SelectionDAGISel.cpp revision 849f214a4e3676e41168b0c5398165c4d4fb99f8
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61//===---------------------------------------------------------------------===//
62///
63/// RegisterScheduler class - Track the registration of instruction schedulers.
64///
65//===---------------------------------------------------------------------===//
66MachinePassRegistry RegisterScheduler::Registry;
67
68//===---------------------------------------------------------------------===//
69///
70/// ISHeuristic command line option for instruction schedulers.
71///
72//===---------------------------------------------------------------------===//
73namespace {
74  cl::opt<RegisterScheduler::FunctionPassCtor, false,
75          RegisterPassParser<RegisterScheduler> >
76  ISHeuristic("sched",
77              cl::init(&createDefaultScheduler),
78              cl::desc("Instruction schedulers available:"));
79
80  static RegisterScheduler
81  defaultListDAGScheduler("default", "  Best scheduler for the target",
82                          createDefaultScheduler);
83} // namespace
84
85namespace { struct AsmOperandInfo; }
86
87namespace {
88  /// RegsForValue - This struct represents the physical registers that a
89  /// particular value is assigned and the type information about the value.
90  /// This is needed because values can be promoted into larger registers and
91  /// expanded into multiple smaller registers than the value.
92  struct VISIBILITY_HIDDEN RegsForValue {
93    /// Regs - This list holds the register (for legal and promoted values)
94    /// or register set (for expanded values) that the value should be assigned
95    /// to.
96    std::vector<unsigned> Regs;
97
98    /// RegVT - The value type of each register.
99    ///
100    MVT::ValueType RegVT;
101
102    /// ValueVT - The value type of the LLVM value, which may be promoted from
103    /// RegVT or made from merging the two expanded parts.
104    MVT::ValueType ValueVT;
105
106    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
107
108    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
109      : RegVT(regvt), ValueVT(valuevt) {
110        Regs.push_back(Reg);
111    }
112    RegsForValue(const std::vector<unsigned> &regs,
113                 MVT::ValueType regvt, MVT::ValueType valuevt)
114      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
115    }
116
117    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
118    /// this value and returns the result as a ValueVT value.  This uses
119    /// Chain/Flag as the input and updates them for the output Chain/Flag.
120    /// If the Flag pointer is NULL, no flag is used.
121    SDOperand getCopyFromRegs(SelectionDAG &DAG,
122                              SDOperand &Chain, SDOperand *Flag) const;
123
124    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
125    /// specified value into the registers specified by this object.  This uses
126    /// Chain/Flag as the input and updates them for the output Chain/Flag.
127    /// If the Flag pointer is NULL, no flag is used.
128    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
129                       SDOperand &Chain, SDOperand *Flag) const;
130
131    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
132    /// operand list.  This adds the code marker and includes the number of
133    /// values added into it.
134    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
135                              std::vector<SDOperand> &Ops) const;
136  };
137}
138
139namespace llvm {
140  //===--------------------------------------------------------------------===//
141  /// createDefaultScheduler - This creates an instruction scheduler appropriate
142  /// for the target.
143  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
144                                      SelectionDAG *DAG,
145                                      MachineBasicBlock *BB) {
146    TargetLowering &TLI = IS->getTargetLowering();
147
148    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
149      return createTDListDAGScheduler(IS, DAG, BB);
150    } else {
151      assert(TLI.getSchedulingPreference() ==
152           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
153      return createBURRListDAGScheduler(IS, DAG, BB);
154    }
155  }
156
157
158  //===--------------------------------------------------------------------===//
159  /// FunctionLoweringInfo - This contains information that is global to a
160  /// function that is used when lowering a region of the function.
161  class FunctionLoweringInfo {
162  public:
163    TargetLowering &TLI;
164    Function &Fn;
165    MachineFunction &MF;
166    SSARegMap *RegMap;
167
168    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
169
170    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
171    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
172
173    /// ValueMap - Since we emit code for the function a basic block at a time,
174    /// we must remember which virtual registers hold the values for
175    /// cross-basic-block values.
176    DenseMap<const Value*, unsigned> ValueMap;
177
178    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
179    /// the entry block.  This allows the allocas to be efficiently referenced
180    /// anywhere in the function.
181    std::map<const AllocaInst*, int> StaticAllocaMap;
182
183#ifndef NDEBUG
184    SmallSet<Instruction*, 8> CatchInfoLost;
185    SmallSet<Instruction*, 8> CatchInfoFound;
186#endif
187
188    unsigned MakeReg(MVT::ValueType VT) {
189      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
190    }
191
192    /// isExportedInst - Return true if the specified value is an instruction
193    /// exported from its block.
194    bool isExportedInst(const Value *V) {
195      return ValueMap.count(V);
196    }
197
198    unsigned CreateRegForValue(const Value *V);
199
200    unsigned InitializeRegForValue(const Value *V) {
201      unsigned &R = ValueMap[V];
202      assert(R == 0 && "Already initialized this value register!");
203      return R = CreateRegForValue(V);
204    }
205  };
206}
207
208/// isFilterOrSelector - Return true if this instruction is a call to the
209/// eh.filter or the eh.selector intrinsic.
210static bool isFilterOrSelector(Instruction *I) {
211  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
212    return II->getIntrinsicID() == Intrinsic::eh_selector
213      || II->getIntrinsicID() == Intrinsic::eh_filter;
214  return false;
215}
216
217/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
218/// PHI nodes or outside of the basic block that defines it, or used by a
219/// switch instruction, which may expand to multiple basic blocks.
220static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
221  if (isa<PHINode>(I)) return true;
222  BasicBlock *BB = I->getParent();
223  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
224    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
225        // FIXME: Remove switchinst special case.
226        isa<SwitchInst>(*UI))
227      return true;
228  return false;
229}
230
231/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
232/// entry block, return true.  This includes arguments used by switches, since
233/// the switch may expand into multiple basic blocks.
234static bool isOnlyUsedInEntryBlock(Argument *A) {
235  BasicBlock *Entry = A->getParent()->begin();
236  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
237    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
238      return false;  // Use not in entry block.
239  return true;
240}
241
242FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
243                                           Function &fn, MachineFunction &mf)
244    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
245
246  // Create a vreg for each argument register that is not dead and is used
247  // outside of the entry block for the function.
248  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
249       AI != E; ++AI)
250    if (!isOnlyUsedInEntryBlock(AI))
251      InitializeRegForValue(AI);
252
253  // Initialize the mapping of values to registers.  This is only set up for
254  // instruction values that are used outside of the block that defines
255  // them.
256  Function::iterator BB = Fn.begin(), EB = Fn.end();
257  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
258    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
259      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
260        const Type *Ty = AI->getAllocatedType();
261        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
262        unsigned Align =
263          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
264                   AI->getAlignment());
265
266        TySize *= CUI->getZExtValue();   // Get total allocated size.
267        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
268        StaticAllocaMap[AI] =
269          MF.getFrameInfo()->CreateStackObject(TySize, Align);
270      }
271
272  for (; BB != EB; ++BB)
273    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
274      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
275        if (!isa<AllocaInst>(I) ||
276            !StaticAllocaMap.count(cast<AllocaInst>(I)))
277          InitializeRegForValue(I);
278
279  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
280  // also creates the initial PHI MachineInstrs, though none of the input
281  // operands are populated.
282  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
283    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
284    MBBMap[BB] = MBB;
285    MF.getBasicBlockList().push_back(MBB);
286
287    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
288    // appropriate.
289    PHINode *PN;
290    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
291      if (PN->use_empty()) continue;
292
293      MVT::ValueType VT = TLI.getValueType(PN->getType());
294      unsigned NumRegisters = TLI.getNumRegisters(VT);
295      unsigned PHIReg = ValueMap[PN];
296      assert(PHIReg && "PHI node does not have an assigned virtual register!");
297      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
298      for (unsigned i = 0; i != NumRegisters; ++i)
299        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
300    }
301  }
302}
303
304/// CreateRegForValue - Allocate the appropriate number of virtual registers of
305/// the correctly promoted or expanded types.  Assign these registers
306/// consecutive vreg numbers and return the first assigned number.
307unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
308  MVT::ValueType VT = TLI.getValueType(V->getType());
309
310  unsigned NumRegisters = TLI.getNumRegisters(VT);
311  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
312
313  unsigned R = MakeReg(RegisterVT);
314  for (unsigned i = 1; i != NumRegisters; ++i)
315    MakeReg(RegisterVT);
316
317  return R;
318}
319
320//===----------------------------------------------------------------------===//
321/// SelectionDAGLowering - This is the common target-independent lowering
322/// implementation that is parameterized by a TargetLowering object.
323/// Also, targets can overload any lowering method.
324///
325namespace llvm {
326class SelectionDAGLowering {
327  MachineBasicBlock *CurMBB;
328
329  DenseMap<const Value*, SDOperand> NodeMap;
330
331  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
332  /// them up and then emit token factor nodes when possible.  This allows us to
333  /// get simple disambiguation between loads without worrying about alias
334  /// analysis.
335  std::vector<SDOperand> PendingLoads;
336
337  /// Case - A struct to record the Value for a switch case, and the
338  /// case's target basic block.
339  struct Case {
340    Constant* Low;
341    Constant* High;
342    MachineBasicBlock* BB;
343
344    Case() : Low(0), High(0), BB(0) { }
345    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
346      Low(low), High(high), BB(bb) { }
347    uint64_t size() const {
348      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
349      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
350      return (rHigh - rLow + 1ULL);
351    }
352  };
353
354  struct CaseBits {
355    uint64_t Mask;
356    MachineBasicBlock* BB;
357    unsigned Bits;
358
359    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
360      Mask(mask), BB(bb), Bits(bits) { }
361  };
362
363  typedef std::vector<Case>           CaseVector;
364  typedef std::vector<CaseBits>       CaseBitsVector;
365  typedef CaseVector::iterator        CaseItr;
366  typedef std::pair<CaseItr, CaseItr> CaseRange;
367
368  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
369  /// of conditional branches.
370  struct CaseRec {
371    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
372    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
373
374    /// CaseBB - The MBB in which to emit the compare and branch
375    MachineBasicBlock *CaseBB;
376    /// LT, GE - If nonzero, we know the current case value must be less-than or
377    /// greater-than-or-equal-to these Constants.
378    Constant *LT;
379    Constant *GE;
380    /// Range - A pair of iterators representing the range of case values to be
381    /// processed at this point in the binary search tree.
382    CaseRange Range;
383  };
384
385  typedef std::vector<CaseRec> CaseRecVector;
386
387  /// The comparison function for sorting the switch case values in the vector.
388  /// WARNING: Case ranges should be disjoint!
389  struct CaseCmp {
390    bool operator () (const Case& C1, const Case& C2) {
391      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
392      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
393      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
394      return CI1->getValue().slt(CI2->getValue());
395    }
396  };
397
398  struct CaseBitsCmp {
399    bool operator () (const CaseBits& C1, const CaseBits& C2) {
400      return C1.Bits > C2.Bits;
401    }
402  };
403
404  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
405
406public:
407  // TLI - This is information that describes the available target features we
408  // need for lowering.  This indicates when operations are unavailable,
409  // implemented with a libcall, etc.
410  TargetLowering &TLI;
411  SelectionDAG &DAG;
412  const TargetData *TD;
413
414  /// SwitchCases - Vector of CaseBlock structures used to communicate
415  /// SwitchInst code generation information.
416  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
417  /// JTCases - Vector of JumpTable structures used to communicate
418  /// SwitchInst code generation information.
419  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
420  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
421
422  /// FuncInfo - Information about the function as a whole.
423  ///
424  FunctionLoweringInfo &FuncInfo;
425
426  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
427                       FunctionLoweringInfo &funcinfo)
428    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
429      FuncInfo(funcinfo) {
430  }
431
432  /// getRoot - Return the current virtual root of the Selection DAG.
433  ///
434  SDOperand getRoot() {
435    if (PendingLoads.empty())
436      return DAG.getRoot();
437
438    if (PendingLoads.size() == 1) {
439      SDOperand Root = PendingLoads[0];
440      DAG.setRoot(Root);
441      PendingLoads.clear();
442      return Root;
443    }
444
445    // Otherwise, we have to make a token factor node.
446    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
447                                 &PendingLoads[0], PendingLoads.size());
448    PendingLoads.clear();
449    DAG.setRoot(Root);
450    return Root;
451  }
452
453  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
454
455  void visit(Instruction &I) { visit(I.getOpcode(), I); }
456
457  void visit(unsigned Opcode, User &I) {
458    // Note: this doesn't use InstVisitor, because it has to work with
459    // ConstantExpr's in addition to instructions.
460    switch (Opcode) {
461    default: assert(0 && "Unknown instruction type encountered!");
462             abort();
463      // Build the switch statement using the Instruction.def file.
464#define HANDLE_INST(NUM, OPCODE, CLASS) \
465    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
466#include "llvm/Instruction.def"
467    }
468  }
469
470  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
471
472  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
473                        const Value *SV, SDOperand Root,
474                        bool isVolatile, unsigned Alignment);
475
476  SDOperand getIntPtrConstant(uint64_t Val) {
477    return DAG.getConstant(Val, TLI.getPointerTy());
478  }
479
480  SDOperand getValue(const Value *V);
481
482  void setValue(const Value *V, SDOperand NewN) {
483    SDOperand &N = NodeMap[V];
484    assert(N.Val == 0 && "Already set a value for this node!");
485    N = NewN;
486  }
487
488  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
489                            std::set<unsigned> &OutputRegs,
490                            std::set<unsigned> &InputRegs);
491
492  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
493                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
494                            unsigned Opc);
495  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
496  void ExportFromCurrentBlock(Value *V);
497  void LowerCallTo(Instruction &I,
498                   const Type *CalledValueTy, unsigned CallingConv,
499                   bool IsTailCall, SDOperand Callee, unsigned OpIdx,
500                   MachineBasicBlock *LandingPad = NULL);
501
502  // Terminator instructions.
503  void visitRet(ReturnInst &I);
504  void visitBr(BranchInst &I);
505  void visitSwitch(SwitchInst &I);
506  void visitUnreachable(UnreachableInst &I) { /* noop */ }
507
508  // Helpers for visitSwitch
509  bool handleSmallSwitchRange(CaseRec& CR,
510                              CaseRecVector& WorkList,
511                              Value* SV,
512                              MachineBasicBlock* Default);
513  bool handleJTSwitchCase(CaseRec& CR,
514                          CaseRecVector& WorkList,
515                          Value* SV,
516                          MachineBasicBlock* Default);
517  bool handleBTSplitSwitchCase(CaseRec& CR,
518                               CaseRecVector& WorkList,
519                               Value* SV,
520                               MachineBasicBlock* Default);
521  bool handleBitTestsSwitchCase(CaseRec& CR,
522                                CaseRecVector& WorkList,
523                                Value* SV,
524                                MachineBasicBlock* Default);
525  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
526  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
527  void visitBitTestCase(MachineBasicBlock* NextMBB,
528                        unsigned Reg,
529                        SelectionDAGISel::BitTestCase &B);
530  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
531  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
532                            SelectionDAGISel::JumpTableHeader &JTH);
533
534  // These all get lowered before this pass.
