SelectionDAGISel.cpp revision 78ae76d54c1a523366be7e1c3cde16287e94de5f
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "SelectionDAGBuild.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleDAG.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Target/TargetFrameInfo.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLowering.h"
45#include "llvm/Target/TargetMachine.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/Timer.h"
51#include <algorithm>
52using namespace llvm;
53
54static cl::opt<bool>
55EnableValueProp("enable-value-prop", cl::Hidden);
56static cl::opt<bool>
57EnableLegalizeTypes("enable-legalize-types", cl::Hidden);
58static cl::opt<bool>
59EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
60          cl::desc("Enable verbose messages in the experimental \"fast\" "
61                   "instruction selector"));
62static cl::opt<bool>
63EnableFastISelAbort("fast-isel-abort", cl::Hidden,
64          cl::desc("Enable abort calls when \"fast\" instruction fails"));
65static cl::opt<bool>
66SchedLiveInCopies("schedule-livein-copies",
67                  cl::desc("Schedule copies of livein registers"),
68                  cl::init(false));
69
70#ifndef NDEBUG
71static cl::opt<bool>
72ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
73          cl::desc("Pop up a window to show dags before the first "
74                   "dag combine pass"));
75static cl::opt<bool>
76ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before legalize types"));
78static cl::opt<bool>
79ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
80          cl::desc("Pop up a window to show dags before legalize"));
81static cl::opt<bool>
82ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before the second "
84                   "dag combine pass"));
85static cl::opt<bool>
86ViewISelDAGs("view-isel-dags", cl::Hidden,
87          cl::desc("Pop up a window to show isel dags as they are selected"));
88static cl::opt<bool>
89ViewSchedDAGs("view-sched-dags", cl::Hidden,
90          cl::desc("Pop up a window to show sched dags as they are processed"));
91static cl::opt<bool>
92ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
93      cl::desc("Pop up a window to show SUnit dags after they are processed"));
94#else
95static const bool ViewDAGCombine1 = false,
96                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
97                  ViewDAGCombine2 = false,
98                  ViewISelDAGs = false, ViewSchedDAGs = false,
99                  ViewSUnitDAGs = false;
100#endif
101
102//===---------------------------------------------------------------------===//
103///
104/// RegisterScheduler class - Track the registration of instruction schedulers.
105///
106//===---------------------------------------------------------------------===//
107MachinePassRegistry RegisterScheduler::Registry;
108
109//===---------------------------------------------------------------------===//
110///
111/// ISHeuristic command line option for instruction schedulers.
112///
113//===---------------------------------------------------------------------===//
114static cl::opt<RegisterScheduler::FunctionPassCtor, false,
115               RegisterPassParser<RegisterScheduler> >
116ISHeuristic("pre-RA-sched",
117            cl::init(&createDefaultScheduler),
118            cl::desc("Instruction schedulers available (before register"
119                     " allocation):"));
120
121static RegisterScheduler
122defaultListDAGScheduler("default", "  Best scheduler for the target",
123                        createDefaultScheduler);
124
125namespace llvm {
126  //===--------------------------------------------------------------------===//
127  /// createDefaultScheduler - This creates an instruction scheduler appropriate
128  /// for the target.
129  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
130                                      SelectionDAG *DAG,
131                                      MachineBasicBlock *BB,
132                                      bool Fast) {
133    TargetLowering &TLI = IS->getTargetLowering();
134
135    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
136      return createTDListDAGScheduler(IS, DAG, BB, Fast);
137    } else {
138      assert(TLI.getSchedulingPreference() ==
139           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
140      return createBURRListDAGScheduler(IS, DAG, BB, Fast);
141    }
142  }
143}
144
145// EmitInstrWithCustomInserter - This method should be implemented by targets
146// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
147// instructions are special in various ways, which require special support to
148// insert.  The specified MachineInstr is created but not inserted into any
149// basic blocks, and the scheduler passes ownership of it to this method.
150MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
151                                                       MachineBasicBlock *MBB) {
152  cerr << "If a target marks an instruction with "
153       << "'usesCustomDAGSchedInserter', it must implement "
154       << "TargetLowering::EmitInstrWithCustomInserter!\n";
155  abort();
156  return 0;
157}
158
159/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
160/// physical register has only a single copy use, then coalesced the copy
161/// if possible.
162static void EmitLiveInCopy(MachineBasicBlock *MBB,
163                           MachineBasicBlock::iterator &InsertPos,
164                           unsigned VirtReg, unsigned PhysReg,
165                           const TargetRegisterClass *RC,
166                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
167                           const MachineRegisterInfo &MRI,
168                           const TargetRegisterInfo &TRI,
169                           const TargetInstrInfo &TII) {
170  unsigned NumUses = 0;
171  MachineInstr *UseMI = NULL;
172  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
173         UE = MRI.use_end(); UI != UE; ++UI) {
174    UseMI = &*UI;
175    if (++NumUses > 1)
176      break;
177  }
178
179  // If the number of uses is not one, or the use is not a move instruction,
180  // don't coalesce. Also, only coalesce away a virtual register to virtual
181  // register copy.
