SelectionDAGISel.cpp revision 8085bcfdca515a359c746ea475a3b8e9cac1c077
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61//===---------------------------------------------------------------------===//
62///
63/// RegisterScheduler class - Track the registration of instruction schedulers.
64///
65//===---------------------------------------------------------------------===//
66MachinePassRegistry RegisterScheduler::Registry;
67
68//===---------------------------------------------------------------------===//
69///
70/// ISHeuristic command line option for instruction schedulers.
71///
72//===---------------------------------------------------------------------===//
73namespace {
74  cl::opt<RegisterScheduler::FunctionPassCtor, false,
75          RegisterPassParser<RegisterScheduler> >
76  ISHeuristic("sched",
77              cl::init(&createDefaultScheduler),
78              cl::desc("Instruction schedulers available:"));
79
80  static RegisterScheduler
81  defaultListDAGScheduler("default", "  Best scheduler for the target",
82                          createDefaultScheduler);
83} // namespace
84
85namespace {
86  /// RegsForValue - This struct represents the physical registers that a
87  /// particular value is assigned and the type information about the value.
88  /// This is needed because values can be promoted into larger registers and
89  /// expanded into multiple smaller registers than the value.
90  struct VISIBILITY_HIDDEN RegsForValue {
91    /// Regs - This list hold the register (for legal and promoted values)
92    /// or register set (for expanded values) that the value should be assigned
93    /// to.
94    std::vector<unsigned> Regs;
95
96    /// RegVT - The value type of each register.
97    ///
98    MVT::ValueType RegVT;
99
100    /// ValueVT - The value type of the LLVM value, which may be promoted from
101    /// RegVT or made from merging the two expanded parts.
102    MVT::ValueType ValueVT;
103
104    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
105
106    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
107      : RegVT(regvt), ValueVT(valuevt) {
108        Regs.push_back(Reg);
109    }
110    RegsForValue(const std::vector<unsigned> &regs,
111                 MVT::ValueType regvt, MVT::ValueType valuevt)
112      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
113    }
114
115    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
116    /// this value and returns the result as a ValueVT value.  This uses
117    /// Chain/Flag as the input and updates them for the output Chain/Flag.
118    SDOperand getCopyFromRegs(SelectionDAG &DAG,
119                              SDOperand &Chain, SDOperand &Flag) const;
120
121    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
122    /// specified value into the registers specified by this object.  This uses
123    /// Chain/Flag as the input and updates them for the output Chain/Flag.
124    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
125                       SDOperand &Chain, SDOperand &Flag,
126                       MVT::ValueType PtrVT) const;
127
128    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
129    /// operand list.  This adds the code marker and includes the number of
130    /// values added into it.
131    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
132                              std::vector<SDOperand> &Ops) const;
133  };
134}
135
136namespace llvm {
137  //===--------------------------------------------------------------------===//
138  /// createDefaultScheduler - This creates an instruction scheduler appropriate
139  /// for the target.
140  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
141                                      SelectionDAG *DAG,
142                                      MachineBasicBlock *BB) {
143    TargetLowering &TLI = IS->getTargetLowering();
144
145    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
146      return createTDListDAGScheduler(IS, DAG, BB);
147    } else {
148      assert(TLI.getSchedulingPreference() ==
149           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
150      return createBURRListDAGScheduler(IS, DAG, BB);
151    }
152  }
153
154
155  //===--------------------------------------------------------------------===//
156  /// FunctionLoweringInfo - This contains information that is global to a
157  /// function that is used when lowering a region of the function.
158  class FunctionLoweringInfo {
159  public:
160    TargetLowering &TLI;
161    Function &Fn;
162    MachineFunction &MF;
163    SSARegMap *RegMap;
164
165    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
166
167    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
168    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
169
170    /// ValueMap - Since we emit code for the function a basic block at a time,
171    /// we must remember which virtual registers hold the values for
172    /// cross-basic-block values.
173    DenseMap<const Value*, unsigned> ValueMap;
174
175    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
176    /// the entry block.  This allows the allocas to be efficiently referenced
177    /// anywhere in the function.
178    std::map<const AllocaInst*, int> StaticAllocaMap;
179
180    unsigned MakeReg(MVT::ValueType VT) {
181      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
182    }
183
184    /// isExportedInst - Return true if the specified value is an instruction
185    /// exported from its block.
186    bool isExportedInst(const Value *V) {
187      return ValueMap.count(V);
188    }
189
190    unsigned CreateRegForValue(const Value *V);
191
192    unsigned InitializeRegForValue(const Value *V) {
193      unsigned &R = ValueMap[V];
194      assert(R == 0 && "Already initialized this value register!");
195      return R = CreateRegForValue(V);
196    }
197  };
198}
199
200/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
201/// PHI nodes or outside of the basic block that defines it, or used by a
202/// switch instruction, which may expand to multiple basic blocks.
203static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
204  if (isa<PHINode>(I)) return true;
205  BasicBlock *BB = I->getParent();
206  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
207    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
208        // FIXME: Remove switchinst special case.
209        isa<SwitchInst>(*UI))
210      return true;
211  return false;
212}
213
214/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
215/// entry block, return true.  This includes arguments used by switches, since
216/// the switch may expand into multiple basic blocks.
217static bool isOnlyUsedInEntryBlock(Argument *A) {
218  BasicBlock *Entry = A->getParent()->begin();
219  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
220    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
221      return false;  // Use not in entry block.
222  return true;
223}
224
225FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
226                                           Function &fn, MachineFunction &mf)
227    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
228
229  // Create a vreg for each argument register that is not dead and is used
230  // outside of the entry block for the function.
231  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
232       AI != E; ++AI)
233    if (!isOnlyUsedInEntryBlock(AI))
234      InitializeRegForValue(AI);
235
236  // Initialize the mapping of values to registers.  This is only set up for
237  // instruction values that are used outside of the block that defines
238  // them.
239  Function::iterator BB = Fn.begin(), EB = Fn.end();
240  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
241    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
242      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
243        const Type *Ty = AI->getAllocatedType();
244        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
245        unsigned Align =
246          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
247                   AI->getAlignment());
248
249        TySize *= CUI->getZExtValue();   // Get total allocated size.
250        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
251        StaticAllocaMap[AI] =
252          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
253      }
254
255  for (; BB != EB; ++BB)
256    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
257      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
258        if (!isa<AllocaInst>(I) ||
259            !StaticAllocaMap.count(cast<AllocaInst>(I)))
260          InitializeRegForValue(I);
261
262  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
263  // also creates the initial PHI MachineInstrs, though none of the input
264  // operands are populated.
265  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
266    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
267    MBBMap[BB] = MBB;
268    MF.getBasicBlockList().push_back(MBB);
269
270    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
271    // appropriate.
272    PHINode *PN;
273    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
274      if (PN->use_empty()) continue;
275
276      MVT::ValueType VT = TLI.getValueType(PN->getType());
277      unsigned NumElements;
278      if (VT != MVT::Vector)
279        NumElements = TLI.getNumElements(VT);
280      else {
281        MVT::ValueType VT1,VT2;
282        NumElements =
283          TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
284                                     VT1, VT2);
285      }
286      unsigned PHIReg = ValueMap[PN];
287      assert(PHIReg && "PHI node does not have an assigned virtual register!");
288      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
289      for (unsigned i = 0; i != NumElements; ++i)
290        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
291    }
292  }
293}
294
295/// CreateRegForValue - Allocate the appropriate number of virtual registers of
296/// the correctly promoted or expanded types.  Assign these registers
297/// consecutive vreg numbers and return the first assigned number.
298unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
299  MVT::ValueType VT = TLI.getValueType(V->getType());
300
301  // The number of multiples of registers that we need, to, e.g., split up
302  // a <2 x int64> -> 4 x i32 registers.
303  unsigned NumVectorRegs = 1;
304
305  // If this is a vector type, figure out what type it will decompose into
306  // and how many of the elements it will use.
307  if (VT == MVT::Vector) {
308    const VectorType *PTy = cast<VectorType>(V->getType());
309    unsigned NumElts = PTy->getNumElements();
310    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
311
312    // Divide the input until we get to a supported size.  This will always
313    // end with a scalar if the target doesn't support vectors.
314    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
315      NumElts >>= 1;
316      NumVectorRegs <<= 1;
317    }
318    if (NumElts == 1)
319      VT = EltTy;
320    else
321      VT = getVectorType(EltTy, NumElts);
322  }
323
324  // The common case is that we will only create one register for this
325  // value.  If we have that case, create and return the virtual register.
326  unsigned NV = TLI.getNumElements(VT);
327  if (NV == 1) {
328    // If we are promoting this value, pick the next largest supported type.
329    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
330    unsigned Reg = MakeReg(PromotedType);
331    // If this is a vector of supported or promoted types (e.g. 4 x i16),
332    // create all of the registers.
333    for (unsigned i = 1; i != NumVectorRegs; ++i)
334      MakeReg(PromotedType);
335    return Reg;
336  }
337
338  // If this value is represented with multiple target registers, make sure
339  // to create enough consecutive registers of the right (smaller) type.
340  VT = TLI.getTypeToExpandTo(VT);
341  unsigned R = MakeReg(VT);
342  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
343    MakeReg(VT);
344  return R;
345}
346
347//===----------------------------------------------------------------------===//
348/// SelectionDAGLowering - This is the common target-independent lowering
349/// implementation that is parameterized by a TargetLowering object.
350/// Also, targets can overload any lowering method.
351///
352namespace llvm {
353class SelectionDAGLowering {
354  MachineBasicBlock *CurMBB;
355
356  DenseMap<const Value*, SDOperand> NodeMap;
357
358  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
359  /// them up and then emit token factor nodes when possible.  This allows us to
360  /// get simple disambiguation between loads without worrying about alias
361  /// analysis.
362  std::vector<SDOperand> PendingLoads;
363
364  /// Case - A struct to record the Value for a switch case, and the
365  /// case's target basic block.
366  struct Case {
367    Constant* Low;
368    Constant* High;
369    MachineBasicBlock* BB;
370
371    Case() : Low(0), High(0), BB(0) { }
372    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
373      Low(low), High(high), BB(bb) { }
374    uint64_t size() const {
375      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
376      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
377      return (rHigh - rLow + 1ULL);
378    }
379  };
380
381  struct CaseBits {
382    uint64_t Mask;
383    MachineBasicBlock* BB;
384    unsigned Bits;
385
386    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
387      Mask(mask), BB(bb), Bits(bits) { }
388  };
389
390  typedef std::vector<Case>           CaseVector;
391  typedef std::vector<CaseBits>       CaseBitsVector;
392  typedef CaseVector::iterator        CaseItr;
393  typedef std::pair<CaseItr, CaseItr> CaseRange;
394
395  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
396  /// of conditional branches.
397  struct CaseRec {
398    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
399    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
400
401    /// CaseBB - The MBB in which to emit the compare and branch
402    MachineBasicBlock *CaseBB;
403    /// LT, GE - If nonzero, we know the current case value must be less-than or
404    /// greater-than-or-equal-to these Constants.
405    Constant *LT;
406    Constant *GE;
407    /// Range - A pair of iterators representing the range of case values to be
408    /// processed at this point in the binary search tree.
409    CaseRange Range;
410  };
411
412  typedef std::vector<CaseRec> CaseRecVector;
413
414  /// The comparison function for sorting the switch case values in the vector.
415  /// WARNING: Case ranges should be disjoint!
416  struct CaseCmp {
417    bool operator () (const Case& C1, const Case& C2) {
418      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
419      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
420      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
421      return CI1->getValue().slt(CI2->getValue());
422    }
423  };
424
425  struct CaseBitsCmp {
426    bool operator () (const CaseBits& C1, const CaseBits& C2) {
427      return C1.Bits > C2.Bits;
428    }
429  };
430
431  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
432
433public:
434  // TLI - This is information that describes the available target features we
435  // need for lowering.  This indicates when operations are unavailable,
436  // implemented with a libcall, etc.
437  TargetLowering &TLI;
438  SelectionDAG &DAG;
439  const TargetData *TD;
440
441  /// SwitchCases - Vector of CaseBlock structures used to communicate
442  /// SwitchInst code generation information.
443  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
444  /// JTCases - Vector of JumpTable structures used to communicate
445  /// SwitchInst code generation information.
446  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
447  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
448
449  /// FuncInfo - Information about the function as a whole.
450  ///
451  FunctionLoweringInfo &FuncInfo;
452
453  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
454                       FunctionLoweringInfo &funcinfo)
455    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
456      FuncInfo(funcinfo) {
457  }
458
459  /// getRoot - Return the current virtual root of the Selection DAG.
460  ///
461  SDOperand getRoot() {
462    if (PendingLoads.empty())
463      return DAG.getRoot();
464
465    if (PendingLoads.size() == 1) {
466      SDOperand Root = PendingLoads[0];
467      DAG.setRoot(Root);
468      PendingLoads.clear();
469      return Root;
470    }
471
472    // Otherwise, we have to make a token factor node.
473    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
474                                 &PendingLoads[0], PendingLoads.size());
475    PendingLoads.clear();
476    DAG.setRoot(Root);
477    return Root;
478  }
479
480  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
481
482  void visit(Instruction &I) { visit(I.getOpcode(), I); }
483
484  void visit(unsigned Opcode, User &I) {
485    // Note: this doesn't use InstVisitor, because it has to work with
486    // ConstantExpr's in addition to instructions.
487    switch (Opcode) {
488    default: assert(0 && "Unknown instruction type encountered!");
489             abort();
490      // Build the switch statement using the Instruction.def file.
491#define HANDLE_INST(NUM, OPCODE, CLASS) \
492    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
493#include "llvm/Instruction.def"
494    }
495  }
496
497  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
498
499  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
500                        const Value *SV, SDOperand Root,
501                        bool isVolatile);
502
503  SDOperand getIntPtrConstant(uint64_t Val) {
504    return DAG.getConstant(Val, TLI.getPointerTy());
505  }
506
507  SDOperand getValue(const Value *V);
508
509  void setValue(const Value *V, SDOperand NewN) {
510    SDOperand &N = NodeMap[V];
511    assert(N.Val == 0 && "Already set a value for this node!");
512    N = NewN;
513  }
514
515  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
516                                    MVT::ValueType VT,
517                                    bool OutReg, bool InReg,
518                                    std::set<unsigned> &OutputRegs,
519                                    std::set<unsigned> &InputRegs);
520
521  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
522                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
523                            unsigned Opc);
524  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
525  void ExportFromCurrentBlock(Value *V);
526  void LowerCallTo(Instruction &I,
527                   const Type *CalledValueTy, unsigned CallingConv,
528                   bool IsTailCall, SDOperand Callee, unsigned OpIdx);
529
530  // Terminator instructions.
531  void visitRet(ReturnInst &I);
532  void visitBr(BranchInst &I);
533  void visitSwitch(SwitchInst &I);
534  void visitUnreachable(UnreachableInst &I) { /* noop */ }
535
536  // Helpers for visitSwitch
537  bool handleSmallSwitchRange(CaseRec& CR,
538                              CaseRecVector& WorkList,
539                              Value* SV,
540                              MachineBasicBlock* Default);
541  bool handleJTSwitchCase(CaseRec& CR,
542                          CaseRecVector& WorkList,
543                          Value* SV,
544                          MachineBasicBlock* Default);
545  bool handleBTSplitSwitchCase(CaseRec& CR,
546                               CaseRecVector& WorkList,
547                               Value* SV,
548                               MachineBasicBlock* Default);
549  bool handleBitTestsSwitchCase(CaseRec& CR,
550                                CaseRecVector& WorkList,
551                                Value* SV,
552                                MachineBasicBlock* Default);
553  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
554  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
555  void visitBitTestCase(MachineBasicBlock* NextMBB,
556                        unsigned Reg,
557                        SelectionDAGISel::BitTestCase &B);
558  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
559  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
560                            SelectionDAGISel::JumpTableHeader &JTH);
561
562  // These all get lowered before this pass.
563  void visitInvoke(InvokeInst &I);
564  void visitInvoke(InvokeInst &I, bool AsTerminator);
565  void visitUnwind(UnwindInst &I);
566
567  void visitScalarBinary(User &I, unsigned OpCode);
568  void visitVectorBinary(User &I, unsigned OpCode);
569  void visitEitherBinary(User &I, unsigned ScalarOp, unsigned VectorOp);
570  void visitShift(User &I, unsigned Opcode);
571  void visitAdd(User &I) {
572    if (isa<VectorType>(I.getType()))
573      visitVectorBinary(I, ISD::VADD);
574    else if (I.getType()->isFloatingPoint())
575      visitScalarBinary(I, ISD::FADD);
576    else
577      visitScalarBinary(I, ISD::ADD);
578  }
579  void visitSub(User &I);
580  void visitMul(User &I) {
581    if (isa<VectorType>(I.getType()))
582      visitVectorBinary(I, ISD::VMUL);
583    else if (I.getType()->isFloatingPoint())
584      visitScalarBinary(I, ISD::FMUL);
585    else
586      visitScalarBinary(I, ISD::MUL);
587  }
588  void visitURem(User &I) { visitScalarBinary(I, ISD::UREM); }
589  void visitSRem(User &I) { visitScalarBinary(I, ISD::SREM); }
590  void visitFRem(User &I) { visitScalarBinary(I, ISD::FREM); }
591  void visitUDiv(User &I) { visitEitherBinary(I, ISD::UDIV, ISD::VUDIV); }
592  void visitSDiv(User &I) { visitEitherBinary(I, ISD::SDIV, ISD::VSDIV); }
593  void visitFDiv(User &I) { visitEitherBinary(I, ISD::FDIV, ISD::VSDIV); }
594  void visitAnd (User &I) { visitEitherBinary(I, ISD::AND,  ISD::VAND ); }
595  void visitOr  (User &I) { visitEitherBinary(I, ISD::OR,   ISD::VOR  ); }
596  void visitXor (User &I) { visitEitherBinary(I, ISD::XOR,  ISD::VXOR ); }
597  void visitShl (User &I) { visitShift(I, ISD::SHL); }
598  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
599  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
600  void visitICmp(User &I);
601  void visitFCmp(User &I);
602  // Visit the conversion instructions
603  void visitTrunc(User &I);
604  void visitZExt(User &I);
605  void visitSExt(User &I);
606  void visitFPTrunc(User &I);
607  void visitFPExt(User &I);
608  void visitFPToUI(User &I);
609  void visitFPToSI(User &I);
610  void visitUIToFP(User &I);
611  void visitSIToFP(User &I);
612  void visitPtrToInt(User &I);
613  void visitIntToPtr(User &I);
614  void visitBitCast(User &I);
615
616  void visitExtractElement(User &I);
617  void visitInsertElement(User &I);
618  void visitShuffleVector(User &I);
619
620  void visitGetElementPtr(User &I);
621  void visitSelect(User &I);
622
623  void visitMalloc(MallocInst &I);
624  void visitFree(FreeInst &I);
625  void visitAlloca(AllocaInst &I);
626  void visitLoad(LoadInst &I);
627  void visitStore(StoreInst &I);
628  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
629  void visitCall(CallInst &I);
630  void visitInlineAsm(CallInst &I);
631  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
632  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
633
634  void visitVAStart(CallInst &I);
635  void visitVAArg(VAArgInst &I);
636  void visitVAEnd(CallInst &I);
637  void visitVACopy(CallInst &I);
638
639  void visitMemIntrinsic(CallInst &I, unsigned Op);
640
641  void visitUserOp1(Instruction &I) {
642    assert(0 && "UserOp1 should not exist at instruction selection time!");
643    abort();
644  }
645  void visitUserOp2(Instruction &I) {
646    assert(0 && "UserOp2 should not exist at instruction selection time!");
647    abort();
648  }
649};
650} // end namespace llvm
651
652SDOperand SelectionDAGLowering::getValue(const Value *V) {
653  SDOperand &N = NodeMap[V];
654  if (N.Val) return N;
655
656  const Type *VTy = V->getType();
657  MVT::ValueType VT = TLI.getValueType(VTy);
658  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
659    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
660      visit(CE->getOpcode(), *CE);
661      SDOperand N1 = NodeMap[V];
662      assert(N1.Val && "visit didn't populate the ValueMap!");
663      return N1;
664    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
665      return N = DAG.getGlobalAddress(GV, VT);
666    } else if (isa<ConstantPointerNull>(C)) {
667      return N = DAG.getConstant(0, TLI.getPointerTy());
668    } else if (isa<UndefValue>(C)) {
669      if (!isa<VectorType>(VTy))
670        return N = DAG.getNode(ISD::UNDEF, VT);
671
672      // Create a VBUILD_VECTOR of undef nodes.