535  void visitInvoke(InvokeInst &I);
536  void visitUnwind(UnwindInst &I);
537
538  void visitBinary(User &I, unsigned OpCode);
539  void visitShift(User &I, unsigned Opcode);
540  void visitAdd(User &I) {
541    if (I.getType()->isFPOrFPVector())
542      visitBinary(I, ISD::FADD);
543    else
544      visitBinary(I, ISD::ADD);
545  }
546  void visitSub(User &I);
547  void visitMul(User &I) {
548    if (I.getType()->isFPOrFPVector())
549      visitBinary(I, ISD::FMUL);
550    else
551      visitBinary(I, ISD::MUL);
552  }
553  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
554  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
555  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
556  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
557  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
558  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
559  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
560  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
561  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
562  void visitShl (User &I) { visitShift(I, ISD::SHL); }
563  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
564  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
565  void visitICmp(User &I);
566  void visitFCmp(User &I);
567  // Visit the conversion instructions
568  void visitTrunc(User &I);
569  void visitZExt(User &I);
570  void visitSExt(User &I);
571  void visitFPTrunc(User &I);
572  void visitFPExt(User &I);
573  void visitFPToUI(User &I);
574  void visitFPToSI(User &I);
575  void visitUIToFP(User &I);
576  void visitSIToFP(User &I);
577  void visitPtrToInt(User &I);
578  void visitIntToPtr(User &I);
579  void visitBitCast(User &I);
580
581  void visitExtractElement(User &I);
582  void visitInsertElement(User &I);
583  void visitShuffleVector(User &I);
584
585  void visitGetElementPtr(User &I);
586  void visitSelect(User &I);
587
588  void visitMalloc(MallocInst &I);
589  void visitFree(FreeInst &I);
590  void visitAlloca(AllocaInst &I);
591  void visitLoad(LoadInst &I);
592  void visitStore(StoreInst &I);
593  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
594  void visitCall(CallInst &I);
595  void visitInlineAsm(CallInst &I);
596  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
597  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
598
599  void visitVAStart(CallInst &I);
600  void visitVAArg(VAArgInst &I);
601  void visitVAEnd(CallInst &I);
602  void visitVACopy(CallInst &I);
603
604  void visitMemIntrinsic(CallInst &I, unsigned Op);
605
606  void visitUserOp1(Instruction &I) {
607    assert(0 && "UserOp1 should not exist at instruction selection time!");
608    abort();
609  }
610  void visitUserOp2(Instruction &I) {
611    assert(0 && "UserOp2 should not exist at instruction selection time!");
612    abort();
613  }
614};
615} // end namespace llvm
616
617SDOperand SelectionDAGLowering::getValue(const Value *V) {
618  SDOperand &N = NodeMap[V];
619  if (N.Val) return N;
620
621  const Type *VTy = V->getType();
622  MVT::ValueType VT = TLI.getValueType(VTy);
623  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
624    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
625      visit(CE->getOpcode(), *CE);
626      SDOperand N1 = NodeMap[V];
627      assert(N1.Val && "visit didn't populate the ValueMap!");
628      return N1;
629    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
630      return N = DAG.getGlobalAddress(GV, VT);
631    } else if (isa<ConstantPointerNull>(C)) {
632      return N = DAG.getConstant(0, TLI.getPointerTy());
633    } else if (isa<UndefValue>(C)) {
634      if (!isa<VectorType>(VTy))
635        return N = DAG.getNode(ISD::UNDEF, VT);
636
637      // Create a BUILD_VECTOR of undef nodes.
638      const VectorType *PTy = cast<VectorType>(VTy);
639      unsigned NumElements = PTy->getNumElements();
640      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
641
642      SmallVector<SDOperand, 8> Ops;
643      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
644
645      // Create a VConstant node with generic Vector type.
646      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
647      return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
648                             &Ops[0], Ops.size());
649    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
650      return N = DAG.getConstantFP(CFP->getValue(), VT);
651    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
652      unsigned NumElements = PTy->getNumElements();
653      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
654
655      // Now that we know the number and type of the elements, push a
656      // Constant or ConstantFP node onto the ops list for each element of
657      // the packed constant.
658      SmallVector<SDOperand, 8> Ops;
659      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
660        for (unsigned i = 0; i != NumElements; ++i)
661          Ops.push_back(getValue(CP->getOperand(i)));
662      } else {
663        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
664        SDOperand Op;
665        if (MVT::isFloatingPoint(PVT))
666          Op = DAG.getConstantFP(0, PVT);
667        else
668          Op = DAG.getConstant(0, PVT);
669        Ops.assign(NumElements, Op);
670      }
671
672      // Create a BUILD_VECTOR node.
673      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
674      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
675                                      Ops.size());
676    } else {
677      // Canonicalize all constant ints to be unsigned.
678      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
679    }
680  }
681
682  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
683    std::map<const AllocaInst*, int>::iterator SI =
684    FuncInfo.StaticAllocaMap.find(AI);
685    if (SI != FuncInfo.StaticAllocaMap.end())
686      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
687  }
688
689  unsigned InReg = FuncInfo.ValueMap[V];
690  assert(InReg && "Value not in map!");
691
692  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
693  unsigned NumRegs = TLI.getNumRegisters(VT);
694
695  std::vector<unsigned> Regs(NumRegs);
696  for (unsigned i = 0; i != NumRegs; ++i)
697    Regs[i] = InReg + i;
698
699  RegsForValue RFV(Regs, RegisterVT, VT);
700  SDOperand Chain = DAG.getEntryNode();
701
702  return RFV.getCopyFromRegs(DAG, Chain, NULL);
703}
704
705
706void SelectionDAGLowering::visitRet(ReturnInst &I) {
707  if (I.getNumOperands() == 0) {
708    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
709    return;
710  }
711  SmallVector<SDOperand, 8> NewValues;
712  NewValues.push_back(getRoot());
713  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
714    SDOperand RetOp = getValue(I.getOperand(i));
715
716    // If this is an integer return value, we need to promote it ourselves to
717    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
718    // than sign/zero.
719    // FIXME: C calling convention requires the return type to be promoted to
720    // at least 32-bit. But this is not necessary for non-C calling conventions.
721    if (MVT::isInteger(RetOp.getValueType()) &&
722        RetOp.getValueType() < MVT::i64) {
723      MVT::ValueType TmpVT;
724      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
725        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
726      else
727        TmpVT = MVT::i32;
728      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
729      const ParamAttrsList *Attrs = FTy->getParamAttrs();
730      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
731      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt))
732        ExtendKind = ISD::SIGN_EXTEND;
733      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt))
734        ExtendKind = ISD::ZERO_EXTEND;
735      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
736    }
737    NewValues.push_back(RetOp);
738    NewValues.push_back(DAG.getConstant(false, MVT::i32));
739  }
740  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
741                          &NewValues[0], NewValues.size()));
742}
743
744/// ExportFromCurrentBlock - If this condition isn't known to be exported from
745/// the current basic block, add it to ValueMap now so that we'll get a
746/// CopyTo/FromReg.
747void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
748  // No need to export constants.
749  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
750
751  // Already exported?
752  if (FuncInfo.isExportedInst(V)) return;
753
754  unsigned Reg = FuncInfo.InitializeRegForValue(V);
755  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
756}
757
758bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
759                                                    const BasicBlock *FromBB) {
760  // The operands of the setcc have to be in this block.  We don't know
761  // how to export them from some other block.
762  if (Instruction *VI = dyn_cast<Instruction>(V)) {
763    // Can export from current BB.
764    if (VI->getParent() == FromBB)
765      return true;
766
767    // Is already exported, noop.
768    return FuncInfo.isExportedInst(V);
769  }
770
771  // If this is an argument, we can export it if the BB is the entry block or
772  // if it is already exported.
773  if (isa<Argument>(V)) {
774    if (FromBB == &FromBB->getParent()->getEntryBlock())
775      return true;
776
777    // Otherwise, can only export this if it is already exported.
778    return FuncInfo.isExportedInst(V);
779  }
780
781  // Otherwise, constants can always be exported.
782  return true;
783}
784
785static bool InBlock(const Value *V, const BasicBlock *BB) {
786  if (const Instruction *I = dyn_cast<Instruction>(V))
787    return I->getParent() == BB;
788  return true;
789}
790
791/// FindMergedConditions - If Cond is an expression like
792void SelectionDAGLowering::FindMergedConditions(Value *Cond,
793                                                MachineBasicBlock *TBB,
794                                                MachineBasicBlock *FBB,
795                                                MachineBasicBlock *CurBB,
796                                                unsigned Opc) {
797  // If this node is not part of the or/and tree, emit it as a branch.
798  Instruction *BOp = dyn_cast<Instruction>(Cond);
799
800  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
801      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
802      BOp->getParent() != CurBB->getBasicBlock() ||
803      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
804      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
805    const BasicBlock *BB = CurBB->getBasicBlock();
806
807    // If the leaf of the tree is a comparison, merge the condition into
808    // the caseblock.
809    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
810        // The operands of the cmp have to be in this block.  We don't know
811        // how to export them from some other block.  If this is the first block
812        // of the sequence, no exporting is needed.
813        (CurBB == CurMBB ||
814         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
815          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
816      BOp = cast<Instruction>(Cond);
817      ISD::CondCode Condition;
818      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
819        switch (IC->getPredicate()) {
820        default: assert(0 && "Unknown icmp predicate opcode!");
821        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
822        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
823        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
824        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
825        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
826        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
827        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
828        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
829        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
830        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
831        }
832      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
833        ISD::CondCode FPC, FOC;
834        switch (FC->getPredicate()) {
835        default: assert(0 && "Unknown fcmp predicate opcode!");
836        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
837        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
838        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
839        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
840        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
841        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
842        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
843        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
844        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
845        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
846        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
847        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
848        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
849        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
850        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
851        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
852        }
853        if (FiniteOnlyFPMath())
854          Condition = FOC;
855        else
856          Condition = FPC;
857      } else {
858        Condition = ISD::SETEQ; // silence warning.
859        assert(0 && "Unknown compare instruction");
860      }
861
862      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
863                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
864      SwitchCases.push_back(CB);
865      return;
866    }
867
868    // Create a CaseBlock record representing this branch.
869    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
870                                   NULL, TBB, FBB, CurBB);
871    SwitchCases.push_back(CB);
872    return;
873  }
874
875
876  //  Create TmpBB after CurBB.
877  MachineFunction::iterator BBI = CurBB;
878  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
879  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
880
881  if (Opc == Instruction::Or) {
882    // Codegen X | Y as:
883    //   jmp_if_X TBB
884    //   jmp TmpBB
885    // TmpBB:
886    //   jmp_if_Y TBB
887    //   jmp FBB
888    //
889
890    // Emit the LHS condition.
891    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
892
893    // Emit the RHS condition into TmpBB.
894    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
895  } else {
896    assert(Opc == Instruction::And && "Unknown merge op!");
897    // Codegen X & Y as:
898    //   jmp_if_X TmpBB
899    //   jmp FBB
900    // TmpBB:
901    //   jmp_if_Y TBB
902    //   jmp FBB
903    //
904    //  This requires creation of TmpBB after CurBB.
905
906    // Emit the LHS condition.
907    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
908
909    // Emit the RHS condition into TmpBB.
910    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
911  }
912}
913
914/// If the set of cases should be emitted as a series of branches, return true.
915/// If we should emit this as a bunch of and/or'd together conditions, return
916/// false.
917static bool
918ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
919  if (Cases.size() != 2) return true;
920
921  // If this is two comparisons of the same values or'd or and'd together, they
922  // will get folded into a single comparison, so don't emit two blocks.
923  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
924       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
925      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
926       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
927    return false;
928  }
929
930  return true;
931}
932
933void SelectionDAGLowering::visitBr(BranchInst &I) {
934  // Update machine-CFG edges.
935  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
936
937  // Figure out which block is immediately after the current one.
938  MachineBasicBlock *NextBlock = 0;
939  MachineFunction::iterator BBI = CurMBB;
940  if (++BBI != CurMBB->getParent()->end())
941    NextBlock = BBI;
942
943  if (I.isUnconditional()) {
944    // If this is not a fall-through branch, emit the branch.
945    if (Succ0MBB != NextBlock)
946      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
947                              DAG.getBasicBlock(Succ0MBB)));
948
949    // Update machine-CFG edges.
950    CurMBB->addSuccessor(Succ0MBB);
951
952    return;
953  }
954
955  // If this condition is one of the special cases we handle, do special stuff
956  // now.
957  Value *CondVal = I.getCondition();
958  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
959
960  // If this is a series of conditions that are or'd or and'd together, emit
961  // this as a sequence of branches instead of setcc's with and/or operations.
962  // For example, instead of something like:
963  //     cmp A, B
964  //     C = seteq
965  //     cmp D, E
966  //     F = setle
967  //     or C, F
968  //     jnz foo
969  // Emit:
970  //     cmp A, B
971  //     je foo
972  //     cmp D, E
973  //     jle foo
974  //
975  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
976    if (BOp->hasOneUse() &&
977        (BOp->getOpcode() == Instruction::And ||
978         BOp->getOpcode() == Instruction::Or)) {
979      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
980      // If the compares in later blocks need to use values not currently
981      // exported from this block, export them now.  This block should always
982      // be the first entry.
983      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
984
985      // Allow some cases to be rejected.
986      if (ShouldEmitAsBranches(SwitchCases)) {
987        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
988          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
989          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
990        }
991
992        // Emit the branch for this block.
993        visitSwitchCase(SwitchCases[0]);
994        SwitchCases.erase(SwitchCases.begin());
995        return;
996      }
997
998      // Okay, we decided not to do this, remove any inserted MBB's and clear
999      // SwitchCases.
1000      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1001        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1002
1003      SwitchCases.clear();
1004    }
1005  }
1006
1007  // Create a CaseBlock record representing this branch.
1008  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1009                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1010  // Use visitSwitchCase to actually insert the fast branch sequence for this
1011  // cond branch.
1012  visitSwitchCase(CB);
1013}
1014
1015/// visitSwitchCase - Emits the necessary code to represent a single node in
1016/// the binary search tree resulting from lowering a switch instruction.
1017void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1018  SDOperand Cond;
1019  SDOperand CondLHS = getValue(CB.CmpLHS);
1020
1021  // Build the setcc now.
1022  if (CB.CmpMHS == NULL) {
1023    // Fold "(X == true)" to X and "(X == false)" to !X to
1024    // handle common cases produced by branch lowering.
1025    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1026      Cond = CondLHS;
1027    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1028      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1029      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1030    } else
1031      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1032  } else {
1033    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1034
1035    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1036    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1037
1038    SDOperand CmpOp = getValue(CB.CmpMHS);
1039    MVT::ValueType VT = CmpOp.getValueType();
1040
1041    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1042      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1043    } else {
1044      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1045      Cond = DAG.getSetCC(MVT::i1, SUB,
1046                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1047    }
1048
1049  }
1050
1051  // Set NextBlock to be the MBB immediately after the current one, if any.
1052  // This is used to avoid emitting unnecessary branches to the next block.
1053  MachineBasicBlock *NextBlock = 0;
1054  MachineFunction::iterator BBI = CurMBB;
1055  if (++BBI != CurMBB->getParent()->end())
1056    NextBlock = BBI;
1057
1058  // If the lhs block is the next block, invert the condition so that we can
1059  // fall through to the lhs instead of the rhs block.
