SelectionDAGISel.cpp revision 7cf7e3f33f25544d08492d47cc8a1cbba25dc8d7
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Function.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/SelectionDAG.h"
26#include "llvm/CodeGen/SSARegMap.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetFrameInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include <map>
35#include <iostream>
36using namespace llvm;
37
38#ifndef _NDEBUG
39static cl::opt<bool>
40ViewDAGs("view-isel-dags", cl::Hidden,
41         cl::desc("Pop up a window to show isel dags as they are selected"));
42#else
43static const bool ViewDAGS = 0;
44#endif
45
46namespace llvm {
47  //===--------------------------------------------------------------------===//
48  /// FunctionLoweringInfo - This contains information that is global to a
49  /// function that is used when lowering a region of the function.
50  class FunctionLoweringInfo {
51  public:
52    TargetLowering &TLI;
53    Function &Fn;
54    MachineFunction &MF;
55    SSARegMap *RegMap;
56
57    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
58
59    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
60    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
61
62    /// ValueMap - Since we emit code for the function a basic block at a time,
63    /// we must remember which virtual registers hold the values for
64    /// cross-basic-block values.
65    std::map<const Value*, unsigned> ValueMap;
66
67    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
68    /// the entry block.  This allows the allocas to be efficiently referenced
69    /// anywhere in the function.
70    std::map<const AllocaInst*, int> StaticAllocaMap;
71
72    /// BlockLocalArguments - If any arguments are only used in a single basic
73    /// block, and if the target can access the arguments without side-effects,
74    /// avoid emitting CopyToReg nodes for those arguments.  This map keeps
75    /// track of which arguments are local to each BB.
76    std::multimap<BasicBlock*, std::pair<Argument*,
77                                         unsigned> > BlockLocalArguments;
78
79
80    unsigned MakeReg(MVT::ValueType VT) {
81      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
82    }
83
84    unsigned CreateRegForValue(const Value *V) {
85      MVT::ValueType VT = TLI.getValueType(V->getType());
86      // The common case is that we will only create one register for this
87      // value.  If we have that case, create and return the virtual register.
88      unsigned NV = TLI.getNumElements(VT);
89      if (NV == 1) {
90        // If we are promoting this value, pick the next largest supported type.
91        return MakeReg(TLI.getTypeToTransformTo(VT));
92      }
93
94      // If this value is represented with multiple target registers, make sure
95      // to create enough consequtive registers of the right (smaller) type.
96      unsigned NT = VT-1;  // Find the type to use.
97      while (TLI.getNumElements((MVT::ValueType)NT) != 1)
98        --NT;
99
100      unsigned R = MakeReg((MVT::ValueType)NT);
101      for (unsigned i = 1; i != NV; ++i)
102        MakeReg((MVT::ValueType)NT);
103      return R;
104    }
105
106    unsigned InitializeRegForValue(const Value *V) {
107      unsigned &R = ValueMap[V];
108      assert(R == 0 && "Already initialized this value register!");
109      return R = CreateRegForValue(V);
110    }
111  };
112}
113
114/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
115/// PHI nodes or outside of the basic block that defines it.
116static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
117  if (isa<PHINode>(I)) return true;
118  BasicBlock *BB = I->getParent();
119  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
120    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
121      return true;
122  return false;
123}
124
125FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
126                                           Function &fn, MachineFunction &mf)
127    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
128
129  // Initialize the mapping of values to registers.  This is only set up for
130  // instruction values that are used outside of the block that defines
131  // them.
132  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
133       AI != E; ++AI)
134    InitializeRegForValue(AI);
135
136  Function::iterator BB = Fn.begin(), E = Fn.end();
137  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
138    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
139      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
140        const Type *Ty = AI->getAllocatedType();
141        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
142        unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
143
144        // If the alignment of the value is smaller than the size of the value,
145        // and if the size of the value is particularly small (<= 8 bytes),
146        // round up to the size of the value for potentially better performance.
147        //
148        // FIXME: This could be made better with a preferred alignment hook in
149        // TargetData.  It serves primarily to 8-byte align doubles for X86.
150        if (Align < TySize && TySize <= 8) Align = TySize;
151
152        TySize *= CUI->getValue();   // Get total allocated size.
153        StaticAllocaMap[AI] =
154          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
155      }
156
157  for (; BB != E; ++BB)
158    for (BasicBlock::iterator I = BB->begin(), e = BB->end(); I != e; ++I)
159      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
160        if (!isa<AllocaInst>(I) ||
161            !StaticAllocaMap.count(cast<AllocaInst>(I)))
162          InitializeRegForValue(I);
163
164  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
165  // also creates the initial PHI MachineInstrs, though none of the input
166  // operands are populated.
167  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
168    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
169    MBBMap[BB] = MBB;
170    MF.getBasicBlockList().push_back(MBB);
171
172    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
173    // appropriate.