673      const VectorType *PTy = cast<VectorType>(VTy);
674      unsigned NumElements = PTy->getNumElements();
675      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
676
677      SmallVector<SDOperand, 8> Ops;
678      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
679
680      // Create a VConstant node with generic Vector type.
681      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
682      Ops.push_back(DAG.getValueType(PVT));
683      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
684                             &Ops[0], Ops.size());
685    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
686      return N = DAG.getConstantFP(CFP->getValue(), VT);
687    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
688      unsigned NumElements = PTy->getNumElements();
689      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
690
691      // Now that we know the number and type of the elements, push a
692      // Constant or ConstantFP node onto the ops list for each element of
693      // the packed constant.
694      SmallVector<SDOperand, 8> Ops;
695      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
696        for (unsigned i = 0; i != NumElements; ++i)
697          Ops.push_back(getValue(CP->getOperand(i)));
698      } else {
699        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
700        SDOperand Op;
701        if (MVT::isFloatingPoint(PVT))
702          Op = DAG.getConstantFP(0, PVT);
703        else
704          Op = DAG.getConstant(0, PVT);
705        Ops.assign(NumElements, Op);
706      }
707
708      // Create a VBUILD_VECTOR node with generic Vector type.
709      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
710      Ops.push_back(DAG.getValueType(PVT));
711      return NodeMap[V] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0],
712                                      Ops.size());
713    } else {
714      // Canonicalize all constant ints to be unsigned.
715      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
716    }
717  }
718
719  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
720    std::map<const AllocaInst*, int>::iterator SI =
721    FuncInfo.StaticAllocaMap.find(AI);
722    if (SI != FuncInfo.StaticAllocaMap.end())
723      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
724  }
725
726  unsigned InReg = FuncInfo.ValueMap[V];
727  assert(InReg && "Value not in map!");
728
729  // If this type is not legal, make it so now.
730  if (VT != MVT::Vector) {
731    if (TLI.getTypeAction(VT) == TargetLowering::Expand) {
732      // Source must be expanded.  This input value is actually coming from the
733      // register pair InReg and InReg+1.
734      MVT::ValueType DestVT = TLI.getTypeToExpandTo(VT);
735      unsigned NumVals = TLI.getNumElements(VT);
736      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
737      if (NumVals == 1)
738        N = DAG.getNode(ISD::BIT_CONVERT, VT, N);
739      else {
740        assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
741        N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
742                       DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
743      }
744    } else {
745      MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
746      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
747      if (TLI.getTypeAction(VT) == TargetLowering::Promote) // Promotion case
748        N = MVT::isFloatingPoint(VT)
749          ? DAG.getNode(ISD::FP_ROUND, VT, N)
750          : DAG.getNode(ISD::TRUNCATE, VT, N);
751    }
752  } else {
753    // Otherwise, if this is a vector, make it available as a generic vector
754    // here.
755    MVT::ValueType PTyElementVT, PTyLegalElementVT;
756    const VectorType *PTy = cast<VectorType>(VTy);
757    unsigned NE = TLI.getVectorTypeBreakdown(PTy, PTyElementVT,
758                                             PTyLegalElementVT);
759
760    // Build a VBUILD_VECTOR with the input registers.
761    SmallVector<SDOperand, 8> Ops;
762    if (PTyElementVT == PTyLegalElementVT) {
763      // If the value types are legal, just VBUILD the CopyFromReg nodes.
764      for (unsigned i = 0; i != NE; ++i)
765        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
766                                         PTyElementVT));
767    } else if (PTyElementVT < PTyLegalElementVT) {
768      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
769      for (unsigned i = 0; i != NE; ++i) {
770        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
771                                          PTyElementVT);
772        if (MVT::isFloatingPoint(PTyElementVT))
773          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
774        else
775          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
776        Ops.push_back(Op);
777      }
778    } else {
779      // If the register was expanded, use BUILD_PAIR.
780      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
781      for (unsigned i = 0; i != NE/2; ++i) {
782        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
783                                           PTyElementVT);
784        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
785                                           PTyElementVT);
786        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
787      }
788    }
789
790    Ops.push_back(DAG.getConstant(NE, MVT::i32));
791    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
792    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
793
794    // Finally, use a VBIT_CONVERT to make this available as the appropriate
795    // vector type.
796    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
797                    DAG.getConstant(PTy->getNumElements(),
798                                    MVT::i32),
799                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
800  }
801
802  return N;
803}
804
805
806void SelectionDAGLowering::visitRet(ReturnInst &I) {
807  if (I.getNumOperands() == 0) {
808    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
809    return;
810  }
811  SmallVector<SDOperand, 8> NewValues;
812  NewValues.push_back(getRoot());
813  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
814    SDOperand RetOp = getValue(I.getOperand(i));
815
816    // If this is an integer return value, we need to promote it ourselves to
817    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
818    // than sign/zero.
819    // FIXME: C calling convention requires the return type to be promoted to
820    // at least 32-bit. But this is not necessary for non-C calling conventions.
821    if (MVT::isInteger(RetOp.getValueType()) &&
822        RetOp.getValueType() < MVT::i64) {
823      MVT::ValueType TmpVT;
824      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
825        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
826      else
827        TmpVT = MVT::i32;
828      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
829      const ParamAttrsList *Attrs = FTy->getParamAttrs();
830      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
831      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt))
832        ExtendKind = ISD::SIGN_EXTEND;
833      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt))
834        ExtendKind = ISD::ZERO_EXTEND;
835      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
836    }
837    NewValues.push_back(RetOp);
838    NewValues.push_back(DAG.getConstant(false, MVT::i32));
839  }
840  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
841                          &NewValues[0], NewValues.size()));
842}
843
844/// ExportFromCurrentBlock - If this condition isn't known to be exported from
845/// the current basic block, add it to ValueMap now so that we'll get a
846/// CopyTo/FromReg.
847void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
848  // No need to export constants.
849  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
850
851  // Already exported?
852  if (FuncInfo.isExportedInst(V)) return;
853
854  unsigned Reg = FuncInfo.InitializeRegForValue(V);
855  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
856}
857
858bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
859                                                    const BasicBlock *FromBB) {
860  // The operands of the setcc have to be in this block.  We don't know
861  // how to export them from some other block.
862  if (Instruction *VI = dyn_cast<Instruction>(V)) {
863    // Can export from current BB.
864    if (VI->getParent() == FromBB)
865      return true;
866
867    // Is already exported, noop.
868    return FuncInfo.isExportedInst(V);
869  }
870
871  // If this is an argument, we can export it if the BB is the entry block or
872  // if it is already exported.
873  if (isa<Argument>(V)) {
874    if (FromBB == &FromBB->getParent()->getEntryBlock())
875      return true;
876
877    // Otherwise, can only export this if it is already exported.
878    return FuncInfo.isExportedInst(V);
879  }
880
881  // Otherwise, constants can always be exported.
882  return true;
883}
884
885static bool InBlock(const Value *V, const BasicBlock *BB) {
886  if (const Instruction *I = dyn_cast<Instruction>(V))
887    return I->getParent() == BB;
888  return true;
889}
890
891/// FindMergedConditions - If Cond is an expression like
892void SelectionDAGLowering::FindMergedConditions(Value *Cond,
893                                                MachineBasicBlock *TBB,
894                                                MachineBasicBlock *FBB,
895                                                MachineBasicBlock *CurBB,
896                                                unsigned Opc) {
897  // If this node is not part of the or/and tree, emit it as a branch.
898  Instruction *BOp = dyn_cast<Instruction>(Cond);
899
900  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
901      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
902      BOp->getParent() != CurBB->getBasicBlock() ||
903      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
904      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
905    const BasicBlock *BB = CurBB->getBasicBlock();
906
907    // If the leaf of the tree is a comparison, merge the condition into
908    // the caseblock.
909    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
910        // The operands of the cmp have to be in this block.  We don't know
911        // how to export them from some other block.  If this is the first block
912        // of the sequence, no exporting is needed.
913        (CurBB == CurMBB ||
914         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
915          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
916      BOp = cast<Instruction>(Cond);
917      ISD::CondCode Condition;
918      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
919        switch (IC->getPredicate()) {
920        default: assert(0 && "Unknown icmp predicate opcode!");
921        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
922        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
923        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
924        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
925        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
926        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
927        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
928        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
929        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
930        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
931        }
932      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
933        ISD::CondCode FPC, FOC;
934        switch (FC->getPredicate()) {
935        default: assert(0 && "Unknown fcmp predicate opcode!");
936        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
937        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
938        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
939        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
940        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
941        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
942        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
943        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
944        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
945        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
946        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
947        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
948        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
949        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
950        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
951        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
952        }
953        if (FiniteOnlyFPMath())
954          Condition = FOC;
955        else
956          Condition = FPC;
957      } else {
958        Condition = ISD::SETEQ; // silence warning.
959        assert(0 && "Unknown compare instruction");
960      }
961
962      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
963                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
964      SwitchCases.push_back(CB);
965      return;
966    }
967
968    // Create a CaseBlock record representing this branch.
969    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
970                                   NULL, TBB, FBB, CurBB);
971    SwitchCases.push_back(CB);
972    return;
973  }
974
975
976  //  Create TmpBB after CurBB.
977  MachineFunction::iterator BBI = CurBB;
978  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
979  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
980
981  if (Opc == Instruction::Or) {
982    // Codegen X | Y as:
983    //   jmp_if_X TBB
984    //   jmp TmpBB
985    // TmpBB:
986    //   jmp_if_Y TBB
987    //   jmp FBB
988    //
989
990    // Emit the LHS condition.
991    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
992
993    // Emit the RHS condition into TmpBB.
994    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
995  } else {
996    assert(Opc == Instruction::And && "Unknown merge op!");
997    // Codegen X & Y as:
998    //   jmp_if_X TmpBB
999    //   jmp FBB
1000    // TmpBB:
1001    //   jmp_if_Y TBB
1002    //   jmp FBB
1003    //
1004    //  This requires creation of TmpBB after CurBB.
1005
1006    // Emit the LHS condition.
1007    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1008
1009    // Emit the RHS condition into TmpBB.
1010    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1011  }
1012}
1013
1014/// If the set of cases should be emitted as a series of branches, return true.
1015/// If we should emit this as a bunch of and/or'd together conditions, return
1016/// false.
1017static bool
1018ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1019  if (Cases.size() != 2) return true;
1020
1021  // If this is two comparisons of the same values or'd or and'd together, they
1022  // will get folded into a single comparison, so don't emit two blocks.
1023  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1024       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1025      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1026       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1027    return false;
1028  }
1029
1030  return true;
1031}
1032
1033void SelectionDAGLowering::visitBr(BranchInst &I) {
1034  // Update machine-CFG edges.
1035  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1036
1037  // Figure out which block is immediately after the current one.
1038  MachineBasicBlock *NextBlock = 0;
1039  MachineFunction::iterator BBI = CurMBB;
1040  if (++BBI != CurMBB->getParent()->end())
1041    NextBlock = BBI;
1042
1043  if (I.isUnconditional()) {
1044    // If this is not a fall-through branch, emit the branch.
1045    if (Succ0MBB != NextBlock)
1046      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1047                              DAG.getBasicBlock(Succ0MBB)));
1048
1049    // Update machine-CFG edges.
1050    CurMBB->addSuccessor(Succ0MBB);
1051
1052    return;
1053  }
1054
1055  // If this condition is one of the special cases we handle, do special stuff
1056  // now.
1057  Value *CondVal = I.getCondition();
1058  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1059
1060  // If this is a series of conditions that are or'd or and'd together, emit
1061  // this as a sequence of branches instead of setcc's with and/or operations.
1062  // For example, instead of something like:
1063  //     cmp A, B
1064  //     C = seteq
1065  //     cmp D, E
1066  //     F = setle
1067  //     or C, F
1068  //     jnz foo
1069  // Emit:
1070  //     cmp A, B
1071  //     je foo
1072  //     cmp D, E
1073  //     jle foo
1074  //
1075  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1076    if (BOp->hasOneUse() &&
1077        (BOp->getOpcode() == Instruction::And ||
1078         BOp->getOpcode() == Instruction::Or)) {
1079      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1080      // If the compares in later blocks need to use values not currently
1081      // exported from this block, export them now.  This block should always
1082      // be the first entry.
1083      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1084
1085      // Allow some cases to be rejected.
1086      if (ShouldEmitAsBranches(SwitchCases)) {
1087        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1088          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1089          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1090        }
1091
1092        // Emit the branch for this block.
1093        visitSwitchCase(SwitchCases[0]);
1094        SwitchCases.erase(SwitchCases.begin());
1095        return;
1096      }
1097
1098      // Okay, we decided not to do this, remove any inserted MBB's and clear
1099      // SwitchCases.
1100      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1101        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1102
1103      SwitchCases.clear();
1104    }
1105  }
1106
1107  // Create a CaseBlock record representing this branch.
1108  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1109                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1110  // Use visitSwitchCase to actually insert the fast branch sequence for this
1111  // cond branch.
1112  visitSwitchCase(CB);
1113}
1114
1115/// visitSwitchCase - Emits the necessary code to represent a single node in
1116/// the binary search tree resulting from lowering a switch instruction.
1117void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1118  SDOperand Cond;
1119  SDOperand CondLHS = getValue(CB.CmpLHS);
1120
1121  // Build the setcc now.
1122  if (CB.CmpMHS == NULL) {
1123    // Fold "(X == true)" to X and "(X == false)" to !X to
1124    // handle common cases produced by branch lowering.
1125    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1126      Cond = CondLHS;
1127    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1128      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1129      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1130    } else
1131      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1132  } else {
1133    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1134
1135    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1136    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1137
1138    SDOperand CmpOp = getValue(CB.CmpMHS);
1139    MVT::ValueType VT = CmpOp.getValueType();
1140
1141    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1142      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1143    } else {
1144      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1145      Cond = DAG.getSetCC(MVT::i1, SUB,
1146                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1147    }
1148
1149  }
1150
1151  // Set NextBlock to be the MBB immediately after the current one, if any.
1152  // This is used to avoid emitting unnecessary branches to the next block.
1153  MachineBasicBlock *NextBlock = 0;
1154  MachineFunction::iterator BBI = CurMBB;
1155  if (++BBI != CurMBB->getParent()->end())
1156    NextBlock = BBI;
1157
1158  // If the lhs block is the next block, invert the condition so that we can
1159  // fall through to the lhs instead of the rhs block.
1160  if (CB.TrueBB == NextBlock) {
1161    std::swap(CB.TrueBB, CB.FalseBB);
1162    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1163    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1164  }
1165  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1166                                 DAG.getBasicBlock(CB.TrueBB));
1167  if (CB.FalseBB == NextBlock)
1168    DAG.setRoot(BrCond);
1169  else
1170    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1171                            DAG.getBasicBlock(CB.FalseBB)));
1172  // Update successor info
1173  CurMBB->addSuccessor(CB.TrueBB);
1174  CurMBB->addSuccessor(CB.FalseBB);
1175}
1176
1177/// visitJumpTable - Emit JumpTable node in the current MBB
1178void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1179  // Emit the code for the jump table
1180  assert(JT.Reg != -1UL && "Should lower JT Header first!");
1181  MVT::ValueType PTy = TLI.getPointerTy();
1182  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1183  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1184  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1185                          Table, Index));
1186  return;
1187}
1188
1189/// visitJumpTableHeader - This function emits necessary code to produce index
1190/// in the JumpTable from switch case.
1191void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1192                                         SelectionDAGISel::JumpTableHeader &JTH) {
1193  // Subtract the lowest switch case value from the value being switched on
1194  // and conditional branch to default mbb if the result is greater than the
1195  // difference between smallest and largest cases.
1196  SDOperand SwitchOp = getValue(JTH.SValue);
1197  MVT::ValueType VT = SwitchOp.getValueType();
1198  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1199                              DAG.getConstant(JTH.First, VT));
1200
1201  // The SDNode we just created, which holds the value being switched on
1202  // minus the the smallest case value, needs to be copied to a virtual
1203  // register so it can be used as an index into the jump table in a
1204  // subsequent basic block.  This value may be smaller or larger than the
1205  // target's pointer type, and therefore require extension or truncating.
1206  if (VT > TLI.getPointerTy())
1207    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1208  else
1209    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1210
1211  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1212  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1213  JT.Reg = JumpTableReg;
1214
1215  // Emit the range check for the jump table, and branch to the default
1216  // block for the switch statement if the value being switched on exceeds
1217  // the largest case in the switch.
1218  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1219                               DAG.getConstant(JTH.Last-JTH.First,VT),
1220                               ISD::SETUGT);
1221
1222  // Set NextBlock to be the MBB immediately after the current one, if any.
1223  // This is used to avoid emitting unnecessary branches to the next block.
1224  MachineBasicBlock *NextBlock = 0;
1225  MachineFunction::iterator BBI = CurMBB;
1226  if (++BBI != CurMBB->getParent()->end())
1227    NextBlock = BBI;
1228
1229  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1230                                 DAG.getBasicBlock(JT.Default));
1231
1232  if (JT.MBB == NextBlock)
1233    DAG.setRoot(BrCond);
1234  else
1235    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1236                            DAG.getBasicBlock(JT.MBB)));
1237
1238  return;
1239}
1240
1241/// visitBitTestHeader - This function emits necessary code to produce value
1242/// suitable for "bit tests"
1243void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1244  // Subtract the minimum value
1245  SDOperand SwitchOp = getValue(B.SValue);
1246  MVT::ValueType VT = SwitchOp.getValueType();
1247  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1248                              DAG.getConstant(B.First, VT));
1249
1250  // Check range
1251  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1252                                    DAG.getConstant(B.Range, VT),
1253                                    ISD::SETUGT);
1254
1255  SDOperand ShiftOp;
1256  if (VT > TLI.getShiftAmountTy())
1257    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1258  else
1259    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1260
1261  // Make desired shift
1262  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1263                                    DAG.getConstant(1, TLI.getPointerTy()),
1264                                    ShiftOp);
1265
1266  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1267  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1268  B.Reg = SwitchReg;
1269
1270  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1271                                  DAG.getBasicBlock(B.Default));
1272
1273  // Set NextBlock to be the MBB immediately after the current one, if any.
1274  // This is used to avoid emitting unnecessary branches to the next block.