1060  if (CB.TrueBB == NextBlock) {
1061    std::swap(CB.TrueBB, CB.FalseBB);
1062    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1063    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1064  }
1065  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1066                                 DAG.getBasicBlock(CB.TrueBB));
1067  if (CB.FalseBB == NextBlock)
1068    DAG.setRoot(BrCond);
1069  else
1070    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1071                            DAG.getBasicBlock(CB.FalseBB)));
1072  // Update successor info
1073  CurMBB->addSuccessor(CB.TrueBB);
1074  CurMBB->addSuccessor(CB.FalseBB);
1075}
1076
1077/// visitJumpTable - Emit JumpTable node in the current MBB
1078void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1079  // Emit the code for the jump table
1080  assert(JT.Reg != -1U && "Should lower JT Header first!");
1081  MVT::ValueType PTy = TLI.getPointerTy();
1082  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1083  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1084  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1085                          Table, Index));
1086  return;
1087}
1088
1089/// visitJumpTableHeader - This function emits necessary code to produce index
1090/// in the JumpTable from switch case.
1091void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1092                                         SelectionDAGISel::JumpTableHeader &JTH) {
1093  // Subtract the lowest switch case value from the value being switched on
1094  // and conditional branch to default mbb if the result is greater than the
1095  // difference between smallest and largest cases.
1096  SDOperand SwitchOp = getValue(JTH.SValue);
1097  MVT::ValueType VT = SwitchOp.getValueType();
1098  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1099                              DAG.getConstant(JTH.First, VT));
1100
1101  // The SDNode we just created, which holds the value being switched on
1102  // minus the the smallest case value, needs to be copied to a virtual
1103  // register so it can be used as an index into the jump table in a
1104  // subsequent basic block.  This value may be smaller or larger than the
1105  // target's pointer type, and therefore require extension or truncating.
1106  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1107    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1108  else
1109    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1110
1111  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1112  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1113  JT.Reg = JumpTableReg;
1114
1115  // Emit the range check for the jump table, and branch to the default
1116  // block for the switch statement if the value being switched on exceeds
1117  // the largest case in the switch.
1118  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1119                               DAG.getConstant(JTH.Last-JTH.First,VT),
1120                               ISD::SETUGT);
1121
1122  // Set NextBlock to be the MBB immediately after the current one, if any.
1123  // This is used to avoid emitting unnecessary branches to the next block.
1124  MachineBasicBlock *NextBlock = 0;
1125  MachineFunction::iterator BBI = CurMBB;
1126  if (++BBI != CurMBB->getParent()->end())
1127    NextBlock = BBI;
1128
1129  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1130                                 DAG.getBasicBlock(JT.Default));
1131
1132  if (JT.MBB == NextBlock)
1133    DAG.setRoot(BrCond);
1134  else
1135    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1136                            DAG.getBasicBlock(JT.MBB)));
1137
1138  return;
1139}
1140
1141/// visitBitTestHeader - This function emits necessary code to produce value
1142/// suitable for "bit tests"
1143void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1144  // Subtract the minimum value
1145  SDOperand SwitchOp = getValue(B.SValue);
1146  MVT::ValueType VT = SwitchOp.getValueType();
1147  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1148                              DAG.getConstant(B.First, VT));
1149
1150  // Check range
1151  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1152                                    DAG.getConstant(B.Range, VT),
1153                                    ISD::SETUGT);
1154
1155  SDOperand ShiftOp;
1156  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1157    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1158  else
1159    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1160
1161  // Make desired shift
1162  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1163                                    DAG.getConstant(1, TLI.getPointerTy()),
1164                                    ShiftOp);
1165
1166  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1167  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1168  B.Reg = SwitchReg;
1169
1170  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1171                                  DAG.getBasicBlock(B.Default));
1172
1173  // Set NextBlock to be the MBB immediately after the current one, if any.
1174  // This is used to avoid emitting unnecessary branches to the next block.
1175  MachineBasicBlock *NextBlock = 0;
1176  MachineFunction::iterator BBI = CurMBB;
1177  if (++BBI != CurMBB->getParent()->end())
1178    NextBlock = BBI;
1179
1180  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1181  if (MBB == NextBlock)
1182    DAG.setRoot(BrRange);
1183  else
1184    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1185                            DAG.getBasicBlock(MBB)));
1186
1187  CurMBB->addSuccessor(B.Default);
1188  CurMBB->addSuccessor(MBB);
1189
1190  return;
1191}
1192
1193/// visitBitTestCase - this function produces one "bit test"
1194void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1195                                            unsigned Reg,
1196                                            SelectionDAGISel::BitTestCase &B) {
1197  // Emit bit tests and jumps
1198  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1199
1200  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1201                                SwitchVal,
1202                                DAG.getConstant(B.Mask,
1203                                                TLI.getPointerTy()));
1204  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1205                                  DAG.getConstant(0, TLI.getPointerTy()),
1206                                  ISD::SETNE);
1207  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1208                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1209
1210  // Set NextBlock to be the MBB immediately after the current one, if any.
1211  // This is used to avoid emitting unnecessary branches to the next block.
1212  MachineBasicBlock *NextBlock = 0;
1213  MachineFunction::iterator BBI = CurMBB;
1214  if (++BBI != CurMBB->getParent()->end())
1215    NextBlock = BBI;
1216
1217  if (NextMBB == NextBlock)
1218    DAG.setRoot(BrAnd);
1219  else
1220    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1221                            DAG.getBasicBlock(NextMBB)));
1222
1223  CurMBB->addSuccessor(B.TargetBB);
1224  CurMBB->addSuccessor(NextMBB);
1225
1226  return;
1227}
1228
1229void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1230  // Retrieve successors.
1231  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1232  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1233
1234  LowerCallTo(I, I.getCalledValue()->getType(),
1235              I.getCallingConv(),
1236              false,
1237              getValue(I.getOperand(0)),
1238              3, LandingPad);
1239
1240  // If the value of the invoke is used outside of its defining block, make it
1241  // available as a virtual register.
1242  if (!I.use_empty()) {
1243    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1244    if (VMI != FuncInfo.ValueMap.end())
1245      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1246  }
1247
1248  // Drop into normal successor.
1249  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1250                          DAG.getBasicBlock(Return)));
1251
1252  // Update successor info
1253  CurMBB->addSuccessor(Return);
1254  CurMBB->addSuccessor(LandingPad);
1255}
1256
1257void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1258}
1259
1260/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1261/// small case ranges).
1262bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1263                                                  CaseRecVector& WorkList,
1264                                                  Value* SV,
1265                                                  MachineBasicBlock* Default) {
1266  Case& BackCase  = *(CR.Range.second-1);
1267
1268  // Size is the number of Cases represented by this range.
1269  unsigned Size = CR.Range.second - CR.Range.first;
1270  if (Size > 3)
1271    return false;
1272
1273  // Get the MachineFunction which holds the current MBB.  This is used when
1274  // inserting any additional MBBs necessary to represent the switch.
1275  MachineFunction *CurMF = CurMBB->getParent();
1276
1277  // Figure out which block is immediately after the current one.
1278  MachineBasicBlock *NextBlock = 0;
1279  MachineFunction::iterator BBI = CR.CaseBB;
1280
1281  if (++BBI != CurMBB->getParent()->end())
1282    NextBlock = BBI;
1283
1284  // TODO: If any two of the cases has the same destination, and if one value
1285  // is the same as the other, but has one bit unset that the other has set,
1286  // use bit manipulation to do two compares at once.  For example:
1287  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1288
1289  // Rearrange the case blocks so that the last one falls through if possible.
1290  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1291    // The last case block won't fall through into 'NextBlock' if we emit the
1292    // branches in this order.  See if rearranging a case value would help.
1293    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1294      if (I->BB == NextBlock) {
1295        std::swap(*I, BackCase);
1296        break;
1297      }
1298    }
1299  }
1300
1301  // Create a CaseBlock record representing a conditional branch to
1302  // the Case's target mbb if the value being switched on SV is equal
1303  // to C.
1304  MachineBasicBlock *CurBlock = CR.CaseBB;
1305  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1306    MachineBasicBlock *FallThrough;
1307    if (I != E-1) {
1308      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1309      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1310    } else {
1311      // If the last case doesn't match, go to the default block.
1312      FallThrough = Default;
1313    }
1314
1315    Value *RHS, *LHS, *MHS;
1316    ISD::CondCode CC;
1317    if (I->High == I->Low) {
1318      // This is just small small case range :) containing exactly 1 case
1319      CC = ISD::SETEQ;
1320      LHS = SV; RHS = I->High; MHS = NULL;
1321    } else {
1322      CC = ISD::SETLE;
1323      LHS = I->Low; MHS = SV; RHS = I->High;
1324    }
1325    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1326                                   I->BB, FallThrough, CurBlock);
1327
1328    // If emitting the first comparison, just call visitSwitchCase to emit the
1329    // code into the current block.  Otherwise, push the CaseBlock onto the
1330    // vector to be later processed by SDISel, and insert the node's MBB
1331    // before the next MBB.
1332    if (CurBlock == CurMBB)
1333      visitSwitchCase(CB);
1334    else
1335      SwitchCases.push_back(CB);
1336
1337    CurBlock = FallThrough;
1338  }
1339
1340  return true;
1341}
1342
1343static inline bool areJTsAllowed(const TargetLowering &TLI) {
1344  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1345          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1346}
1347
1348/// handleJTSwitchCase - Emit jumptable for current switch case range
1349bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1350                                              CaseRecVector& WorkList,
1351                                              Value* SV,
1352                                              MachineBasicBlock* Default) {
1353  Case& FrontCase = *CR.Range.first;
1354  Case& BackCase  = *(CR.Range.second-1);
1355
1356  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1357  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1358
1359  uint64_t TSize = 0;
1360  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1361       I!=E; ++I)
1362    TSize += I->size();
1363
1364  if (!areJTsAllowed(TLI) || TSize <= 3)
1365    return false;
1366
1367  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1368  if (Density < 0.4)
1369    return false;
1370
1371  DOUT << "Lowering jump table\n"
1372       << "First entry: " << First << ". Last entry: " << Last << "\n"
1373       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1374
1375  // Get the MachineFunction which holds the current MBB.  This is used when
1376  // inserting any additional MBBs necessary to represent the switch.
1377  MachineFunction *CurMF = CurMBB->getParent();
1378
1379  // Figure out which block is immediately after the current one.
1380  MachineBasicBlock *NextBlock = 0;
1381  MachineFunction::iterator BBI = CR.CaseBB;
1382
1383  if (++BBI != CurMBB->getParent()->end())
1384    NextBlock = BBI;
1385
1386  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1387
1388  // Create a new basic block to hold the code for loading the address
1389  // of the jump table, and jumping to it.  Update successor information;
1390  // we will either branch to the default case for the switch, or the jump
1391  // table.
1392  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1393  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1394  CR.CaseBB->addSuccessor(Default);
1395  CR.CaseBB->addSuccessor(JumpTableBB);
1396
1397  // Build a vector of destination BBs, corresponding to each target
1398  // of the jump table. If the value of the jump table slot corresponds to
1399  // a case statement, push the case's BB onto the vector, otherwise, push
1400  // the default BB.
1401  std::vector<MachineBasicBlock*> DestBBs;
1402  int64_t TEI = First;
1403  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1404    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1405    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1406
1407    if ((Low <= TEI) && (TEI <= High)) {
1408      DestBBs.push_back(I->BB);
1409      if (TEI==High)
1410        ++I;
1411    } else {
1412      DestBBs.push_back(Default);
1413    }
1414  }
1415
1416  // Update successor info. Add one edge to each unique successor.
1417  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1418  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1419         E = DestBBs.end(); I != E; ++I) {
1420    if (!SuccsHandled[(*I)->getNumber()]) {
1421      SuccsHandled[(*I)->getNumber()] = true;
1422      JumpTableBB->addSuccessor(*I);
1423    }
1424  }
1425
1426  // Create a jump table index for this jump table, or return an existing
1427  // one.
1428  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1429
1430  // Set the jump table information so that we can codegen it as a second
1431  // MachineBasicBlock
1432  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1433  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1434                                        (CR.CaseBB == CurMBB));
1435  if (CR.CaseBB == CurMBB)
1436    visitJumpTableHeader(JT, JTH);
1437
1438  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1439
1440  return true;
1441}
1442
1443/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1444/// 2 subtrees.
1445bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1446                                                   CaseRecVector& WorkList,
1447                                                   Value* SV,
1448                                                   MachineBasicBlock* Default) {
1449  // Get the MachineFunction which holds the current MBB.  This is used when
1450  // inserting any additional MBBs necessary to represent the switch.
1451  MachineFunction *CurMF = CurMBB->getParent();
1452
1453  // Figure out which block is immediately after the current one.
1454  MachineBasicBlock *NextBlock = 0;
1455  MachineFunction::iterator BBI = CR.CaseBB;
1456
1457  if (++BBI != CurMBB->getParent()->end())
1458    NextBlock = BBI;
1459
1460  Case& FrontCase = *CR.Range.first;
1461  Case& BackCase  = *(CR.Range.second-1);
1462  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1463
1464  // Size is the number of Cases represented by this range.
1465  unsigned Size = CR.Range.second - CR.Range.first;
1466
1467  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1468  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1469  double FMetric = 0;
1470  CaseItr Pivot = CR.Range.first + Size/2;
1471
1472  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1473  // (heuristically) allow us to emit JumpTable's later.
1474  uint64_t TSize = 0;
1475  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1476       I!=E; ++I)
1477    TSize += I->size();
1478
1479  uint64_t LSize = FrontCase.size();
1480  uint64_t RSize = TSize-LSize;
1481  DOUT << "Selecting best pivot: \n"
1482       << "First: " << First << ", Last: " << Last <<"\n"
1483       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1484  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1485       J!=E; ++I, ++J) {
1486    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1487    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1488    assert((RBegin-LEnd>=1) && "Invalid case distance");
1489    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1490    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1491    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1492    // Should always split in some non-trivial place
1493    DOUT <<"=>Step\n"
1494         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1495         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1496         << "Metric: " << Metric << "\n";
1497    if (FMetric < Metric) {
1498      Pivot = J;
1499      FMetric = Metric;
1500      DOUT << "Current metric set to: " << FMetric << "\n";
1501    }
1502
1503    LSize += J->size();
1504    RSize -= J->size();
1505  }
1506  if (areJTsAllowed(TLI)) {
1507    // If our case is dense we *really* should handle it earlier!
1508    assert((FMetric > 0) && "Should handle dense range earlier!");
1509  } else {
1510    Pivot = CR.Range.first + Size/2;
1511  }
1512
1513  CaseRange LHSR(CR.Range.first, Pivot);
1514  CaseRange RHSR(Pivot, CR.Range.second);
1515  Constant *C = Pivot->Low;
1516  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1517
1518  // We know that we branch to the LHS if the Value being switched on is
1519  // less than the Pivot value, C.  We use this to optimize our binary
1520  // tree a bit, by recognizing that if SV is greater than or equal to the
1521  // LHS's Case Value, and that Case Value is exactly one less than the
1522  // Pivot's Value, then we can branch directly to the LHS's Target,
1523  // rather than creating a leaf node for it.
