SelectionDAGISel.cpp revision 7b248d986670c214674c45d362950ec105668255
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/CodeGen/ScheduleDAG.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/IntrinsicLowering.h"
28#include "llvm/CodeGen/MachineDebugInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/SchedulerRegistry.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/CodeGen/SSARegMap.h"
36#include "llvm/Target/MRegisterInfo.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Target/TargetFrameInfo.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <map>
48#include <set>
49#include <iostream>
50#include <algorithm>
51using namespace llvm;
52
53#ifndef NDEBUG
54static cl::opt<bool>
55ViewISelDAGs("view-isel-dags", cl::Hidden,
56          cl::desc("Pop up a window to show isel dags as they are selected"));
57static cl::opt<bool>
58ViewSchedDAGs("view-sched-dags", cl::Hidden,
59          cl::desc("Pop up a window to show sched dags as they are processed"));
60#else
61static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
62#endif
63
64
65//===---------------------------------------------------------------------===//
66///
67/// RegisterScheduler class - Track the registration of instruction schedulers.
68///
69//===---------------------------------------------------------------------===//
70MachinePassRegistry RegisterScheduler::Registry;
71
72//===---------------------------------------------------------------------===//
73///
74/// ISHeuristic command line option for instruction schedulers.
75///
76//===---------------------------------------------------------------------===//
77namespace {
78  cl::opt<RegisterScheduler::FunctionPassCtor, false,
79          RegisterPassParser<RegisterScheduler> >
80  ISHeuristic("sched",
81              cl::init(&createDefaultScheduler),
82              cl::desc("Instruction schedulers available:"));
83
84  static RegisterScheduler
85  defaultListDAGScheduler("default", "  Best scheduler for the target",
86                          createDefaultScheduler);
87} // namespace
88
89namespace {
90  /// RegsForValue - This struct represents the physical registers that a
91  /// particular value is assigned and the type information about the value.
92  /// This is needed because values can be promoted into larger registers and
93  /// expanded into multiple smaller registers than the value.
94  struct VISIBILITY_HIDDEN RegsForValue {
95    /// Regs - This list hold the register (for legal and promoted values)
96    /// or register set (for expanded values) that the value should be assigned
97    /// to.
98    std::vector<unsigned> Regs;
99
100    /// RegVT - The value type of each register.
101    ///
102    MVT::ValueType RegVT;
103
104    /// ValueVT - The value type of the LLVM value, which may be promoted from
105    /// RegVT or made from merging the two expanded parts.
106    MVT::ValueType ValueVT;
107
108    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
109
110    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
111      : RegVT(regvt), ValueVT(valuevt) {
112        Regs.push_back(Reg);
113    }
114    RegsForValue(const std::vector<unsigned> &regs,
115                 MVT::ValueType regvt, MVT::ValueType valuevt)
116      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
117    }
118
119    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
120    /// this value and returns the result as a ValueVT value.  This uses
121    /// Chain/Flag as the input and updates them for the output Chain/Flag.
122    SDOperand getCopyFromRegs(SelectionDAG &DAG,
123                              SDOperand &Chain, SDOperand &Flag) const;
124
125    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
126    /// specified value into the registers specified by this object.  This uses
127    /// Chain/Flag as the input and updates them for the output Chain/Flag.
128    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
129                       SDOperand &Chain, SDOperand &Flag,
130                       MVT::ValueType PtrVT) const;
131
132    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
133    /// operand list.  This adds the code marker and includes the number of
134    /// values added into it.
135    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
136                              std::vector<SDOperand> &Ops) const;
137  };
138}
139
140namespace llvm {
141  //===--------------------------------------------------------------------===//
142  /// createDefaultScheduler - This creates an instruction scheduler appropriate
143  /// for the target.
144  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
145                                      SelectionDAG *DAG,
146                                      MachineBasicBlock *BB) {
147    TargetLowering &TLI = IS->getTargetLowering();
148
149    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
150      return createTDListDAGScheduler(IS, DAG, BB);
151    } else {
152      assert(TLI.getSchedulingPreference() ==
153           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
154      return createBURRListDAGScheduler(IS, DAG, BB);
155    }
156  }
157
158
159  //===--------------------------------------------------------------------===//
160  /// FunctionLoweringInfo - This contains information that is global to a
161  /// function that is used when lowering a region of the function.
162  class FunctionLoweringInfo {
163  public:
164    TargetLowering &TLI;
165    Function &Fn;
166    MachineFunction &MF;
167    SSARegMap *RegMap;
168
169    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
170
171    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
172    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
173
174    /// ValueMap - Since we emit code for the function a basic block at a time,
175    /// we must remember which virtual registers hold the values for
176    /// cross-basic-block values.
177    std::map<const Value*, unsigned> ValueMap;
178
179    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
180    /// the entry block.  This allows the allocas to be efficiently referenced
181    /// anywhere in the function.
182    std::map<const AllocaInst*, int> StaticAllocaMap;
183
184    unsigned MakeReg(MVT::ValueType VT) {
185      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
186    }
187
188    unsigned CreateRegForValue(const Value *V);
189
190    unsigned InitializeRegForValue(const Value *V) {
191      unsigned &R = ValueMap[V];
192      assert(R == 0 && "Already initialized this value register!");
193      return R = CreateRegForValue(V);
194    }
195  };
196}
197
198/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
199/// PHI nodes or outside of the basic block that defines it, or used by a
200/// switch instruction, which may expand to multiple basic blocks.
201static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
202  if (isa<PHINode>(I)) return true;
203  BasicBlock *BB = I->getParent();
204  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
205    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
206        isa<SwitchInst>(*UI))
207      return true;
208  return false;
209}
210
211/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
212/// entry block, return true.  This includes arguments used by switches, since
213/// the switch may expand into multiple basic blocks.
214static bool isOnlyUsedInEntryBlock(Argument *A) {
215  BasicBlock *Entry = A->getParent()->begin();
216  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
217    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
218      return false;  // Use not in entry block.
219  return true;
220}
221
222FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
223                                           Function &fn, MachineFunction &mf)
224    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
225
226  // Create a vreg for each argument register that is not dead and is used
227  // outside of the entry block for the function.
228  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
229       AI != E; ++AI)
230    if (!isOnlyUsedInEntryBlock(AI))
231      InitializeRegForValue(AI);
232
233  // Initialize the mapping of values to registers.  This is only set up for
234  // instruction values that are used outside of the block that defines
235  // them.
236  Function::iterator BB = Fn.begin(), EB = Fn.end();
237  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
238    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
239      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
240        const Type *Ty = AI->getAllocatedType();
241        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
242        unsigned Align =
243          std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
244                   AI->getAlignment());
245
246        // If the alignment of the value is smaller than the size of the
247        // value, and if the size of the value is particularly small
248        // (<= 8 bytes), round up to the size of the value for potentially
249        // better performance.
250        //
251        // FIXME: This could be made better with a preferred alignment hook in
252        // TargetData.  It serves primarily to 8-byte align doubles for X86.
253        if (Align < TySize && TySize <= 8) Align = TySize;
254        TySize *= CUI->getZExtValue();   // Get total allocated size.
255        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
256        StaticAllocaMap[AI] =
257          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
258      }
259
260  for (; BB != EB; ++BB)
261    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
262      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
263        if (!isa<AllocaInst>(I) ||
264            !StaticAllocaMap.count(cast<AllocaInst>(I)))
265          InitializeRegForValue(I);
266
267  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
268  // also creates the initial PHI MachineInstrs, though none of the input
269  // operands are populated.
270  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
271    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
272    MBBMap[BB] = MBB;
273    MF.getBasicBlockList().push_back(MBB);
274
275    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
276    // appropriate.
277    PHINode *PN;
278    for (BasicBlock::iterator I = BB->begin();
279         (PN = dyn_cast<PHINode>(I)); ++I)
280      if (!PN->use_empty()) {
281        MVT::ValueType VT = TLI.getValueType(PN->getType());
282        unsigned NumElements;
283        if (VT != MVT::Vector)
284          NumElements = TLI.getNumElements(VT);
285        else {
286          MVT::ValueType VT1,VT2;
287          NumElements =
288            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
289                                       VT1, VT2);
290        }
291        unsigned PHIReg = ValueMap[PN];
292        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
293        for (unsigned i = 0; i != NumElements; ++i)
294          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
295      }
296  }
297}
298
299/// CreateRegForValue - Allocate the appropriate number of virtual registers of
300/// the correctly promoted or expanded types.  Assign these registers
301/// consecutive vreg numbers and return the first assigned number.
302unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
303  MVT::ValueType VT = TLI.getValueType(V->getType());
304
305  // The number of multiples of registers that we need, to, e.g., split up
306  // a <2 x int64> -> 4 x i32 registers.
307  unsigned NumVectorRegs = 1;
308
309  // If this is a packed type, figure out what type it will decompose into
310  // and how many of the elements it will use.
311  if (VT == MVT::Vector) {
312    const PackedType *PTy = cast<PackedType>(V->getType());
313    unsigned NumElts = PTy->getNumElements();
314    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
315
316    // Divide the input until we get to a supported size.  This will always
317    // end with a scalar if the target doesn't support vectors.
318    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
319      NumElts >>= 1;
320      NumVectorRegs <<= 1;
321    }
322    if (NumElts == 1)
323      VT = EltTy;
324    else
325      VT = getVectorType(EltTy, NumElts);
326  }
327
328  // The common case is that we will only create one register for this
329  // value.  If we have that case, create and return the virtual register.
330  unsigned NV = TLI.getNumElements(VT);
331  if (NV == 1) {
332    // If we are promoting this value, pick the next largest supported type.
333    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
334    unsigned Reg = MakeReg(PromotedType);
335    // If this is a vector of supported or promoted types (e.g. 4 x i16),
336    // create all of the registers.
337    for (unsigned i = 1; i != NumVectorRegs; ++i)
338      MakeReg(PromotedType);
339    return Reg;
340  }
341
342  // If this value is represented with multiple target registers, make sure
343  // to create enough consecutive registers of the right (smaller) type.
344  unsigned NT = VT-1;  // Find the type to use.
345  while (TLI.getNumElements((MVT::ValueType)NT) != 1)
346    --NT;
347
348  unsigned R = MakeReg((MVT::ValueType)NT);
349  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
350    MakeReg((MVT::ValueType)NT);
351  return R;
352}
353
354//===----------------------------------------------------------------------===//
355/// SelectionDAGLowering - This is the common target-independent lowering
356/// implementation that is parameterized by a TargetLowering object.
357/// Also, targets can overload any lowering method.
358///
359namespace llvm {
360class SelectionDAGLowering {
361  MachineBasicBlock *CurMBB;
362
363  std::map<const Value*, SDOperand> NodeMap;
364
365  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
366  /// them up and then emit token factor nodes when possible.  This allows us to
367  /// get simple disambiguation between loads without worrying about alias
368  /// analysis.
369  std::vector<SDOperand> PendingLoads;
370
371  /// Case - A pair of values to record the Value for a switch case, and the
372  /// case's target basic block.
373  typedef std::pair<Constant*, MachineBasicBlock*> Case;
374  typedef std::vector<Case>::iterator              CaseItr;
375  typedef std::pair<CaseItr, CaseItr>              CaseRange;
376
377  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
378  /// of conditional branches.
379  struct CaseRec {
380    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
381    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
382
383    /// CaseBB - The MBB in which to emit the compare and branch
384    MachineBasicBlock *CaseBB;
385    /// LT, GE - If nonzero, we know the current case value must be less-than or
386    /// greater-than-or-equal-to these Constants.
387    Constant *LT;
388    Constant *GE;
389    /// Range - A pair of iterators representing the range of case values to be
390    /// processed at this point in the binary search tree.
391    CaseRange Range;
392  };
393
394  /// The comparison function for sorting Case values.
395  struct CaseCmp {
396    bool operator () (const Case& C1, const Case& C2) {
397      if (const ConstantInt* I1 = dyn_cast<const ConstantInt>(C1.first))
398        if (I1->getType()->isUnsigned())
399          return I1->getZExtValue() <
400            cast<const ConstantInt>(C2.first)->getZExtValue();
401
402      return cast<const ConstantInt>(C1.first)->getSExtValue() <
403         cast<const ConstantInt>(C2.first)->getSExtValue();
404    }
405  };
406
407public:
408  // TLI - This is information that describes the available target features we
409  // need for lowering.  This indicates when operations are unavailable,
410  // implemented with a libcall, etc.
411  TargetLowering &TLI;
412  SelectionDAG &DAG;
413  const TargetData *TD;
414
415  /// SwitchCases - Vector of CaseBlock structures used to communicate
416  /// SwitchInst code generation information.
417  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
418  SelectionDAGISel::JumpTable JT;
419
420  /// FuncInfo - Information about the function as a whole.
421  ///
422  FunctionLoweringInfo &FuncInfo;
423
424  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
425                       FunctionLoweringInfo &funcinfo)
426    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
427      JT(0,0,0,0), FuncInfo(funcinfo) {
428  }
429
430  /// getRoot - Return the current virtual root of the Selection DAG.
431  ///
432  SDOperand getRoot() {
433    if (PendingLoads.empty())
434      return DAG.getRoot();
435
436    if (PendingLoads.size() == 1) {
437      SDOperand Root = PendingLoads[0];
438      DAG.setRoot(Root);
439      PendingLoads.clear();
440      return Root;
441    }
442
443    // Otherwise, we have to make a token factor node.
444    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
445                                 &PendingLoads[0], PendingLoads.size());
446    PendingLoads.clear();
447    DAG.setRoot(Root);
448    return Root;
449  }
450
451  void visit(Instruction &I) { visit(I.getOpcode(), I); }
452
453  void visit(unsigned Opcode, User &I) {
454    switch (Opcode) {
455    default: assert(0 && "Unknown instruction type encountered!");
456             abort();
457      // Build the switch statement using the Instruction.def file.
458#define HANDLE_INST(NUM, OPCODE, CLASS) \
459    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
460#include "llvm/Instruction.def"
461    }
462  }
463
464  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
465
466  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
467                        const Value *SV, SDOperand Root,
468                        bool isVolatile);
469
470  SDOperand getIntPtrConstant(uint64_t Val) {
471    return DAG.getConstant(Val, TLI.getPointerTy());
472  }
473
474  SDOperand getValue(const Value *V);
475
476  const SDOperand &setValue(const Value *V, SDOperand NewN) {
477    SDOperand &N = NodeMap[V];
478    assert(N.Val == 0 && "Already set a value for this node!");
479    return N = NewN;
480  }
481
482  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
483                                    MVT::ValueType VT,
484                                    bool OutReg, bool InReg,
485                                    std::set<unsigned> &OutputRegs,
486                                    std::set<unsigned> &InputRegs);
487
488  // Terminator instructions.
489  void visitRet(ReturnInst &I);
490  void visitBr(BranchInst &I);
491  void visitSwitch(SwitchInst &I);
492  void visitUnreachable(UnreachableInst &I) { /* noop */ }
493
494  // Helper for visitSwitch
495  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
496  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
497
498  // These all get lowered before this pass.
