB->JTCases[i].first.Emitted) {
1293      // Set the current basic block to the mbb we wish to insert the code into
1294      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1295      FuncInfo->InsertPt = FuncInfo->MBB->end();
1296      // Emit the code
1297      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1298                                FuncInfo->MBB);
1299      CurDAG->setRoot(SDB->getRoot());
1300      SDB->clear();
1301      CodeGenAndEmitDAG();
1302    }
1303
1304    // Set the current basic block to the mbb we wish to insert the code into
1305    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1306    FuncInfo->InsertPt = FuncInfo->MBB->end();
1307    // Emit the code
1308    SDB->visitJumpTable(SDB->JTCases[i].second);
1309    CurDAG->setRoot(SDB->getRoot());
1310    SDB->clear();
1311    CodeGenAndEmitDAG();
1312
1313    // Update PHI Nodes
1314    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1315         pi != pe; ++pi) {
1316      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1317      MachineBasicBlock *PHIBB = PHI->getParent();
1318      assert(PHI->isPHI() &&
1319             "This is not a machine PHI node that we are updating!");
1320      // "default" BB. We can go there only from header BB.
1321      if (PHIBB == SDB->JTCases[i].second.Default)
1322        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1323           .addMBB(SDB->JTCases[i].first.HeaderBB);
1324      // JT BB. Just iterate over successors here
1325      if (FuncInfo->MBB->isSuccessor(PHIBB))
1326        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1327    }
1328  }
1329  SDB->JTCases.clear();
1330
1331  // If the switch block involved a branch to one of the actual successors, we
1332  // need to update PHI nodes in that block.
1333  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1334    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1335    assert(PHI->isPHI() &&
1336           "This is not a machine PHI node that we are updating!");
1337    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1338      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1339  }
1340
1341  // If we generated any switch lowering information, build and codegen any
1342  // additional DAGs necessary.
1343  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1344    // Set the current basic block to the mbb we wish to insert the code into
1345    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1346    FuncInfo->InsertPt = FuncInfo->MBB->end();
1347
1348    // Determine the unique successors.
1349    SmallVector<MachineBasicBlock *, 2> Succs;
1350    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1351    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1352      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1353
1354    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1355    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1356    CurDAG->setRoot(SDB->getRoot());
1357    SDB->clear();
1358    CodeGenAndEmitDAG();
1359
1360    // Remember the last block, now that any splitting is done, for use in
1361    // populating PHI nodes in successors.
1362    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1363
1364    // Handle any PHI nodes in successors of this chunk, as if we were coming
1365    // from the original BB before switch expansion.  Note that PHI nodes can
1366    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1367    // handle them the right number of times.
1368    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1369      FuncInfo->MBB = Succs[i];
1370      FuncInfo->InsertPt = FuncInfo->MBB->end();
1371      // FuncInfo->MBB may have been removed from the CFG if a branch was
1372      // constant folded.
1373      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1374        for (MachineBasicBlock::iterator
1375             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1376             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1377          MachineInstrBuilder PHI(*MF, MBBI);
1378          // This value for this PHI node is recorded in PHINodesToUpdate.
1379          for (unsigned pn = 0; ; ++pn) {
1380            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1381                   "Didn't find PHI entry!");
1382            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1383              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1384              break;
1385            }
1386          }
1387        }
1388      }
1389    }
1390  }
1391  SDB->SwitchCases.clear();
1392}
1393
1394
1395/// Create the scheduler. If a specific scheduler was specified
1396/// via the SchedulerRegistry, use it, otherwise select the
1397/// one preferred by the target.
1398///
1399ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1400  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1401
1402  if (!Ctor) {
1403    Ctor = ISHeuristic;
1404    RegisterScheduler::setDefault(Ctor);
1405  }
1406
1407  return Ctor(this, OptLevel);
1408}
1409
1410//===----------------------------------------------------------------------===//
1411// Helper functions used by the generated instruction selector.
1412//===----------------------------------------------------------------------===//
1413// Calls to these methods are generated by tblgen.
1414
1415/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1416/// the dag combiner simplified the 255, we still want to match.  RHS is the
1417/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1418/// specified in the .td file (e.g. 255).
1419bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1420                                    int64_t DesiredMaskS) const {
1421  const APInt &ActualMask = RHS->getAPIntValue();
1422  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1423
1424  // If the actual mask exactly matches, success!
1425  if (ActualMask == DesiredMask)
1426    return true;
1427
1428  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1429  if (ActualMask.intersects(~DesiredMask))
1430    return false;
1431
1432  // Otherwise, the DAG Combiner may have proven that the value coming in is
1433  // either already zero or is not demanded.  Check for known zero input bits.
1434  APInt NeededMask = DesiredMask & ~ActualMask;
1435  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1436    return true;
1437
1438  // TODO: check to see if missing bits are just not demanded.
1439
1440  // Otherwise, this pattern doesn't match.
1441  return false;
1442}
1443
1444/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1445/// the dag combiner simplified the 255, we still want to match.  RHS is the
1446/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1447/// specified in the .td file (e.g. 255).
1448bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1449                                   int64_t DesiredMaskS) const {
1450  const APInt &ActualMask = RHS->getAPIntValue();
1451  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1452
1453  // If the actual mask exactly matches, success!
1454  if (ActualMask == DesiredMask)
1455    return true;
1456
1457  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1458  if (ActualMask.intersects(~DesiredMask))
1459    return false;
1460
1461  // Otherwise, the DAG Combiner may have proven that the value coming in is
1462  // either already zero or is not demanded.  Check for known zero input bits.
1463  APInt NeededMask = DesiredMask & ~ActualMask;
1464
1465  APInt KnownZero, KnownOne;
1466  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1467
1468  // If all the missing bits in the or are already known to be set, match!
1469  if ((NeededMask & KnownOne) == NeededMask)
1470    return true;
1471
1472  // TODO: check to see if missing bits are just not demanded.
1473
1474  // Otherwise, this pattern doesn't match.
1475  return false;
1476}
1477
1478
1479/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1480/// by tblgen.  Others should not call it.
1481void SelectionDAGISel::
1482SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1483  std::vector<SDValue> InOps;
1484  std::swap(InOps, Ops);
1485
1486  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1487  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1488  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1489  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1490
1491  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1492  if (InOps[e-1].getValueType() == MVT::Glue)
1493    --e;  // Don't process a glue operand if it is here.
1494
1495  while (i != e) {
1496    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1497    if (!InlineAsm::isMemKind(Flags)) {
1498      // Just skip over this operand, copying the operands verbatim.
1499      Ops.insert(Ops.end(), InOps.begin()+i,
1500                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1501      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1502    } else {
1503      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1504             "Memory operand with multiple values?");
1505      // Otherwise, this is a memory operand.  Ask the target to select it.
1506      std::vector<SDValue> SelOps;
1507      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1508        report_fatal_error("Could not match memory address.  Inline asm"
1509                           " failure!");
1510
1511      // Add this to the output node.