1524  if ((LHSR.second - LHSR.first) == 1 &&
1525      LHSR.first->High == CR.GE &&
1526      cast<ConstantInt>(C)->getSExtValue() ==
1527      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1528    TrueBB = LHSR.first->BB;
1529  } else {
1530    TrueBB = new MachineBasicBlock(LLVMBB);
1531    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1532    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1533  }
1534
1535  // Similar to the optimization above, if the Value being switched on is
1536  // known to be less than the Constant CR.LT, and the current Case Value
1537  // is CR.LT - 1, then we can branch directly to the target block for
1538  // the current Case Value, rather than emitting a RHS leaf node for it.
1539  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1540      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1541      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1542    FalseBB = RHSR.first->BB;
1543  } else {
1544    FalseBB = new MachineBasicBlock(LLVMBB);
1545    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1546    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1547  }
1548
1549  // Create a CaseBlock record representing a conditional branch to
1550  // the LHS node if the value being switched on SV is less than C.
1551  // Otherwise, branch to LHS.
1552  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1553                                 TrueBB, FalseBB, CR.CaseBB);
1554
1555  if (CR.CaseBB == CurMBB)
1556    visitSwitchCase(CB);
1557  else
1558    SwitchCases.push_back(CB);
1559
1560  return true;
1561}
1562
1563/// handleBitTestsSwitchCase - if current case range has few destination and
1564/// range span less, than machine word bitwidth, encode case range into series
1565/// of masks and emit bit tests with these masks.
1566bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1567                                                    CaseRecVector& WorkList,
1568                                                    Value* SV,
1569                                                    MachineBasicBlock* Default){
1570  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1571
1572  Case& FrontCase = *CR.Range.first;
1573  Case& BackCase  = *(CR.Range.second-1);
1574
1575  // Get the MachineFunction which holds the current MBB.  This is used when
1576  // inserting any additional MBBs necessary to represent the switch.
1577  MachineFunction *CurMF = CurMBB->getParent();
1578
1579  unsigned numCmps = 0;
1580  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1581       I!=E; ++I) {
1582    // Single case counts one, case range - two.
1583    if (I->Low == I->High)
1584      numCmps +=1;
1585    else
1586      numCmps +=2;
1587  }
1588
1589  // Count unique destinations
1590  SmallSet<MachineBasicBlock*, 4> Dests;
1591  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1592    Dests.insert(I->BB);
1593    if (Dests.size() > 3)
1594      // Don't bother the code below, if there are too much unique destinations
1595      return false;
1596  }
1597  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1598       << "Total number of comparisons: " << numCmps << "\n";
1599
1600  // Compute span of values.
1601  Constant* minValue = FrontCase.Low;
1602  Constant* maxValue = BackCase.High;
1603  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1604                   cast<ConstantInt>(minValue)->getSExtValue();
1605  DOUT << "Compare range: " << range << "\n"
1606       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1607       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1608
1609  if (range>=IntPtrBits ||
1610      (!(Dests.size() == 1 && numCmps >= 3) &&
1611       !(Dests.size() == 2 && numCmps >= 5) &&
1612       !(Dests.size() >= 3 && numCmps >= 6)))
1613    return false;
1614
1615  DOUT << "Emitting bit tests\n";
1616  int64_t lowBound = 0;
1617
1618  // Optimize the case where all the case values fit in a
1619  // word without having to subtract minValue. In this case,
1620  // we can optimize away the subtraction.
1621  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1622      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1623    range = cast<ConstantInt>(maxValue)->getSExtValue();
1624  } else {
1625    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1626  }
1627
1628  CaseBitsVector CasesBits;
1629  unsigned i, count = 0;
1630
1631  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1632    MachineBasicBlock* Dest = I->BB;
1633    for (i = 0; i < count; ++i)
1634      if (Dest == CasesBits[i].BB)
1635        break;
1636
1637    if (i == count) {
1638      assert((count < 3) && "Too much destinations to test!");
1639      CasesBits.push_back(CaseBits(0, Dest, 0));
1640      count++;
1641    }
1642
1643    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1644    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1645
1646    for (uint64_t j = lo; j <= hi; j++) {
1647      CasesBits[i].Mask |=  1ULL << j;
1648      CasesBits[i].Bits++;
1649    }
1650
1651  }
1652  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1653
1654  SelectionDAGISel::BitTestInfo BTC;
1655
1656  // Figure out which block is immediately after the current one.
1657  MachineFunction::iterator BBI = CR.CaseBB;
1658  ++BBI;
1659
1660  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1661
1662  DOUT << "Cases:\n";
1663  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1664    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1665         << ", BB: " << CasesBits[i].BB << "\n";
1666
1667    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1668    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1669    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1670                                                CaseBB,
1671                                                CasesBits[i].BB));
1672  }
1673
1674  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1675                                     -1U, (CR.CaseBB == CurMBB),
1676                                     CR.CaseBB, Default, BTC);
1677
1678  if (CR.CaseBB == CurMBB)
1679    visitBitTestHeader(BTB);
1680
1681  BitTestCases.push_back(BTB);
1682
1683  return true;
1684}
1685
1686
1687// Clusterify - Transform simple list of Cases into list of CaseRange's
1688unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1689                                          const SwitchInst& SI) {
1690  unsigned numCmps = 0;
1691
1692  // Start with "simple" cases
1693  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1694    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1695    Cases.push_back(Case(SI.getSuccessorValue(i),
1696                         SI.getSuccessorValue(i),
1697                         SMBB));
1698  }
1699  sort(Cases.begin(), Cases.end(), CaseCmp());
1700
1701  // Merge case into clusters
1702  if (Cases.size()>=2)
1703    // Must recompute end() each iteration because it may be
1704    // invalidated by erase if we hold on to it
1705    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
1706      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1707      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1708      MachineBasicBlock* nextBB = J->BB;
1709      MachineBasicBlock* currentBB = I->BB;
1710
1711      // If the two neighboring cases go to the same destination, merge them
1712      // into a single case.
1713      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1714        I->High = J->High;
1715        J = Cases.erase(J);
1716      } else {
1717        I = J++;
1718      }
1719    }
1720
1721  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1722    if (I->Low != I->High)
1723      // A range counts double, since it requires two compares.
1724      ++numCmps;
1725  }
1726
1727  return numCmps;
1728}
1729
1730void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1731  // Figure out which block is immediately after the current one.
1732  MachineBasicBlock *NextBlock = 0;
1733  MachineFunction::iterator BBI = CurMBB;
1734
1735  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1736
1737  // If there is only the default destination, branch to it if it is not the
1738  // next basic block.  Otherwise, just fall through.
1739  if (SI.getNumOperands() == 2) {
1740    // Update machine-CFG edges.
1741
1742    // If this is not a fall-through branch, emit the branch.
1743    if (Default != NextBlock)
1744      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1745                              DAG.getBasicBlock(Default)));
1746
1747    CurMBB->addSuccessor(Default);
1748    return;
1749  }
1750
1751  // If there are any non-default case statements, create a vector of Cases
1752  // representing each one, and sort the vector so that we can efficiently
1753  // create a binary search tree from them.
1754  CaseVector Cases;
1755  unsigned numCmps = Clusterify(Cases, SI);
1756  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1757       << ". Total compares: " << numCmps << "\n";
1758
1759  // Get the Value to be switched on and default basic blocks, which will be
1760  // inserted into CaseBlock records, representing basic blocks in the binary
1761  // search tree.
1762  Value *SV = SI.getOperand(0);
1763
1764  // Push the initial CaseRec onto the worklist
1765  CaseRecVector WorkList;
1766  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1767
1768  while (!WorkList.empty()) {
1769    // Grab a record representing a case range to process off the worklist
1770    CaseRec CR = WorkList.back();
1771    WorkList.pop_back();
1772
1773    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1774      continue;
1775
1776    // If the range has few cases (two or less) emit a series of specific
1777    // tests.
1778    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1779      continue;
1780
1781    // If the switch has more than 5 blocks, and at least 40% dense, and the
1782    // target supports indirect branches, then emit a jump table rather than
1783    // lowering the switch to a binary tree of conditional branches.
1784    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1785      continue;
1786
1787    // Emit binary tree. We need to pick a pivot, and push left and right ranges
1788    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
1789    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
1790  }
1791}
1792
1793
1794void SelectionDAGLowering::visitSub(User &I) {
1795  // -0.0 - X --> fneg
1796  const Type *Ty = I.getType();
1797  if (isa<VectorType>(Ty)) {
1798    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
1799      const VectorType *DestTy = cast<VectorType>(I.getType());
1800      const Type *ElTy = DestTy->getElementType();
1801      if (ElTy->isFloatingPoint()) {
1802        unsigned VL = DestTy->getNumElements();
1803        std::vector<Constant*> NZ(VL, ConstantFP::get(ElTy, -0.0));
1804        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
1805        if (CV == CNZ) {
1806          SDOperand Op2 = getValue(I.getOperand(1));
1807          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1808          return;
1809        }
1810      }
1811    }
1812  }
1813  if (Ty->isFloatingPoint()) {
1814    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1815      if (CFP->isExactlyValue(-0.0)) {
1816        SDOperand Op2 = getValue(I.getOperand(1));
1817        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1818        return;
1819      }
1820  }
1821
1822  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
1823}
1824
1825void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
1826  SDOperand Op1 = getValue(I.getOperand(0));
1827  SDOperand Op2 = getValue(I.getOperand(1));
1828
1829  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
1830}
1831
1832void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1833  SDOperand Op1 = getValue(I.getOperand(0));
1834  SDOperand Op2 = getValue(I.getOperand(1));
1835
1836  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
1837      MVT::getSizeInBits(Op2.getValueType()))
1838    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
1839  else if (TLI.getShiftAmountTy() > Op2.getValueType())
1840    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1841
1842  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1843}
1844
1845void SelectionDAGLowering::visitICmp(User &I) {
1846  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
1847  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
1848    predicate = IC->getPredicate();
1849  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
1850    predicate = ICmpInst::Predicate(IC->getPredicate());
1851  SDOperand Op1 = getValue(I.getOperand(0));
1852  SDOperand Op2 = getValue(I.getOperand(1));
1853  ISD::CondCode Opcode;
1854  switch (predicate) {
1855    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
1856    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
1857    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
1858    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
1859    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
1860    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
1861    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
1862    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
1863    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
1864    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
1865    default:
1866      assert(!"Invalid ICmp predicate value");
1867      Opcode = ISD::SETEQ;
1868      break;
1869  }
1870  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1871}
1872
1873void SelectionDAGLowering::visitFCmp(User &I) {
1874  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
1875  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
1876    predicate = FC->getPredicate();
1877  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
1878    predicate = FCmpInst::Predicate(FC->getPredicate());
1879  SDOperand Op1 = getValue(I.getOperand(0));
1880  SDOperand Op2 = getValue(I.getOperand(1));
1881  ISD::CondCode Condition, FOC, FPC;
1882  switch (predicate) {
1883    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1884    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1885    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1886    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1887    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1888    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1889    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1890    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1891    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1892    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1893    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1894    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1895    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1896    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1897    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1898    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1899    default:
1900      assert(!"Invalid FCmp predicate value");
1901      FOC = FPC = ISD::SETFALSE;
1902      break;
1903  }
1904  if (FiniteOnlyFPMath())
1905    Condition = FOC;
1906  else
1907    Condition = FPC;
1908  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
1909}
1910
1911void SelectionDAGLowering::visitSelect(User &I) {
1912  SDOperand Cond     = getValue(I.getOperand(0));
1913  SDOperand TrueVal  = getValue(I.getOperand(1));
1914  SDOperand FalseVal = getValue(I.getOperand(2));
1915  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1916                           TrueVal, FalseVal));
1917}
1918
1919
1920void SelectionDAGLowering::visitTrunc(User &I) {
1921  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
1922  SDOperand N = getValue(I.getOperand(0));
1923  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1924  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1925}
1926
1927void SelectionDAGLowering::visitZExt(User &I) {
1928  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1929  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
1930  SDOperand N = getValue(I.getOperand(0));
1931  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1932  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1933}
1934
1935void SelectionDAGLowering::visitSExt(User &I) {
1936  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1937  // SExt also can't be a cast to bool for same reason. So, nothing much to do
1938  SDOperand N = getValue(I.getOperand(0));
1939  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1940  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1941}
1942
1943void SelectionDAGLowering::visitFPTrunc(User &I) {
1944  // FPTrunc is never a no-op cast, no need to check
1945  SDOperand N = getValue(I.getOperand(0));
1946  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1947  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1948}
1949
1950void SelectionDAGLowering::visitFPExt(User &I){
1951  // FPTrunc is never a no-op cast, no need to check
1952  SDOperand N = getValue(I.getOperand(0));
1953  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1954  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1955}
1956
1957void SelectionDAGLowering::visitFPToUI(User &I) {
1958  // FPToUI is never a no-op cast, no need to check
1959  SDOperand N = getValue(I.getOperand(0));
1960  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1961  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1962}
1963
1964void SelectionDAGLowering::visitFPToSI(User &I) {
1965  // FPToSI is never a no-op cast, no need to check
1966  SDOperand N = getValue(I.getOperand(0));
1967  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1968  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1969}
1970
1971void SelectionDAGLowering::visitUIToFP(User &I) {
1972  // UIToFP is never a no-op cast, no need to check
1973  SDOperand N = getValue(I.getOperand(0));
1974  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1975  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1976}
1977
1978void SelectionDAGLowering::visitSIToFP(User &I){
1979  // UIToFP is never a no-op cast, no need to check
1980  SDOperand N = getValue(I.getOperand(0));
1981  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1982  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1983}
1984
1985void SelectionDAGLowering::visitPtrToInt(User &I) {
1986  // What to do depends on the size of the integer and the size of the pointer.
1987  // We can either truncate, zero extend, or no-op, accordingly.
1988  SDOperand N = getValue(I.getOperand(0));
1989  MVT::ValueType SrcVT = N.getValueType();
1990  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1991  SDOperand Result;
1992  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1993    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
1994  else
1995    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1996    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
1997  setValue(&I, Result);
1998}
1999
2000void SelectionDAGLowering::visitIntToPtr(User &I) {
2001  // What to do depends on the size of the integer and the size of the pointer.
2002  // We can either truncate, zero extend, or no-op, accordingly.
2003  SDOperand N = getValue(I.getOperand(0));
2004  MVT::ValueType SrcVT = N.getValueType();
2005  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2006  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2007    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2008  else
2009    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2010    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2011}
2012
2013void SelectionDAGLowering::visitBitCast(User &I) {
2014  SDOperand N = getValue(I.getOperand(0));
2015  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2016
2017  // BitCast assures us that source and destination are the same size so this
2018  // is either a BIT_CONVERT or a no-op.
2019  if (DestVT != N.getValueType())
2020    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2021  else
2022    setValue(&I, N); // noop cast.
