SelectionDAGISel.cpp revision 7d3b3e40e16069bbc07c2acb20594cfffe406572
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionAnalysis.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/CodeGen/DwarfWriter.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/Timer.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62static cl::opt<bool>
63DisableLegalizeTypes("disable-legalize-types", cl::Hidden);
64static cl::opt<bool>
65EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
66          cl::desc("Enable verbose messages in the \"fast\" "
67                   "instruction selector"));
68static cl::opt<bool>
69EnableFastISelAbort("fast-isel-abort", cl::Hidden,
70          cl::desc("Enable abort calls when \"fast\" instruction fails"));
71static cl::opt<bool>
72SchedLiveInCopies("schedule-livein-copies", cl::Hidden,
73                  cl::desc("Schedule copies of livein registers"),
74                  cl::init(false));
75
76#ifndef NDEBUG
77static cl::opt<bool>
78ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the first "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before legalize types"));
84static cl::opt<bool>
85ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
86          cl::desc("Pop up a window to show dags before legalize"));
87static cl::opt<bool>
88ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
89          cl::desc("Pop up a window to show dags before the second "
90                   "dag combine pass"));
91static cl::opt<bool>
92ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
93          cl::desc("Pop up a window to show dags before the post legalize types"
94                   " dag combine pass"));
95static cl::opt<bool>
96ViewISelDAGs("view-isel-dags", cl::Hidden,
97          cl::desc("Pop up a window to show isel dags as they are selected"));
98static cl::opt<bool>
99ViewSchedDAGs("view-sched-dags", cl::Hidden,
100          cl::desc("Pop up a window to show sched dags as they are processed"));
101static cl::opt<bool>
102ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
103      cl::desc("Pop up a window to show SUnit dags after they are processed"));
104#else
105static const bool ViewDAGCombine1 = false,
106                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
107                  ViewDAGCombine2 = false,
108                  ViewDAGCombineLT = false,
109                  ViewISelDAGs = false, ViewSchedDAGs = false,
110                  ViewSUnitDAGs = false;
111#endif
112
113//===---------------------------------------------------------------------===//
114///
115/// RegisterScheduler class - Track the registration of instruction schedulers.
116///
117//===---------------------------------------------------------------------===//
118MachinePassRegistry RegisterScheduler::Registry;
119
120//===---------------------------------------------------------------------===//
121///
122/// ISHeuristic command line option for instruction schedulers.
123///
124//===---------------------------------------------------------------------===//
125static cl::opt<RegisterScheduler::FunctionPassCtor, false,
126               RegisterPassParser<RegisterScheduler> >
127ISHeuristic("pre-RA-sched",
128            cl::init(&createDefaultScheduler),
129            cl::desc("Instruction schedulers available (before register"
130                     " allocation):"));
131
132static RegisterScheduler
133defaultListDAGScheduler("default", "Best scheduler for the target",
134                        createDefaultScheduler);
135
136namespace llvm {
137  //===--------------------------------------------------------------------===//
138  /// createDefaultScheduler - This creates an instruction scheduler appropriate
139  /// for the target.
140  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
141                                             CodeGenOpt::Level OptLevel) {
142    const TargetLowering &TLI = IS->getTargetLowering();
143
144    if (OptLevel == CodeGenOpt::None)
145      return createFastDAGScheduler(IS, OptLevel);
146    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
147      return createTDListDAGScheduler(IS, OptLevel);
148    assert(TLI.getSchedulingPreference() ==
149         TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
150    return createBURRListDAGScheduler(IS, OptLevel);
151  }
152}
153
154// EmitInstrWithCustomInserter - This method should be implemented by targets
155// that mark instructions with the 'usesCustomInserter' flag.  These
156// instructions are special in various ways, which require special support to
157// insert.  The specified MachineInstr is created but not inserted into any
158// basic blocks, and this method is called to expand it into a sequence of
159// instructions, potentially also creating new basic blocks and control flow.
160// When new basic blocks are inserted and the edges from MBB to its successors
161// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
162// DenseMap.
163MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
164                                                         MachineBasicBlock *MBB,
165                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
166#ifndef NDEBUG
167  errs() << "If a target marks an instruction with "
168          "'usesCustomInserter', it must implement "
169          "TargetLowering::EmitInstrWithCustomInserter!";
170#endif
171  llvm_unreachable(0);
172  return 0;
173}
174
175/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
176/// physical register has only a single copy use, then coalesced the copy
177/// if possible.
178static void EmitLiveInCopy(MachineBasicBlock *MBB,
179                           MachineBasicBlock::iterator &InsertPos,
180                           unsigned VirtReg, unsigned PhysReg,
181                           const TargetRegisterClass *RC,
182                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
183                           const MachineRegisterInfo &MRI,
184                           const TargetRegisterInfo &TRI,
185                           const TargetInstrInfo &TII) {
186  unsigned NumUses = 0;
187  MachineInstr *UseMI = NULL;
188  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
189         UE = MRI.use_end(); UI != UE; ++UI) {
190    UseMI = &*UI;
191    if (++NumUses > 1)
192      break;
193  }
194
195  // If the number of uses is not one, or the use is not a move instruction,
196  // don't coalesce. Also, only coalesce away a virtual register to virtual
197  // register copy.
198  bool Coalesced = false;
199  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
200  if (NumUses == 1 &&
201      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
202      TargetRegisterInfo::isVirtualRegister(DstReg)) {
203    VirtReg = DstReg;
204    Coalesced = true;
205  }
206
207  // Now find an ideal location to insert the copy.