499  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
500  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
501
502  void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
503  void visitShift(User &I, unsigned Opcode);
504  void visitAdd(User &I) {
505    visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD);
506  }
507  void visitSub(User &I);
508  void visitMul(User &I) {
509    visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL);
510  }
511  void visitDiv(User &I) {
512    const Type *Ty = I.getType();
513    visitBinary(I,
514                Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV,
515                Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV);
516  }
517  void visitRem(User &I) {
518    const Type *Ty = I.getType();
519    visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
520  }
521  void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); }
522  void visitOr (User &I) { visitBinary(I, ISD::OR,  0, ISD::VOR); }
523  void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); }
524  void visitShl(User &I) { visitShift(I, ISD::SHL); }
525  void visitShr(User &I) {
526    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
527  }
528
529  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc,
530                  ISD::CondCode FPOpc);
531  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ,
532                                        ISD::SETOEQ); }
533  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE,
534                                        ISD::SETUNE); }
535  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE,
536                                        ISD::SETOLE); }
537  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE,
538                                        ISD::SETOGE); }
539  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT,
540                                        ISD::SETOLT); }
541  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT,
542                                        ISD::SETOGT); }
543
544  void visitExtractElement(User &I);
545  void visitInsertElement(User &I);
546  void visitShuffleVector(User &I);
547
548  void visitGetElementPtr(User &I);
549  void visitCast(User &I);
550  void visitSelect(User &I);
551
552  void visitMalloc(MallocInst &I);
553  void visitFree(FreeInst &I);
554  void visitAlloca(AllocaInst &I);
555  void visitLoad(LoadInst &I);
556  void visitStore(StoreInst &I);
557  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
558  void visitCall(CallInst &I);
559  void visitInlineAsm(CallInst &I);
560  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
561  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
562
563  void visitVAStart(CallInst &I);
564  void visitVAArg(VAArgInst &I);
565  void visitVAEnd(CallInst &I);
566  void visitVACopy(CallInst &I);
567  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
568
569  void visitMemIntrinsic(CallInst &I, unsigned Op);
570
571  void visitUserOp1(Instruction &I) {
572    assert(0 && "UserOp1 should not exist at instruction selection time!");
573    abort();
574  }
575  void visitUserOp2(Instruction &I) {
576    assert(0 && "UserOp2 should not exist at instruction selection time!");
577    abort();
578  }
579};
580} // end namespace llvm
581
582SDOperand SelectionDAGLowering::getValue(const Value *V) {
583  SDOperand &N = NodeMap[V];
584  if (N.Val) return N;
585
586  const Type *VTy = V->getType();
587  MVT::ValueType VT = TLI.getValueType(VTy);
588  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
589    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
590      visit(CE->getOpcode(), *CE);
591      assert(N.Val && "visit didn't populate the ValueMap!");
592      return N;
593    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
594      return N = DAG.getGlobalAddress(GV, VT);
595    } else if (isa<ConstantPointerNull>(C)) {
596      return N = DAG.getConstant(0, TLI.getPointerTy());
597    } else if (isa<UndefValue>(C)) {
598      if (!isa<PackedType>(VTy))
599        return N = DAG.getNode(ISD::UNDEF, VT);
600
601      // Create a VBUILD_VECTOR of undef nodes.
602      const PackedType *PTy = cast<PackedType>(VTy);
603      unsigned NumElements = PTy->getNumElements();
604      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
605
606      SmallVector<SDOperand, 8> Ops;
607      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
608
609      // Create a VConstant node with generic Vector type.
610      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
611      Ops.push_back(DAG.getValueType(PVT));
612      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
613                             &Ops[0], Ops.size());
614    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
615      return N = DAG.getConstantFP(CFP->getValue(), VT);
616    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
617      unsigned NumElements = PTy->getNumElements();
618      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
619
620      // Now that we know the number and type of the elements, push a
621      // Constant or ConstantFP node onto the ops list for each element of
622      // the packed constant.
623      SmallVector<SDOperand, 8> Ops;
624      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
625        for (unsigned i = 0; i != NumElements; ++i)
626          Ops.push_back(getValue(CP->getOperand(i)));
627      } else {
628        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
629        SDOperand Op;
630        if (MVT::isFloatingPoint(PVT))
631          Op = DAG.getConstantFP(0, PVT);
632        else
633          Op = DAG.getConstant(0, PVT);
634        Ops.assign(NumElements, Op);
635      }
636
637      // Create a VBUILD_VECTOR node with generic Vector type.
638      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
639      Ops.push_back(DAG.getValueType(PVT));
640      return N = DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector,&Ops[0],Ops.size());
641    } else {
642      // Canonicalize all constant ints to be unsigned.
643      return N = DAG.getConstant(cast<ConstantIntegral>(C)->getZExtValue(),VT);
644    }
645  }
646
647  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
648    std::map<const AllocaInst*, int>::iterator SI =
649    FuncInfo.StaticAllocaMap.find(AI);
650    if (SI != FuncInfo.StaticAllocaMap.end())
651      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
652  }
653
654  std::map<const Value*, unsigned>::const_iterator VMI =
655      FuncInfo.ValueMap.find(V);
656  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
657
658  unsigned InReg = VMI->second;
659
660  // If this type is not legal, make it so now.
661  if (VT != MVT::Vector) {
662    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
663
664    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
665    if (DestVT < VT) {
666      // Source must be expanded.  This input value is actually coming from the
667      // register pair VMI->second and VMI->second+1.
668      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
669                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
670    } else if (DestVT > VT) { // Promotion case
671      if (MVT::isFloatingPoint(VT))
672        N = DAG.getNode(ISD::FP_ROUND, VT, N);
673      else
674        N = DAG.getNode(ISD::TRUNCATE, VT, N);
675    }
676  } else {
677    // Otherwise, if this is a vector, make it available as a generic vector
678    // here.
679    MVT::ValueType PTyElementVT, PTyLegalElementVT;
680    const PackedType *PTy = cast<PackedType>(VTy);
681    unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT,
682                                             PTyLegalElementVT);
683
684    // Build a VBUILD_VECTOR with the input registers.
685    SmallVector<SDOperand, 8> Ops;
686    if (PTyElementVT == PTyLegalElementVT) {
687      // If the value types are legal, just VBUILD the CopyFromReg nodes.
688      for (unsigned i = 0; i != NE; ++i)
689        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
690                                         PTyElementVT));
691    } else if (PTyElementVT < PTyLegalElementVT) {
692      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
693      for (unsigned i = 0; i != NE; ++i) {
694        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
695                                          PTyElementVT);
696        if (MVT::isFloatingPoint(PTyElementVT))
697          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
698        else
699          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
700        Ops.push_back(Op);
701      }
702    } else {
703      // If the register was expanded, use BUILD_PAIR.
704      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
705      for (unsigned i = 0; i != NE/2; ++i) {
706        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
707                                           PTyElementVT);
708        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
709                                           PTyElementVT);
710        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
711      }
712    }
713
714    Ops.push_back(DAG.getConstant(NE, MVT::i32));
715    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
716    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
717
718    // Finally, use a VBIT_CONVERT to make this available as the appropriate
719    // vector type.
720    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
721                    DAG.getConstant(PTy->getNumElements(),
722                                    MVT::i32),
723                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
724  }
725
726  return N;
727}
728
729
730void SelectionDAGLowering::visitRet(ReturnInst &I) {
731  if (I.getNumOperands() == 0) {
732    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
733    return;
734  }
735  SmallVector<SDOperand, 8> NewValues;
736  NewValues.push_back(getRoot());
737  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
738    SDOperand RetOp = getValue(I.getOperand(i));
739    bool isSigned = I.getOperand(i)->getType()->isSigned();
740
741    // If this is an integer return value, we need to promote it ourselves to
742    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
743    // than sign/zero.
744    // FIXME: C calling convention requires the return type to be promoted to
745    // at least 32-bit. But this is not necessary for non-C calling conventions.
746    if (MVT::isInteger(RetOp.getValueType()) &&
747        RetOp.getValueType() < MVT::i64) {
748      MVT::ValueType TmpVT;
749      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
750        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
751      else
752        TmpVT = MVT::i32;
753
754      if (isSigned)
755        RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
756      else
757        RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
758    }
759    NewValues.push_back(RetOp);
760    NewValues.push_back(DAG.getConstant(isSigned, MVT::i32));
761  }
762  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
763                          &NewValues[0], NewValues.size()));
764}
765
766void SelectionDAGLowering::visitBr(BranchInst &I) {
767  // Update machine-CFG edges.
768  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
769  CurMBB->addSuccessor(Succ0MBB);
770
771  // Figure out which block is immediately after the current one.
772  MachineBasicBlock *NextBlock = 0;
773  MachineFunction::iterator BBI = CurMBB;
774  if (++BBI != CurMBB->getParent()->end())
775    NextBlock = BBI;
776
777  if (I.isUnconditional()) {
778    // If this is not a fall-through branch, emit the branch.
779    if (Succ0MBB != NextBlock)
780      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
781                              DAG.getBasicBlock(Succ0MBB)));
782  } else {
783    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
784    CurMBB->addSuccessor(Succ1MBB);
785
786    SDOperand Cond = getValue(I.getCondition());
787    if (Succ1MBB == NextBlock) {
788      // If the condition is false, fall through.  This means we should branch
789      // if the condition is true to Succ #0.
790      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
791                              Cond, DAG.getBasicBlock(Succ0MBB)));
792    } else if (Succ0MBB == NextBlock) {
793      // If the condition is true, fall through.  This means we should branch if
794      // the condition is false to Succ #1.  Invert the condition first.
795      SDOperand True = DAG.getConstant(1, Cond.getValueType());
796      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
797      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
798                              Cond, DAG.getBasicBlock(Succ1MBB)));
799    } else {
800      std::vector<SDOperand> Ops;
801      Ops.push_back(getRoot());
802      // If the false case is the current basic block, then this is a self
803      // loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it
804      // adds an extra instruction in the loop.  Instead, invert the
805      // condition and emit "Loop: ... br!cond Loop; br Out.
806      if (CurMBB == Succ1MBB) {
807        std::swap(Succ0MBB, Succ1MBB);
808        SDOperand True = DAG.getConstant(1, Cond.getValueType());
809        Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
810      }
811      SDOperand True = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
812                                   DAG.getBasicBlock(Succ0MBB));
813      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, True,
814                              DAG.getBasicBlock(Succ1MBB)));
815    }
816  }
817}
818
819/// visitSwitchCase - Emits the necessary code to represent a single node in
820/// the binary search tree resulting from lowering a switch instruction.
821void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
822  SDOperand Cond = DAG.getSetCC(MVT::i1, getValue(CB.CmpLHS),
823                                getValue(CB.CmpRHS), CB.CC);
824
825  // Set NextBlock to be the MBB immediately after the current one, if any.
826  // This is used to avoid emitting unnecessary branches to the next block.
827  MachineBasicBlock *NextBlock = 0;
828  MachineFunction::iterator BBI = CurMBB;
829  if (++BBI != CurMBB->getParent()->end())
830    NextBlock = BBI;
831
832  // If the lhs block is the next block, invert the condition so that we can
833  // fall through to the lhs instead of the rhs block.
834  if (CB.LHSBB == NextBlock) {
835    std::swap(CB.LHSBB, CB.RHSBB);
836    SDOperand True = DAG.getConstant(1, Cond.getValueType());
837    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
838  }
839  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
840                                 DAG.getBasicBlock(CB.LHSBB));
841  if (CB.RHSBB == NextBlock)
842    DAG.setRoot(BrCond);
843  else
844    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
845                            DAG.getBasicBlock(CB.RHSBB)));
846  // Update successor info
847  CurMBB->addSuccessor(CB.LHSBB);
848  CurMBB->addSuccessor(CB.RHSBB);
849}
850
851void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
852  // Emit the code for the jump table
853  MVT::ValueType PTy = TLI.getPointerTy();
854  assert((PTy == MVT::i32 || PTy == MVT::i64) &&
855         "Jump table entries are 32-bit values");
856  bool isPIC = TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_;
857  // PIC jump table entries are 32-bit values.
858  unsigned EntrySize = isPIC ? 4 : MVT::getSizeInBits(PTy)/8;
859  SDOperand Copy = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
860  SDOperand IDX = DAG.getNode(ISD::MUL, PTy, Copy,
861                              DAG.getConstant(EntrySize, PTy));
862  SDOperand TAB = DAG.getJumpTable(JT.JTI,PTy);
863  SDOperand ADD = DAG.getNode(ISD::ADD, PTy, IDX, TAB);
864  SDOperand LD  = DAG.getLoad(isPIC ? MVT::i32 : PTy, Copy.getValue(1), ADD,
865                              NULL, 0);
866  if (isPIC) {
867    // For Pic, the sequence is:
868    // BRIND(load(Jumptable + index) + RelocBase)
869    // RelocBase is the JumpTable on PPC and X86, GOT on Alpha
870    SDOperand Reloc;
871    if (TLI.usesGlobalOffsetTable())
872      Reloc = DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, PTy);
873    else
874      Reloc = TAB;
875    ADD = (PTy != MVT::i32) ? DAG.getNode(ISD::SIGN_EXTEND, PTy, LD) : LD;
876    ADD = DAG.getNode(ISD::ADD, PTy, ADD, Reloc);
877    DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), ADD));
878  } else {
879    DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), LD));
880  }
881}
882
883void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
884  // Figure out which block is immediately after the current one.
885  MachineBasicBlock *NextBlock = 0;
886  MachineFunction::iterator BBI = CurMBB;
887
888  if (++BBI != CurMBB->getParent()->end())
889    NextBlock = BBI;
890
891  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
892
893  // If there is only the default destination, branch to it if it is not the
894  // next basic block.  Otherwise, just fall through.
895  if (I.getNumOperands() == 2) {
896    // Update machine-CFG edges.
897
898    // If this is not a fall-through branch, emit the branch.
899    if (Default != NextBlock)
900      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
901                              DAG.getBasicBlock(Default)));
902
903    CurMBB->addSuccessor(Default);
904    return;
905  }
906
907  // If there are any non-default case statements, create a vector of Cases
908  // representing each one, and sort the vector so that we can efficiently
909  // create a binary search tree from them.
910  std::vector<Case> Cases;
911
912  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
913    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
914    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
915  }
916
917  std::sort(Cases.begin(), Cases.end(), CaseCmp());
918
919  // Get the Value to be switched on and default basic blocks, which will be
920  // inserted into CaseBlock records, representing basic blocks in the binary
921  // search tree.
922  Value *SV = I.getOperand(0);
923
924  // Get the MachineFunction which holds the current MBB.  This is used during
925  // emission of jump tables, and when inserting any additional MBBs necessary
926  // to represent the switch.
927  MachineFunction *CurMF = CurMBB->getParent();
928  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
929
930  // If the switch has few cases (two or less) emit a series of specific
931  // tests.
932  if (Cases.size() < 3) {
933    // TODO: If any two of the cases has the same destination, and if one value
934    // is the same as the other, but has one bit unset that the other has set,
935    // use bit manipulation to do two compares at once.  For example:
936    // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
937
938    // Rearrange the case blocks so that the last one falls through if possible.
939    if (NextBlock && Default != NextBlock && Cases.back().second != NextBlock) {
940      // The last case block won't fall through into 'NextBlock' if we emit the
941      // branches in this order.  See if rearranging a case value would help.
942      for (unsigned i = 0, e = Cases.size()-1; i != e; ++i) {
943        if (Cases[i].second == NextBlock) {
944          std::swap(Cases[i], Cases.back());
945          break;
946        }
947      }
948    }
949
950
951    // Create a CaseBlock record representing a conditional branch to
952    // the Case's target mbb if the value being switched on SV is equal
953    // to C.
954    MachineBasicBlock *CurBlock = CurMBB;
955    for (unsigned i = 0, e = Cases.size(); i != e; ++i) {
956      MachineBasicBlock *FallThrough;
957      if (i != e-1) {
958        FallThrough = new MachineBasicBlock(CurMBB->getBasicBlock());
959        CurMF->getBasicBlockList().insert(BBI, FallThrough);
960      } else {
961        // If the last case doesn't match, go to the default block.
962        FallThrough = Default;
963      }
964
965      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, Cases[i].first,
966                                     Cases[i].second, FallThrough, CurBlock);
967
968      // If emitting the first comparison, just call visitSwitchCase to emit the
969      // code into the current block.  Otherwise, push the CaseBlock onto the
970      // vector to be later processed by SDISel, and insert the node's MBB
971      // before the next MBB.
972      if (CurBlock == CurMBB)
973        visitSwitchCase(CB);
974      else
975        SwitchCases.push_back(CB);
976
977      CurBlock = FallThrough;
978    }
979    return;
980  }
981
982  // If the switch has more than 5 blocks, and at least 31.25% dense, and the
983  // target supports indirect branches, then emit a jump table rather than
984  // lowering the switch to a binary tree of conditional branches.
985  if (TLI.isOperationLegal(ISD::BRIND, TLI.getPointerTy()) &&
986      Cases.size() > 5) {
987    uint64_t First =cast<ConstantIntegral>(Cases.front().first)->getZExtValue();
988    uint64_t Last  = cast<ConstantIntegral>(Cases.back().first)->getZExtValue();
989    double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
990
991    if (Density >= 0.3125) {
992      // Create a new basic block to hold the code for loading the address
993      // of the jump table, and jumping to it.  Update successor information;
994      // we will either branch to the default case for the switch, or the jump
995      // table.