1512      unsigned NewFlags =
1513        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1514      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1515      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1516      i += 2;
1517    }
1518  }
1519
1520  // Add the glue input back if present.
1521  if (e != InOps.size())
1522    Ops.push_back(InOps.back());
1523}
1524
1525/// findGlueUse - Return use of MVT::Glue value produced by the specified
1526/// SDNode.
1527///
1528static SDNode *findGlueUse(SDNode *N) {
1529  unsigned FlagResNo = N->getNumValues()-1;
1530  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1531    SDUse &Use = I.getUse();
1532    if (Use.getResNo() == FlagResNo)
1533      return Use.getUser();
1534  }
1535  return NULL;
1536}
1537
1538/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1539/// This function recursively traverses up the operand chain, ignoring
1540/// certain nodes.
1541static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1542                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1543                          bool IgnoreChains) {
1544  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1545  // greater than all of its (recursive) operands.  If we scan to a point where
1546  // 'use' is smaller than the node we're scanning for, then we know we will
1547  // never find it.
1548  //
1549  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1550  // happen because we scan down to newly selected nodes in the case of glue
1551  // uses.
1552  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1553    return false;
1554
1555  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1556  // won't fail if we scan it again.
1557  if (!Visited.insert(Use))
1558    return false;
1559
1560  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1561    // Ignore chain uses, they are validated by HandleMergeInputChains.
1562    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1563      continue;
1564
1565    SDNode *N = Use->getOperand(i).getNode();
1566    if (N == Def) {
1567      if (Use == ImmedUse || Use == Root)
1568        continue;  // We are not looking for immediate use.
1569      assert(N != Root);
1570      return true;
1571    }
1572
1573    // Traverse up the operand chain.
1574    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1575      return true;
1576  }
1577  return false;
1578}
1579
1580/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1581/// operand node N of U during instruction selection that starts at Root.
1582bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1583                                          SDNode *Root) const {
1584  if (OptLevel == CodeGenOpt::None) return false;
1585  return N.hasOneUse();
1586}
1587
1588/// IsLegalToFold - Returns true if the specific operand node N of
1589/// U can be folded during instruction selection that starts at Root.
1590bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1591                                     CodeGenOpt::Level OptLevel,
1592                                     bool IgnoreChains) {
1593  if (OptLevel == CodeGenOpt::None) return false;
1594
1595  // If Root use can somehow reach N through a path that that doesn't contain
1596  // U then folding N would create a cycle. e.g. In the following
1597  // diagram, Root can reach N through X. If N is folded into into Root, then
1598  // X is both a predecessor and a successor of U.
1599  //
1600  //          [N*]           //
1601  //         ^   ^           //
1602  //        /     \          //
1603  //      [U*]    [X]?       //
1604  //        ^     ^          //
1605  //         \   /           //
1606  //          \ /            //
1607  //         [Root*]         //
1608  //
1609  // * indicates nodes to be folded together.
1610  //
1611  // If Root produces glue, then it gets (even more) interesting. Since it
1612  // will be "glued" together with its glue use in the scheduler, we need to
1613  // check if it might reach N.
1614  //
1615  //          [N*]           //
1616  //         ^   ^           //
1617  //        /     \          //
1618  //      [U*]    [X]?       //
1619  //        ^       ^        //
1620  //         \       \       //
1621  //          \      |       //
1622  //         [Root*] |       //
1623  //          ^      |       //
1624  //          f      |       //
1625  //          |      /       //
1626  //         [Y]    /        //
1627  //           ^   /         //
1628  //           f  /          //
1629  //           | /           //
1630  //          [GU]           //
1631  //
1632  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1633  // (call it Fold), then X is a predecessor of GU and a successor of
1634  // Fold. But since Fold and GU are glued together, this will create
1635  // a cycle in the scheduling graph.
1636
1637  // If the node has glue, walk down the graph to the "lowest" node in the
1638  // glueged set.
1639  EVT VT = Root->getValueType(Root->getNumValues()-1);
1640  while (VT == MVT::Glue) {
1641    SDNode *GU = findGlueUse(Root);
1642    if (GU == NULL)
1643      break;
1644    Root = GU;
1645    VT = Root->getValueType(Root->getNumValues()-1);
1646
1647    // If our query node has a glue result with a use, we've walked up it.  If
1648    // the user (which has already been selected) has a chain or indirectly uses
1649    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1650    // this, we cannot ignore chains in this predicate.
1651    IgnoreChains = false;
1652  }
1653
1654
1655  SmallPtrSet<SDNode*, 16> Visited;
1656  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1657}
1658
1659SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1660  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1661  SelectInlineAsmMemoryOperands(Ops);
1662
1663  std::vector<EVT> VTs;
1664  VTs.push_back(MVT::Other);
1665  VTs.push_back(MVT::Glue);
1666  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1667                                VTs, &Ops[0], Ops.size());
1668  New->setNodeId(-1);
1669  return New.getNode();
1670}
1671
1672SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1673  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1674}
1675
1676/// GetVBR - decode a vbr encoding whose top bit is set.
1677LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1678GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1679  assert(Val >= 128 && "Not a VBR");
1680  Val &= 127;  // Remove first vbr bit.
1681
1682  unsigned Shift = 7;
1683  uint64_t NextBits;
1684  do {
1685    NextBits = MatcherTable[Idx++];
1686    Val |= (NextBits&127) << Shift;
1687    Shift += 7;
1688  } while (NextBits & 128);
1689
1690  return Val;
1691}
1692
1693
1694/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1695/// interior glue and chain results to use the new glue and chain results.
1696void SelectionDAGISel::
1697UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1698                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1699                    SDValue InputGlue,
1700                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1701                    bool isMorphNodeTo) {
1702  SmallVector<SDNode*, 4> NowDeadNodes;
1703
1704  // Now that all the normal results are replaced, we replace the chain and
1705  // glue results if present.
1706  if (!ChainNodesMatched.empty()) {
1707    assert(InputChain.getNode() != 0 &&
1708           "Matched input chains but didn't produce a chain");
1709    // Loop over all of the nodes we matched that produced a chain result.
1710    // Replace all the chain results with the final chain we ended up with.
1711    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1712      SDNode *ChainNode = ChainNodesMatched[i];
1713
1714      // If this node was already deleted, don't look at it.
1715      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1716        continue;
1717
1718      // Don't replace the results of the root node if we're doing a
1719      // MorphNodeTo.
1720      if (ChainNode == NodeToMatch && isMorphNodeTo)
1721        continue;
1722
1723      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1724      if (ChainVal.getValueType() == MVT::Glue)
1725        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1726      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1727      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1728
1729      // If the node became dead and we haven't already seen it, delete it.
1730      if (ChainNode->use_empty() &&
1731          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1732        NowDeadNodes.push_back(ChainNode);
1733    }
1734  }
1735
1736  // If the result produces glue, update any glue results in the matched
1737  // pattern with the glue result.
1738  if (InputGlue.getNode() != 0) {
1739    // Handle any interior nodes explicitly marked.
