SelectionDAGISel.cpp revision 7e598096ea8db3f19f4ec8f4cb407aea996bd7c2
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/InlineAsm.h"
23#include "llvm/Instructions.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineDebugInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Target/MRegisterInfo.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Target/TargetFrameInfo.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetLowering.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Transforms/Utils/BasicBlockUtils.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/Debug.h"
44#include <map>
45#include <set>
46#include <iostream>
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61// Scheduling heuristics
62enum SchedHeuristics {
63  defaultScheduling,      // Let the target specify its preference.
64  noScheduling,           // No scheduling, emit breadth first sequence.
65  simpleScheduling,       // Two pass, min. critical path, max. utilization.
66  simpleNoItinScheduling, // Same as above exact using generic latency.
67  listSchedulingBURR,     // Bottom up reg reduction list scheduling.
68  listSchedulingTD        // Top-down list scheduler.
69};
70
71namespace {
72  cl::opt<SchedHeuristics>
73  ISHeuristic(
74    "sched",
75    cl::desc("Choose scheduling style"),
76    cl::init(defaultScheduling),
77    cl::values(
78      clEnumValN(defaultScheduling, "default",
79                 "Target preferred scheduling style"),
80      clEnumValN(noScheduling, "none",
81                 "No scheduling: breadth first sequencing"),
82      clEnumValN(simpleScheduling, "simple",
83                 "Simple two pass scheduling: minimize critical path "
84                 "and maximize processor utilization"),
85      clEnumValN(simpleNoItinScheduling, "simple-noitin",
86                 "Simple two pass scheduling: Same as simple "
87                 "except using generic latency"),
88      clEnumValN(listSchedulingBURR, "list-burr",
89                 "Bottom up register reduction list scheduling"),
90      clEnumValN(listSchedulingTD, "list-td",
91                 "Top-down list scheduler"),
92      clEnumValEnd));
93} // namespace
94
95namespace {
96  /// RegsForValue - This struct represents the physical registers that a
97  /// particular value is assigned and the type information about the value.
98  /// This is needed because values can be promoted into larger registers and
99  /// expanded into multiple smaller registers than the value.
100  struct RegsForValue {
101    /// Regs - This list hold the register (for legal and promoted values)
102    /// or register set (for expanded values) that the value should be assigned
103    /// to.
104    std::vector<unsigned> Regs;
105
106    /// RegVT - The value type of each register.
107    ///
108    MVT::ValueType RegVT;
109
110    /// ValueVT - The value type of the LLVM value, which may be promoted from
111    /// RegVT or made from merging the two expanded parts.
112    MVT::ValueType ValueVT;
113
114    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
115
116    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
117      : RegVT(regvt), ValueVT(valuevt) {
118        Regs.push_back(Reg);
119    }
120    RegsForValue(const std::vector<unsigned> &regs,
121                 MVT::ValueType regvt, MVT::ValueType valuevt)
122      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
123    }
124
125    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
126    /// this value and returns the result as a ValueVT value.  This uses
127    /// Chain/Flag as the input and updates them for the output Chain/Flag.
128    SDOperand getCopyFromRegs(SelectionDAG &DAG,
129                              SDOperand &Chain, SDOperand &Flag) const;
130
131    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
132    /// specified value into the registers specified by this object.  This uses
133    /// Chain/Flag as the input and updates them for the output Chain/Flag.
134    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
135                       SDOperand &Chain, SDOperand &Flag) const;
136
137    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
138    /// operand list.  This adds the code marker and includes the number of
139    /// values added into it.
140    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
141                              std::vector<SDOperand> &Ops) const;
142  };
143}
144
145namespace llvm {
146  //===--------------------------------------------------------------------===//
147  /// FunctionLoweringInfo - This contains information that is global to a
148  /// function that is used when lowering a region of the function.
149  class FunctionLoweringInfo {
150  public:
151    TargetLowering &TLI;
152    Function &Fn;
153    MachineFunction &MF;
154    SSARegMap *RegMap;
155
156    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
157
158    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
159    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
160
161    /// ValueMap - Since we emit code for the function a basic block at a time,
162    /// we must remember which virtual registers hold the values for
163    /// cross-basic-block values.
164    std::map<const Value*, unsigned> ValueMap;
165
166    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
167    /// the entry block.  This allows the allocas to be efficiently referenced
168    /// anywhere in the function.
169    std::map<const AllocaInst*, int> StaticAllocaMap;
170
171    unsigned MakeReg(MVT::ValueType VT) {
172      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
173    }
174
175    unsigned CreateRegForValue(const Value *V);
176
177    unsigned InitializeRegForValue(const Value *V) {
178      unsigned &R = ValueMap[V];
179      assert(R == 0 && "Already initialized this value register!");
180      return R = CreateRegForValue(V);
181    }
182  };
183}
184
185/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
186/// PHI nodes or outside of the basic block that defines it, or used by a
187/// switch instruction, which may expand to multiple basic blocks.
188static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
189  if (isa<PHINode>(I)) return true;
190  BasicBlock *BB = I->getParent();
191  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
192    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
193        isa<SwitchInst>(*UI))
194      return true;
195  return false;
196}
197
198/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
199/// entry block, return true.  This includes arguments used by switches, since
200/// the switch may expand into multiple basic blocks.
201static bool isOnlyUsedInEntryBlock(Argument *A) {
202  BasicBlock *Entry = A->getParent()->begin();
203  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
204    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
205      return false;  // Use not in entry block.
206  return true;
207}
208
209FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
210                                           Function &fn, MachineFunction &mf)
211    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
212
213  // Create a vreg for each argument register that is not dead and is used
214  // outside of the entry block for the function.
215  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
216       AI != E; ++AI)
217    if (!isOnlyUsedInEntryBlock(AI))
218      InitializeRegForValue(AI);
219
220  // Initialize the mapping of values to registers.  This is only set up for
221  // instruction values that are used outside of the block that defines
222  // them.
223  Function::iterator BB = Fn.begin(), EB = Fn.end();
224  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
225    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
226      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
227        const Type *Ty = AI->getAllocatedType();
228        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
229        unsigned Align =
230          std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
231                   AI->getAlignment());
232
233        // If the alignment of the value is smaller than the size of the value,
234        // and if the size of the value is particularly small (<= 8 bytes),
235        // round up to the size of the value for potentially better performance.
236        //
237        // FIXME: This could be made better with a preferred alignment hook in
238        // TargetData.  It serves primarily to 8-byte align doubles for X86.
239        if (Align < TySize && TySize <= 8) Align = TySize;
240        TySize *= CUI->getValue();   // Get total allocated size.
241        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
242        StaticAllocaMap[AI] =
243          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
244      }
245
246  for (; BB != EB; ++BB)
247    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
248      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
249        if (!isa<AllocaInst>(I) ||
250            !StaticAllocaMap.count(cast<AllocaInst>(I)))
251          InitializeRegForValue(I);
252
253  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
254  // also creates the initial PHI MachineInstrs, though none of the input
255  // operands are populated.
256  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
257    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
258    MBBMap[BB] = MBB;
259    MF.getBasicBlockList().push_back(MBB);
260
261    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
262    // appropriate.
263    PHINode *PN;
264    for (BasicBlock::iterator I = BB->begin();
265         (PN = dyn_cast<PHINode>(I)); ++I)
266      if (!PN->use_empty()) {
267        MVT::ValueType VT = TLI.getValueType(PN->getType());
268        unsigned NumElements;
269        if (VT != MVT::Vector)
270          NumElements = TLI.getNumElements(VT);
271        else {
272          MVT::ValueType VT1,VT2;
273          NumElements =
274            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
275                                       VT1, VT2);
276        }
277        unsigned PHIReg = ValueMap[PN];
278        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
279        for (unsigned i = 0; i != NumElements; ++i)
280          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
281      }
282  }
283}
284
285/// CreateRegForValue - Allocate the appropriate number of virtual registers of
286/// the correctly promoted or expanded types.  Assign these registers
287/// consecutive vreg numbers and return the first assigned number.
288unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
289  MVT::ValueType VT = TLI.getValueType(V->getType());
290
291  // The number of multiples of registers that we need, to, e.g., split up
292  // a <2 x int64> -> 4 x i32 registers.
293  unsigned NumVectorRegs = 1;
294
295  // If this is a packed type, figure out what type it will decompose into
296  // and how many of the elements it will use.
297  if (VT == MVT::Vector) {
298    const PackedType *PTy = cast<PackedType>(V->getType());
299    unsigned NumElts = PTy->getNumElements();
300    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
301
302    // Divide the input until we get to a supported size.  This will always
303    // end with a scalar if the target doesn't support vectors.
304    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
305      NumElts >>= 1;
306      NumVectorRegs <<= 1;
307    }
308    if (NumElts == 1)
309      VT = EltTy;
310    else
311      VT = getVectorType(EltTy, NumElts);
312  }
313
314  // The common case is that we will only create one register for this
315  // value.  If we have that case, create and return the virtual register.
316  unsigned NV = TLI.getNumElements(VT);
317  if (NV == 1) {
318    // If we are promoting this value, pick the next largest supported type.
319    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
320    unsigned Reg = MakeReg(PromotedType);
321    // If this is a vector of supported or promoted types (e.g. 4 x i16),
322    // create all of the registers.
323    for (unsigned i = 1; i != NumVectorRegs; ++i)
324      MakeReg(PromotedType);
325    return Reg;
326  }
327
328  // If this value is represented with multiple target registers, make sure
329  // to create enough consecutive registers of the right (smaller) type.
330  unsigned NT = VT-1;  // Find the type to use.
331  while (TLI.getNumElements((MVT::ValueType)NT) != 1)
332    --NT;
333
334  unsigned R = MakeReg((MVT::ValueType)NT);
335  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
336    MakeReg((MVT::ValueType)NT);
337  return R;
338}
339
340//===----------------------------------------------------------------------===//
341/// SelectionDAGLowering - This is the common target-independent lowering
342/// implementation that is parameterized by a TargetLowering object.
343/// Also, targets can overload any lowering method.
344///
345namespace llvm {
346class SelectionDAGLowering {
347  MachineBasicBlock *CurMBB;
348
349  std::map<const Value*, SDOperand> NodeMap;
350
351  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
352  /// them up and then emit token factor nodes when possible.  This allows us to
353  /// get simple disambiguation between loads without worrying about alias
354  /// analysis.
355  std::vector<SDOperand> PendingLoads;
356
357  /// Case - A pair of values to record the Value for a switch case, and the
358  /// case's target basic block.
359  typedef std::pair<Constant*, MachineBasicBlock*> Case;
360  typedef std::vector<Case>::iterator              CaseItr;
361  typedef std::pair<CaseItr, CaseItr>              CaseRange;
362
363  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
364  /// of conditional branches.
365  struct CaseRec {
366    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
367    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
368
369    /// CaseBB - The MBB in which to emit the compare and branch
370    MachineBasicBlock *CaseBB;
371    /// LT, GE - If nonzero, we know the current case value must be less-than or
372    /// greater-than-or-equal-to these Constants.
373    Constant *LT;
374    Constant *GE;
375    /// Range - A pair of iterators representing the range of case values to be
376    /// processed at this point in the binary search tree.
377    CaseRange Range;
378  };
379
380  /// The comparison function for sorting Case values.
381  struct CaseCmp {
382    bool operator () (const Case& C1, const Case& C2) {
383      if (const ConstantUInt* U1 = dyn_cast<const ConstantUInt>(C1.first))
384        return U1->getValue() < cast<const ConstantUInt>(C2.first)->getValue();
385
386      const ConstantSInt* S1 = dyn_cast<const ConstantSInt>(C1.first);
387      return S1->getValue() < cast<const ConstantSInt>(C2.first)->getValue();
388    }
389  };
390
391public:
392  // TLI - This is information that describes the available target features we
393  // need for lowering.  This indicates when operations are unavailable,
394  // implemented with a libcall, etc.
395  TargetLowering &TLI;
396  SelectionDAG &DAG;
397  const TargetData *TD;
398
399  /// SwitchCases - Vector of CaseBlock structures used to communicate
400  /// SwitchInst code generation information.
401  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
402  SelectionDAGISel::JumpTable JT;
403
404  /// FuncInfo - Information about the function as a whole.
405  ///
406  FunctionLoweringInfo &FuncInfo;
407
408  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
409                       FunctionLoweringInfo &funcinfo)
410    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
411      JT(0,0,0,0), FuncInfo(funcinfo) {
412  }
413
414  /// getRoot - Return the current virtual root of the Selection DAG.
415  ///
416  SDOperand getRoot() {
417    if (PendingLoads.empty())
418      return DAG.getRoot();
419
420    if (PendingLoads.size() == 1) {
421      SDOperand Root = PendingLoads[0];
422      DAG.setRoot(Root);
423      PendingLoads.clear();
424      return Root;
425    }
426
427    // Otherwise, we have to make a token factor node.
428    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
429    PendingLoads.clear();
430    DAG.setRoot(Root);
431    return Root;
432  }
433
434  void visit(Instruction &I) { visit(I.getOpcode(), I); }
435
436  void visit(unsigned Opcode, User &I) {
437    switch (Opcode) {
438    default: assert(0 && "Unknown instruction type encountered!");
439             abort();
440      // Build the switch statement using the Instruction.def file.
441#define HANDLE_INST(NUM, OPCODE, CLASS) \
442    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
443#include "llvm/Instruction.def"
444    }
445  }
446
447  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
448
449  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
450                        SDOperand SrcValue, SDOperand Root,
451                        bool isVolatile);
452
453  SDOperand getIntPtrConstant(uint64_t Val) {
454    return DAG.getConstant(Val, TLI.getPointerTy());
455  }
456
457  SDOperand getValue(const Value *V);
458
459  const SDOperand &setValue(const Value *V, SDOperand NewN) {
460    SDOperand &N = NodeMap[V];
461    assert(N.Val == 0 && "Already set a value for this node!");
462    return N = NewN;
463  }
464
465  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
466                                    MVT::ValueType VT,
467                                    bool OutReg, bool InReg,
468                                    std::set<unsigned> &OutputRegs,
469                                    std::set<unsigned> &InputRegs);
470
471  // Terminator instructions.
472  void visitRet(ReturnInst &I);
473  void visitBr(BranchInst &I);
474  void visitSwitch(SwitchInst &I);
475  void visitUnreachable(UnreachableInst &I) { /* noop */ }
476
477  // Helper for visitSwitch
478  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
479  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
480
481  // These all get lowered before this pass.