996      MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
997      CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
998      CurMBB->addSuccessor(Default);
999      CurMBB->addSuccessor(JumpTableBB);
1000
1001      // Subtract the lowest switch case value from the value being switched on
1002      // and conditional branch to default mbb if the result is greater than the
1003      // difference between smallest and largest cases.
1004      SDOperand SwitchOp = getValue(SV);
1005      MVT::ValueType VT = SwitchOp.getValueType();
1006      SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1007                                  DAG.getConstant(First, VT));
1008
1009      // The SDNode we just created, which holds the value being switched on
1010      // minus the the smallest case value, needs to be copied to a virtual
1011      // register so it can be used as an index into the jump table in a
1012      // subsequent basic block.  This value may be smaller or larger than the
1013      // target's pointer type, and therefore require extension or truncating.
1014      if (VT > TLI.getPointerTy())
1015        SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1016      else
1017        SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1018
1019      unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1020      SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1021
1022      // Emit the range check for the jump table, and branch to the default
1023      // block for the switch statement if the value being switched on exceeds
1024      // the largest case in the switch.
1025      SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1026                                   DAG.getConstant(Last-First,VT), ISD::SETUGT);
1027      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1028                              DAG.getBasicBlock(Default)));
1029
1030      // Build a vector of destination BBs, corresponding to each target
1031      // of the jump table.  If the value of the jump table slot corresponds to
1032      // a case statement, push the case's BB onto the vector, otherwise, push
1033      // the default BB.
1034      std::vector<MachineBasicBlock*> DestBBs;
1035      uint64_t TEI = First;
1036      for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI)
1037        if (cast<ConstantIntegral>(ii->first)->getZExtValue() == TEI) {
1038          DestBBs.push_back(ii->second);
1039          ++ii;
1040        } else {
1041          DestBBs.push_back(Default);
1042        }
1043
1044      // Update successor info
1045      for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1046           E = DestBBs.end(); I != E; ++I)
1047        JumpTableBB->addSuccessor(*I);
1048
1049      // Create a jump table index for this jump table, or return an existing
1050      // one.
1051      unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1052
1053      // Set the jump table information so that we can codegen it as a second
1054      // MachineBasicBlock
1055      JT.Reg = JumpTableReg;
1056      JT.JTI = JTI;
1057      JT.MBB = JumpTableBB;
1058      JT.Default = Default;
1059      return;
1060    }
1061  }
1062
1063  // Push the initial CaseRec onto the worklist
1064  std::vector<CaseRec> CaseVec;
1065  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1066
1067  while (!CaseVec.empty()) {
1068    // Grab a record representing a case range to process off the worklist
1069    CaseRec CR = CaseVec.back();
1070    CaseVec.pop_back();
1071
1072    // Size is the number of Cases represented by this range.  If Size is 1,
1073    // then we are processing a leaf of the binary search tree.  Otherwise,
1074    // we need to pick a pivot, and push left and right ranges onto the
1075    // worklist.
1076    unsigned Size = CR.Range.second - CR.Range.first;
1077
1078    if (Size == 1) {
1079      // Create a CaseBlock record representing a conditional branch to
1080      // the Case's target mbb if the value being switched on SV is equal
1081      // to C.  Otherwise, branch to default.
1082      Constant *C = CR.Range.first->first;
1083      MachineBasicBlock *Target = CR.Range.first->second;
1084      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
1085                                     CR.CaseBB);
1086
1087      // If the MBB representing the leaf node is the current MBB, then just
1088      // call visitSwitchCase to emit the code into the current block.
1089      // Otherwise, push the CaseBlock onto the vector to be later processed
1090      // by SDISel, and insert the node's MBB before the next MBB.
1091      if (CR.CaseBB == CurMBB)
1092        visitSwitchCase(CB);
1093      else
1094        SwitchCases.push_back(CB);
1095    } else {
1096      // split case range at pivot
1097      CaseItr Pivot = CR.Range.first + (Size / 2);
1098      CaseRange LHSR(CR.Range.first, Pivot);
1099      CaseRange RHSR(Pivot, CR.Range.second);
1100      Constant *C = Pivot->first;
1101      MachineBasicBlock *RHSBB = 0, *LHSBB = 0;
1102
1103      // We know that we branch to the LHS if the Value being switched on is
1104      // less than the Pivot value, C.  We use this to optimize our binary
1105      // tree a bit, by recognizing that if SV is greater than or equal to the
1106      // LHS's Case Value, and that Case Value is exactly one less than the
1107      // Pivot's Value, then we can branch directly to the LHS's Target,
1108      // rather than creating a leaf node for it.
1109      if ((LHSR.second - LHSR.first) == 1 &&
1110          LHSR.first->first == CR.GE &&
1111          cast<ConstantIntegral>(C)->getZExtValue() ==
1112          (cast<ConstantIntegral>(CR.GE)->getZExtValue() + 1ULL)) {
1113        LHSBB = LHSR.first->second;
1114      } else {
1115        LHSBB = new MachineBasicBlock(LLVMBB);
1116        CurMF->getBasicBlockList().insert(BBI, LHSBB);
1117        CaseVec.push_back(CaseRec(LHSBB,C,CR.GE,LHSR));
1118      }
1119
1120      // Similar to the optimization above, if the Value being switched on is
1121      // known to be less than the Constant CR.LT, and the current Case Value
1122      // is CR.LT - 1, then we can branch directly to the target block for
1123      // the current Case Value, rather than emitting a RHS leaf node for it.
1124      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1125          cast<ConstantIntegral>(RHSR.first->first)->getZExtValue() ==
1126          (cast<ConstantIntegral>(CR.LT)->getZExtValue() - 1ULL)) {
1127        RHSBB = RHSR.first->second;
1128      } else {
1129        RHSBB = new MachineBasicBlock(LLVMBB);
1130        CurMF->getBasicBlockList().insert(BBI, RHSBB);
1131        CaseVec.push_back(CaseRec(RHSBB,CR.LT,C,RHSR));
1132      }
1133
1134      // Create a CaseBlock record representing a conditional branch to
1135      // the LHS node if the value being switched on SV is less than C.
1136      // Otherwise, branch to LHS.
1137      ISD::CondCode CC = C->getType()->isSigned() ? ISD::SETLT : ISD::SETULT;
1138      SelectionDAGISel::CaseBlock CB(CC, SV, C, LHSBB, RHSBB, CR.CaseBB);
1139
1140      if (CR.CaseBB == CurMBB)
1141        visitSwitchCase(CB);
1142      else
1143        SwitchCases.push_back(CB);
1144    }
1145  }
1146}
1147
1148void SelectionDAGLowering::visitSub(User &I) {
1149  // -0.0 - X --> fneg
1150  if (I.getType()->isFloatingPoint()) {
1151    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1152      if (CFP->isExactlyValue(-0.0)) {
1153        SDOperand Op2 = getValue(I.getOperand(1));
1154        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1155        return;
1156      }
1157  }
1158  visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
1159}
1160
1161void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp,
1162                                       unsigned VecOp) {
1163  const Type *Ty = I.getType();
1164  SDOperand Op1 = getValue(I.getOperand(0));
1165  SDOperand Op2 = getValue(I.getOperand(1));
1166
1167  if (Ty->isIntegral()) {
1168    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
1169  } else if (Ty->isFloatingPoint()) {
1170    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
1171  } else {
1172    const PackedType *PTy = cast<PackedType>(Ty);
1173    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
1174    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
1175    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
1176  }
1177}
1178
1179void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1180  SDOperand Op1 = getValue(I.getOperand(0));
1181  SDOperand Op2 = getValue(I.getOperand(1));
1182
1183  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1184
1185  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1186}
1187
1188void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
1189                                      ISD::CondCode UnsignedOpcode,
1190                                      ISD::CondCode FPOpcode) {
1191  SDOperand Op1 = getValue(I.getOperand(0));
1192  SDOperand Op2 = getValue(I.getOperand(1));
1193  ISD::CondCode Opcode = SignedOpcode;
1194  if (!FiniteOnlyFPMath() && I.getOperand(0)->getType()->isFloatingPoint())
1195    Opcode = FPOpcode;
1196  else if (I.getOperand(0)->getType()->isUnsigned())
1197    Opcode = UnsignedOpcode;
1198  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1199}
1200
1201void SelectionDAGLowering::visitSelect(User &I) {
1202  SDOperand Cond     = getValue(I.getOperand(0));
1203  SDOperand TrueVal  = getValue(I.getOperand(1));
1204  SDOperand FalseVal = getValue(I.getOperand(2));
1205  if (!isa<PackedType>(I.getType())) {
1206    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1207                             TrueVal, FalseVal));
1208  } else {
1209    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1210                             *(TrueVal.Val->op_end()-2),
1211                             *(TrueVal.Val->op_end()-1)));
1212  }
1213}
1214
1215void SelectionDAGLowering::visitCast(User &I) {
1216  SDOperand N = getValue(I.getOperand(0));
1217  MVT::ValueType SrcVT = N.getValueType();
1218  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1219
1220  if (DestVT == MVT::Vector) {
1221    // This is a cast to a vector from something else.  This is always a bit
1222    // convert.  Get information about the input vector.
1223    const PackedType *DestTy = cast<PackedType>(I.getType());
1224    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1225    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1226                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1227                             DAG.getValueType(EltVT)));
1228  } else if (SrcVT == DestVT) {
1229    setValue(&I, N);  // noop cast.
1230  } else if (DestVT == MVT::i1) {
1231    // Cast to bool is a comparison against zero, not truncation to zero.
1232    SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) :
1233                                       DAG.getConstantFP(0.0, N.getValueType());
1234    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
1235  } else if (isInteger(SrcVT)) {
1236    if (isInteger(DestVT)) {        // Int -> Int cast
1237      if (DestVT < SrcVT)   // Truncating cast?
1238        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1239      else if (I.getOperand(0)->getType()->isSigned())
1240        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1241      else
1242        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1243    } else if (isFloatingPoint(DestVT)) {           // Int -> FP cast
1244      if (I.getOperand(0)->getType()->isSigned())
1245        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1246      else
1247        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1248    } else {
1249      assert(0 && "Unknown cast!");
1250    }
1251  } else if (isFloatingPoint(SrcVT)) {
1252    if (isFloatingPoint(DestVT)) {  // FP -> FP cast
1253      if (DestVT < SrcVT)   // Rounding cast?
1254        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1255      else
1256        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1257    } else if (isInteger(DestVT)) {        // FP -> Int cast.
1258      if (I.getType()->isSigned())
1259        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1260      else
1261        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1262    } else {
1263      assert(0 && "Unknown cast!");
1264    }
1265  } else {
1266    assert(SrcVT == MVT::Vector && "Unknown cast!");
1267    assert(DestVT != MVT::Vector && "Casts to vector already handled!");
1268    // This is a cast from a vector to something else.  This is always a bit
1269    // convert.  Get information about the input vector.
1270    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1271  }
1272}
1273
1274void SelectionDAGLowering::visitInsertElement(User &I) {
1275  SDOperand InVec = getValue(I.getOperand(0));
1276  SDOperand InVal = getValue(I.getOperand(1));
1277  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1278                                getValue(I.getOperand(2)));
1279
1280  SDOperand Num = *(InVec.Val->op_end()-2);
1281  SDOperand Typ = *(InVec.Val->op_end()-1);
1282  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1283                           InVec, InVal, InIdx, Num, Typ));
1284}
1285
1286void SelectionDAGLowering::visitExtractElement(User &I) {
1287  SDOperand InVec = getValue(I.getOperand(0));
1288  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1289                                getValue(I.getOperand(1)));
1290  SDOperand Typ = *(InVec.Val->op_end()-1);
1291  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1292                           TLI.getValueType(I.getType()), InVec, InIdx));
1293}
1294
1295void SelectionDAGLowering::visitShuffleVector(User &I) {
1296  SDOperand V1   = getValue(I.getOperand(0));
1297  SDOperand V2   = getValue(I.getOperand(1));
1298  SDOperand Mask = getValue(I.getOperand(2));
1299
1300  SDOperand Num = *(V1.Val->op_end()-2);
1301  SDOperand Typ = *(V2.Val->op_end()-1);
1302  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1303                           V1, V2, Mask, Num, Typ));
1304}
1305
1306
1307void SelectionDAGLowering::visitGetElementPtr(User &I) {
1308  SDOperand N = getValue(I.getOperand(0));
1309  const Type *Ty = I.getOperand(0)->getType();
1310
1311  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1312       OI != E; ++OI) {
1313    Value *Idx = *OI;
1314    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1315      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
1316      if (Field) {
1317        // N = N + Offset
1318        uint64_t Offset = TD->getStructLayout(StTy)->MemberOffsets[Field];
1319        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1320                        getIntPtrConstant(Offset));
1321      }
1322      Ty = StTy->getElementType(Field);
1323    } else {
1324      Ty = cast<SequentialType>(Ty)->getElementType();
1325
1326      // If this is a constant subscript, handle it quickly.
1327      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1328        if (CI->getZExtValue() == 0) continue;
1329        uint64_t Offs;
1330        if (CI->getType()->isSigned())
1331          Offs = (int64_t)
1332            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
1333        else
1334          Offs =
1335            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getZExtValue();
1336        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1337        continue;
1338      }
1339
1340      // N = N + Idx * ElementSize;
1341      uint64_t ElementSize = TD->getTypeSize(Ty);
1342      SDOperand IdxN = getValue(Idx);
1343
1344      // If the index is smaller or larger than intptr_t, truncate or extend
1345      // it.
1346      if (IdxN.getValueType() < N.getValueType()) {
1347        if (Idx->getType()->isSigned())
1348          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1349        else
1350          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
1351      } else if (IdxN.getValueType() > N.getValueType())
1352        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1353
1354      // If this is a multiply by a power of two, turn it into a shl
1355      // immediately.  This is a very common case.
1356      if (isPowerOf2_64(ElementSize)) {
1357        unsigned Amt = Log2_64(ElementSize);
1358        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1359                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1360        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1361        continue;
1362      }
1363
1364      SDOperand Scale = getIntPtrConstant(ElementSize);
1365      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1366      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1367    }
1368  }
1369  setValue(&I, N);
1370}
1371
1372void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1373  // If this is a fixed sized alloca in the entry block of the function,
1374  // allocate it statically on the stack.
1375  if (FuncInfo.StaticAllocaMap.count(&I))
1376    return;   // getValue will auto-populate this.
1377
1378  const Type *Ty = I.getAllocatedType();
1379  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
1380  unsigned Align = std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
1381                            I.getAlignment());
1382
1383  SDOperand AllocSize = getValue(I.getArraySize());
1384  MVT::ValueType IntPtr = TLI.getPointerTy();
1385  if (IntPtr < AllocSize.getValueType())
1386    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1387  else if (IntPtr > AllocSize.getValueType())
1388    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1389
1390  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1391                          getIntPtrConstant(TySize));
1392
1393  // Handle alignment.  If the requested alignment is less than or equal to the
1394  // stack alignment, ignore it and round the size of the allocation up to the
1395  // stack alignment size.  If the size is greater than the stack alignment, we
1396  // note this in the DYNAMIC_STACKALLOC node.
1397  unsigned StackAlign =
1398    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1399  if (Align <= StackAlign) {
1400    Align = 0;
1401    // Add SA-1 to the size.
1402    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1403                            getIntPtrConstant(StackAlign-1));
1404    // Mask out the low bits for alignment purposes.
1405    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1406                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1407  }
1408
1409  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
1410  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
1411                                                    MVT::Other);
1412  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
1413  DAG.setRoot(setValue(&I, DSA).getValue(1));
1414
1415  // Inform the Frame Information that we have just allocated a variable-sized
1416  // object.
1417  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1418}
1419
1420void SelectionDAGLowering::visitLoad(LoadInst &I) {
1421  SDOperand Ptr = getValue(I.getOperand(0));
1422
1423  SDOperand Root;
1424  if (I.isVolatile())
1425    Root = getRoot();
1426  else {
1427    // Do not serialize non-volatile loads against each other.