208  MachineBasicBlock::iterator Pos = InsertPos;
209  while (Pos != MBB->begin()) {
210    MachineInstr *PrevMI = prior(Pos);
211    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
212    // copyRegToReg might emit multiple instructions to do a copy.
213    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
214    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
215      // This is what the BB looks like right now:
216      // r1024 = mov r0
217      // ...
218      // r1    = mov r1024
219      //
220      // We want to insert "r1025 = mov r1". Inserting this copy below the
221      // move to r1024 makes it impossible for that move to be coalesced.
222      //
223      // r1025 = mov r1
224      // r1024 = mov r0
225      // ...
226      // r1    = mov 1024
227      // r2    = mov 1025
228      break; // Woot! Found a good location.
229    --Pos;
230  }
231
232  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
233  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
234  (void) Emitted;
235
236  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
237  if (Coalesced) {
238    if (&*InsertPos == UseMI) ++InsertPos;
239    MBB->erase(UseMI);
240  }
241}
242
243/// EmitLiveInCopies - If this is the first basic block in the function,
244/// and if it has live ins that need to be copied into vregs, emit the
245/// copies into the block.
246static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
247                             const MachineRegisterInfo &MRI,
248                             const TargetRegisterInfo &TRI,
249                             const TargetInstrInfo &TII) {
250  if (SchedLiveInCopies) {
251    // Emit the copies at a heuristically-determined location in the block.
252    DenseMap<MachineInstr*, unsigned> CopyRegMap;
253    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
254    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
255           E = MRI.livein_end(); LI != E; ++LI)
256      if (LI->second) {
257        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
258        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
259                       RC, CopyRegMap, MRI, TRI, TII);
260      }
261  } else {
262    // Emit the copies into the top of the block.
263    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
264           E = MRI.livein_end(); LI != E; ++LI)
265      if (LI->second) {
266        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
267        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
268                                        LI->second, LI->first, RC, RC);
269        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
270        (void) Emitted;
271      }
272  }
273}
274
275//===----------------------------------------------------------------------===//
276// SelectionDAGISel code
277//===----------------------------------------------------------------------===//
278
279SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
280  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
281  FuncInfo(new FunctionLoweringInfo(TLI)),
282  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
283  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
284  GFI(),
285  OptLevel(OL),
286  DAGSize(0)
287{}
288
289SelectionDAGISel::~SelectionDAGISel() {
290  delete SDB;
291  delete CurDAG;
292  delete FuncInfo;
293}
294
295unsigned SelectionDAGISel::MakeReg(EVT VT) {
296  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
297}
298
299void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
300  AU.addRequired<AliasAnalysis>();
301  AU.addPreserved<AliasAnalysis>();
302  AU.addRequired<GCModuleInfo>();
303  AU.addPreserved<GCModuleInfo>();
304  AU.addRequired<DwarfWriter>();
305  AU.addPreserved<DwarfWriter>();
306  MachineFunctionPass::getAnalysisUsage(AU);
307}
308
309bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
310  Function &Fn = *mf.getFunction();
311
312  // Do some sanity-checking on the command-line options.
313  assert((!EnableFastISelVerbose || EnableFastISel) &&
314         "-fast-isel-verbose requires -fast-isel");
315  assert((!EnableFastISelAbort || EnableFastISel) &&
316         "-fast-isel-abort requires -fast-isel");
317
318  // Get alias analysis for load/store combining.
319  AA = &getAnalysis<AliasAnalysis>();
320
321  MF = &mf;
322  const TargetInstrInfo &TII = *TM.getInstrInfo();
323  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
324
325  if (Fn.hasGC())
326    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
327  else
328    GFI = 0;
329  RegInfo = &MF->getRegInfo();
330  DEBUG(errs() << "\n\n\n=== " << Fn.getName() << "\n");
331
332  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
333  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
334  CurDAG->init(*MF, MMI, DW);
335  FuncInfo->set(Fn, *MF, EnableFastISel);
336  SDB->init(GFI, *AA);
337
338  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
339    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
340      // Mark landing pad.
341      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
342
343  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
344
345  // If the first basic block in the function has live ins that need to be
346  // copied into vregs, emit the copies into the top of the block before
347  // emitting the code for the block.
348  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
349
350  // Add function live-ins to entry block live-in set.
351  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
352         E = RegInfo->livein_end(); I != E; ++I)
353    MF->begin()->addLiveIn(I->first);
354
355#ifndef NDEBUG
356  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
357         "Not all catch info was assigned to a landing pad!");
358#endif
359
360  FuncInfo->clear();
361
362  return true;
363}
364
365void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
366                                        BasicBlock::iterator Begin,
367                                        BasicBlock::iterator End,
368                                        bool &HadTailCall) {
369  SDB->setCurrentBasicBlock(BB);
370  MetadataContext &TheMetadata = LLVMBB->getParent()->getContext().getMetadata();
371  unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
372
373  // Lower all of the non-terminator instructions. If a call is emitted
374  // as a tail call, cease emitting nodes for this block.
375  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
376    if (MDDbgKind) {
377      // Update DebugLoc if debug information is attached with this
378      // instruction.
379      if (!isa<DbgInfoIntrinsic>(I))
380        if (MDNode *Dbg = TheMetadata.getMD(MDDbgKind, I)) {
381          DILocation DILoc(Dbg);
382          DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo());
383          SDB->setCurDebugLoc(Loc);
384          if (MF->getDefaultDebugLoc().isUnknown())
385            MF->setDefaultDebugLoc(Loc);
386        }
387    }
388    if (!isa<TerminatorInst>(I))
389      SDB->visit(*I);
390  }
391
392  if (!SDB->HasTailCall) {
393    // Ensure that all instructions which are used outside of their defining
394    // blocks are available as virtual registers.  Invoke is handled elsewhere.