182  bool Coalesced = false;
183  unsigned SrcReg, DstReg;
184  if (NumUses == 1 &&
185      TII.isMoveInstr(*UseMI, SrcReg, DstReg) &&
186      TargetRegisterInfo::isVirtualRegister(DstReg)) {
187    VirtReg = DstReg;
188    Coalesced = true;
189  }
190
191  // Now find an ideal location to insert the copy.
192  MachineBasicBlock::iterator Pos = InsertPos;
193  while (Pos != MBB->begin()) {
194    MachineInstr *PrevMI = prior(Pos);
195    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
196    // copyRegToReg might emit multiple instructions to do a copy.
197    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
198    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
199      // This is what the BB looks like right now:
200      // r1024 = mov r0
201      // ...
202      // r1    = mov r1024
203      //
204      // We want to insert "r1025 = mov r1". Inserting this copy below the
205      // move to r1024 makes it impossible for that move to be coalesced.
206      //
207      // r1025 = mov r1
208      // r1024 = mov r0
209      // ...
210      // r1    = mov 1024
211      // r2    = mov 1025
212      break; // Woot! Found a good location.
213    --Pos;
214  }
215
216  TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
217  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
218  if (Coalesced) {
219    if (&*InsertPos == UseMI) ++InsertPos;
220    MBB->erase(UseMI);
221  }
222}
223
224/// EmitLiveInCopies - If this is the first basic block in the function,
225/// and if it has live ins that need to be copied into vregs, emit the
226/// copies into the block.
227static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
228                             const MachineRegisterInfo &MRI,
229                             const TargetRegisterInfo &TRI,
230                             const TargetInstrInfo &TII) {
231  if (SchedLiveInCopies) {
232    // Emit the copies at a heuristically-determined location in the block.
233    DenseMap<MachineInstr*, unsigned> CopyRegMap;
234    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
235    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
236           E = MRI.livein_end(); LI != E; ++LI)
237      if (LI->second) {
238        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
239        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
240                       RC, CopyRegMap, MRI, TRI, TII);
241      }
242  } else {
243    // Emit the copies into the top of the block.
244    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
245           E = MRI.livein_end(); LI != E; ++LI)
246      if (LI->second) {
247        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
248        TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
249                         LI->second, LI->first, RC, RC);
250      }
251  }
252}
253
254//===----------------------------------------------------------------------===//
255// SelectionDAGISel code
256//===----------------------------------------------------------------------===//
257
258SelectionDAGISel::SelectionDAGISel(TargetLowering &tli, bool fast) :
259  FunctionPass(&ID), TLI(tli),
260  FuncInfo(new FunctionLoweringInfo(TLI)),
261  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
262  SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo)),
263  GFI(),
264  Fast(fast),
265  DAGSize(0)
266{}
267
268SelectionDAGISel::~SelectionDAGISel() {
269  delete SDL;
270  delete CurDAG;
271  delete FuncInfo;
272}
273
274unsigned SelectionDAGISel::MakeReg(MVT VT) {
275  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
276}
277
278void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
279  AU.addRequired<AliasAnalysis>();
280  AU.addRequired<GCModuleInfo>();
281  AU.setPreservesAll();
282}
283
284bool SelectionDAGISel::runOnFunction(Function &Fn) {
285  // Do some sanity-checking on the command-line options.
286  assert((!EnableFastISelVerbose || EnableFastISel) &&
287         "-fast-isel-verbose requires -fast-isel");
288  assert((!EnableFastISelAbort || EnableFastISel) &&
289         "-fast-isel-abort requires -fast-isel");
290
291  // Get alias analysis for load/store combining.
292  AA = &getAnalysis<AliasAnalysis>();
293
294  TargetMachine &TM = TLI.getTargetMachine();
295  MachineFunction &MF = MachineFunction::construct(&Fn, TM);
296  const MachineRegisterInfo &MRI = MF.getRegInfo();
297  const TargetInstrInfo &TII = *TM.getInstrInfo();
298  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
299
300  if (MF.getFunction()->hasGC())
301    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(*MF.getFunction());
302  else
303    GFI = 0;
304  RegInfo = &MF.getRegInfo();
305  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
306
307  FuncInfo->set(Fn, MF, EnableFastISel);
308  MachineModuleInfo *MMI = getAnalysisToUpdate<MachineModuleInfo>();
309  CurDAG->init(MF, MMI);
310  SDL->init(GFI, *AA);
311
312  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
313    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
314      // Mark landing pad.