482  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
483  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
484
485  void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
486  void visitShift(User &I, unsigned Opcode);
487  void visitAdd(User &I) {
488    visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD);
489  }
490  void visitSub(User &I);
491  void visitMul(User &I) {
492    visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL);
493  }
494  void visitDiv(User &I) {
495    const Type *Ty = I.getType();
496    visitBinary(I,
497                Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV,
498                Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV);
499  }
500  void visitRem(User &I) {
501    const Type *Ty = I.getType();
502    visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
503  }
504  void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); }
505  void visitOr (User &I) { visitBinary(I, ISD::OR,  0, ISD::VOR); }
506  void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); }
507  void visitShl(User &I) { visitShift(I, ISD::SHL); }
508  void visitShr(User &I) {
509    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
510  }
511
512  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
513  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
514  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
515  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
516  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
517  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
518  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
519
520  void visitExtractElement(User &I);
521  void visitInsertElement(User &I);
522  void visitShuffleVector(User &I);
523
524  void visitGetElementPtr(User &I);
525  void visitCast(User &I);
526  void visitSelect(User &I);
527
528  void visitMalloc(MallocInst &I);
529  void visitFree(FreeInst &I);
530  void visitAlloca(AllocaInst &I);
531  void visitLoad(LoadInst &I);
532  void visitStore(StoreInst &I);
533  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
534  void visitCall(CallInst &I);
535  void visitInlineAsm(CallInst &I);
536  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
537  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
538
539  void visitVAStart(CallInst &I);
540  void visitVAArg(VAArgInst &I);
541  void visitVAEnd(CallInst &I);
542  void visitVACopy(CallInst &I);
543  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
544
545  void visitMemIntrinsic(CallInst &I, unsigned Op);
546
547  void visitUserOp1(Instruction &I) {
548    assert(0 && "UserOp1 should not exist at instruction selection time!");
549    abort();
550  }
551  void visitUserOp2(Instruction &I) {
552    assert(0 && "UserOp2 should not exist at instruction selection time!");
553    abort();
554  }
555};
556} // end namespace llvm
557
558SDOperand SelectionDAGLowering::getValue(const Value *V) {
559  SDOperand &N = NodeMap[V];
560  if (N.Val) return N;
561
562  const Type *VTy = V->getType();
563  MVT::ValueType VT = TLI.getValueType(VTy);
564  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
565    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
566      visit(CE->getOpcode(), *CE);
567      assert(N.Val && "visit didn't populate the ValueMap!");
568      return N;
569    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
570      return N = DAG.getGlobalAddress(GV, VT);
571    } else if (isa<ConstantPointerNull>(C)) {
572      return N = DAG.getConstant(0, TLI.getPointerTy());
573    } else if (isa<UndefValue>(C)) {
574      if (!isa<PackedType>(VTy))
575        return N = DAG.getNode(ISD::UNDEF, VT);
576
577      // Create a VBUILD_VECTOR of undef nodes.
578      const PackedType *PTy = cast<PackedType>(VTy);
579      unsigned NumElements = PTy->getNumElements();
580      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
581
582      std::vector<SDOperand> Ops;
583      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
584
585      // Create a VConstant node with generic Vector type.
586      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
587      Ops.push_back(DAG.getValueType(PVT));
588      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
589    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
590      return N = DAG.getConstantFP(CFP->getValue(), VT);
591    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
592      unsigned NumElements = PTy->getNumElements();
593      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
594
595      // Now that we know the number and type of the elements, push a
596      // Constant or ConstantFP node onto the ops list for each element of
597      // the packed constant.
598      std::vector<SDOperand> Ops;
599      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
600        for (unsigned i = 0; i != NumElements; ++i)
601          Ops.push_back(getValue(CP->getOperand(i)));
602      } else {
603        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
604        SDOperand Op;
605        if (MVT::isFloatingPoint(PVT))
606          Op = DAG.getConstantFP(0, PVT);
607        else
608          Op = DAG.getConstant(0, PVT);
609        Ops.assign(NumElements, Op);
610      }
611
612      // Create a VBUILD_VECTOR node with generic Vector type.
613      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
614      Ops.push_back(DAG.getValueType(PVT));
615      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
616    } else {
617      // Canonicalize all constant ints to be unsigned.
618      return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
619    }
620  }
621
622  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
623    std::map<const AllocaInst*, int>::iterator SI =
624    FuncInfo.StaticAllocaMap.find(AI);
625    if (SI != FuncInfo.StaticAllocaMap.end())
626      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
627  }
628
629  std::map<const Value*, unsigned>::const_iterator VMI =
630      FuncInfo.ValueMap.find(V);
631  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
632
633  unsigned InReg = VMI->second;
634
635  // If this type is not legal, make it so now.
636  if (VT != MVT::Vector) {
637    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
638
639    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
640    if (DestVT < VT) {
641      // Source must be expanded.  This input value is actually coming from the
642      // register pair VMI->second and VMI->second+1.
643      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
644                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
645    } else if (DestVT > VT) { // Promotion case
646      if (MVT::isFloatingPoint(VT))
647        N = DAG.getNode(ISD::FP_ROUND, VT, N);
648      else
649        N = DAG.getNode(ISD::TRUNCATE, VT, N);
650    }
651  } else {
652    // Otherwise, if this is a vector, make it available as a generic vector
653    // here.
654    MVT::ValueType PTyElementVT, PTyLegalElementVT;
655    const PackedType *PTy = cast<PackedType>(VTy);
656    unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT,
657                                             PTyLegalElementVT);
658
659    // Build a VBUILD_VECTOR with the input registers.
660    std::vector<SDOperand> Ops;
661    if (PTyElementVT == PTyLegalElementVT) {
662      // If the value types are legal, just VBUILD the CopyFromReg nodes.
663      for (unsigned i = 0; i != NE; ++i)
664        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
665                                         PTyElementVT));
666    } else if (PTyElementVT < PTyLegalElementVT) {
667      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
668      for (unsigned i = 0; i != NE; ++i) {
669        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
670                                          PTyElementVT);
671        if (MVT::isFloatingPoint(PTyElementVT))
672          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
673        else
674          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
675        Ops.push_back(Op);
676      }
677    } else {
678      // If the register was expanded, use BUILD_PAIR.
679      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
680      for (unsigned i = 0; i != NE/2; ++i) {
681        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
682                                           PTyElementVT);
683        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
684                                           PTyElementVT);
685        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
686      }
687    }
688
689    Ops.push_back(DAG.getConstant(NE, MVT::i32));
690    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
691    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
692
693    // Finally, use a VBIT_CONVERT to make this available as the appropriate
694    // vector type.
695    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
696                    DAG.getConstant(PTy->getNumElements(),
697                                    MVT::i32),
698                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
699  }
700
701  return N;
702}
703
704
705void SelectionDAGLowering::visitRet(ReturnInst &I) {
706  if (I.getNumOperands() == 0) {
707    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
708    return;
709  }
710  std::vector<SDOperand> NewValues;
711  NewValues.push_back(getRoot());
712  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
713    SDOperand RetOp = getValue(I.getOperand(i));
714
715    // If this is an integer return value, we need to promote it ourselves to
716    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
717    // than sign/zero.
718    if (MVT::isInteger(RetOp.getValueType()) &&
719        RetOp.getValueType() < MVT::i64) {
720      MVT::ValueType TmpVT;
721      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
722        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
723      else
724        TmpVT = MVT::i32;
725
726      if (I.getOperand(i)->getType()->isSigned())
727        RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
728      else
729        RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
730    }
731    NewValues.push_back(RetOp);
732  }
733  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, NewValues));
734}
735
736void SelectionDAGLowering::visitBr(BranchInst &I) {
737  // Update machine-CFG edges.
738  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
739  CurMBB->addSuccessor(Succ0MBB);
740
741  // Figure out which block is immediately after the current one.
742  MachineBasicBlock *NextBlock = 0;
743  MachineFunction::iterator BBI = CurMBB;
744  if (++BBI != CurMBB->getParent()->end())
745    NextBlock = BBI;
746
747  if (I.isUnconditional()) {
748    // If this is not a fall-through branch, emit the branch.
749    if (Succ0MBB != NextBlock)
750      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
751                              DAG.getBasicBlock(Succ0MBB)));
752  } else {
753    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
754    CurMBB->addSuccessor(Succ1MBB);
755
756    SDOperand Cond = getValue(I.getCondition());
757    if (Succ1MBB == NextBlock) {
758      // If the condition is false, fall through.  This means we should branch
759      // if the condition is true to Succ #0.
760      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
761                              Cond, DAG.getBasicBlock(Succ0MBB)));
762    } else if (Succ0MBB == NextBlock) {
763      // If the condition is true, fall through.  This means we should branch if
764      // the condition is false to Succ #1.  Invert the condition first.
765      SDOperand True = DAG.getConstant(1, Cond.getValueType());
766      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
767      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
768                              Cond, DAG.getBasicBlock(Succ1MBB)));
769    } else {
770      std::vector<SDOperand> Ops;
771      Ops.push_back(getRoot());
772      // If the false case is the current basic block, then this is a self
773      // loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it
774      // adds an extra instruction in the loop.  Instead, invert the
775      // condition and emit "Loop: ... br!cond Loop; br Out.
776      if (CurMBB == Succ1MBB) {
777        std::swap(Succ0MBB, Succ1MBB);
778        SDOperand True = DAG.getConstant(1, Cond.getValueType());
779        Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
780      }
781      SDOperand True = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
782                                   DAG.getBasicBlock(Succ0MBB));
783      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, True,
784                              DAG.getBasicBlock(Succ1MBB)));
785    }
786  }
787}
788
789/// visitSwitchCase - Emits the necessary code to represent a single node in
790/// the binary search tree resulting from lowering a switch instruction.
791void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
792  SDOperand SwitchOp = getValue(CB.SwitchV);
793  SDOperand CaseOp = getValue(CB.CaseC);
794  SDOperand Cond = DAG.getSetCC(MVT::i1, SwitchOp, CaseOp, CB.CC);
795
796  // Set NextBlock to be the MBB immediately after the current one, if any.
797  // This is used to avoid emitting unnecessary branches to the next block.
798  MachineBasicBlock *NextBlock = 0;
799  MachineFunction::iterator BBI = CurMBB;
800  if (++BBI != CurMBB->getParent()->end())
801    NextBlock = BBI;
802
803  // If the lhs block is the next block, invert the condition so that we can
804  // fall through to the lhs instead of the rhs block.
805  if (CB.LHSBB == NextBlock) {
806    std::swap(CB.LHSBB, CB.RHSBB);
807    SDOperand True = DAG.getConstant(1, Cond.getValueType());
808    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
809  }
810  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
811                                 DAG.getBasicBlock(CB.LHSBB));
812  if (CB.RHSBB == NextBlock)
813    DAG.setRoot(BrCond);
814  else
815    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
816                            DAG.getBasicBlock(CB.RHSBB)));
817  // Update successor info
818  CurMBB->addSuccessor(CB.LHSBB);
819  CurMBB->addSuccessor(CB.RHSBB);
820}
821
822/// visitSwitchCase - Emits the necessary code to represent a single node in
823/// the binary search tree resulting from lowering a switch instruction.
824void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
825  // FIXME: Need to emit different code for PIC vs. Non-PIC, specifically,
826  // we need to add the address of the jump table to the value loaded, since
827  // the entries in the jump table will be differences rather than absolute
828  // addresses.
829
830  // Emit the code for the jump table
831  MVT::ValueType PTy = TLI.getPointerTy();
832  unsigned PTyBytes = MVT::getSizeInBits(PTy)/8;
833  SDOperand Copy = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
834  SDOperand IDX = DAG.getNode(ISD::MUL, PTy, Copy,
835                              DAG.getConstant(PTyBytes, PTy));
836  SDOperand ADD = DAG.getNode(ISD::ADD, PTy, IDX, DAG.getJumpTable(JT.JTI,PTy));
837  SDOperand LD  = DAG.getLoad(PTy, Copy.getValue(1), ADD, DAG.getSrcValue(0));
838  DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), LD));
839}
840
841void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
842  // Figure out which block is immediately after the current one.
843  MachineBasicBlock *NextBlock = 0;
844  MachineFunction::iterator BBI = CurMBB;
845  if (++BBI != CurMBB->getParent()->end())
846    NextBlock = BBI;
847
848  // If there is only the default destination, branch to it if it is not the
849  // next basic block.  Otherwise, just fall through.
850  if (I.getNumOperands() == 2) {
851    // Update machine-CFG edges.
852    MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[I.getDefaultDest()];
853    // If this is not a fall-through branch, emit the branch.
854    if (DefaultMBB != NextBlock)
855      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
856                              DAG.getBasicBlock(DefaultMBB)));
857    return;
858  }
859
860  // If there are any non-default case statements, create a vector of Cases
861  // representing each one, and sort the vector so that we can efficiently
862  // create a binary search tree from them.
863  std::vector<Case> Cases;
864  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
865    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
866    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
867  }
868  std::sort(Cases.begin(), Cases.end(), CaseCmp());
869
870  // Get the Value to be switched on and default basic blocks, which will be
871  // inserted into CaseBlock records, representing basic blocks in the binary
872  // search tree.
873  Value *SV = I.getOperand(0);
874  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
875
876  // Get the MachineFunction which holds the current MBB.  This is used during
877  // emission of jump tables, and when inserting any additional MBBs necessary
878  // to represent the switch.
879  MachineFunction *CurMF = CurMBB->getParent();
880  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
881  Reloc::Model Relocs = TLI.getTargetMachine().getRelocationModel();
882
883  // If the switch has more than 5 blocks, and at least 75% dense, then emit a
884  // jump table rather than lowering the switch to a binary tree of conditional
885  // branches.
886  // FIXME: Make this work with PIC code
887  if (TLI.isOperationLegal(ISD::BRIND, TLI.getPointerTy()) &&
888      (Relocs == Reloc::Static || Relocs == Reloc::DynamicNoPIC) &&
889      Cases.size() > 5) {
890    uint64_t First = cast<ConstantIntegral>(Cases.front().first)->getRawValue();
891    uint64_t Last  = cast<ConstantIntegral>(Cases.back().first)->getRawValue();
892    double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
893
894    if (Density >= 0.75) {
895      // Create a new basic block to hold the code for loading the address
896      // of the jump table, and jumping to it.  Update successor information;
897      // we will either branch to the default case for the switch, or the jump
898      // table.