174    PHINode *PN;
175    for (BasicBlock::iterator I = BB->begin();
176         (PN = dyn_cast<PHINode>(I)); ++I)
177      if (!PN->use_empty()) {
178        unsigned NumElements =
179          TLI.getNumElements(TLI.getValueType(PN->getType()));
180        unsigned PHIReg = ValueMap[PN];
181        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
182        for (unsigned i = 0; i != NumElements; ++i)
183          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
184      }
185  }
186}
187
188
189
190//===----------------------------------------------------------------------===//
191/// SelectionDAGLowering - This is the common target-independent lowering
192/// implementation that is parameterized by a TargetLowering object.
193/// Also, targets can overload any lowering method.
194///
195namespace llvm {
196class SelectionDAGLowering {
197  MachineBasicBlock *CurMBB;
198
199  std::map<const Value*, SDOperand> NodeMap;
200
201  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
202  /// them up and then emit token factor nodes when possible.  This allows us to
203  /// get simple disambiguation between loads without worrying about alias
204  /// analysis.
205  std::vector<SDOperand> PendingLoads;
206
207public:
208  // TLI - This is information that describes the available target features we
209  // need for lowering.  This indicates when operations are unavailable,
210  // implemented with a libcall, etc.
211  TargetLowering &TLI;
212  SelectionDAG &DAG;
213  const TargetData &TD;
214
215  /// FuncInfo - Information about the function as a whole.
216  ///
217  FunctionLoweringInfo &FuncInfo;
218
219  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
220                       FunctionLoweringInfo &funcinfo)
221    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
222      FuncInfo(funcinfo) {
223  }
224
225  /// getRoot - Return the current virtual root of the Selection DAG.
226  ///
227  SDOperand getRoot() {
228    if (PendingLoads.empty())
229      return DAG.getRoot();
230
231    if (PendingLoads.size() == 1) {
232      SDOperand Root = PendingLoads[0];
233      DAG.setRoot(Root);
234      PendingLoads.clear();
235      return Root;
236    }
237
238    // Otherwise, we have to make a token factor node.
239    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
240    PendingLoads.clear();
241    DAG.setRoot(Root);
242    return Root;
243  }
244
245  void visit(Instruction &I) { visit(I.getOpcode(), I); }
246
247  void visit(unsigned Opcode, User &I) {
248    switch (Opcode) {
249    default: assert(0 && "Unknown instruction type encountered!");
250             abort();
251      // Build the switch statement using the Instruction.def file.
252#define HANDLE_INST(NUM, OPCODE, CLASS) \
253    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
254#include "llvm/Instruction.def"
255    }
256  }
257
258  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
259
260
261  SDOperand getIntPtrConstant(uint64_t Val) {
262    return DAG.getConstant(Val, TLI.getPointerTy());
263  }
264
265  SDOperand getValue(const Value *V) {
266    SDOperand &N = NodeMap[V];
267    if (N.Val) return N;
268
269    MVT::ValueType VT = TLI.getValueType(V->getType());
270    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
271      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
272        visit(CE->getOpcode(), *CE);
273        assert(N.Val && "visit didn't populate the ValueMap!");
274        return N;
275      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
276        return N = DAG.getGlobalAddress(GV, VT);
277      } else if (isa<ConstantPointerNull>(C)) {
278        return N = DAG.getConstant(0, TLI.getPointerTy());
279      } else if (isa<UndefValue>(C)) {
280        return N = DAG.getNode(ISD::UNDEF, VT);
281      } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
282        return N = DAG.getConstantFP(CFP->getValue(), VT);
283      } else {
284        // Canonicalize all constant ints to be unsigned.
285        return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
286      }
287
288    if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
289      std::map<const AllocaInst*, int>::iterator SI =
290        FuncInfo.StaticAllocaMap.find(AI);
291      if (SI != FuncInfo.StaticAllocaMap.end())
292        return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
293    }
294
295    std::map<const Value*, unsigned>::const_iterator VMI =
296      FuncInfo.ValueMap.find(V);
297    assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
298
299    return N = DAG.getCopyFromReg(VMI->second, VT, DAG.getEntryNode());
300  }
301
302  const SDOperand &setValue(const Value *V, SDOperand NewN) {
303    SDOperand &N = NodeMap[V];
304    assert(N.Val == 0 && "Already set a value for this node!");
305    return N = NewN;
306  }
307
308  // Terminator instructions.
309  void visitRet(ReturnInst &I);
310  void visitBr(BranchInst &I);
311  void visitUnreachable(UnreachableInst &I) { /* noop */ }
312
313  // These all get lowered before this pass.