1275  MachineBasicBlock *NextBlock = 0;
1276  MachineFunction::iterator BBI = CurMBB;
1277  if (++BBI != CurMBB->getParent()->end())
1278    NextBlock = BBI;
1279
1280  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1281  if (MBB == NextBlock)
1282    DAG.setRoot(BrRange);
1283  else
1284    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1285                            DAG.getBasicBlock(MBB)));
1286
1287  CurMBB->addSuccessor(B.Default);
1288  CurMBB->addSuccessor(MBB);
1289
1290  return;
1291}
1292
1293/// visitBitTestCase - this function produces one "bit test"
1294void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1295                                            unsigned Reg,
1296                                            SelectionDAGISel::BitTestCase &B) {
1297  // Emit bit tests and jumps
1298  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1299
1300  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1301                                SwitchVal,
1302                                DAG.getConstant(B.Mask,
1303                                                TLI.getPointerTy()));
1304  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1305                                  DAG.getConstant(0, TLI.getPointerTy()),
1306                                  ISD::SETNE);
1307  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1308                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1309
1310  // Set NextBlock to be the MBB immediately after the current one, if any.
1311  // This is used to avoid emitting unnecessary branches to the next block.
1312  MachineBasicBlock *NextBlock = 0;
1313  MachineFunction::iterator BBI = CurMBB;
1314  if (++BBI != CurMBB->getParent()->end())
1315    NextBlock = BBI;
1316
1317  if (NextMBB == NextBlock)
1318    DAG.setRoot(BrAnd);
1319  else
1320    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1321                            DAG.getBasicBlock(NextMBB)));
1322
1323  CurMBB->addSuccessor(B.TargetBB);
1324  CurMBB->addSuccessor(NextMBB);
1325
1326  return;
1327}
1328
1329void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1330  assert(0 && "Should never be visited directly");
1331}
1332void SelectionDAGLowering::visitInvoke(InvokeInst &I, bool AsTerminator) {
1333  // Retrieve successors.
1334  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1335  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1336
1337  if (!AsTerminator) {
1338    // Mark landing pad so that it doesn't get deleted in branch folding.
1339    LandingPad->setIsLandingPad();
1340
1341    // Insert a label before the invoke call to mark the try range.
1342    // This can be used to detect deletion of the invoke via the
1343    // MachineModuleInfo.
1344    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
1345    unsigned BeginLabel = MMI->NextLabelID();
1346    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
1347                            DAG.getConstant(BeginLabel, MVT::i32)));
1348
1349    LowerCallTo(I, I.getCalledValue()->getType(),
1350                   I.getCallingConv(),
1351                   false,
1352                   getValue(I.getOperand(0)),
1353                   3);
1354
1355    // Insert a label before the invoke call to mark the try range.
1356    // This can be used to detect deletion of the invoke via the
1357    // MachineModuleInfo.
1358    unsigned EndLabel = MMI->NextLabelID();
1359    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
1360                            DAG.getConstant(EndLabel, MVT::i32)));
1361
1362    // Inform MachineModuleInfo of range.
1363    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
1364
1365    // Update successor info
1366    CurMBB->addSuccessor(Return);
1367    CurMBB->addSuccessor(LandingPad);
1368  } else {
1369    // Drop into normal successor.
1370    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1371                            DAG.getBasicBlock(Return)));
1372  }
1373}
1374
1375void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1376}
1377
1378/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1379/// small case ranges).
1380bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1381                                                  CaseRecVector& WorkList,
1382                                                  Value* SV,
1383                                                  MachineBasicBlock* Default) {
1384  Case& BackCase  = *(CR.Range.second-1);
1385
1386  // Size is the number of Cases represented by this range.
1387  unsigned Size = CR.Range.second - CR.Range.first;
1388  if (Size > 3)
1389    return false;
1390
1391  // Get the MachineFunction which holds the current MBB.  This is used when
1392  // inserting any additional MBBs necessary to represent the switch.
1393  MachineFunction *CurMF = CurMBB->getParent();
1394
1395  // Figure out which block is immediately after the current one.
1396  MachineBasicBlock *NextBlock = 0;
1397  MachineFunction::iterator BBI = CR.CaseBB;
1398
1399  if (++BBI != CurMBB->getParent()->end())
1400    NextBlock = BBI;
1401
1402  // TODO: If any two of the cases has the same destination, and if one value
1403  // is the same as the other, but has one bit unset that the other has set,
1404  // use bit manipulation to do two compares at once.  For example:
1405  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1406
1407  // Rearrange the case blocks so that the last one falls through if possible.
1408  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1409    // The last case block won't fall through into 'NextBlock' if we emit the
1410    // branches in this order.  See if rearranging a case value would help.
1411    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1412      if (I->BB == NextBlock) {
1413        std::swap(*I, BackCase);
1414        break;
1415      }
1416    }
1417  }
1418
1419  // Create a CaseBlock record representing a conditional branch to
1420  // the Case's target mbb if the value being switched on SV is equal
1421  // to C.
1422  MachineBasicBlock *CurBlock = CR.CaseBB;
1423  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1424    MachineBasicBlock *FallThrough;
1425    if (I != E-1) {
1426      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1427      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1428    } else {
1429      // If the last case doesn't match, go to the default block.
1430      FallThrough = Default;
1431    }
1432
1433    Value *RHS, *LHS, *MHS;
1434    ISD::CondCode CC;
1435    if (I->High == I->Low) {
1436      // This is just small small case range :) containing exactly 1 case
1437      CC = ISD::SETEQ;
1438      LHS = SV; RHS = I->High; MHS = NULL;
1439    } else {
1440      CC = ISD::SETLE;
1441      LHS = I->Low; MHS = SV; RHS = I->High;
1442    }
1443    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1444                                   I->BB, FallThrough, CurBlock);
1445
1446    // If emitting the first comparison, just call visitSwitchCase to emit the
1447    // code into the current block.  Otherwise, push the CaseBlock onto the
1448    // vector to be later processed by SDISel, and insert the node's MBB
1449    // before the next MBB.
1450    if (CurBlock == CurMBB)
1451      visitSwitchCase(CB);
1452    else
1453      SwitchCases.push_back(CB);
1454
1455    CurBlock = FallThrough;
1456  }
1457
1458  return true;
1459}
1460
1461/// handleJTSwitchCase - Emit jumptable for current switch case range
1462bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1463                                              CaseRecVector& WorkList,
1464                                              Value* SV,
1465                                              MachineBasicBlock* Default) {
1466  Case& FrontCase = *CR.Range.first;
1467  Case& BackCase  = *(CR.Range.second-1);
1468
1469  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1470  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1471
1472  uint64_t TSize = 0;
1473  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1474       I!=E; ++I)
1475    TSize += I->size();
1476
1477  if ((!TLI.isOperationLegal(ISD::BR_JT, MVT::Other) &&
1478       !TLI.isOperationLegal(ISD::BRIND, MVT::Other)) ||
1479      TSize <= 3)
1480    return false;
1481
1482  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1483  if (Density < 0.4)
1484    return false;
1485
1486  DOUT << "Lowering jump table\n"
1487       << "First entry: " << First << ". Last entry: " << Last << "\n"
1488       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1489
1490  // Get the MachineFunction which holds the current MBB.  This is used when
1491  // inserting any additional MBBs necessary to represent the switch.
1492  MachineFunction *CurMF = CurMBB->getParent();
1493
1494  // Figure out which block is immediately after the current one.
1495  MachineBasicBlock *NextBlock = 0;
1496  MachineFunction::iterator BBI = CR.CaseBB;
1497
1498  if (++BBI != CurMBB->getParent()->end())
1499    NextBlock = BBI;
1500
1501  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1502
1503  // Create a new basic block to hold the code for loading the address
1504  // of the jump table, and jumping to it.  Update successor information;
1505  // we will either branch to the default case for the switch, or the jump
1506  // table.
1507  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1508  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1509  CR.CaseBB->addSuccessor(Default);
1510  CR.CaseBB->addSuccessor(JumpTableBB);
1511
1512  // Build a vector of destination BBs, corresponding to each target
1513  // of the jump table. If the value of the jump table slot corresponds to
1514  // a case statement, push the case's BB onto the vector, otherwise, push
1515  // the default BB.
1516  std::vector<MachineBasicBlock*> DestBBs;
1517  int64_t TEI = First;
1518  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1519    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1520    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1521
1522    if ((Low <= TEI) && (TEI <= High)) {
1523      DestBBs.push_back(I->BB);
1524      if (TEI==High)
1525        ++I;
1526    } else {
1527      DestBBs.push_back(Default);
1528    }
1529  }
1530
1531  // Update successor info. Add one edge to each unique successor.
1532  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1533  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1534         E = DestBBs.end(); I != E; ++I) {
1535    if (!SuccsHandled[(*I)->getNumber()]) {
1536      SuccsHandled[(*I)->getNumber()] = true;
1537      JumpTableBB->addSuccessor(*I);
1538    }
1539  }
1540
1541  // Create a jump table index for this jump table, or return an existing
1542  // one.
1543  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1544
1545  // Set the jump table information so that we can codegen it as a second
1546  // MachineBasicBlock
1547  SelectionDAGISel::JumpTable JT(-1UL, JTI, JumpTableBB, Default);
1548  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1549                                        (CR.CaseBB == CurMBB));
1550  if (CR.CaseBB == CurMBB)
1551    visitJumpTableHeader(JT, JTH);
1552
1553  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1554
1555  return true;
1556}
1557
1558/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1559/// 2 subtrees.
1560bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1561                                                   CaseRecVector& WorkList,
1562                                                   Value* SV,
1563                                                   MachineBasicBlock* Default) {
1564  // Get the MachineFunction which holds the current MBB.  This is used when
1565  // inserting any additional MBBs necessary to represent the switch.
1566  MachineFunction *CurMF = CurMBB->getParent();
1567
1568  // Figure out which block is immediately after the current one.
1569  MachineBasicBlock *NextBlock = 0;
1570  MachineFunction::iterator BBI = CR.CaseBB;
1571
1572  if (++BBI != CurMBB->getParent()->end())
1573    NextBlock = BBI;
1574
1575  Case& FrontCase = *CR.Range.first;
1576  Case& BackCase  = *(CR.Range.second-1);
1577  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1578
1579  // Size is the number of Cases represented by this range.
1580  unsigned Size = CR.Range.second - CR.Range.first;
1581
1582  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1583  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1584  double FMetric = 0;
1585  CaseItr Pivot = CR.Range.first + Size/2;
1586
1587  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1588  // (heuristically) allow us to emit JumpTable's later.
1589  uint64_t TSize = 0;
1590  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1591       I!=E; ++I)
1592    TSize += I->size();
1593
1594  uint64_t LSize = FrontCase.size();
1595  uint64_t RSize = TSize-LSize;
1596  DOUT << "Selecting best pivot: \n"
1597       << "First: " << First << ", Last: " << Last <<"\n"
1598       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1599  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1600       J!=E; ++I, ++J) {
1601    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1602    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1603    assert((RBegin-LEnd>=1) && "Invalid case distance");
1604    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1605    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1606    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1607    // Should always split in some non-trivial place
1608    DOUT <<"=>Step\n"
1609         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1610         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1611         << "Metric: " << Metric << "\n";
1612    if (FMetric < Metric) {
1613      Pivot = J;
1614      FMetric = Metric;
1615      DOUT << "Current metric set to: " << FMetric << "\n";
1616    }
1617
1618    LSize += J->size();
1619    RSize -= J->size();
1620  }
1621  // If our case is dense we *really* should handle it earlier!
1622  assert((FMetric > 0) && "Should handle dense range earlier!");
1623
1624  CaseRange LHSR(CR.Range.first, Pivot);
1625  CaseRange RHSR(Pivot, CR.Range.second);
1626  Constant *C = Pivot->Low;
1627  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1628
1629  // We know that we branch to the LHS if the Value being switched on is
1630  // less than the Pivot value, C.  We use this to optimize our binary
1631  // tree a bit, by recognizing that if SV is greater than or equal to the
1632  // LHS's Case Value, and that Case Value is exactly one less than the
1633  // Pivot's Value, then we can branch directly to the LHS's Target,
1634  // rather than creating a leaf node for it.
1635  if ((LHSR.second - LHSR.first) == 1 &&
1636      LHSR.first->High == CR.GE &&
1637      cast<ConstantInt>(C)->getSExtValue() ==
1638      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1639    TrueBB = LHSR.first->BB;
1640  } else {
1641    TrueBB = new MachineBasicBlock(LLVMBB);
1642    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1643    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1644  }
1645
1646  // Similar to the optimization above, if the Value being switched on is
1647  // known to be less than the Constant CR.LT, and the current Case Value
1648  // is CR.LT - 1, then we can branch directly to the target block for
1649  // the current Case Value, rather than emitting a RHS leaf node for it.
1650  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1651      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1652      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1653    FalseBB = RHSR.first->BB;
1654  } else {
1655    FalseBB = new MachineBasicBlock(LLVMBB);
1656    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1657    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1658  }
1659
1660  // Create a CaseBlock record representing a conditional branch to
1661  // the LHS node if the value being switched on SV is less than C.
1662  // Otherwise, branch to LHS.
1663  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1664                                 TrueBB, FalseBB, CR.CaseBB);
1665
1666  if (CR.CaseBB == CurMBB)
1667    visitSwitchCase(CB);
1668  else
1669    SwitchCases.push_back(CB);
1670
1671  return true;
1672}
1673
1674/// handleBitTestsSwitchCase - if current case range has few destination and
1675/// range span less, than machine word bitwidth, encode case range into series
1676/// of masks and emit bit tests with these masks.
1677bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1678                                                    CaseRecVector& WorkList,
1679                                                    Value* SV,
1680                                                    MachineBasicBlock* Default) {
1681  unsigned IntPtrBits = getSizeInBits(TLI.getPointerTy());
1682
1683  Case& FrontCase = *CR.Range.first;
1684  Case& BackCase  = *(CR.Range.second-1);
1685
1686  // Get the MachineFunction which holds the current MBB.  This is used when
1687  // inserting any additional MBBs necessary to represent the switch.
1688  MachineFunction *CurMF = CurMBB->getParent();
1689
1690  unsigned numCmps = 0;
1691  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1692       I!=E; ++I) {
1693    // Single case counts one, case range - two.
1694    if (I->Low == I->High)
1695      numCmps +=1;
1696    else
1697      numCmps +=2;
1698  }
1699
1700  // Count unique destinations
1701  SmallSet<MachineBasicBlock*, 4> Dests;
1702  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1703    Dests.insert(I->BB);
1704    if (Dests.size() > 3)
1705      // Don't bother the code below, if there are too much unique destinations
1706      return false;
1707  }
1708  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1709       << "Total number of comparisons: " << numCmps << "\n";
1710
1711  // Compute span of values.
1712  Constant* minValue = FrontCase.Low;
1713  Constant* maxValue = BackCase.High;
1714  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1715                   cast<ConstantInt>(minValue)->getSExtValue();
1716  DOUT << "Compare range: " << range << "\n"
1717       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1718       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1719
1720  if (range>IntPtrBits ||
1721      (!(Dests.size() == 1 && numCmps >= 3) &&
1722       !(Dests.size() == 2 && numCmps >= 5) &&
1723       !(Dests.size() >= 3 && numCmps >= 6)))
1724    return false;
1725
1726  DOUT << "Emitting bit tests\n";
1727  int64_t lowBound = 0;
1728
1729  // Optimize the case where all the case values fit in a
1730  // word without having to subtract minValue. In this case,
1731  // we can optimize away the subtraction.
1732  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1733      cast<ConstantInt>(maxValue)->getSExtValue() <= IntPtrBits) {
1734    range = cast<ConstantInt>(maxValue)->getSExtValue();
1735  } else {
1736    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1737  }
1738
1739  CaseBitsVector CasesBits;
1740  unsigned i, count = 0;
1741
1742  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1743    MachineBasicBlock* Dest = I->BB;
1744    for (i = 0; i < count; ++i)
1745      if (Dest == CasesBits[i].BB)
1746        break;
1747
1748    if (i == count) {
1749      assert((count < 3) && "Too much destinations to test!");
1750      CasesBits.push_back(CaseBits(0, Dest, 0));
1751      count++;
1752    }
1753
1754    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1755    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1756
1757    for (uint64_t j = lo; j <= hi; j++) {
1758      CasesBits[i].Mask |=  1 << j;
1759      CasesBits[i].Bits++;
1760    }
1761
1762  }
1763  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1764
1765  SelectionDAGISel::BitTestInfo BTC;
1766
1767  // Figure out which block is immediately after the current one.
1768  MachineFunction::iterator BBI = CR.CaseBB;
1769  ++BBI;
1770
1771  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1772
1773  DOUT << "Cases:\n";
1774  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1775    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1776         << ", BB: " << CasesBits[i].BB << "\n";
1777
1778    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1779    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1780    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1781                                                CaseBB,
1782                                                CasesBits[i].BB));
1783  }
1784
1785  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1786                                     -1U, (CR.CaseBB == CurMBB),
1787                                     CR.CaseBB, Default, BTC);
1788
1789  if (CR.CaseBB == CurMBB)
1790    visitBitTestHeader(BTB);
1791
1792  BitTestCases.push_back(BTB);
1793
1794  return true;
1795}
1796
1797
1798// Clusterify - Transform simple list of Cases into list of CaseRange's
1799unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1800                                          const SwitchInst& SI) {
1801  unsigned numCmps = 0;
1802
1803  // Start with "simple" cases
1804  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1805    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1806    Cases.push_back(Case(SI.getSuccessorValue(i),
1807                         SI.getSuccessorValue(i),
1808                         SMBB));
1809  }
1810  sort(Cases.begin(), Cases.end(), CaseCmp());
1811
1812  // Merge case into clusters
1813  if (Cases.size()>=2)
1814    for (CaseItr I=Cases.begin(), J=++(Cases.begin()), E=Cases.end(); J!=E; ) {
1815      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1816      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1817      MachineBasicBlock* nextBB = J->BB;
1818      MachineBasicBlock* currentBB = I->BB;
1819
1820      // If the two neighboring cases go to the same destination, merge them
1821      // into a single case.
1822      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1823        I->High = J->High;
1824        J = Cases.erase(J);
1825      } else {
1826        I = J++;
1827      }
1828    }
1829
1830  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1831    if (I->Low != I->High)
1832      // A range counts double, since it requires two compares.
1833      ++numCmps;
1834  }
1835
1836  return numCmps;
1837}
1838
1839void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1840  // Figure out which block is immediately after the current one.
1841  MachineBasicBlock *NextBlock = 0;
1842  MachineFunction::iterator BBI = CurMBB;
1843
1844  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1845
1846  // If there is only the default destination, branch to it if it is not the
1847  // next basic block.  Otherwise, just fall through.
1848  if (SI.getNumOperands() == 2) {
1849    // Update machine-CFG edges.
1850
1851    // If this is not a fall-through branch, emit the branch.
1852    if (Default != NextBlock)
1853      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1854                              DAG.getBasicBlock(Default)));
1855
1856    CurMBB->addSuccessor(Default);
1857    return;
1858  }
1859
1860  // If there are any non-default case statements, create a vector of Cases
1861  // representing each one, and sort the vector so that we can efficiently
1862  // create a binary search tree from them.
1863  CaseVector Cases;
1864  unsigned numCmps = Clusterify(Cases, SI);
1865  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1866       << ". Total compares: " << numCmps << "\n";
1867
1868  // Get the Value to be switched on and default basic blocks, which will be
1869  // inserted into CaseBlock records, representing basic blocks in the binary
1870  // search tree.
1871  Value *SV = SI.getOperand(0);
1872
1873  // Push the initial CaseRec onto the worklist
1874  CaseRecVector WorkList;
1875  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1876
1877  while (!WorkList.empty()) {
1878    // Grab a record representing a case range to process off the worklist
1879    CaseRec CR = WorkList.back();
1880    WorkList.pop_back();
1881
1882    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1883      continue;
1884
1885    // If the range has few cases (two or less) emit a series of specific
1886    // tests.
1887    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1888      continue;
1889
1890    // If the switch has more than 5 blocks, and at least 40% dense, and the
1891    // target supports indirect branches, then emit a jump table rather than
1892    // lowering the switch to a binary tree of conditional branches.