2023}
2024
2025void SelectionDAGLowering::visitInsertElement(User &I) {
2026  SDOperand InVec = getValue(I.getOperand(0));
2027  SDOperand InVal = getValue(I.getOperand(1));
2028  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2029                                getValue(I.getOperand(2)));
2030
2031  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2032                           TLI.getValueType(I.getType()),
2033                           InVec, InVal, InIdx));
2034}
2035
2036void SelectionDAGLowering::visitExtractElement(User &I) {
2037  SDOperand InVec = getValue(I.getOperand(0));
2038  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2039                                getValue(I.getOperand(1)));
2040  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2041                           TLI.getValueType(I.getType()), InVec, InIdx));
2042}
2043
2044void SelectionDAGLowering::visitShuffleVector(User &I) {
2045  SDOperand V1   = getValue(I.getOperand(0));
2046  SDOperand V2   = getValue(I.getOperand(1));
2047  SDOperand Mask = getValue(I.getOperand(2));
2048
2049  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2050                           TLI.getValueType(I.getType()),
2051                           V1, V2, Mask));
2052}
2053
2054
2055void SelectionDAGLowering::visitGetElementPtr(User &I) {
2056  SDOperand N = getValue(I.getOperand(0));
2057  const Type *Ty = I.getOperand(0)->getType();
2058
2059  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2060       OI != E; ++OI) {
2061    Value *Idx = *OI;
2062    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2063      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2064      if (Field) {
2065        // N = N + Offset
2066        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2067        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2068                        getIntPtrConstant(Offset));
2069      }
2070      Ty = StTy->getElementType(Field);
2071    } else {
2072      Ty = cast<SequentialType>(Ty)->getElementType();
2073
2074      // If this is a constant subscript, handle it quickly.
2075      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2076        if (CI->getZExtValue() == 0) continue;
2077        uint64_t Offs =
2078            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2079        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2080        continue;
2081      }
2082
2083      // N = N + Idx * ElementSize;
2084      uint64_t ElementSize = TD->getTypeSize(Ty);
2085      SDOperand IdxN = getValue(Idx);
2086
2087      // If the index is smaller or larger than intptr_t, truncate or extend
2088      // it.
2089      if (IdxN.getValueType() < N.getValueType()) {
2090        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2091      } else if (IdxN.getValueType() > N.getValueType())
2092        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2093
2094      // If this is a multiply by a power of two, turn it into a shl
2095      // immediately.  This is a very common case.
2096      if (isPowerOf2_64(ElementSize)) {
2097        unsigned Amt = Log2_64(ElementSize);
2098        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2099                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2100        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2101        continue;
2102      }
2103
2104      SDOperand Scale = getIntPtrConstant(ElementSize);
2105      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2106      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2107    }
2108  }
2109  setValue(&I, N);
2110}
2111
2112void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2113  // If this is a fixed sized alloca in the entry block of the function,
2114  // allocate it statically on the stack.
2115  if (FuncInfo.StaticAllocaMap.count(&I))
2116    return;   // getValue will auto-populate this.
2117
2118  const Type *Ty = I.getAllocatedType();
2119  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
2120  unsigned Align =
2121    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2122             I.getAlignment());
2123
2124  SDOperand AllocSize = getValue(I.getArraySize());
2125  MVT::ValueType IntPtr = TLI.getPointerTy();
2126  if (IntPtr < AllocSize.getValueType())
2127    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2128  else if (IntPtr > AllocSize.getValueType())
2129    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2130
2131  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2132                          getIntPtrConstant(TySize));
2133
2134  // Handle alignment.  If the requested alignment is less than or equal to the
2135  // stack alignment, ignore it and round the size of the allocation up to the
2136  // stack alignment size.  If the size is greater than the stack alignment, we
2137  // note this in the DYNAMIC_STACKALLOC node.
2138  unsigned StackAlign =
2139    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2140  if (Align <= StackAlign) {
2141    Align = 0;
2142    // Add SA-1 to the size.
2143    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2144                            getIntPtrConstant(StackAlign-1));
2145    // Mask out the low bits for alignment purposes.
2146    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2147                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2148  }
2149
2150  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2151  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2152                                                    MVT::Other);
2153  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2154  setValue(&I, DSA);
2155  DAG.setRoot(DSA.getValue(1));
2156
2157  // Inform the Frame Information that we have just allocated a variable-sized
2158  // object.
2159  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2160}
2161
2162void SelectionDAGLowering::visitLoad(LoadInst &I) {
2163  SDOperand Ptr = getValue(I.getOperand(0));
2164
2165  SDOperand Root;
2166  if (I.isVolatile())
2167    Root = getRoot();
2168  else {
2169    // Do not serialize non-volatile loads against each other.
2170    Root = DAG.getRoot();
2171  }
2172
2173  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2174                           Root, I.isVolatile(), I.getAlignment()));
2175}
2176
2177SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2178                                            const Value *SV, SDOperand Root,
2179                                            bool isVolatile,
2180                                            unsigned Alignment) {
2181  SDOperand L =
2182    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2183                isVolatile, Alignment);
2184
2185  if (isVolatile)
2186    DAG.setRoot(L.getValue(1));
2187  else
2188    PendingLoads.push_back(L.getValue(1));
2189
2190  return L;
2191}
2192
2193
2194void SelectionDAGLowering::visitStore(StoreInst &I) {
2195  Value *SrcV = I.getOperand(0);
2196  SDOperand Src = getValue(SrcV);
2197  SDOperand Ptr = getValue(I.getOperand(1));
2198  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2199                           I.isVolatile(), I.getAlignment()));
2200}
2201
2202/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2203/// access memory and has no other side effects at all.
2204static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2205#define GET_NO_MEMORY_INTRINSICS
2206#include "llvm/Intrinsics.gen"
2207#undef GET_NO_MEMORY_INTRINSICS
2208  return false;
2209}
2210
2211// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2212// have any side-effects or if it only reads memory.
2213static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2214#define GET_SIDE_EFFECT_INFO
2215#include "llvm/Intrinsics.gen"
2216#undef GET_SIDE_EFFECT_INFO
2217  return false;
2218}
2219
2220/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2221/// node.
2222void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2223                                                unsigned Intrinsic) {
2224  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2225  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2226
2227  // Build the operand list.
2228  SmallVector<SDOperand, 8> Ops;
2229  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2230    if (OnlyLoad) {
2231      // We don't need to serialize loads against other loads.
2232      Ops.push_back(DAG.getRoot());
2233    } else {
2234      Ops.push_back(getRoot());
2235    }
2236  }
2237
2238  // Add the intrinsic ID as an integer operand.
2239  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2240
2241  // Add all operands of the call to the operand list.
2242  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2243    SDOperand Op = getValue(I.getOperand(i));
2244    assert(TLI.isTypeLegal(Op.getValueType()) &&
2245           "Intrinsic uses a non-legal type?");
2246    Ops.push_back(Op);
2247  }
2248
2249  std::vector<MVT::ValueType> VTs;
2250  if (I.getType() != Type::VoidTy) {
2251    MVT::ValueType VT = TLI.getValueType(I.getType());
2252    if (MVT::isVector(VT)) {
2253      const VectorType *DestTy = cast<VectorType>(I.getType());
2254      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2255
2256      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2257      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2258    }
2259
2260    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2261    VTs.push_back(VT);
2262  }
2263  if (HasChain)
2264    VTs.push_back(MVT::Other);
2265
2266  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2267
2268  // Create the node.
2269  SDOperand Result;
2270  if (!HasChain)
2271    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2272                         &Ops[0], Ops.size());
2273  else if (I.getType() != Type::VoidTy)
2274    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2275                         &Ops[0], Ops.size());
2276  else
2277    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2278                         &Ops[0], Ops.size());
2279
2280  if (HasChain) {
2281    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2282    if (OnlyLoad)
2283      PendingLoads.push_back(Chain);
2284    else
2285      DAG.setRoot(Chain);
2286  }
2287  if (I.getType() != Type::VoidTy) {
2288    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2289      MVT::ValueType VT = TLI.getValueType(PTy);
2290      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2291    }
2292    setValue(&I, Result);
2293  }
2294}
2295
2296/// ExtractGlobalVariable - If C is a global variable, or a bitcast of one
2297/// (possibly constant folded), return it.  Otherwise return NULL.
2298static GlobalVariable *ExtractGlobalVariable (Constant *C) {
2299  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2300    return GV;
2301  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2302    if (CE->getOpcode() == Instruction::BitCast)
2303      return dyn_cast<GlobalVariable>(CE->getOperand(0));
2304    else if (CE->getOpcode() == Instruction::GetElementPtr) {
2305      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2306        if (!CE->getOperand(i)->isNullValue())
2307          return NULL;
2308      return dyn_cast<GlobalVariable>(CE->getOperand(0));
2309    }
2310  }
2311  return NULL;
2312}
2313
2314/// addCatchInfo - Extract the personality and type infos from an eh.selector
2315/// or eh.filter call, and add them to the specified machine basic block.
2316static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2317                         MachineBasicBlock *MBB) {
2318  // Inform the MachineModuleInfo of the personality for this landing pad.
2319  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2320  assert(CE->getOpcode() == Instruction::BitCast &&
2321         isa<Function>(CE->getOperand(0)) &&
2322         "Personality should be a function");
2323  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2324
2325  // Gather all the type infos for this landing pad and pass them along to
2326  // MachineModuleInfo.
2327  std::vector<GlobalVariable *> TyInfo;
2328  for (unsigned i = 3, N = I.getNumOperands(); i < N; ++i) {
2329    Constant *C = cast<Constant>(I.getOperand(i));
2330    GlobalVariable *GV = ExtractGlobalVariable(C);
2331    assert (GV || isa<ConstantPointerNull>(C) &&
2332            "TypeInfo must be a global variable or NULL");
2333    TyInfo.push_back(GV);
2334  }
2335  if (I.getCalledFunction()->getIntrinsicID() == Intrinsic::eh_filter)
2336    MMI->addFilterTypeInfo(MBB, TyInfo);
2337  else
2338    MMI->addCatchTypeInfo(MBB, TyInfo);
2339}
2340
2341/// propagateEHRegister - The specified EH register is required in a successor
2342/// of the EH landing pad. Propagate it (by adding it to livein) to all the
2343/// blocks in the paths between the landing pad and the specified block.
2344static void propagateEHRegister(MachineBasicBlock *MBB, unsigned EHReg,
2345                                SmallPtrSet<MachineBasicBlock*, 8> Visited) {
2346  if (MBB->isLandingPad() || !Visited.insert(MBB))
2347    return;
2348
2349  MBB->addLiveIn(EHReg);
2350  for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
2351         E = MBB->pred_end(); PI != E; ++PI)
2352    propagateEHRegister(*PI, EHReg, Visited);
2353}
2354
2355static void propagateEHRegister(MachineBasicBlock *MBB, unsigned EHReg) {
2356  SmallPtrSet<MachineBasicBlock*, 8> Visited;
2357  propagateEHRegister(MBB, EHReg, Visited);
2358}
2359
2360/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2361/// we want to emit this as a call to a named external function, return the name
2362/// otherwise lower it and return null.
2363const char *
2364SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2365  switch (Intrinsic) {
2366  default:
2367    // By default, turn this into a target intrinsic node.
2368    visitTargetIntrinsic(I, Intrinsic);
2369    return 0;
2370  case Intrinsic::vastart:  visitVAStart(I); return 0;
2371  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2372  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2373  case Intrinsic::returnaddress:
2374    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2375                             getValue(I.getOperand(1))));
2376    return 0;
2377  case Intrinsic::frameaddress:
2378    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2379                             getValue(I.getOperand(1))));
2380    return 0;
2381  case Intrinsic::setjmp:
2382    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2383    break;
2384  case Intrinsic::longjmp:
2385    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2386    break;
2387  case Intrinsic::memcpy_i32:
2388  case Intrinsic::memcpy_i64:
2389    visitMemIntrinsic(I, ISD::MEMCPY);
2390    return 0;
2391  case Intrinsic::memset_i32:
2392  case Intrinsic::memset_i64:
2393    visitMemIntrinsic(I, ISD::MEMSET);
2394    return 0;
2395  case Intrinsic::memmove_i32:
2396  case Intrinsic::memmove_i64:
2397    visitMemIntrinsic(I, ISD::MEMMOVE);
2398    return 0;
2399
2400  case Intrinsic::dbg_stoppoint: {
2401    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2402    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2403    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2404      SDOperand Ops[5];
2405
2406      Ops[0] = getRoot();
2407      Ops[1] = getValue(SPI.getLineValue());
2408      Ops[2] = getValue(SPI.getColumnValue());
2409
2410      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2411      assert(DD && "Not a debug information descriptor");
2412      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2413
2414      Ops[3] = DAG.getString(CompileUnit->getFileName());
2415      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2416
2417      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2418    }
2419
2420    return 0;
2421  }
2422  case Intrinsic::dbg_region_start: {
2423    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2424    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2425    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2426      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2427      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2428                              DAG.getConstant(LabelID, MVT::i32)));
2429    }
2430
2431    return 0;
2432  }
2433  case Intrinsic::dbg_region_end: {
2434    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2435    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2436    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2437      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2438      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2439                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2440    }
2441
2442    return 0;
2443  }
2444  case Intrinsic::dbg_func_start: {
2445    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2446    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2447    if (MMI && FSI.getSubprogram() &&
2448        MMI->Verify(FSI.getSubprogram())) {
2449      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2450      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2451                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2452    }
2453
2454    return 0;
2455  }
2456  case Intrinsic::dbg_declare: {
2457    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2458    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2459    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2460      SDOperand AddressOp  = getValue(DI.getAddress());
2461      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2462        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2463    }
2464
2465    return 0;
2466  }
2467
2468  case Intrinsic::eh_exception: {
2469    if (ExceptionHandling) {
2470      if (!CurMBB->isLandingPad() && TLI.getExceptionAddressRegister())
2471          propagateEHRegister(CurMBB, TLI.getExceptionAddressRegister());
2472
2473      // Insert the EXCEPTIONADDR instruction.
2474      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2475      SDOperand Ops[1];
2476      Ops[0] = DAG.getRoot();
2477      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2478      setValue(&I, Op);
2479      DAG.setRoot(Op.getValue(1));
2480    } else {
2481      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2482    }
2483    return 0;
2484  }
2485
2486  case Intrinsic::eh_selector:
2487  case Intrinsic::eh_filter:{
2488    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2489
2490    if (ExceptionHandling && MMI) {
2491      if (CurMBB->isLandingPad())
2492        addCatchInfo(I, MMI, CurMBB);
2493      else {
2494#ifndef NDEBUG
2495        FuncInfo.CatchInfoLost.insert(&I);
2496#endif
2497        if (TLI.getExceptionSelectorRegister())
2498          propagateEHRegister(CurMBB, TLI.getExceptionSelectorRegister());
2499      }
2500
2501      // Insert the EHSELECTION instruction.
2502      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2503      SDOperand Ops[2];
2504      Ops[0] = getValue(I.getOperand(1));
2505      Ops[1] = getRoot();
2506      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2507      setValue(&I, Op);
2508      DAG.setRoot(Op.getValue(1));
2509    } else {
2510      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2511    }
2512
2513    return 0;
2514  }
2515
2516  case Intrinsic::eh_typeid_for: {
2517    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2518
2519    if (MMI) {
2520      // Find the type id for the given typeinfo.