315      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
316
317  SelectAllBasicBlocks(Fn, MF, MMI);
318
319  // If the first basic block in the function has live ins that need to be
320  // copied into vregs, emit the copies into the top of the block before
321  // emitting the code for the block.
322  EmitLiveInCopies(MF.begin(), MRI, TRI, TII);
323
324  // Add function live-ins to entry block live-in set.
325  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
326         E = RegInfo->livein_end(); I != E; ++I)
327    MF.begin()->addLiveIn(I->first);
328
329#ifndef NDEBUG
330  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
331         "Not all catch info was assigned to a landing pad!");
332#endif
333
334  FuncInfo->clear();
335
336  return true;
337}
338
339static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
340                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
341  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
342    if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
343      // Apply the catch info to DestBB.
344      AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
345#ifndef NDEBUG
346      if (!FLI.MBBMap[SrcBB]->isLandingPad())
347        FLI.CatchInfoFound.insert(EHSel);
348#endif
349    }
350}
351
352/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
353/// whether object offset >= 0.
354static bool
355IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDValue Op) {
356  if (!isa<FrameIndexSDNode>(Op)) return false;
357
358  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
359  int FrameIdx =  FrameIdxNode->getIndex();
360  return MFI->isFixedObjectIndex(FrameIdx) &&
361    MFI->getObjectOffset(FrameIdx) >= 0;
362}
363
364/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
365/// possibly be overwritten when lowering the outgoing arguments in a tail
366/// call. Currently the implementation of this call is very conservative and
367/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
368/// virtual registers would be overwritten by direct lowering.
369static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
370                                                    MachineFrameInfo * MFI) {
371  RegisterSDNode * OpReg = NULL;
372  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
373      (Op.getOpcode()== ISD::CopyFromReg &&
374       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
375       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
376      (Op.getOpcode() == ISD::LOAD &&
377       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
378      (Op.getOpcode() == ISD::MERGE_VALUES &&
379       Op.getOperand(Op.getResNo()).getOpcode() == ISD::LOAD &&
380       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.getResNo()).
381                                       getOperand(1))))
382    return true;
383  return false;
384}
385
386/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
387/// DAG and fixes their tailcall attribute operand.
388static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
389                                           TargetLowering& TLI) {
390  SDNode * Ret = NULL;
391  SDValue Terminator = DAG.getRoot();
392
393  // Find RET node.
394  if (Terminator.getOpcode() == ISD::RET) {
395    Ret = Terminator.getNode();
396  }
397
398  // Fix tail call attribute of CALL nodes.
399  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
400         BI = DAG.allnodes_end(); BI != BE; ) {
401    --BI;
402    if (CallSDNode *TheCall = dyn_cast<CallSDNode>(BI)) {
403      SDValue OpRet(Ret, 0);
404      SDValue OpCall(BI, 0);
405      bool isMarkedTailCall = TheCall->isTailCall();
406      // If CALL node has tail call attribute set to true and the call is not
407      // eligible (no RET or the target rejects) the attribute is fixed to
408      // false. The TargetLowering::IsEligibleForTailCallOptimization function
409      // must correctly identify tail call optimizable calls.
410      if (!isMarkedTailCall) continue;
411      if (Ret==NULL ||
412          !TLI.IsEligibleForTailCallOptimization(TheCall, OpRet, DAG)) {
413        // Not eligible. Mark CALL node as non tail call. Note that we
414        // can modify the call node in place since calls are not CSE'd.
415        TheCall->setNotTailCall();
416      } else {
417        // Look for tail call clobbered arguments. Emit a series of
418        // copyto/copyfrom virtual register nodes to protect them.
419        SmallVector<SDValue, 32> Ops;
420        SDValue Chain = TheCall->getChain(), InFlag;
421        Ops.push_back(Chain);
422        Ops.push_back(TheCall->getCallee());
423        for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; ++i) {
424          SDValue Arg = TheCall->getArg(i);
425          bool isByVal = TheCall->getArgFlags(i).isByVal();
426          MachineFunction &MF = DAG.getMachineFunction();
427          MachineFrameInfo *MFI = MF.getFrameInfo();
428          if (!isByVal &&
429              IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
430            MVT VT = Arg.getValueType();
431            unsigned VReg = MF.getRegInfo().
432              createVirtualRegister(TLI.getRegClassFor(VT));
433            Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
434            InFlag = Chain.getValue(1);
435            Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
436            Chain = Arg.getValue(1);
437            InFlag = Arg.getValue(2);
438          }
439          Ops.push_back(Arg);
440          Ops.push_back(TheCall->getArgFlagsVal(i));
441        }
442        // Link in chain of CopyTo/CopyFromReg.