395    for (BasicBlock::iterator I = Begin; I != End; ++I)
396      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
397        SDB->CopyToExportRegsIfNeeded(I);
398
399    // Handle PHI nodes in successor blocks.
400    if (End == LLVMBB->end()) {
401      HandlePHINodesInSuccessorBlocks(LLVMBB);
402
403      // Lower the terminator after the copies are emitted.
404      SDB->visit(*LLVMBB->getTerminator());
405    }
406  }
407
408  // Make sure the root of the DAG is up-to-date.
409  CurDAG->setRoot(SDB->getControlRoot());
410
411  // Final step, emit the lowered DAG as machine code.
412  CodeGenAndEmitDAG();
413  HadTailCall = SDB->HasTailCall;
414  SDB->clear();
415}
416
417void SelectionDAGISel::ComputeLiveOutVRegInfo() {
418  SmallPtrSet<SDNode*, 128> VisitedNodes;
419  SmallVector<SDNode*, 128> Worklist;
420
421  Worklist.push_back(CurDAG->getRoot().getNode());
422
423  APInt Mask;
424  APInt KnownZero;
425  APInt KnownOne;
426
427  while (!Worklist.empty()) {
428    SDNode *N = Worklist.back();
429    Worklist.pop_back();
430
431    // If we've already seen this node, ignore it.
432    if (!VisitedNodes.insert(N))
433      continue;
434
435    // Otherwise, add all chain operands to the worklist.
436    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
437      if (N->getOperand(i).getValueType() == MVT::Other)
438        Worklist.push_back(N->getOperand(i).getNode());
439
440    // If this is a CopyToReg with a vreg dest, process it.
441    if (N->getOpcode() != ISD::CopyToReg)
442      continue;
443
444    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
445    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
446      continue;
447
448    // Ignore non-scalar or non-integer values.
449    SDValue Src = N->getOperand(2);
450    EVT SrcVT = Src.getValueType();
451    if (!SrcVT.isInteger() || SrcVT.isVector())
452      continue;
453
454    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
455    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
456    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
457
458    // Only install this information if it tells us something.
459    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
460      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
461      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
462        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
463      FunctionLoweringInfo::LiveOutInfo &LOI =
464        FuncInfo->LiveOutRegInfo[DestReg];
465      LOI.NumSignBits = NumSignBits;
466      LOI.KnownOne = KnownOne;
467      LOI.KnownZero = KnownZero;
468    }
469  }
470}
471
472void SelectionDAGISel::CodeGenAndEmitDAG() {
473  std::string GroupName;
474  if (TimePassesIsEnabled)
475    GroupName = "Instruction Selection and Scheduling";
476  std::string BlockName;
477  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
478      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
479      ViewSUnitDAGs)
480    BlockName = MF->getFunction()->getNameStr() + ":" +
481                BB->getBasicBlock()->getNameStr();
482
483  DEBUG(errs() << "Initial selection DAG:\n");
484  DEBUG(CurDAG->dump());
485
486  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
487
488  // Run the DAG combiner in pre-legalize mode.
489  if (TimePassesIsEnabled) {
490    NamedRegionTimer T("DAG Combining 1", GroupName);
491    CurDAG->Combine(Unrestricted, *AA, OptLevel);
492  } else {
493    CurDAG->Combine(Unrestricted, *AA, OptLevel);
494  }
495
496  DEBUG(errs() << "Optimized lowered selection DAG:\n");
497  DEBUG(CurDAG->dump());
498
499  // Second step, hack on the DAG until it only uses operations and types that
500  // the target supports.
501  if (!DisableLegalizeTypes) {
502    if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
503                                                 BlockName);
504
505    bool Changed;
506    if (TimePassesIsEnabled) {
507      NamedRegionTimer T("Type Legalization", GroupName);
508      Changed = CurDAG->LegalizeTypes();
509    } else {
510      Changed = CurDAG->LegalizeTypes();
511    }
512
513    DEBUG(errs() << "Type-legalized selection DAG:\n");
514    DEBUG(CurDAG->dump());
515
516    if (Changed) {
517      if (ViewDAGCombineLT)
518        CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
519
520      // Run the DAG combiner in post-type-legalize mode.
521      if (TimePassesIsEnabled) {
522        NamedRegionTimer T("DAG Combining after legalize types", GroupName);
523        CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
524      } else {
525        CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
526      }
527
528      DEBUG(errs() << "Optimized type-legalized selection DAG:\n");
529      DEBUG(CurDAG->dump());
530    }
531
532    if (TimePassesIsEnabled) {
533      NamedRegionTimer T("Vector Legalization", GroupName);
534      Changed = CurDAG->LegalizeVectors();
535    } else {
536      Changed = CurDAG->LegalizeVectors();
537    }
538
539    if (Changed) {
540      if (TimePassesIsEnabled) {
541        NamedRegionTimer T("Type Legalization 2", GroupName);
542        Changed = CurDAG->LegalizeTypes();
543      } else {
544        Changed = CurDAG->LegalizeTypes();
545      }
546
547      if (ViewDAGCombineLT)
548        CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
549
550      // Run the DAG combiner in post-type-legalize mode.