899      MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
900      CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
901      CurMBB->addSuccessor(Default);
902      CurMBB->addSuccessor(JumpTableBB);
903
904      // Subtract the lowest switch case value from the value being switched on
905      // and conditional branch to default mbb if the result is greater than the
906      // difference between smallest and largest cases.
907      SDOperand SwitchOp = getValue(SV);
908      MVT::ValueType VT = SwitchOp.getValueType();
909      SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
910                                  DAG.getConstant(First, VT));
911
912      // The SDNode we just created, which holds the value being switched on
913      // minus the the smallest case value, needs to be copied to a virtual
914      // register so it can be used as an index into the jump table in a
915      // subsequent basic block.  This value may be smaller or larger than the
916      // target's pointer type, and therefore require extension or truncating.
917      if (VT > TLI.getPointerTy())
918        SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
919      else
920        SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
921      unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
922      SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
923
924      // Emit the range check for the jump table, and branch to the default
925      // block for the switch statement if the value being switched on exceeds
926      // the largest case in the switch.
927      SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
928                                   DAG.getConstant(Last-First,VT), ISD::SETUGT);
929      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
930                              DAG.getBasicBlock(Default)));
931
932      // Build a vector of destination BBs, corresponding to each target
933      // of the jump table.  If the value of the jump table slot corresponds to
934      // a case statement, push the case's BB onto the vector, otherwise, push
935      // the default BB.
936      std::set<MachineBasicBlock*> UniqueBBs;
937      std::vector<MachineBasicBlock*> DestBBs;
938      uint64_t TEI = First;
939      for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI) {
940        if (cast<ConstantIntegral>(ii->first)->getRawValue() == TEI) {
941          DestBBs.push_back(ii->second);
942          UniqueBBs.insert(ii->second);
943          ++ii;
944        } else {
945          DestBBs.push_back(Default);
946          UniqueBBs.insert(Default);
947        }
948      }
949
950      // Update successor info
951      for (std::set<MachineBasicBlock*>::iterator ii = UniqueBBs.begin(),
952           ee = UniqueBBs.end(); ii != ee; ++ii)
953        JumpTableBB->addSuccessor(*ii);
954
955      // Create a jump table index for this jump table, or return an existing
956      // one.
957      unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
958
959      // Set the jump table information so that we can codegen it as a second
960      // MachineBasicBlock
961      JT.Reg = JumpTableReg;
962      JT.JTI = JTI;
963      JT.MBB = JumpTableBB;
964      JT.Default = Default;
965      return;
966    }
967  }
968
969  // Push the initial CaseRec onto the worklist
970  std::vector<CaseRec> CaseVec;
971  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
972
973  while (!CaseVec.empty()) {
974    // Grab a record representing a case range to process off the worklist
975    CaseRec CR = CaseVec.back();
976    CaseVec.pop_back();
977
978    // Size is the number of Cases represented by this range.  If Size is 1,
979    // then we are processing a leaf of the binary search tree.  Otherwise,
980    // we need to pick a pivot, and push left and right ranges onto the
981    // worklist.
982    unsigned Size = CR.Range.second - CR.Range.first;
983
984    if (Size == 1) {
985      // Create a CaseBlock record representing a conditional branch to
986      // the Case's target mbb if the value being switched on SV is equal
987      // to C.  Otherwise, branch to default.
988      Constant *C = CR.Range.first->first;
989      MachineBasicBlock *Target = CR.Range.first->second;
990      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
991                                     CR.CaseBB);
992      // If the MBB representing the leaf node is the current MBB, then just
993      // call visitSwitchCase to emit the code into the current block.
994      // Otherwise, push the CaseBlock onto the vector to be later processed
995      // by SDISel, and insert the node's MBB before the next MBB.
996      if (CR.CaseBB == CurMBB)
997        visitSwitchCase(CB);
998      else {
999        SwitchCases.push_back(CB);
1000        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
1001      }
1002    } else {
1003      // split case range at pivot
1004      CaseItr Pivot = CR.Range.first + (Size / 2);
1005      CaseRange LHSR(CR.Range.first, Pivot);
1006      CaseRange RHSR(Pivot, CR.Range.second);
1007      Constant *C = Pivot->first;
1008      MachineBasicBlock *RHSBB = 0, *LHSBB = 0;
1009      // We know that we branch to the LHS if the Value being switched on is
1010      // less than the Pivot value, C.  We use this to optimize our binary
1011      // tree a bit, by recognizing that if SV is greater than or equal to the
1012      // LHS's Case Value, and that Case Value is exactly one less than the
1013      // Pivot's Value, then we can branch directly to the LHS's Target,
1014      // rather than creating a leaf node for it.
1015      if ((LHSR.second - LHSR.first) == 1 &&
1016          LHSR.first->first == CR.GE &&
1017          cast<ConstantIntegral>(C)->getRawValue() ==
1018          (cast<ConstantIntegral>(CR.GE)->getRawValue() + 1ULL)) {
1019        LHSBB = LHSR.first->second;
1020      } else {
1021        LHSBB = new MachineBasicBlock(LLVMBB);
1022        CaseVec.push_back(CaseRec(LHSBB,C,CR.GE,LHSR));
1023      }
1024      // Similar to the optimization above, if the Value being switched on is
1025      // known to be less than the Constant CR.LT, and the current Case Value
1026      // is CR.LT - 1, then we can branch directly to the target block for
1027      // the current Case Value, rather than emitting a RHS leaf node for it.
1028      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1029          cast<ConstantIntegral>(RHSR.first->first)->getRawValue() ==
1030          (cast<ConstantIntegral>(CR.LT)->getRawValue() - 1ULL)) {
1031        RHSBB = RHSR.first->second;
1032      } else {
1033        RHSBB = new MachineBasicBlock(LLVMBB);
1034        CaseVec.push_back(CaseRec(RHSBB,CR.LT,C,RHSR));
1035      }
1036      // Create a CaseBlock record representing a conditional branch to
1037      // the LHS node if the value being switched on SV is less than C.
1038      // Otherwise, branch to LHS.
1039      ISD::CondCode CC = C->getType()->isSigned() ? ISD::SETLT : ISD::SETULT;
1040      SelectionDAGISel::CaseBlock CB(CC, SV, C, LHSBB, RHSBB, CR.CaseBB);
1041      if (CR.CaseBB == CurMBB)
1042        visitSwitchCase(CB);
1043      else {
1044        SwitchCases.push_back(CB);
1045        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
1046      }
1047    }
1048  }
1049}
1050
1051void SelectionDAGLowering::visitSub(User &I) {
1052  // -0.0 - X --> fneg
1053  if (I.getType()->isFloatingPoint()) {
1054    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1055      if (CFP->isExactlyValue(-0.0)) {
1056        SDOperand Op2 = getValue(I.getOperand(1));
1057        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1058        return;
1059      }
1060  }
1061  visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
1062}
1063
1064void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp,
1065                                       unsigned VecOp) {
1066  const Type *Ty = I.getType();
1067  SDOperand Op1 = getValue(I.getOperand(0));
1068  SDOperand Op2 = getValue(I.getOperand(1));
1069
1070  if (Ty->isIntegral()) {
1071    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
1072  } else if (Ty->isFloatingPoint()) {
1073    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
1074  } else {
1075    const PackedType *PTy = cast<PackedType>(Ty);
1076    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
1077    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
1078    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
1079  }
1080}
1081
1082void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1083  SDOperand Op1 = getValue(I.getOperand(0));
1084  SDOperand Op2 = getValue(I.getOperand(1));
1085
1086  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1087
1088  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1089}
1090
1091void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
1092                                      ISD::CondCode UnsignedOpcode) {
1093  SDOperand Op1 = getValue(I.getOperand(0));
1094  SDOperand Op2 = getValue(I.getOperand(1));
1095  ISD::CondCode Opcode = SignedOpcode;
1096  if (I.getOperand(0)->getType()->isUnsigned())
1097    Opcode = UnsignedOpcode;
1098  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1099}
1100
1101void SelectionDAGLowering::visitSelect(User &I) {
1102  SDOperand Cond     = getValue(I.getOperand(0));
1103  SDOperand TrueVal  = getValue(I.getOperand(1));
1104  SDOperand FalseVal = getValue(I.getOperand(2));
1105  if (!isa<PackedType>(I.getType())) {
1106    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1107                             TrueVal, FalseVal));
1108  } else {
1109    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1110                             *(TrueVal.Val->op_end()-2),
1111                             *(TrueVal.Val->op_end()-1)));
1112  }
1113}
1114
1115void SelectionDAGLowering::visitCast(User &I) {
1116  SDOperand N = getValue(I.getOperand(0));
1117  MVT::ValueType SrcVT = N.getValueType();
1118  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1119
1120  if (DestVT == MVT::Vector) {
1121    // This is a cast to a vector from something else.  This is always a bit
1122    // convert.  Get information about the input vector.
1123    const PackedType *DestTy = cast<PackedType>(I.getType());
1124    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1125    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1126                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1127                             DAG.getValueType(EltVT)));
1128  } else if (SrcVT == DestVT) {
1129    setValue(&I, N);  // noop cast.
1130  } else if (DestVT == MVT::i1) {
1131    // Cast to bool is a comparison against zero, not truncation to zero.
1132    SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) :
1133                                       DAG.getConstantFP(0.0, N.getValueType());
1134    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
1135  } else if (isInteger(SrcVT)) {
1136    if (isInteger(DestVT)) {        // Int -> Int cast
1137      if (DestVT < SrcVT)   // Truncating cast?
1138        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1139      else if (I.getOperand(0)->getType()->isSigned())
1140        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1141      else
1142        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1143    } else if (isFloatingPoint(DestVT)) {           // Int -> FP cast
1144      if (I.getOperand(0)->getType()->isSigned())
1145        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1146      else
1147        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1148    } else {
1149      assert(0 && "Unknown cast!");
1150    }
1151  } else if (isFloatingPoint(SrcVT)) {
1152    if (isFloatingPoint(DestVT)) {  // FP -> FP cast
1153      if (DestVT < SrcVT)   // Rounding cast?
1154        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1155      else
1156        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1157    } else if (isInteger(DestVT)) {        // FP -> Int cast.
1158      if (I.getType()->isSigned())
1159        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1160      else
1161        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1162    } else {
1163      assert(0 && "Unknown cast!");
1164    }
1165  } else {
1166    assert(SrcVT == MVT::Vector && "Unknown cast!");
1167    assert(DestVT != MVT::Vector && "Casts to vector already handled!");
1168    // This is a cast from a vector to something else.  This is always a bit
1169    // convert.  Get information about the input vector.
1170    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1171  }
1172}
1173
1174void SelectionDAGLowering::visitInsertElement(User &I) {
1175  SDOperand InVec = getValue(I.getOperand(0));
1176  SDOperand InVal = getValue(I.getOperand(1));
1177  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1178                                getValue(I.getOperand(2)));
1179
1180  SDOperand Num = *(InVec.Val->op_end()-2);
1181  SDOperand Typ = *(InVec.Val->op_end()-1);
1182  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1183                           InVec, InVal, InIdx, Num, Typ));
1184}
1185
1186void SelectionDAGLowering::visitExtractElement(User &I) {
1187  SDOperand InVec = getValue(I.getOperand(0));
1188  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1189                                getValue(I.getOperand(1)));
1190  SDOperand Typ = *(InVec.Val->op_end()-1);
1191  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1192                           TLI.getValueType(I.getType()), InVec, InIdx));
1193}
1194
1195void SelectionDAGLowering::visitShuffleVector(User &I) {
1196  SDOperand V1   = getValue(I.getOperand(0));
1197  SDOperand V2   = getValue(I.getOperand(1));
1198  SDOperand Mask = getValue(I.getOperand(2));
1199
1200  SDOperand Num = *(V1.Val->op_end()-2);
1201  SDOperand Typ = *(V2.Val->op_end()-1);
1202  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1203                           V1, V2, Mask, Num, Typ));
1204}
1205
1206
1207void SelectionDAGLowering::visitGetElementPtr(User &I) {
1208  SDOperand N = getValue(I.getOperand(0));
1209  const Type *Ty = I.getOperand(0)->getType();
1210  const Type *UIntPtrTy = TD->getIntPtrType();
1211
1212  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1213       OI != E; ++OI) {
1214    Value *Idx = *OI;
1215    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1216      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
1217      if (Field) {
1218        // N = N + Offset
1219        uint64_t Offset = TD->getStructLayout(StTy)->MemberOffsets[Field];
1220        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1221                        getIntPtrConstant(Offset));
1222      }
1223      Ty = StTy->getElementType(Field);
1224    } else {
1225      Ty = cast<SequentialType>(Ty)->getElementType();
1226
1227      // If this is a constant subscript, handle it quickly.
1228      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1229        if (CI->getRawValue() == 0) continue;
1230
1231        uint64_t Offs;
1232        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
1233          Offs = (int64_t)TD->getTypeSize(Ty)*CSI->getValue();
1234        else
1235          Offs = TD->getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
1236        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1237        continue;
1238      }
1239
1240      // N = N + Idx * ElementSize;
1241      uint64_t ElementSize = TD->getTypeSize(Ty);
1242      SDOperand IdxN = getValue(Idx);
1243
1244      // If the index is smaller or larger than intptr_t, truncate or extend
1245      // it.
1246      if (IdxN.getValueType() < N.getValueType()) {
1247        if (Idx->getType()->isSigned())
1248          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1249        else
1250          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
1251      } else if (IdxN.getValueType() > N.getValueType())
1252        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1253
1254      // If this is a multiply by a power of two, turn it into a shl
1255      // immediately.  This is a very common case.
1256      if (isPowerOf2_64(ElementSize)) {
1257        unsigned Amt = Log2_64(ElementSize);
1258        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1259                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1260        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1261        continue;
1262      }
1263
1264      SDOperand Scale = getIntPtrConstant(ElementSize);
1265      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1266      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1267    }
1268  }
1269  setValue(&I, N);
1270}
1271
1272void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1273  // If this is a fixed sized alloca in the entry block of the function,
1274  // allocate it statically on the stack.