443        Ops[0] = Chain;
444        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
445      }
446    }
447  }
448}
449
450void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
451                                        BasicBlock::iterator Begin,
452                                        BasicBlock::iterator End) {
453  SDL->setCurrentBasicBlock(BB);
454
455  MachineModuleInfo *MMI = CurDAG->getMachineModuleInfo();
456
457  if (MMI && BB->isLandingPad()) {
458    // Add a label to mark the beginning of the landing pad.  Deletion of the
459    // landing pad can thus be detected via the MachineModuleInfo.
460    unsigned LabelID = MMI->addLandingPad(BB);
461    CurDAG->setRoot(CurDAG->getLabel(ISD::EH_LABEL,
462                                     CurDAG->getEntryNode(), LabelID));
463
464    // Mark exception register as live in.
465    unsigned Reg = TLI.getExceptionAddressRegister();
466    if (Reg) BB->addLiveIn(Reg);
467
468    // Mark exception selector register as live in.
469    Reg = TLI.getExceptionSelectorRegister();
470    if (Reg) BB->addLiveIn(Reg);
471
472    // FIXME: Hack around an exception handling flaw (PR1508): the personality
473    // function and list of typeids logically belong to the invoke (or, if you
474    // like, the basic block containing the invoke), and need to be associated
475    // with it in the dwarf exception handling tables.  Currently however the
476    // information is provided by an intrinsic (eh.selector) that can be moved
477    // to unexpected places by the optimizers: if the unwind edge is critical,
478    // then breaking it can result in the intrinsics being in the successor of
479    // the landing pad, not the landing pad itself.  This results in exceptions
480    // not being caught because no typeids are associated with the invoke.
481    // This may not be the only way things can go wrong, but it is the only way
482    // we try to work around for the moment.
483    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
484
485    if (Br && Br->isUnconditional()) { // Critical edge?
486      BasicBlock::iterator I, E;
487      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
488        if (isa<EHSelectorInst>(I))
489          break;
490
491      if (I == E)
492        // No catch info found - try to extract some from the successor.
493        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
494    }
495  }
496
497  // Lower all of the non-terminator instructions.
498  for (BasicBlock::iterator I = Begin; I != End; ++I)
499    if (!isa<TerminatorInst>(I))
500      SDL->visit(*I);
501
502  // Ensure that all instructions which are used outside of their defining
503  // blocks are available as virtual registers.  Invoke is handled elsewhere.
504  for (BasicBlock::iterator I = Begin; I != End; ++I)
505    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
506      DenseMap<const Value*,unsigned>::iterator VMI =FuncInfo->ValueMap.find(I);
507      if (VMI != FuncInfo->ValueMap.end())
508        SDL->CopyValueToVirtualRegister(I, VMI->second);
509    }
510
511  // Handle PHI nodes in successor blocks.
512  if (End == LLVMBB->end()) {
513    HandlePHINodesInSuccessorBlocks(LLVMBB);
514
515    // Lower the terminator after the copies are emitted.
516    SDL->visit(*LLVMBB->getTerminator());
517  }
518
519  // Make sure the root of the DAG is up-to-date.
520  CurDAG->setRoot(SDL->getControlRoot());
521
522  // Check whether calls in this block are real tail calls. Fix up CALL nodes
523  // with correct tailcall attribute so that the target can rely on the tailcall
524  // attribute indicating whether the call is really eligible for tail call
525  // optimization.
526  if (PerformTailCallOpt)
527    CheckDAGForTailCallsAndFixThem(*CurDAG, TLI);
528
529  // Final step, emit the lowered DAG as machine code.
530  CodeGenAndEmitDAG();
531  SDL->clear();
532}
533
534void SelectionDAGISel::ComputeLiveOutVRegInfo() {
535  SmallPtrSet<SDNode*, 128> VisitedNodes;
536  SmallVector<SDNode*, 128> Worklist;
537
538  Worklist.push_back(CurDAG->getRoot().getNode());
539
540  APInt Mask;
541  APInt KnownZero;
542  APInt KnownOne;
543
544  while (!Worklist.empty()) {
545    SDNode *N = Worklist.back();
546    Worklist.pop_back();
547
548    // If we've already seen this node, ignore it.
549    if (!VisitedNodes.insert(N))
550      continue;
551
552    // Otherwise, add all chain operands to the worklist.
553    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
554      if (N->getOperand(i).getValueType() == MVT::Other)
555        Worklist.push_back(N->getOperand(i).getNode());
556
557    // If this is a CopyToReg with a vreg dest, process it.
558    if (N->getOpcode() != ISD::CopyToReg)
559      continue;
560
561    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
562    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
563      continue;
564
565    // Ignore non-scalar or non-integer values.
566    SDValue Src = N->getOperand(2);
567    MVT SrcVT = Src.getValueType();
568    if (!SrcVT.isInteger() || SrcVT.isVector())
569      continue;
570
571    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
572    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
573    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
574
575    // Only install this information if it tells us something.