2521      Constant *C = cast<Constant>(I.getOperand(1));
2522      GlobalVariable *GV = ExtractGlobalVariable(C);
2523      assert (GV || isa<ConstantPointerNull>(C) &&
2524              "TypeInfo must be a global variable or NULL");
2525
2526      unsigned TypeID = MMI->getTypeIDFor(GV);
2527      setValue(&I, DAG.getConstant(TypeID, MVT::i32));
2528    } else {
2529      setValue(&I, DAG.getConstant(0, MVT::i32));
2530    }
2531
2532    return 0;
2533  }
2534
2535  case Intrinsic::sqrt_f32:
2536  case Intrinsic::sqrt_f64:
2537    setValue(&I, DAG.getNode(ISD::FSQRT,
2538                             getValue(I.getOperand(1)).getValueType(),
2539                             getValue(I.getOperand(1))));
2540    return 0;
2541  case Intrinsic::powi_f32:
2542  case Intrinsic::powi_f64:
2543    setValue(&I, DAG.getNode(ISD::FPOWI,
2544                             getValue(I.getOperand(1)).getValueType(),
2545                             getValue(I.getOperand(1)),
2546                             getValue(I.getOperand(2))));
2547    return 0;
2548  case Intrinsic::pcmarker: {
2549    SDOperand Tmp = getValue(I.getOperand(1));
2550    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2551    return 0;
2552  }
2553  case Intrinsic::readcyclecounter: {
2554    SDOperand Op = getRoot();
2555    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2556                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2557                                &Op, 1);
2558    setValue(&I, Tmp);
2559    DAG.setRoot(Tmp.getValue(1));
2560    return 0;
2561  }
2562  case Intrinsic::part_select: {
2563    // Currently not implemented: just abort
2564    assert(0 && "part_select intrinsic not implemented");
2565    abort();
2566  }
2567  case Intrinsic::part_set: {
2568    // Currently not implemented: just abort
2569    assert(0 && "part_set intrinsic not implemented");
2570    abort();
2571  }
2572  case Intrinsic::bswap:
2573    setValue(&I, DAG.getNode(ISD::BSWAP,
2574                             getValue(I.getOperand(1)).getValueType(),
2575                             getValue(I.getOperand(1))));
2576    return 0;
2577  case Intrinsic::cttz: {
2578    SDOperand Arg = getValue(I.getOperand(1));
2579    MVT::ValueType Ty = Arg.getValueType();
2580    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2581    if (Ty < MVT::i32)
2582      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2583    else if (Ty > MVT::i32)
2584      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2585    setValue(&I, result);
2586    return 0;
2587  }
2588  case Intrinsic::ctlz: {
2589    SDOperand Arg = getValue(I.getOperand(1));
2590    MVT::ValueType Ty = Arg.getValueType();
2591    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2592    if (Ty < MVT::i32)
2593      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2594    else if (Ty > MVT::i32)
2595      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2596    setValue(&I, result);
2597    return 0;
2598  }
2599  case Intrinsic::ctpop: {
2600    SDOperand Arg = getValue(I.getOperand(1));
2601    MVT::ValueType Ty = Arg.getValueType();
2602    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2603    if (Ty < MVT::i32)
2604      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2605    else if (Ty > MVT::i32)
2606      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2607    setValue(&I, result);
2608    return 0;
2609  }
2610  case Intrinsic::stacksave: {
2611    SDOperand Op = getRoot();
2612    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2613              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2614    setValue(&I, Tmp);
2615    DAG.setRoot(Tmp.getValue(1));
2616    return 0;
2617  }
2618  case Intrinsic::stackrestore: {
2619    SDOperand Tmp = getValue(I.getOperand(1));
2620    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2621    return 0;
2622  }
2623  case Intrinsic::prefetch:
2624    // FIXME: Currently discarding prefetches.
2625    return 0;
2626
2627  case Intrinsic::var_annotation:
2628    // Discard annotate attributes
2629    return 0;
2630  }
2631}
2632
2633
2634void SelectionDAGLowering::LowerCallTo(Instruction &I,
2635                                       const Type *CalledValueTy,
2636                                       unsigned CallingConv,
2637                                       bool IsTailCall,
2638                                       SDOperand Callee, unsigned OpIdx,
2639                                       MachineBasicBlock *LandingPad) {
2640  const PointerType *PT = cast<PointerType>(CalledValueTy);
2641  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2642  const ParamAttrsList *Attrs = FTy->getParamAttrs();
2643  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2644  unsigned BeginLabel = 0, EndLabel = 0;
2645
2646  TargetLowering::ArgListTy Args;
2647  TargetLowering::ArgListEntry Entry;
2648  Args.reserve(I.getNumOperands());
2649  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2650    Value *Arg = I.getOperand(i);
2651    SDOperand ArgNode = getValue(Arg);
2652    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2653
2654    unsigned attrInd = i - OpIdx + 1;
2655    Entry.isSExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
2656    Entry.isZExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
2657    Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
2658    Entry.isSRet  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
2659    Args.push_back(Entry);
2660  }
2661
2662  if (ExceptionHandling && MMI) {
2663    // Insert a label before the invoke call to mark the try range.  This can be
2664    // used to detect deletion of the invoke via the MachineModuleInfo.
2665    BeginLabel = MMI->NextLabelID();
2666    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2667                            DAG.getConstant(BeginLabel, MVT::i32)));
2668  }
2669
2670  std::pair<SDOperand,SDOperand> Result =
2671    TLI.LowerCallTo(getRoot(), I.getType(),
2672                    Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2673                    FTy->isVarArg(), CallingConv, IsTailCall,
2674                    Callee, Args, DAG);
2675  if (I.getType() != Type::VoidTy)
2676    setValue(&I, Result.first);
2677  DAG.setRoot(Result.second);
2678
2679  if (ExceptionHandling && MMI) {
2680    // Insert a label at the end of the invoke call to mark the try range.  This
2681    // can be used to detect deletion of the invoke via the MachineModuleInfo.
2682    EndLabel = MMI->NextLabelID();
2683    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2684                            DAG.getConstant(EndLabel, MVT::i32)));
2685
2686    // Inform MachineModuleInfo of range.
2687    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2688  }
2689}
2690
2691
2692void SelectionDAGLowering::visitCall(CallInst &I) {
2693  const char *RenameFn = 0;
2694  if (Function *F = I.getCalledFunction()) {
2695    if (F->isDeclaration())
2696      if (unsigned IID = F->getIntrinsicID()) {
2697        RenameFn = visitIntrinsicCall(I, IID);
2698        if (!RenameFn)
2699          return;
2700      } else {    // Not an LLVM intrinsic.
2701        const std::string &Name = F->getName();
2702        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2703          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2704              I.getOperand(1)->getType()->isFloatingPoint() &&
2705              I.getType() == I.getOperand(1)->getType() &&
2706              I.getType() == I.getOperand(2)->getType()) {
2707            SDOperand LHS = getValue(I.getOperand(1));
2708            SDOperand RHS = getValue(I.getOperand(2));
2709            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2710                                     LHS, RHS));
2711            return;
2712          }
2713        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2714          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2715              I.getOperand(1)->getType()->isFloatingPoint() &&
2716              I.getType() == I.getOperand(1)->getType()) {
2717            SDOperand Tmp = getValue(I.getOperand(1));
2718            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2719            return;
2720          }
2721        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2722          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2723              I.getOperand(1)->getType()->isFloatingPoint() &&
2724              I.getType() == I.getOperand(1)->getType()) {
2725            SDOperand Tmp = getValue(I.getOperand(1));
2726            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2727            return;
2728          }
2729        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2730          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2731              I.getOperand(1)->getType()->isFloatingPoint() &&
2732              I.getType() == I.getOperand(1)->getType()) {
2733            SDOperand Tmp = getValue(I.getOperand(1));
2734            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2735            return;
2736          }
2737        }
2738      }
2739  } else if (isa<InlineAsm>(I.getOperand(0))) {
2740    visitInlineAsm(I);
2741    return;
2742  }
2743
2744  SDOperand Callee;
2745  if (!RenameFn)
2746    Callee = getValue(I.getOperand(0));
2747  else
2748    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2749
2750  LowerCallTo(I, I.getCalledValue()->getType(),
2751              I.getCallingConv(),
2752              I.isTailCall(),
2753              Callee,
2754              1);
2755}
2756
2757
2758/// getCopyFromParts - Create a value that contains the
2759/// specified legal parts combined into the value they represent.
2760static SDOperand getCopyFromParts(SelectionDAG &DAG,
2761                                  const SDOperand *Parts,
2762                                  unsigned NumParts,
2763                                  MVT::ValueType PartVT,
2764                                  MVT::ValueType ValueVT,
2765                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
2766  if (!MVT::isVector(ValueVT) || NumParts == 1) {
2767    SDOperand Val = Parts[0];
2768
2769    // If the value was expanded, copy from the top part.
2770    if (NumParts > 1) {
2771      assert(NumParts == 2 &&
2772             "Cannot expand to more than 2 elts yet!");
2773      SDOperand Hi = Parts[1];
2774      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
2775    }
2776
2777    // Otherwise, if the value was promoted or extended, truncate it to the
2778    // appropriate type.
2779    if (PartVT == ValueVT)
2780      return Val;
2781
2782    if (MVT::isVector(PartVT)) {
2783      assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
2784      return DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
2785    }
2786
2787    if (MVT::isInteger(PartVT) &&
2788        MVT::isInteger(ValueVT)) {
2789      if (ValueVT < PartVT) {
2790        // For a truncate, see if we have any information to
2791        // indicate whether the truncated bits will always be
2792        // zero or sign-extension.
2793        if (AssertOp != ISD::DELETED_NODE)
2794          Val = DAG.getNode(AssertOp, PartVT, Val,
2795                            DAG.getValueType(ValueVT));
2796        return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
2797      } else {
2798        return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
2799      }
2800    }
2801
2802    if (MVT::isFloatingPoint(PartVT) &&
2803        MVT::isFloatingPoint(ValueVT))
2804      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
2805
2806    if (MVT::getSizeInBits(PartVT) ==
2807        MVT::getSizeInBits(ValueVT))
2808      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
2809
2810    assert(0 && "Unknown mismatch!");
2811  }
2812
2813  // Handle a multi-element vector.
2814  MVT::ValueType IntermediateVT, RegisterVT;
2815  unsigned NumIntermediates;
2816  unsigned NumRegs =
2817    DAG.getTargetLoweringInfo()
2818      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
2819                              RegisterVT);
2820
2821  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
2822  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
2823  assert(RegisterVT == Parts[0].getValueType() &&
2824         "Part type doesn't match part!");
2825
2826  // Assemble the parts into intermediate operands.
2827  SmallVector<SDOperand, 8> Ops(NumIntermediates);
2828  if (NumIntermediates == NumParts) {
2829    // If the register was not expanded, truncate or copy the value,
2830    // as appropriate.
2831    for (unsigned i = 0; i != NumParts; ++i)
2832      Ops[i] = getCopyFromParts(DAG, &Parts[i], 1, PartVT, IntermediateVT);
2833  } else if (NumParts > 0) {
2834    // If the intermediate type was expanded, build the intermediate operands
2835    // from the parts.
2836    assert(NumIntermediates % NumParts == 0 &&
2837           "Must expand into a divisible number of parts!");
2838    unsigned Factor = NumIntermediates / NumParts;
2839    for (unsigned i = 0; i != NumIntermediates; ++i)
2840      Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
2841                                PartVT, IntermediateVT);
2842  }
2843
2844  // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
2845  // operands.
2846  return DAG.getNode(MVT::isVector(IntermediateVT) ?
2847                       ISD::CONCAT_VECTORS :
2848                       ISD::BUILD_VECTOR,
2849                     ValueVT, &Ops[0], NumParts);
2850}
2851
2852/// getCopyToParts - Create a series of nodes that contain the
2853/// specified value split into legal parts.
2854static void getCopyToParts(SelectionDAG &DAG,
2855                           SDOperand Val,
2856                           SDOperand *Parts,
2857                           unsigned NumParts,
2858                           MVT::ValueType PartVT) {
2859  MVT::ValueType ValueVT = Val.getValueType();
2860
2861  if (!MVT::isVector(ValueVT) || NumParts == 1) {
2862    // If the value was expanded, copy from the parts.
2863    if (NumParts > 1) {
2864      for (unsigned i = 0; i != NumParts; ++i)
2865        Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
2866                               DAG.getConstant(i, MVT::i32));
2867      return;
2868    }
2869
2870    // If there is a single part and the types differ, this must be
2871    // a promotion.
2872    if (PartVT != ValueVT) {
2873      if (MVT::isVector(PartVT)) {
2874        assert(MVT::isVector(ValueVT) &&
2875               "Not a vector-vector cast?");
2876        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
2877      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
2878        if (PartVT < ValueVT)
2879          Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
2880        else
2881          Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
2882      } else if (MVT::isFloatingPoint(PartVT) &&
2883                 MVT::isFloatingPoint(ValueVT)) {
2884        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
2885      } else if (MVT::getSizeInBits(PartVT) ==
2886                 MVT::getSizeInBits(ValueVT)) {
2887        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
2888      } else {
2889        assert(0 && "Unknown mismatch!");
2890      }
2891    }
2892    Parts[0] = Val;
2893    return;
2894  }
2895
2896  // Handle a multi-element vector.
2897  MVT::ValueType IntermediateVT, RegisterVT;
2898  unsigned NumIntermediates;
2899  unsigned NumRegs =
2900    DAG.getTargetLoweringInfo()
2901      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
2902                              RegisterVT);
2903  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
2904
2905  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
2906  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
2907
2908  // Split the vector into intermediate operands.
2909  SmallVector<SDOperand, 8> Ops(NumIntermediates);
2910  for (unsigned i = 0; i != NumIntermediates; ++i)
2911    if (MVT::isVector(IntermediateVT))
2912      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
2913                           IntermediateVT, Val,
2914                           DAG.getConstant(i * (NumElements / NumIntermediates),
2915                                           MVT::i32));
2916    else
2917      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2918                           IntermediateVT, Val,
2919                           DAG.getConstant(i, MVT::i32));
2920
2921  // Split the intermediate operands into legal parts.
2922  if (NumParts == NumIntermediates) {
2923    // If the register was not expanded, promote or copy the value,
2924    // as appropriate.
2925    for (unsigned i = 0; i != NumParts; ++i)
2926      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
2927  } else if (NumParts > 0) {
2928    // If the intermediate type was expanded, split each the value into
2929    // legal parts.
2930    assert(NumParts % NumIntermediates == 0 &&
2931           "Must expand into a divisible number of parts!");
2932    unsigned Factor = NumParts / NumIntermediates;
2933    for (unsigned i = 0; i != NumIntermediates; ++i)
2934      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
2935  }
2936}
2937
2938
2939/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
2940/// this value and returns the result as a ValueVT value.  This uses
2941/// Chain/Flag as the input and updates them for the output Chain/Flag.
2942/// If the Flag pointer is NULL, no flag is used.
2943SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2944                                        SDOperand &Chain, SDOperand *Flag)const{
2945  // Get the list of registers, in the appropriate order.
2946  std::vector<unsigned> R(Regs);
2947  if (!DAG.getTargetLoweringInfo().isLittleEndian())
2948    std::reverse(R.begin(), R.end());
2949
2950  // Copy the legal parts from the registers.
2951  unsigned NumParts = Regs.size();
2952  SmallVector<SDOperand, 8> Parts(NumParts);
2953  for (unsigned i = 0; i != NumParts; ++i) {
2954    SDOperand Part = Flag ?
2955                     DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
2956                     DAG.getCopyFromReg(Chain, Regs[i], RegVT);
2957    Chain = Part.getValue(1);
2958    if (Flag)
2959      *Flag = Part.getValue(2);
2960    Parts[i] = Part;
2961  }
2962
2963  // Assemble the legal parts into the final value.
2964  return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
2965}
2966
2967/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2968/// specified value into the registers specified by this object.  This uses
2969/// Chain/Flag as the input and updates them for the output Chain/Flag.
2970/// If the Flag pointer is NULL, no flag is used.