1893    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1894      continue;
1895
1896    // Emit binary tree. We need to pick a pivot, and push left and right ranges
1897    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
1898    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
1899  }
1900}
1901
1902
1903void SelectionDAGLowering::visitSub(User &I) {
1904  // -0.0 - X --> fneg
1905  const Type *Ty = I.getType();
1906  if (isa<VectorType>(Ty)) {
1907    visitVectorBinary(I, ISD::VSUB);
1908  } else if (Ty->isFloatingPoint()) {
1909    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1910      if (CFP->isExactlyValue(-0.0)) {
1911        SDOperand Op2 = getValue(I.getOperand(1));
1912        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1913        return;
1914      }
1915    visitScalarBinary(I, ISD::FSUB);
1916  } else
1917    visitScalarBinary(I, ISD::SUB);
1918}
1919
1920void SelectionDAGLowering::visitScalarBinary(User &I, unsigned OpCode) {
1921  SDOperand Op1 = getValue(I.getOperand(0));
1922  SDOperand Op2 = getValue(I.getOperand(1));
1923
1924  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
1925}
1926
1927void
1928SelectionDAGLowering::visitVectorBinary(User &I, unsigned OpCode) {
1929  assert(isa<VectorType>(I.getType()));
1930  const VectorType *Ty = cast<VectorType>(I.getType());
1931  SDOperand Typ = DAG.getValueType(TLI.getValueType(Ty->getElementType()));
1932
1933  setValue(&I, DAG.getNode(OpCode, MVT::Vector,
1934                           getValue(I.getOperand(0)),
1935                           getValue(I.getOperand(1)),
1936                           DAG.getConstant(Ty->getNumElements(), MVT::i32),
1937                           Typ));
1938}
1939
1940void SelectionDAGLowering::visitEitherBinary(User &I, unsigned ScalarOp,
1941                                             unsigned VectorOp) {
1942  if (isa<VectorType>(I.getType()))
1943    visitVectorBinary(I, VectorOp);
1944  else
1945    visitScalarBinary(I, ScalarOp);
1946}
1947
1948void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1949  SDOperand Op1 = getValue(I.getOperand(0));
1950  SDOperand Op2 = getValue(I.getOperand(1));
1951
1952  if (TLI.getShiftAmountTy() < Op2.getValueType())
1953    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
1954  else if (TLI.getShiftAmountTy() > Op2.getValueType())
1955    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1956
1957  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1958}
1959
1960void SelectionDAGLowering::visitICmp(User &I) {
1961  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
1962  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
1963    predicate = IC->getPredicate();
1964  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
1965    predicate = ICmpInst::Predicate(IC->getPredicate());
1966  SDOperand Op1 = getValue(I.getOperand(0));
1967  SDOperand Op2 = getValue(I.getOperand(1));
1968  ISD::CondCode Opcode;
1969  switch (predicate) {
1970    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
1971    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
1972    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
1973    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
1974    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
1975    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
1976    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
1977    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
1978    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
1979    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
1980    default:
1981      assert(!"Invalid ICmp predicate value");
1982      Opcode = ISD::SETEQ;
1983      break;
1984  }
1985  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1986}
1987
1988void SelectionDAGLowering::visitFCmp(User &I) {
1989  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
1990  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
1991    predicate = FC->getPredicate();
1992  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
1993    predicate = FCmpInst::Predicate(FC->getPredicate());
1994  SDOperand Op1 = getValue(I.getOperand(0));
1995  SDOperand Op2 = getValue(I.getOperand(1));
1996  ISD::CondCode Condition, FOC, FPC;
1997  switch (predicate) {
1998    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1999    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2000    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2001    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2002    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2003    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2004    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2005    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2006    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2007    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2008    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2009    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2010    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2011    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2012    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2013    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2014    default:
2015      assert(!"Invalid FCmp predicate value");
2016      FOC = FPC = ISD::SETFALSE;
2017      break;
2018  }
2019  if (FiniteOnlyFPMath())
2020    Condition = FOC;
2021  else
2022    Condition = FPC;
2023  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2024}
2025
2026void SelectionDAGLowering::visitSelect(User &I) {
2027  SDOperand Cond     = getValue(I.getOperand(0));
2028  SDOperand TrueVal  = getValue(I.getOperand(1));
2029  SDOperand FalseVal = getValue(I.getOperand(2));
2030  if (!isa<VectorType>(I.getType())) {
2031    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2032                             TrueVal, FalseVal));
2033  } else {
2034    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
2035                             *(TrueVal.Val->op_end()-2),
2036                             *(TrueVal.Val->op_end()-1)));
2037  }
2038}
2039
2040
2041void SelectionDAGLowering::visitTrunc(User &I) {
2042  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2043  SDOperand N = getValue(I.getOperand(0));
2044  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2045  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2046}
2047
2048void SelectionDAGLowering::visitZExt(User &I) {
2049  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2050  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2051  SDOperand N = getValue(I.getOperand(0));
2052  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2053  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2054}
2055
2056void SelectionDAGLowering::visitSExt(User &I) {
2057  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2058  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2059  SDOperand N = getValue(I.getOperand(0));
2060  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2061  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2062}
2063
2064void SelectionDAGLowering::visitFPTrunc(User &I) {
2065  // FPTrunc is never a no-op cast, no need to check
2066  SDOperand N = getValue(I.getOperand(0));
2067  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2068  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2069}
2070
2071void SelectionDAGLowering::visitFPExt(User &I){
2072  // FPTrunc is never a no-op cast, no need to check
2073  SDOperand N = getValue(I.getOperand(0));
2074  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2075  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2076}
2077
2078void SelectionDAGLowering::visitFPToUI(User &I) {
2079  // FPToUI is never a no-op cast, no need to check
2080  SDOperand N = getValue(I.getOperand(0));
2081  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2082  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2083}
2084
2085void SelectionDAGLowering::visitFPToSI(User &I) {
2086  // FPToSI is never a no-op cast, no need to check
2087  SDOperand N = getValue(I.getOperand(0));
2088  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2089  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2090}
2091
2092void SelectionDAGLowering::visitUIToFP(User &I) {
2093  // UIToFP is never a no-op cast, no need to check
2094  SDOperand N = getValue(I.getOperand(0));
2095  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2096  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2097}
2098
2099void SelectionDAGLowering::visitSIToFP(User &I){
2100  // UIToFP is never a no-op cast, no need to check
2101  SDOperand N = getValue(I.getOperand(0));
2102  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2103  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2104}
2105
2106void SelectionDAGLowering::visitPtrToInt(User &I) {
2107  // What to do depends on the size of the integer and the size of the pointer.
2108  // We can either truncate, zero extend, or no-op, accordingly.
2109  SDOperand N = getValue(I.getOperand(0));
2110  MVT::ValueType SrcVT = N.getValueType();
2111  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2112  SDOperand Result;
2113  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2114    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2115  else
2116    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2117    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2118  setValue(&I, Result);
2119}
2120
2121void SelectionDAGLowering::visitIntToPtr(User &I) {
2122  // What to do depends on the size of the integer and the size of the pointer.
2123  // We can either truncate, zero extend, or no-op, accordingly.
2124  SDOperand N = getValue(I.getOperand(0));
2125  MVT::ValueType SrcVT = N.getValueType();
2126  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2127  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2128    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2129  else
2130    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2131    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2132}
2133
2134void SelectionDAGLowering::visitBitCast(User &I) {
2135  SDOperand N = getValue(I.getOperand(0));
2136  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2137  if (DestVT == MVT::Vector) {
2138    // This is a cast to a vector from something else.
2139    // Get information about the output vector.
2140    const VectorType *DestTy = cast<VectorType>(I.getType());
2141    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2142    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
2143                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
2144                             DAG.getValueType(EltVT)));
2145    return;
2146  }
2147  MVT::ValueType SrcVT = N.getValueType();
2148  if (SrcVT == MVT::Vector) {
2149    // This is a cast from a vctor to something else.
2150    // Get information about the input vector.
2151    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
2152    return;
2153  }
2154
2155  // BitCast assures us that source and destination are the same size so this
2156  // is either a BIT_CONVERT or a no-op.
2157  if (DestVT != N.getValueType())
2158    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2159  else
2160    setValue(&I, N); // noop cast.
2161}
2162
2163void SelectionDAGLowering::visitInsertElement(User &I) {
2164  SDOperand InVec = getValue(I.getOperand(0));
2165  SDOperand InVal = getValue(I.getOperand(1));
2166  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2167                                getValue(I.getOperand(2)));
2168
2169  SDOperand Num = *(InVec.Val->op_end()-2);
2170  SDOperand Typ = *(InVec.Val->op_end()-1);
2171  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
2172                           InVec, InVal, InIdx, Num, Typ));
2173}
2174
2175void SelectionDAGLowering::visitExtractElement(User &I) {
2176  SDOperand InVec = getValue(I.getOperand(0));
2177  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2178                                getValue(I.getOperand(1)));
2179  SDOperand Typ = *(InVec.Val->op_end()-1);
2180  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
2181                           TLI.getValueType(I.getType()), InVec, InIdx));
2182}
2183
2184void SelectionDAGLowering::visitShuffleVector(User &I) {
2185  SDOperand V1   = getValue(I.getOperand(0));
2186  SDOperand V2   = getValue(I.getOperand(1));
2187  SDOperand Mask = getValue(I.getOperand(2));
2188
2189  SDOperand Num = *(V1.Val->op_end()-2);
2190  SDOperand Typ = *(V2.Val->op_end()-1);
2191  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
2192                           V1, V2, Mask, Num, Typ));
2193}
2194
2195
2196void SelectionDAGLowering::visitGetElementPtr(User &I) {
2197  SDOperand N = getValue(I.getOperand(0));
2198  const Type *Ty = I.getOperand(0)->getType();
2199
2200  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2201       OI != E; ++OI) {
2202    Value *Idx = *OI;
2203    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2204      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2205      if (Field) {
2206        // N = N + Offset
2207        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2208        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2209                        getIntPtrConstant(Offset));
2210      }
2211      Ty = StTy->getElementType(Field);
2212    } else {
2213      Ty = cast<SequentialType>(Ty)->getElementType();
2214
2215      // If this is a constant subscript, handle it quickly.
2216      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2217        if (CI->getZExtValue() == 0) continue;
2218        uint64_t Offs =
2219            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2220        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2221        continue;
2222      }
2223
2224      // N = N + Idx * ElementSize;
2225      uint64_t ElementSize = TD->getTypeSize(Ty);
2226      SDOperand IdxN = getValue(Idx);
2227
2228      // If the index is smaller or larger than intptr_t, truncate or extend
2229      // it.
2230      if (IdxN.getValueType() < N.getValueType()) {
2231        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2232      } else if (IdxN.getValueType() > N.getValueType())
2233        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2234
2235      // If this is a multiply by a power of two, turn it into a shl
2236      // immediately.  This is a very common case.
2237      if (isPowerOf2_64(ElementSize)) {
2238        unsigned Amt = Log2_64(ElementSize);
2239        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2240                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2241        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2242        continue;
2243      }
2244
2245      SDOperand Scale = getIntPtrConstant(ElementSize);
2246      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2247      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2248    }
2249  }
2250  setValue(&I, N);
2251}
2252
2253void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2254  // If this is a fixed sized alloca in the entry block of the function,
2255  // allocate it statically on the stack.
2256  if (FuncInfo.StaticAllocaMap.count(&I))
2257    return;   // getValue will auto-populate this.
2258
2259  const Type *Ty = I.getAllocatedType();
2260  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
2261  unsigned Align =
2262    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2263             I.getAlignment());
2264
2265  SDOperand AllocSize = getValue(I.getArraySize());
2266  MVT::ValueType IntPtr = TLI.getPointerTy();
2267  if (IntPtr < AllocSize.getValueType())
2268    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2269  else if (IntPtr > AllocSize.getValueType())
2270    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2271
2272  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2273                          getIntPtrConstant(TySize));
2274
2275  // Handle alignment.  If the requested alignment is less than or equal to the
2276  // stack alignment, ignore it and round the size of the allocation up to the
2277  // stack alignment size.  If the size is greater than the stack alignment, we
2278  // note this in the DYNAMIC_STACKALLOC node.
2279  unsigned StackAlign =
2280    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2281  if (Align <= StackAlign) {
2282    Align = 0;
2283    // Add SA-1 to the size.
2284    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2285                            getIntPtrConstant(StackAlign-1));
2286    // Mask out the low bits for alignment purposes.
2287    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2288                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2289  }
2290
2291  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2292  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2293                                                    MVT::Other);
2294  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2295  setValue(&I, DSA);
2296  DAG.setRoot(DSA.getValue(1));
2297
2298  // Inform the Frame Information that we have just allocated a variable-sized
2299  // object.
2300  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2301}
2302
2303void SelectionDAGLowering::visitLoad(LoadInst &I) {
2304  SDOperand Ptr = getValue(I.getOperand(0));
2305
2306  SDOperand Root;
2307  if (I.isVolatile())
2308    Root = getRoot();
2309  else {
2310    // Do not serialize non-volatile loads against each other.
2311    Root = DAG.getRoot();
2312  }
2313
2314  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2315                           Root, I.isVolatile()));
2316}
2317
2318SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2319                                            const Value *SV, SDOperand Root,
2320                                            bool isVolatile) {
2321  SDOperand L;
2322  if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
2323    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
2324    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
2325                       DAG.getSrcValue(SV));
2326  } else {
2327    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0, isVolatile);
2328  }
2329
2330  if (isVolatile)
2331    DAG.setRoot(L.getValue(1));
2332  else
2333    PendingLoads.push_back(L.getValue(1));
2334
2335  return L;
2336}
2337
2338
2339void SelectionDAGLowering::visitStore(StoreInst &I) {
2340  Value *SrcV = I.getOperand(0);
2341  SDOperand Src = getValue(SrcV);
2342  SDOperand Ptr = getValue(I.getOperand(1));
2343  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2344                           I.isVolatile()));
2345}
2346
2347/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2348/// access memory and has no other side effects at all.
2349static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2350#define GET_NO_MEMORY_INTRINSICS
2351#include "llvm/Intrinsics.gen"
2352#undef GET_NO_MEMORY_INTRINSICS
2353  return false;
2354}
2355
2356// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2357// have any side-effects or if it only reads memory.
2358static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2359#define GET_SIDE_EFFECT_INFO
2360#include "llvm/Intrinsics.gen"
2361#undef GET_SIDE_EFFECT_INFO
2362  return false;
2363}
2364
2365/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2366/// node.
2367void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2368                                                unsigned Intrinsic) {
2369  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2370  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2371
2372  // Build the operand list.
2373  SmallVector<SDOperand, 8> Ops;
2374  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2375    if (OnlyLoad) {
2376      // We don't need to serialize loads against other loads.
2377      Ops.push_back(DAG.getRoot());
2378    } else {
2379      Ops.push_back(getRoot());
2380    }
2381  }
2382
2383  // Add the intrinsic ID as an integer operand.
2384  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2385
2386  // Add all operands of the call to the operand list.
2387  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2388    SDOperand Op = getValue(I.getOperand(i));
2389
2390    // If this is a vector type, force it to the right vector type.
2391    if (Op.getValueType() == MVT::Vector) {
2392      const VectorType *OpTy = cast<VectorType>(I.getOperand(i)->getType());
2393      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
2394
2395      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
2396      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
2397      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
2398    }
2399
2400    assert(TLI.isTypeLegal(Op.getValueType()) &&
2401           "Intrinsic uses a non-legal type?");
2402    Ops.push_back(Op);
2403  }
2404
2405  std::vector<MVT::ValueType> VTs;
2406  if (I.getType() != Type::VoidTy) {
2407    MVT::ValueType VT = TLI.getValueType(I.getType());
2408    if (VT == MVT::Vector) {
2409      const VectorType *DestTy = cast<VectorType>(I.getType());
2410      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2411
2412      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2413      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2414    }
2415
2416    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2417    VTs.push_back(VT);
2418  }
2419  if (HasChain)
2420    VTs.push_back(MVT::Other);
2421
2422  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2423
2424  // Create the node.
2425  SDOperand Result;
2426  if (!HasChain)
2427    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2428                         &Ops[0], Ops.size());
2429  else if (I.getType() != Type::VoidTy)
2430    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2431                         &Ops[0], Ops.size());
2432  else
2433    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2434                         &Ops[0], Ops.size());
2435
2436  if (HasChain) {
2437    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2438    if (OnlyLoad)
2439      PendingLoads.push_back(Chain);
2440    else
2441      DAG.setRoot(Chain);
2442  }
2443  if (I.getType() != Type::VoidTy) {
2444    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2445      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
2446      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
2447                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
2448                           DAG.getValueType(EVT));
2449    }
2450    setValue(&I, Result);
2451  }
2452}
2453
2454/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2455/// we want to emit this as a call to a named external function, return the name
2456/// otherwise lower it and return null.
2457const char *
2458SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2459  switch (Intrinsic) {
2460  default:
2461    // By default, turn this into a target intrinsic node.
2462    visitTargetIntrinsic(I, Intrinsic);
2463    return 0;
2464  case Intrinsic::vastart:  visitVAStart(I); return 0;
2465  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2466  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2467  case Intrinsic::returnaddress:
2468    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2469                             getValue(I.getOperand(1))));
2470    return 0;
2471  case Intrinsic::frameaddress:
2472    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2473                             getValue(I.getOperand(1))));
2474    return 0;
2475  case Intrinsic::setjmp:
2476    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2477    break;
2478  case Intrinsic::longjmp:
2479    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2480    break;
2481  case Intrinsic::memcpy_i32:
2482  case Intrinsic::memcpy_i64:
2483    visitMemIntrinsic(I, ISD::MEMCPY);
2484    return 0;
2485  case Intrinsic::memset_i32:
2486  case Intrinsic::memset_i64:
2487    visitMemIntrinsic(I, ISD::MEMSET);
2488    return 0;
2489  case Intrinsic::memmove_i32:
2490  case Intrinsic::memmove_i64:
2491    visitMemIntrinsic(I, ISD::MEMMOVE);
2492    return 0;
2493
2494  case Intrinsic::dbg_stoppoint: {
2495    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2496    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2497    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2498      SDOperand Ops[5];
2499
2500      Ops[0] = getRoot();
2501      Ops[1] = getValue(SPI.getLineValue());
2502      Ops[2] = getValue(SPI.getColumnValue());
2503
2504      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2505      assert(DD && "Not a debug information descriptor");
2506      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2507
2508      Ops[3] = DAG.getString(CompileUnit->getFileName());
2509      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2510
2511      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2512    }
2513
2514    return 0;
2515  }
2516  case Intrinsic::dbg_region_start: {
2517    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2518    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2519    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2520      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2521      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2522                              DAG.getConstant(LabelID, MVT::i32)));
2523    }
2524
2525    return 0;
2526  }
2527  case Intrinsic::dbg_region_end: {
2528    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2529    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2530    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2531      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2532      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2533                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2534    }
2535
2536    return 0;
2537  }
2538  case Intrinsic::dbg_func_start: {
2539    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2540    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2541    if (MMI && FSI.getSubprogram() &&
2542        MMI->Verify(FSI.getSubprogram())) {
2543      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2544      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2545                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2546    }
2547
2548    return 0;
2549  }
2550  case Intrinsic::dbg_declare: {
2551    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2552    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2553    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2554      SDOperand AddressOp  = getValue(DI.getAddress());
2555      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2556        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2557    }
2558
2559    return 0;
2560  }
2561
2562  case Intrinsic::eh_exception: {
2563    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2564
2565    if (MMI) {
2566      // Add a label to mark the beginning of the landing pad.  Deletion of the
2567      // landing pad can thus be detected via the MachineModuleInfo.