1428    Root = DAG.getRoot();
1429  }
1430
1431  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
1432                           Root, I.isVolatile()));
1433}
1434
1435SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1436                                            const Value *SV, SDOperand Root,
1437                                            bool isVolatile) {
1438  SDOperand L;
1439  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1440    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1441    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
1442                       DAG.getSrcValue(SV));
1443  } else {
1444    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, isVolatile);
1445  }
1446
1447  if (isVolatile)
1448    DAG.setRoot(L.getValue(1));
1449  else
1450    PendingLoads.push_back(L.getValue(1));
1451
1452  return L;
1453}
1454
1455
1456void SelectionDAGLowering::visitStore(StoreInst &I) {
1457  Value *SrcV = I.getOperand(0);
1458  SDOperand Src = getValue(SrcV);
1459  SDOperand Ptr = getValue(I.getOperand(1));
1460  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1),
1461                           I.isVolatile()));
1462}
1463
1464/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1465/// access memory and has no other side effects at all.
1466static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1467#define GET_NO_MEMORY_INTRINSICS
1468#include "llvm/Intrinsics.gen"
1469#undef GET_NO_MEMORY_INTRINSICS
1470  return false;
1471}
1472
1473// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
1474// have any side-effects or if it only reads memory.
1475static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
1476#define GET_SIDE_EFFECT_INFO
1477#include "llvm/Intrinsics.gen"
1478#undef GET_SIDE_EFFECT_INFO
1479  return false;
1480}
1481
1482/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1483/// node.
1484void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1485                                                unsigned Intrinsic) {
1486  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1487  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
1488
1489  // Build the operand list.
1490  SmallVector<SDOperand, 8> Ops;
1491  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
1492    if (OnlyLoad) {
1493      // We don't need to serialize loads against other loads.
1494      Ops.push_back(DAG.getRoot());
1495    } else {
1496      Ops.push_back(getRoot());
1497    }
1498  }
1499
1500  // Add the intrinsic ID as an integer operand.
1501  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1502
1503  // Add all operands of the call to the operand list.
1504  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1505    SDOperand Op = getValue(I.getOperand(i));
1506
1507    // If this is a vector type, force it to the right packed type.
1508    if (Op.getValueType() == MVT::Vector) {
1509      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1510      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1511
1512      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1513      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1514      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1515    }
1516
1517    assert(TLI.isTypeLegal(Op.getValueType()) &&
1518           "Intrinsic uses a non-legal type?");
1519    Ops.push_back(Op);
1520  }
1521
1522  std::vector<MVT::ValueType> VTs;
1523  if (I.getType() != Type::VoidTy) {
1524    MVT::ValueType VT = TLI.getValueType(I.getType());
1525    if (VT == MVT::Vector) {
1526      const PackedType *DestTy = cast<PackedType>(I.getType());
1527      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1528
1529      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1530      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1531    }
1532
1533    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1534    VTs.push_back(VT);
1535  }
1536  if (HasChain)
1537    VTs.push_back(MVT::Other);
1538
1539  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
1540
1541  // Create the node.
1542  SDOperand Result;
1543  if (!HasChain)
1544    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
1545                         &Ops[0], Ops.size());
1546  else if (I.getType() != Type::VoidTy)
1547    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
1548                         &Ops[0], Ops.size());
1549  else
1550    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
1551                         &Ops[0], Ops.size());
1552
1553  if (HasChain) {
1554    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
1555    if (OnlyLoad)
1556      PendingLoads.push_back(Chain);
1557    else
1558      DAG.setRoot(Chain);
1559  }
1560  if (I.getType() != Type::VoidTy) {
1561    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1562      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1563      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1564                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1565                           DAG.getValueType(EVT));
1566    }
1567    setValue(&I, Result);
1568  }
1569}
1570
1571/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1572/// we want to emit this as a call to a named external function, return the name
1573/// otherwise lower it and return null.
1574const char *
1575SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1576  switch (Intrinsic) {
1577  default:
1578    // By default, turn this into a target intrinsic node.
1579    visitTargetIntrinsic(I, Intrinsic);
1580    return 0;
1581  case Intrinsic::vastart:  visitVAStart(I); return 0;
1582  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1583  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1584  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1585  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1586  case Intrinsic::setjmp:
1587    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1588    break;
1589  case Intrinsic::longjmp:
1590    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1591    break;
1592  case Intrinsic::memcpy_i32:
1593  case Intrinsic::memcpy_i64:
1594    visitMemIntrinsic(I, ISD::MEMCPY);
1595    return 0;
1596  case Intrinsic::memset_i32:
1597  case Intrinsic::memset_i64:
1598    visitMemIntrinsic(I, ISD::MEMSET);
1599    return 0;
1600  case Intrinsic::memmove_i32:
1601  case Intrinsic::memmove_i64:
1602    visitMemIntrinsic(I, ISD::MEMMOVE);
1603    return 0;
1604
1605  case Intrinsic::dbg_stoppoint: {
1606    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1607    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1608    if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
1609      SDOperand Ops[5];
1610
1611      Ops[0] = getRoot();
1612      Ops[1] = getValue(SPI.getLineValue());
1613      Ops[2] = getValue(SPI.getColumnValue());
1614
1615      DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
1616      assert(DD && "Not a debug information descriptor");
1617      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1618
1619      Ops[3] = DAG.getString(CompileUnit->getFileName());
1620      Ops[4] = DAG.getString(CompileUnit->getDirectory());
1621
1622      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
1623    }
1624
1625    return 0;
1626  }
1627  case Intrinsic::dbg_region_start: {
1628    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1629    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1630    if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
1631      unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
1632      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, getRoot(),
1633                              DAG.getConstant(LabelID, MVT::i32)));
1634    }
1635
1636    return 0;
1637  }
1638  case Intrinsic::dbg_region_end: {
1639    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1640    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
1641    if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
1642      unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
1643      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
1644                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
1645    }
1646
1647    return 0;
1648  }
1649  case Intrinsic::dbg_func_start: {
1650    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1651    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
1652    if (DebugInfo && FSI.getSubprogram() &&
1653        DebugInfo->Verify(FSI.getSubprogram())) {
1654      unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
1655      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
1656                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
1657    }
1658
1659    return 0;
1660  }
1661  case Intrinsic::dbg_declare: {
1662    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1663    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
1664    if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) {
1665      SDOperand AddressOp  = getValue(DI.getAddress());
1666      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
1667        DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
1668    }
1669
1670    return 0;
1671  }
1672
1673  case Intrinsic::isunordered_f32:
1674  case Intrinsic::isunordered_f64:
1675    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
1676                              getValue(I.getOperand(2)), ISD::SETUO));
1677    return 0;
1678
1679  case Intrinsic::sqrt_f32:
1680  case Intrinsic::sqrt_f64:
1681    setValue(&I, DAG.getNode(ISD::FSQRT,
1682                             getValue(I.getOperand(1)).getValueType(),
1683                             getValue(I.getOperand(1))));
1684    return 0;
1685  case Intrinsic::powi_f32:
1686  case Intrinsic::powi_f64:
1687    setValue(&I, DAG.getNode(ISD::FPOWI,
1688                             getValue(I.getOperand(1)).getValueType(),
1689                             getValue(I.getOperand(1)),
1690                             getValue(I.getOperand(2))));
1691    return 0;
1692  case Intrinsic::pcmarker: {
1693    SDOperand Tmp = getValue(I.getOperand(1));
1694    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
1695    return 0;
1696  }
1697  case Intrinsic::readcyclecounter: {
1698    SDOperand Op = getRoot();
1699    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
1700                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
1701                                &Op, 1);
1702    setValue(&I, Tmp);
1703    DAG.setRoot(Tmp.getValue(1));
1704    return 0;
1705  }
1706  case Intrinsic::bswap_i16:
1707  case Intrinsic::bswap_i32:
1708  case Intrinsic::bswap_i64:
1709    setValue(&I, DAG.getNode(ISD::BSWAP,
1710                             getValue(I.getOperand(1)).getValueType(),
1711                             getValue(I.getOperand(1))));
1712    return 0;
1713  case Intrinsic::cttz_i8:
1714  case Intrinsic::cttz_i16:
1715  case Intrinsic::cttz_i32:
1716  case Intrinsic::cttz_i64:
1717    setValue(&I, DAG.getNode(ISD::CTTZ,
1718                             getValue(I.getOperand(1)).getValueType(),
1719                             getValue(I.getOperand(1))));
1720    return 0;
1721  case Intrinsic::ctlz_i8:
1722  case Intrinsic::ctlz_i16:
1723  case Intrinsic::ctlz_i32:
1724  case Intrinsic::ctlz_i64:
1725    setValue(&I, DAG.getNode(ISD::CTLZ,
1726                             getValue(I.getOperand(1)).getValueType(),
1727                             getValue(I.getOperand(1))));
1728    return 0;
1729  case Intrinsic::ctpop_i8:
1730  case Intrinsic::ctpop_i16:
1731  case Intrinsic::ctpop_i32:
1732  case Intrinsic::ctpop_i64:
1733    setValue(&I, DAG.getNode(ISD::CTPOP,
1734                             getValue(I.getOperand(1)).getValueType(),
1735                             getValue(I.getOperand(1))));
1736    return 0;
1737  case Intrinsic::stacksave: {
1738    SDOperand Op = getRoot();
1739    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
1740              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
1741    setValue(&I, Tmp);
1742    DAG.setRoot(Tmp.getValue(1));
1743    return 0;
1744  }
1745  case Intrinsic::stackrestore: {
1746    SDOperand Tmp = getValue(I.getOperand(1));
1747    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
1748    return 0;
1749  }
1750  case Intrinsic::prefetch:
1751    // FIXME: Currently discarding prefetches.
1752    return 0;
1753  }
1754}
1755
1756
1757void SelectionDAGLowering::visitCall(CallInst &I) {
1758  const char *RenameFn = 0;
1759  if (Function *F = I.getCalledFunction()) {
1760    if (F->isExternal())
1761      if (unsigned IID = F->getIntrinsicID()) {
1762        RenameFn = visitIntrinsicCall(I, IID);
1763        if (!RenameFn)
1764          return;
1765      } else {    // Not an LLVM intrinsic.
1766        const std::string &Name = F->getName();
1767        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
1768          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
1769              I.getOperand(1)->getType()->isFloatingPoint() &&
1770              I.getType() == I.getOperand(1)->getType() &&
1771              I.getType() == I.getOperand(2)->getType()) {
1772            SDOperand LHS = getValue(I.getOperand(1));
1773            SDOperand RHS = getValue(I.getOperand(2));
1774            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
1775                                     LHS, RHS));
1776            return;
1777          }
1778        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
1779          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1780              I.getOperand(1)->getType()->isFloatingPoint() &&
1781              I.getType() == I.getOperand(1)->getType()) {
1782            SDOperand Tmp = getValue(I.getOperand(1));
1783            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
1784            return;
1785          }
1786        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
1787          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1788              I.getOperand(1)->getType()->isFloatingPoint() &&
1789              I.getType() == I.getOperand(1)->getType()) {
1790            SDOperand Tmp = getValue(I.getOperand(1));
1791            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
1792            return;
1793          }
1794        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
1795          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1796              I.getOperand(1)->getType()->isFloatingPoint() &&
1797              I.getType() == I.getOperand(1)->getType()) {
1798            SDOperand Tmp = getValue(I.getOperand(1));
1799            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
1800            return;
1801          }
1802        }
1803      }
1804  } else if (isa<InlineAsm>(I.getOperand(0))) {
1805    visitInlineAsm(I);
1806    return;
1807  }
1808
1809  SDOperand Callee;
1810  if (!RenameFn)
1811    Callee = getValue(I.getOperand(0));
1812  else
1813    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
1814  std::vector<std::pair<SDOperand, const Type*> > Args;
1815  Args.reserve(I.getNumOperands());
1816  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1817    Value *Arg = I.getOperand(i);
1818    SDOperand ArgNode = getValue(Arg);
1819    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
1820  }
1821
1822  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
1823  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1824
1825  std::pair<SDOperand,SDOperand> Result =
1826    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
1827                    I.isTailCall(), Callee, Args, DAG);
1828  if (I.getType() != Type::VoidTy)
1829    setValue(&I, Result.first);
1830  DAG.setRoot(Result.second);
1831}
1832
1833SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
1834                                        SDOperand &Chain, SDOperand &Flag)const{
1835  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
1836  Chain = Val.getValue(1);
1837  Flag  = Val.getValue(2);
1838
1839  // If the result was expanded, copy from the top part.
1840  if (Regs.size() > 1) {
1841    assert(Regs.size() == 2 &&
1842           "Cannot expand to more than 2 elts yet!");
1843    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
1844    Chain = Hi.getValue(1);
1845    Flag  = Hi.getValue(2);
1846    if (DAG.getTargetLoweringInfo().isLittleEndian())
1847      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
1848    else
1849      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
1850  }
1851
1852  // Otherwise, if the return value was promoted or extended, truncate it to the
1853  // appropriate type.
1854  if (RegVT == ValueVT)
1855    return Val;
1856
1857  if (MVT::isInteger(RegVT)) {
1858    if (ValueVT < RegVT)
1859      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1860    else
1861      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
1862  } else {
1863    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
1864  }
1865}
1866
1867/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
1868/// specified value into the registers specified by this object.  This uses
1869/// Chain/Flag as the input and updates them for the output Chain/Flag.
1870void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
1871                                 SDOperand &Chain, SDOperand &Flag,
1872                                 MVT::ValueType PtrVT) const {
1873  if (Regs.size() == 1) {
1874    // If there is a single register and the types differ, this must be
1875    // a promotion.
1876    if (RegVT != ValueVT) {
1877      if (MVT::isInteger(RegVT)) {
1878        if (RegVT < ValueVT)
1879          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
1880        else
1881          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
1882      } else
1883        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
1884    }
1885    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
1886    Flag = Chain.getValue(1);
1887  } else {
1888    std::vector<unsigned> R(Regs);
1889    if (!DAG.getTargetLoweringInfo().isLittleEndian())
1890      std::reverse(R.begin(), R.end());
1891
1892    for (unsigned i = 0, e = R.size(); i != e; ++i) {
1893      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
1894                                   DAG.getConstant(i, PtrVT));
1895      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
1896      Flag = Chain.getValue(1);
1897    }
1898  }
1899}
1900
1901/// AddInlineAsmOperands - Add this value to the specified inlineasm node
1902/// operand list.  This adds the code marker and includes the number of
1903/// values added into it.
1904void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
1905                                        std::vector<SDOperand> &Ops) const {
1906  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
1907  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1908    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
1909}
1910
1911/// isAllocatableRegister - If the specified register is safe to allocate,
1912/// i.e. it isn't a stack pointer or some other special register, return the
1913/// register class for the register.  Otherwise, return null.
1914static const TargetRegisterClass *
1915isAllocatableRegister(unsigned Reg, MachineFunction &MF,
1916                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
1917  MVT::ValueType FoundVT = MVT::Other;
1918  const TargetRegisterClass *FoundRC = 0;
1919  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
1920       E = MRI->regclass_end(); RCI != E; ++RCI) {
1921    MVT::ValueType ThisVT = MVT::Other;
1922
1923    const TargetRegisterClass *RC = *RCI;
1924    // If none of the the value types for this register class are valid, we
1925    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1926    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1927         I != E; ++I) {
1928      if (TLI.isTypeLegal(*I)) {
1929        // If we have already found this register in a different register class,
1930        // choose the one with the largest VT specified.  For example, on
1931        // PowerPC, we favor f64 register classes over f32.
1932        if (FoundVT == MVT::Other ||
1933            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
1934          ThisVT = *I;
1935          break;
1936        }
1937      }
1938    }
1939
1940    if (ThisVT == MVT::Other) continue;
1941
1942    // NOTE: This isn't ideal.  In particular, this might allocate the
1943    // frame pointer in functions that need it (due to them not being taken
1944    // out of allocation, because a variable sized allocation hasn't been seen
1945    // yet).  This is a slight code pessimization, but should still work.
1946    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
1947         E = RC->allocation_order_end(MF); I != E; ++I)
1948      if (*I == Reg) {
1949        // We found a matching register class.  Keep looking at others in case
1950        // we find one with larger registers that this physreg is also in.