551      if (TimePassesIsEnabled) {
552        NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
553        CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
554      } else {
555        CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
556      }
557
558      DEBUG(errs() << "Optimized vector-legalized selection DAG:\n");
559      DEBUG(CurDAG->dump());
560    }
561  }
562
563  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
564
565  if (TimePassesIsEnabled) {
566    NamedRegionTimer T("DAG Legalization", GroupName);
567    CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
568  } else {
569    CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
570  }
571
572  DEBUG(errs() << "Legalized selection DAG:\n");
573  DEBUG(CurDAG->dump());
574
575  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
576
577  // Run the DAG combiner in post-legalize mode.
578  if (TimePassesIsEnabled) {
579    NamedRegionTimer T("DAG Combining 2", GroupName);
580    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
581  } else {
582    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
583  }
584
585  DEBUG(errs() << "Optimized legalized selection DAG:\n");
586  DEBUG(CurDAG->dump());
587
588  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
589
590  if (OptLevel != CodeGenOpt::None)
591    ComputeLiveOutVRegInfo();
592
593  // Third, instruction select all of the operations to machine code, adding the
594  // code to the MachineBasicBlock.
595  if (TimePassesIsEnabled) {
596    NamedRegionTimer T("Instruction Selection", GroupName);
597    InstructionSelect();
598  } else {
599    InstructionSelect();
600  }
601
602  DEBUG(errs() << "Selected selection DAG:\n");
603  DEBUG(CurDAG->dump());
604
605  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
606
607  // Schedule machine code.
608  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
609  if (TimePassesIsEnabled) {
610    NamedRegionTimer T("Instruction Scheduling", GroupName);
611    Scheduler->Run(CurDAG, BB, BB->end());
612  } else {
613    Scheduler->Run(CurDAG, BB, BB->end());
614  }
615
616  if (ViewSUnitDAGs) Scheduler->viewGraph();
617
618  // Emit machine code to BB.  This can change 'BB' to the last block being
619  // inserted into.
620  if (TimePassesIsEnabled) {
621    NamedRegionTimer T("Instruction Creation", GroupName);
622    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
623  } else {
624    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
625  }
626
627  // Free the scheduler state.
628  if (TimePassesIsEnabled) {
629    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
630    delete Scheduler;
631  } else {
632    delete Scheduler;
633  }
634
635  DEBUG(errs() << "Selected machine code:\n");
636  DEBUG(BB->dump());
637}
638
639void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
640                                            MachineFunction &MF,
641                                            MachineModuleInfo *MMI,
642                                            DwarfWriter *DW,
643                                            const TargetInstrInfo &TII) {
644  // Initialize the Fast-ISel state, if needed.
645  FastISel *FastIS = 0;
646  if (EnableFastISel)
647    FastIS = TLI.createFastISel(MF, MMI, DW,
648                                FuncInfo->ValueMap,
649                                FuncInfo->MBBMap,
650                                FuncInfo->StaticAllocaMap
651#ifndef NDEBUG
652                                , FuncInfo->CatchInfoLost
653#endif
654                                );
655
656  MetadataContext &TheMetadata = Fn.getContext().getMetadata();
657  unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
658
659  // Iterate over all basic blocks in the function.
660  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
661    BasicBlock *LLVMBB = &*I;
662    BB = FuncInfo->MBBMap[LLVMBB];
663
664    BasicBlock::iterator const Begin = LLVMBB->begin();
665    BasicBlock::iterator const End = LLVMBB->end();
666    BasicBlock::iterator BI = Begin;
667
668    // Lower any arguments needed in this block if this is the entry block.
669    bool SuppressFastISel = false;
670    if (LLVMBB == &Fn.getEntryBlock()) {
671      LowerArguments(LLVMBB);
672
673      // If any of the arguments has the byval attribute, forgo
674      // fast-isel in the entry block.
675      if (FastIS) {
676        unsigned j = 1;
677        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
678             I != E; ++I, ++j)
679          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
680            if (EnableFastISelVerbose || EnableFastISelAbort)
681              errs() << "FastISel skips entry block due to byval argument\n";
682            SuppressFastISel = true;
683            break;
684          }
685      }
686    }
687
688    if (MMI && BB->isLandingPad()) {
689      // Add a label to mark the beginning of the landing pad.  Deletion of the
690      // landing pad can thus be detected via the MachineModuleInfo.
691      unsigned LabelID = MMI->addLandingPad(BB);
692
693      const TargetInstrDesc &II = TII.get(TargetInstrInfo::EH_LABEL);
694      BuildMI(BB, SDB->getCurDebugLoc(), II).addImm(LabelID);
695
696      // Mark exception register as live in.
697      unsigned Reg = TLI.getExceptionAddressRegister();
698      if (Reg) BB->addLiveIn(Reg);
699
700      // Mark exception selector register as live in.
701      Reg = TLI.getExceptionSelectorRegister();
702      if (Reg) BB->addLiveIn(Reg);
703
704      // FIXME: Hack around an exception handling flaw (PR1508): the personality
705      // function and list of typeids logically belong to the invoke (or, if you
706      // like, the basic block containing the invoke), and need to be associated
707      // with it in the dwarf exception handling tables.  Currently however the
708      // information is provided by an intrinsic (eh.selector) that can be moved
709      // to unexpected places by the optimizers: if the unwind edge is critical,
710      // then breaking it can result in the intrinsics being in the successor of
711      // the landing pad, not the landing pad itself.  This results in exceptions
712      // not being caught because no typeids are associated with the invoke.