2568      unsigned LabelID = MMI->addLandingPad(CurMBB);
2569      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
2570                              DAG.getConstant(LabelID, MVT::i32)));
2571
2572      // Mark exception register as live in.
2573      unsigned Reg = TLI.getExceptionAddressRegister();
2574      if (Reg) CurMBB->addLiveIn(Reg);
2575
2576      // Insert the EXCEPTIONADDR instruction.
2577      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2578      SDOperand Ops[1];
2579      Ops[0] = DAG.getRoot();
2580      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2581      setValue(&I, Op);
2582      DAG.setRoot(Op.getValue(1));
2583    } else {
2584      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2585    }
2586    return 0;
2587  }
2588
2589  case Intrinsic::eh_selector:
2590  case Intrinsic::eh_filter:{
2591    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2592
2593    if (MMI) {
2594      // Inform the MachineModuleInfo of the personality for this landing pad.
2595      ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(2));
2596      assert(CE && CE->getOpcode() == Instruction::BitCast &&
2597             isa<Function>(CE->getOperand(0)) &&
2598             "Personality should be a function");
2599      MMI->addPersonality(CurMBB, cast<Function>(CE->getOperand(0)));
2600      if (Intrinsic == Intrinsic::eh_filter)
2601        MMI->setIsFilterLandingPad(CurMBB);
2602
2603      // Gather all the type infos for this landing pad and pass them along to
2604      // MachineModuleInfo.
2605      std::vector<GlobalVariable *> TyInfo;
2606      for (unsigned i = 3, N = I.getNumOperands(); i < N; ++i) {
2607        ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i));
2608        if (CE && CE->getOpcode() == Instruction::BitCast &&
2609            isa<GlobalVariable>(CE->getOperand(0))) {
2610          TyInfo.push_back(cast<GlobalVariable>(CE->getOperand(0)));
2611        } else {
2612          ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i));
2613          assert(CI && CI->getZExtValue() == 0 &&
2614            "TypeInfo must be a global variable typeinfo or NULL");
2615          TyInfo.push_back(NULL);
2616        }
2617      }
2618      MMI->addCatchTypeInfo(CurMBB, TyInfo);
2619
2620      // Mark exception selector register as live in.
2621      unsigned Reg = TLI.getExceptionSelectorRegister();
2622      if (Reg) CurMBB->addLiveIn(Reg);
2623
2624      // Insert the EHSELECTION instruction.
2625      SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2626      SDOperand Ops[2];
2627      Ops[0] = getValue(I.getOperand(1));
2628      Ops[1] = getRoot();
2629      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2630      setValue(&I, Op);
2631      DAG.setRoot(Op.getValue(1));
2632    } else {
2633      setValue(&I, DAG.getConstant(0, MVT::i32));
2634    }
2635
2636    return 0;
2637  }
2638
2639  case Intrinsic::eh_typeid_for: {
2640    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2641
2642    if (MMI) {
2643      // Find the type id for the given typeinfo.
2644      GlobalVariable *GV = NULL;
2645      ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(1));
2646      if (CE && CE->getOpcode() == Instruction::BitCast &&
2647          isa<GlobalVariable>(CE->getOperand(0))) {
2648        GV = cast<GlobalVariable>(CE->getOperand(0));
2649      } else {
2650        ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2651        assert(CI && CI->getZExtValue() == 0 &&
2652          "TypeInfo must be a global variable typeinfo or NULL");
2653        GV = NULL;
2654      }
2655
2656      unsigned TypeID = MMI->getTypeIDFor(GV);
2657      setValue(&I, DAG.getConstant(TypeID, MVT::i32));
2658    } else {
2659      setValue(&I, DAG.getConstant(0, MVT::i32));
2660    }
2661
2662    return 0;
2663  }
2664
2665  case Intrinsic::sqrt_f32:
2666  case Intrinsic::sqrt_f64:
2667    setValue(&I, DAG.getNode(ISD::FSQRT,
2668                             getValue(I.getOperand(1)).getValueType(),
2669                             getValue(I.getOperand(1))));
2670    return 0;
2671  case Intrinsic::powi_f32:
2672  case Intrinsic::powi_f64:
2673    setValue(&I, DAG.getNode(ISD::FPOWI,
2674                             getValue(I.getOperand(1)).getValueType(),
2675                             getValue(I.getOperand(1)),
2676                             getValue(I.getOperand(2))));
2677    return 0;
2678  case Intrinsic::pcmarker: {
2679    SDOperand Tmp = getValue(I.getOperand(1));
2680    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2681    return 0;
2682  }
2683  case Intrinsic::readcyclecounter: {
2684    SDOperand Op = getRoot();
2685    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2686                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2687                                &Op, 1);
2688    setValue(&I, Tmp);
2689    DAG.setRoot(Tmp.getValue(1));
2690    return 0;
2691  }
2692  case Intrinsic::part_select: {
2693    // Currently not implemented: just abort
2694    assert(0 && "part_select intrinsic not implemented");
2695    abort();
2696  }
2697  case Intrinsic::part_set: {
2698    // Currently not implemented: just abort
2699    assert(0 && "part_set intrinsic not implemented");
2700    abort();
2701  }
2702  case Intrinsic::bswap:
2703    setValue(&I, DAG.getNode(ISD::BSWAP,
2704                             getValue(I.getOperand(1)).getValueType(),
2705                             getValue(I.getOperand(1))));
2706    return 0;
2707  case Intrinsic::cttz: {
2708    SDOperand Arg = getValue(I.getOperand(1));
2709    MVT::ValueType Ty = Arg.getValueType();
2710    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2711    if (Ty < MVT::i32)
2712      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2713    else if (Ty > MVT::i32)
2714      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2715    setValue(&I, result);
2716    return 0;
2717  }
2718  case Intrinsic::ctlz: {
2719    SDOperand Arg = getValue(I.getOperand(1));
2720    MVT::ValueType Ty = Arg.getValueType();
2721    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2722    if (Ty < MVT::i32)
2723      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2724    else if (Ty > MVT::i32)
2725      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2726    setValue(&I, result);
2727    return 0;
2728  }
2729  case Intrinsic::ctpop: {
2730    SDOperand Arg = getValue(I.getOperand(1));
2731    MVT::ValueType Ty = Arg.getValueType();
2732    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2733    if (Ty < MVT::i32)
2734      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2735    else if (Ty > MVT::i32)
2736      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2737    setValue(&I, result);
2738    return 0;
2739  }
2740  case Intrinsic::stacksave: {
2741    SDOperand Op = getRoot();
2742    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2743              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2744    setValue(&I, Tmp);
2745    DAG.setRoot(Tmp.getValue(1));
2746    return 0;
2747  }
2748  case Intrinsic::stackrestore: {
2749    SDOperand Tmp = getValue(I.getOperand(1));
2750    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2751    return 0;
2752  }
2753  case Intrinsic::prefetch:
2754    // FIXME: Currently discarding prefetches.
2755    return 0;
2756  }
2757}
2758
2759
2760void SelectionDAGLowering::LowerCallTo(Instruction &I,
2761                                       const Type *CalledValueTy,
2762                                       unsigned CallingConv,
2763                                       bool IsTailCall,
2764                                       SDOperand Callee, unsigned OpIdx) {
2765  const PointerType *PT = cast<PointerType>(CalledValueTy);
2766  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2767  const ParamAttrsList *Attrs = FTy->getParamAttrs();
2768
2769  TargetLowering::ArgListTy Args;
2770  TargetLowering::ArgListEntry Entry;
2771  Args.reserve(I.getNumOperands());
2772  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2773    Value *Arg = I.getOperand(i);
2774    SDOperand ArgNode = getValue(Arg);
2775    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2776    Entry.isSExt   = Attrs && Attrs->paramHasAttr(i, ParamAttr::SExt);
2777    Entry.isZExt   = Attrs && Attrs->paramHasAttr(i, ParamAttr::ZExt);
2778    Entry.isInReg  = Attrs && Attrs->paramHasAttr(i, ParamAttr::InReg);
2779    Entry.isSRet   = Attrs && Attrs->paramHasAttr(i, ParamAttr::StructRet);
2780    Args.push_back(Entry);
2781  }
2782
2783  std::pair<SDOperand,SDOperand> Result =
2784    TLI.LowerCallTo(getRoot(), I.getType(),
2785                    Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2786                    FTy->isVarArg(), CallingConv, IsTailCall,
2787                    Callee, Args, DAG);
2788  if (I.getType() != Type::VoidTy)
2789    setValue(&I, Result.first);
2790  DAG.setRoot(Result.second);
2791}
2792
2793
2794void SelectionDAGLowering::visitCall(CallInst &I) {
2795  const char *RenameFn = 0;
2796  if (Function *F = I.getCalledFunction()) {
2797    if (F->isDeclaration())
2798      if (unsigned IID = F->getIntrinsicID()) {
2799        RenameFn = visitIntrinsicCall(I, IID);
2800        if (!RenameFn)
2801          return;
2802      } else {    // Not an LLVM intrinsic.
2803        const std::string &Name = F->getName();
2804        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2805          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2806              I.getOperand(1)->getType()->isFloatingPoint() &&
2807              I.getType() == I.getOperand(1)->getType() &&
2808              I.getType() == I.getOperand(2)->getType()) {
2809            SDOperand LHS = getValue(I.getOperand(1));
2810            SDOperand RHS = getValue(I.getOperand(2));
2811            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2812                                     LHS, RHS));
2813            return;
2814          }
2815        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2816          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2817              I.getOperand(1)->getType()->isFloatingPoint() &&
2818              I.getType() == I.getOperand(1)->getType()) {
2819            SDOperand Tmp = getValue(I.getOperand(1));
2820            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2821            return;
2822          }
2823        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2824          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2825              I.getOperand(1)->getType()->isFloatingPoint() &&
2826              I.getType() == I.getOperand(1)->getType()) {
2827            SDOperand Tmp = getValue(I.getOperand(1));
2828            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2829            return;
2830          }
2831        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2832          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2833              I.getOperand(1)->getType()->isFloatingPoint() &&
2834              I.getType() == I.getOperand(1)->getType()) {
2835            SDOperand Tmp = getValue(I.getOperand(1));
2836            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2837            return;
2838          }
2839        }
2840      }
2841  } else if (isa<InlineAsm>(I.getOperand(0))) {
2842    visitInlineAsm(I);
2843    return;
2844  }
2845
2846  SDOperand Callee;
2847  if (!RenameFn)
2848    Callee = getValue(I.getOperand(0));
2849  else
2850    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2851
2852  LowerCallTo(I, I.getCalledValue()->getType(),
2853                 I.getCallingConv(),
2854                 I.isTailCall(),
2855                 Callee,
2856                 1);
2857}
2858
2859
2860SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2861                                        SDOperand &Chain, SDOperand &Flag)const{
2862  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
2863  Chain = Val.getValue(1);
2864  Flag  = Val.getValue(2);
2865
2866  // If the result was expanded, copy from the top part.
2867  if (Regs.size() > 1) {
2868    assert(Regs.size() == 2 &&
2869           "Cannot expand to more than 2 elts yet!");
2870    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
2871    Chain = Hi.getValue(1);
2872    Flag  = Hi.getValue(2);
2873    if (DAG.getTargetLoweringInfo().isLittleEndian())
2874      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
2875    else
2876      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
2877  }
2878
2879  // Otherwise, if the return value was promoted or extended, truncate it to the
2880  // appropriate type.
2881  if (RegVT == ValueVT)
2882    return Val;
2883
2884  if (MVT::isVector(RegVT)) {
2885    assert(ValueVT == MVT::Vector && "Unknown vector conversion!");
2886    return DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Val,
2887                       DAG.getConstant(MVT::getVectorNumElements(RegVT),
2888                                       MVT::i32),
2889                       DAG.getValueType(MVT::getVectorBaseType(RegVT)));
2890  }
2891
2892  if (MVT::isInteger(RegVT)) {
2893    if (ValueVT < RegVT)
2894      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
2895    else
2896      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
2897  }
2898
2899  assert(MVT::isFloatingPoint(RegVT) && MVT::isFloatingPoint(ValueVT));
2900  return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
2901}
2902
2903/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2904/// specified value into the registers specified by this object.  This uses
2905/// Chain/Flag as the input and updates them for the output Chain/Flag.
2906void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2907                                 SDOperand &Chain, SDOperand &Flag,
2908                                 MVT::ValueType PtrVT) const {
2909  if (Regs.size() == 1) {
2910    // If there is a single register and the types differ, this must be
2911    // a promotion.
2912    if (RegVT != ValueVT) {
2913      if (MVT::isVector(RegVT)) {
2914        assert(Val.getValueType() == MVT::Vector &&"Not a vector-vector cast?");
2915        Val = DAG.getNode(ISD::VBIT_CONVERT, RegVT, Val);
2916      } else if (MVT::isInteger(RegVT) && MVT::isInteger(Val.getValueType())) {
2917        if (RegVT < ValueVT)
2918          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
2919        else
2920          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
2921      } else if (MVT::isFloatingPoint(RegVT) &&
2922                 MVT::isFloatingPoint(Val.getValueType())) {
2923        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
2924      } else if (MVT::getSizeInBits(RegVT) ==
2925                 MVT::getSizeInBits(Val.getValueType())) {
2926        Val = DAG.getNode(ISD::BIT_CONVERT, RegVT, Val);
2927      } else {
2928        assert(0 && "Unknown mismatch!");
2929      }
2930    }
2931    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
2932    Flag = Chain.getValue(1);
2933  } else {
2934    std::vector<unsigned> R(Regs);
2935    if (!DAG.getTargetLoweringInfo().isLittleEndian())
2936      std::reverse(R.begin(), R.end());
2937
2938    for (unsigned i = 0, e = R.size(); i != e; ++i) {
2939      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
2940                                   DAG.getConstant(i, PtrVT));
2941      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
2942      Flag = Chain.getValue(1);
2943    }
2944  }
2945}
2946
2947/// AddInlineAsmOperands - Add this value to the specified inlineasm node
2948/// operand list.  This adds the code marker and includes the number of
2949/// values added into it.
2950void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
2951                                        std::vector<SDOperand> &Ops) const {
2952  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
2953  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
2954  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
2955    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
2956}
2957
2958/// isAllocatableRegister - If the specified register is safe to allocate,
2959/// i.e. it isn't a stack pointer or some other special register, return the
2960/// register class for the register.  Otherwise, return null.
2961static const TargetRegisterClass *
2962isAllocatableRegister(unsigned Reg, MachineFunction &MF,
2963                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
2964  MVT::ValueType FoundVT = MVT::Other;
2965  const TargetRegisterClass *FoundRC = 0;
2966  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
2967       E = MRI->regclass_end(); RCI != E; ++RCI) {
2968    MVT::ValueType ThisVT = MVT::Other;
2969
2970    const TargetRegisterClass *RC = *RCI;
2971    // If none of the the value types for this register class are valid, we
2972    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2973    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2974         I != E; ++I) {
2975      if (TLI.isTypeLegal(*I)) {
2976        // If we have already found this register in a different register class,
2977        // choose the one with the largest VT specified.  For example, on
2978        // PowerPC, we favor f64 register classes over f32.
2979        if (FoundVT == MVT::Other ||
2980            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
2981          ThisVT = *I;
2982          break;
2983        }
2984      }
2985    }
2986
2987    if (ThisVT == MVT::Other) continue;
2988
2989    // NOTE: This isn't ideal.  In particular, this might allocate the
2990    // frame pointer in functions that need it (due to them not being taken
2991    // out of allocation, because a variable sized allocation hasn't been seen
2992    // yet).  This is a slight code pessimization, but should still work.
2993    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
2994         E = RC->allocation_order_end(MF); I != E; ++I)
2995      if (*I == Reg) {
2996        // We found a matching register class.  Keep looking at others in case
2997        // we find one with larger registers that this physreg is also in.
2998        FoundRC = RC;
2999        FoundVT = ThisVT;
3000        break;
3001      }
3002  }
3003  return FoundRC;
3004}
3005
3006RegsForValue SelectionDAGLowering::
3007GetRegistersForValue(const std::string &ConstrCode,
3008                     MVT::ValueType VT, bool isOutReg, bool isInReg,
3009                     std::set<unsigned> &OutputRegs,
3010                     std::set<unsigned> &InputRegs) {
3011  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3012    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
3013  std::vector<unsigned> Regs;
3014
3015  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
3016  MVT::ValueType RegVT;
3017  MVT::ValueType ValueVT = VT;
3018
3019  // If this is a constraint for a specific physical register, like {r17},
3020  // assign it now.
3021  if (PhysReg.first) {
3022    if (VT == MVT::Other)
3023      ValueVT = *PhysReg.second->vt_begin();
3024
3025    // Get the actual register value type.  This is important, because the user
3026    // may have asked for (e.g.) the AX register in i32 type.  We need to
3027    // remember that AX is actually i16 to get the right extension.
3028    RegVT = *PhysReg.second->vt_begin();
3029
3030    // This is a explicit reference to a physical register.
3031    Regs.push_back(PhysReg.first);
3032
3033    // If this is an expanded reference, add the rest of the regs to Regs.
3034    if (NumRegs != 1) {
3035      TargetRegisterClass::iterator I = PhysReg.second->begin();
3036      TargetRegisterClass::iterator E = PhysReg.second->end();
3037      for (; *I != PhysReg.first; ++I)
3038        assert(I != E && "Didn't find reg!");
3039
3040      // Already added the first reg.
3041      --NumRegs; ++I;
3042      for (; NumRegs; --NumRegs, ++I) {
3043        assert(I != E && "Ran out of registers to allocate!");
3044        Regs.push_back(*I);
3045      }
3046    }
3047    return RegsForValue(Regs, RegVT, ValueVT);
3048  }
3049
3050  // Otherwise, if this was a reference to an LLVM register class, create vregs
3051  // for this reference.
3052  std::vector<unsigned> RegClassRegs;
3053  if (PhysReg.second) {
3054    // If this is an early clobber or tied register, our regalloc doesn't know
3055    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3056    // and let the regalloc do the right thing.
3057    if (!isOutReg || !isInReg) {
3058      RegVT = *PhysReg.second->vt_begin();
3059
3060      if (VT == MVT::Other)
3061        ValueVT = RegVT;
3062
3063      // Create the appropriate number of virtual registers.
3064      SSARegMap *RegMap = DAG.getMachineFunction().getSSARegMap();
3065      for (; NumRegs; --NumRegs)
3066        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3067
3068      return RegsForValue(Regs, RegVT, ValueVT);
3069    }
3070
3071    // Otherwise, we can't allocate it.  Let the code below figure out how to
3072    // maintain these constraints.
3073    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3074
3075  } else {
3076    // This is a reference to a register class that doesn't directly correspond
3077    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3078    // registers from the class.
3079    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
3080  }
3081
3082  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3083  MachineFunction &MF = *CurMBB->getParent();
3084  unsigned NumAllocated = 0;
3085  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3086    unsigned Reg = RegClassRegs[i];
3087    // See if this register is available.
3088    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3089        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3090      // Make sure we find consecutive registers.
3091      NumAllocated = 0;
3092      continue;
3093    }
3094
3095    // Check to see if this register is allocatable (i.e. don't give out the
3096    // stack pointer).
3097    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3098    if (!RC) {
3099      // Make sure we find consecutive registers.
3100      NumAllocated = 0;
3101      continue;
3102    }
3103
3104    // Okay, this register is good, we can use it.
3105    ++NumAllocated;
3106
3107    // If we allocated enough consecutive registers, succeed.
3108    if (NumAllocated == NumRegs) {
3109      unsigned RegStart = (i-NumAllocated)+1;
3110      unsigned RegEnd   = i+1;
3111      // Mark all of the allocated registers used.