1740    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1741      SDNode *FRN = GlueResultNodesMatched[i];
1742
1743      // If this node was already deleted, don't look at it.
1744      if (FRN->getOpcode() == ISD::DELETED_NODE)
1745        continue;
1746
1747      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1748             "Doesn't have a glue result");
1749      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1750                                        InputGlue);
1751
1752      // If the node became dead and we haven't already seen it, delete it.
1753      if (FRN->use_empty() &&
1754          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1755        NowDeadNodes.push_back(FRN);
1756    }
1757  }
1758
1759  if (!NowDeadNodes.empty())
1760    CurDAG->RemoveDeadNodes(NowDeadNodes);
1761
1762  DEBUG(errs() << "ISEL: Match complete!\n");
1763}
1764
1765enum ChainResult {
1766  CR_Simple,
1767  CR_InducesCycle,
1768  CR_LeadsToInteriorNode
1769};
1770
1771/// WalkChainUsers - Walk down the users of the specified chained node that is
1772/// part of the pattern we're matching, looking at all of the users we find.
1773/// This determines whether something is an interior node, whether we have a
1774/// non-pattern node in between two pattern nodes (which prevent folding because
1775/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1776/// between pattern nodes (in which case the TF becomes part of the pattern).
1777///
1778/// The walk we do here is guaranteed to be small because we quickly get down to
1779/// already selected nodes "below" us.
1780static ChainResult
1781WalkChainUsers(const SDNode *ChainedNode,
1782               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1783               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1784  ChainResult Result = CR_Simple;
1785
1786  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1787         E = ChainedNode->use_end(); UI != E; ++UI) {
1788    // Make sure the use is of the chain, not some other value we produce.
1789    if (UI.getUse().getValueType() != MVT::Other) continue;
1790
1791    SDNode *User = *UI;
1792
1793    // If we see an already-selected machine node, then we've gone beyond the
1794    // pattern that we're selecting down into the already selected chunk of the
1795    // DAG.
1796    if (User->isMachineOpcode() ||
1797        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1798      continue;
1799
1800    unsigned UserOpcode = User->getOpcode();
1801    if (UserOpcode == ISD::CopyToReg ||
1802        UserOpcode == ISD::CopyFromReg ||
1803        UserOpcode == ISD::INLINEASM ||
1804        UserOpcode == ISD::EH_LABEL ||
1805        UserOpcode == ISD::LIFETIME_START ||
1806        UserOpcode == ISD::LIFETIME_END) {
1807      // If their node ID got reset to -1 then they've already been selected.
1808      // Treat them like a MachineOpcode.
1809      if (User->getNodeId() == -1)
1810        continue;
1811    }
1812
1813    // If we have a TokenFactor, we handle it specially.
1814    if (User->getOpcode() != ISD::TokenFactor) {
1815      // If the node isn't a token factor and isn't part of our pattern, then it
1816      // must be a random chained node in between two nodes we're selecting.
1817      // This happens when we have something like:
1818      //   x = load ptr
1819      //   call
1820      //   y = x+4
1821      //   store y -> ptr
1822      // Because we structurally match the load/store as a read/modify/write,
1823      // but the call is chained between them.  We cannot fold in this case
1824      // because it would induce a cycle in the graph.
1825      if (!std::count(ChainedNodesInPattern.begin(),
1826                      ChainedNodesInPattern.end(), User))
1827        return CR_InducesCycle;
1828
1829      // Otherwise we found a node that is part of our pattern.  For example in:
1830      //   x = load ptr
1831      //   y = x+4
1832      //   store y -> ptr
1833      // This would happen when we're scanning down from the load and see the
1834      // store as a user.  Record that there is a use of ChainedNode that is
1835      // part of the pattern and keep scanning uses.
1836      Result = CR_LeadsToInteriorNode;
1837      InteriorChainedNodes.push_back(User);
1838      continue;
1839    }
1840
1841    // If we found a TokenFactor, there are two cases to consider: first if the
1842    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1843    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1844    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1845    //     [Load chain]
1846    //         ^
1847    //         |
1848    //       [Load]
1849    //       ^    ^
1850    //       |    \                    DAG's like cheese
1851    //      /       \                       do you?
1852    //     /         |
1853    // [TokenFactor] [Op]
1854    //     ^          ^
1855    //     |          |
1856    //      \        /
1857    //       \      /
1858    //       [Store]
1859    //
1860    // In this case, the TokenFactor becomes part of our match and we rewrite it
1861    // as a new TokenFactor.
1862    //
1863    // To distinguish these two cases, do a recursive walk down the uses.
1864    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1865    case CR_Simple:
1866      // If the uses of the TokenFactor are just already-selected nodes, ignore
1867      // it, it is "below" our pattern.
1868      continue;
1869    case CR_InducesCycle:
1870      // If the uses of the TokenFactor lead to nodes that are not part of our
1871      // pattern that are not selected, folding would turn this into a cycle,
1872      // bail out now.
1873      return CR_InducesCycle;
1874    case CR_LeadsToInteriorNode:
1875      break;  // Otherwise, keep processing.
1876    }
1877
1878    // Okay, we know we're in the interesting interior case.  The TokenFactor
1879    // is now going to be considered part of the pattern so that we rewrite its
1880    // uses (it may have uses that are not part of the pattern) with the
1881    // ultimate chain result of the generated code.  We will also add its chain
1882    // inputs as inputs to the ultimate TokenFactor we create.
1883    Result = CR_LeadsToInteriorNode;
1884    ChainedNodesInPattern.push_back(User);
1885    InteriorChainedNodes.push_back(User);
1886    continue;
1887  }
1888
1889  return Result;
1890}
1891
1892/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1893/// operation for when the pattern matched at least one node with a chains.  The
1894/// input vector contains a list of all of the chained nodes that we match.  We
1895/// must determine if this is a valid thing to cover (i.e. matching it won't
1896/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1897/// be used as the input node chain for the generated nodes.
1898static SDValue
1899HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1900                       SelectionDAG *CurDAG) {
1901  // Walk all of the chained nodes we've matched, recursively scanning down the
1902  // users of the chain result. This adds any TokenFactor nodes that are caught
1903  // in between chained nodes to the chained and interior nodes list.
1904  SmallVector<SDNode*, 3> InteriorChainedNodes;
1905  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1906    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1907                       InteriorChainedNodes) == CR_InducesCycle)
1908      return SDValue(); // Would induce a cycle.
1909  }
1910
1911  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1912  // that we are interested in.  Form our input TokenFactor node.
1913  SmallVector<SDValue, 3> InputChains;
1914  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1915    // Add the input chain of this node to the InputChains list (which will be
1916    // the operands of the generated TokenFactor) if it's not an interior node.
1917    SDNode *N = ChainNodesMatched[i];
1918    if (N->getOpcode() != ISD::TokenFactor) {
1919      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1920        continue;
1921
1922      // Otherwise, add the input chain.
1923      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1924      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1925      InputChains.push_back(InChain);
1926      continue;
1927    }
1928
1929    // If we have a token factor, we want to add all inputs of the token factor
1930    // that are not part of the pattern we're matching.