576    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
577      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
578      FunctionLoweringInfo &FLI = CurDAG->getFunctionLoweringInfo();
579      if (DestReg >= FLI.LiveOutRegInfo.size())
580        FLI.LiveOutRegInfo.resize(DestReg+1);
581      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
582      LOI.NumSignBits = NumSignBits;
583      LOI.KnownOne = NumSignBits;
584      LOI.KnownZero = NumSignBits;
585    }
586  }
587}
588
589void SelectionDAGISel::CodeGenAndEmitDAG() {
590  std::string GroupName;
591  if (TimePassesIsEnabled)
592    GroupName = "Instruction Selection and Scheduling";
593  std::string BlockName;
594  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
595      ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs)
596    BlockName = CurDAG->getMachineFunction().getFunction()->getName() + ':' +
597                BB->getBasicBlock()->getName();
598
599  DOUT << "Initial selection DAG:\n";
600  DEBUG(CurDAG->dump());
601
602  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
603
604  // Run the DAG combiner in pre-legalize mode.
605  if (TimePassesIsEnabled) {
606    NamedRegionTimer T("DAG Combining 1", GroupName);
607    CurDAG->Combine(false, *AA, Fast);
608  } else {
609    CurDAG->Combine(false, *AA, Fast);
610  }
611
612  DOUT << "Optimized lowered selection DAG:\n";
613  DEBUG(CurDAG->dump());
614
615  // Second step, hack on the DAG until it only uses operations and types that
616  // the target supports.
617  if (EnableLegalizeTypes) {// Enable this some day.
618    if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
619                                                 BlockName);
620
621    if (TimePassesIsEnabled) {
622      NamedRegionTimer T("Type Legalization", GroupName);
623      CurDAG->LegalizeTypes();
624    } else {
625      CurDAG->LegalizeTypes();
626    }
627
628    DOUT << "Type-legalized selection DAG:\n";
629    DEBUG(CurDAG->dump());
630
631    // TODO: enable a dag combine pass here.
632  }
633
634  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
635
636  if (TimePassesIsEnabled) {
637    NamedRegionTimer T("DAG Legalization", GroupName);
638    CurDAG->Legalize();
639  } else {
640    CurDAG->Legalize();
641  }
642
643  DOUT << "Legalized selection DAG:\n";
644  DEBUG(CurDAG->dump());
645
646  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
647
648  // Run the DAG combiner in post-legalize mode.
649  if (TimePassesIsEnabled) {
650    NamedRegionTimer T("DAG Combining 2", GroupName);
651    CurDAG->Combine(true, *AA, Fast);
652  } else {
653    CurDAG->Combine(true, *AA, Fast);
654  }
655
656  DOUT << "Optimized legalized selection DAG:\n";
657  DEBUG(CurDAG->dump());
658
659  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
660
661  if (!Fast && EnableValueProp)
662    ComputeLiveOutVRegInfo();
663
664  // Third, instruction select all of the operations to machine code, adding the
665  // code to the MachineBasicBlock.
666  if (TimePassesIsEnabled) {
667    NamedRegionTimer T("Instruction Selection", GroupName);
668    InstructionSelect();
669  } else {
670    InstructionSelect();
671  }
672
673  DOUT << "Selected selection DAG:\n";
674  DEBUG(CurDAG->dump());
675
676  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
677
678  // Schedule machine code.
679  ScheduleDAG *Scheduler;
680  if (TimePassesIsEnabled) {
681    NamedRegionTimer T("Instruction Scheduling", GroupName);
682    Scheduler = Schedule();
683  } else {
684    Scheduler = Schedule();
685  }
686
687  if (ViewSUnitDAGs) Scheduler->viewGraph();
688
689  // Emit machine code to BB.  This can change 'BB' to the last block being
690  // inserted into.
691  if (TimePassesIsEnabled) {
692    NamedRegionTimer T("Instruction Creation", GroupName);
693    BB = Scheduler->EmitSchedule();
694  } else {
695    BB = Scheduler->EmitSchedule();
696  }
697
698  // Free the scheduler state.
699  if (TimePassesIsEnabled) {
700    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
701    delete Scheduler;
702  } else {
703    delete Scheduler;
704  }
705
706  DOUT << "Selected machine code:\n";
707  DEBUG(BB->dump());
708}
709
710void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF,
711                                            MachineModuleInfo *MMI) {
712  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
713    BasicBlock *LLVMBB = &*I;
714    BB = FuncInfo->MBBMap[LLVMBB];
715
716    BasicBlock::iterator const Begin = LLVMBB->begin();
717    BasicBlock::iterator const End = LLVMBB->end();
718    BasicBlock::iterator BI = Begin;
719
720    // Lower any arguments needed in this block if this is the entry block.
721    bool SuppressFastISel = false;
722    if (LLVMBB == &Fn.getEntryBlock()) {
723      LowerArguments(LLVMBB);
724
725      // If any of the arguments has the byval attribute, forgo
726      // fast-isel in the entry block.