3112      for (unsigned i = RegStart; i != RegEnd; ++i) {
3113        unsigned Reg = RegClassRegs[i];
3114        Regs.push_back(Reg);
3115        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
3116        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
3117      }
3118
3119      return RegsForValue(Regs, *RC->vt_begin(), VT);
3120    }
3121  }
3122
3123  // Otherwise, we couldn't allocate enough registers for this.
3124  return RegsForValue();
3125}
3126
3127/// getConstraintGenerality - Return an integer indicating how general CT is.
3128static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3129  switch (CT) {
3130  default: assert(0 && "Unknown constraint type!");
3131  case TargetLowering::C_Other:
3132  case TargetLowering::C_Unknown:
3133    return 0;
3134  case TargetLowering::C_Register:
3135    return 1;
3136  case TargetLowering::C_RegisterClass:
3137    return 2;
3138  case TargetLowering::C_Memory:
3139    return 3;
3140  }
3141}
3142
3143static std::string GetMostGeneralConstraint(std::vector<std::string> &C,
3144                                            const TargetLowering &TLI) {
3145  assert(!C.empty() && "Must have at least one constraint");
3146  if (C.size() == 1) return C[0];
3147
3148  std::string *Current = &C[0];
3149  // If we have multiple constraints, try to pick the most general one ahead
3150  // of time.  This isn't a wonderful solution, but handles common cases.
3151  TargetLowering::ConstraintType Flavor = TLI.getConstraintType(Current[0]);
3152  for (unsigned j = 1, e = C.size(); j != e; ++j) {
3153    TargetLowering::ConstraintType ThisFlavor = TLI.getConstraintType(C[j]);
3154    if (getConstraintGenerality(ThisFlavor) >
3155        getConstraintGenerality(Flavor)) {
3156      // This constraint letter is more general than the previous one,
3157      // use it.
3158      Flavor = ThisFlavor;
3159      Current = &C[j];
3160    }
3161  }
3162  return *Current;
3163}
3164
3165
3166/// visitInlineAsm - Handle a call to an InlineAsm object.
3167///
3168void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
3169  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
3170
3171  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
3172                                                 MVT::Other);
3173
3174  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
3175  std::vector<MVT::ValueType> ConstraintVTs;
3176
3177  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
3178  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
3179  /// if it is a def of that register.
3180  std::vector<SDOperand> AsmNodeOperands;
3181  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3182  AsmNodeOperands.push_back(AsmStr);
3183
3184  SDOperand Chain = getRoot();
3185  SDOperand Flag;
3186
3187  // We fully assign registers here at isel time.  This is not optimal, but
3188  // should work.  For register classes that correspond to LLVM classes, we
3189  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
3190  // over the constraints, collecting fixed registers that we know we can't use.
3191  std::set<unsigned> OutputRegs, InputRegs;
3192  unsigned OpNum = 1;
3193  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
3194    std::string ConstraintCode =
3195      GetMostGeneralConstraint(Constraints[i].Codes, TLI);
3196
3197    MVT::ValueType OpVT;
3198
3199    // Compute the value type for each operand and add it to ConstraintVTs.
3200    switch (Constraints[i].Type) {
3201    case InlineAsm::isOutput:
3202      if (!Constraints[i].isIndirectOutput) {
3203        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3204        OpVT = TLI.getValueType(I.getType());
3205      } else {
3206        const Type *OpTy = I.getOperand(OpNum)->getType();
3207        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
3208        OpNum++;  // Consumes a call operand.
3209      }
3210      break;
3211    case InlineAsm::isInput:
3212      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
3213      OpNum++;  // Consumes a call operand.
3214      break;
3215    case InlineAsm::isClobber:
3216      OpVT = MVT::Other;
3217      break;
3218    }
3219
3220    ConstraintVTs.push_back(OpVT);
3221
3222    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
3223      continue;  // Not assigned a fixed reg.
3224
3225    // Build a list of regs that this operand uses.  This always has a single
3226    // element for promoted/expanded operands.
3227    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
3228                                             false, false,
3229                                             OutputRegs, InputRegs);
3230
3231    switch (Constraints[i].Type) {
3232    case InlineAsm::isOutput:
3233      // We can't assign any other output to this register.
3234      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
3235      // If this is an early-clobber output, it cannot be assigned to the same
3236      // value as the input reg.
3237      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
3238        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
3239      break;
3240    case InlineAsm::isInput:
3241      // We can't assign any other input to this register.
3242      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
3243      break;
3244    case InlineAsm::isClobber:
3245      // Clobbered regs cannot be used as inputs or outputs.
3246      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
3247      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
3248      break;
3249    }
3250  }
3251
3252  // Loop over all of the inputs, copying the operand values into the
3253  // appropriate registers and processing the output regs.
3254  RegsForValue RetValRegs;
3255  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3256  OpNum = 1;
3257
3258  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
3259    std::string ConstraintCode =
3260      GetMostGeneralConstraint(Constraints[i].Codes, TLI);
3261
3262    switch (Constraints[i].Type) {
3263    case InlineAsm::isOutput: {
3264      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
3265      if (ConstraintCode.size() == 1)   // not a physreg name.
3266        CTy = TLI.getConstraintType(ConstraintCode);
3267
3268      if (CTy == TargetLowering::C_Memory) {
3269        // Memory output.
3270        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
3271
3272        // Check that the operand (the address to store to) isn't a float.
3273        if (!MVT::isInteger(InOperandVal.getValueType()))
3274          assert(0 && "MATCH FAIL!");
3275
3276        if (!Constraints[i].isIndirectOutput)
3277          assert(0 && "MATCH FAIL!");
3278
3279        OpNum++;  // Consumes a call operand.
3280
3281        // Extend/truncate to the right pointer type if needed.
3282        MVT::ValueType PtrType = TLI.getPointerTy();
3283        if (InOperandVal.getValueType() < PtrType)
3284          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
3285        else if (InOperandVal.getValueType() > PtrType)
3286          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
3287
3288        // Add information to the INLINEASM node to know about this output.
3289        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3290        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
3291        AsmNodeOperands.push_back(InOperandVal);
3292        break;
3293      }
3294
3295      // Otherwise, this is a register output.
3296      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
3297
3298      // If this is an early-clobber output, or if there is an input
3299      // constraint that matches this, we need to reserve the input register
3300      // so no other inputs allocate to it.
3301      bool UsesInputRegister = false;
3302      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
3303        UsesInputRegister = true;
3304
3305      // Copy the output from the appropriate register.  Find a register that
3306      // we can use.
3307      RegsForValue Regs =
3308        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
3309                             true, UsesInputRegister,
3310                             OutputRegs, InputRegs);
3311      if (Regs.Regs.empty()) {
3312        cerr << "Couldn't allocate output reg for contraint '"
3313             << ConstraintCode << "'!\n";
3314        exit(1);
3315      }
3316
3317      if (!Constraints[i].isIndirectOutput) {
3318        assert(RetValRegs.Regs.empty() &&
3319               "Cannot have multiple output constraints yet!");
3320        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3321        RetValRegs = Regs;
3322      } else {
3323        IndirectStoresToEmit.push_back(std::make_pair(Regs,
3324                                                      I.getOperand(OpNum)));
3325        OpNum++;  // Consumes a call operand.
3326      }
3327
3328      // Add information to the INLINEASM node to know that this register is
3329      // set.
3330      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
3331      break;
3332    }
3333    case InlineAsm::isInput: {
3334      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
3335      OpNum++;  // Consumes a call operand.
3336
3337      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
3338        // If this is required to match an output register we have already set,
3339        // just use its register.
3340        unsigned OperandNo = atoi(ConstraintCode.c_str());
3341
3342        // Scan until we find the definition we already emitted of this operand.
3343        // When we find it, create a RegsForValue operand.
3344        unsigned CurOp = 2;  // The first operand.
3345        for (; OperandNo; --OperandNo) {
3346          // Advance to the next operand.
3347          unsigned NumOps =
3348            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3349          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3350                  (NumOps & 7) == 4 /*MEM*/) &&
3351                 "Skipped past definitions?");
3352          CurOp += (NumOps>>3)+1;
3353        }
3354
3355        unsigned NumOps =
3356          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3357        if ((NumOps & 7) == 2 /*REGDEF*/) {
3358          // Add NumOps>>3 registers to MatchedRegs.
3359          RegsForValue MatchedRegs;
3360          MatchedRegs.ValueVT = InOperandVal.getValueType();
3361          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3362          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3363            unsigned Reg =
3364              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3365            MatchedRegs.Regs.push_back(Reg);
3366          }
3367
3368          // Use the produced MatchedRegs object to
3369          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
3370                                    TLI.getPointerTy());
3371          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3372          break;
3373        } else {
3374          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3375          assert(0 && "matching constraints for memory operands unimp");
3376        }
3377      }
3378
3379      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
3380      if (ConstraintCode.size() == 1)   // not a physreg name.
3381        CTy = TLI.getConstraintType(ConstraintCode);
3382
3383      if (CTy == TargetLowering::C_Other) {
3384        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
3385                                                       ConstraintCode[0], DAG);
3386        if (!InOperandVal.Val) {
3387          cerr << "Invalid operand for inline asm constraint '"
3388               << ConstraintCode << "'!\n";
3389          exit(1);
3390        }
3391
3392        // Add information to the INLINEASM node to know about this input.
3393        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
3394        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
3395        AsmNodeOperands.push_back(InOperandVal);
3396        break;
3397      } else if (CTy == TargetLowering::C_Memory) {
3398        // Memory input.
3399
3400        // If the operand is a float, spill to a constant pool entry to get its
3401        // address.
3402        if (ConstantFP *Val = dyn_cast<ConstantFP>(I.getOperand(OpNum-1)))
3403          InOperandVal = DAG.getConstantPool(Val, TLI.getPointerTy());
3404
3405        if (!MVT::isInteger(InOperandVal.getValueType())) {
3406          cerr << "Match failed, cannot handle this yet!\n";
3407          InOperandVal.Val->dump();
3408          exit(1);
3409        }
3410
3411        // Extend/truncate to the right pointer type if needed.
3412        MVT::ValueType PtrType = TLI.getPointerTy();
3413        if (InOperandVal.getValueType() < PtrType)
3414          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
3415        else if (InOperandVal.getValueType() > PtrType)
3416          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
3417
3418        // Add information to the INLINEASM node to know about this input.
3419        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3420        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
3421        AsmNodeOperands.push_back(InOperandVal);
3422        break;
3423      }
3424
3425      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
3426
3427      // Copy the input into the appropriate registers.
3428      RegsForValue InRegs =
3429        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
3430                             false, true, OutputRegs, InputRegs);
3431      // FIXME: should be match fail.
3432      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
3433
3434      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
3435
3436      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
3437      break;
3438    }
3439    case InlineAsm::isClobber: {
3440      RegsForValue ClobberedRegs =
3441        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
3442                             OutputRegs, InputRegs);
3443      // Add the clobbered value to the operand list, so that the register
3444      // allocator is aware that the physreg got clobbered.
3445      if (!ClobberedRegs.Regs.empty())
3446        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
3447      break;
3448    }
3449    }
3450  }
3451
3452  // Finish up input operands.
3453  AsmNodeOperands[0] = Chain;
3454  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3455
3456  Chain = DAG.getNode(ISD::INLINEASM,
3457                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3458                      &AsmNodeOperands[0], AsmNodeOperands.size());
3459  Flag = Chain.getValue(1);
3460
3461  // If this asm returns a register value, copy the result from that register
3462  // and set it as the value of the call.
3463  if (!RetValRegs.Regs.empty()) {
3464    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, Flag);
3465
3466    // If the result of the inline asm is a vector, it may have the wrong
3467    // width/num elts.  Make sure to convert it to the right type with
3468    // vbit_convert.
3469    if (Val.getValueType() == MVT::Vector) {
3470      const VectorType *VTy = cast<VectorType>(I.getType());
3471      unsigned DesiredNumElts = VTy->getNumElements();
3472      MVT::ValueType DesiredEltVT = TLI.getValueType(VTy->getElementType());
3473
3474      Val = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Val,
3475                        DAG.getConstant(DesiredNumElts, MVT::i32),
3476                        DAG.getValueType(DesiredEltVT));
3477    }
3478
3479    setValue(&I, Val);
3480  }
3481
3482  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3483
3484  // Process indirect outputs, first output all of the flagged copies out of
3485  // physregs.
3486  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3487    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3488    Value *Ptr = IndirectStoresToEmit[i].second;
3489    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
3490    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3491  }
3492
3493  // Emit the non-flagged stores from the physregs.
3494  SmallVector<SDOperand, 8> OutChains;
3495  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3496    OutChains.push_back(DAG.getStore(Chain,  StoresToEmit[i].first,
3497                                    getValue(StoresToEmit[i].second),
3498                                    StoresToEmit[i].second, 0));
3499  if (!OutChains.empty())
3500    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3501                        &OutChains[0], OutChains.size());
3502  DAG.setRoot(Chain);
3503}
3504
3505
3506void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3507  SDOperand Src = getValue(I.getOperand(0));
3508
3509  MVT::ValueType IntPtr = TLI.getPointerTy();
3510
3511  if (IntPtr < Src.getValueType())
3512    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3513  else if (IntPtr > Src.getValueType())
3514    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3515
3516  // Scale the source by the type size.
3517  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
3518  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3519                    Src, getIntPtrConstant(ElementSize));
3520
3521  TargetLowering::ArgListTy Args;
3522  TargetLowering::ArgListEntry Entry;
3523  Entry.Node = Src;
3524  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3525  Args.push_back(Entry);
3526
3527  std::pair<SDOperand,SDOperand> Result =
3528    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3529                    DAG.getExternalSymbol("malloc", IntPtr),
3530                    Args, DAG);
3531  setValue(&I, Result.first);  // Pointers always fit in registers
3532  DAG.setRoot(Result.second);
3533}
3534
3535void SelectionDAGLowering::visitFree(FreeInst &I) {
3536  TargetLowering::ArgListTy Args;
3537  TargetLowering::ArgListEntry Entry;
3538  Entry.Node = getValue(I.getOperand(0));
3539  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3540  Args.push_back(Entry);
3541  MVT::ValueType IntPtr = TLI.getPointerTy();
3542  std::pair<SDOperand,SDOperand> Result =
3543    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3544                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3545  DAG.setRoot(Result.second);
3546}
3547
3548// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3549// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3550// instructions are special in various ways, which require special support to
3551// insert.  The specified MachineInstr is created but not inserted into any
3552// basic blocks, and the scheduler passes ownership of it to this method.
3553MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3554                                                       MachineBasicBlock *MBB) {
3555  cerr << "If a target marks an instruction with "
3556       << "'usesCustomDAGSchedInserter', it must implement "
3557       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3558  abort();
3559  return 0;
3560}
3561
3562void SelectionDAGLowering::visitVAStart(CallInst &I) {
3563  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3564                          getValue(I.getOperand(1)),
3565                          DAG.getSrcValue(I.getOperand(1))));
3566}
3567
3568void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3569  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3570                             getValue(I.getOperand(0)),
3571                             DAG.getSrcValue(I.getOperand(0)));
3572  setValue(&I, V);
3573  DAG.setRoot(V.getValue(1));
3574}
3575
3576void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3577  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3578                          getValue(I.getOperand(1)),
3579                          DAG.getSrcValue(I.getOperand(1))));
3580}
3581
3582void SelectionDAGLowering::visitVACopy(CallInst &I) {
3583  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3584                          getValue(I.getOperand(1)),
3585                          getValue(I.getOperand(2)),
3586                          DAG.getSrcValue(I.getOperand(1)),
3587                          DAG.getSrcValue(I.getOperand(2))));
3588}
3589
3590/// ExpandScalarFormalArgs - Recursively expand the formal_argument node, either
3591/// bit_convert it or join a pair of them with a BUILD_PAIR when appropriate.
3592static SDOperand ExpandScalarFormalArgs(MVT::ValueType VT, SDNode *Arg,
3593                                        unsigned &i, SelectionDAG &DAG,
3594                                        TargetLowering &TLI) {
3595  if (TLI.getTypeAction(VT) != TargetLowering::Expand)
3596    return SDOperand(Arg, i++);
3597
3598  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3599  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3600  if (NumVals == 1) {
3601    return DAG.getNode(ISD::BIT_CONVERT, VT,
3602                       ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI));
3603  } else if (NumVals == 2) {
3604    SDOperand Lo = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
3605    SDOperand Hi = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
3606    if (!TLI.isLittleEndian())
3607      std::swap(Lo, Hi);
3608    return DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
3609  } else {
3610    // Value scalarized into many values.  Unimp for now.
3611    assert(0 && "Cannot expand i64 -> i16 yet!");
3612  }
3613  return SDOperand();
3614}
3615
3616/// TargetLowering::LowerArguments - This is the default LowerArguments
3617/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3618/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3619/// integrated into SDISel.
3620std::vector<SDOperand>
3621TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3622  const FunctionType *FTy = F.getFunctionType();
3623  const ParamAttrsList *Attrs = FTy->getParamAttrs();
3624  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3625  std::vector<SDOperand> Ops;
3626  Ops.push_back(DAG.getRoot());
3627  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3628  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3629
3630  // Add one result value for each formal argument.
3631  std::vector<MVT::ValueType> RetVals;
3632  unsigned j = 1;
3633  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3634       I != E; ++I, ++j) {
3635    MVT::ValueType VT = getValueType(I->getType());
3636    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3637    unsigned OriginalAlignment =
3638      getTargetData()->getABITypeAlignment(I->getType());
3639
3640    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3641    // that is zero extended!
3642    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt))
3643      Flags &= ~(ISD::ParamFlags::SExt);
3644    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt))
3645      Flags |= ISD::ParamFlags::SExt;
3646    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg))
3647      Flags |= ISD::ParamFlags::InReg;
3648    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet))
3649      Flags |= ISD::ParamFlags::StructReturn;
3650    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3651
3652    switch (getTypeAction(VT)) {
3653    default: assert(0 && "Unknown type action!");
3654    case Legal:
3655      RetVals.push_back(VT);
3656      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3657      break;
3658    case Promote:
3659      RetVals.push_back(getTypeToTransformTo(VT));
3660      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3661      break;
3662    case Expand:
3663      if (VT != MVT::Vector) {
3664        // If this is a large integer, it needs to be broken up into small
3665        // integers.  Figure out what the destination type is and how many small
3666        // integers it turns into.
3667        MVT::ValueType NVT = getTypeToExpandTo(VT);
3668        unsigned NumVals = getNumElements(VT);
3669        for (unsigned i = 0; i != NumVals; ++i) {
3670          RetVals.push_back(NVT);
3671          // if it isn't first piece, alignment must be 1
3672          if (i > 0)
3673            Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3674              (1 << ISD::ParamFlags::OrigAlignmentOffs);
3675          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3676        }
3677      } else {
3678        // Otherwise, this is a vector type.  We only support legal vectors
3679        // right now.
3680        unsigned NumElems = cast<VectorType>(I->getType())->getNumElements();
3681        const Type *EltTy = cast<VectorType>(I->getType())->getElementType();
3682
3683        // Figure out if there is a Packed type corresponding to this Vector
3684        // type.  If so, convert to the vector type.
3685        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3686        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3687          RetVals.push_back(TVT);
3688          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3689        } else {
3690          assert(0 && "Don't support illegal by-val vector arguments yet!");
3691        }
3692      }
3693      break;
3694    }
3695  }
3696
3697  RetVals.push_back(MVT::Other);
3698
3699  // Create the node.
3700  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3701                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3702                               &Ops[0], Ops.size()).Val;
3703
3704  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
3705
3706  // Set up the return result vector.