1931    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1932      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1933                      N->getOperand(op).getNode()))
1934        InputChains.push_back(N->getOperand(op));
1935    }
1936  }
1937
1938  SDValue Res;
1939  if (InputChains.size() == 1)
1940    return InputChains[0];
1941  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1942                         MVT::Other, &InputChains[0], InputChains.size());
1943}
1944
1945/// MorphNode - Handle morphing a node in place for the selector.
1946SDNode *SelectionDAGISel::
1947MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1948          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1949  // It is possible we're using MorphNodeTo to replace a node with no
1950  // normal results with one that has a normal result (or we could be
1951  // adding a chain) and the input could have glue and chains as well.
1952  // In this case we need to shift the operands down.
1953  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1954  // than the old isel though.
1955  int OldGlueResultNo = -1, OldChainResultNo = -1;
1956
1957  unsigned NTMNumResults = Node->getNumValues();
1958  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1959    OldGlueResultNo = NTMNumResults-1;
1960    if (NTMNumResults != 1 &&
1961        Node->getValueType(NTMNumResults-2) == MVT::Other)
1962      OldChainResultNo = NTMNumResults-2;
1963  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1964    OldChainResultNo = NTMNumResults-1;
1965
1966  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1967  // that this deletes operands of the old node that become dead.
1968  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1969
1970  // MorphNodeTo can operate in two ways: if an existing node with the
1971  // specified operands exists, it can just return it.  Otherwise, it
1972  // updates the node in place to have the requested operands.
1973  if (Res == Node) {
1974    // If we updated the node in place, reset the node ID.  To the isel,
1975    // this should be just like a newly allocated machine node.
1976    Res->setNodeId(-1);
1977  }
1978
1979  unsigned ResNumResults = Res->getNumValues();
1980  // Move the glue if needed.
1981  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1982      (unsigned)OldGlueResultNo != ResNumResults-1)
1983    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1984                                      SDValue(Res, ResNumResults-1));
1985
1986  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1987    --ResNumResults;
1988
1989  // Move the chain reference if needed.
1990  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1991      (unsigned)OldChainResultNo != ResNumResults-1)
1992    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1993                                      SDValue(Res, ResNumResults-1));
1994
1995  // Otherwise, no replacement happened because the node already exists. Replace
1996  // Uses of the old node with the new one.
1997  if (Res != Node)
1998    CurDAG->ReplaceAllUsesWith(Node, Res);
1999
2000  return Res;
2001}
2002
2003/// CheckSame - Implements OP_CheckSame.
2004LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2005CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2006          SDValue N,
2007          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2008  // Accept if it is exactly the same as a previously recorded node.
2009  unsigned RecNo = MatcherTable[MatcherIndex++];
2010  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2011  return N == RecordedNodes[RecNo].first;
2012}
2013
2014/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2015LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2016CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2017                      const SelectionDAGISel &SDISel) {
2018  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2019}
2020
2021/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2022LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2023CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2024                   const SelectionDAGISel &SDISel, SDNode *N) {
2025  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2026}
2027
2028LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2029CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2030            SDNode *N) {
2031  uint16_t Opc = MatcherTable[MatcherIndex++];
2032  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2033  return N->getOpcode() == Opc;
2034}
2035
2036LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2037CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2038          SDValue N, const TargetLowering &TLI) {
2039  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2040  if (N.getValueType() == VT) return true;
2041
2042  // Handle the case when VT is iPTR.
2043  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
2044}
2045
2046LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2047CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2048               SDValue N, const TargetLowering &TLI,
2049               unsigned ChildNo) {
2050  if (ChildNo >= N.getNumOperands())
2051    return false;  // Match fails if out of range child #.
2052  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2053}
2054
2055
2056LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2057CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2058              SDValue N) {
2059  return cast<CondCodeSDNode>(N)->get() ==
2060      (ISD::CondCode)MatcherTable[MatcherIndex++];
2061}
2062
2063LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2064CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2065               SDValue N, const TargetLowering &TLI) {
2066  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2067  if (cast<VTSDNode>(N)->getVT() == VT)
2068    return true;
2069
2070  // Handle the case when VT is iPTR.
2071  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
2072}
2073
2074LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2075CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2076             SDValue N) {
2077  int64_t Val = MatcherTable[MatcherIndex++];
2078  if (Val & 128)
2079    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2080
2081  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2082  return C != 0 && C->getSExtValue() == Val;
2083}
2084
2085LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2086CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2087            SDValue N, const SelectionDAGISel &SDISel) {
2088  int64_t Val = MatcherTable[MatcherIndex++];
2089  if (Val & 128)
2090    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2091
2092  if (N->getOpcode() != ISD::AND) return false;
2093
2094  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2095  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2096}
2097
2098LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2099CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2100           SDValue N, const SelectionDAGISel &SDISel) {
2101  int64_t Val = MatcherTable[MatcherIndex++];
2102  if (Val & 128)
2103    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2104
2105  if (N->getOpcode() != ISD::OR) return false;
2106
2107  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2108  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2109}
2110
2111/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2112/// scope, evaluate the current node.  If the current predicate is known to
2113/// fail, set Result=true and return anything.  If the current predicate is
2114/// known to pass, set Result=false and return the MatcherIndex to continue
2115/// with.  If the current predicate is unknown, set Result=false and return the
2116/// MatcherIndex to continue with.
2117static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2118                                       unsigned Index, SDValue N,
2119                                       bool &Result,
2120                                       const SelectionDAGISel &SDISel,
2121                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2122  switch (Table[Index++]) {
2123  default:
2124    Result = false;
2125    return Index-1;  // Could not evaluate this predicate.
2126  case SelectionDAGISel::OPC_CheckSame:
2127    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2128    return Index;
2129  case SelectionDAGISel::OPC_CheckPatternPredicate:
2130    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2131    return Index;
2132  case SelectionDAGISel::OPC_CheckPredicate:
2133    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2134    return Index;
2135  case SelectionDAGISel::OPC_CheckOpcode:
2136    Result = !::CheckOpcode(Table, Index, N.getNode());
2137    return Index;
2138  case SelectionDAGISel::OPC_CheckType:
2139    Result = !::CheckType(Table, Index, N, SDISel.TLI);
2140    return Index;
2141  case SelectionDAGISel::OPC_CheckChild0Type:
2142  case SelectionDAGISel::OPC_CheckChild1Type:
2143  case SelectionDAGISel::OPC_CheckChild2Type:
2144  case SelectionDAGISel::OPC_CheckChild3Type:
2145  case SelectionDAGISel::OPC_CheckChild4Type:
2146  case SelectionDAGISel::OPC_CheckChild5Type:
2147  case SelectionDAGISel::OPC_CheckChild6Type:
2148  case SelectionDAGISel::OPC_CheckChild7Type:
2149    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2150                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2151    return Index;
2152  case SelectionDAGISel::OPC_CheckCondCode:
2153    Result = !::CheckCondCode(Table, Index, N);
2154    return Index;
2155  case SelectionDAGISel::OPC_CheckValueType:
2156    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2157    return Index;
2158  case SelectionDAGISel::OPC_CheckInteger:
2159    Result = !::CheckInteger(Table, Index, N);
2160    return Index;
2161  case SelectionDAGISel::OPC_CheckAndImm:
2162    Result = !::CheckAndImm(Table, Index, N, SDISel);
2163    return Index;
2164  case SelectionDAGISel::OPC_CheckOrImm:
2165    Result = !::CheckOrImm(Table, Index, N, SDISel);
2166    return Index;
2167  }
2168}
2169
2170namespace {
2171
2172struct MatchScope {
2173  /// FailIndex - If this match fails, this is the index to continue with.