1951        FoundRC = RC;
1952        FoundVT = ThisVT;
1953        break;
1954      }
1955  }
1956  return FoundRC;
1957}
1958
1959RegsForValue SelectionDAGLowering::
1960GetRegistersForValue(const std::string &ConstrCode,
1961                     MVT::ValueType VT, bool isOutReg, bool isInReg,
1962                     std::set<unsigned> &OutputRegs,
1963                     std::set<unsigned> &InputRegs) {
1964  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
1965    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
1966  std::vector<unsigned> Regs;
1967
1968  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
1969  MVT::ValueType RegVT;
1970  MVT::ValueType ValueVT = VT;
1971
1972  if (PhysReg.first) {
1973    if (VT == MVT::Other)
1974      ValueVT = *PhysReg.second->vt_begin();
1975
1976    // Get the actual register value type.  This is important, because the user
1977    // may have asked for (e.g.) the AX register in i32 type.  We need to
1978    // remember that AX is actually i16 to get the right extension.
1979    RegVT = *PhysReg.second->vt_begin();
1980
1981    // This is a explicit reference to a physical register.
1982    Regs.push_back(PhysReg.first);
1983
1984    // If this is an expanded reference, add the rest of the regs to Regs.
1985    if (NumRegs != 1) {
1986      TargetRegisterClass::iterator I = PhysReg.second->begin();
1987      TargetRegisterClass::iterator E = PhysReg.second->end();
1988      for (; *I != PhysReg.first; ++I)
1989        assert(I != E && "Didn't find reg!");
1990
1991      // Already added the first reg.
1992      --NumRegs; ++I;
1993      for (; NumRegs; --NumRegs, ++I) {
1994        assert(I != E && "Ran out of registers to allocate!");
1995        Regs.push_back(*I);
1996      }
1997    }
1998    return RegsForValue(Regs, RegVT, ValueVT);
1999  }
2000
2001  // This is a reference to a register class.  Allocate NumRegs consecutive,
2002  // available, registers from the class.
2003  std::vector<unsigned> RegClassRegs =
2004    TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
2005
2006  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
2007  MachineFunction &MF = *CurMBB->getParent();
2008  unsigned NumAllocated = 0;
2009  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
2010    unsigned Reg = RegClassRegs[i];
2011    // See if this register is available.
2012    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
2013        (isInReg  && InputRegs.count(Reg))) {    // Already used.
2014      // Make sure we find consecutive registers.
2015      NumAllocated = 0;
2016      continue;
2017    }
2018
2019    // Check to see if this register is allocatable (i.e. don't give out the
2020    // stack pointer).
2021    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
2022    if (!RC) {
2023      // Make sure we find consecutive registers.
2024      NumAllocated = 0;
2025      continue;
2026    }
2027
2028    // Okay, this register is good, we can use it.
2029    ++NumAllocated;
2030
2031    // If we allocated enough consecutive
2032    if (NumAllocated == NumRegs) {
2033      unsigned RegStart = (i-NumAllocated)+1;
2034      unsigned RegEnd   = i+1;
2035      // Mark all of the allocated registers used.
2036      for (unsigned i = RegStart; i != RegEnd; ++i) {
2037        unsigned Reg = RegClassRegs[i];
2038        Regs.push_back(Reg);
2039        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
2040        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
2041      }
2042
2043      return RegsForValue(Regs, *RC->vt_begin(), VT);
2044    }
2045  }
2046
2047  // Otherwise, we couldn't allocate enough registers for this.
2048  return RegsForValue();
2049}
2050
2051
2052/// visitInlineAsm - Handle a call to an InlineAsm object.
2053///
2054void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
2055  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
2056
2057  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
2058                                                 MVT::Other);
2059
2060  // Note, we treat inline asms both with and without side-effects as the same.
2061  // If an inline asm doesn't have side effects and doesn't access memory, we
2062  // could not choose to not chain it.
2063  bool hasSideEffects = IA->hasSideEffects();
2064
2065  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
2066  std::vector<MVT::ValueType> ConstraintVTs;
2067
2068  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
2069  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
2070  /// if it is a def of that register.
2071  std::vector<SDOperand> AsmNodeOperands;
2072  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
2073  AsmNodeOperands.push_back(AsmStr);
2074
2075  SDOperand Chain = getRoot();
2076  SDOperand Flag;
2077
2078  // We fully assign registers here at isel time.  This is not optimal, but
2079  // should work.  For register classes that correspond to LLVM classes, we
2080  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
2081  // over the constraints, collecting fixed registers that we know we can't use.
2082  std::set<unsigned> OutputRegs, InputRegs;
2083  unsigned OpNum = 1;
2084  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2085    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2086    std::string &ConstraintCode = Constraints[i].Codes[0];
2087
2088    MVT::ValueType OpVT;
2089
2090    // Compute the value type for each operand and add it to ConstraintVTs.
2091    switch (Constraints[i].Type) {
2092    case InlineAsm::isOutput:
2093      if (!Constraints[i].isIndirectOutput) {
2094        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2095        OpVT = TLI.getValueType(I.getType());
2096      } else {
2097        const Type *OpTy = I.getOperand(OpNum)->getType();
2098        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2099        OpNum++;  // Consumes a call operand.
2100      }
2101      break;
2102    case InlineAsm::isInput:
2103      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2104      OpNum++;  // Consumes a call operand.
2105      break;
2106    case InlineAsm::isClobber:
2107      OpVT = MVT::Other;
2108      break;
2109    }
2110
2111    ConstraintVTs.push_back(OpVT);
2112
2113    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2114      continue;  // Not assigned a fixed reg.
2115
2116    // Build a list of regs that this operand uses.  This always has a single
2117    // element for promoted/expanded operands.
2118    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2119                                             false, false,
2120                                             OutputRegs, InputRegs);
2121
2122    switch (Constraints[i].Type) {
2123    case InlineAsm::isOutput:
2124      // We can't assign any other output to this register.
2125      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2126      // If this is an early-clobber output, it cannot be assigned to the same
2127      // value as the input reg.
2128      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2129        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2130      break;
2131    case InlineAsm::isInput:
2132      // We can't assign any other input to this register.
2133      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2134      break;
2135    case InlineAsm::isClobber:
2136      // Clobbered regs cannot be used as inputs or outputs.
2137      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2138      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2139      break;
2140    }
2141  }
2142
2143  // Loop over all of the inputs, copying the operand values into the
2144  // appropriate registers and processing the output regs.
2145  RegsForValue RetValRegs;
2146  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2147  OpNum = 1;
2148
2149  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2150    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2151    std::string &ConstraintCode = Constraints[i].Codes[0];
2152
2153    switch (Constraints[i].Type) {
2154    case InlineAsm::isOutput: {
2155      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2156      if (ConstraintCode.size() == 1)   // not a physreg name.
2157        CTy = TLI.getConstraintType(ConstraintCode[0]);
2158
2159      if (CTy == TargetLowering::C_Memory) {
2160        // Memory output.
2161        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2162
2163        // Check that the operand (the address to store to) isn't a float.
2164        if (!MVT::isInteger(InOperandVal.getValueType()))
2165          assert(0 && "MATCH FAIL!");
2166
2167        if (!Constraints[i].isIndirectOutput)
2168          assert(0 && "MATCH FAIL!");
2169
2170        OpNum++;  // Consumes a call operand.
2171
2172        // Extend/truncate to the right pointer type if needed.
2173        MVT::ValueType PtrType = TLI.getPointerTy();
2174        if (InOperandVal.getValueType() < PtrType)
2175          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2176        else if (InOperandVal.getValueType() > PtrType)
2177          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2178
2179        // Add information to the INLINEASM node to know about this output.
2180        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2181        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2182        AsmNodeOperands.push_back(InOperandVal);
2183        break;
2184      }
2185
2186      // Otherwise, this is a register output.
2187      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2188
2189      // If this is an early-clobber output, or if there is an input
2190      // constraint that matches this, we need to reserve the input register
2191      // so no other inputs allocate to it.
2192      bool UsesInputRegister = false;
2193      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2194        UsesInputRegister = true;
2195
2196      // Copy the output from the appropriate register.  Find a register that
2197      // we can use.
2198      RegsForValue Regs =
2199        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2200                             true, UsesInputRegister,
2201                             OutputRegs, InputRegs);
2202      assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
2203
2204      if (!Constraints[i].isIndirectOutput) {
2205        assert(RetValRegs.Regs.empty() &&
2206               "Cannot have multiple output constraints yet!");
2207        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2208        RetValRegs = Regs;
2209      } else {
2210        IndirectStoresToEmit.push_back(std::make_pair(Regs,
2211                                                      I.getOperand(OpNum)));
2212        OpNum++;  // Consumes a call operand.
2213      }
2214
2215      // Add information to the INLINEASM node to know that this register is
2216      // set.
2217      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
2218      break;
2219    }
2220    case InlineAsm::isInput: {
2221      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2222      OpNum++;  // Consumes a call operand.
2223
2224      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
2225        // If this is required to match an output register we have already set,
2226        // just use its register.
2227        unsigned OperandNo = atoi(ConstraintCode.c_str());
2228
2229        // Scan until we find the definition we already emitted of this operand.
2230        // When we find it, create a RegsForValue operand.
2231        unsigned CurOp = 2;  // The first operand.
2232        for (; OperandNo; --OperandNo) {
2233          // Advance to the next operand.
2234          unsigned NumOps =
2235            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2236          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
2237                  (NumOps & 7) == 4 /*MEM*/) &&
2238                 "Skipped past definitions?");
2239          CurOp += (NumOps>>3)+1;
2240        }
2241
2242        unsigned NumOps =
2243          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2244        assert((NumOps & 7) == 2 /*REGDEF*/ &&
2245               "Skipped past definitions?");
2246
2247        // Add NumOps>>3 registers to MatchedRegs.
2248        RegsForValue MatchedRegs;
2249        MatchedRegs.ValueVT = InOperandVal.getValueType();
2250        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
2251        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
2252          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
2253          MatchedRegs.Regs.push_back(Reg);
2254        }
2255
2256        // Use the produced MatchedRegs object to
2257        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
2258                                  TLI.getPointerTy());
2259        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2260        break;
2261      }
2262
2263      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2264      if (ConstraintCode.size() == 1)   // not a physreg name.
2265        CTy = TLI.getConstraintType(ConstraintCode[0]);
2266
2267      if (CTy == TargetLowering::C_Other) {
2268        if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
2269          assert(0 && "MATCH FAIL!");
2270
2271        // Add information to the INLINEASM node to know about this input.
2272        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2273        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2274        AsmNodeOperands.push_back(InOperandVal);
2275        break;
2276      } else if (CTy == TargetLowering::C_Memory) {
2277        // Memory input.
2278
2279        // Check that the operand isn't a float.
2280        if (!MVT::isInteger(InOperandVal.getValueType()))
2281          assert(0 && "MATCH FAIL!");
2282
2283        // Extend/truncate to the right pointer type if needed.
2284        MVT::ValueType PtrType = TLI.getPointerTy();
2285        if (InOperandVal.getValueType() < PtrType)
2286          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2287        else if (InOperandVal.getValueType() > PtrType)
2288          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2289
2290        // Add information to the INLINEASM node to know about this input.
2291        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2292        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2293        AsmNodeOperands.push_back(InOperandVal);
2294        break;
2295      }
2296
2297      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2298
2299      // Copy the input into the appropriate registers.
2300      RegsForValue InRegs =
2301        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2302                             false, true, OutputRegs, InputRegs);
2303      // FIXME: should be match fail.
2304      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2305
2306      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
2307
2308      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2309      break;
2310    }
2311    case InlineAsm::isClobber: {
2312      RegsForValue ClobberedRegs =
2313        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2314                             OutputRegs, InputRegs);
2315      // Add the clobbered value to the operand list, so that the register
2316      // allocator is aware that the physreg got clobbered.
2317      if (!ClobberedRegs.Regs.empty())
2318        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2319      break;
2320    }
2321    }
2322  }
2323
2324  // Finish up input operands.
2325  AsmNodeOperands[0] = Chain;
2326  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2327
2328  Chain = DAG.getNode(ISD::INLINEASM,
2329                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
2330                      &AsmNodeOperands[0], AsmNodeOperands.size());
2331  Flag = Chain.getValue(1);
2332
2333  // If this asm returns a register value, copy the result from that register
2334  // and set it as the value of the call.
2335  if (!RetValRegs.Regs.empty())
2336    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2337
2338  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2339
2340  // Process indirect outputs, first output all of the flagged copies out of
2341  // physregs.
2342  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2343    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2344    Value *Ptr = IndirectStoresToEmit[i].second;
2345    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2346    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2347  }
2348
2349  // Emit the non-flagged stores from the physregs.
2350  SmallVector<SDOperand, 8> OutChains;
2351  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2352    OutChains.push_back(DAG.getStore(Chain,  StoresToEmit[i].first,
2353                                    getValue(StoresToEmit[i].second),
2354                                    StoresToEmit[i].second, 0));
2355  if (!OutChains.empty())
2356    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2357                        &OutChains[0], OutChains.size());
2358  DAG.setRoot(Chain);
2359}
2360
2361
2362void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2363  SDOperand Src = getValue(I.getOperand(0));
2364
2365  MVT::ValueType IntPtr = TLI.getPointerTy();
2366
2367  if (IntPtr < Src.getValueType())
2368    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2369  else if (IntPtr > Src.getValueType())
2370    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2371
2372  // Scale the source by the type size.
2373  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
2374  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2375                    Src, getIntPtrConstant(ElementSize));
2376
2377  std::vector<std::pair<SDOperand, const Type*> > Args;
2378  Args.push_back(std::make_pair(Src, TLI.getTargetData()->getIntPtrType()));
2379
2380  std::pair<SDOperand,SDOperand> Result =
2381    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
2382                    DAG.getExternalSymbol("malloc", IntPtr),
2383                    Args, DAG);
2384  setValue(&I, Result.first);  // Pointers always fit in registers
2385  DAG.setRoot(Result.second);
2386}
2387
2388void SelectionDAGLowering::visitFree(FreeInst &I) {
2389  std::vector<std::pair<SDOperand, const Type*> > Args;
2390  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
2391                                TLI.getTargetData()->getIntPtrType()));
2392  MVT::ValueType IntPtr = TLI.getPointerTy();
2393  std::pair<SDOperand,SDOperand> Result =
2394    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
2395                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2396  DAG.setRoot(Result.second);
2397}
2398
2399// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2400// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2401// instructions are special in various ways, which require special support to
2402// insert.  The specified MachineInstr is created but not inserted into any
2403// basic blocks, and the scheduler passes ownership of it to this method.
2404MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2405                                                       MachineBasicBlock *MBB) {
2406  std::cerr << "If a target marks an instruction with "
2407               "'usesCustomDAGSchedInserter', it must implement "
2408               "TargetLowering::InsertAtEndOfBasicBlock!\n";
2409  abort();
2410  return 0;
2411}
2412
2413void SelectionDAGLowering::visitVAStart(CallInst &I) {
2414  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2415                          getValue(I.getOperand(1)),
2416                          DAG.getSrcValue(I.getOperand(1))));
2417}
2418
2419void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2420  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2421                             getValue(I.getOperand(0)),
2422                             DAG.getSrcValue(I.getOperand(0)));
2423  setValue(&I, V);
2424  DAG.setRoot(V.getValue(1));
2425}
2426
2427void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2428  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2429                          getValue(I.getOperand(1)),
2430                          DAG.getSrcValue(I.getOperand(1))));
2431}
2432
2433void SelectionDAGLowering::visitVACopy(CallInst &I) {
2434  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2435                          getValue(I.getOperand(1)),
2436                          getValue(I.getOperand(2)),
2437                          DAG.getSrcValue(I.getOperand(1)),
2438                          DAG.getSrcValue(I.getOperand(2))));
2439}
2440
2441/// TargetLowering::LowerArguments - This is the default LowerArguments
2442/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
2443/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
2444/// integrated into SDISel.
2445std::vector<SDOperand>
2446TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
2447  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
2448  std::vector<SDOperand> Ops;
2449  Ops.push_back(DAG.getRoot());
2450  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
2451  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
2452
2453  // Add one result value for each formal argument.