314  void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
315  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
316  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
317
318  //
319  void visitBinary(User &I, unsigned Opcode);
320  void visitAdd(User &I) { visitBinary(I, ISD::ADD); }
321  void visitSub(User &I);
322  void visitMul(User &I) { visitBinary(I, ISD::MUL); }
323  void visitDiv(User &I) {
324    visitBinary(I, I.getType()->isUnsigned() ? ISD::UDIV : ISD::SDIV);
325  }
326  void visitRem(User &I) {
327    visitBinary(I, I.getType()->isUnsigned() ? ISD::UREM : ISD::SREM);
328  }
329  void visitAnd(User &I) { visitBinary(I, ISD::AND); }
330  void visitOr (User &I) { visitBinary(I, ISD::OR); }
331  void visitXor(User &I) { visitBinary(I, ISD::XOR); }
332  void visitShl(User &I) { visitBinary(I, ISD::SHL); }
333  void visitShr(User &I) {
334    visitBinary(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
335  }
336
337  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
338  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
339  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
340  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
341  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
342  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
343  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
344
345  void visitGetElementPtr(User &I);
346  void visitCast(User &I);
347  void visitSelect(User &I);
348  //
349
350  void visitMalloc(MallocInst &I);
351  void visitFree(FreeInst &I);
352  void visitAlloca(AllocaInst &I);
353  void visitLoad(LoadInst &I);
354  void visitStore(StoreInst &I);
355  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
356  void visitCall(CallInst &I);
357
358  void visitVAStart(CallInst &I);
359  void visitVAArg(VAArgInst &I);
360  void visitVAEnd(CallInst &I);
361  void visitVACopy(CallInst &I);
362  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
363
364  void visitMemIntrinsic(CallInst &I, unsigned Op);
365
366  void visitUserOp1(Instruction &I) {
367    assert(0 && "UserOp1 should not exist at instruction selection time!");
368    abort();
369  }
370  void visitUserOp2(Instruction &I) {
371    assert(0 && "UserOp2 should not exist at instruction selection time!");
372    abort();
373  }
374};
375} // end namespace llvm
376
377void SelectionDAGLowering::visitRet(ReturnInst &I) {
378  if (I.getNumOperands() == 0) {
379    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
380    return;
381  }
382
383  SDOperand Op1 = getValue(I.getOperand(0));
384  MVT::ValueType TmpVT;
385
386  switch (Op1.getValueType()) {
387  default: assert(0 && "Unknown value type!");
388  case MVT::i1:
389  case MVT::i8:
390  case MVT::i16:
391  case MVT::i32:
392    // If this is a machine where 32-bits is legal or expanded, promote to
393    // 32-bits, otherwise, promote to 64-bits.
394    if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
395      TmpVT = TLI.getTypeToTransformTo(MVT::i32);
396    else
397      TmpVT = MVT::i32;
398
399    // Extend integer types to result type.
400    if (I.getOperand(0)->getType()->isSigned())
401      Op1 = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, Op1);
402    else
403      Op1 = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, Op1);
404    break;
405  case MVT::f32:
406  case MVT::i64:
407  case MVT::f64:
408    break; // No extension needed!
409  }
410
411  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot(), Op1));
412}
413
414void SelectionDAGLowering::visitBr(BranchInst &I) {
415  // Update machine-CFG edges.
416  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
417
418  // Figure out which block is immediately after the current one.
419  MachineBasicBlock *NextBlock = 0;
420  MachineFunction::iterator BBI = CurMBB;
421  if (++BBI != CurMBB->getParent()->end())
422    NextBlock = BBI;
423
424  if (I.isUnconditional()) {
425    // If this is not a fall-through branch, emit the branch.
426    if (Succ0MBB != NextBlock)
427      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
428                              DAG.getBasicBlock(Succ0MBB)));
429  } else {
430    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
431
432    SDOperand Cond = getValue(I.getCondition());
433    if (Succ1MBB == NextBlock) {
434      // If the condition is false, fall through.  This means we should branch
435      // if the condition is true to Succ #0.
436      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
437                              Cond, DAG.getBasicBlock(Succ0MBB)));
438    } else if (Succ0MBB == NextBlock) {
439      // If the condition is true, fall through.  This means we should branch if
440      // the condition is false to Succ #1.  Invert the condition first.
441      SDOperand True = DAG.getConstant(1, Cond.getValueType());
442      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
443      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
444                              Cond, DAG.getBasicBlock(Succ1MBB)));
445    } else {
446      std::vector<SDOperand> Ops;
447      Ops.push_back(getRoot());
448      Ops.push_back(Cond);
449      Ops.push_back(DAG.getBasicBlock(Succ0MBB));
450      Ops.push_back(DAG.getBasicBlock(Succ1MBB));
451      DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops));
452    }
453  }
454}
455
456void SelectionDAGLowering::visitSub(User &I) {
457  // -0.0 - X --> fneg
458  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
459    if (CFP->isExactlyValue(-0.0)) {
460      SDOperand Op2 = getValue(I.getOperand(1));
461      setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
462      return;
463    }
464
465  visitBinary(I, ISD::SUB);
466}
467
468void SelectionDAGLowering::visitBinary(User &I, unsigned Opcode) {
469  SDOperand Op1 = getValue(I.getOperand(0));
470  SDOperand Op2 = getValue(I.getOperand(1));
471
472  if (isa<ShiftInst>(I))
473    Op2 = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), Op2);
474
475  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
476}
477
478void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
479                                      ISD::CondCode UnsignedOpcode) {
480  SDOperand Op1 = getValue(I.getOperand(0));
481  SDOperand Op2 = getValue(I.getOperand(1));
482  ISD::CondCode Opcode = SignedOpcode;
483  if (I.getOperand(0)->getType()->isUnsigned())
484    Opcode = UnsignedOpcode;
485  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
486}
487
488void SelectionDAGLowering::visitSelect(User &I) {
489  SDOperand Cond     = getValue(I.getOperand(0));
490  SDOperand TrueVal  = getValue(I.getOperand(1));
491  SDOperand FalseVal = getValue(I.getOperand(2));
492  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
493                           TrueVal, FalseVal));
494}
495
496void SelectionDAGLowering::visitCast(User &I) {
497  SDOperand N = getValue(I.getOperand(0));
498  MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
499  MVT::ValueType DestTy = TLI.getValueType(I.getType());
500
501  if (N.getValueType() == DestTy) {
502    setValue(&I, N);  // noop cast.