727      if (EnableFastISel) {
728        unsigned j = 1;
729        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
730             I != E; ++I, ++j)
731          if (Fn.paramHasAttr(j, ParamAttr::ByVal)) {
732            cerr << "FastISel skips entry block due to byval argument";
733            SuppressFastISel = true;
734            break;
735          }
736      }
737    }
738
739    // Before doing SelectionDAG ISel, see if FastISel has been requested.
740    // FastISel doesn't support EH landing pads, which require special handling.
741    if (EnableFastISel && !SuppressFastISel && !BB->isLandingPad()) {
742      if (FastISel *F = TLI.createFastISel(*FuncInfo->MF, MMI,
743                                           FuncInfo->ValueMap,
744                                           FuncInfo->MBBMap,
745                                           FuncInfo->StaticAllocaMap)) {
746        // Emit code for any incoming arguments. This must happen before
747        // beginning FastISel on the entry block.
748        if (LLVMBB == &Fn.getEntryBlock()) {
749          CurDAG->setRoot(SDL->getControlRoot());
750          CodeGenAndEmitDAG();
751          SDL->clear();
752        }
753        F->setCurrentBlock(BB);
754        // Do FastISel on as many instructions as possible.
755        for (; BI != End; ++BI) {
756          // Just before the terminator instruction, insert instructions to
757          // feed PHI nodes in successor blocks.
758          if (isa<TerminatorInst>(BI))
759            if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, F)) {
760              if (EnableFastISelVerbose || EnableFastISelAbort) {
761                cerr << "FastISel miss: ";
762                BI->dump();
763              }
764              if (EnableFastISelAbort)
765                assert(0 && "FastISel didn't handle a PHI in a successor");
766              break;
767            }
768
769          // First try normal tablegen-generated "fast" selection.
770          if (F->SelectInstruction(BI))
771            continue;
772
773          // Next, try calling the target to attempt to handle the instruction.
774          if (F->TargetSelectInstruction(BI))
775            continue;
776
777          // Then handle certain instructions as single-LLVM-Instruction blocks.
778          if (isa<CallInst>(BI)) {
779            cerr << "FastISel missed call: ";
780            BI->dump();
781
782            if (BI->getType() != Type::VoidTy) {
783              unsigned &R = FuncInfo->ValueMap[BI];
784              if (!R)
785                R = FuncInfo->CreateRegForValue(BI);
786            }
787
788            SelectBasicBlock(LLVMBB, BI, next(BI));
789            continue;
790          }
791
792          // Otherwise, give up on FastISel for the rest of the block.
793          // For now, be a little lenient about non-branch terminators.
794          if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
795            if (EnableFastISelVerbose || EnableFastISelAbort) {
796              cerr << "FastISel miss: ";
797              BI->dump();
798            }
799            if (EnableFastISelAbort)
800              // The "fast" selector couldn't handle something and bailed.
801              // For the purpose of debugging, just abort.
802              assert(0 && "FastISel didn't select the entire block");
803          }
804          break;
805        }
806        delete F;
807      }
808    }
809
810    // Run SelectionDAG instruction selection on the remainder of the block
811    // not handled by FastISel. If FastISel is not run, this is the entire
812    // block.
813    if (BI != End)
814      SelectBasicBlock(LLVMBB, BI, End);
815
816    FinishBasicBlock();
817  }
818}
819
820void
821SelectionDAGISel::FinishBasicBlock() {
822
823  // Perform target specific isel post processing.
824  InstructionSelectPostProcessing();
825
826  DOUT << "Target-post-processed machine code:\n";
827  DEBUG(BB->dump());
828
829  DOUT << "Total amount of phi nodes to update: "
830       << SDL->PHINodesToUpdate.size() << "\n";
831  DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
832          DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
833               << ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
834
835  // Next, now that we know what the last MBB the LLVM BB expanded is, update
836  // PHI nodes in successors.