1275  if (FuncInfo.StaticAllocaMap.count(&I))
1276    return;   // getValue will auto-populate this.
1277
1278  const Type *Ty = I.getAllocatedType();
1279  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
1280  unsigned Align = std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
1281                            I.getAlignment());
1282
1283  SDOperand AllocSize = getValue(I.getArraySize());
1284  MVT::ValueType IntPtr = TLI.getPointerTy();
1285  if (IntPtr < AllocSize.getValueType())
1286    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1287  else if (IntPtr > AllocSize.getValueType())
1288    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1289
1290  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1291                          getIntPtrConstant(TySize));
1292
1293  // Handle alignment.  If the requested alignment is less than or equal to the
1294  // stack alignment, ignore it and round the size of the allocation up to the
1295  // stack alignment size.  If the size is greater than the stack alignment, we
1296  // note this in the DYNAMIC_STACKALLOC node.
1297  unsigned StackAlign =
1298    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1299  if (Align <= StackAlign) {
1300    Align = 0;
1301    // Add SA-1 to the size.
1302    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1303                            getIntPtrConstant(StackAlign-1));
1304    // Mask out the low bits for alignment purposes.
1305    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1306                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1307  }
1308
1309  std::vector<MVT::ValueType> VTs;
1310  VTs.push_back(AllocSize.getValueType());
1311  VTs.push_back(MVT::Other);
1312  std::vector<SDOperand> Ops;
1313  Ops.push_back(getRoot());
1314  Ops.push_back(AllocSize);
1315  Ops.push_back(getIntPtrConstant(Align));
1316  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
1317  DAG.setRoot(setValue(&I, DSA).getValue(1));
1318
1319  // Inform the Frame Information that we have just allocated a variable-sized
1320  // object.
1321  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1322}
1323
1324void SelectionDAGLowering::visitLoad(LoadInst &I) {
1325  SDOperand Ptr = getValue(I.getOperand(0));
1326
1327  SDOperand Root;
1328  if (I.isVolatile())
1329    Root = getRoot();
1330  else {
1331    // Do not serialize non-volatile loads against each other.
1332    Root = DAG.getRoot();
1333  }
1334
1335  setValue(&I, getLoadFrom(I.getType(), Ptr, DAG.getSrcValue(I.getOperand(0)),
1336                           Root, I.isVolatile()));
1337}
1338
1339SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1340                                            SDOperand SrcValue, SDOperand Root,
1341                                            bool isVolatile) {
1342  SDOperand L;
1343  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1344    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1345    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr, SrcValue);
1346  } else {
1347    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SrcValue);
1348  }
1349
1350  if (isVolatile)
1351    DAG.setRoot(L.getValue(1));
1352  else
1353    PendingLoads.push_back(L.getValue(1));
1354
1355  return L;
1356}
1357
1358
1359void SelectionDAGLowering::visitStore(StoreInst &I) {
1360  Value *SrcV = I.getOperand(0);
1361  SDOperand Src = getValue(SrcV);
1362  SDOperand Ptr = getValue(I.getOperand(1));
1363  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
1364                          DAG.getSrcValue(I.getOperand(1))));
1365}
1366
1367/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1368/// access memory and has no other side effects at all.
1369static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1370#define GET_NO_MEMORY_INTRINSICS
1371#include "llvm/Intrinsics.gen"
1372#undef GET_NO_MEMORY_INTRINSICS
1373  return false;
1374}
1375
1376// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
1377// have any side-effects or if it only reads memory.
1378static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
1379#define GET_SIDE_EFFECT_INFO
1380#include "llvm/Intrinsics.gen"
1381#undef GET_SIDE_EFFECT_INFO
1382  return false;
1383}
1384
1385/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1386/// node.
1387void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1388                                                unsigned Intrinsic) {
1389  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1390  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
1391
1392  // Build the operand list.
1393  std::vector<SDOperand> Ops;
1394  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
1395    if (OnlyLoad) {
1396      // We don't need to serialize loads against other loads.
1397      Ops.push_back(DAG.getRoot());
1398    } else {
1399      Ops.push_back(getRoot());
1400    }
1401  }
1402
1403  // Add the intrinsic ID as an integer operand.
1404  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1405
1406  // Add all operands of the call to the operand list.
1407  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1408    SDOperand Op = getValue(I.getOperand(i));
1409
1410    // If this is a vector type, force it to the right packed type.
1411    if (Op.getValueType() == MVT::Vector) {
1412      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1413      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1414
1415      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1416      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1417      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1418    }
1419
1420    assert(TLI.isTypeLegal(Op.getValueType()) &&
1421           "Intrinsic uses a non-legal type?");
1422    Ops.push_back(Op);
1423  }
1424
1425  std::vector<MVT::ValueType> VTs;
1426  if (I.getType() != Type::VoidTy) {
1427    MVT::ValueType VT = TLI.getValueType(I.getType());
1428    if (VT == MVT::Vector) {
1429      const PackedType *DestTy = cast<PackedType>(I.getType());
1430      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1431
1432      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1433      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1434    }
1435
1436    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1437    VTs.push_back(VT);
1438  }
1439  if (HasChain)
1440    VTs.push_back(MVT::Other);
1441
1442  // Create the node.
1443  SDOperand Result;
1444  if (!HasChain)
1445    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTs, Ops);
1446  else if (I.getType() != Type::VoidTy)
1447    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTs, Ops);
1448  else
1449    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTs, Ops);
1450
1451  if (HasChain) {
1452    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
1453    if (OnlyLoad)
1454      PendingLoads.push_back(Chain);
1455    else
1456      DAG.setRoot(Chain);
1457  }
1458  if (I.getType() != Type::VoidTy) {
1459    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1460      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1461      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1462                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1463                           DAG.getValueType(EVT));
1464    }
1465    setValue(&I, Result);
1466  }
1467}
1468
1469/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1470/// we want to emit this as a call to a named external function, return the name
1471/// otherwise lower it and return null.
1472const char *
1473SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1474  switch (Intrinsic) {
1475  default:
1476    // By default, turn this into a target intrinsic node.
1477    visitTargetIntrinsic(I, Intrinsic);
1478    return 0;
1479  case Intrinsic::vastart:  visitVAStart(I); return 0;
1480  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1481  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1482  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1483  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1484  case Intrinsic::setjmp:
1485    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1486    break;
1487  case Intrinsic::longjmp:
1488    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1489    break;
1490  case Intrinsic::memcpy_i32:
1491  case Intrinsic::memcpy_i64:
1492    visitMemIntrinsic(I, ISD::MEMCPY);
1493    return 0;
1494  case Intrinsic::memset_i32:
1495  case Intrinsic::memset_i64:
1496    visitMemIntrinsic(I, ISD::MEMSET);
1497    return 0;
1498  case Intrinsic::memmove_i32:
1499  case Intrinsic::memmove_i64:
1500    visitMemIntrinsic(I, ISD::MEMMOVE);
1501    return 0;
1502
1503  case Intrinsic::dbg_stoppoint: {
1504    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1505    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1506    if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
1507      std::vector<SDOperand> Ops;
1508
1509      Ops.push_back(getRoot());
1510      Ops.push_back(getValue(SPI.getLineValue()));
1511      Ops.push_back(getValue(SPI.getColumnValue()));
1512
1513      DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
1514      assert(DD && "Not a debug information descriptor");
1515      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1516
1517      Ops.push_back(DAG.getString(CompileUnit->getFileName()));
1518      Ops.push_back(DAG.getString(CompileUnit->getDirectory()));
1519
1520      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops));
1521    }
1522
1523    return 0;
1524  }
1525  case Intrinsic::dbg_region_start: {
1526    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1527    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1528    if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
1529      std::vector<SDOperand> Ops;
1530
1531      unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
1532
1533      Ops.push_back(getRoot());
1534      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1535
1536      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1537    }
1538
1539    return 0;
1540  }
1541  case Intrinsic::dbg_region_end: {
1542    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1543    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
1544    if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
1545      std::vector<SDOperand> Ops;
1546
1547      unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
1548
1549      Ops.push_back(getRoot());
1550      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1551
1552      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1553    }
1554
1555    return 0;
1556  }
1557  case Intrinsic::dbg_func_start: {
1558    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1559    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
1560    if (DebugInfo && FSI.getSubprogram() &&
1561        DebugInfo->Verify(FSI.getSubprogram())) {
1562      std::vector<SDOperand> Ops;
1563
1564      unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
1565
1566      Ops.push_back(getRoot());
1567      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1568
1569      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1570    }
1571
1572    return 0;
1573  }
1574  case Intrinsic::dbg_declare: {
1575    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1576    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
1577    if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) {
1578      std::vector<SDOperand> Ops;
1579
1580      SDOperand AddressOp  = getValue(DI.getAddress());
1581      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp)) {
1582        DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
1583      }
1584    }
1585
1586    return 0;
1587  }
1588
1589  case Intrinsic::isunordered_f32:
1590  case Intrinsic::isunordered_f64:
1591    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
1592                              getValue(I.getOperand(2)), ISD::SETUO));
1593    return 0;
1594
1595  case Intrinsic::sqrt_f32:
1596  case Intrinsic::sqrt_f64:
1597    setValue(&I, DAG.getNode(ISD::FSQRT,
1598                             getValue(I.getOperand(1)).getValueType(),
1599                             getValue(I.getOperand(1))));
1600    return 0;
1601  case Intrinsic::pcmarker: {
1602    SDOperand Tmp = getValue(I.getOperand(1));
1603    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
1604    return 0;
1605  }
1606  case Intrinsic::readcyclecounter: {
1607    std::vector<MVT::ValueType> VTs;
1608    VTs.push_back(MVT::i64);
1609    VTs.push_back(MVT::Other);
1610    std::vector<SDOperand> Ops;
1611    Ops.push_back(getRoot());
1612    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops);
1613    setValue(&I, Tmp);
1614    DAG.setRoot(Tmp.getValue(1));
1615    return 0;
1616  }
1617  case Intrinsic::bswap_i16:
1618  case Intrinsic::bswap_i32:
1619  case Intrinsic::bswap_i64:
1620    setValue(&I, DAG.getNode(ISD::BSWAP,
1621                             getValue(I.getOperand(1)).getValueType(),
1622                             getValue(I.getOperand(1))));
1623    return 0;
1624  case Intrinsic::cttz_i8:
1625  case Intrinsic::cttz_i16:
1626  case Intrinsic::cttz_i32:
1627  case Intrinsic::cttz_i64:
1628    setValue(&I, DAG.getNode(ISD::CTTZ,
1629                             getValue(I.getOperand(1)).getValueType(),
1630                             getValue(I.getOperand(1))));
1631    return 0;
1632  case Intrinsic::ctlz_i8:
1633  case Intrinsic::ctlz_i16:
1634  case Intrinsic::ctlz_i32:
1635  case Intrinsic::ctlz_i64:
1636    setValue(&I, DAG.getNode(ISD::CTLZ,
1637                             getValue(I.getOperand(1)).getValueType(),
1638                             getValue(I.getOperand(1))));
1639    return 0;
1640  case Intrinsic::ctpop_i8:
1641  case Intrinsic::ctpop_i16:
1642  case Intrinsic::ctpop_i32:
1643  case Intrinsic::ctpop_i64:
1644    setValue(&I, DAG.getNode(ISD::CTPOP,
1645                             getValue(I.getOperand(1)).getValueType(),
1646                             getValue(I.getOperand(1))));
1647    return 0;
1648  case Intrinsic::stacksave: {
1649    std::vector<MVT::ValueType> VTs;
1650    VTs.push_back(TLI.getPointerTy());
1651    VTs.push_back(MVT::Other);
1652    std::vector<SDOperand> Ops;
1653    Ops.push_back(getRoot());
1654    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops);
1655    setValue(&I, Tmp);
1656    DAG.setRoot(Tmp.getValue(1));
1657    return 0;
1658  }
1659  case Intrinsic::stackrestore: {
1660    SDOperand Tmp = getValue(I.getOperand(1));
1661    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
1662    return 0;
1663  }
1664  case Intrinsic::prefetch:
1665    // FIXME: Currently discarding prefetches.
1666    return 0;
1667  }
1668}
1669
1670
1671void SelectionDAGLowering::visitCall(CallInst &I) {
1672  const char *RenameFn = 0;
1673  if (Function *F = I.getCalledFunction()) {
1674    if (F->isExternal())
1675      if (unsigned IID = F->getIntrinsicID()) {
1676        RenameFn = visitIntrinsicCall(I, IID);
1677        if (!RenameFn)
1678          return;
1679      } else {    // Not an LLVM intrinsic.
1680        const std::string &Name = F->getName();
1681        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
1682          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
1683              I.getOperand(1)->getType()->isFloatingPoint() &&
1684              I.getType() == I.getOperand(1)->getType() &&
1685              I.getType() == I.getOperand(2)->getType()) {
1686            SDOperand LHS = getValue(I.getOperand(1));
1687            SDOperand RHS = getValue(I.getOperand(2));
1688            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
1689                                     LHS, RHS));
1690            return;
1691          }
1692        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
1693          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1694              I.getOperand(1)->getType()->isFloatingPoint() &&
1695              I.getType() == I.getOperand(1)->getType()) {
1696            SDOperand Tmp = getValue(I.getOperand(1));
1697            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
1698            return;
1699          }
1700        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
1701          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1702              I.getOperand(1)->getType()->isFloatingPoint() &&
1703              I.getType() == I.getOperand(1)->getType()) {
1704            SDOperand Tmp = getValue(I.getOperand(1));
1705            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
1706            return;
1707          }
1708        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
1709          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1710              I.getOperand(1)->getType()->isFloatingPoint() &&
1711              I.getType() == I.getOperand(1)->getType()) {
1712            SDOperand Tmp = getValue(I.getOperand(1));
1713            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
1714            return;
1715          }
1716        }
1717      }
1718  } else if (isa<InlineAsm>(I.getOperand(0))) {
1719    visitInlineAsm(I);
1720    return;
1721  }
1722
1723  SDOperand Callee;
1724  if (!RenameFn)
1725    Callee = getValue(I.getOperand(0));
1726  else
1727    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
1728  std::vector<std::pair<SDOperand, const Type*> > Args;
1729  Args.reserve(I.getNumOperands());
1730  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1731    Value *Arg = I.getOperand(i);
1732    SDOperand ArgNode = getValue(Arg);
1733    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
1734  }
1735
1736  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
1737  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1738
1739  std::pair<SDOperand,SDOperand> Result =
1740    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
1741                    I.isTailCall(), Callee, Args, DAG);
1742  if (I.getType() != Type::VoidTy)
1743    setValue(&I, Result.first);
1744  DAG.setRoot(Result.second);
1745}
1746
1747SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
1748                                        SDOperand &Chain, SDOperand &Flag)const{
1749  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
1750  Chain = Val.getValue(1);
1751  Flag  = Val.getValue(2);
1752
1753  // If the result was expanded, copy from the top part.