3707  Ops.clear();
3708  unsigned i = 0;
3709  unsigned Idx = 1;
3710  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3711      ++I, ++Idx) {
3712    MVT::ValueType VT = getValueType(I->getType());
3713
3714    switch (getTypeAction(VT)) {
3715    default: assert(0 && "Unknown type action!");
3716    case Legal:
3717      Ops.push_back(SDOperand(Result, i++));
3718      break;
3719    case Promote: {
3720      SDOperand Op(Result, i++);
3721      if (MVT::isInteger(VT)) {
3722        if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt))
3723          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3724                           DAG.getValueType(VT));
3725        else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt))
3726          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3727                           DAG.getValueType(VT));
3728        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3729      } else {
3730        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3731        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3732      }
3733      Ops.push_back(Op);
3734      break;
3735    }
3736    case Expand:
3737      if (VT != MVT::Vector) {
3738        // If this is a large integer or a floating point node that needs to be
3739        // expanded, it needs to be reassembled from small integers.  Figure out
3740        // what the source elt type is and how many small integers it is.
3741        Ops.push_back(ExpandScalarFormalArgs(VT, Result, i, DAG, *this));
3742      } else {
3743        // Otherwise, this is a vector type.  We only support legal vectors
3744        // right now.
3745        const VectorType *PTy = cast<VectorType>(I->getType());
3746        unsigned NumElems = PTy->getNumElements();
3747        const Type *EltTy = PTy->getElementType();
3748
3749        // Figure out if there is a Packed type corresponding to this Vector
3750        // type.  If so, convert to the vector type.
3751        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3752        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3753          SDOperand N = SDOperand(Result, i++);
3754          // Handle copies from generic vectors to registers.
3755          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
3756                          DAG.getConstant(NumElems, MVT::i32),
3757                          DAG.getValueType(getValueType(EltTy)));
3758          Ops.push_back(N);
3759        } else {
3760          assert(0 && "Don't support illegal by-val vector arguments yet!");
3761          abort();
3762        }
3763      }
3764      break;
3765    }
3766  }
3767  return Ops;
3768}
3769
3770
3771/// ExpandScalarCallArgs - Recursively expand call argument node by
3772/// bit_converting it or extract a pair of elements from the larger  node.
3773static void ExpandScalarCallArgs(MVT::ValueType VT, SDOperand Arg,
3774                                 unsigned Flags,
3775                                 SmallVector<SDOperand, 32> &Ops,
3776                                 SelectionDAG &DAG,
3777                                 TargetLowering &TLI,
3778                                 bool isFirst = true) {
3779
3780  if (TLI.getTypeAction(VT) != TargetLowering::Expand) {
3781    // if it isn't first piece, alignment must be 1
3782    if (!isFirst)
3783      Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3784        (1 << ISD::ParamFlags::OrigAlignmentOffs);
3785    Ops.push_back(Arg);
3786    Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3787    return;
3788  }
3789
3790  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3791  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3792  if (NumVals == 1) {
3793    Arg = DAG.getNode(ISD::BIT_CONVERT, EVT, Arg);
3794    ExpandScalarCallArgs(EVT, Arg, Flags, Ops, DAG, TLI, isFirst);
3795  } else if (NumVals == 2) {
3796    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3797                               DAG.getConstant(0, TLI.getPointerTy()));
3798    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3799                               DAG.getConstant(1, TLI.getPointerTy()));
3800    if (!TLI.isLittleEndian())
3801      std::swap(Lo, Hi);
3802    ExpandScalarCallArgs(EVT, Lo, Flags, Ops, DAG, TLI, isFirst);
3803    ExpandScalarCallArgs(EVT, Hi, Flags, Ops, DAG, TLI, false);
3804  } else {
3805    // Value scalarized into many values.  Unimp for now.
3806    assert(0 && "Cannot expand i64 -> i16 yet!");
3807  }
3808}
3809
3810/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3811/// implementation, which just inserts an ISD::CALL node, which is later custom
3812/// lowered by the target to something concrete.  FIXME: When all targets are
3813/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3814std::pair<SDOperand, SDOperand>
3815TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3816                            bool RetTyIsSigned, bool isVarArg,
3817                            unsigned CallingConv, bool isTailCall,
3818                            SDOperand Callee,
3819                            ArgListTy &Args, SelectionDAG &DAG) {
3820  SmallVector<SDOperand, 32> Ops;
3821  Ops.push_back(Chain);   // Op#0 - Chain
3822  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3823  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3824  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3825  Ops.push_back(Callee);
3826
3827  // Handle all of the outgoing arguments.
3828  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3829    MVT::ValueType VT = getValueType(Args[i].Ty);
3830    SDOperand Op = Args[i].Node;
3831    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3832    unsigned OriginalAlignment =
3833      getTargetData()->getABITypeAlignment(Args[i].Ty);
3834
3835    if (Args[i].isSExt)
3836      Flags |= ISD::ParamFlags::SExt;
3837    if (Args[i].isZExt)
3838      Flags |= ISD::ParamFlags::ZExt;
3839    if (Args[i].isInReg)
3840      Flags |= ISD::ParamFlags::InReg;
3841    if (Args[i].isSRet)
3842      Flags |= ISD::ParamFlags::StructReturn;
3843    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
3844
3845    switch (getTypeAction(VT)) {
3846    default: assert(0 && "Unknown type action!");
3847    case Legal:
3848      Ops.push_back(Op);
3849      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3850      break;
3851    case Promote:
3852      if (MVT::isInteger(VT)) {
3853        unsigned ExtOp;
3854        if (Args[i].isSExt)
3855          ExtOp = ISD::SIGN_EXTEND;
3856        else if (Args[i].isZExt)
3857          ExtOp = ISD::ZERO_EXTEND;
3858        else
3859          ExtOp = ISD::ANY_EXTEND;
3860        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3861      } else {
3862        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3863        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
3864      }
3865      Ops.push_back(Op);
3866      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3867      break;
3868    case Expand:
3869      if (VT != MVT::Vector) {
3870        // If this is a large integer, it needs to be broken down into small
3871        // integers.  Figure out what the source elt type is and how many small
3872        // integers it is.
3873        ExpandScalarCallArgs(VT, Op, Flags, Ops, DAG, *this);
3874      } else {
3875        // Otherwise, this is a vector type.  We only support legal vectors
3876        // right now.
3877        const VectorType *PTy = cast<VectorType>(Args[i].Ty);
3878        unsigned NumElems = PTy->getNumElements();
3879        const Type *EltTy = PTy->getElementType();
3880
3881        // Figure out if there is a Packed type corresponding to this Vector
3882        // type.  If so, convert to the vector type.
3883        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3884        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3885          // Insert a VBIT_CONVERT of the MVT::Vector type to the vector type.
3886          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
3887          Ops.push_back(Op);
3888          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3889        } else {
3890          assert(0 && "Don't support illegal by-val vector call args yet!");
3891          abort();
3892        }
3893      }
3894      break;
3895    }
3896  }
3897
3898  // Figure out the result value types.
3899  SmallVector<MVT::ValueType, 4> RetTys;
3900
3901  if (RetTy != Type::VoidTy) {
3902    MVT::ValueType VT = getValueType(RetTy);
3903    switch (getTypeAction(VT)) {
3904    default: assert(0 && "Unknown type action!");
3905    case Legal:
3906      RetTys.push_back(VT);
3907      break;
3908    case Promote:
3909      RetTys.push_back(getTypeToTransformTo(VT));
3910      break;
3911    case Expand:
3912      if (VT != MVT::Vector) {
3913        // If this is a large integer, it needs to be reassembled from small
3914        // integers.  Figure out what the source elt type is and how many small
3915        // integers it is.
3916        MVT::ValueType NVT = getTypeToExpandTo(VT);
3917        unsigned NumVals = getNumElements(VT);
3918        for (unsigned i = 0; i != NumVals; ++i)
3919          RetTys.push_back(NVT);
3920      } else {
3921        // Otherwise, this is a vector type.  We only support legal vectors
3922        // right now.
3923        const VectorType *PTy = cast<VectorType>(RetTy);
3924        unsigned NumElems = PTy->getNumElements();
3925        const Type *EltTy = PTy->getElementType();
3926
3927        // Figure out if there is a Packed type corresponding to this Vector
3928        // type.  If so, convert to the vector type.
3929        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3930        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3931          RetTys.push_back(TVT);
3932        } else {
3933          assert(0 && "Don't support illegal by-val vector call results yet!");
3934          abort();
3935        }
3936      }
3937    }
3938  }
3939
3940  RetTys.push_back(MVT::Other);  // Always has a chain.
3941
3942  // Finally, create the CALL node.
3943  SDOperand Res = DAG.getNode(ISD::CALL,
3944                              DAG.getVTList(&RetTys[0], RetTys.size()),
3945                              &Ops[0], Ops.size());
3946
3947  // This returns a pair of operands.  The first element is the
3948  // return value for the function (if RetTy is not VoidTy).  The second
3949  // element is the outgoing token chain.
3950  SDOperand ResVal;
3951  if (RetTys.size() != 1) {
3952    MVT::ValueType VT = getValueType(RetTy);
3953    if (RetTys.size() == 2) {
3954      ResVal = Res;
3955
3956      // If this value was promoted, truncate it down.
3957      if (ResVal.getValueType() != VT) {
3958        if (VT == MVT::Vector) {
3959          // Insert a VBIT_CONVERT to convert from the packed result type to the
3960          // MVT::Vector type.
3961          unsigned NumElems = cast<VectorType>(RetTy)->getNumElements();
3962          const Type *EltTy = cast<VectorType>(RetTy)->getElementType();
3963
3964          // Figure out if there is a Packed type corresponding to this Vector
3965          // type.  If so, convert to the vector type.
3966          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy),NumElems);
3967          if (TVT != MVT::Other && isTypeLegal(TVT)) {
3968            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
3969            // "N x PTyElementVT" MVT::Vector type.
3970            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
3971                                 DAG.getConstant(NumElems, MVT::i32),
3972                                 DAG.getValueType(getValueType(EltTy)));
3973          } else {
3974            abort();
3975          }
3976        } else if (MVT::isInteger(VT)) {
3977          unsigned AssertOp = ISD::AssertSext;
3978          if (!RetTyIsSigned)
3979            AssertOp = ISD::AssertZext;
3980          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
3981                               DAG.getValueType(VT));
3982          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
3983        } else {
3984          assert(MVT::isFloatingPoint(VT));
3985          if (getTypeAction(VT) == Expand)
3986            ResVal = DAG.getNode(ISD::BIT_CONVERT, VT, ResVal);
3987          else
3988            ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
3989        }
3990      }
3991    } else if (RetTys.size() == 3) {
3992      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
3993                           Res.getValue(0), Res.getValue(1));
3994
3995    } else {
3996      assert(0 && "Case not handled yet!");
3997    }
3998  }
3999
4000  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
4001}
4002
4003SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4004  assert(0 && "LowerOperation not implemented for this target!");
4005  abort();
4006  return SDOperand();
4007}
4008
4009SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4010                                                 SelectionDAG &DAG) {
4011  assert(0 && "CustomPromoteOperation not implemented for this target!");
4012  abort();
4013  return SDOperand();
4014}
4015
4016/// getMemsetValue - Vectorized representation of the memset value
4017/// operand.
4018static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4019                                SelectionDAG &DAG) {
4020  MVT::ValueType CurVT = VT;
4021  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4022    uint64_t Val   = C->getValue() & 255;
4023    unsigned Shift = 8;
4024    while (CurVT != MVT::i8) {
4025      Val = (Val << Shift) | Val;
4026      Shift <<= 1;
4027      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4028    }
4029    return DAG.getConstant(Val, VT);
4030  } else {
4031    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4032    unsigned Shift = 8;
4033    while (CurVT != MVT::i8) {
4034      Value =
4035        DAG.getNode(ISD::OR, VT,
4036                    DAG.getNode(ISD::SHL, VT, Value,
4037                                DAG.getConstant(Shift, MVT::i8)), Value);
4038      Shift <<= 1;
4039      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4040    }
4041
4042    return Value;
4043  }
4044}
4045
4046/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4047/// used when a memcpy is turned into a memset when the source is a constant
4048/// string ptr.
4049static SDOperand getMemsetStringVal(MVT::ValueType VT,
4050                                    SelectionDAG &DAG, TargetLowering &TLI,
4051                                    std::string &Str, unsigned Offset) {
4052  uint64_t Val = 0;
4053  unsigned MSB = getSizeInBits(VT) / 8;
4054  if (TLI.isLittleEndian())
4055    Offset = Offset + MSB - 1;
4056  for (unsigned i = 0; i != MSB; ++i) {
4057    Val = (Val << 8) | (unsigned char)Str[Offset];
4058    Offset += TLI.isLittleEndian() ? -1 : 1;
4059  }
4060  return DAG.getConstant(Val, VT);
4061}
4062
4063/// getMemBasePlusOffset - Returns base and offset node for the
4064static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4065                                      SelectionDAG &DAG, TargetLowering &TLI) {
4066  MVT::ValueType VT = Base.getValueType();
4067  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4068}
4069
4070/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4071/// to replace the memset / memcpy is below the threshold. It also returns the
4072/// types of the sequence of  memory ops to perform memset / memcpy.
4073static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4074                                     unsigned Limit, uint64_t Size,
4075                                     unsigned Align, TargetLowering &TLI) {
4076  MVT::ValueType VT;
4077
4078  if (TLI.allowsUnalignedMemoryAccesses()) {
4079    VT = MVT::i64;
4080  } else {
4081    switch (Align & 7) {
4082    case 0:
4083      VT = MVT::i64;
4084      break;
4085    case 4:
4086      VT = MVT::i32;
4087      break;
4088    case 2:
4089      VT = MVT::i16;
4090      break;
4091    default:
4092      VT = MVT::i8;
4093      break;
4094    }
4095  }
4096
4097  MVT::ValueType LVT = MVT::i64;
4098  while (!TLI.isTypeLegal(LVT))
4099    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4100  assert(MVT::isInteger(LVT));
4101
4102  if (VT > LVT)
4103    VT = LVT;
4104
4105  unsigned NumMemOps = 0;
4106  while (Size != 0) {
4107    unsigned VTSize = getSizeInBits(VT) / 8;
4108    while (VTSize > Size) {
4109      VT = (MVT::ValueType)((unsigned)VT - 1);
4110      VTSize >>= 1;
4111    }
4112    assert(MVT::isInteger(VT));
4113
4114    if (++NumMemOps > Limit)
4115      return false;
4116    MemOps.push_back(VT);
4117    Size -= VTSize;
4118  }
4119
4120  return true;
4121}
4122
4123void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4124  SDOperand Op1 = getValue(I.getOperand(1));
4125  SDOperand Op2 = getValue(I.getOperand(2));
4126  SDOperand Op3 = getValue(I.getOperand(3));
4127  SDOperand Op4 = getValue(I.getOperand(4));
4128  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4129  if (Align == 0) Align = 1;
4130
4131  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4132    std::vector<MVT::ValueType> MemOps;
4133
4134    // Expand memset / memcpy to a series of load / store ops
4135    // if the size operand falls below a certain threshold.
4136    SmallVector<SDOperand, 8> OutChains;
4137    switch (Op) {
4138    default: break;  // Do nothing for now.
4139    case ISD::MEMSET: {
4140      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4141                                   Size->getValue(), Align, TLI)) {
4142        unsigned NumMemOps = MemOps.size();
4143        unsigned Offset = 0;
4144        for (unsigned i = 0; i < NumMemOps; i++) {
4145          MVT::ValueType VT = MemOps[i];
4146          unsigned VTSize = getSizeInBits(VT) / 8;
4147          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4148          SDOperand Store = DAG.getStore(getRoot(), Value,
4149                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4150                                         I.getOperand(1), Offset);
4151          OutChains.push_back(Store);
4152          Offset += VTSize;
4153        }
4154      }
4155      break;
4156    }
4157    case ISD::MEMCPY: {
4158      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4159                                   Size->getValue(), Align, TLI)) {
4160        unsigned NumMemOps = MemOps.size();
4161        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4162        GlobalAddressSDNode *G = NULL;
4163        std::string Str;
4164        bool CopyFromStr = false;
4165
4166        if (Op2.getOpcode() == ISD::GlobalAddress)
4167          G = cast<GlobalAddressSDNode>(Op2);
4168        else if (Op2.getOpcode() == ISD::ADD &&
4169                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4170                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4171          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4172          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4173        }
4174        if (G) {
4175          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4176          if (GV && GV->isConstant()) {
4177            Str = GV->getStringValue(false);
4178            if (!Str.empty()) {
4179              CopyFromStr = true;
4180              SrcOff += SrcDelta;
4181            }
4182          }
4183        }
4184
4185        for (unsigned i = 0; i < NumMemOps; i++) {
4186          MVT::ValueType VT = MemOps[i];
4187          unsigned VTSize = getSizeInBits(VT) / 8;
4188          SDOperand Value, Chain, Store;
4189
4190          if (CopyFromStr) {
4191            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4192            Chain = getRoot();
4193            Store =
4194              DAG.getStore(Chain, Value,
4195                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4196                           I.getOperand(1), DstOff);
4197          } else {
4198            Value = DAG.getLoad(VT, getRoot(),
4199                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4200                        I.getOperand(2), SrcOff);
4201            Chain = Value.getValue(1);
4202            Store =
4203              DAG.getStore(Chain, Value,
4204                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4205                           I.getOperand(1), DstOff);
4206          }
4207          OutChains.push_back(Store);
4208          SrcOff += VTSize;
4209          DstOff += VTSize;
4210        }
4211      }
4212      break;
4213    }
4214    }
4215
4216    if (!OutChains.empty()) {
4217      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4218                  &OutChains[0], OutChains.size()));
4219      return;
4220    }
4221  }
4222
4223  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
4224}
4225
4226//===----------------------------------------------------------------------===//
4227// SelectionDAGISel code
4228//===----------------------------------------------------------------------===//
4229
4230unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4231  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4232}
4233
4234void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4235  AU.addRequired<AliasAnalysis>();
4236  AU.setPreservesAll();
4237}
4238
4239
4240
4241bool SelectionDAGISel::runOnFunction(Function &Fn) {
4242  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4243  RegMap = MF.getSSARegMap();
4244  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4245
4246  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4247
4248  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4249    SelectBasicBlock(I, MF, FuncInfo);
4250
4251  // Add function live-ins to entry block live-in set.
4252  BasicBlock *EntryBB = &Fn.getEntryBlock();
4253  BB = FuncInfo.MBBMap[EntryBB];
4254  if (!MF.livein_empty())
4255    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4256           E = MF.livein_end(); I != E; ++I)
4257      BB->addLiveIn(I->first);
4258
4259  return true;
4260}
4261
4262SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4263                                                           unsigned Reg) {
4264  SDOperand Op = getValue(V);
4265  assert((Op.getOpcode() != ISD::CopyFromReg ||
4266          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4267         "Copy from a reg to the same reg!");
4268
4269  // If this type is not legal, we must make sure to not create an invalid
4270  // register use.
4271  MVT::ValueType SrcVT = Op.getValueType();
4272  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
4273  if (SrcVT == DestVT) {
4274    return DAG.getCopyToReg(getRoot(), Reg, Op);
4275  } else if (SrcVT == MVT::Vector) {
4276    // Handle copies from generic vectors to registers.
4277    MVT::ValueType PTyElementVT, PTyLegalElementVT;
4278    unsigned NE = TLI.getVectorTypeBreakdown(cast<VectorType>(V->getType()),
4279                                             PTyElementVT, PTyLegalElementVT);
4280
4281    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
4282    // MVT::Vector type.
4283    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
4284                     DAG.getConstant(NE, MVT::i32),
4285                     DAG.getValueType(PTyElementVT));
4286
4287    // Loop over all of the elements of the resultant vector,
4288    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
4289    // copying them into output registers.