503  } else if (DestTy == MVT::i1) {
504    // Cast to bool is a comparison against zero, not truncation to zero.
505    SDOperand Zero = isInteger(SrcTy) ? DAG.getConstant(0, N.getValueType()) :
506                                       DAG.getConstantFP(0.0, N.getValueType());
507    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
508  } else if (isInteger(SrcTy)) {
509    if (isInteger(DestTy)) {        // Int -> Int cast
510      if (DestTy < SrcTy)   // Truncating cast?
511        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
512      else if (I.getOperand(0)->getType()->isSigned())
513        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
514      else
515        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
516    } else {                        // Int -> FP cast
517      if (I.getOperand(0)->getType()->isSigned())
518        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
519      else
520        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
521    }
522  } else {
523    assert(isFloatingPoint(SrcTy) && "Unknown value type!");
524    if (isFloatingPoint(DestTy)) {  // FP -> FP cast
525      if (DestTy < SrcTy)   // Rounding cast?
526        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
527      else
528        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
529    } else {                        // FP -> Int cast.
530      if (I.getType()->isSigned())
531        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
532      else
533        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
534    }
535  }
536}
537
538void SelectionDAGLowering::visitGetElementPtr(User &I) {
539  SDOperand N = getValue(I.getOperand(0));
540  const Type *Ty = I.getOperand(0)->getType();
541  const Type *UIntPtrTy = TD.getIntPtrType();
542
543  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
544       OI != E; ++OI) {
545    Value *Idx = *OI;
546    if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
547      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
548      if (Field) {
549        // N = N + Offset
550        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
551        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
552                        getIntPtrConstant(Offset));
553      }
554      Ty = StTy->getElementType(Field);
555    } else {
556      Ty = cast<SequentialType>(Ty)->getElementType();
557      if (!isa<Constant>(Idx) || !cast<Constant>(Idx)->isNullValue()) {
558        // N = N + Idx * ElementSize;
559        uint64_t ElementSize = TD.getTypeSize(Ty);
560        SDOperand IdxN = getValue(Idx), Scale = getIntPtrConstant(ElementSize);
561
562        // If the index is smaller or larger than intptr_t, truncate or extend
563        // it.
564        if (IdxN.getValueType() < Scale.getValueType()) {
565          if (Idx->getType()->isSigned())
566            IdxN = DAG.getNode(ISD::SIGN_EXTEND, Scale.getValueType(), IdxN);
567          else
568            IdxN = DAG.getNode(ISD::ZERO_EXTEND, Scale.getValueType(), IdxN);
569        } else if (IdxN.getValueType() > Scale.getValueType())
570          IdxN = DAG.getNode(ISD::TRUNCATE, Scale.getValueType(), IdxN);
571
572        IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
573        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
574      }
575    }
576  }
577  setValue(&I, N);
578}
579
580void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
581  // If this is a fixed sized alloca in the entry block of the function,
582  // allocate it statically on the stack.
583  if (FuncInfo.StaticAllocaMap.count(&I))
584    return;   // getValue will auto-populate this.
585
586  const Type *Ty = I.getAllocatedType();
587  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
588  unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
589
590  SDOperand AllocSize = getValue(I.getArraySize());
591  MVT::ValueType IntPtr = TLI.getPointerTy();
592  if (IntPtr < AllocSize.getValueType())
593    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
594  else if (IntPtr > AllocSize.getValueType())
595    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
596
597  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
598                          getIntPtrConstant(TySize));
599
600  // Handle alignment.  If the requested alignment is less than or equal to the
601  // stack alignment, ignore it and round the size of the allocation up to the
602  // stack alignment size.  If the size is greater than the stack alignment, we
603  // note this in the DYNAMIC_STACKALLOC node.
604  unsigned StackAlign =
605    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
606  if (Align <= StackAlign) {
607    Align = 0;
608    // Add SA-1 to the size.
609    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
610                            getIntPtrConstant(StackAlign-1));
611    // Mask out the low bits for alignment purposes.
612    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
613                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
614  }
615
616  std::vector<MVT::ValueType> VTs;
617  VTs.push_back(AllocSize.getValueType());
618  VTs.push_back(MVT::Other);
619  std::vector<SDOperand> Ops;
620  Ops.push_back(getRoot());
621  Ops.push_back(AllocSize);
622  Ops.push_back(getIntPtrConstant(Align));
623  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
624  DAG.setRoot(setValue(&I, DSA).getValue(1));
625
626  // Inform the Frame Information that we have just allocated a variable-sized
627  // object.