713      // This may not be the only way things can go wrong, but it is the only way
714      // we try to work around for the moment.
715      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
716
717      if (Br && Br->isUnconditional()) { // Critical edge?
718        BasicBlock::iterator I, E;
719        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
720          if (isa<EHSelectorInst>(I))
721            break;
722
723        if (I == E)
724          // No catch info found - try to extract some from the successor.
725          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
726      }
727    }
728
729    // Before doing SelectionDAG ISel, see if FastISel has been requested.
730    if (FastIS && !SuppressFastISel) {
731      // Emit code for any incoming arguments. This must happen before
732      // beginning FastISel on the entry block.
733      if (LLVMBB == &Fn.getEntryBlock()) {
734        CurDAG->setRoot(SDB->getControlRoot());
735        CodeGenAndEmitDAG();
736        SDB->clear();
737      }
738      FastIS->startNewBlock(BB);
739      // Do FastISel on as many instructions as possible.
740      for (; BI != End; ++BI) {
741        if (MDDbgKind) {
742          // Update DebugLoc if debug information is attached with this
743          // instruction.
744          if (!isa<DbgInfoIntrinsic>(BI))
745            if (MDNode *Dbg = TheMetadata.getMD(MDDbgKind, BI)) {
746              DILocation DILoc(Dbg);
747              DebugLoc Loc = ExtractDebugLocation(DILoc,
748                                                  MF.getDebugLocInfo());
749              FastIS->setCurDebugLoc(Loc);
750              if (MF.getDefaultDebugLoc().isUnknown())
751                MF.setDefaultDebugLoc(Loc);
752            }
753        }
754
755        // Just before the terminator instruction, insert instructions to
756        // feed PHI nodes in successor blocks.
757        if (isa<TerminatorInst>(BI))
758          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
759            if (EnableFastISelVerbose || EnableFastISelAbort) {
760              errs() << "FastISel miss: ";
761              BI->dump();
762            }
763            assert(!EnableFastISelAbort &&
764                   "FastISel didn't handle a PHI in a successor");
765            break;
766          }
767
768        // First try normal tablegen-generated "fast" selection.
769        if (FastIS->SelectInstruction(BI))
770          continue;
771
772        // Next, try calling the target to attempt to handle the instruction.
773        if (FastIS->TargetSelectInstruction(BI))
774          continue;
775
776        // Then handle certain instructions as single-LLVM-Instruction blocks.
777        if (isa<CallInst>(BI)) {
778          if (EnableFastISelVerbose || EnableFastISelAbort) {
779            errs() << "FastISel missed call: ";
780            BI->dump();
781          }
782
783          if (BI->getType() != Type::getVoidTy(*CurDAG->getContext())) {
784            unsigned &R = FuncInfo->ValueMap[BI];
785            if (!R)
786              R = FuncInfo->CreateRegForValue(BI);
787          }
788
789          SDB->setCurDebugLoc(FastIS->getCurDebugLoc());
790
791          bool HadTailCall = false;
792          SelectBasicBlock(LLVMBB, BI, next(BI), HadTailCall);
793
794          // If the call was emitted as a tail call, we're done with the block.
795          if (HadTailCall) {
796            BI = End;
797            break;
798          }
799
800          // If the instruction was codegen'd with multiple blocks,
801          // inform the FastISel object where to resume inserting.
802          FastIS->setCurrentBlock(BB);
803          continue;
804        }
805
806        // Otherwise, give up on FastISel for the rest of the block.
807        // For now, be a little lenient about non-branch terminators.
808        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
809          if (EnableFastISelVerbose || EnableFastISelAbort) {
810            errs() << "FastISel miss: ";
811            BI->dump();
812          }
813          if (EnableFastISelAbort)
814            // The "fast" selector couldn't handle something and bailed.
815            // For the purpose of debugging, just abort.
816            llvm_unreachable("FastISel didn't select the entire block");
817        }
818        break;
819      }
820    }
821
822    // Run SelectionDAG instruction selection on the remainder of the block
823    // not handled by FastISel. If FastISel is not run, this is the entire
824    // block.
825    if (BI != End) {
826      // If FastISel is run and it has known DebugLoc then use it.
827      if (FastIS && !FastIS->getCurDebugLoc().isUnknown())
828        SDB->setCurDebugLoc(FastIS->getCurDebugLoc());
829      bool HadTailCall;
830      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
831    }
832
833    FinishBasicBlock();
834  }
835
836  delete FastIS;
837}
838
839void
840SelectionDAGISel::FinishBasicBlock() {
841
842  DEBUG(errs() << "Target-post-processed machine code:\n");
843  DEBUG(BB->dump());
844
845  DEBUG(errs() << "Total amount of phi nodes to update: "
846               << SDB->PHINodesToUpdate.size() << "\n");
847  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
848          errs() << "Node " << i << " : ("
849                 << SDB->PHINodesToUpdate[i].first
850                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
851
852  // Next, now that we know what the last MBB the LLVM BB expanded is, update
853  // PHI nodes in successors.