1754  if (Regs.size() > 1) {
1755    assert(Regs.size() == 2 &&
1756           "Cannot expand to more than 2 elts yet!");
1757    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
1758    Chain = Val.getValue(1);
1759    Flag  = Val.getValue(2);
1760    if (DAG.getTargetLoweringInfo().isLittleEndian())
1761      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
1762    else
1763      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
1764  }
1765
1766  // Otherwise, if the return value was promoted, truncate it to the
1767  // appropriate type.
1768  if (RegVT == ValueVT)
1769    return Val;
1770
1771  if (MVT::isInteger(RegVT))
1772    return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1773  else
1774    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
1775}
1776
1777/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
1778/// specified value into the registers specified by this object.  This uses
1779/// Chain/Flag as the input and updates them for the output Chain/Flag.
1780void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
1781                                 SDOperand &Chain, SDOperand &Flag) const {
1782  if (Regs.size() == 1) {
1783    // If there is a single register and the types differ, this must be
1784    // a promotion.
1785    if (RegVT != ValueVT) {
1786      if (MVT::isInteger(RegVT))
1787        Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
1788      else
1789        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
1790    }
1791    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
1792    Flag = Chain.getValue(1);
1793  } else {
1794    std::vector<unsigned> R(Regs);
1795    if (!DAG.getTargetLoweringInfo().isLittleEndian())
1796      std::reverse(R.begin(), R.end());
1797
1798    for (unsigned i = 0, e = R.size(); i != e; ++i) {
1799      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
1800                                   DAG.getConstant(i, MVT::i32));
1801      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
1802      Flag = Chain.getValue(1);
1803    }
1804  }
1805}
1806
1807/// AddInlineAsmOperands - Add this value to the specified inlineasm node
1808/// operand list.  This adds the code marker and includes the number of
1809/// values added into it.
1810void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
1811                                        std::vector<SDOperand> &Ops) const {
1812  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
1813  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1814    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
1815}
1816
1817/// isAllocatableRegister - If the specified register is safe to allocate,
1818/// i.e. it isn't a stack pointer or some other special register, return the
1819/// register class for the register.  Otherwise, return null.
1820static const TargetRegisterClass *
1821isAllocatableRegister(unsigned Reg, MachineFunction &MF,
1822                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
1823  MVT::ValueType FoundVT = MVT::Other;
1824  const TargetRegisterClass *FoundRC = 0;
1825  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
1826       E = MRI->regclass_end(); RCI != E; ++RCI) {
1827    MVT::ValueType ThisVT = MVT::Other;
1828
1829    const TargetRegisterClass *RC = *RCI;
1830    // If none of the the value types for this register class are valid, we
1831    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1832    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1833         I != E; ++I) {
1834      if (TLI.isTypeLegal(*I)) {
1835        // If we have already found this register in a different register class,
1836        // choose the one with the largest VT specified.  For example, on
1837        // PowerPC, we favor f64 register classes over f32.
1838        if (FoundVT == MVT::Other ||
1839            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
1840          ThisVT = *I;
1841          break;
1842        }
1843      }
1844    }
1845
1846    if (ThisVT == MVT::Other) continue;
1847
1848    // NOTE: This isn't ideal.  In particular, this might allocate the
1849    // frame pointer in functions that need it (due to them not being taken
1850    // out of allocation, because a variable sized allocation hasn't been seen
1851    // yet).  This is a slight code pessimization, but should still work.
1852    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
1853         E = RC->allocation_order_end(MF); I != E; ++I)
1854      if (*I == Reg) {
1855        // We found a matching register class.  Keep looking at others in case
1856        // we find one with larger registers that this physreg is also in.
1857        FoundRC = RC;
1858        FoundVT = ThisVT;
1859        break;
1860      }
1861  }
1862  return FoundRC;
1863}
1864
1865RegsForValue SelectionDAGLowering::
1866GetRegistersForValue(const std::string &ConstrCode,
1867                     MVT::ValueType VT, bool isOutReg, bool isInReg,
1868                     std::set<unsigned> &OutputRegs,
1869                     std::set<unsigned> &InputRegs) {
1870  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
1871    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
1872  std::vector<unsigned> Regs;
1873
1874  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
1875  MVT::ValueType RegVT;
1876  MVT::ValueType ValueVT = VT;
1877
1878  if (PhysReg.first) {
1879    if (VT == MVT::Other)
1880      ValueVT = *PhysReg.second->vt_begin();
1881    RegVT = VT;
1882
1883    // This is a explicit reference to a physical register.
1884    Regs.push_back(PhysReg.first);
1885
1886    // If this is an expanded reference, add the rest of the regs to Regs.
1887    if (NumRegs != 1) {
1888      RegVT = *PhysReg.second->vt_begin();
1889      TargetRegisterClass::iterator I = PhysReg.second->begin();
1890      TargetRegisterClass::iterator E = PhysReg.second->end();
1891      for (; *I != PhysReg.first; ++I)
1892        assert(I != E && "Didn't find reg!");
1893
1894      // Already added the first reg.
1895      --NumRegs; ++I;
1896      for (; NumRegs; --NumRegs, ++I) {
1897        assert(I != E && "Ran out of registers to allocate!");
1898        Regs.push_back(*I);
1899      }
1900    }
1901    return RegsForValue(Regs, RegVT, ValueVT);
1902  }
1903
1904  // This is a reference to a register class.  Allocate NumRegs consecutive,
1905  // available, registers from the class.
1906  std::vector<unsigned> RegClassRegs =
1907    TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
1908
1909  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
1910  MachineFunction &MF = *CurMBB->getParent();
1911  unsigned NumAllocated = 0;
1912  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
1913    unsigned Reg = RegClassRegs[i];
1914    // See if this register is available.
1915    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
1916        (isInReg  && InputRegs.count(Reg))) {    // Already used.
1917      // Make sure we find consecutive registers.
1918      NumAllocated = 0;
1919      continue;
1920    }
1921
1922    // Check to see if this register is allocatable (i.e. don't give out the
1923    // stack pointer).
1924    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
1925    if (!RC) {
1926      // Make sure we find consecutive registers.
1927      NumAllocated = 0;
1928      continue;
1929    }
1930
1931    // Okay, this register is good, we can use it.
1932    ++NumAllocated;
1933
1934    // If we allocated enough consecutive
1935    if (NumAllocated == NumRegs) {
1936      unsigned RegStart = (i-NumAllocated)+1;
1937      unsigned RegEnd   = i+1;
1938      // Mark all of the allocated registers used.
1939      for (unsigned i = RegStart; i != RegEnd; ++i) {
1940        unsigned Reg = RegClassRegs[i];
1941        Regs.push_back(Reg);
1942        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
1943        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
1944      }
1945
1946      return RegsForValue(Regs, *RC->vt_begin(), VT);
1947    }
1948  }
1949
1950  // Otherwise, we couldn't allocate enough registers for this.
1951  return RegsForValue();
1952}
1953
1954
1955/// visitInlineAsm - Handle a call to an InlineAsm object.
1956///
1957void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
1958  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
1959
1960  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
1961                                                 MVT::Other);
1962
1963  // Note, we treat inline asms both with and without side-effects as the same.
1964  // If an inline asm doesn't have side effects and doesn't access memory, we
1965  // could not choose to not chain it.
1966  bool hasSideEffects = IA->hasSideEffects();
1967
1968  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
1969  std::vector<MVT::ValueType> ConstraintVTs;
1970
1971  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
1972  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
1973  /// if it is a def of that register.
1974  std::vector<SDOperand> AsmNodeOperands;
1975  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
1976  AsmNodeOperands.push_back(AsmStr);
1977
1978  SDOperand Chain = getRoot();
1979  SDOperand Flag;
1980
1981  // We fully assign registers here at isel time.  This is not optimal, but
1982  // should work.  For register classes that correspond to LLVM classes, we
1983  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
1984  // over the constraints, collecting fixed registers that we know we can't use.
1985  std::set<unsigned> OutputRegs, InputRegs;
1986  unsigned OpNum = 1;
1987  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1988    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
1989    std::string &ConstraintCode = Constraints[i].Codes[0];
1990
1991    MVT::ValueType OpVT;
1992
1993    // Compute the value type for each operand and add it to ConstraintVTs.
1994    switch (Constraints[i].Type) {
1995    case InlineAsm::isOutput:
1996      if (!Constraints[i].isIndirectOutput) {
1997        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
1998        OpVT = TLI.getValueType(I.getType());
1999      } else {
2000        const Type *OpTy = I.getOperand(OpNum)->getType();
2001        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2002        OpNum++;  // Consumes a call operand.
2003      }
2004      break;
2005    case InlineAsm::isInput:
2006      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2007      OpNum++;  // Consumes a call operand.
2008      break;
2009    case InlineAsm::isClobber:
2010      OpVT = MVT::Other;
2011      break;
2012    }
2013
2014    ConstraintVTs.push_back(OpVT);
2015
2016    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2017      continue;  // Not assigned a fixed reg.
2018
2019    // Build a list of regs that this operand uses.  This always has a single
2020    // element for promoted/expanded operands.
2021    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2022                                             false, false,
2023                                             OutputRegs, InputRegs);
2024
2025    switch (Constraints[i].Type) {
2026    case InlineAsm::isOutput:
2027      // We can't assign any other output to this register.
2028      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2029      // If this is an early-clobber output, it cannot be assigned to the same
2030      // value as the input reg.
2031      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2032        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2033      break;
2034    case InlineAsm::isInput:
2035      // We can't assign any other input to this register.
2036      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2037      break;
2038    case InlineAsm::isClobber:
2039      // Clobbered regs cannot be used as inputs or outputs.
2040      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2041      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2042      break;
2043    }
2044  }
2045
2046  // Loop over all of the inputs, copying the operand values into the
2047  // appropriate registers and processing the output regs.
2048  RegsForValue RetValRegs;
2049  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2050  OpNum = 1;
2051
2052  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2053    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2054    std::string &ConstraintCode = Constraints[i].Codes[0];
2055
2056    switch (Constraints[i].Type) {
2057    case InlineAsm::isOutput: {
2058      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2059      if (ConstraintCode.size() == 1)   // not a physreg name.
2060        CTy = TLI.getConstraintType(ConstraintCode[0]);
2061
2062      if (CTy == TargetLowering::C_Memory) {
2063        // Memory output.
2064        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2065
2066        // Check that the operand (the address to store to) isn't a float.
2067        if (!MVT::isInteger(InOperandVal.getValueType()))
2068          assert(0 && "MATCH FAIL!");
2069
2070        if (!Constraints[i].isIndirectOutput)
2071          assert(0 && "MATCH FAIL!");
2072
2073        OpNum++;  // Consumes a call operand.
2074
2075        // Extend/truncate to the right pointer type if needed.
2076        MVT::ValueType PtrType = TLI.getPointerTy();
2077        if (InOperandVal.getValueType() < PtrType)
2078          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2079        else if (InOperandVal.getValueType() > PtrType)
2080          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2081
2082        // Add information to the INLINEASM node to know about this output.
2083        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2084        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2085        AsmNodeOperands.push_back(InOperandVal);
2086        break;
2087      }
2088
2089      // Otherwise, this is a register output.
2090      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2091
2092      // If this is an early-clobber output, or if there is an input
2093      // constraint that matches this, we need to reserve the input register
2094      // so no other inputs allocate to it.
2095      bool UsesInputRegister = false;
2096      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2097        UsesInputRegister = true;
2098
2099      // Copy the output from the appropriate register.  Find a register that
2100      // we can use.
2101      RegsForValue Regs =
2102        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2103                             true, UsesInputRegister,
2104                             OutputRegs, InputRegs);
2105      assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
2106
2107      if (!Constraints[i].isIndirectOutput) {
2108        assert(RetValRegs.Regs.empty() &&
2109               "Cannot have multiple output constraints yet!");
2110        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2111        RetValRegs = Regs;
2112      } else {
2113        IndirectStoresToEmit.push_back(std::make_pair(Regs,
2114                                                      I.getOperand(OpNum)));
2115        OpNum++;  // Consumes a call operand.
2116      }
2117
2118      // Add information to the INLINEASM node to know that this register is
2119      // set.
2120      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
2121      break;
2122    }
2123    case InlineAsm::isInput: {
2124      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2125      OpNum++;  // Consumes a call operand.
2126
2127      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
2128        // If this is required to match an output register we have already set,
2129        // just use its register.
2130        unsigned OperandNo = atoi(ConstraintCode.c_str());
2131
2132        // Scan until we find the definition we already emitted of this operand.
2133        // When we find it, create a RegsForValue operand.
2134        unsigned CurOp = 2;  // The first operand.
2135        for (; OperandNo; --OperandNo) {
2136          // Advance to the next operand.
2137          unsigned NumOps =
2138            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2139          assert((NumOps & 7) == 2 /*REGDEF*/ &&
2140                 "Skipped past definitions?");
2141          CurOp += (NumOps>>3)+1;
2142        }
2143
2144        unsigned NumOps =
2145          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2146        assert((NumOps & 7) == 2 /*REGDEF*/ &&
2147               "Skipped past definitions?");
2148
2149        // Add NumOps>>3 registers to MatchedRegs.
2150        RegsForValue MatchedRegs;
2151        MatchedRegs.ValueVT = InOperandVal.getValueType();
2152        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
2153        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
2154          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
2155          MatchedRegs.Regs.push_back(Reg);
2156        }
2157
2158        // Use the produced MatchedRegs object to
2159        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
2160        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2161        break;
2162      }
2163
2164      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2165      if (ConstraintCode.size() == 1)   // not a physreg name.
2166        CTy = TLI.getConstraintType(ConstraintCode[0]);
2167
2168      if (CTy == TargetLowering::C_Other) {
2169        if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
2170          assert(0 && "MATCH FAIL!");
2171
2172        // Add information to the INLINEASM node to know about this input.