2174  unsigned FailIndex;
2175
2176  /// NodeStack - The node stack when the scope was formed.
2177  SmallVector<SDValue, 4> NodeStack;
2178
2179  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2180  unsigned NumRecordedNodes;
2181
2182  /// NumMatchedMemRefs - The number of matched memref entries.
2183  unsigned NumMatchedMemRefs;
2184
2185  /// InputChain/InputGlue - The current chain/glue
2186  SDValue InputChain, InputGlue;
2187
2188  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2189  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2190};
2191
2192}
2193
2194SDNode *SelectionDAGISel::
2195SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2196                 unsigned TableSize) {
2197  // FIXME: Should these even be selected?  Handle these cases in the caller?
2198  switch (NodeToMatch->getOpcode()) {
2199  default:
2200    break;
2201  case ISD::EntryToken:       // These nodes remain the same.
2202  case ISD::BasicBlock:
2203  case ISD::Register:
2204  case ISD::RegisterMask:
2205  //case ISD::VALUETYPE:
2206  //case ISD::CONDCODE:
2207  case ISD::HANDLENODE:
2208  case ISD::MDNODE_SDNODE:
2209  case ISD::TargetConstant:
2210  case ISD::TargetConstantFP:
2211  case ISD::TargetConstantPool:
2212  case ISD::TargetFrameIndex:
2213  case ISD::TargetExternalSymbol:
2214  case ISD::TargetBlockAddress:
2215  case ISD::TargetJumpTable:
2216  case ISD::TargetGlobalTLSAddress:
2217  case ISD::TargetGlobalAddress:
2218  case ISD::TokenFactor:
2219  case ISD::CopyFromReg:
2220  case ISD::CopyToReg:
2221  case ISD::EH_LABEL:
2222  case ISD::LIFETIME_START:
2223  case ISD::LIFETIME_END:
2224    NodeToMatch->setNodeId(-1); // Mark selected.
2225    return 0;
2226  case ISD::AssertSext:
2227  case ISD::AssertZext:
2228    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2229                                      NodeToMatch->getOperand(0));
2230    return 0;
2231  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2232  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2233  }
2234
2235  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2236
2237  // Set up the node stack with NodeToMatch as the only node on the stack.
2238  SmallVector<SDValue, 8> NodeStack;
2239  SDValue N = SDValue(NodeToMatch, 0);
2240  NodeStack.push_back(N);
2241
2242  // MatchScopes - Scopes used when matching, if a match failure happens, this
2243  // indicates where to continue checking.
2244  SmallVector<MatchScope, 8> MatchScopes;
2245
2246  // RecordedNodes - This is the set of nodes that have been recorded by the
2247  // state machine.  The second value is the parent of the node, or null if the
2248  // root is recorded.
2249  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2250
2251  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2252  // pattern.
2253  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2254
2255  // These are the current input chain and glue for use when generating nodes.
2256  // Various Emit operations change these.  For example, emitting a copytoreg
2257  // uses and updates these.
2258  SDValue InputChain, InputGlue;
2259
2260  // ChainNodesMatched - If a pattern matches nodes that have input/output
2261  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2262  // which ones they are.  The result is captured into this list so that we can
2263  // update the chain results when the pattern is complete.
2264  SmallVector<SDNode*, 3> ChainNodesMatched;
2265  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2266
2267  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2268        NodeToMatch->dump(CurDAG);
2269        errs() << '\n');
2270
2271  // Determine where to start the interpreter.  Normally we start at opcode #0,
2272  // but if the state machine starts with an OPC_SwitchOpcode, then we
2273  // accelerate the first lookup (which is guaranteed to be hot) with the
2274  // OpcodeOffset table.
2275  unsigned MatcherIndex = 0;
2276
2277  if (!OpcodeOffset.empty()) {
2278    // Already computed the OpcodeOffset table, just index into it.
2279    if (N.getOpcode() < OpcodeOffset.size())
2280      MatcherIndex = OpcodeOffset[N.getOpcode()];
2281    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2282
2283  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2284    // Otherwise, the table isn't computed, but the state machine does start
2285    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2286    // is the first time we're selecting an instruction.
2287    unsigned Idx = 1;
2288    while (1) {
2289      // Get the size of this case.
2290      unsigned CaseSize = MatcherTable[Idx++];
2291      if (CaseSize & 128)
2292        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2293      if (CaseSize == 0) break;
2294
2295      // Get the opcode, add the index to the table.
2296      uint16_t Opc = MatcherTable[Idx++];
2297      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2298      if (Opc >= OpcodeOffset.size())
2299        OpcodeOffset.resize((Opc+1)*2);
2300      OpcodeOffset[Opc] = Idx;
2301      Idx += CaseSize;
2302    }
2303
2304    // Okay, do the lookup for the first opcode.
2305    if (N.getOpcode() < OpcodeOffset.size())
2306      MatcherIndex = OpcodeOffset[N.getOpcode()];
2307  }
2308
2309  while (1) {
2310    assert(MatcherIndex < TableSize && "Invalid index");
2311#ifndef NDEBUG
2312    unsigned CurrentOpcodeIndex = MatcherIndex;
2313#endif
2314    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2315    switch (Opcode) {
2316    case OPC_Scope: {
2317      // Okay, the semantics of this operation are that we should push a scope
2318      // then evaluate the first child.  However, pushing a scope only to have
2319      // the first check fail (which then pops it) is inefficient.  If we can
2320      // determine immediately that the first check (or first several) will
2321      // immediately fail, don't even bother pushing a scope for them.
2322      unsigned FailIndex;
2323
2324      while (1) {
2325        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2326        if (NumToSkip & 128)
2327          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2328        // Found the end of the scope with no match.
2329        if (NumToSkip == 0) {
2330          FailIndex = 0;
2331          break;
2332        }
2333
2334        FailIndex = MatcherIndex+NumToSkip;
2335
2336        unsigned MatcherIndexOfPredicate = MatcherIndex;
2337        (void)MatcherIndexOfPredicate; // silence warning.
2338
2339        // If we can't evaluate this predicate without pushing a scope (e.g. if
2340        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2341        // push the scope and evaluate the full predicate chain.