854  if (SDB->SwitchCases.empty() &&
855      SDB->JTCases.empty() &&
856      SDB->BitTestCases.empty()) {
857    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
858      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
859      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
860             "This is not a machine PHI node that we are updating!");
861      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
862                                                false));
863      PHI->addOperand(MachineOperand::CreateMBB(BB));
864    }
865    SDB->PHINodesToUpdate.clear();
866    return;
867  }
868
869  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
870    // Lower header first, if it wasn't already lowered
871    if (!SDB->BitTestCases[i].Emitted) {
872      // Set the current basic block to the mbb we wish to insert the code into
873      BB = SDB->BitTestCases[i].Parent;
874      SDB->setCurrentBasicBlock(BB);
875      // Emit the code
876      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
877      CurDAG->setRoot(SDB->getRoot());
878      CodeGenAndEmitDAG();
879      SDB->clear();
880    }
881
882    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
883      // Set the current basic block to the mbb we wish to insert the code into
884      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
885      SDB->setCurrentBasicBlock(BB);
886      // Emit the code
887      if (j+1 != ej)
888        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
889                              SDB->BitTestCases[i].Reg,
890                              SDB->BitTestCases[i].Cases[j]);
891      else
892        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
893                              SDB->BitTestCases[i].Reg,
894                              SDB->BitTestCases[i].Cases[j]);
895
896
897      CurDAG->setRoot(SDB->getRoot());
898      CodeGenAndEmitDAG();
899      SDB->clear();
900    }
901
902    // Update PHI Nodes
903    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
904      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
905      MachineBasicBlock *PHIBB = PHI->getParent();
906      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
907             "This is not a machine PHI node that we are updating!");
908      // This is "default" BB. We have two jumps to it. From "header" BB and
909      // from last "case" BB.
910      if (PHIBB == SDB->BitTestCases[i].Default) {
911        PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second,
912                                                  false));
913        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
914        PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second,
915                                                  false));
916        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
917                                                  back().ThisBB));
918      }
919      // One of "cases" BB.
920      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
921           j != ej; ++j) {
922        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
923        if (cBB->succ_end() !=
924            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
925          PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second,
926                                                    false));
927          PHI->addOperand(MachineOperand::CreateMBB(cBB));
928        }
929      }
930    }
931  }
932  SDB->BitTestCases.clear();
933
934  // If the JumpTable record is filled in, then we need to emit a jump table.
935  // Updating the PHI nodes is tricky in this case, since we need to determine
936  // whether the PHI is a successor of the range check MBB or the jump table MBB
937  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
938    // Lower header first, if it wasn't already lowered
939    if (!SDB->JTCases[i].first.Emitted) {
940      // Set the current basic block to the mbb we wish to insert the code into
941      BB = SDB->JTCases[i].first.HeaderBB;
942      SDB->setCurrentBasicBlock(BB);
943      // Emit the code
944      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
945      CurDAG->setRoot(SDB->getRoot());
946      CodeGenAndEmitDAG();
947      SDB->clear();
948    }
949
950    // Set the current basic block to the mbb we wish to insert the code into
951    BB = SDB->JTCases[i].second.MBB;
952    SDB->setCurrentBasicBlock(BB);
953    // Emit the code
954    SDB->visitJumpTable(SDB->JTCases[i].second);
955    CurDAG->setRoot(SDB->getRoot());
956    CodeGenAndEmitDAG();
957    SDB->clear();
958
959    // Update PHI Nodes
960    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
961      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
962      MachineBasicBlock *PHIBB = PHI->getParent();
963      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
964             "This is not a machine PHI node that we are updating!");
965      // "default" BB. We can go there only from header BB.
966      if (PHIBB == SDB->JTCases[i].second.Default) {
967        PHI->addOperand
968          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
969        PHI->addOperand
970          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
971      }
972      // JT BB. Just iterate over successors here
973      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
974        PHI->addOperand
975          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
976        PHI->addOperand(MachineOperand::CreateMBB(BB));
977      }
978    }
979  }
980  SDB->JTCases.clear();
981
982  // If the switch block involved a branch to one of the actual successors, we
983  // need to update PHI nodes in that block.
984  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
985    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
986    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
987           "This is not a machine PHI node that we are updating!");
988    if (BB->isSuccessor(PHI->getParent())) {
989      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
990                                                false));
991      PHI->addOperand(MachineOperand::CreateMBB(BB));
992    }
993  }
994
995  // If we generated any switch lowering information, build and codegen any
996  // additional DAGs necessary.
997  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
998    // Set the current basic block to the mbb we wish to insert the code into
999    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1000    SDB->setCurrentBasicBlock(BB);
1001
1002    // Emit the code
1003    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1004    CurDAG->setRoot(SDB->getRoot());
1005    CodeGenAndEmitDAG();
1006
1007    // Handle any PHI nodes in successors of this chunk, as if we were coming
1008    // from the original BB before switch expansion.  Note that PHI nodes can
1009    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1010    // handle them the right number of times.
1011    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1012      // If new BB's are created during scheduling, the edges may have been
1013      // updated. That is, the edge from ThisBB to BB may have been split and
1014      // BB's predecessor is now another block.
1015      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1016        SDB->EdgeMapping.find(BB);
1017      if (EI != SDB->EdgeMapping.end())
1018        ThisBB = EI->second;
1019      for (MachineBasicBlock::iterator Phi = BB->begin();
1020           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
1021        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
1022        for (unsigned pn = 0; ; ++pn) {
1023          assert(pn != SDB->PHINodesToUpdate.size() &&
1024                 "Didn't find PHI entry!");
1025          if (SDB->PHINodesToUpdate[pn].first == Phi) {
1026            Phi->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pn].
1027                                                      second, false));
1028            Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1029            break;
1030          }
1031        }
1032      }
1033
1034      // Don't process RHS if same block as LHS.