2971void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2972                                 SDOperand &Chain, SDOperand *Flag) const {
2973  // Get the list of registers, in the appropriate order.
2974  std::vector<unsigned> R(Regs);
2975  if (!DAG.getTargetLoweringInfo().isLittleEndian())
2976    std::reverse(R.begin(), R.end());
2977
2978  // Get the list of the values's legal parts.
2979  unsigned NumParts = Regs.size();
2980  SmallVector<SDOperand, 8> Parts(NumParts);
2981  getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
2982
2983  // Copy the parts into the registers.
2984  for (unsigned i = 0; i != NumParts; ++i) {
2985    SDOperand Part = Flag ?
2986                     DAG.getCopyToReg(Chain, R[i], Parts[i], *Flag) :
2987                     DAG.getCopyToReg(Chain, R[i], Parts[i]);
2988    Chain = Part.getValue(0);
2989    if (Flag)
2990      *Flag = Part.getValue(1);
2991  }
2992}
2993
2994/// AddInlineAsmOperands - Add this value to the specified inlineasm node
2995/// operand list.  This adds the code marker and includes the number of
2996/// values added into it.
2997void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
2998                                        std::vector<SDOperand> &Ops) const {
2999  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3000  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3001  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3002    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3003}
3004
3005/// isAllocatableRegister - If the specified register is safe to allocate,
3006/// i.e. it isn't a stack pointer or some other special register, return the
3007/// register class for the register.  Otherwise, return null.
3008static const TargetRegisterClass *
3009isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3010                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
3011  MVT::ValueType FoundVT = MVT::Other;
3012  const TargetRegisterClass *FoundRC = 0;
3013  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3014       E = MRI->regclass_end(); RCI != E; ++RCI) {
3015    MVT::ValueType ThisVT = MVT::Other;
3016
3017    const TargetRegisterClass *RC = *RCI;
3018    // If none of the the value types for this register class are valid, we
3019    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3020    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3021         I != E; ++I) {
3022      if (TLI.isTypeLegal(*I)) {
3023        // If we have already found this register in a different register class,
3024        // choose the one with the largest VT specified.  For example, on
3025        // PowerPC, we favor f64 register classes over f32.
3026        if (FoundVT == MVT::Other ||
3027            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3028          ThisVT = *I;
3029          break;
3030        }
3031      }
3032    }
3033
3034    if (ThisVT == MVT::Other) continue;
3035
3036    // NOTE: This isn't ideal.  In particular, this might allocate the
3037    // frame pointer in functions that need it (due to them not being taken
3038    // out of allocation, because a variable sized allocation hasn't been seen
3039    // yet).  This is a slight code pessimization, but should still work.
3040    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3041         E = RC->allocation_order_end(MF); I != E; ++I)
3042      if (*I == Reg) {
3043        // We found a matching register class.  Keep looking at others in case
3044        // we find one with larger registers that this physreg is also in.
3045        FoundRC = RC;
3046        FoundVT = ThisVT;
3047        break;
3048      }
3049  }
3050  return FoundRC;
3051}
3052
3053
3054namespace {
3055/// AsmOperandInfo - This contains information for each constraint that we are
3056/// lowering.
3057struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3058  /// ConstraintCode - This contains the actual string for the code, like "m".
3059  std::string ConstraintCode;
3060
3061  /// ConstraintType - Information about the constraint code, e.g. Register,
3062  /// RegisterClass, Memory, Other, Unknown.
3063  TargetLowering::ConstraintType ConstraintType;
3064
3065  /// CallOperand/CallOperandval - If this is the result output operand or a
3066  /// clobber, this is null, otherwise it is the incoming operand to the
3067  /// CallInst.  This gets modified as the asm is processed.
3068  SDOperand CallOperand;
3069  Value *CallOperandVal;
3070
3071  /// ConstraintVT - The ValueType for the operand value.
3072  MVT::ValueType ConstraintVT;
3073
3074  /// AssignedRegs - If this is a register or register class operand, this
3075  /// contains the set of register corresponding to the operand.
3076  RegsForValue AssignedRegs;
3077
3078  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3079    : InlineAsm::ConstraintInfo(info),
3080      ConstraintType(TargetLowering::C_Unknown),
3081      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3082  }
3083
3084  void ComputeConstraintToUse(const TargetLowering &TLI);
3085
3086  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3087  /// busy in OutputRegs/InputRegs.
3088  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3089                         std::set<unsigned> &OutputRegs,
3090                         std::set<unsigned> &InputRegs) const {
3091     if (isOutReg)
3092       OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3093     if (isInReg)
3094       InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3095   }
3096};
3097} // end anon namespace.
3098
3099/// getConstraintGenerality - Return an integer indicating how general CT is.
3100static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3101  switch (CT) {
3102    default: assert(0 && "Unknown constraint type!");
3103    case TargetLowering::C_Other:
3104    case TargetLowering::C_Unknown:
3105      return 0;
3106    case TargetLowering::C_Register:
3107      return 1;
3108    case TargetLowering::C_RegisterClass:
3109      return 2;
3110    case TargetLowering::C_Memory:
3111      return 3;
3112  }
3113}
3114
3115void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3116  assert(!Codes.empty() && "Must have at least one constraint");
3117
3118  std::string *Current = &Codes[0];
3119  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3120  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3121    ConstraintCode = *Current;
3122    ConstraintType = CurType;
3123    return;
3124  }
3125
3126  unsigned CurGenerality = getConstraintGenerality(CurType);
3127
3128  // If we have multiple constraints, try to pick the most general one ahead
3129  // of time.  This isn't a wonderful solution, but handles common cases.
3130  for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3131    TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3132    unsigned ThisGenerality = getConstraintGenerality(ThisType);
3133    if (ThisGenerality > CurGenerality) {
3134      // This constraint letter is more general than the previous one,
3135      // use it.
3136      CurType = ThisType;
3137      Current = &Codes[j];
3138      CurGenerality = ThisGenerality;
3139    }
3140  }
3141
3142  ConstraintCode = *Current;
3143  ConstraintType = CurType;
3144}
3145
3146
3147void SelectionDAGLowering::
3148GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3149                     std::set<unsigned> &OutputRegs,
3150                     std::set<unsigned> &InputRegs) {
3151  // Compute whether this value requires an input register, an output register,
3152  // or both.
3153  bool isOutReg = false;
3154  bool isInReg = false;
3155  switch (OpInfo.Type) {
3156  case InlineAsm::isOutput:
3157    isOutReg = true;
3158
3159    // If this is an early-clobber output, or if there is an input
3160    // constraint that matches this, we need to reserve the input register
3161    // so no other inputs allocate to it.
3162    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3163    break;
3164  case InlineAsm::isInput:
3165    isInReg = true;
3166    isOutReg = false;
3167    break;
3168  case InlineAsm::isClobber:
3169    isOutReg = true;
3170    isInReg = true;
3171    break;
3172  }
3173
3174
3175  MachineFunction &MF = DAG.getMachineFunction();
3176  std::vector<unsigned> Regs;
3177
3178  // If this is a constraint for a single physreg, or a constraint for a
3179  // register class, find it.
3180  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3181    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3182                                     OpInfo.ConstraintVT);
3183
3184  unsigned NumRegs = 1;
3185  if (OpInfo.ConstraintVT != MVT::Other)
3186    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3187  MVT::ValueType RegVT;
3188  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3189
3190
3191  // If this is a constraint for a specific physical register, like {r17},
3192  // assign it now.
3193  if (PhysReg.first) {
3194    if (OpInfo.ConstraintVT == MVT::Other)
3195      ValueVT = *PhysReg.second->vt_begin();
3196
3197    // Get the actual register value type.  This is important, because the user
3198    // may have asked for (e.g.) the AX register in i32 type.  We need to
3199    // remember that AX is actually i16 to get the right extension.
3200    RegVT = *PhysReg.second->vt_begin();
3201
3202    // This is a explicit reference to a physical register.
3203    Regs.push_back(PhysReg.first);
3204
3205    // If this is an expanded reference, add the rest of the regs to Regs.
3206    if (NumRegs != 1) {
3207      TargetRegisterClass::iterator I = PhysReg.second->begin();
3208      TargetRegisterClass::iterator E = PhysReg.second->end();
3209      for (; *I != PhysReg.first; ++I)
3210        assert(I != E && "Didn't find reg!");
3211
3212      // Already added the first reg.
3213      --NumRegs; ++I;
3214      for (; NumRegs; --NumRegs, ++I) {
3215        assert(I != E && "Ran out of registers to allocate!");
3216        Regs.push_back(*I);
3217      }
3218    }
3219    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3220    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3221    return;
3222  }
3223
3224  // Otherwise, if this was a reference to an LLVM register class, create vregs
3225  // for this reference.
3226  std::vector<unsigned> RegClassRegs;
3227  const TargetRegisterClass *RC = PhysReg.second;
3228  if (RC) {
3229    // If this is an early clobber or tied register, our regalloc doesn't know
3230    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3231    // and let the regalloc do the right thing.
3232    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3233        // If there is some other early clobber and this is an input register,
3234        // then we are forced to pre-allocate the input reg so it doesn't
3235        // conflict with the earlyclobber.
3236        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3237      RegVT = *PhysReg.second->vt_begin();
3238
3239      if (OpInfo.ConstraintVT == MVT::Other)
3240        ValueVT = RegVT;
3241
3242      // Create the appropriate number of virtual registers.
3243      SSARegMap *RegMap = MF.getSSARegMap();
3244      for (; NumRegs; --NumRegs)
3245        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3246
3247      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3248      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3249      return;
3250    }
3251
3252    // Otherwise, we can't allocate it.  Let the code below figure out how to
3253    // maintain these constraints.
3254    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3255
3256  } else {
3257    // This is a reference to a register class that doesn't directly correspond
3258    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3259    // registers from the class.
3260    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3261                                                         OpInfo.ConstraintVT);
3262  }
3263
3264  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3265  unsigned NumAllocated = 0;
3266  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3267    unsigned Reg = RegClassRegs[i];
3268    // See if this register is available.
3269    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3270        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3271      // Make sure we find consecutive registers.
3272      NumAllocated = 0;
3273      continue;
3274    }
3275
3276    // Check to see if this register is allocatable (i.e. don't give out the
3277    // stack pointer).
3278    if (RC == 0) {
3279      RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3280      if (!RC) {        // Couldn't allocate this register.
3281        // Reset NumAllocated to make sure we return consecutive registers.
3282        NumAllocated = 0;
3283        continue;
3284      }
3285    }
3286
3287    // Okay, this register is good, we can use it.
3288    ++NumAllocated;
3289
3290    // If we allocated enough consecutive registers, succeed.
3291    if (NumAllocated == NumRegs) {
3292      unsigned RegStart = (i-NumAllocated)+1;
3293      unsigned RegEnd   = i+1;
3294      // Mark all of the allocated registers used.
3295      for (unsigned i = RegStart; i != RegEnd; ++i)
3296        Regs.push_back(RegClassRegs[i]);
3297
3298      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3299                                         OpInfo.ConstraintVT);
3300      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3301      return;
3302    }
3303  }
3304
3305  // Otherwise, we couldn't allocate enough registers for this.
3306  return;
3307}
3308
3309
3310/// visitInlineAsm - Handle a call to an InlineAsm object.
3311///
3312void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
3313  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
3314
3315  /// ConstraintOperands - Information about all of the constraints.
3316  std::vector<AsmOperandInfo> ConstraintOperands;
3317
3318  SDOperand Chain = getRoot();
3319  SDOperand Flag;
3320
3321  std::set<unsigned> OutputRegs, InputRegs;
3322
3323  // Do a prepass over the constraints, canonicalizing them, and building up the
3324  // ConstraintOperands list.
3325  std::vector<InlineAsm::ConstraintInfo>
3326    ConstraintInfos = IA->ParseConstraints();
3327
3328  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3329  // constraint.  If so, we can't let the register allocator allocate any input
3330  // registers, because it will not know to avoid the earlyclobbered output reg.
3331  bool SawEarlyClobber = false;
3332
3333  unsigned OpNo = 1;   // OpNo - The operand of the CallInst.
3334  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3335    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3336    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3337
3338    MVT::ValueType OpVT = MVT::Other;
3339
3340    // Compute the value type for each operand.
3341    switch (OpInfo.Type) {
3342    case InlineAsm::isOutput:
3343      if (!OpInfo.isIndirect) {
3344        // The return value of the call is this value.  As such, there is no
3345        // corresponding argument.
3346        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3347        OpVT = TLI.getValueType(I.getType());
3348      } else {
3349        OpInfo.CallOperandVal = I.getOperand(OpNo++);
3350      }
3351      break;
3352    case InlineAsm::isInput:
3353      OpInfo.CallOperandVal = I.getOperand(OpNo++);
3354      break;
3355    case InlineAsm::isClobber:
3356      // Nothing to do.
3357      break;
3358    }
3359
3360    // If this is an input or an indirect output, process the call argument.
3361    if (OpInfo.CallOperandVal) {
3362      OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3363      const Type *OpTy = OpInfo.CallOperandVal->getType();
3364      // If this is an indirect operand, the operand is a pointer to the
3365      // accessed type.
3366      if (OpInfo.isIndirect)
3367        OpTy = cast<PointerType>(OpTy)->getElementType();
3368
3369      // If OpTy is not a first-class value, it may be a struct/union that we
3370      // can tile with integers.
3371      if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3372        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3373        switch (BitSize) {
3374        default: break;
3375        case 1:
3376        case 8:
3377        case 16:
3378        case 32:
3379        case 64:
3380          OpTy = IntegerType::get(BitSize);
3381          break;
3382        }
3383      }
3384
3385      OpVT = TLI.getValueType(OpTy, true);
3386    }
3387
3388    OpInfo.ConstraintVT = OpVT;
3389
3390    // Compute the constraint code and ConstraintType to use.
3391    OpInfo.ComputeConstraintToUse(TLI);
3392
3393    // Keep track of whether we see an earlyclobber.
3394    SawEarlyClobber |= OpInfo.isEarlyClobber;
3395
3396    // If this is a memory input, and if the operand is not indirect, do what we
3397    // need to to provide an address for the memory input.
3398    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3399        !OpInfo.isIndirect) {
3400      assert(OpInfo.Type == InlineAsm::isInput &&
3401             "Can only indirectify direct input operands!");
3402
3403      // Memory operands really want the address of the value.  If we don't have
3404      // an indirect input, put it in the constpool if we can, otherwise spill
3405      // it to a stack slot.
3406
3407      // If the operand is a float, integer, or vector constant, spill to a
3408      // constant pool entry to get its address.
3409      Value *OpVal = OpInfo.CallOperandVal;
3410      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3411          isa<ConstantVector>(OpVal)) {
3412        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3413                                                 TLI.getPointerTy());
3414      } else {
3415        // Otherwise, create a stack slot and emit a store to it before the
3416        // asm.
3417        const Type *Ty = OpVal->getType();
3418        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
3419        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3420        MachineFunction &MF = DAG.getMachineFunction();
3421        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3422        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3423        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3424        OpInfo.CallOperand = StackSlot;
3425      }
3426
3427      // There is no longer a Value* corresponding to this operand.
3428      OpInfo.CallOperandVal = 0;
3429      // It is now an indirect operand.
3430      OpInfo.isIndirect = true;
3431    }
3432
3433    // If this constraint is for a specific register, allocate it before
3434    // anything else.