2454  std::vector<MVT::ValueType> RetVals;
2455  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2456    MVT::ValueType VT = getValueType(I->getType());
2457
2458    switch (getTypeAction(VT)) {
2459    default: assert(0 && "Unknown type action!");
2460    case Legal:
2461      RetVals.push_back(VT);
2462      break;
2463    case Promote:
2464      RetVals.push_back(getTypeToTransformTo(VT));
2465      break;
2466    case Expand:
2467      if (VT != MVT::Vector) {
2468        // If this is a large integer, it needs to be broken up into small
2469        // integers.  Figure out what the destination type is and how many small
2470        // integers it turns into.
2471        MVT::ValueType NVT = getTypeToTransformTo(VT);
2472        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2473        for (unsigned i = 0; i != NumVals; ++i)
2474          RetVals.push_back(NVT);
2475      } else {
2476        // Otherwise, this is a vector type.  We only support legal vectors
2477        // right now.
2478        unsigned NumElems = cast<PackedType>(I->getType())->getNumElements();
2479        const Type *EltTy = cast<PackedType>(I->getType())->getElementType();
2480
2481        // Figure out if there is a Packed type corresponding to this Vector
2482        // type.  If so, convert to the packed type.
2483        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2484        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2485          RetVals.push_back(TVT);
2486        } else {
2487          assert(0 && "Don't support illegal by-val vector arguments yet!");
2488        }
2489      }
2490      break;
2491    }
2492  }
2493
2494  RetVals.push_back(MVT::Other);
2495
2496  // Create the node.
2497  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
2498                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
2499                               &Ops[0], Ops.size()).Val;
2500
2501  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
2502
2503  // Set up the return result vector.
2504  Ops.clear();
2505  unsigned i = 0;
2506  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2507    MVT::ValueType VT = getValueType(I->getType());
2508
2509    switch (getTypeAction(VT)) {
2510    default: assert(0 && "Unknown type action!");
2511    case Legal:
2512      Ops.push_back(SDOperand(Result, i++));
2513      break;
2514    case Promote: {
2515      SDOperand Op(Result, i++);
2516      if (MVT::isInteger(VT)) {
2517        unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext
2518                                                     : ISD::AssertZext;
2519        Op = DAG.getNode(AssertOp, Op.getValueType(), Op, DAG.getValueType(VT));
2520        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2521      } else {
2522        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2523        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
2524      }
2525      Ops.push_back(Op);
2526      break;
2527    }
2528    case Expand:
2529      if (VT != MVT::Vector) {
2530        // If this is a large integer, it needs to be reassembled from small
2531        // integers.  Figure out what the source elt type is and how many small
2532        // integers it is.
2533        MVT::ValueType NVT = getTypeToTransformTo(VT);
2534        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2535        if (NumVals == 2) {
2536          SDOperand Lo = SDOperand(Result, i++);
2537          SDOperand Hi = SDOperand(Result, i++);
2538
2539          if (!isLittleEndian())
2540            std::swap(Lo, Hi);
2541
2542          Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi));
2543        } else {
2544          // Value scalarized into many values.  Unimp for now.
2545          assert(0 && "Cannot expand i64 -> i16 yet!");
2546        }
2547      } else {
2548        // Otherwise, this is a vector type.  We only support legal vectors
2549        // right now.
2550        const PackedType *PTy = cast<PackedType>(I->getType());
2551        unsigned NumElems = PTy->getNumElements();
2552        const Type *EltTy = PTy->getElementType();
2553
2554        // Figure out if there is a Packed type corresponding to this Vector
2555        // type.  If so, convert to the packed type.
2556        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2557        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2558          SDOperand N = SDOperand(Result, i++);
2559          // Handle copies from generic vectors to registers.
2560          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
2561                          DAG.getConstant(NumElems, MVT::i32),
2562                          DAG.getValueType(getValueType(EltTy)));
2563          Ops.push_back(N);
2564        } else {
2565          assert(0 && "Don't support illegal by-val vector arguments yet!");
2566          abort();
2567        }
2568      }
2569      break;
2570    }
2571  }
2572  return Ops;
2573}
2574
2575
2576/// TargetLowering::LowerCallTo - This is the default LowerCallTo
2577/// implementation, which just inserts an ISD::CALL node, which is later custom
2578/// lowered by the target to something concrete.  FIXME: When all targets are
2579/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
2580std::pair<SDOperand, SDOperand>
2581TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
2582                            unsigned CallingConv, bool isTailCall,
2583                            SDOperand Callee,
2584                            ArgListTy &Args, SelectionDAG &DAG) {
2585  SmallVector<SDOperand, 32> Ops;
2586  Ops.push_back(Chain);   // Op#0 - Chain
2587  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
2588  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
2589  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
2590  Ops.push_back(Callee);
2591
2592  // Handle all of the outgoing arguments.
2593  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
2594    MVT::ValueType VT = getValueType(Args[i].second);
2595    SDOperand Op = Args[i].first;
2596    bool isSigned = Args[i].second->isSigned();
2597    switch (getTypeAction(VT)) {
2598    default: assert(0 && "Unknown type action!");
2599    case Legal:
2600      Ops.push_back(Op);
2601      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2602      break;
2603    case Promote:
2604      if (MVT::isInteger(VT)) {
2605        unsigned ExtOp = isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2606        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
2607      } else {
2608        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2609        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
2610      }
2611      Ops.push_back(Op);
2612      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2613      break;
2614    case Expand:
2615      if (VT != MVT::Vector) {
2616        // If this is a large integer, it needs to be broken down into small
2617        // integers.  Figure out what the source elt type is and how many small
2618        // integers it is.
2619        MVT::ValueType NVT = getTypeToTransformTo(VT);
2620        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2621        if (NumVals == 2) {
2622          SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
2623                                     DAG.getConstant(0, getPointerTy()));
2624          SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
2625                                     DAG.getConstant(1, getPointerTy()));
2626          if (!isLittleEndian())
2627            std::swap(Lo, Hi);
2628
2629          Ops.push_back(Lo);
2630          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2631          Ops.push_back(Hi);
2632          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2633        } else {
2634          // Value scalarized into many values.  Unimp for now.
2635          assert(0 && "Cannot expand i64 -> i16 yet!");
2636        }
2637      } else {
2638        // Otherwise, this is a vector type.  We only support legal vectors
2639        // right now.
2640        const PackedType *PTy = cast<PackedType>(Args[i].second);
2641        unsigned NumElems = PTy->getNumElements();
2642        const Type *EltTy = PTy->getElementType();
2643
2644        // Figure out if there is a Packed type corresponding to this Vector
2645        // type.  If so, convert to the packed type.
2646        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2647        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2648          // Insert a VBIT_CONVERT of the MVT::Vector type to the packed type.
2649          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
2650          Ops.push_back(Op);
2651          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2652        } else {
2653          assert(0 && "Don't support illegal by-val vector call args yet!");
2654          abort();
2655        }
2656      }
2657      break;
2658    }
2659  }
2660
2661  // Figure out the result value types.
2662  SmallVector<MVT::ValueType, 4> RetTys;
2663
2664  if (RetTy != Type::VoidTy) {
2665    MVT::ValueType VT = getValueType(RetTy);
2666    switch (getTypeAction(VT)) {
2667    default: assert(0 && "Unknown type action!");
2668    case Legal:
2669      RetTys.push_back(VT);
2670      break;
2671    case Promote:
2672      RetTys.push_back(getTypeToTransformTo(VT));
2673      break;
2674    case Expand:
2675      if (VT != MVT::Vector) {
2676        // If this is a large integer, it needs to be reassembled from small
2677        // integers.  Figure out what the source elt type is and how many small
2678        // integers it is.
2679        MVT::ValueType NVT = getTypeToTransformTo(VT);
2680        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2681        for (unsigned i = 0; i != NumVals; ++i)
2682          RetTys.push_back(NVT);
2683      } else {
2684        // Otherwise, this is a vector type.  We only support legal vectors
2685        // right now.
2686        const PackedType *PTy = cast<PackedType>(RetTy);
2687        unsigned NumElems = PTy->getNumElements();
2688        const Type *EltTy = PTy->getElementType();
2689
2690        // Figure out if there is a Packed type corresponding to this Vector
2691        // type.  If so, convert to the packed type.
2692        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2693        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2694          RetTys.push_back(TVT);
2695        } else {
2696          assert(0 && "Don't support illegal by-val vector call results yet!");
2697          abort();
2698        }
2699      }
2700    }
2701  }
2702
2703  RetTys.push_back(MVT::Other);  // Always has a chain.
2704
2705  // Finally, create the CALL node.
2706  SDOperand Res = DAG.getNode(ISD::CALL,
2707                              DAG.getVTList(&RetTys[0], RetTys.size()),
2708                              &Ops[0], Ops.size());
2709
2710  // This returns a pair of operands.  The first element is the
2711  // return value for the function (if RetTy is not VoidTy).  The second
2712  // element is the outgoing token chain.
2713  SDOperand ResVal;
2714  if (RetTys.size() != 1) {
2715    MVT::ValueType VT = getValueType(RetTy);
2716    if (RetTys.size() == 2) {
2717      ResVal = Res;
2718
2719      // If this value was promoted, truncate it down.
2720      if (ResVal.getValueType() != VT) {
2721        if (VT == MVT::Vector) {
2722          // Insert a VBITCONVERT to convert from the packed result type to the
2723          // MVT::Vector type.
2724          unsigned NumElems = cast<PackedType>(RetTy)->getNumElements();
2725          const Type *EltTy = cast<PackedType>(RetTy)->getElementType();
2726
2727          // Figure out if there is a Packed type corresponding to this Vector
2728          // type.  If so, convert to the packed type.
2729          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2730          if (TVT != MVT::Other && isTypeLegal(TVT)) {
2731            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
2732            // "N x PTyElementVT" MVT::Vector type.
2733            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
2734                                 DAG.getConstant(NumElems, MVT::i32),
2735                                 DAG.getValueType(getValueType(EltTy)));
2736          } else {
2737            abort();
2738          }
2739        } else if (MVT::isInteger(VT)) {
2740          unsigned AssertOp = RetTy->isSigned() ?
2741                                  ISD::AssertSext : ISD::AssertZext;
2742          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
2743                               DAG.getValueType(VT));
2744          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
2745        } else {
2746          assert(MVT::isFloatingPoint(VT));
2747          ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
2748        }
2749      }
2750    } else if (RetTys.size() == 3) {
2751      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
2752                           Res.getValue(0), Res.getValue(1));
2753
2754    } else {
2755      assert(0 && "Case not handled yet!");
2756    }
2757  }
2758
2759  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
2760}
2761
2762
2763
2764// It is always conservatively correct for llvm.returnaddress and
2765// llvm.frameaddress to return 0.
2766//
2767// FIXME: Change this to insert a FRAMEADDR/RETURNADDR node, and have that be
2768// expanded to 0 if the target wants.
2769std::pair<SDOperand, SDOperand>
2770TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
2771                                        unsigned Depth, SelectionDAG &DAG) {
2772  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
2773}
2774
2775SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2776  assert(0 && "LowerOperation not implemented for this target!");
2777  abort();
2778  return SDOperand();
2779}
2780
2781SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
2782                                                 SelectionDAG &DAG) {
2783  assert(0 && "CustomPromoteOperation not implemented for this target!");
2784  abort();
2785  return SDOperand();
2786}
2787
2788void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
2789  unsigned Depth = (unsigned)cast<ConstantInt>(I.getOperand(1))->getZExtValue();
2790  std::pair<SDOperand,SDOperand> Result =
2791    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
2792  setValue(&I, Result.first);
2793  DAG.setRoot(Result.second);
2794}
2795
2796/// getMemsetValue - Vectorized representation of the memset value
2797/// operand.
2798static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2799                                SelectionDAG &DAG) {
2800  MVT::ValueType CurVT = VT;
2801  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2802    uint64_t Val   = C->getValue() & 255;
2803    unsigned Shift = 8;
2804    while (CurVT != MVT::i8) {
2805      Val = (Val << Shift) | Val;
2806      Shift <<= 1;
2807      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2808    }
2809    return DAG.getConstant(Val, VT);
2810  } else {
2811    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2812    unsigned Shift = 8;
2813    while (CurVT != MVT::i8) {
2814      Value =
2815        DAG.getNode(ISD::OR, VT,
2816                    DAG.getNode(ISD::SHL, VT, Value,
2817                                DAG.getConstant(Shift, MVT::i8)), Value);
2818      Shift <<= 1;
2819      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2820    }
2821
2822    return Value;
2823  }
2824}
2825
2826/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2827/// used when a memcpy is turned into a memset when the source is a constant
2828/// string ptr.
2829static SDOperand getMemsetStringVal(MVT::ValueType VT,
2830                                    SelectionDAG &DAG, TargetLowering &TLI,
2831                                    std::string &Str, unsigned Offset) {
2832  MVT::ValueType CurVT = VT;
2833  uint64_t Val = 0;
2834  unsigned MSB = getSizeInBits(VT) / 8;
2835  if (TLI.isLittleEndian())
2836    Offset = Offset + MSB - 1;
2837  for (unsigned i = 0; i != MSB; ++i) {
2838    Val = (Val << 8) | Str[Offset];
2839    Offset += TLI.isLittleEndian() ? -1 : 1;
2840  }
2841  return DAG.getConstant(Val, VT);
2842}
2843
2844/// getMemBasePlusOffset - Returns base and offset node for the
2845static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2846                                      SelectionDAG &DAG, TargetLowering &TLI) {
2847  MVT::ValueType VT = Base.getValueType();
2848  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2849}
2850
2851/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2852/// to replace the memset / memcpy is below the threshold. It also returns the
2853/// types of the sequence of  memory ops to perform memset / memcpy.
2854static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2855                                     unsigned Limit, uint64_t Size,
2856                                     unsigned Align, TargetLowering &TLI) {
2857  MVT::ValueType VT;
2858
2859  if (TLI.allowsUnalignedMemoryAccesses()) {
2860    VT = MVT::i64;
2861  } else {
2862    switch (Align & 7) {
2863    case 0:
2864      VT = MVT::i64;
2865      break;
2866    case 4:
2867      VT = MVT::i32;
2868      break;
2869    case 2:
2870      VT = MVT::i16;
2871      break;
2872    default:
2873      VT = MVT::i8;
2874      break;
2875    }
2876  }
2877
2878  MVT::ValueType LVT = MVT::i64;
2879  while (!TLI.isTypeLegal(LVT))
2880    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2881  assert(MVT::isInteger(LVT));
2882
2883  if (VT > LVT)
2884    VT = LVT;
2885
2886  unsigned NumMemOps = 0;
2887  while (Size != 0) {
2888    unsigned VTSize = getSizeInBits(VT) / 8;
2889    while (VTSize > Size) {
2890      VT = (MVT::ValueType)((unsigned)VT - 1);
2891      VTSize >>= 1;
2892    }
2893    assert(MVT::isInteger(VT));
2894
2895    if (++NumMemOps > Limit)
2896      return false;
2897    MemOps.push_back(VT);
2898    Size -= VTSize;
2899  }
2900
2901  return true;
2902}
2903
2904void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
2905  SDOperand Op1 = getValue(I.getOperand(1));
2906  SDOperand Op2 = getValue(I.getOperand(2));
2907  SDOperand Op3 = getValue(I.getOperand(3));
2908  SDOperand Op4 = getValue(I.getOperand(4));
2909  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
2910  if (Align == 0) Align = 1;
2911
2912  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
2913    std::vector<MVT::ValueType> MemOps;
2914
2915    // Expand memset / memcpy to a series of load / store ops
2916    // if the size operand falls below a certain threshold.
2917    SmallVector<SDOperand, 8> OutChains;
2918    switch (Op) {
2919    default: break;  // Do nothing for now.