628  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
629}
630
631
632void SelectionDAGLowering::visitLoad(LoadInst &I) {
633  SDOperand Ptr = getValue(I.getOperand(0));
634
635  SDOperand Root;
636  if (I.isVolatile())
637    Root = getRoot();
638  else {
639    // Do not serialize non-volatile loads against each other.
640    Root = DAG.getRoot();
641  }
642
643  SDOperand L = DAG.getLoad(TLI.getValueType(I.getType()), Root, Ptr,
644                            DAG.getSrcValue(I.getOperand(0)));
645  setValue(&I, L);
646
647  if (I.isVolatile())
648    DAG.setRoot(L.getValue(1));
649  else
650    PendingLoads.push_back(L.getValue(1));
651}
652
653
654void SelectionDAGLowering::visitStore(StoreInst &I) {
655  Value *SrcV = I.getOperand(0);
656  SDOperand Src = getValue(SrcV);
657  SDOperand Ptr = getValue(I.getOperand(1));
658  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
659                          DAG.getSrcValue(I.getOperand(1))));
660}
661
662void SelectionDAGLowering::visitCall(CallInst &I) {
663  const char *RenameFn = 0;
664  SDOperand Tmp;
665  if (Function *F = I.getCalledFunction())
666    if (F->isExternal())
667      switch (F->getIntrinsicID()) {
668      case 0:     // Not an LLVM intrinsic.
669        if (F->getName() == "fabs" || F->getName() == "fabsf") {
670          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
671              I.getOperand(1)->getType()->isFloatingPoint() &&
672              I.getType() == I.getOperand(1)->getType()) {
673            Tmp = getValue(I.getOperand(1));
674            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
675            return;
676          }
677        }
678        else if (F->getName() == "sin" || F->getName() == "sinf") {
679          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
680              I.getOperand(1)->getType()->isFloatingPoint() &&
681              I.getType() == I.getOperand(1)->getType()) {
682            Tmp = getValue(I.getOperand(1));
683            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
684            return;
685          }
686        }
687        else if (F->getName() == "cos" || F->getName() == "cosf") {
688          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
689              I.getOperand(1)->getType()->isFloatingPoint() &&
690              I.getType() == I.getOperand(1)->getType()) {
691            Tmp = getValue(I.getOperand(1));
692            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
693            return;
694          }
695        }
696        break;
697      case Intrinsic::vastart:  visitVAStart(I); return;
698      case Intrinsic::vaend:    visitVAEnd(I); return;
699      case Intrinsic::vacopy:   visitVACopy(I); return;
700      case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return;
701      case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return;
702
703      case Intrinsic::setjmp:  RenameFn = "setjmp"; break;
704      case Intrinsic::longjmp: RenameFn = "longjmp"; break;
705      case Intrinsic::memcpy:  visitMemIntrinsic(I, ISD::MEMCPY); return;
706      case Intrinsic::memset:  visitMemIntrinsic(I, ISD::MEMSET); return;
707      case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return;
708
709      case Intrinsic::readport:
710      case Intrinsic::readio: {
711        std::vector<MVT::ValueType> VTs;
712        VTs.push_back(TLI.getValueType(I.getType()));
713        VTs.push_back(MVT::Other);
714        std::vector<SDOperand> Ops;
715        Ops.push_back(getRoot());
716        Ops.push_back(getValue(I.getOperand(1)));
717        Tmp = DAG.getNode(F->getIntrinsicID() == Intrinsic::readport ?
718                          ISD::READPORT : ISD::READIO, VTs, Ops);
719
720        setValue(&I, Tmp);
721        DAG.setRoot(Tmp.getValue(1));
722        return;
723      }
724      case Intrinsic::writeport:
725      case Intrinsic::writeio:
726        DAG.setRoot(DAG.getNode(F->getIntrinsicID() == Intrinsic::writeport ?
727                                ISD::WRITEPORT : ISD::WRITEIO, MVT::Other,
728                                getRoot(), getValue(I.getOperand(1)),
729                                getValue(I.getOperand(2))));
730        return;
731      case Intrinsic::dbg_stoppoint:
732      case Intrinsic::dbg_region_start:
733      case Intrinsic::dbg_region_end:
734      case Intrinsic::dbg_func_start:
735      case Intrinsic::dbg_declare:
736        if (I.getType() != Type::VoidTy)
737          setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
738        return;
739
740      case Intrinsic::isunordered:
741        setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
742                                  getValue(I.getOperand(2)), ISD::SETUO));
743        return;
744
745      case Intrinsic::sqrt:
746        setValue(&I, DAG.getNode(ISD::FSQRT,
747                                 getValue(I.getOperand(1)).getValueType(),
748                                 getValue(I.getOperand(1))));
749        return;
750
751      case Intrinsic::pcmarker:
752        Tmp = getValue(I.getOperand(1));
753        DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
754        return;
755      case Intrinsic::cttz:
756        setValue(&I, DAG.getNode(ISD::CTTZ,
757                                 getValue(I.getOperand(1)).getValueType(),
758                                 getValue(I.getOperand(1))));
759        return;
760      case Intrinsic::ctlz:
761        setValue(&I, DAG.getNode(ISD::CTLZ,
762                                 getValue(I.getOperand(1)).getValueType(),
763                                 getValue(I.getOperand(1))));
764        return;
765      case Intrinsic::ctpop:
766        setValue(&I, DAG.getNode(ISD::CTPOP,
767                                 getValue(I.getOperand(1)).getValueType(),
768                                 getValue(I.getOperand(1))));
769        return;
770      default:
771        std::cerr << I;
772        assert(0 && "This intrinsic is not implemented yet!");
773        return;
774      }
775
776  SDOperand Callee;
777  if (!RenameFn)
778    Callee = getValue(I.getOperand(0));
779  else
780    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
781  std::vector<std::pair<SDOperand, const Type*> > Args;
782
783  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
784    Value *Arg = I.getOperand(i);
785    SDOperand ArgNode = getValue(Arg);
786    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
787  }
788
789  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
790  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
791
792  std::pair<SDOperand,SDOperand> Result =
793    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
794                    I.isTailCall(), Callee, Args, DAG);
795  if (I.getType() != Type::VoidTy)
796    setValue(&I, Result.first);
797  DAG.setRoot(Result.second);
798}
799
800void SelectionDAGLowering::visitMalloc(MallocInst &I) {
801  SDOperand Src = getValue(I.getOperand(0));
802
803  MVT::ValueType IntPtr = TLI.getPointerTy();
804
805  if (IntPtr < Src.getValueType())
806    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
807  else if (IntPtr > Src.getValueType())
808    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
809
810  // Scale the source by the type size.
811  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
812  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
813                    Src, getIntPtrConstant(ElementSize));
814
815  std::vector<std::pair<SDOperand, const Type*> > Args;
816  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
817
818  std::pair<SDOperand,SDOperand> Result =
819    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
820                    DAG.getExternalSymbol("malloc", IntPtr),
821                    Args, DAG);
822  setValue(&I, Result.first);  // Pointers always fit in registers
823  DAG.setRoot(Result.second);
824}
825
826void SelectionDAGLowering::visitFree(FreeInst &I) {
827  std::vector<std::pair<SDOperand, const Type*> > Args;
828  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
829                                TLI.getTargetData().getIntPtrType()));
830  MVT::ValueType IntPtr = TLI.getPointerTy();
831  std::pair<SDOperand,SDOperand> Result =
832    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
833                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
834  DAG.setRoot(Result.second);
835}
836
837SDOperand TargetLowering::LowerVAStart(SDOperand Chain,
838                                       SDOperand VAListP, Value *VAListV,
839                                       SelectionDAG &DAG) {
840  // We have no sane default behavior, just emit a useful error message and bail
841  // out.
842  std::cerr << "Variable arguments handling not implemented on this target!\n";
843  abort();
844  return SDOperand();
845}
846
847SDOperand TargetLowering::LowerVAEnd(SDOperand Chain, SDOperand LP, Value *LV,
848                                     SelectionDAG &DAG) {
849  // Default to a noop.
850  return Chain;
851}
852
853SDOperand TargetLowering::LowerVACopy(SDOperand Chain,
854                                      SDOperand SrcP, Value *SrcV,
855                                      SDOperand DestP, Value *DestV,
856                                      SelectionDAG &DAG) {
857  // Default to copying the input list.
858  SDOperand Val = DAG.getLoad(getPointerTy(), Chain,
859                              SrcP, DAG.getSrcValue(SrcV));
860  SDOperand Result = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
861                                 Val, DestP, DAG.getSrcValue(DestV));
862  return Result;
863}
864
865std::pair<SDOperand,SDOperand>
866TargetLowering::LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
867                           const Type *ArgTy, SelectionDAG &DAG) {
868  // We have no sane default behavior, just emit a useful error message and bail
869  // out.
870  std::cerr << "Variable arguments handling not implemented on this target!\n";
871  abort();
872  return std::make_pair(SDOperand(), SDOperand());
873}
874
875
876void SelectionDAGLowering::visitVAStart(CallInst &I) {
877  DAG.setRoot(TLI.LowerVAStart(getRoot(), getValue(I.getOperand(1)),
878                               I.getOperand(1), DAG));
879}
880
881void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
882  std::pair<SDOperand,SDOperand> Result =
883    TLI.LowerVAArg(getRoot(), getValue(I.getOperand(0)), I.getOperand(0),
884                   I.getType(), DAG);
885  setValue(&I, Result.first);
886  DAG.setRoot(Result.second);
887}
888
889void SelectionDAGLowering::visitVAEnd(CallInst &I) {
890  DAG.setRoot(TLI.LowerVAEnd(getRoot(), getValue(I.getOperand(1)),
891                             I.getOperand(1), DAG));
892}
893
894void SelectionDAGLowering::visitVACopy(CallInst &I) {
895  SDOperand Result =
896    TLI.LowerVACopy(getRoot(), getValue(I.getOperand(2)), I.getOperand(2),
897                    getValue(I.getOperand(1)), I.getOperand(1), DAG);
898  DAG.setRoot(Result);
899}
900
901
902// It is always conservatively correct for llvm.returnaddress and
903// llvm.frameaddress to return 0.