837  if (SDL->SwitchCases.empty() &&
838      SDL->JTCases.empty() &&
839      SDL->BitTestCases.empty()) {
840    for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
841      MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
842      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
843             "This is not a machine PHI node that we are updating!");
844      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
845                                                false));
846      PHI->addOperand(MachineOperand::CreateMBB(BB));
847    }
848    SDL->PHINodesToUpdate.clear();
849    return;
850  }
851
852  for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) {
853    // Lower header first, if it wasn't already lowered
854    if (!SDL->BitTestCases[i].Emitted) {
855      // Set the current basic block to the mbb we wish to insert the code into
856      BB = SDL->BitTestCases[i].Parent;
857      SDL->setCurrentBasicBlock(BB);
858      // Emit the code
859      SDL->visitBitTestHeader(SDL->BitTestCases[i]);
860      CurDAG->setRoot(SDL->getRoot());
861      CodeGenAndEmitDAG();
862      SDL->clear();
863    }
864
865    for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
866      // Set the current basic block to the mbb we wish to insert the code into
867      BB = SDL->BitTestCases[i].Cases[j].ThisBB;
868      SDL->setCurrentBasicBlock(BB);
869      // Emit the code
870      if (j+1 != ej)
871        SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB,
872                              SDL->BitTestCases[i].Reg,
873                              SDL->BitTestCases[i].Cases[j]);
874      else
875        SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
876                              SDL->BitTestCases[i].Reg,
877                              SDL->BitTestCases[i].Cases[j]);
878
879
880      CurDAG->setRoot(SDL->getRoot());
881      CodeGenAndEmitDAG();
882      SDL->clear();
883    }
884
885    // Update PHI Nodes
886    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
887      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
888      MachineBasicBlock *PHIBB = PHI->getParent();
889      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
890             "This is not a machine PHI node that we are updating!");
891      // This is "default" BB. We have two jumps to it. From "header" BB and
892      // from last "case" BB.
893      if (PHIBB == SDL->BitTestCases[i].Default) {
894        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
895                                                  false));
896        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent));
897        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
898                                                  false));
899        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases.
900                                                  back().ThisBB));
901      }
902      // One of "cases" BB.
903      for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size();
904           j != ej; ++j) {
905        MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB;
906        if (cBB->succ_end() !=
907            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
908          PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
909                                                    false));
910          PHI->addOperand(MachineOperand::CreateMBB(cBB));
911        }
912      }
913    }
914  }
915  SDL->BitTestCases.clear();
916
917  // If the JumpTable record is filled in, then we need to emit a jump table.
918  // Updating the PHI nodes is tricky in this case, since we need to determine
919  // whether the PHI is a successor of the range check MBB or the jump table MBB
920  for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) {
921    // Lower header first, if it wasn't already lowered
922    if (!SDL->JTCases[i].first.Emitted) {
923      // Set the current basic block to the mbb we wish to insert the code into
924      BB = SDL->JTCases[i].first.HeaderBB;
925      SDL->setCurrentBasicBlock(BB);
926      // Emit the code
927      SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first);
928      CurDAG->setRoot(SDL->getRoot());
929      CodeGenAndEmitDAG();
930      SDL->clear();
931    }
932
933    // Set the current basic block to the mbb we wish to insert the code into
934    BB = SDL->JTCases[i].second.MBB;
935    SDL->setCurrentBasicBlock(BB);
936    // Emit the code
937    SDL->visitJumpTable(SDL->JTCases[i].second);
938    CurDAG->setRoot(SDL->getRoot());
939    CodeGenAndEmitDAG();
940    SDL->clear();
941
942    // Update PHI Nodes
943    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
944      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
945      MachineBasicBlock *PHIBB = PHI->getParent();
946      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
947             "This is not a machine PHI node that we are updating!");
948      // "default" BB. We can go there only from header BB.
949      if (PHIBB == SDL->JTCases[i].second.Default) {
950        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
951                                                  false));
952        PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
953      }
954      // JT BB. Just iterate over successors here
955      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
956        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
957                                                  false));
958        PHI->addOperand(MachineOperand::CreateMBB(BB));
959      }
960    }
961  }
962  SDL->JTCases.clear();
963
964  // If the switch block involved a branch to one of the actual successors, we
965  // need to update PHI nodes in that block.
966  for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
967    MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
968    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
969           "This is not a machine PHI node that we are updating!");
970    if (BB->isSuccessor(PHI->getParent())) {
971      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
972                                                false));
973      PHI->addOperand(MachineOperand::CreateMBB(BB));
974    }
975  }
976
977  // If we generated any switch lowering information, build and codegen any
978  // additional DAGs necessary.
979  for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
980    // Set the current basic block to the mbb we wish to insert the code into
981    BB = SDL->SwitchCases[i].ThisBB;
982    SDL->setCurrentBasicBlock(BB);
983
984    // Emit the code
985    SDL->visitSwitchCase(SDL->SwitchCases[i]);
986    CurDAG->setRoot(SDL->getRoot());
987    CodeGenAndEmitDAG();
988    SDL->clear();
989
990    // Handle any PHI nodes in successors of this chunk, as if we were coming
991    // from the original BB before switch expansion.  Note that PHI nodes can
992    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
993    // handle them the right number of times.
994    while ((BB = SDL->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
995      for (MachineBasicBlock::iterator Phi = BB->begin();
996           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
997        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
998        for (unsigned pn = 0; ; ++pn) {
999          assert(pn != SDL->PHINodesToUpdate.size() &&
1000                 "Didn't find PHI entry!");
1001          if (SDL->PHINodesToUpdate[pn].first == Phi) {
1002            Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
1003                                                      second, false));
1004            Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
1005            break;
1006          }
1007        }
1008      }
1009
1010      // Don't process RHS if same block as LHS.