4290    SmallVector<SDOperand, 8> OutChains;
4291    SDOperand Root = getRoot();
4292    for (unsigned i = 0; i != NE; ++i) {
4293      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
4294                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
4295      if (PTyElementVT == PTyLegalElementVT) {
4296        // Elements are legal.
4297        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
4298      } else if (PTyLegalElementVT > PTyElementVT) {
4299        // Elements are promoted.
4300        if (MVT::isFloatingPoint(PTyLegalElementVT))
4301          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
4302        else
4303          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
4304        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
4305      } else {
4306        // Elements are expanded.
4307        // The src value is expanded into multiple registers.
4308        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
4309                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
4310        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
4311                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
4312        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
4313        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
4314      }
4315    }
4316    return DAG.getNode(ISD::TokenFactor, MVT::Other,
4317                       &OutChains[0], OutChains.size());
4318  } else if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) {
4319    // The src value is promoted to the register.
4320    if (MVT::isFloatingPoint(SrcVT))
4321      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
4322    else
4323      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
4324    return DAG.getCopyToReg(getRoot(), Reg, Op);
4325  } else  {
4326    DestVT = TLI.getTypeToExpandTo(SrcVT);
4327    unsigned NumVals = TLI.getNumElements(SrcVT);
4328    if (NumVals == 1)
4329      return DAG.getCopyToReg(getRoot(), Reg,
4330                              DAG.getNode(ISD::BIT_CONVERT, DestVT, Op));
4331    assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
4332    // The src value is expanded into multiple registers.
4333    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
4334                               Op, DAG.getConstant(0, TLI.getPointerTy()));
4335    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
4336                               Op, DAG.getConstant(1, TLI.getPointerTy()));
4337    Op = DAG.getCopyToReg(getRoot(), Reg, Lo);
4338    return DAG.getCopyToReg(Op, Reg+1, Hi);
4339  }
4340}
4341
4342void SelectionDAGISel::
4343LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4344               std::vector<SDOperand> &UnorderedChains) {
4345  // If this is the entry block, emit arguments.
4346  Function &F = *LLVMBB->getParent();
4347  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4348  SDOperand OldRoot = SDL.DAG.getRoot();
4349  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4350
4351  unsigned a = 0;
4352  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4353       AI != E; ++AI, ++a)
4354    if (!AI->use_empty()) {
4355      SDL.setValue(AI, Args[a]);
4356
4357      // If this argument is live outside of the entry block, insert a copy from
4358      // whereever we got it to the vreg that other BB's will reference it as.
4359      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4360      if (VMI != FuncInfo.ValueMap.end()) {
4361        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4362        UnorderedChains.push_back(Copy);
4363      }
4364    }
4365
4366  // Finally, if the target has anything special to do, allow it to do so.
4367  // FIXME: this should insert code into the DAG!
4368  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4369}
4370
4371void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4372       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4373                                         FunctionLoweringInfo &FuncInfo) {
4374  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
4375
4376  std::vector<SDOperand> UnorderedChains;
4377
4378  // Lower any arguments needed in this block if this is the entry block.
4379  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4380    LowerArguments(LLVMBB, SDL, UnorderedChains);
4381
4382  BB = FuncInfo.MBBMap[LLVMBB];
4383  SDL.setCurrentBasicBlock(BB);
4384
4385  // Lower all of the non-terminator instructions.
4386  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4387       I != E; ++I)
4388    SDL.visit(*I);
4389
4390  // Lower call part of invoke.
4391  InvokeInst *Invoke = dyn_cast<InvokeInst>(LLVMBB->getTerminator());
4392  if (Invoke) SDL.visitInvoke(*Invoke, false);
4393
4394  // Ensure that all instructions which are used outside of their defining
4395  // blocks are available as virtual registers.
4396  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4397    if (!I->use_empty() && !isa<PHINode>(I)) {
4398      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4399      if (VMI != FuncInfo.ValueMap.end())
4400        UnorderedChains.push_back(
4401                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4402    }
4403
4404  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4405  // ensure constants are generated when needed.  Remember the virtual registers
4406  // that need to be added to the Machine PHI nodes as input.  We cannot just
4407  // directly add them, because expansion might result in multiple MBB's for one
4408  // BB.  As such, the start of the BB might correspond to a different MBB than
4409  // the end.
4410  //
4411  TerminatorInst *TI = LLVMBB->getTerminator();
4412
4413  // Emit constants only once even if used by multiple PHI nodes.
4414  std::map<Constant*, unsigned> ConstantsOut;
4415
4416  // Vector bool would be better, but vector<bool> is really slow.
4417  std::vector<unsigned char> SuccsHandled;
4418  if (TI->getNumSuccessors())
4419    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4420
4421  // Check successor nodes PHI nodes that expect a constant to be available from
4422  // this block.
4423  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4424    BasicBlock *SuccBB = TI->getSuccessor(succ);
4425    if (!isa<PHINode>(SuccBB->begin())) continue;
4426    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4427
4428    // If this terminator has multiple identical successors (common for
4429    // switches), only handle each succ once.
4430    unsigned SuccMBBNo = SuccMBB->getNumber();
4431    if (SuccsHandled[SuccMBBNo]) continue;
4432    SuccsHandled[SuccMBBNo] = true;
4433
4434    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4435    PHINode *PN;
4436
4437    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4438    // nodes and Machine PHI nodes, but the incoming operands have not been
4439    // emitted yet.
4440    for (BasicBlock::iterator I = SuccBB->begin();
4441         (PN = dyn_cast<PHINode>(I)); ++I) {
4442      // Ignore dead phi's.
4443      if (PN->use_empty()) continue;
4444
4445      unsigned Reg;
4446      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4447
4448      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4449        unsigned &RegOut = ConstantsOut[C];
4450        if (RegOut == 0) {
4451          RegOut = FuncInfo.CreateRegForValue(C);
4452          UnorderedChains.push_back(
4453                           SDL.CopyValueToVirtualRegister(C, RegOut));
4454        }
4455        Reg = RegOut;
4456      } else {
4457        Reg = FuncInfo.ValueMap[PHIOp];
4458        if (Reg == 0) {
4459          assert(isa<AllocaInst>(PHIOp) &&
4460                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4461                 "Didn't codegen value into a register!??");
4462          Reg = FuncInfo.CreateRegForValue(PHIOp);
4463          UnorderedChains.push_back(
4464                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4465        }
4466      }
4467
4468      // Remember that this register needs to added to the machine PHI node as
4469      // the input for this MBB.
4470      MVT::ValueType VT = TLI.getValueType(PN->getType());
4471      unsigned NumElements;
4472      if (VT != MVT::Vector)
4473        NumElements = TLI.getNumElements(VT);
4474      else {
4475        MVT::ValueType VT1,VT2;
4476        NumElements =
4477          TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
4478                                     VT1, VT2);
4479      }
4480      for (unsigned i = 0, e = NumElements; i != e; ++i)
4481        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4482    }
4483  }
4484  ConstantsOut.clear();
4485
4486  // Turn all of the unordered chains into one factored node.
4487  if (!UnorderedChains.empty()) {
4488    SDOperand Root = SDL.getRoot();
4489    if (Root.getOpcode() != ISD::EntryToken) {
4490      unsigned i = 0, e = UnorderedChains.size();
4491      for (; i != e; ++i) {
4492        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4493        if (UnorderedChains[i].Val->getOperand(0) == Root)
4494          break;  // Don't add the root if we already indirectly depend on it.
4495      }
4496
4497      if (i == e)
4498        UnorderedChains.push_back(Root);
4499    }
4500    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4501                            &UnorderedChains[0], UnorderedChains.size()));
4502  }
4503
4504  // Lower the terminator after the copies are emitted.
4505  if (Invoke) {
4506    // Just the branch part of invoke.
4507    SDL.visitInvoke(*Invoke, true);
4508  } else {
4509    SDL.visit(*LLVMBB->getTerminator());
4510  }
4511
4512  // Copy over any CaseBlock records that may now exist due to SwitchInst
4513  // lowering, as well as any jump table information.
4514  SwitchCases.clear();
4515  SwitchCases = SDL.SwitchCases;
4516  JTCases.clear();
4517  JTCases = SDL.JTCases;
4518  BitTestCases.clear();
4519  BitTestCases = SDL.BitTestCases;
4520
4521  // Make sure the root of the DAG is up-to-date.
4522  DAG.setRoot(SDL.getRoot());
4523}
4524
4525void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4526  // Get alias analysis for load/store combining.
4527  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4528
4529  // Run the DAG combiner in pre-legalize mode.
4530  DAG.Combine(false, AA);
4531
4532  DOUT << "Lowered selection DAG:\n";
4533  DEBUG(DAG.dump());
4534
4535  // Second step, hack on the DAG until it only uses operations and types that
4536  // the target supports.
4537  DAG.Legalize();
4538
4539  DOUT << "Legalized selection DAG:\n";
4540  DEBUG(DAG.dump());
4541
4542  // Run the DAG combiner in post-legalize mode.
4543  DAG.Combine(true, AA);
4544
4545  if (ViewISelDAGs) DAG.viewGraph();
4546
4547  // Third, instruction select all of the operations to machine code, adding the
4548  // code to the MachineBasicBlock.
4549  InstructionSelectBasicBlock(DAG);
4550
4551  DOUT << "Selected machine code:\n";
4552  DEBUG(BB->dump());
4553}
4554
4555void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4556                                        FunctionLoweringInfo &FuncInfo) {
4557  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4558  {
4559    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4560    CurDAG = &DAG;
4561
4562    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4563    // types that are not supported by the target.
4564    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4565
4566    // Second step, emit the lowered DAG as machine code.
4567    CodeGenAndEmitDAG(DAG);
4568  }
4569
4570  DOUT << "Total amount of phi nodes to update: "
4571       << PHINodesToUpdate.size() << "\n";
4572  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4573          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4574               << ", " << PHINodesToUpdate[i].second << ")\n";);
4575
4576  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4577  // PHI nodes in successors.
4578  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4579    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4580      MachineInstr *PHI = PHINodesToUpdate[i].first;
4581      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4582             "This is not a machine PHI node that we are updating!");
4583      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4584      PHI->addMachineBasicBlockOperand(BB);
4585    }
4586    return;
4587  }
4588
4589  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4590    // Lower header first, if it wasn't already lowered
4591    if (!BitTestCases[i].Emitted) {
4592      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4593      CurDAG = &HSDAG;
4594      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4595      // Set the current basic block to the mbb we wish to insert the code into
4596      BB = BitTestCases[i].Parent;
4597      HSDL.setCurrentBasicBlock(BB);
4598      // Emit the code
4599      HSDL.visitBitTestHeader(BitTestCases[i]);
4600      HSDAG.setRoot(HSDL.getRoot());
4601      CodeGenAndEmitDAG(HSDAG);
4602    }
4603
4604    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4605      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4606      CurDAG = &BSDAG;
4607      SelectionDAGLowering BSDL(BSDAG, TLI, FuncInfo);
4608      // Set the current basic block to the mbb we wish to insert the code into
4609      BB = BitTestCases[i].Cases[j].ThisBB;
4610      BSDL.setCurrentBasicBlock(BB);
4611      // Emit the code
4612      if (j+1 != ej)
4613        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4614                              BitTestCases[i].Reg,
4615                              BitTestCases[i].Cases[j]);
4616      else
4617        BSDL.visitBitTestCase(BitTestCases[i].Default,
4618                              BitTestCases[i].Reg,
4619                              BitTestCases[i].Cases[j]);
4620
4621
4622      BSDAG.setRoot(BSDL.getRoot());
4623      CodeGenAndEmitDAG(BSDAG);
4624    }
4625
4626    // Update PHI Nodes
4627    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4628      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4629      MachineBasicBlock *PHIBB = PHI->getParent();
4630      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4631             "This is not a machine PHI node that we are updating!");
4632      // This is "default" BB. We have two jumps to it. From "header" BB and
4633      // from last "case" BB.
4634      if (PHIBB == BitTestCases[i].Default) {
4635        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4636        PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4637        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4638        PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4639      }
4640      // One of "cases" BB.
4641      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4642        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4643        if (cBB->succ_end() !=
4644            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4645          PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4646          PHI->addMachineBasicBlockOperand(cBB);
4647        }
4648      }
4649    }
4650  }
4651
4652  // If the JumpTable record is filled in, then we need to emit a jump table.
4653  // Updating the PHI nodes is tricky in this case, since we need to determine
4654  // whether the PHI is a successor of the range check MBB or the jump table MBB
4655  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4656    // Lower header first, if it wasn't already lowered
4657    if (!JTCases[i].first.Emitted) {
4658      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4659      CurDAG = &HSDAG;
4660      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4661      // Set the current basic block to the mbb we wish to insert the code into
4662      BB = JTCases[i].first.HeaderBB;
4663      HSDL.setCurrentBasicBlock(BB);
4664      // Emit the code
4665      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4666      HSDAG.setRoot(HSDL.getRoot());
4667      CodeGenAndEmitDAG(HSDAG);
4668    }
4669
4670    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4671    CurDAG = &JSDAG;
4672    SelectionDAGLowering JSDL(JSDAG, TLI, FuncInfo);
4673    // Set the current basic block to the mbb we wish to insert the code into
4674    BB = JTCases[i].second.MBB;
4675    JSDL.setCurrentBasicBlock(BB);
4676    // Emit the code
4677    JSDL.visitJumpTable(JTCases[i].second);
4678    JSDAG.setRoot(JSDL.getRoot());
4679    CodeGenAndEmitDAG(JSDAG);
4680
4681    // Update PHI Nodes
4682    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4683      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4684      MachineBasicBlock *PHIBB = PHI->getParent();
4685      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4686             "This is not a machine PHI node that we are updating!");
4687      // "default" BB. We can go there only from header BB.
4688      if (PHIBB == JTCases[i].second.Default) {
4689        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4690        PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4691      }
4692      // JT BB. Just iterate over successors here
4693      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4694        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4695        PHI->addMachineBasicBlockOperand(BB);
4696      }
4697    }
4698  }
4699
4700  // If the switch block involved a branch to one of the actual successors, we
4701  // need to update PHI nodes in that block.
4702  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4703    MachineInstr *PHI = PHINodesToUpdate[i].first;
4704    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4705           "This is not a machine PHI node that we are updating!");
4706    if (BB->isSuccessor(PHI->getParent())) {
4707      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4708      PHI->addMachineBasicBlockOperand(BB);
4709    }
4710  }
4711
4712  // If we generated any switch lowering information, build and codegen any
4713  // additional DAGs necessary.
4714  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4715    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4716    CurDAG = &SDAG;
4717    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4718
4719    // Set the current basic block to the mbb we wish to insert the code into
4720    BB = SwitchCases[i].ThisBB;
4721    SDL.setCurrentBasicBlock(BB);
4722
4723    // Emit the code
4724    SDL.visitSwitchCase(SwitchCases[i]);
4725    SDAG.setRoot(SDL.getRoot());
4726    CodeGenAndEmitDAG(SDAG);
4727
4728    // Handle any PHI nodes in successors of this chunk, as if we were coming
4729    // from the original BB before switch expansion.  Note that PHI nodes can
4730    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4731    // handle them the right number of times.
4732    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4733      for (MachineBasicBlock::iterator Phi = BB->begin();
4734           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4735        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4736        for (unsigned pn = 0; ; ++pn) {
4737          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4738          if (PHINodesToUpdate[pn].first == Phi) {
4739            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4740            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4741            break;
4742          }
4743        }
4744      }
4745
4746      // Don't process RHS if same block as LHS.
4747      if (BB == SwitchCases[i].FalseBB)
4748        SwitchCases[i].FalseBB = 0;
4749
4750      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4751      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4752      SwitchCases[i].FalseBB = 0;
4753    }
4754    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4755  }
4756}
4757
4758
4759//===----------------------------------------------------------------------===//
4760/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4761/// target node in the graph.
4762void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4763  if (ViewSchedDAGs) DAG.viewGraph();
4764
4765  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4766
4767  if (!Ctor) {
4768    Ctor = ISHeuristic;
4769    RegisterScheduler::setDefault(Ctor);
4770  }
4771
4772  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4773  BB = SL->Run();
4774  delete SL;
4775}
4776
4777
4778HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4779  return new HazardRecognizer();
4780}
4781
4782//===----------------------------------------------------------------------===//
4783// Helper functions used by the generated instruction selector.
4784//===----------------------------------------------------------------------===//
4785// Calls to these methods are generated by tblgen.
4786
4787/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4788/// the dag combiner simplified the 255, we still want to match.  RHS is the
4789/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4790/// specified in the .td file (e.g. 255).
4791bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4792                                    int64_t DesiredMaskS) {
4793  uint64_t ActualMask = RHS->getValue();
4794  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4795
4796  // If the actual mask exactly matches, success!
4797  if (ActualMask == DesiredMask)
4798    return true;
4799
4800  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4801  if (ActualMask & ~DesiredMask)
4802    return false;
4803
4804  // Otherwise, the DAG Combiner may have proven that the value coming in is
4805  // either already zero or is not demanded.  Check for known zero input bits.
4806  uint64_t NeededMask = DesiredMask & ~ActualMask;
4807  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
4808    return true;
4809
4810  // TODO: check to see if missing bits are just not demanded.
4811
4812  // Otherwise, this pattern doesn't match.
4813  return false;
4814}
4815
4816/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4817/// the dag combiner simplified the 255, we still want to match.  RHS is the
4818/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4819/// specified in the .td file (e.g. 255).
4820bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4821                                    int64_t DesiredMaskS) {
4822  uint64_t ActualMask = RHS->getValue();
4823  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4824
4825  // If the actual mask exactly matches, success!
4826  if (ActualMask == DesiredMask)
4827    return true;
4828
4829  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4830  if (ActualMask & ~DesiredMask)
4831    return false;
4832
4833  // Otherwise, the DAG Combiner may have proven that the value coming in is
4834  // either already zero or is not demanded.  Check for known zero input bits.
4835  uint64_t NeededMask = DesiredMask & ~ActualMask;
4836
4837  uint64_t KnownZero, KnownOne;
4838  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4839
4840  // If all the missing bits in the or are already known to be set, match!
4841  if ((NeededMask & KnownOne) == NeededMask)
4842    return true;
4843
4844  // TODO: check to see if missing bits are just not demanded.
4845
4846  // Otherwise, this pattern doesn't match.
4847  return false;
4848}
4849
4850
4851/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4852/// by tblgen.  Others should not call it.
4853void SelectionDAGISel::
4854SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4855  std::vector<SDOperand> InOps;
4856  std::swap(InOps, Ops);
4857
4858  Ops.push_back(InOps[0]);  // input chain.
4859  Ops.push_back(InOps[1]);  // input asm string.
4860
4861  unsigned i = 2, e = InOps.size();
4862  if (InOps[e-1].getValueType() == MVT::Flag)
4863    --e;  // Don't process a flag operand if it is here.
4864
4865  while (i != e) {
4866    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4867    if ((Flags & 7) != 4 /*MEM*/) {
4868      // Just skip over this operand, copying the operands verbatim.
4869      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4870      i += (Flags >> 3) + 1;
4871    } else {
4872      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4873      // Otherwise, this is a memory operand.  Ask the target to select it.
4874      std::vector<SDOperand> SelOps;
4875      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4876        cerr << "Could not match memory address.  Inline asm failure!\n";
4877        exit(1);
4878      }
4879
4880      // Add this to the output node.
4881      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4882      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4883                                          IntPtrTy));
4884      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4885      i += 2;
4886    }
4887  }
4888
4889  // Add the flag input back if present.
4890  if (e != InOps.size())
4891    Ops.push_back(InOps.back());
4892}
4893