904std::pair<SDOperand, SDOperand>
905TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
906                                        unsigned Depth, SelectionDAG &DAG) {
907  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
908}
909
910SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
911  assert(0 && "LowerOperation not implemented for this target!");
912  abort();
913  return SDOperand();
914}
915
916void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
917  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
918  std::pair<SDOperand,SDOperand> Result =
919    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
920  setValue(&I, Result.first);
921  DAG.setRoot(Result.second);
922}
923
924void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
925  std::vector<SDOperand> Ops;
926  Ops.push_back(getRoot());
927  Ops.push_back(getValue(I.getOperand(1)));
928  Ops.push_back(getValue(I.getOperand(2)));
929  Ops.push_back(getValue(I.getOperand(3)));
930  Ops.push_back(getValue(I.getOperand(4)));
931  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
932}
933
934//===----------------------------------------------------------------------===//
935// SelectionDAGISel code
936//===----------------------------------------------------------------------===//
937
938unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
939  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
940}
941
942
943
944bool SelectionDAGISel::runOnFunction(Function &Fn) {
945  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
946  RegMap = MF.getSSARegMap();
947  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
948
949  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
950
951  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
952    SelectBasicBlock(I, MF, FuncInfo);
953
954  return true;
955}
956
957
958SDOperand SelectionDAGISel::
959CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
960  SelectionDAG &DAG = SDL.DAG;
961  SDOperand Op = SDL.getValue(V);
962  assert((Op.getOpcode() != ISD::CopyFromReg ||
963          cast<RegSDNode>(Op)->getReg() != Reg) &&
964         "Copy from a reg to the same reg!");
965  return DAG.getCopyToReg(SDL.getRoot(), Op, Reg);
966}
967
968/// IsOnlyUsedInOneBasicBlock - If the specified argument is only used in a
969/// single basic block, return that block.  Otherwise, return a null pointer.
970static BasicBlock *IsOnlyUsedInOneBasicBlock(Argument *A) {
971  if (A->use_empty()) return 0;
972  BasicBlock *BB = cast<Instruction>(A->use_back())->getParent();
973  for (Argument::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E;
974       ++UI)
975    if (isa<PHINode>(*UI) || cast<Instruction>(*UI)->getParent() != BB)
976      return 0;  // Disagreement among the users?
977
978  // Okay, there is a single BB user.  Only permit this optimization if this is
979  // the entry block, otherwise, we might sink argument loads into loops and
980  // stuff.  Later, when we have global instruction selection, this won't be an
981  // issue clearly.
982  if (BB == BB->getParent()->begin())
983    return BB;
984  return 0;
985}
986
987void SelectionDAGISel::
988LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
989               std::vector<SDOperand> &UnorderedChains) {
990  // If this is the entry block, emit arguments.
991  Function &F = *BB->getParent();
992  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
993
994  if (BB == &F.front()) {
995    SDOperand OldRoot = SDL.DAG.getRoot();
996
997    std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
998
999    // If there were side effects accessing the argument list, do not do
1000    // anything special.
1001    if (OldRoot != SDL.DAG.getRoot()) {
1002      unsigned a = 0;
1003      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1004           AI != E; ++AI,++a)
1005        if (!AI->use_empty()) {
1006          SDL.setValue(AI, Args[a]);
1007          SDOperand Copy =
1008            CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
1009          UnorderedChains.push_back(Copy);
1010        }
1011    } else {
1012      // Otherwise, if any argument is only accessed in a single basic block,
1013      // emit that argument only to that basic block.
1014      unsigned a = 0;
1015      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1016           AI != E; ++AI,++a)
1017        if (!AI->use_empty()) {
1018          if (BasicBlock *BBU = IsOnlyUsedInOneBasicBlock(AI)) {
1019            FuncInfo.BlockLocalArguments.insert(std::make_pair(BBU,
1020                                                      std::make_pair(AI, a)));
1021          } else {
1022            SDL.setValue(AI, Args[a]);
1023            SDOperand Copy =
1024              CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
1025            UnorderedChains.push_back(Copy);
1026          }
1027        }
1028    }
1029
1030    EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
1031  }
1032
1033  // See if there are any block-local arguments that need to be emitted in this
1034  // block.
1035
1036  if (!FuncInfo.BlockLocalArguments.empty()) {
1037    std::multimap<BasicBlock*, std::pair<Argument*, unsigned> >::iterator BLAI =
1038      FuncInfo.BlockLocalArguments.lower_bound(BB);
1039    if (BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB) {
1040      // Lower the arguments into this block.
1041      std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
1042
1043      // Set up the value mapping for the local arguments.
1044      for (; BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB;
1045           ++BLAI)
1046        SDL.setValue(BLAI->second.first, Args[BLAI->second.second]);
1047
1048      // Any dead arguments will just be ignored here.
1049    }
1050  }
1051}
1052
1053
1054void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
1055       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
1056                                    FunctionLoweringInfo &FuncInfo) {
1057  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
1058
1059  std::vector<SDOperand> UnorderedChains;
1060
1061  // Lower any arguments needed in this block.