2342        bool Result;
2343        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2344                                              Result, *this, RecordedNodes);
2345        if (!Result)
2346          break;
2347
2348        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2349                     << "index " << MatcherIndexOfPredicate
2350                     << ", continuing at " << FailIndex << "\n");
2351        ++NumDAGIselRetries;
2352
2353        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2354        // move to the next case.
2355        MatcherIndex = FailIndex;
2356      }
2357
2358      // If the whole scope failed to match, bail.
2359      if (FailIndex == 0) break;
2360
2361      // Push a MatchScope which indicates where to go if the first child fails
2362      // to match.
2363      MatchScope NewEntry;
2364      NewEntry.FailIndex = FailIndex;
2365      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2366      NewEntry.NumRecordedNodes = RecordedNodes.size();
2367      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2368      NewEntry.InputChain = InputChain;
2369      NewEntry.InputGlue = InputGlue;
2370      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2371      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2372      MatchScopes.push_back(NewEntry);
2373      continue;
2374    }
2375    case OPC_RecordNode: {
2376      // Remember this node, it may end up being an operand in the pattern.
2377      SDNode *Parent = 0;
2378      if (NodeStack.size() > 1)
2379        Parent = NodeStack[NodeStack.size()-2].getNode();
2380      RecordedNodes.push_back(std::make_pair(N, Parent));
2381      continue;
2382    }
2383
2384    case OPC_RecordChild0: case OPC_RecordChild1:
2385    case OPC_RecordChild2: case OPC_RecordChild3:
2386    case OPC_RecordChild4: case OPC_RecordChild5:
2387    case OPC_RecordChild6: case OPC_RecordChild7: {
2388      unsigned ChildNo = Opcode-OPC_RecordChild0;
2389      if (ChildNo >= N.getNumOperands())
2390        break;  // Match fails if out of range child #.
2391
2392      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2393                                             N.getNode()));
2394      continue;
2395    }
2396    case OPC_RecordMemRef:
2397      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2398      continue;
2399
2400    case OPC_CaptureGlueInput:
2401      // If the current node has an input glue, capture it in InputGlue.
2402      if (N->getNumOperands() != 0 &&
2403          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2404        InputGlue = N->getOperand(N->getNumOperands()-1);
2405      continue;
2406
2407    case OPC_MoveChild: {
2408      unsigned ChildNo = MatcherTable[MatcherIndex++];
2409      if (ChildNo >= N.getNumOperands())
2410        break;  // Match fails if out of range child #.
2411      N = N.getOperand(ChildNo);
2412      NodeStack.push_back(N);
2413      continue;
2414    }
2415
2416    case OPC_MoveParent:
2417      // Pop the current node off the NodeStack.
2418      NodeStack.pop_back();
2419      assert(!NodeStack.empty() && "Node stack imbalance!");
2420      N = NodeStack.back();
2421      continue;
2422
2423    case OPC_CheckSame:
2424      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2425      continue;
2426    case OPC_CheckPatternPredicate:
2427      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2428      continue;
2429    case OPC_CheckPredicate:
2430      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2431                                N.getNode()))
2432        break;
2433      continue;
2434    case OPC_CheckComplexPat: {
2435      unsigned CPNum = MatcherTable[MatcherIndex++];
2436      unsigned RecNo = MatcherTable[MatcherIndex++];
2437      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2438      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2439                               RecordedNodes[RecNo].first, CPNum,
2440                               RecordedNodes))
2441        break;
2442      continue;
2443    }
2444    case OPC_CheckOpcode:
2445      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2446      continue;
2447
2448    case OPC_CheckType:
2449      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2450      continue;
2451
2452    case OPC_SwitchOpcode: {
2453      unsigned CurNodeOpcode = N.getOpcode();
2454      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2455      unsigned CaseSize;
2456      while (1) {
2457        // Get the size of this case.
2458        CaseSize = MatcherTable[MatcherIndex++];
2459        if (CaseSize & 128)
2460          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2461        if (CaseSize == 0) break;
2462
2463        uint16_t Opc = MatcherTable[MatcherIndex++];
2464        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2465
2466        // If the opcode matches, then we will execute this case.
2467        if (CurNodeOpcode == Opc)
2468          break;
2469
2470        // Otherwise, skip over this case.
2471        MatcherIndex += CaseSize;
2472      }
2473
2474      // If no cases matched, bail out.
2475      if (CaseSize == 0) break;
2476
2477      // Otherwise, execute the case we found.
2478      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2479                   << " to " << MatcherIndex << "\n");
2480      continue;
2481    }
2482
2483    case OPC_SwitchType: {
2484      MVT CurNodeVT = N.getValueType().getSimpleVT();
2485      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2486      unsigned CaseSize;
2487      while (1) {
2488        // Get the size of this case.
2489        CaseSize = MatcherTable[MatcherIndex++];
2490        if (CaseSize & 128)
2491          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2492        if (CaseSize == 0) break;
2493
2494        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2495        if (CaseVT == MVT::iPTR)
2496          CaseVT = TLI.getPointerTy();
2497
2498        // If the VT matches, then we will execute this case.
2499        if (CurNodeVT == CaseVT)
2500          break;
2501
2502        // Otherwise, skip over this case.
2503        MatcherIndex += CaseSize;
2504      }
2505
2506      // If no cases matched, bail out.
2507      if (CaseSize == 0) break;
2508
2509      // Otherwise, execute the case we found.
2510      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2511                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2512      continue;
2513    }
2514    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2515    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2516    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2517    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2518      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2519                            Opcode-OPC_CheckChild0Type))
2520        break;
2521      continue;
2522    case OPC_CheckCondCode:
2523      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2524      continue;
2525    case OPC_CheckValueType:
2526      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2527      continue;
2528    case OPC_CheckInteger:
2529      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2530      continue;
2531    case OPC_CheckAndImm:
2532      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2533      continue;
2534    case OPC_CheckOrImm:
2535      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2536      continue;
2537
2538    case OPC_CheckFoldableChainNode: {
2539      assert(NodeStack.size() != 1 && "No parent node");
2540      // Verify that all intermediate nodes between the root and this one have
2541      // a single use.
2542      bool HasMultipleUses = false;
2543      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2544        if (!NodeStack[i].hasOneUse()) {
2545          HasMultipleUses = true;
2546          break;
2547        }
2548      if (HasMultipleUses) break;
2549
2550      // Check to see that the target thinks this is profitable to fold and that
2551      // we can fold it without inducing cycles in the graph.
2552      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2553                              NodeToMatch) ||
2554          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2555                         NodeToMatch, OptLevel,
2556                         true/*We validate our own chains*/))
2557        break;
2558
2559      continue;
2560    }
2561    case OPC_EmitInteger: {
2562      MVT::SimpleValueType VT =
2563        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2564      int64_t Val = MatcherTable[MatcherIndex++];
2565      if (Val & 128)
2566        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2567      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2568                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2569      continue;
2570    }
2571    case OPC_EmitRegister: {
2572      MVT::SimpleValueType VT =
2573        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2574      unsigned RegNo = MatcherTable[MatcherIndex++];
2575      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2576                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2577      continue;
2578    }
2579    case OPC_EmitRegister2: {
2580      // For targets w/ more than 256 register names, the register enum
2581      // values are stored in two bytes in the matcher table (just like
2582      // opcodes).