1011      if (BB == SDL->SwitchCases[i].FalseBB)
1012        SDL->SwitchCases[i].FalseBB = 0;
1013
1014      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1015      SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
1016      SDL->SwitchCases[i].FalseBB = 0;
1017    }
1018    assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
1019  }
1020  SDL->SwitchCases.clear();
1021
1022  SDL->PHINodesToUpdate.clear();
1023}
1024
1025
1026/// Schedule - Pick a safe ordering for instructions for each
1027/// target node in the graph.
1028///
1029ScheduleDAG *SelectionDAGISel::Schedule() {
1030  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1031
1032  if (!Ctor) {
1033    Ctor = ISHeuristic;
1034    RegisterScheduler::setDefault(Ctor);
1035  }
1036
1037  ScheduleDAG *Scheduler = Ctor(this, CurDAG, BB, Fast);
1038  Scheduler->Run();
1039
1040  return Scheduler;
1041}
1042
1043
1044HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1045  return new HazardRecognizer();
1046}
1047
1048//===----------------------------------------------------------------------===//
1049// Helper functions used by the generated instruction selector.
1050//===----------------------------------------------------------------------===//
1051// Calls to these methods are generated by tblgen.
1052
1053/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1054/// the dag combiner simplified the 255, we still want to match.  RHS is the
1055/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1056/// specified in the .td file (e.g. 255).
1057bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1058                                    int64_t DesiredMaskS) const {
1059  const APInt &ActualMask = RHS->getAPIntValue();
1060  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1061
1062  // If the actual mask exactly matches, success!
1063  if (ActualMask == DesiredMask)
1064    return true;
1065
1066  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1067  if (ActualMask.intersects(~DesiredMask))
1068    return false;
1069
1070  // Otherwise, the DAG Combiner may have proven that the value coming in is
1071  // either already zero or is not demanded.  Check for known zero input bits.
1072  APInt NeededMask = DesiredMask & ~ActualMask;
1073  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1074    return true;
1075
1076  // TODO: check to see if missing bits are just not demanded.
1077
1078  // Otherwise, this pattern doesn't match.
1079  return false;
1080}
1081
1082/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1083/// the dag combiner simplified the 255, we still want to match.  RHS is the
1084/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1085/// specified in the .td file (e.g. 255).
1086bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1087                                   int64_t DesiredMaskS) const {
1088  const APInt &ActualMask = RHS->getAPIntValue();
1089  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1090
1091  // If the actual mask exactly matches, success!
1092  if (ActualMask == DesiredMask)
1093    return true;
1094
1095  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1096  if (ActualMask.intersects(~DesiredMask))
1097    return false;
1098
1099  // Otherwise, the DAG Combiner may have proven that the value coming in is
1100  // either already zero or is not demanded.  Check for known zero input bits.
1101  APInt NeededMask = DesiredMask & ~ActualMask;
1102
1103  APInt KnownZero, KnownOne;
1104  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1105
1106  // If all the missing bits in the or are already known to be set, match!
1107  if ((NeededMask & KnownOne) == NeededMask)
1108    return true;
1109
1110  // TODO: check to see if missing bits are just not demanded.
1111
1112  // Otherwise, this pattern doesn't match.
1113  return false;
1114}
1115
1116
1117/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1118/// by tblgen.  Others should not call it.
1119void SelectionDAGISel::
1120SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1121  std::vector<SDValue> InOps;
1122  std::swap(InOps, Ops);
1123
1124  Ops.push_back(InOps[0]);  // input chain.
1125  Ops.push_back(InOps[1]);  // input asm string.
1126
1127  unsigned i = 2, e = InOps.size();
1128  if (InOps[e-1].getValueType() == MVT::Flag)
1129    --e;  // Don't process a flag operand if it is here.
1130
1131  while (i != e) {
1132    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1133    if ((Flags & 7) != 4 /*MEM*/) {
1134      // Just skip over this operand, copying the operands verbatim.
1135      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
1136      i += (Flags >> 3) + 1;
1137    } else {
1138      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
1139      // Otherwise, this is a memory operand.  Ask the target to select it.
1140      std::vector<SDValue> SelOps;
1141      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1142        cerr << "Could not match memory address.  Inline asm failure!\n";
1143        exit(1);
1144      }
1145
1146      // Add this to the output node.
1147      MVT IntPtrTy = CurDAG->getTargetLoweringInfo().getPointerTy();
1148      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1149                                              IntPtrTy));
1150      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1151      i += 2;
1152    }
1153  }
1154
1155  // Add the flag input back if present.
1156  if (e != InOps.size())
1157    Ops.push_back(InOps.back());
1158}
1159
1160char SelectionDAGISel::ID = 0;
1161