1062  LowerArguments(LLVMBB, SDL, UnorderedChains);
1063
1064  BB = FuncInfo.MBBMap[LLVMBB];
1065  SDL.setCurrentBasicBlock(BB);
1066
1067  // Lower all of the non-terminator instructions.
1068  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
1069       I != E; ++I)
1070    SDL.visit(*I);
1071
1072  // Ensure that all instructions which are used outside of their defining
1073  // blocks are available as virtual registers.
1074  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
1075    if (!I->use_empty() && !isa<PHINode>(I)) {
1076      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
1077      if (VMI != FuncInfo.ValueMap.end())
1078        UnorderedChains.push_back(
1079                           CopyValueToVirtualRegister(SDL, I, VMI->second));
1080    }
1081
1082  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
1083  // ensure constants are generated when needed.  Remember the virtual registers
1084  // that need to be added to the Machine PHI nodes as input.  We cannot just
1085  // directly add them, because expansion might result in multiple MBB's for one
1086  // BB.  As such, the start of the BB might correspond to a different MBB than
1087  // the end.
1088  //
1089
1090  // Emit constants only once even if used by multiple PHI nodes.
1091  std::map<Constant*, unsigned> ConstantsOut;
1092
1093  // Check successor nodes PHI nodes that expect a constant to be available from
1094  // this block.
1095  TerminatorInst *TI = LLVMBB->getTerminator();
1096  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1097    BasicBlock *SuccBB = TI->getSuccessor(succ);
1098    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
1099    PHINode *PN;
1100
1101    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1102    // nodes and Machine PHI nodes, but the incoming operands have not been
1103    // emitted yet.
1104    for (BasicBlock::iterator I = SuccBB->begin();
1105         (PN = dyn_cast<PHINode>(I)); ++I)
1106      if (!PN->use_empty()) {
1107        unsigned Reg;
1108        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1109        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
1110          unsigned &RegOut = ConstantsOut[C];
1111          if (RegOut == 0) {
1112            RegOut = FuncInfo.CreateRegForValue(C);
1113            UnorderedChains.push_back(
1114                             CopyValueToVirtualRegister(SDL, C, RegOut));
1115          }
1116          Reg = RegOut;
1117        } else {
1118          Reg = FuncInfo.ValueMap[PHIOp];
1119          if (Reg == 0) {
1120            assert(isa<AllocaInst>(PHIOp) &&
1121                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
1122                   "Didn't codegen value into a register!??");
1123            Reg = FuncInfo.CreateRegForValue(PHIOp);
1124            UnorderedChains.push_back(
1125                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
1126          }
1127        }
1128
1129        // Remember that this register needs to added to the machine PHI node as
1130        // the input for this MBB.
1131        unsigned NumElements =
1132          TLI.getNumElements(TLI.getValueType(PN->getType()));
1133        for (unsigned i = 0, e = NumElements; i != e; ++i)
1134          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
1135      }
1136  }
1137  ConstantsOut.clear();
1138
1139  // Turn all of the unordered chains into one factored node.
1140  if (!UnorderedChains.empty()) {
1141    UnorderedChains.push_back(SDL.getRoot());
1142    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
1143  }
1144
1145  // Lower the terminator after the copies are emitted.
1146  SDL.visit(*LLVMBB->getTerminator());
1147
1148  // Make sure the root of the DAG is up-to-date.
1149  DAG.setRoot(SDL.getRoot());
1150}
1151
1152void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
1153                                        FunctionLoweringInfo &FuncInfo) {
1154  SelectionDAG DAG(TLI, MF);
1155  CurDAG = &DAG;
1156  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
1157
1158  // First step, lower LLVM code to some DAG.  This DAG may use operations and
1159  // types that are not supported by the target.
1160  BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
1161
1162  DEBUG(std::cerr << "Lowered selection DAG:\n");
1163  DEBUG(DAG.dump());
1164
1165  // Second step, hack on the DAG until it only uses operations and types that
1166  // the target supports.
1167  DAG.Legalize();
1168
1169  DEBUG(std::cerr << "Legalized selection DAG:\n");
1170  DEBUG(DAG.dump());
1171
1172  // Third, instruction select all of the operations to machine code, adding the
1173  // code to the MachineBasicBlock.
1174  InstructionSelectBasicBlock(DAG);
1175
1176  if (ViewDAGs) DAG.viewGraph();
1177
1178  DEBUG(std::cerr << "Selected machine code:\n");
1179  DEBUG(BB->dump());
1180
1181  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1182  // PHI nodes in successors.
1183  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
1184    MachineInstr *PHI = PHINodesToUpdate[i].first;
1185    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
1186           "This is not a machine PHI node that we are updating!");
1187    PHI->addRegOperand(PHINodesToUpdate[i].second);
1188    PHI->addMachineBasicBlockOperand(BB);
1189  }
1190
1191  // Finally, add the CFG edges from the last selected MBB to the successor
1192  // MBBs.
1193  TerminatorInst *TI = LLVMBB->getTerminator();
1194  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1195    MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)];
1196    BB->addSuccessor(Succ0MBB);
1197  }
1198}
1199