2173        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2174        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2175        AsmNodeOperands.push_back(InOperandVal);
2176        break;
2177      } else if (CTy == TargetLowering::C_Memory) {
2178        // Memory input.
2179
2180        // Check that the operand isn't a float.
2181        if (!MVT::isInteger(InOperandVal.getValueType()))
2182          assert(0 && "MATCH FAIL!");
2183
2184        // Extend/truncate to the right pointer type if needed.
2185        MVT::ValueType PtrType = TLI.getPointerTy();
2186        if (InOperandVal.getValueType() < PtrType)
2187          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2188        else if (InOperandVal.getValueType() > PtrType)
2189          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2190
2191        // Add information to the INLINEASM node to know about this input.
2192        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2193        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2194        AsmNodeOperands.push_back(InOperandVal);
2195        break;
2196      }
2197
2198      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2199
2200      // Copy the input into the appropriate registers.
2201      RegsForValue InRegs =
2202        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2203                             false, true, OutputRegs, InputRegs);
2204      // FIXME: should be match fail.
2205      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2206
2207      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
2208
2209      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2210      break;
2211    }
2212    case InlineAsm::isClobber: {
2213      RegsForValue ClobberedRegs =
2214        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2215                             OutputRegs, InputRegs);
2216      // Add the clobbered value to the operand list, so that the register
2217      // allocator is aware that the physreg got clobbered.
2218      if (!ClobberedRegs.Regs.empty())
2219        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2220      break;
2221    }
2222    }
2223  }
2224
2225  // Finish up input operands.
2226  AsmNodeOperands[0] = Chain;
2227  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2228
2229  std::vector<MVT::ValueType> VTs;
2230  VTs.push_back(MVT::Other);
2231  VTs.push_back(MVT::Flag);
2232  Chain = DAG.getNode(ISD::INLINEASM, VTs, AsmNodeOperands);
2233  Flag = Chain.getValue(1);
2234
2235  // If this asm returns a register value, copy the result from that register
2236  // and set it as the value of the call.
2237  if (!RetValRegs.Regs.empty())
2238    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2239
2240  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2241
2242  // Process indirect outputs, first output all of the flagged copies out of
2243  // physregs.
2244  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2245    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2246    Value *Ptr = IndirectStoresToEmit[i].second;
2247    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2248    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2249  }
2250
2251  // Emit the non-flagged stores from the physregs.
2252  std::vector<SDOperand> OutChains;
2253  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2254    OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
2255                                    StoresToEmit[i].first,
2256                                    getValue(StoresToEmit[i].second),
2257                                    DAG.getSrcValue(StoresToEmit[i].second)));
2258  if (!OutChains.empty())
2259    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains);
2260  DAG.setRoot(Chain);
2261}
2262
2263
2264void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2265  SDOperand Src = getValue(I.getOperand(0));
2266
2267  MVT::ValueType IntPtr = TLI.getPointerTy();
2268
2269  if (IntPtr < Src.getValueType())
2270    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2271  else if (IntPtr > Src.getValueType())
2272    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2273
2274  // Scale the source by the type size.
2275  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
2276  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2277                    Src, getIntPtrConstant(ElementSize));
2278
2279  std::vector<std::pair<SDOperand, const Type*> > Args;
2280  Args.push_back(std::make_pair(Src, TLI.getTargetData()->getIntPtrType()));
2281
2282  std::pair<SDOperand,SDOperand> Result =
2283    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
2284                    DAG.getExternalSymbol("malloc", IntPtr),
2285                    Args, DAG);
2286  setValue(&I, Result.first);  // Pointers always fit in registers
2287  DAG.setRoot(Result.second);
2288}
2289
2290void SelectionDAGLowering::visitFree(FreeInst &I) {
2291  std::vector<std::pair<SDOperand, const Type*> > Args;
2292  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
2293                                TLI.getTargetData()->getIntPtrType()));
2294  MVT::ValueType IntPtr = TLI.getPointerTy();
2295  std::pair<SDOperand,SDOperand> Result =
2296    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
2297                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2298  DAG.setRoot(Result.second);
2299}
2300
2301// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2302// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2303// instructions are special in various ways, which require special support to
2304// insert.  The specified MachineInstr is created but not inserted into any
2305// basic blocks, and the scheduler passes ownership of it to this method.
2306MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2307                                                       MachineBasicBlock *MBB) {
2308  std::cerr << "If a target marks an instruction with "
2309               "'usesCustomDAGSchedInserter', it must implement "
2310               "TargetLowering::InsertAtEndOfBasicBlock!\n";
2311  abort();
2312  return 0;
2313}
2314
2315void SelectionDAGLowering::visitVAStart(CallInst &I) {
2316  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2317                          getValue(I.getOperand(1)),
2318                          DAG.getSrcValue(I.getOperand(1))));
2319}
2320
2321void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2322  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2323                             getValue(I.getOperand(0)),
2324                             DAG.getSrcValue(I.getOperand(0)));
2325  setValue(&I, V);
2326  DAG.setRoot(V.getValue(1));
2327}
2328
2329void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2330  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2331                          getValue(I.getOperand(1)),
2332                          DAG.getSrcValue(I.getOperand(1))));
2333}
2334
2335void SelectionDAGLowering::visitVACopy(CallInst &I) {
2336  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2337                          getValue(I.getOperand(1)),
2338                          getValue(I.getOperand(2)),
2339                          DAG.getSrcValue(I.getOperand(1)),
2340                          DAG.getSrcValue(I.getOperand(2))));
2341}
2342
2343/// TargetLowering::LowerArguments - This is the default LowerArguments
2344/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
2345/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be removed.
2346std::vector<SDOperand>
2347TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
2348  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
2349  std::vector<SDOperand> Ops;
2350  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
2351  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
2352
2353  // Add one result value for each formal argument.
2354  std::vector<MVT::ValueType> RetVals;
2355  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2356    MVT::ValueType VT = getValueType(I->getType());
2357
2358    switch (getTypeAction(VT)) {
2359    default: assert(0 && "Unknown type action!");
2360    case Legal:
2361      RetVals.push_back(VT);
2362      break;
2363    case Promote:
2364      RetVals.push_back(getTypeToTransformTo(VT));
2365      break;
2366    case Expand:
2367      if (VT != MVT::Vector) {
2368        // If this is a large integer, it needs to be broken up into small
2369        // integers.  Figure out what the destination type is and how many small
2370        // integers it turns into.
2371        MVT::ValueType NVT = getTypeToTransformTo(VT);
2372        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2373        for (unsigned i = 0; i != NumVals; ++i)
2374          RetVals.push_back(NVT);
2375      } else {
2376        // Otherwise, this is a vector type.  We only support legal vectors
2377        // right now.
2378        unsigned NumElems = cast<PackedType>(I->getType())->getNumElements();
2379        const Type *EltTy = cast<PackedType>(I->getType())->getElementType();
2380
2381        // Figure out if there is a Packed type corresponding to this Vector
2382        // type.  If so, convert to the packed type.
2383        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2384        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2385          RetVals.push_back(TVT);
2386        } else {
2387          assert(0 && "Don't support illegal by-val vector arguments yet!");
2388        }
2389      }
2390      break;
2391    }
2392  }
2393
2394  if (RetVals.size() == 0)
2395    RetVals.push_back(MVT::isVoid);
2396
2397  // Create the node.
2398  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS, RetVals, Ops).Val;
2399
2400  // Set up the return result vector.
2401  Ops.clear();
2402  unsigned i = 0;
2403  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2404    MVT::ValueType VT = getValueType(I->getType());
2405
2406    switch (getTypeAction(VT)) {
2407    default: assert(0 && "Unknown type action!");
2408    case Legal:
2409      Ops.push_back(SDOperand(Result, i++));
2410      break;
2411    case Promote: {
2412      SDOperand Op(Result, i++);
2413      if (MVT::isInteger(VT)) {
2414        unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext
2415                                                     : ISD::AssertZext;
2416        Op = DAG.getNode(AssertOp, Op.getValueType(), Op, DAG.getValueType(VT));
2417        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2418      } else {
2419        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2420        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
2421      }
2422      Ops.push_back(Op);
2423      break;
2424    }
2425    case Expand:
2426      if (VT != MVT::Vector) {
2427        // If this is a large integer, it needs to be reassembled from small
2428        // integers.  Figure out what the source elt type is and how many small
2429        // integers it is.
2430        MVT::ValueType NVT = getTypeToTransformTo(VT);
2431        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2432        if (NumVals == 2) {
2433          SDOperand Lo = SDOperand(Result, i++);
2434          SDOperand Hi = SDOperand(Result, i++);
2435
2436          if (!isLittleEndian())
2437            std::swap(Lo, Hi);
2438
2439          Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi));
2440        } else {
2441          // Value scalarized into many values.  Unimp for now.
2442          assert(0 && "Cannot expand i64 -> i16 yet!");
2443        }
2444      } else {
2445        // Otherwise, this is a vector type.  We only support legal vectors
2446        // right now.
2447        const PackedType *PTy = cast<PackedType>(I->getType());
2448        unsigned NumElems = PTy->getNumElements();
2449        const Type *EltTy = PTy->getElementType();
2450
2451        // Figure out if there is a Packed type corresponding to this Vector
2452        // type.  If so, convert to the packed type.
2453        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2454        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2455          SDOperand N = SDOperand(Result, i++);
2456          // Handle copies from generic vectors to registers.
2457          MVT::ValueType PTyElementVT, PTyLegalElementVT;
2458          unsigned NE = getPackedTypeBreakdown(PTy, PTyElementVT,
2459                                               PTyLegalElementVT);
2460          // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
2461          // "N x PTyElementVT" MVT::Vector type.
2462          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
2463                          DAG.getConstant(NE, MVT::i32),
2464                          DAG.getValueType(PTyElementVT));
2465          Ops.push_back(N);
2466        } else {
2467          assert(0 && "Don't support illegal by-val vector arguments yet!");
2468        }
2469      }
2470      break;
2471    }
2472  }
2473  return Ops;
2474}
2475
2476// It is always conservatively correct for llvm.returnaddress and
2477// llvm.frameaddress to return 0.
2478std::pair<SDOperand, SDOperand>
2479TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
2480                                        unsigned Depth, SelectionDAG &DAG) {
2481  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
2482}
2483
2484SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2485  assert(0 && "LowerOperation not implemented for this target!");
2486  abort();
2487  return SDOperand();
2488}
2489
2490SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
2491                                                 SelectionDAG &DAG) {
2492  assert(0 && "CustomPromoteOperation not implemented for this target!");
2493  abort();
2494  return SDOperand();
2495}
2496
2497void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
2498  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
2499  std::pair<SDOperand,SDOperand> Result =
2500    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
2501  setValue(&I, Result.first);
2502  DAG.setRoot(Result.second);
2503}
2504
2505/// getMemsetValue - Vectorized representation of the memset value
2506/// operand.
2507static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2508                                SelectionDAG &DAG) {
2509  MVT::ValueType CurVT = VT;
2510  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2511    uint64_t Val   = C->getValue() & 255;
2512    unsigned Shift = 8;
2513    while (CurVT != MVT::i8) {
2514      Val = (Val << Shift) | Val;
2515      Shift <<= 1;
2516      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2517    }
2518    return DAG.getConstant(Val, VT);
2519  } else {
2520    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2521    unsigned Shift = 8;
2522    while (CurVT != MVT::i8) {
2523      Value =
2524        DAG.getNode(ISD::OR, VT,
2525                    DAG.getNode(ISD::SHL, VT, Value,
2526                                DAG.getConstant(Shift, MVT::i8)), Value);
2527      Shift <<= 1;
2528      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2529    }
2530
2531    return Value;
2532  }
2533}
2534
2535/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2536/// used when a memcpy is turned into a memset when the source is a constant
2537/// string ptr.
2538static SDOperand getMemsetStringVal(MVT::ValueType VT,
2539                                    SelectionDAG &DAG, TargetLowering &TLI,
2540                                    std::string &Str, unsigned Offset) {
2541  MVT::ValueType CurVT = VT;
2542  uint64_t Val = 0;
2543  unsigned MSB = getSizeInBits(VT) / 8;
2544  if (TLI.isLittleEndian())
2545    Offset = Offset + MSB - 1;
2546  for (unsigned i = 0; i != MSB; ++i) {
2547    Val = (Val << 8) | Str[Offset];
2548    Offset += TLI.isLittleEndian() ? -1 : 1;
2549  }
2550  return DAG.getConstant(Val, VT);
2551}
2552
2553/// getMemBasePlusOffset - Returns base and offset node for the
2554static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2555                                      SelectionDAG &DAG, TargetLowering &TLI) {
2556  MVT::ValueType VT = Base.getValueType();
2557  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2558}
2559
2560/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2561/// to replace the memset / memcpy is below the threshold. It also returns the
2562/// types of the sequence of  memory ops to perform memset / memcpy.
2563static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2564                                     unsigned Limit, uint64_t Size,
2565                                     unsigned Align, TargetLowering &TLI) {
2566  MVT::ValueType VT;
2567
2568  if (TLI.allowsUnalignedMemoryAccesses()) {
2569    VT = MVT::i64;
2570  } else {
2571    switch (Align & 7) {
2572    case 0:
2573      VT = MVT::i64;
2574      break;
2575    case 4:
2576      VT = MVT::i32;
2577      break;
2578    case 2:
2579      VT = MVT::i16;
2580      break;
2581    default:
2582      VT = MVT::i8;
2583      break;
2584    }
2585  }
2586
2587  MVT::ValueType LVT = MVT::i64;
2588  while (!TLI.isTypeLegal(LVT))
2589    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2590  assert(MVT::isInteger(LVT));
2591
2592  if (VT > LVT)
2593    VT = LVT;
2594
2595  unsigned NumMemOps = 0;
2596  while (Size != 0) {
2597    unsigned VTSize = getSizeInBits(VT) / 8;
2598    while (VTSize > Size) {
2599      VT = (MVT::ValueType)((unsigned)VT - 1);
2600      VTSize >>= 1;
2601    }
2602    assert(MVT::isInteger(VT));
2603
2604    if (++NumMemOps > Limit)
2605      return false;
2606    MemOps.push_back(VT);
2607    Size -= VTSize;
2608  }
2609
2610  return true;
2611}
2612
2613void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
2614  SDOperand Op1 = getValue(I.getOperand(1));
2615  SDOperand Op2 = getValue(I.getOperand(2));
2616  SDOperand Op3 = getValue(I.getOperand(3));
2617  SDOperand Op4 = getValue(I.getOperand(4));
2618  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
2619  if (Align == 0) Align = 1;
2620
2621  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
2622    std::vector<MVT::ValueType> MemOps;
2623
2624    // Expand memset / memcpy to a series of load / store ops
2625    // if the size operand falls below a certain threshold.