2583      MVT::SimpleValueType VT =
2584        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2585      unsigned RegNo = MatcherTable[MatcherIndex++];
2586      RegNo |= MatcherTable[MatcherIndex++] << 8;
2587      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2588                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2589      continue;
2590    }
2591
2592    case OPC_EmitConvertToTarget:  {
2593      // Convert from IMM/FPIMM to target version.
2594      unsigned RecNo = MatcherTable[MatcherIndex++];
2595      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2596      SDValue Imm = RecordedNodes[RecNo].first;
2597
2598      if (Imm->getOpcode() == ISD::Constant) {
2599        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2600        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2601      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2602        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2603        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2604      }
2605
2606      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2607      continue;
2608    }
2609
2610    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2611    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2612      // These are space-optimized forms of OPC_EmitMergeInputChains.
2613      assert(InputChain.getNode() == 0 &&
2614             "EmitMergeInputChains should be the first chain producing node");
2615      assert(ChainNodesMatched.empty() &&
2616             "Should only have one EmitMergeInputChains per match");
2617
2618      // Read all of the chained nodes.
2619      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2620      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2621      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2622
2623      // FIXME: What if other value results of the node have uses not matched
2624      // by this pattern?
2625      if (ChainNodesMatched.back() != NodeToMatch &&
2626          !RecordedNodes[RecNo].first.hasOneUse()) {
2627        ChainNodesMatched.clear();
2628        break;
2629      }
2630
2631      // Merge the input chains if they are not intra-pattern references.
2632      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2633
2634      if (InputChain.getNode() == 0)
2635        break;  // Failed to merge.
2636      continue;
2637    }
2638
2639    case OPC_EmitMergeInputChains: {
2640      assert(InputChain.getNode() == 0 &&
2641             "EmitMergeInputChains should be the first chain producing node");
2642      // This node gets a list of nodes we matched in the input that have
2643      // chains.  We want to token factor all of the input chains to these nodes
2644      // together.  However, if any of the input chains is actually one of the
2645      // nodes matched in this pattern, then we have an intra-match reference.
2646      // Ignore these because the newly token factored chain should not refer to
2647      // the old nodes.
2648      unsigned NumChains = MatcherTable[MatcherIndex++];
2649      assert(NumChains != 0 && "Can't TF zero chains");
2650
2651      assert(ChainNodesMatched.empty() &&
2652             "Should only have one EmitMergeInputChains per match");
2653
2654      // Read all of the chained nodes.
2655      for (unsigned i = 0; i != NumChains; ++i) {
2656        unsigned RecNo = MatcherTable[MatcherIndex++];
2657        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2658        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2659
2660        // FIXME: What if other value results of the node have uses not matched
2661        // by this pattern?
2662        if (ChainNodesMatched.back() != NodeToMatch &&
2663            !RecordedNodes[RecNo].first.hasOneUse()) {
2664          ChainNodesMatched.clear();
2665          break;
2666        }
2667      }
2668
2669      // If the inner loop broke out, the match fails.
2670      if (ChainNodesMatched.empty())
2671        break;
2672
2673      // Merge the input chains if they are not intra-pattern references.
2674      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2675
2676      if (InputChain.getNode() == 0)
2677        break;  // Failed to merge.
2678
2679      continue;
2680    }
2681
2682    case OPC_EmitCopyToReg: {
2683      unsigned RecNo = MatcherTable[MatcherIndex++];
2684      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2685      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2686
2687      if (InputChain.getNode() == 0)
2688        InputChain = CurDAG->getEntryNode();
2689
2690      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2691                                        DestPhysReg, RecordedNodes[RecNo].first,
2692                                        InputGlue);
2693
2694      InputGlue = InputChain.getValue(1);
2695      continue;
2696    }
2697
2698    case OPC_EmitNodeXForm: {
2699      unsigned XFormNo = MatcherTable[MatcherIndex++];
2700      unsigned RecNo = MatcherTable[MatcherIndex++];
2701      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2702      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2703      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2704      continue;
2705    }
2706
2707    case OPC_EmitNode:
2708    case OPC_MorphNodeTo: {
2709      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2710      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2711      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2712      // Get the result VT list.
2713      unsigned NumVTs = MatcherTable[MatcherIndex++];
2714      SmallVector<EVT, 4> VTs;
2715      for (unsigned i = 0; i != NumVTs; ++i) {
2716        MVT::SimpleValueType VT =
2717          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2718        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2719        VTs.push_back(VT);
2720      }
2721
2722      if (EmitNodeInfo & OPFL_Chain)
2723        VTs.push_back(MVT::Other);
2724      if (EmitNodeInfo & OPFL_GlueOutput)
2725        VTs.push_back(MVT::Glue);
2726
2727      // This is hot code, so optimize the two most common cases of 1 and 2
2728      // results.
2729      SDVTList VTList;
2730      if (VTs.size() == 1)
2731        VTList = CurDAG->getVTList(VTs[0]);
2732      else if (VTs.size() == 2)
2733        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2734      else
2735        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2736
2737      // Get the operand list.
2738      unsigned NumOps = MatcherTable[MatcherIndex++];
2739      SmallVector<SDValue, 8> Ops;
2740      for (unsigned i = 0; i != NumOps; ++i) {
2741        unsigned RecNo = MatcherTable[MatcherIndex++];
2742        if (RecNo & 128)
2743          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2744
2745        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2746        Ops.push_back(RecordedNodes[RecNo].first);
2747      }
2748
2749      // If there are variadic operands to add, handle them now.
2750      if (EmitNodeInfo & OPFL_VariadicInfo) {
2751        // Determine the start index to copy from.
2752        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2753        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2754        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2755               "Invalid variadic node");
2756        // Copy all of the variadic operands, not including a potential glue
2757        // input.
2758        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2759             i != e; ++i) {
2760          SDValue V = NodeToMatch->getOperand(i);
2761          if (V.getValueType() == MVT::Glue) break;
2762          Ops.push_back(V);
2763        }
2764      }
2765
2766      // If this has chain/glue inputs, add them.
2767      if (EmitNodeInfo & OPFL_Chain)
2768        Ops.push_back(InputChain);
2769      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2770        Ops.push_back(InputGlue);
2771
2772      // Create the node.
2773      SDNode *Res = 0;
2774      if (Opcode != OPC_MorphNodeTo) {
2775        // If this is a normal EmitNode command, just create the new node and
2776        // add the results to the RecordedNodes list.
2777        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2778                                     VTList, Ops.data(), Ops.size());
2779
2780        // Add all the non-glue/non-chain results to the RecordedNodes list.
2781        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2782          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2783          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2784                                                             (SDNode*) 0));
2785        }
2786
2787      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2788        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2789                        EmitNodeInfo);
2790      } else {
2791        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2792        // We will visit the equivalent node later.