2920    case ISD::MEMSET: {
2921      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2922                                   Size->getValue(), Align, TLI)) {
2923        unsigned NumMemOps = MemOps.size();
2924        unsigned Offset = 0;
2925        for (unsigned i = 0; i < NumMemOps; i++) {
2926          MVT::ValueType VT = MemOps[i];
2927          unsigned VTSize = getSizeInBits(VT) / 8;
2928          SDOperand Value = getMemsetValue(Op2, VT, DAG);
2929          SDOperand Store = DAG.getStore(getRoot(), Value,
2930                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
2931                                         I.getOperand(1), Offset);
2932          OutChains.push_back(Store);
2933          Offset += VTSize;
2934        }
2935      }
2936      break;
2937    }
2938    case ISD::MEMCPY: {
2939      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
2940                                   Size->getValue(), Align, TLI)) {
2941        unsigned NumMemOps = MemOps.size();
2942        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
2943        GlobalAddressSDNode *G = NULL;
2944        std::string Str;
2945        bool CopyFromStr = false;
2946
2947        if (Op2.getOpcode() == ISD::GlobalAddress)
2948          G = cast<GlobalAddressSDNode>(Op2);
2949        else if (Op2.getOpcode() == ISD::ADD &&
2950                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2951                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
2952          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
2953          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
2954        }
2955        if (G) {
2956          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2957          if (GV) {
2958            Str = GV->getStringValue(false);
2959            if (!Str.empty()) {
2960              CopyFromStr = true;
2961              SrcOff += SrcDelta;
2962            }
2963          }
2964        }
2965
2966        for (unsigned i = 0; i < NumMemOps; i++) {
2967          MVT::ValueType VT = MemOps[i];
2968          unsigned VTSize = getSizeInBits(VT) / 8;
2969          SDOperand Value, Chain, Store;
2970
2971          if (CopyFromStr) {
2972            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2973            Chain = getRoot();
2974            Store =
2975              DAG.getStore(Chain, Value,
2976                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2977                           I.getOperand(1), DstOff);
2978          } else {
2979            Value = DAG.getLoad(VT, getRoot(),
2980                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
2981                        I.getOperand(2), SrcOff);
2982            Chain = Value.getValue(1);
2983            Store =
2984              DAG.getStore(Chain, Value,
2985                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2986                           I.getOperand(1), DstOff);
2987          }
2988          OutChains.push_back(Store);
2989          SrcOff += VTSize;
2990          DstOff += VTSize;
2991        }
2992      }
2993      break;
2994    }
2995    }
2996
2997    if (!OutChains.empty()) {
2998      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
2999                  &OutChains[0], OutChains.size()));
3000      return;
3001    }
3002  }
3003
3004  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
3005}
3006
3007//===----------------------------------------------------------------------===//
3008// SelectionDAGISel code
3009//===----------------------------------------------------------------------===//
3010
3011unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
3012  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
3013}
3014
3015void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
3016  // FIXME: we only modify the CFG to split critical edges.  This
3017  // updates dom and loop info.
3018  AU.addRequired<AliasAnalysis>();
3019}
3020
3021
3022/// OptimizeNoopCopyExpression - We have determined that the specified cast
3023/// instruction is a noop copy (e.g. it's casting from one pointer type to
3024/// another, int->uint, or int->sbyte on PPC.
3025///
3026/// Return true if any changes are made.
3027static bool OptimizeNoopCopyExpression(CastInst *CI) {
3028  BasicBlock *DefBB = CI->getParent();
3029
3030  /// InsertedCasts - Only insert a cast in each block once.
3031  std::map<BasicBlock*, CastInst*> InsertedCasts;
3032
3033  bool MadeChange = false;
3034  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
3035       UI != E; ) {
3036    Use &TheUse = UI.getUse();
3037    Instruction *User = cast<Instruction>(*UI);
3038
3039    // Figure out which BB this cast is used in.  For PHI's this is the
3040    // appropriate predecessor block.
3041    BasicBlock *UserBB = User->getParent();
3042    if (PHINode *PN = dyn_cast<PHINode>(User)) {
3043      unsigned OpVal = UI.getOperandNo()/2;
3044      UserBB = PN->getIncomingBlock(OpVal);
3045    }
3046
3047    // Preincrement use iterator so we don't invalidate it.
3048    ++UI;
3049
3050    // If this user is in the same block as the cast, don't change the cast.
3051    if (UserBB == DefBB) continue;
3052
3053    // If we have already inserted a cast into this block, use it.
3054    CastInst *&InsertedCast = InsertedCasts[UserBB];
3055
3056    if (!InsertedCast) {
3057      BasicBlock::iterator InsertPt = UserBB->begin();
3058      while (isa<PHINode>(InsertPt)) ++InsertPt;
3059
3060      InsertedCast =
3061        new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
3062      MadeChange = true;
3063    }
3064
3065    // Replace a use of the cast with a use of the new casat.
3066    TheUse = InsertedCast;
3067  }
3068
3069  // If we removed all uses, nuke the cast.
3070  if (CI->use_empty())
3071    CI->eraseFromParent();
3072
3073  return MadeChange;
3074}
3075
3076/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
3077/// casting to the type of GEPI.
3078static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
3079                                         Instruction *GEPI, Value *Ptr,
3080                                         Value *PtrOffset) {
3081  if (V) return V;   // Already computed.
3082
3083  BasicBlock::iterator InsertPt;
3084  if (BB == GEPI->getParent()) {
3085    // If insert into the GEP's block, insert right after the GEP.
3086    InsertPt = GEPI;
3087    ++InsertPt;
3088  } else {
3089    // Otherwise, insert at the top of BB, after any PHI nodes
3090    InsertPt = BB->begin();
3091    while (isa<PHINode>(InsertPt)) ++InsertPt;
3092  }
3093
3094  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
3095  // BB so that there is only one value live across basic blocks (the cast
3096  // operand).
3097  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
3098    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
3099      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
3100
3101  // Add the offset, cast it to the right type.
3102  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
3103  return V = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
3104}
3105
3106/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
3107/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
3108/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
3109/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
3110/// sink PtrOffset into user blocks where doing so will likely allow us to fold
3111/// the constant add into a load or store instruction.  Additionally, if a user
3112/// is a pointer-pointer cast, we look through it to find its users.
3113static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
3114                                 Constant *PtrOffset, BasicBlock *DefBB,
3115                                 GetElementPtrInst *GEPI,
3116                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
3117  while (!RepPtr->use_empty()) {
3118    Instruction *User = cast<Instruction>(RepPtr->use_back());
3119
3120    // If the user is a Pointer-Pointer cast, recurse.
3121    if (isa<CastInst>(User) && isa<PointerType>(User->getType())) {
3122      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3123
3124      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
3125      // could invalidate an iterator.
3126      User->setOperand(0, UndefValue::get(RepPtr->getType()));
3127      continue;
3128    }
3129
3130    // If this is a load of the pointer, or a store through the pointer, emit
3131    // the increment into the load/store block.
3132    Instruction *NewVal;
3133    if (isa<LoadInst>(User) ||
3134        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
3135      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
3136                                    User->getParent(), GEPI,
3137                                    Ptr, PtrOffset);
3138    } else {
3139      // If this use is not foldable into the addressing mode, use a version
3140      // emitted in the GEP block.
3141      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
3142                                    Ptr, PtrOffset);
3143    }
3144
3145    if (GEPI->getType() != RepPtr->getType()) {
3146      BasicBlock::iterator IP = NewVal;
3147      ++IP;
3148      NewVal = new CastInst(NewVal, RepPtr->getType(), "", IP);
3149    }
3150    User->replaceUsesOfWith(RepPtr, NewVal);
3151  }
3152}
3153
3154
3155/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
3156/// selection, we want to be a bit careful about some things.  In particular, if
3157/// we have a GEP instruction that is used in a different block than it is
3158/// defined, the addressing expression of the GEP cannot be folded into loads or
3159/// stores that use it.  In this case, decompose the GEP and move constant
3160/// indices into blocks that use it.
3161static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
3162                                  const TargetData *TD) {
3163  // If this GEP is only used inside the block it is defined in, there is no
3164  // need to rewrite it.
3165  bool isUsedOutsideDefBB = false;
3166  BasicBlock *DefBB = GEPI->getParent();
3167  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
3168       UI != E; ++UI) {
3169    if (cast<Instruction>(*UI)->getParent() != DefBB) {
3170      isUsedOutsideDefBB = true;
3171      break;
3172    }
3173  }
3174  if (!isUsedOutsideDefBB) return false;
3175
3176  // If this GEP has no non-zero constant indices, there is nothing we can do,
3177  // ignore it.
3178  bool hasConstantIndex = false;
3179  bool hasVariableIndex = false;
3180  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3181       E = GEPI->op_end(); OI != E; ++OI) {
3182    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
3183      if (CI->getZExtValue()) {
3184        hasConstantIndex = true;
3185        break;
3186      }
3187    } else {
3188      hasVariableIndex = true;
3189    }
3190  }
3191
3192  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
3193  if (!hasConstantIndex && !hasVariableIndex) {
3194    Value *NC = new CastInst(GEPI->getOperand(0), GEPI->getType(),
3195                             GEPI->getName(), GEPI);
3196    GEPI->replaceAllUsesWith(NC);
3197    GEPI->eraseFromParent();
3198    return true;
3199  }
3200
3201  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
3202  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
3203    return false;
3204
3205  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
3206  // constant offset (which we now know is non-zero) and deal with it later.
3207  uint64_t ConstantOffset = 0;
3208  const Type *UIntPtrTy = TD->getIntPtrType();
3209  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
3210  const Type *Ty = GEPI->getOperand(0)->getType();
3211
3212  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3213       E = GEPI->op_end(); OI != E; ++OI) {
3214    Value *Idx = *OI;
3215    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
3216      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3217      if (Field)
3218        ConstantOffset += TD->getStructLayout(StTy)->MemberOffsets[Field];
3219      Ty = StTy->getElementType(Field);
3220    } else {
3221      Ty = cast<SequentialType>(Ty)->getElementType();
3222
3223      // Handle constant subscripts.
3224      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3225        if (CI->getZExtValue() == 0) continue;
3226        if (CI->getType()->isSigned())
3227          ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CI->getSExtValue();
3228        else
3229          ConstantOffset += TD->getTypeSize(Ty)*CI->getZExtValue();
3230        continue;
3231      }
3232
3233      // Ptr = Ptr + Idx * ElementSize;
3234
3235      // Cast Idx to UIntPtrTy if needed.
3236      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
3237
3238      uint64_t ElementSize = TD->getTypeSize(Ty);
3239      // Mask off bits that should not be set.
3240      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3241      Constant *SizeCst = ConstantInt::get(UIntPtrTy, ElementSize);
3242
3243      // Multiply by the element size and add to the base.
3244      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
3245      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
3246    }
3247  }
3248
3249  // Make sure that the offset fits in uintptr_t.
3250  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3251  Constant *PtrOffset = ConstantInt::get(UIntPtrTy, ConstantOffset);
3252
3253  // Okay, we have now emitted all of the variable index parts to the BB that
3254  // the GEP is defined in.  Loop over all of the using instructions, inserting
3255  // an "add Ptr, ConstantOffset" into each block that uses it and update the
3256  // instruction to use the newly computed value, making GEPI dead.  When the
3257  // user is a load or store instruction address, we emit the add into the user
3258  // block, otherwise we use a canonical version right next to the gep (these
3259  // won't be foldable as addresses, so we might as well share the computation).
3260
3261  std::map<BasicBlock*,Instruction*> InsertedExprs;
3262  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3263
3264  // Finally, the GEP is dead, remove it.
3265  GEPI->eraseFromParent();
3266
3267  return true;
3268}
3269
3270/// SplitCritEdgesForPHIConstants - If this block has any PHI nodes with
3271/// constant operands, and if any of the edges feeding the PHI node are
3272/// critical, split them so that the assignments of a constant to a register
3273/// will not be executed on a path that isn't relevant.
3274void SelectionDAGISel::SplitCritEdgesForPHIConstants(BasicBlock *BB) {
3275  // The most common case is that this is a PHI node with two incoming
3276  // successors handle this case efficiently, because it is simple.
3277  PHINode *PN = cast<PHINode>(BB->begin());
3278  if (PN->getNumIncomingValues() == 2) {
3279    // If neither edge is critical, we never need to split.
3280    if (PN->getIncomingBlock(0)->getTerminator()->getNumSuccessors() == 1 &&
3281        PN->getIncomingBlock(1)->getTerminator()->getNumSuccessors() == 1)
3282      return;
3283
3284    BasicBlock::iterator BBI = BB->begin();
3285    while ((PN = dyn_cast<PHINode>(BBI++))) {
3286      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3287        if (isa<Constant>(PN->getIncomingValue(i)))
3288          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
3289    }
3290    return;
3291  }
3292
3293  // Otherwise, things are a bit trickier.
3294
3295  // BE SMART HERE.
3296
3297  BasicBlock::iterator BBI = BB->begin();
3298  while ((PN = dyn_cast<PHINode>(BBI++))) {
3299    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3300      if (isa<Constant>(PN->getIncomingValue(i)))
3301        SplitCriticalEdge(PN->getIncomingBlock(i), BB);
3302  }
3303}
3304
3305
3306bool SelectionDAGISel::runOnFunction(Function &Fn) {
3307  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
3308  RegMap = MF.getSSARegMap();
3309  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
3310
3311  // First, split all critical edges for PHI nodes with incoming values that are
3312  // constants, this way the load of the constant into a vreg will not be placed
3313  // into MBBs that are used some other way.
3314  //
3315  // In this pass we also look for GEP and cast instructions that are used
3316  // across basic blocks and rewrite them to improve basic-block-at-a-time
3317  // selection.
3318  //
3319  //
3320  bool MadeChange = true;
3321  while (MadeChange) {
3322    MadeChange = false;
3323  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
3324    // If this block has any PHI nodes with constant operands, and if any of the
3325    // edges feeding the PHI node are critical, split them.
3326    if (isa<PHINode>(BB->begin()))
3327      SplitCritEdgesForPHIConstants(BB);
3328
3329    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3330      Instruction *I = BBI++;
3331      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
3332        MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
3333      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
3334        // If the source of the cast is a constant, then this should have
3335        // already been constant folded.  The only reason NOT to constant fold
3336        // it is if something (e.g. LSR) was careful to place the constant
3337        // evaluation in a block other than then one that uses it (e.g. to hoist
3338        // the address of globals out of a loop).  If this is the case, we don't
3339        // want to forward-subst the cast.
3340        if (isa<Constant>(CI->getOperand(0)))
3341          continue;
3342
3343        // If this is a noop copy, sink it into user blocks to reduce the number
3344        // of virtual registers that must be created and coallesced.
3345        MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
3346        MVT::ValueType DstVT = TLI.getValueType(CI->getType());
3347
3348        // This is an fp<->int conversion?
3349        if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
3350          continue;
3351
3352        // If this is an extension, it will be a zero or sign extension, which
3353        // isn't a noop.
3354        if (SrcVT < DstVT) continue;
3355
3356        // If these values will be promoted, find out what they will be promoted
3357        // to.  This helps us consider truncates on PPC as noop copies when they
3358        // are.
3359        if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
3360          SrcVT = TLI.getTypeToTransformTo(SrcVT);
3361        if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
3362          DstVT = TLI.getTypeToTransformTo(DstVT);
3363
3364        // If, after promotion, these are the same types, this is a noop copy.
3365        if (SrcVT == DstVT)
3366          MadeChange |= OptimizeNoopCopyExpression(CI);
3367      }
3368    }
3369  }
3370  }
3371
3372  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
3373
3374  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
3375    SelectBasicBlock(I, MF, FuncInfo);
3376
3377  return true;
3378}
3379
3380
3381SDOperand SelectionDAGISel::
3382CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
3383  SDOperand Op = SDL.getValue(V);
3384  assert((Op.getOpcode() != ISD::CopyFromReg ||
3385          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
3386         "Copy from a reg to the same reg!");
3387
3388  // If this type is not legal, we must make sure to not create an invalid
3389  // register use.
3390  MVT::ValueType SrcVT = Op.getValueType();
3391  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
3392  SelectionDAG &DAG = SDL.DAG;
3393  if (SrcVT == DestVT) {
3394    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
3395  } else if (SrcVT == MVT::Vector) {
3396    // Handle copies from generic vectors to registers.
3397    MVT::ValueType PTyElementVT, PTyLegalElementVT;
3398    unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
3399                                             PTyElementVT, PTyLegalElementVT);
3400
3401    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
3402    // MVT::Vector type.
3403    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
3404                     DAG.getConstant(NE, MVT::i32),
3405                     DAG.getValueType(PTyElementVT));
3406
3407    // Loop over all of the elements of the resultant vector,
3408    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
3409    // copying them into output registers.
3410    SmallVector<SDOperand, 8> OutChains;
3411    SDOperand Root = SDL.getRoot();
3412    for (unsigned i = 0; i != NE; ++i) {
3413      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
3414                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
3415      if (PTyElementVT == PTyLegalElementVT) {
3416        // Elements are legal.