1035      if (BB == SDB->SwitchCases[i].FalseBB)
1036        SDB->SwitchCases[i].FalseBB = 0;
1037
1038      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1039      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1040      SDB->SwitchCases[i].FalseBB = 0;
1041    }
1042    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1043    SDB->clear();
1044  }
1045  SDB->SwitchCases.clear();
1046
1047  SDB->PHINodesToUpdate.clear();
1048}
1049
1050
1051/// Create the scheduler. If a specific scheduler was specified
1052/// via the SchedulerRegistry, use it, otherwise select the
1053/// one preferred by the target.
1054///
1055ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1056  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1057
1058  if (!Ctor) {
1059    Ctor = ISHeuristic;
1060    RegisterScheduler::setDefault(Ctor);
1061  }
1062
1063  return Ctor(this, OptLevel);
1064}
1065
1066ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1067  return new ScheduleHazardRecognizer();
1068}
1069
1070//===----------------------------------------------------------------------===//
1071// Helper functions used by the generated instruction selector.
1072//===----------------------------------------------------------------------===//
1073// Calls to these methods are generated by tblgen.
1074
1075/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1076/// the dag combiner simplified the 255, we still want to match.  RHS is the
1077/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1078/// specified in the .td file (e.g. 255).
1079bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1080                                    int64_t DesiredMaskS) const {
1081  const APInt &ActualMask = RHS->getAPIntValue();
1082  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1083
1084  // If the actual mask exactly matches, success!
1085  if (ActualMask == DesiredMask)
1086    return true;
1087
1088  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1089  if (ActualMask.intersects(~DesiredMask))
1090    return false;
1091
1092  // Otherwise, the DAG Combiner may have proven that the value coming in is
1093  // either already zero or is not demanded.  Check for known zero input bits.
1094  APInt NeededMask = DesiredMask & ~ActualMask;
1095  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1096    return true;
1097
1098  // TODO: check to see if missing bits are just not demanded.
1099
1100  // Otherwise, this pattern doesn't match.
1101  return false;
1102}
1103
1104/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1105/// the dag combiner simplified the 255, we still want to match.  RHS is the
1106/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1107/// specified in the .td file (e.g. 255).
1108bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1109                                   int64_t DesiredMaskS) const {
1110  const APInt &ActualMask = RHS->getAPIntValue();
1111  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1112
1113  // If the actual mask exactly matches, success!
1114  if (ActualMask == DesiredMask)
1115    return true;
1116
1117  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1118  if (ActualMask.intersects(~DesiredMask))
1119    return false;
1120
1121  // Otherwise, the DAG Combiner may have proven that the value coming in is
1122  // either already zero or is not demanded.  Check for known zero input bits.
1123  APInt NeededMask = DesiredMask & ~ActualMask;
1124
1125  APInt KnownZero, KnownOne;
1126  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1127
1128  // If all the missing bits in the or are already known to be set, match!
1129  if ((NeededMask & KnownOne) == NeededMask)
1130    return true;
1131
1132  // TODO: check to see if missing bits are just not demanded.
1133
1134  // Otherwise, this pattern doesn't match.
1135  return false;
1136}
1137
1138
1139/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1140/// by tblgen.  Others should not call it.
1141void SelectionDAGISel::
1142SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1143  std::vector<SDValue> InOps;
1144  std::swap(InOps, Ops);
1145
1146  Ops.push_back(InOps[0]);  // input chain.
1147  Ops.push_back(InOps[1]);  // input asm string.
1148
1149  unsigned i = 2, e = InOps.size();
1150  if (InOps[e-1].getValueType() == MVT::Flag)
1151    --e;  // Don't process a flag operand if it is here.
1152
1153  while (i != e) {
1154    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1155    if ((Flags & 7) != 4 /*MEM*/) {
1156      // Just skip over this operand, copying the operands verbatim.
1157      Ops.insert(Ops.end(), InOps.begin()+i,
1158                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1159      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1160    } else {
1161      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1162             "Memory operand with multiple values?");
1163      // Otherwise, this is a memory operand.  Ask the target to select it.
1164      std::vector<SDValue> SelOps;
1165      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1166        llvm_report_error("Could not match memory address.  Inline asm"
1167                          " failure!");
1168      }
1169
1170      // Add this to the output node.
1171      EVT IntPtrTy = TLI.getPointerTy();
1172      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1173                                              IntPtrTy));
1174      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1175      i += 2;
1176    }
1177  }
1178
1179  // Add the flag input back if present.
1180  if (e != InOps.size())
1181    Ops.push_back(InOps.back());
1182}
1183
1184/// findFlagUse - Return use of EVT::Flag value produced by the specified
1185/// SDNode.
1186///
1187static SDNode *findFlagUse(SDNode *N) {
1188  unsigned FlagResNo = N->getNumValues()-1;
1189  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1190    SDUse &Use = I.getUse();
1191    if (Use.getResNo() == FlagResNo)
1192      return Use.getUser();
1193  }
1194  return NULL;
1195}
1196
1197/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1198/// This function recursively traverses up the operand chain, ignoring
1199/// certain nodes.
1200static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1201                          SDNode *Root,
1202                          SmallPtrSet<SDNode*, 16> &Visited) {
1203  if (Use->getNodeId() < Def->getNodeId() ||
1204      !Visited.insert(Use))
1205    return false;
1206
1207  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1208    SDNode *N = Use->getOperand(i).getNode();
1209    if (N == Def) {
1210      if (Use == ImmedUse || Use == Root)
1211        continue;  // We are not looking for immediate use.
1212      assert(N != Root);
1213      return true;
1214    }
1215
1216    // Traverse up the operand chain.