2793        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2794        return 0;
2795      }
2796
2797      // If the node had chain/glue results, update our notion of the current
2798      // chain and glue.
2799      if (EmitNodeInfo & OPFL_GlueOutput) {
2800        InputGlue = SDValue(Res, VTs.size()-1);
2801        if (EmitNodeInfo & OPFL_Chain)
2802          InputChain = SDValue(Res, VTs.size()-2);
2803      } else if (EmitNodeInfo & OPFL_Chain)
2804        InputChain = SDValue(Res, VTs.size()-1);
2805
2806      // If the OPFL_MemRefs glue is set on this node, slap all of the
2807      // accumulated memrefs onto it.
2808      //
2809      // FIXME: This is vastly incorrect for patterns with multiple outputs
2810      // instructions that access memory and for ComplexPatterns that match
2811      // loads.
2812      if (EmitNodeInfo & OPFL_MemRefs) {
2813        // Only attach load or store memory operands if the generated
2814        // instruction may load or store.
2815        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2816        bool mayLoad = MCID.mayLoad();
2817        bool mayStore = MCID.mayStore();
2818
2819        unsigned NumMemRefs = 0;
2820        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2821             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2822          if ((*I)->isLoad()) {
2823            if (mayLoad)
2824              ++NumMemRefs;
2825          } else if ((*I)->isStore()) {
2826            if (mayStore)
2827              ++NumMemRefs;
2828          } else {
2829            ++NumMemRefs;
2830          }
2831        }
2832
2833        MachineSDNode::mmo_iterator MemRefs =
2834          MF->allocateMemRefsArray(NumMemRefs);
2835
2836        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2837        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2838             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2839          if ((*I)->isLoad()) {
2840            if (mayLoad)
2841              *MemRefsPos++ = *I;
2842          } else if ((*I)->isStore()) {
2843            if (mayStore)
2844              *MemRefsPos++ = *I;
2845          } else {
2846            *MemRefsPos++ = *I;
2847          }
2848        }
2849
2850        cast<MachineSDNode>(Res)
2851          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2852      }
2853
2854      DEBUG(errs() << "  "
2855                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2856                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2857
2858      // If this was a MorphNodeTo then we're completely done!
2859      if (Opcode == OPC_MorphNodeTo) {
2860        // Update chain and glue uses.
2861        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2862                            InputGlue, GlueResultNodesMatched, true);
2863        return Res;
2864      }
2865
2866      continue;
2867    }
2868
2869    case OPC_MarkGlueResults: {
2870      unsigned NumNodes = MatcherTable[MatcherIndex++];
2871
2872      // Read and remember all the glue-result nodes.
2873      for (unsigned i = 0; i != NumNodes; ++i) {
2874        unsigned RecNo = MatcherTable[MatcherIndex++];
2875        if (RecNo & 128)
2876          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2877
2878        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2879        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2880      }
2881      continue;
2882    }
2883
2884    case OPC_CompleteMatch: {
2885      // The match has been completed, and any new nodes (if any) have been
2886      // created.  Patch up references to the matched dag to use the newly
2887      // created nodes.
2888      unsigned NumResults = MatcherTable[MatcherIndex++];
2889
2890      for (unsigned i = 0; i != NumResults; ++i) {
2891        unsigned ResSlot = MatcherTable[MatcherIndex++];
2892        if (ResSlot & 128)
2893          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2894
2895        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2896        SDValue Res = RecordedNodes[ResSlot].first;
2897
2898        assert(i < NodeToMatch->getNumValues() &&
2899               NodeToMatch->getValueType(i) != MVT::Other &&
2900               NodeToMatch->getValueType(i) != MVT::Glue &&
2901               "Invalid number of results to complete!");
2902        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2903                NodeToMatch->getValueType(i) == MVT::iPTR ||
2904                Res.getValueType() == MVT::iPTR ||
2905                NodeToMatch->getValueType(i).getSizeInBits() ==
2906                    Res.getValueType().getSizeInBits()) &&
2907               "invalid replacement");
2908        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2909      }
2910
2911      // If the root node defines glue, add it to the glue nodes to update list.
2912      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2913        GlueResultNodesMatched.push_back(NodeToMatch);
2914
2915      // Update chain and glue uses.
2916      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2917                          InputGlue, GlueResultNodesMatched, false);
2918
2919      assert(NodeToMatch->use_empty() &&
2920             "Didn't replace all uses of the node?");
2921
2922      // FIXME: We just return here, which interacts correctly with SelectRoot
2923      // above.  We should fix this to not return an SDNode* anymore.
2924      return 0;
2925    }
2926    }
2927
2928    // If the code reached this point, then the match failed.  See if there is
2929    // another child to try in the current 'Scope', otherwise pop it until we
2930    // find a case to check.
2931    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2932    ++NumDAGIselRetries;
2933    while (1) {
2934      if (MatchScopes.empty()) {
2935        CannotYetSelect(NodeToMatch);
2936        return 0;
2937      }
2938
2939      // Restore the interpreter state back to the point where the scope was
2940      // formed.
2941      MatchScope &LastScope = MatchScopes.back();
2942      RecordedNodes.resize(LastScope.NumRecordedNodes);
2943      NodeStack.clear();
2944      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2945      N = NodeStack.back();
2946
2947      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2948        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2949      MatcherIndex = LastScope.FailIndex;
2950
2951      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2952
2953      InputChain = LastScope.InputChain;
2954      InputGlue = LastScope.InputGlue;
2955      if (!LastScope.HasChainNodesMatched)
2956        ChainNodesMatched.clear();
2957      if (!LastScope.HasGlueResultNodesMatched)
2958        GlueResultNodesMatched.clear();
2959
2960      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2961      // we have reached the end of this scope, otherwise we have another child
2962      // in the current scope to try.
2963      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2964      if (NumToSkip & 128)
2965        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2966
2967      // If we have another child in this scope to match, update FailIndex and
2968      // try it.
2969      if (NumToSkip != 0) {
2970        LastScope.FailIndex = MatcherIndex+NumToSkip;
2971        break;
2972      }
2973
2974      // End of this scope, pop it and try the next child in the containing
2975      // scope.
2976      MatchScopes.pop_back();
2977    }
2978  }
2979}
2980
2981
2982
2983void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2984  std::string msg;
2985  raw_string_ostream Msg(msg);
2986  Msg << "Cannot select: ";
2987
2988  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2989      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2990      N->getOpcode() != ISD::INTRINSIC_VOID) {
2991    N->printrFull(Msg, CurDAG);
2992    Msg << "\nIn function: " << MF->getName();
2993  } else {
2994    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2995    unsigned iid =
2996      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2997    if (iid < Intrinsic::num_intrinsics)
2998      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2999    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3000      Msg << "target intrinsic %" << TII->getName(iid);
3001    else
3002      Msg << "unknown intrinsic #" << iid;
3003  }
3004  report_fatal_error(Msg.str());
3005}
3006
3007char SelectionDAGISel::ID = 0;
3008