3417        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3418      } else if (PTyLegalElementVT > PTyElementVT) {
3419        // Elements are promoted.
3420        if (MVT::isFloatingPoint(PTyLegalElementVT))
3421          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
3422        else
3423          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
3424        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3425      } else {
3426        // Elements are expanded.
3427        // The src value is expanded into multiple registers.
3428        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3429                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
3430        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3431                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
3432        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
3433        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
3434      }
3435    }
3436    return DAG.getNode(ISD::TokenFactor, MVT::Other,
3437                       &OutChains[0], OutChains.size());
3438  } else if (SrcVT < DestVT) {
3439    // The src value is promoted to the register.
3440    if (MVT::isFloatingPoint(SrcVT))
3441      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
3442    else
3443      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
3444    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
3445  } else  {
3446    // The src value is expanded into multiple registers.
3447    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3448                               Op, DAG.getConstant(0, TLI.getPointerTy()));
3449    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3450                               Op, DAG.getConstant(1, TLI.getPointerTy()));
3451    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
3452    return DAG.getCopyToReg(Op, Reg+1, Hi);
3453  }
3454}
3455
3456void SelectionDAGISel::
3457LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
3458               std::vector<SDOperand> &UnorderedChains) {
3459  // If this is the entry block, emit arguments.
3460  Function &F = *BB->getParent();
3461  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
3462  SDOperand OldRoot = SDL.DAG.getRoot();
3463  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
3464
3465  unsigned a = 0;
3466  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
3467       AI != E; ++AI, ++a)
3468    if (!AI->use_empty()) {
3469      SDL.setValue(AI, Args[a]);
3470
3471      // If this argument is live outside of the entry block, insert a copy from
3472      // whereever we got it to the vreg that other BB's will reference it as.
3473      if (FuncInfo.ValueMap.count(AI)) {
3474        SDOperand Copy =
3475          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
3476        UnorderedChains.push_back(Copy);
3477      }
3478    }
3479
3480  // Finally, if the target has anything special to do, allow it to do so.
3481  // FIXME: this should insert code into the DAG!
3482  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
3483}
3484
3485void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
3486       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
3487                                         FunctionLoweringInfo &FuncInfo) {
3488  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
3489
3490  std::vector<SDOperand> UnorderedChains;
3491
3492  // Lower any arguments needed in this block if this is the entry block.
3493  if (LLVMBB == &LLVMBB->getParent()->front())
3494    LowerArguments(LLVMBB, SDL, UnorderedChains);
3495
3496  BB = FuncInfo.MBBMap[LLVMBB];
3497  SDL.setCurrentBasicBlock(BB);
3498
3499  // Lower all of the non-terminator instructions.
3500  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
3501       I != E; ++I)
3502    SDL.visit(*I);
3503
3504  // Ensure that all instructions which are used outside of their defining
3505  // blocks are available as virtual registers.
3506  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
3507    if (!I->use_empty() && !isa<PHINode>(I)) {
3508      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
3509      if (VMI != FuncInfo.ValueMap.end())
3510        UnorderedChains.push_back(
3511                           CopyValueToVirtualRegister(SDL, I, VMI->second));
3512    }
3513
3514  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
3515  // ensure constants are generated when needed.  Remember the virtual registers
3516  // that need to be added to the Machine PHI nodes as input.  We cannot just
3517  // directly add them, because expansion might result in multiple MBB's for one
3518  // BB.  As such, the start of the BB might correspond to a different MBB than
3519  // the end.
3520  //
3521
3522  // Emit constants only once even if used by multiple PHI nodes.
3523  std::map<Constant*, unsigned> ConstantsOut;
3524
3525  // Check successor nodes PHI nodes that expect a constant to be available from
3526  // this block.
3527  TerminatorInst *TI = LLVMBB->getTerminator();
3528  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
3529    BasicBlock *SuccBB = TI->getSuccessor(succ);
3530    if (!isa<PHINode>(SuccBB->begin())) continue;
3531
3532    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
3533    PHINode *PN;
3534
3535    // At this point we know that there is a 1-1 correspondence between LLVM PHI
3536    // nodes and Machine PHI nodes, but the incoming operands have not been
3537    // emitted yet.
3538    for (BasicBlock::iterator I = SuccBB->begin();
3539         (PN = dyn_cast<PHINode>(I)); ++I)
3540      if (!PN->use_empty()) {
3541        unsigned Reg;
3542        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
3543        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
3544          unsigned &RegOut = ConstantsOut[C];
3545          if (RegOut == 0) {
3546            RegOut = FuncInfo.CreateRegForValue(C);
3547            UnorderedChains.push_back(
3548                             CopyValueToVirtualRegister(SDL, C, RegOut));
3549          }
3550          Reg = RegOut;
3551        } else {
3552          Reg = FuncInfo.ValueMap[PHIOp];
3553          if (Reg == 0) {
3554            assert(isa<AllocaInst>(PHIOp) &&
3555                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
3556                   "Didn't codegen value into a register!??");
3557            Reg = FuncInfo.CreateRegForValue(PHIOp);
3558            UnorderedChains.push_back(
3559                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
3560          }
3561        }
3562
3563        // Remember that this register needs to added to the machine PHI node as
3564        // the input for this MBB.
3565        MVT::ValueType VT = TLI.getValueType(PN->getType());
3566        unsigned NumElements;
3567        if (VT != MVT::Vector)
3568          NumElements = TLI.getNumElements(VT);
3569        else {
3570          MVT::ValueType VT1,VT2;
3571          NumElements =
3572            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
3573                                       VT1, VT2);
3574        }
3575        for (unsigned i = 0, e = NumElements; i != e; ++i)
3576          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
3577      }
3578  }
3579  ConstantsOut.clear();
3580
3581  // Turn all of the unordered chains into one factored node.
3582  if (!UnorderedChains.empty()) {
3583    SDOperand Root = SDL.getRoot();
3584    if (Root.getOpcode() != ISD::EntryToken) {
3585      unsigned i = 0, e = UnorderedChains.size();
3586      for (; i != e; ++i) {
3587        assert(UnorderedChains[i].Val->getNumOperands() > 1);
3588        if (UnorderedChains[i].Val->getOperand(0) == Root)
3589          break;  // Don't add the root if we already indirectly depend on it.
3590      }
3591
3592      if (i == e)
3593        UnorderedChains.push_back(Root);
3594    }
3595    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3596                            &UnorderedChains[0], UnorderedChains.size()));
3597  }
3598
3599  // Lower the terminator after the copies are emitted.
3600  SDL.visit(*LLVMBB->getTerminator());
3601
3602  // Copy over any CaseBlock records that may now exist due to SwitchInst
3603  // lowering, as well as any jump table information.
3604  SwitchCases.clear();
3605  SwitchCases = SDL.SwitchCases;
3606  JT = SDL.JT;
3607
3608  // Make sure the root of the DAG is up-to-date.
3609  DAG.setRoot(SDL.getRoot());
3610}
3611
3612void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
3613  // Get alias analysis for load/store combining.
3614  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
3615
3616  // Run the DAG combiner in pre-legalize mode.
3617  DAG.Combine(false, AA);
3618
3619  DEBUG(std::cerr << "Lowered selection DAG:\n");
3620  DEBUG(DAG.dump());
3621
3622  // Second step, hack on the DAG until it only uses operations and types that
3623  // the target supports.
3624  DAG.Legalize();
3625
3626  DEBUG(std::cerr << "Legalized selection DAG:\n");
3627  DEBUG(DAG.dump());
3628
3629  // Run the DAG combiner in post-legalize mode.
3630  DAG.Combine(true, AA);
3631
3632  if (ViewISelDAGs) DAG.viewGraph();
3633
3634  // Third, instruction select all of the operations to machine code, adding the
3635  // code to the MachineBasicBlock.
3636  InstructionSelectBasicBlock(DAG);
3637
3638  DEBUG(std::cerr << "Selected machine code:\n");
3639  DEBUG(BB->dump());
3640}
3641
3642void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
3643                                        FunctionLoweringInfo &FuncInfo) {
3644  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
3645  {
3646    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3647    CurDAG = &DAG;
3648
3649    // First step, lower LLVM code to some DAG.  This DAG may use operations and
3650    // types that are not supported by the target.
3651    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
3652
3653    // Second step, emit the lowered DAG as machine code.
3654    CodeGenAndEmitDAG(DAG);
3655  }
3656
3657  // Next, now that we know what the last MBB the LLVM BB expanded is, update
3658  // PHI nodes in successors.
3659  if (SwitchCases.empty() && JT.Reg == 0) {
3660    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
3661      MachineInstr *PHI = PHINodesToUpdate[i].first;
3662      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3663             "This is not a machine PHI node that we are updating!");
3664      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
3665      PHI->addMachineBasicBlockOperand(BB);
3666    }
3667    return;
3668  }
3669
3670  // If the JumpTable record is filled in, then we need to emit a jump table.
3671  // Updating the PHI nodes is tricky in this case, since we need to determine
3672  // whether the PHI is a successor of the range check MBB or the jump table MBB
3673  if (JT.Reg) {
3674    assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
3675    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3676    CurDAG = &SDAG;
3677    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3678    MachineBasicBlock *RangeBB = BB;
3679    // Set the current basic block to the mbb we wish to insert the code into
3680    BB = JT.MBB;
3681    SDL.setCurrentBasicBlock(BB);
3682    // Emit the code
3683    SDL.visitJumpTable(JT);
3684    SDAG.setRoot(SDL.getRoot());
3685    CodeGenAndEmitDAG(SDAG);
3686    // Update PHI Nodes
3687    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
3688      MachineInstr *PHI = PHINodesToUpdate[pi].first;
3689      MachineBasicBlock *PHIBB = PHI->getParent();
3690      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3691             "This is not a machine PHI node that we are updating!");
3692      if (PHIBB == JT.Default) {
3693        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
3694        PHI->addMachineBasicBlockOperand(RangeBB);
3695      }
3696      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
3697        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
3698        PHI->addMachineBasicBlockOperand(BB);
3699      }
3700    }
3701    return;
3702  }
3703
3704  // If the switch block involved a branch to one of the actual successors, we
3705  // need to update PHI nodes in that block.
3706  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
3707    MachineInstr *PHI = PHINodesToUpdate[i].first;
3708    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3709           "This is not a machine PHI node that we are updating!");
3710    if (BB->isSuccessor(PHI->getParent())) {
3711      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
3712      PHI->addMachineBasicBlockOperand(BB);
3713    }
3714  }
3715
3716  // If we generated any switch lowering information, build and codegen any
3717  // additional DAGs necessary.
3718  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
3719    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3720    CurDAG = &SDAG;
3721    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3722
3723    // Set the current basic block to the mbb we wish to insert the code into
3724    BB = SwitchCases[i].ThisBB;
3725    SDL.setCurrentBasicBlock(BB);
3726
3727    // Emit the code
3728    SDL.visitSwitchCase(SwitchCases[i]);
3729    SDAG.setRoot(SDL.getRoot());
3730    CodeGenAndEmitDAG(SDAG);
3731
3732    // Handle any PHI nodes in successors of this chunk, as if we were coming
3733    // from the original BB before switch expansion.  Note that PHI nodes can
3734    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
3735    // handle them the right number of times.
3736    while ((BB = SwitchCases[i].LHSBB)) {  // Handle LHS and RHS.
3737      for (MachineBasicBlock::iterator Phi = BB->begin();
3738           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
3739        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
3740        for (unsigned pn = 0; ; ++pn) {
3741          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
3742          if (PHINodesToUpdate[pn].first == Phi) {
3743            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
3744            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
3745            break;
3746          }
3747        }
3748      }
3749
3750      // Don't process RHS if same block as LHS.
3751      if (BB == SwitchCases[i].RHSBB)
3752        SwitchCases[i].RHSBB = 0;
3753
3754      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
3755      SwitchCases[i].LHSBB = SwitchCases[i].RHSBB;
3756      SwitchCases[i].RHSBB = 0;
3757    }
3758    assert(SwitchCases[i].LHSBB == 0 && SwitchCases[i].RHSBB == 0);
3759  }
3760}
3761
3762
3763//===----------------------------------------------------------------------===//
3764/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
3765/// target node in the graph.
3766void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
3767  if (ViewSchedDAGs) DAG.viewGraph();
3768
3769  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
3770
3771  if (!Ctor) {
3772    Ctor = ISHeuristic;
3773    RegisterScheduler::setDefault(Ctor);
3774  }
3775
3776  ScheduleDAG *SL = Ctor(this, &DAG, BB);
3777  BB = SL->Run();
3778  delete SL;
3779}
3780
3781
3782HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
3783  return new HazardRecognizer();
3784}
3785
3786//===----------------------------------------------------------------------===//
3787// Helper functions used by the generated instruction selector.
3788//===----------------------------------------------------------------------===//
3789// Calls to these methods are generated by tblgen.
3790
3791/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
3792/// the dag combiner simplified the 255, we still want to match.  RHS is the
3793/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
3794/// specified in the .td file (e.g. 255).
3795bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
3796                                    int64_t DesiredMaskS) {
3797  uint64_t ActualMask = RHS->getValue();
3798  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
3799
3800  // If the actual mask exactly matches, success!
3801  if (ActualMask == DesiredMask)
3802    return true;
3803
3804  // If the actual AND mask is allowing unallowed bits, this doesn't match.
3805  if (ActualMask & ~DesiredMask)
3806    return false;
3807
3808  // Otherwise, the DAG Combiner may have proven that the value coming in is
3809  // either already zero or is not demanded.  Check for known zero input bits.
3810  uint64_t NeededMask = DesiredMask & ~ActualMask;
3811  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
3812    return true;
3813
3814  // TODO: check to see if missing bits are just not demanded.
3815
3816  // Otherwise, this pattern doesn't match.
3817  return false;
3818}
3819
3820/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
3821/// the dag combiner simplified the 255, we still want to match.  RHS is the
3822/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
3823/// specified in the .td file (e.g. 255).
3824bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
3825                                    int64_t DesiredMaskS) {
3826  uint64_t ActualMask = RHS->getValue();
3827  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
3828
3829  // If the actual mask exactly matches, success!
3830  if (ActualMask == DesiredMask)
3831    return true;
3832
3833  // If the actual AND mask is allowing unallowed bits, this doesn't match.
3834  if (ActualMask & ~DesiredMask)
3835    return false;
3836
3837  // Otherwise, the DAG Combiner may have proven that the value coming in is
3838  // either already zero or is not demanded.  Check for known zero input bits.
3839  uint64_t NeededMask = DesiredMask & ~ActualMask;
3840
3841  uint64_t KnownZero, KnownOne;
3842  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
3843
3844  // If all the missing bits in the or are already known to be set, match!
3845  if ((NeededMask & KnownOne) == NeededMask)
3846    return true;
3847
3848  // TODO: check to see if missing bits are just not demanded.
3849
3850  // Otherwise, this pattern doesn't match.
3851  return false;
3852}
3853
3854
3855/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
3856/// by tblgen.  Others should not call it.
3857void SelectionDAGISel::
3858SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
3859  std::vector<SDOperand> InOps;
3860  std::swap(InOps, Ops);
3861
3862  Ops.push_back(InOps[0]);  // input chain.
3863  Ops.push_back(InOps[1]);  // input asm string.
3864
3865  unsigned i = 2, e = InOps.size();
3866  if (InOps[e-1].getValueType() == MVT::Flag)
3867    --e;  // Don't process a flag operand if it is here.
3868
3869  while (i != e) {
3870    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
3871    if ((Flags & 7) != 4 /*MEM*/) {
3872      // Just skip over this operand, copying the operands verbatim.
3873      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
3874      i += (Flags >> 3) + 1;
3875    } else {
3876      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
3877      // Otherwise, this is a memory operand.  Ask the target to select it.
3878      std::vector<SDOperand> SelOps;
3879      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
3880        std::cerr << "Could not match memory address.  Inline asm failure!\n";
3881        exit(1);
3882      }
3883
3884      // Add this to the output node.
3885      Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
3886      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
3887      i += 2;
3888    }
3889  }
3890
3891  // Add the flag input back if present.
3892  if (e != InOps.size())
3893    Ops.push_back(InOps.back());
3894}
3895