2626    std::vector<SDOperand> OutChains;
2627    switch (Op) {
2628    default: break;  // Do nothing for now.
2629    case ISD::MEMSET: {
2630      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2631                                   Size->getValue(), Align, TLI)) {
2632        unsigned NumMemOps = MemOps.size();
2633        unsigned Offset = 0;
2634        for (unsigned i = 0; i < NumMemOps; i++) {
2635          MVT::ValueType VT = MemOps[i];
2636          unsigned VTSize = getSizeInBits(VT) / 8;
2637          SDOperand Value = getMemsetValue(Op2, VT, DAG);
2638          SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, getRoot(),
2639                                        Value,
2640                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
2641                                      DAG.getSrcValue(I.getOperand(1), Offset));
2642          OutChains.push_back(Store);
2643          Offset += VTSize;
2644        }
2645      }
2646      break;
2647    }
2648    case ISD::MEMCPY: {
2649      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
2650                                   Size->getValue(), Align, TLI)) {
2651        unsigned NumMemOps = MemOps.size();
2652        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
2653        GlobalAddressSDNode *G = NULL;
2654        std::string Str;
2655        bool CopyFromStr = false;
2656
2657        if (Op2.getOpcode() == ISD::GlobalAddress)
2658          G = cast<GlobalAddressSDNode>(Op2);
2659        else if (Op2.getOpcode() == ISD::ADD &&
2660                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2661                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
2662          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
2663          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
2664        }
2665        if (G) {
2666          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2667          if (GV) {
2668            Str = GV->getStringValue(false);
2669            if (!Str.empty()) {
2670              CopyFromStr = true;
2671              SrcOff += SrcDelta;
2672            }
2673          }
2674        }
2675
2676        for (unsigned i = 0; i < NumMemOps; i++) {
2677          MVT::ValueType VT = MemOps[i];
2678          unsigned VTSize = getSizeInBits(VT) / 8;
2679          SDOperand Value, Chain, Store;
2680
2681          if (CopyFromStr) {
2682            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2683            Chain = getRoot();
2684            Store =
2685              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2686                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2687                          DAG.getSrcValue(I.getOperand(1), DstOff));
2688          } else {
2689            Value = DAG.getLoad(VT, getRoot(),
2690                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
2691                        DAG.getSrcValue(I.getOperand(2), SrcOff));
2692            Chain = Value.getValue(1);
2693            Store =
2694              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2695                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2696                          DAG.getSrcValue(I.getOperand(1), DstOff));
2697          }
2698          OutChains.push_back(Store);
2699          SrcOff += VTSize;
2700          DstOff += VTSize;
2701        }
2702      }
2703      break;
2704    }
2705    }
2706
2707    if (!OutChains.empty()) {
2708      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains));
2709      return;
2710    }
2711  }
2712
2713  std::vector<SDOperand> Ops;
2714  Ops.push_back(getRoot());
2715  Ops.push_back(Op1);
2716  Ops.push_back(Op2);
2717  Ops.push_back(Op3);
2718  Ops.push_back(Op4);
2719  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
2720}
2721
2722//===----------------------------------------------------------------------===//
2723// SelectionDAGISel code
2724//===----------------------------------------------------------------------===//
2725
2726unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
2727  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
2728}
2729
2730void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
2731  // FIXME: we only modify the CFG to split critical edges.  This
2732  // updates dom and loop info.
2733}
2734
2735
2736/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
2737/// casting to the type of GEPI.
2738static Value *InsertGEPComputeCode(Value *&V, BasicBlock *BB, Instruction *GEPI,
2739                                   Value *Ptr, Value *PtrOffset) {
2740  if (V) return V;   // Already computed.
2741
2742  BasicBlock::iterator InsertPt;
2743  if (BB == GEPI->getParent()) {
2744    // If insert into the GEP's block, insert right after the GEP.
2745    InsertPt = GEPI;
2746    ++InsertPt;
2747  } else {
2748    // Otherwise, insert at the top of BB, after any PHI nodes
2749    InsertPt = BB->begin();
2750    while (isa<PHINode>(InsertPt)) ++InsertPt;
2751  }
2752
2753  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
2754  // BB so that there is only one value live across basic blocks (the cast
2755  // operand).
2756  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
2757    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
2758      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
2759
2760  // Add the offset, cast it to the right type.
2761  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
2762  Ptr = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
2763  return V = Ptr;
2764}
2765
2766/// OptimizeNoopCopyExpression - We have determined that the specified cast
2767/// instruction is a noop copy (e.g. it's casting from one pointer type to
2768/// another, int->uint, or int->sbyte on PPC.
2769static void OptimizeNoopCopyExpression(CastInst *CI) {
2770  BasicBlock *DefBB = CI->getParent();
2771
2772  /// InsertedCasts - Only insert a cast in each block once.
2773  std::map<BasicBlock*, CastInst*> InsertedCasts;
2774
2775  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
2776       UI != E; ) {
2777    Use &TheUse = UI.getUse();
2778    Instruction *User = cast<Instruction>(*UI);
2779
2780    // Figure out which BB this cast is used in.  For PHI's this is the
2781    // appropriate predecessor block.
2782    BasicBlock *UserBB = User->getParent();
2783    if (PHINode *PN = dyn_cast<PHINode>(User)) {
2784      unsigned OpVal = UI.getOperandNo()/2;
2785      UserBB = PN->getIncomingBlock(OpVal);
2786    }
2787
2788    // Preincrement use iterator so we don't invalidate it.
2789    ++UI;
2790
2791    // If this user is in the same block as the cast, don't change the cast.
2792    if (UserBB == DefBB) continue;
2793
2794    // If we have already inserted a cast into this block, use it.
2795    CastInst *&InsertedCast = InsertedCasts[UserBB];
2796
2797    if (!InsertedCast) {
2798      BasicBlock::iterator InsertPt = UserBB->begin();
2799      while (isa<PHINode>(InsertPt)) ++InsertPt;
2800
2801      InsertedCast =
2802        new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
2803    }
2804
2805    // Replace a use of the cast with a use of the new casat.
2806    TheUse = InsertedCast;
2807  }
2808}
2809
2810/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
2811/// selection, we want to be a bit careful about some things.  In particular, if
2812/// we have a GEP instruction that is used in a different block than it is
2813/// defined, the addressing expression of the GEP cannot be folded into loads or
2814/// stores that use it.  In this case, decompose the GEP and move constant
2815/// indices into blocks that use it.
2816static void OptimizeGEPExpression(GetElementPtrInst *GEPI,
2817                                  const TargetData *TD) {
2818  // If this GEP is only used inside the block it is defined in, there is no
2819  // need to rewrite it.
2820  bool isUsedOutsideDefBB = false;
2821  BasicBlock *DefBB = GEPI->getParent();
2822  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
2823       UI != E; ++UI) {
2824    if (cast<Instruction>(*UI)->getParent() != DefBB) {
2825      isUsedOutsideDefBB = true;
2826      break;
2827    }
2828  }
2829  if (!isUsedOutsideDefBB) return;
2830
2831  // If this GEP has no non-zero constant indices, there is nothing we can do,
2832  // ignore it.
2833  bool hasConstantIndex = false;
2834  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
2835       E = GEPI->op_end(); OI != E; ++OI) {
2836    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI))
2837      if (CI->getRawValue()) {
2838        hasConstantIndex = true;
2839        break;
2840      }
2841  }
2842  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
2843  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0))) return;
2844
2845  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
2846  // constant offset (which we now know is non-zero) and deal with it later.
2847  uint64_t ConstantOffset = 0;
2848  const Type *UIntPtrTy = TD->getIntPtrType();
2849  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
2850  const Type *Ty = GEPI->getOperand(0)->getType();
2851
2852  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
2853       E = GEPI->op_end(); OI != E; ++OI) {
2854    Value *Idx = *OI;
2855    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2856      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
2857      if (Field)
2858        ConstantOffset += TD->getStructLayout(StTy)->MemberOffsets[Field];
2859      Ty = StTy->getElementType(Field);
2860    } else {
2861      Ty = cast<SequentialType>(Ty)->getElementType();
2862
2863      // Handle constant subscripts.
2864      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2865        if (CI->getRawValue() == 0) continue;
2866
2867        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
2868          ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CSI->getValue();
2869        else
2870          ConstantOffset+=TD->getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
2871        continue;
2872      }
2873
2874      // Ptr = Ptr + Idx * ElementSize;
2875
2876      // Cast Idx to UIntPtrTy if needed.
2877      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
2878
2879      uint64_t ElementSize = TD->getTypeSize(Ty);
2880      // Mask off bits that should not be set.
2881      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
2882      Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
2883
2884      // Multiply by the element size and add to the base.
2885      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
2886      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
2887    }
2888  }
2889
2890  // Make sure that the offset fits in uintptr_t.
2891  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
2892  Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
2893
2894  // Okay, we have now emitted all of the variable index parts to the BB that
2895  // the GEP is defined in.  Loop over all of the using instructions, inserting
2896  // an "add Ptr, ConstantOffset" into each block that uses it and update the
2897  // instruction to use the newly computed value, making GEPI dead.  When the
2898  // user is a load or store instruction address, we emit the add into the user
2899  // block, otherwise we use a canonical version right next to the gep (these
2900  // won't be foldable as addresses, so we might as well share the computation).
2901
2902  std::map<BasicBlock*,Value*> InsertedExprs;
2903  while (!GEPI->use_empty()) {
2904    Instruction *User = cast<Instruction>(GEPI->use_back());
2905
2906    // If this use is not foldable into the addressing mode, use a version
2907    // emitted in the GEP block.
2908    Value *NewVal;
2909    if (!isa<LoadInst>(User) &&
2910        (!isa<StoreInst>(User) || User->getOperand(0) == GEPI)) {
2911      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
2912                                    Ptr, PtrOffset);
2913    } else {
2914      // Otherwise, insert the code in the User's block so it can be folded into
2915      // any users in that block.
2916      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
2917                                    User->getParent(), GEPI,
2918                                    Ptr, PtrOffset);
2919    }
2920    User->replaceUsesOfWith(GEPI, NewVal);
2921  }
2922
2923  // Finally, the GEP is dead, remove it.
2924  GEPI->eraseFromParent();
2925}
2926
2927bool SelectionDAGISel::runOnFunction(Function &Fn) {
2928  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
2929  RegMap = MF.getSSARegMap();
2930  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
2931
2932  // First, split all critical edges for PHI nodes with incoming values that are
2933  // constants, this way the load of the constant into a vreg will not be placed
2934  // into MBBs that are used some other way.
2935  //
2936  // In this pass we also look for GEP and cast instructions that are used
2937  // across basic blocks and rewrite them to improve basic-block-at-a-time
2938  // selection.
2939  //
2940  //
2941  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
2942    PHINode *PN;
2943    BasicBlock::iterator BBI;
2944    for (BBI = BB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI)
2945      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2946        if (isa<Constant>(PN->getIncomingValue(i)))
2947          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
2948
2949    for (BasicBlock::iterator E = BB->end(); BBI != E; ) {
2950      Instruction *I = BBI++;
2951      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
2952        OptimizeGEPExpression(GEPI, TLI.getTargetData());
2953      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
2954        // If this is a noop copy, sink it into user blocks to reduce the number
2955        // of virtual registers that must be created and coallesced.
2956        MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
2957        MVT::ValueType DstVT = TLI.getValueType(CI->getType());
2958
2959        // This is an fp<->int conversion?
2960        if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
2961          continue;
2962
2963        // If this is an extension, it will be a zero or sign extension, which
2964        // isn't a noop.
2965        if (SrcVT < DstVT) continue;
2966
2967        // If these values will be promoted, find out what they will be promoted
2968        // to.  This helps us consider truncates on PPC as noop copies when they
2969        // are.
2970        if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
2971          SrcVT = TLI.getTypeToTransformTo(SrcVT);
2972        if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
2973          DstVT = TLI.getTypeToTransformTo(DstVT);
2974
2975        // If, after promotion, these are the same types, this is a noop copy.
2976        if (SrcVT == DstVT)
2977          OptimizeNoopCopyExpression(CI);
2978      }
2979    }
2980  }
2981
2982  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
2983
2984  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
2985    SelectBasicBlock(I, MF, FuncInfo);
2986
2987  return true;
2988}
2989
2990
2991SDOperand SelectionDAGISel::
2992CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
2993  SDOperand Op = SDL.getValue(V);
2994  assert((Op.getOpcode() != ISD::CopyFromReg ||
2995          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
2996         "Copy from a reg to the same reg!");
2997
2998  // If this type is not legal, we must make sure to not create an invalid
2999  // register use.
3000  MVT::ValueType SrcVT = Op.getValueType();
3001  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
3002  SelectionDAG &DAG = SDL.DAG;
3003  if (SrcVT == DestVT) {
3004    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
3005  } else if (SrcVT == MVT::Vector) {
3006    // Handle copies from generic vectors to registers.
3007    MVT::ValueType PTyElementVT, PTyLegalElementVT;
3008    unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
3009                                             PTyElementVT, PTyLegalElementVT);
3010
3011    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
3012    // MVT::Vector type.
3013    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
3014                     DAG.getConstant(NE, MVT::i32),
3015                     DAG.getValueType(PTyElementVT));
3016
3017    // Loop over all of the elements of the resultant vector,
3018    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
3019    // copying them into output registers.
3020    std::vector<SDOperand> OutChains;
3021    SDOperand Root = SDL.getRoot();
3022    for (unsigned i = 0; i != NE; ++i) {
3023      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
3024                                  Op, DAG.getConstant(i, MVT::i32));
3025      if (PTyElementVT == PTyLegalElementVT) {
3026        // Elements are legal.
3027        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3028      } else if (PTyLegalElementVT > PTyElementVT) {
3029        // Elements are promoted.