1217    if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
1218      return true;
1219  }
1220  return false;
1221}
1222
1223/// isNonImmUse - Start searching from Root up the DAG to check is Def can
1224/// be reached. Return true if that's the case. However, ignore direct uses
1225/// by ImmedUse (which would be U in the example illustrated in
1226/// IsLegalAndProfitableToFold) and by Root (which can happen in the store
1227/// case).
1228/// FIXME: to be really generic, we should allow direct use by any node
1229/// that is being folded. But realisticly since we only fold loads which
1230/// have one non-chain use, we only need to watch out for load/op/store
1231/// and load/op/cmp case where the root (store / cmp) may reach the load via
1232/// its chain operand.
1233static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
1234  SmallPtrSet<SDNode*, 16> Visited;
1235  return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
1236}
1237
1238/// IsLegalAndProfitableToFold - Returns true if the specific operand node N of
1239/// U can be folded during instruction selection that starts at Root and
1240/// folding N is profitable.
1241bool SelectionDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
1242                                                  SDNode *Root) const {
1243  if (OptLevel == CodeGenOpt::None) return false;
1244
1245  // If Root use can somehow reach N through a path that that doesn't contain
1246  // U then folding N would create a cycle. e.g. In the following
1247  // diagram, Root can reach N through X. If N is folded into into Root, then
1248  // X is both a predecessor and a successor of U.
1249  //
1250  //          [N*]           //
1251  //         ^   ^           //
1252  //        /     \          //
1253  //      [U*]    [X]?       //
1254  //        ^     ^          //
1255  //         \   /           //
1256  //          \ /            //
1257  //         [Root*]         //
1258  //
1259  // * indicates nodes to be folded together.
1260  //
1261  // If Root produces a flag, then it gets (even more) interesting. Since it
1262  // will be "glued" together with its flag use in the scheduler, we need to
1263  // check if it might reach N.
1264  //
1265  //          [N*]           //
1266  //         ^   ^           //
1267  //        /     \          //
1268  //      [U*]    [X]?       //
1269  //        ^       ^        //
1270  //         \       \       //
1271  //          \      |       //
1272  //         [Root*] |       //
1273  //          ^      |       //
1274  //          f      |       //
1275  //          |      /       //
1276  //         [Y]    /        //
1277  //           ^   /         //
1278  //           f  /          //
1279  //           | /           //
1280  //          [FU]           //
1281  //
1282  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1283  // (call it Fold), then X is a predecessor of FU and a successor of
1284  // Fold. But since Fold and FU are flagged together, this will create
1285  // a cycle in the scheduling graph.
1286
1287  EVT VT = Root->getValueType(Root->getNumValues()-1);
1288  while (VT == MVT::Flag) {
1289    SDNode *FU = findFlagUse(Root);
1290    if (FU == NULL)
1291      break;
1292    Root = FU;
1293    VT = Root->getValueType(Root->getNumValues()-1);
1294  }
1295
1296  return !isNonImmUse(Root, N, U);
1297}
1298
1299SDNode *SelectionDAGISel::Select_INLINEASM(SDValue N) {
1300  std::vector<SDValue> Ops(N.getNode()->op_begin(), N.getNode()->op_end());
1301  SelectInlineAsmMemoryOperands(Ops);
1302
1303  std::vector<EVT> VTs;
1304  VTs.push_back(MVT::Other);
1305  VTs.push_back(MVT::Flag);
1306  SDValue New = CurDAG->getNode(ISD::INLINEASM, N.getDebugLoc(),
1307                                VTs, &Ops[0], Ops.size());
1308  return New.getNode();
1309}
1310
1311SDNode *SelectionDAGISel::Select_UNDEF(const SDValue &N) {
1312  return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::IMPLICIT_DEF,
1313                              N.getValueType());
1314}
1315
1316SDNode *SelectionDAGISel::Select_DBG_LABEL(const SDValue &N) {
1317  SDValue Chain = N.getOperand(0);
1318  unsigned C = cast<LabelSDNode>(N)->getLabelID();
1319  SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);
1320  return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::DBG_LABEL,
1321                              MVT::Other, Tmp, Chain);
1322}
1323
1324SDNode *SelectionDAGISel::Select_EH_LABEL(const SDValue &N) {
1325  SDValue Chain = N.getOperand(0);
1326  unsigned C = cast<LabelSDNode>(N)->getLabelID();
1327  SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);
1328  return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::EH_LABEL,
1329                              MVT::Other, Tmp, Chain);
1330}
1331
1332void SelectionDAGISel::CannotYetSelect(SDValue N) {
1333  std::string msg;
1334  raw_string_ostream Msg(msg);
1335  Msg << "Cannot yet select: ";
1336  N.getNode()->print(Msg, CurDAG);
1337  llvm_report_error(Msg.str());
1338}
1339
1340void SelectionDAGISel::CannotYetSelectIntrinsic(SDValue N) {
1341  errs() << "Cannot yet select: ";
1342  unsigned iid =
1343    cast<ConstantSDNode>(N.getOperand(N.getOperand(0).getValueType() == MVT::Other))->getZExtValue();
1344  if (iid < Intrinsic::num_intrinsics)
1345    llvm_report_error("Cannot yet select: intrinsic %" + Intrinsic::getName((Intrinsic::ID)iid));
1346  else if (const TargetIntrinsicInfo *tii = TM.getIntrinsicInfo())
1347    llvm_report_error(Twine("Cannot yet select: target intrinsic %") +
1348                      tii->getName(iid));
1349}
1350
1351char SelectionDAGISel::ID = 0;
1352