3030        if (MVT::isFloatingPoint(PTyLegalElementVT))
3031          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
3032        else
3033          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
3034        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3035      } else {
3036        // Elements are expanded.
3037        // The src value is expanded into multiple registers.
3038        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3039                                   Elt, DAG.getConstant(0, MVT::i32));
3040        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3041                                   Elt, DAG.getConstant(1, MVT::i32));
3042        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
3043        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
3044      }
3045    }
3046    return DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains);
3047  } else if (SrcVT < DestVT) {
3048    // The src value is promoted to the register.
3049    if (MVT::isFloatingPoint(SrcVT))
3050      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
3051    else
3052      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
3053    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
3054  } else  {
3055    // The src value is expanded into multiple registers.
3056    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3057                               Op, DAG.getConstant(0, MVT::i32));
3058    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3059                               Op, DAG.getConstant(1, MVT::i32));
3060    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
3061    return DAG.getCopyToReg(Op, Reg+1, Hi);
3062  }
3063}
3064
3065void SelectionDAGISel::
3066LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
3067               std::vector<SDOperand> &UnorderedChains) {
3068  // If this is the entry block, emit arguments.
3069  Function &F = *BB->getParent();
3070  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
3071  SDOperand OldRoot = SDL.DAG.getRoot();
3072  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
3073
3074  unsigned a = 0;
3075  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
3076       AI != E; ++AI, ++a)
3077    if (!AI->use_empty()) {
3078      SDL.setValue(AI, Args[a]);
3079
3080      // If this argument is live outside of the entry block, insert a copy from
3081      // whereever we got it to the vreg that other BB's will reference it as.
3082      if (FuncInfo.ValueMap.count(AI)) {
3083        SDOperand Copy =
3084          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
3085        UnorderedChains.push_back(Copy);
3086      }
3087    }
3088
3089  // Next, if the function has live ins that need to be copied into vregs,
3090  // emit the copies now, into the top of the block.
3091  MachineFunction &MF = SDL.DAG.getMachineFunction();
3092  if (MF.livein_begin() != MF.livein_end()) {
3093    SSARegMap *RegMap = MF.getSSARegMap();
3094    const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
3095    for (MachineFunction::livein_iterator LI = MF.livein_begin(),
3096         E = MF.livein_end(); LI != E; ++LI)
3097      if (LI->second)
3098        MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
3099                         LI->first, RegMap->getRegClass(LI->second));
3100  }
3101
3102  // Finally, if the target has anything special to do, allow it to do so.
3103  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
3104}
3105
3106
3107void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
3108       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
3109                                         FunctionLoweringInfo &FuncInfo) {
3110  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
3111
3112  std::vector<SDOperand> UnorderedChains;
3113
3114  // Lower any arguments needed in this block if this is the entry block.
3115  if (LLVMBB == &LLVMBB->getParent()->front())
3116    LowerArguments(LLVMBB, SDL, UnorderedChains);
3117
3118  BB = FuncInfo.MBBMap[LLVMBB];
3119  SDL.setCurrentBasicBlock(BB);
3120
3121  // Lower all of the non-terminator instructions.
3122  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
3123       I != E; ++I)
3124    SDL.visit(*I);
3125
3126  // Ensure that all instructions which are used outside of their defining
3127  // blocks are available as virtual registers.
3128  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
3129    if (!I->use_empty() && !isa<PHINode>(I)) {
3130      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
3131      if (VMI != FuncInfo.ValueMap.end())
3132        UnorderedChains.push_back(
3133                           CopyValueToVirtualRegister(SDL, I, VMI->second));
3134    }
3135
3136  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
3137  // ensure constants are generated when needed.  Remember the virtual registers
3138  // that need to be added to the Machine PHI nodes as input.  We cannot just
3139  // directly add them, because expansion might result in multiple MBB's for one
3140  // BB.  As such, the start of the BB might correspond to a different MBB than
3141  // the end.
3142  //
3143
3144  // Emit constants only once even if used by multiple PHI nodes.
3145  std::map<Constant*, unsigned> ConstantsOut;
3146
3147  // Check successor nodes PHI nodes that expect a constant to be available from
3148  // this block.
3149  TerminatorInst *TI = LLVMBB->getTerminator();
3150  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
3151    BasicBlock *SuccBB = TI->getSuccessor(succ);
3152    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
3153    PHINode *PN;
3154
3155    // At this point we know that there is a 1-1 correspondence between LLVM PHI
3156    // nodes and Machine PHI nodes, but the incoming operands have not been
3157    // emitted yet.
3158    for (BasicBlock::iterator I = SuccBB->begin();
3159         (PN = dyn_cast<PHINode>(I)); ++I)
3160      if (!PN->use_empty()) {
3161        unsigned Reg;
3162        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
3163        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
3164          unsigned &RegOut = ConstantsOut[C];
3165          if (RegOut == 0) {
3166            RegOut = FuncInfo.CreateRegForValue(C);
3167            UnorderedChains.push_back(
3168                             CopyValueToVirtualRegister(SDL, C, RegOut));
3169          }
3170          Reg = RegOut;
3171        } else {
3172          Reg = FuncInfo.ValueMap[PHIOp];
3173          if (Reg == 0) {
3174            assert(isa<AllocaInst>(PHIOp) &&
3175                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
3176                   "Didn't codegen value into a register!??");
3177            Reg = FuncInfo.CreateRegForValue(PHIOp);
3178            UnorderedChains.push_back(
3179                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
3180          }
3181        }
3182
3183        // Remember that this register needs to added to the machine PHI node as
3184        // the input for this MBB.
3185        MVT::ValueType VT = TLI.getValueType(PN->getType());
3186        unsigned NumElements;
3187        if (VT != MVT::Vector)
3188          NumElements = TLI.getNumElements(VT);
3189        else {
3190          MVT::ValueType VT1,VT2;
3191          NumElements =
3192            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
3193                                       VT1, VT2);
3194        }
3195        for (unsigned i = 0, e = NumElements; i != e; ++i)
3196          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
3197      }
3198  }
3199  ConstantsOut.clear();
3200
3201  // Turn all of the unordered chains into one factored node.
3202  if (!UnorderedChains.empty()) {
3203    SDOperand Root = SDL.getRoot();
3204    if (Root.getOpcode() != ISD::EntryToken) {
3205      unsigned i = 0, e = UnorderedChains.size();
3206      for (; i != e; ++i) {
3207        assert(UnorderedChains[i].Val->getNumOperands() > 1);
3208        if (UnorderedChains[i].Val->getOperand(0) == Root)
3209          break;  // Don't add the root if we already indirectly depend on it.
3210      }
3211
3212      if (i == e)
3213        UnorderedChains.push_back(Root);
3214    }
3215    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
3216  }
3217
3218  // Lower the terminator after the copies are emitted.
3219  SDL.visit(*LLVMBB->getTerminator());
3220
3221  // Copy over any CaseBlock records that may now exist due to SwitchInst
3222  // lowering, as well as any jump table information.
3223  SwitchCases.clear();
3224  SwitchCases = SDL.SwitchCases;
3225  JT = SDL.JT;
3226
3227  // Make sure the root of the DAG is up-to-date.
3228  DAG.setRoot(SDL.getRoot());
3229}
3230
3231void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
3232  // Run the DAG combiner in pre-legalize mode.
3233  DAG.Combine(false);
3234
3235  DEBUG(std::cerr << "Lowered selection DAG:\n");
3236  DEBUG(DAG.dump());
3237
3238  // Second step, hack on the DAG until it only uses operations and types that
3239  // the target supports.
3240  DAG.Legalize();
3241
3242  DEBUG(std::cerr << "Legalized selection DAG:\n");
3243  DEBUG(DAG.dump());
3244
3245  // Run the DAG combiner in post-legalize mode.
3246  DAG.Combine(true);
3247
3248  if (ViewISelDAGs) DAG.viewGraph();
3249
3250  // Third, instruction select all of the operations to machine code, adding the
3251  // code to the MachineBasicBlock.
3252  InstructionSelectBasicBlock(DAG);
3253
3254  DEBUG(std::cerr << "Selected machine code:\n");
3255  DEBUG(BB->dump());
3256}
3257
3258void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
3259                                        FunctionLoweringInfo &FuncInfo) {
3260  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
3261  {
3262    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3263    CurDAG = &DAG;
3264
3265    // First step, lower LLVM code to some DAG.  This DAG may use operations and
3266    // types that are not supported by the target.
3267    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
3268
3269    // Second step, emit the lowered DAG as machine code.
3270    CodeGenAndEmitDAG(DAG);
3271  }
3272
3273  // Next, now that we know what the last MBB the LLVM BB expanded is, update
3274  // PHI nodes in successors.
3275  if (SwitchCases.empty() && JT.Reg == 0) {
3276    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
3277      MachineInstr *PHI = PHINodesToUpdate[i].first;
3278      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3279             "This is not a machine PHI node that we are updating!");
3280      PHI->addRegOperand(PHINodesToUpdate[i].second);
3281      PHI->addMachineBasicBlockOperand(BB);
3282    }
3283    return;
3284  }
3285
3286  // If the JumpTable record is filled in, then we need to emit a jump table.
3287  // Updating the PHI nodes is tricky in this case, since we need to determine
3288  // whether the PHI is a successor of the range check MBB or the jump table MBB
3289  if (JT.Reg) {
3290    assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
3291    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3292    CurDAG = &SDAG;
3293    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3294    MachineBasicBlock *RangeBB = BB;
3295    // Set the current basic block to the mbb we wish to insert the code into
3296    BB = JT.MBB;
3297    SDL.setCurrentBasicBlock(BB);
3298    // Emit the code
3299    SDL.visitJumpTable(JT);
3300    SDAG.setRoot(SDL.getRoot());
3301    CodeGenAndEmitDAG(SDAG);
3302    // Update PHI Nodes
3303    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
3304      MachineInstr *PHI = PHINodesToUpdate[pi].first;
3305      MachineBasicBlock *PHIBB = PHI->getParent();
3306      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3307             "This is not a machine PHI node that we are updating!");
3308      if (PHIBB == JT.Default) {
3309        PHI->addRegOperand(PHINodesToUpdate[pi].second);
3310        PHI->addMachineBasicBlockOperand(RangeBB);
3311      }
3312      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
3313        PHI->addRegOperand(PHINodesToUpdate[pi].second);
3314        PHI->addMachineBasicBlockOperand(BB);
3315      }
3316    }
3317    return;
3318  }
3319
3320  // If we generated any switch lowering information, build and codegen any
3321  // additional DAGs necessary.
3322  for(unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
3323    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3324    CurDAG = &SDAG;
3325    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3326    // Set the current basic block to the mbb we wish to insert the code into
3327    BB = SwitchCases[i].ThisBB;
3328    SDL.setCurrentBasicBlock(BB);
3329    // Emit the code
3330    SDL.visitSwitchCase(SwitchCases[i]);
3331    SDAG.setRoot(SDL.getRoot());
3332    CodeGenAndEmitDAG(SDAG);
3333    // Iterate over the phi nodes, if there is a phi node in a successor of this
3334    // block (for instance, the default block), then add a pair of operands to
3335    // the phi node for this block, as if we were coming from the original
3336    // BB before switch expansion.
3337    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
3338      MachineInstr *PHI = PHINodesToUpdate[pi].first;
3339      MachineBasicBlock *PHIBB = PHI->getParent();
3340      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3341             "This is not a machine PHI node that we are updating!");
3342      if (PHIBB == SwitchCases[i].LHSBB || PHIBB == SwitchCases[i].RHSBB) {
3343        PHI->addRegOperand(PHINodesToUpdate[pi].second);
3344        PHI->addMachineBasicBlockOperand(BB);
3345      }
3346    }
3347  }
3348}
3349
3350//===----------------------------------------------------------------------===//
3351/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
3352/// target node in the graph.
3353void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
3354  if (ViewSchedDAGs) DAG.viewGraph();
3355  ScheduleDAG *SL = NULL;
3356
3357  switch (ISHeuristic) {
3358  default: assert(0 && "Unrecognized scheduling heuristic");
3359  case defaultScheduling:
3360    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
3361      SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
3362    else {
3363      assert(TLI.getSchedulingPreference() ==
3364             TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
3365      SL = createBURRListDAGScheduler(DAG, BB);
3366    }
3367    break;
3368  case noScheduling:
3369    SL = createBFS_DAGScheduler(DAG, BB);
3370    break;
3371  case simpleScheduling:
3372    SL = createSimpleDAGScheduler(false, DAG, BB);
3373    break;
3374  case simpleNoItinScheduling:
3375    SL = createSimpleDAGScheduler(true, DAG, BB);
3376    break;
3377  case listSchedulingBURR:
3378    SL = createBURRListDAGScheduler(DAG, BB);
3379    break;
3380  case listSchedulingTD:
3381    SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
3382    break;
3383  }
3384  BB = SL->Run();
3385  delete SL;
3386}
3387
3388HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
3389  return new HazardRecognizer();
3390}
3391
3392/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
3393/// by tblgen.  Others should not call it.
3394void SelectionDAGISel::
3395SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
3396  std::vector<SDOperand> InOps;
3397  std::swap(InOps, Ops);
3398
3399  Ops.push_back(InOps[0]);  // input chain.
3400  Ops.push_back(InOps[1]);  // input asm string.
3401
3402  const char *AsmStr = cast<ExternalSymbolSDNode>(InOps[1])->getSymbol();
3403  unsigned i = 2, e = InOps.size();
3404  if (InOps[e-1].getValueType() == MVT::Flag)
3405    --e;  // Don't process a flag operand if it is here.
3406
3407  while (i != e) {
3408    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
3409    if ((Flags & 7) != 4 /*MEM*/) {
3410      // Just skip over this operand, copying the operands verbatim.
3411      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
3412      i += (Flags >> 3) + 1;
3413    } else {
3414      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
3415      // Otherwise, this is a memory operand.  Ask the target to select it.
3416      std::vector<SDOperand> SelOps;
3417      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
3418        std::cerr << "Could not match memory address.  Inline asm failure!\n";
3419        exit(1);
3420      }
3421
3422      // Add this to the output node.
3423      Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
3424      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
3425      i += 2;
3426    }
3427  }
3428
3429  // Add the flag input back if present.
3430  if (e != InOps.size())
3431    Ops.push_back(InOps.back());
3432}
3433