3435    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3436      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3437  }
3438  ConstraintInfos.clear();
3439
3440
3441  // Second pass - Loop over all of the operands, assigning virtual or physregs
3442  // to registerclass operands.
3443  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3444    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3445
3446    // C_Register operands have already been allocated, Other/Memory don't need
3447    // to be.
3448    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3449      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3450  }
3451
3452  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3453  std::vector<SDOperand> AsmNodeOperands;
3454  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3455  AsmNodeOperands.push_back(
3456          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3457
3458
3459  // Loop over all of the inputs, copying the operand values into the
3460  // appropriate registers and processing the output regs.
3461  RegsForValue RetValRegs;
3462
3463  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3464  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3465
3466  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3467    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3468
3469    switch (OpInfo.Type) {
3470    case InlineAsm::isOutput: {
3471      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3472          OpInfo.ConstraintType != TargetLowering::C_Register) {
3473        // Memory output, or 'other' output (e.g. 'X' constraint).
3474        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3475
3476        // Add information to the INLINEASM node to know about this output.
3477        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3478        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3479                                                        TLI.getPointerTy()));
3480        AsmNodeOperands.push_back(OpInfo.CallOperand);
3481        break;
3482      }
3483
3484      // Otherwise, this is a register or register class output.
3485
3486      // Copy the output from the appropriate register.  Find a register that
3487      // we can use.
3488      if (OpInfo.AssignedRegs.Regs.empty()) {
3489        cerr << "Couldn't allocate output reg for contraint '"
3490             << OpInfo.ConstraintCode << "'!\n";
3491        exit(1);
3492      }
3493
3494      if (!OpInfo.isIndirect) {
3495        // This is the result value of the call.
3496        assert(RetValRegs.Regs.empty() &&
3497               "Cannot have multiple output constraints yet!");
3498        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3499        RetValRegs = OpInfo.AssignedRegs;
3500      } else {
3501        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3502                                                      OpInfo.CallOperandVal));
3503      }
3504
3505      // Add information to the INLINEASM node to know that this register is
3506      // set.
3507      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3508                                               AsmNodeOperands);
3509      break;
3510    }
3511    case InlineAsm::isInput: {
3512      SDOperand InOperandVal = OpInfo.CallOperand;
3513
3514      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3515        // If this is required to match an output register we have already set,
3516        // just use its register.
3517        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3518
3519        // Scan until we find the definition we already emitted of this operand.
3520        // When we find it, create a RegsForValue operand.
3521        unsigned CurOp = 2;  // The first operand.
3522        for (; OperandNo; --OperandNo) {
3523          // Advance to the next operand.
3524          unsigned NumOps =
3525            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3526          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3527                  (NumOps & 7) == 4 /*MEM*/) &&
3528                 "Skipped past definitions?");
3529          CurOp += (NumOps>>3)+1;
3530        }
3531
3532        unsigned NumOps =
3533          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3534        if ((NumOps & 7) == 2 /*REGDEF*/) {
3535          // Add NumOps>>3 registers to MatchedRegs.
3536          RegsForValue MatchedRegs;
3537          MatchedRegs.ValueVT = InOperandVal.getValueType();
3538          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3539          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3540            unsigned Reg =
3541              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3542            MatchedRegs.Regs.push_back(Reg);
3543          }
3544
3545          // Use the produced MatchedRegs object to
3546          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3547          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3548          break;
3549        } else {
3550          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3551          assert(0 && "matching constraints for memory operands unimp");
3552        }
3553      }
3554
3555      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3556        assert(!OpInfo.isIndirect &&
3557               "Don't know how to handle indirect other inputs yet!");
3558
3559        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
3560                                                       OpInfo.ConstraintCode[0],
3561                                                       DAG);
3562        if (!InOperandVal.Val) {
3563          cerr << "Invalid operand for inline asm constraint '"
3564               << OpInfo.ConstraintCode << "'!\n";
3565          exit(1);
3566        }
3567
3568        // Add information to the INLINEASM node to know about this input.
3569        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
3570        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3571                                                        TLI.getPointerTy()));
3572        AsmNodeOperands.push_back(InOperandVal);
3573        break;
3574      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3575        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3576        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3577               "Memory operands expect pointer values");
3578
3579        // Add information to the INLINEASM node to know about this input.
3580        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3581        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3582                                                        TLI.getPointerTy()));
3583        AsmNodeOperands.push_back(InOperandVal);
3584        break;
3585      }
3586
3587      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3588              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3589             "Unknown constraint type!");
3590      assert(!OpInfo.isIndirect &&
3591             "Don't know how to handle indirect register inputs yet!");
3592
3593      // Copy the input into the appropriate registers.
3594      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3595             "Couldn't allocate input reg!");
3596
3597      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3598
3599      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3600                                               AsmNodeOperands);
3601      break;
3602    }
3603    case InlineAsm::isClobber: {
3604      // Add the clobbered value to the operand list, so that the register
3605      // allocator is aware that the physreg got clobbered.
3606      if (!OpInfo.AssignedRegs.Regs.empty())
3607        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3608                                                 AsmNodeOperands);
3609      break;
3610    }
3611    }
3612  }
3613
3614  // Finish up input operands.
3615  AsmNodeOperands[0] = Chain;
3616  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3617
3618  Chain = DAG.getNode(ISD::INLINEASM,
3619                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3620                      &AsmNodeOperands[0], AsmNodeOperands.size());
3621  Flag = Chain.getValue(1);
3622
3623  // If this asm returns a register value, copy the result from that register
3624  // and set it as the value of the call.
3625  if (!RetValRegs.Regs.empty()) {
3626    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3627
3628    // If the result of the inline asm is a vector, it may have the wrong
3629    // width/num elts.  Make sure to convert it to the right type with
3630    // bit_convert.
3631    if (MVT::isVector(Val.getValueType())) {
3632      const VectorType *VTy = cast<VectorType>(I.getType());
3633      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3634
3635      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3636    }
3637
3638    setValue(&I, Val);
3639  }
3640
3641  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3642
3643  // Process indirect outputs, first output all of the flagged copies out of
3644  // physregs.
3645  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3646    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3647    Value *Ptr = IndirectStoresToEmit[i].second;
3648    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3649    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3650  }
3651
3652  // Emit the non-flagged stores from the physregs.
3653  SmallVector<SDOperand, 8> OutChains;
3654  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3655    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3656                                    getValue(StoresToEmit[i].second),
3657                                    StoresToEmit[i].second, 0));
3658  if (!OutChains.empty())
3659    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3660                        &OutChains[0], OutChains.size());
3661  DAG.setRoot(Chain);
3662}
3663
3664
3665void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3666  SDOperand Src = getValue(I.getOperand(0));
3667
3668  MVT::ValueType IntPtr = TLI.getPointerTy();
3669
3670  if (IntPtr < Src.getValueType())
3671    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3672  else if (IntPtr > Src.getValueType())
3673    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3674
3675  // Scale the source by the type size.
3676  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
3677  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3678                    Src, getIntPtrConstant(ElementSize));
3679
3680  TargetLowering::ArgListTy Args;
3681  TargetLowering::ArgListEntry Entry;
3682  Entry.Node = Src;
3683  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3684  Args.push_back(Entry);
3685
3686  std::pair<SDOperand,SDOperand> Result =
3687    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3688                    DAG.getExternalSymbol("malloc", IntPtr),
3689                    Args, DAG);
3690  setValue(&I, Result.first);  // Pointers always fit in registers
3691  DAG.setRoot(Result.second);
3692}
3693
3694void SelectionDAGLowering::visitFree(FreeInst &I) {
3695  TargetLowering::ArgListTy Args;
3696  TargetLowering::ArgListEntry Entry;
3697  Entry.Node = getValue(I.getOperand(0));
3698  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3699  Args.push_back(Entry);
3700  MVT::ValueType IntPtr = TLI.getPointerTy();
3701  std::pair<SDOperand,SDOperand> Result =
3702    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3703                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3704  DAG.setRoot(Result.second);
3705}
3706
3707// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3708// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3709// instructions are special in various ways, which require special support to
3710// insert.  The specified MachineInstr is created but not inserted into any
3711// basic blocks, and the scheduler passes ownership of it to this method.
3712MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3713                                                       MachineBasicBlock *MBB) {
3714  cerr << "If a target marks an instruction with "
3715       << "'usesCustomDAGSchedInserter', it must implement "
3716       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3717  abort();
3718  return 0;
3719}
3720
3721void SelectionDAGLowering::visitVAStart(CallInst &I) {
3722  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3723                          getValue(I.getOperand(1)),
3724                          DAG.getSrcValue(I.getOperand(1))));
3725}
3726
3727void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3728  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3729                             getValue(I.getOperand(0)),
3730                             DAG.getSrcValue(I.getOperand(0)));
3731  setValue(&I, V);
3732  DAG.setRoot(V.getValue(1));
3733}
3734
3735void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3736  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3737                          getValue(I.getOperand(1)),
3738                          DAG.getSrcValue(I.getOperand(1))));
3739}
3740
3741void SelectionDAGLowering::visitVACopy(CallInst &I) {
3742  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3743                          getValue(I.getOperand(1)),
3744                          getValue(I.getOperand(2)),
3745                          DAG.getSrcValue(I.getOperand(1)),
3746                          DAG.getSrcValue(I.getOperand(2))));
3747}
3748
3749/// TargetLowering::LowerArguments - This is the default LowerArguments
3750/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3751/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3752/// integrated into SDISel.
3753std::vector<SDOperand>
3754TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3755  const FunctionType *FTy = F.getFunctionType();
3756  const ParamAttrsList *Attrs = FTy->getParamAttrs();
3757  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3758  std::vector<SDOperand> Ops;
3759  Ops.push_back(DAG.getRoot());
3760  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3761  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3762
3763  // Add one result value for each formal argument.
3764  std::vector<MVT::ValueType> RetVals;
3765  unsigned j = 1;
3766  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3767       I != E; ++I, ++j) {
3768    MVT::ValueType VT = getValueType(I->getType());
3769    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3770    unsigned OriginalAlignment =
3771      getTargetData()->getABITypeAlignment(I->getType());
3772
3773    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3774    // that is zero extended!
3775    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt))
3776      Flags &= ~(ISD::ParamFlags::SExt);
3777    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt))
3778      Flags |= ISD::ParamFlags::SExt;
3779    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg))
3780      Flags |= ISD::ParamFlags::InReg;
3781    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet))
3782      Flags |= ISD::ParamFlags::StructReturn;
3783    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3784
3785    switch (getTypeAction(VT)) {
3786    default: assert(0 && "Unknown type action!");
3787    case Legal:
3788      RetVals.push_back(VT);
3789      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3790      break;
3791    case Promote:
3792      RetVals.push_back(getTypeToTransformTo(VT));
3793      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3794      break;
3795    case Expand: {
3796      // If this is an illegal type, it needs to be broken up to fit into
3797      // registers.
3798      MVT::ValueType RegisterVT = getRegisterType(VT);
3799      unsigned NumRegs = getNumRegisters(VT);
3800      for (unsigned i = 0; i != NumRegs; ++i) {
3801        RetVals.push_back(RegisterVT);
3802        // if it isn't first piece, alignment must be 1
3803        if (i > 0)
3804          Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3805            (1 << ISD::ParamFlags::OrigAlignmentOffs);
3806        Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3807      }
3808      break;
3809    }
3810    }
3811  }
3812
3813  RetVals.push_back(MVT::Other);
3814
3815  // Create the node.
3816  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3817                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3818                               &Ops[0], Ops.size()).Val;
3819  unsigned NumArgRegs = Result->getNumValues() - 1;
3820  DAG.setRoot(SDOperand(Result, NumArgRegs));
3821
3822  // Set up the return result vector.
3823  Ops.clear();
3824  unsigned i = 0;
3825  unsigned Idx = 1;
3826  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3827      ++I, ++Idx) {
3828    MVT::ValueType VT = getValueType(I->getType());
3829
3830    switch (getTypeAction(VT)) {
3831    default: assert(0 && "Unknown type action!");
3832    case Legal:
3833      Ops.push_back(SDOperand(Result, i++));
3834      break;
3835    case Promote: {
3836      SDOperand Op(Result, i++);
3837      if (MVT::isInteger(VT)) {
3838        if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt))
3839          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3840                           DAG.getValueType(VT));
3841        else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt))
3842          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3843                           DAG.getValueType(VT));
3844        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3845      } else {
3846        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3847        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3848      }
3849      Ops.push_back(Op);
3850      break;
3851    }
3852    case Expand: {
3853      MVT::ValueType PartVT = getRegisterType(VT);
3854      unsigned NumParts = getNumRegisters(VT);
3855      SmallVector<SDOperand, 4> Parts(NumParts);
3856      for (unsigned j = 0; j != NumParts; ++j)
3857        Parts[j] = SDOperand(Result, i++);
3858      Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
3859      break;
3860    }
3861    }
3862  }
3863  assert(i == NumArgRegs && "Argument register count mismatch!");
3864  return Ops;
3865}
3866
3867
3868/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3869/// implementation, which just inserts an ISD::CALL node, which is later custom
3870/// lowered by the target to something concrete.  FIXME: When all targets are
3871/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3872std::pair<SDOperand, SDOperand>
3873TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3874                            bool RetTyIsSigned, bool isVarArg,
3875                            unsigned CallingConv, bool isTailCall,
3876                            SDOperand Callee,
3877                            ArgListTy &Args, SelectionDAG &DAG) {
3878  SmallVector<SDOperand, 32> Ops;
3879  Ops.push_back(Chain);   // Op#0 - Chain
3880  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3881  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3882  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3883  Ops.push_back(Callee);
3884
3885  // Handle all of the outgoing arguments.
3886  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3887    MVT::ValueType VT = getValueType(Args[i].Ty);
3888    SDOperand Op = Args[i].Node;
3889    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3890    unsigned OriginalAlignment =
3891      getTargetData()->getABITypeAlignment(Args[i].Ty);
3892
3893    if (Args[i].isSExt)
3894      Flags |= ISD::ParamFlags::SExt;
3895    if (Args[i].isZExt)
3896      Flags |= ISD::ParamFlags::ZExt;
3897    if (Args[i].isInReg)
3898      Flags |= ISD::ParamFlags::InReg;
3899    if (Args[i].isSRet)
3900      Flags |= ISD::ParamFlags::StructReturn;
3901    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
3902
3903    switch (getTypeAction(VT)) {
3904    default: assert(0 && "Unknown type action!");
3905    case Legal:
3906      Ops.push_back(Op);
3907      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3908      break;
3909    case Promote:
3910      if (MVT::isInteger(VT)) {
3911        unsigned ExtOp;
3912        if (Args[i].isSExt)
3913          ExtOp = ISD::SIGN_EXTEND;
3914        else if (Args[i].isZExt)
3915          ExtOp = ISD::ZERO_EXTEND;
3916        else
3917          ExtOp = ISD::ANY_EXTEND;
3918        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3919      } else {
3920        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3921        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
3922      }
3923      Ops.push_back(Op);
3924      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3925      break;
3926    case Expand: {
3927      MVT::ValueType PartVT = getRegisterType(VT);
3928      unsigned NumParts = getNumRegisters(VT);
3929      SmallVector<SDOperand, 4> Parts(NumParts);
3930      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
3931      for (unsigned i = 0; i != NumParts; ++i) {
3932        // if it isn't first piece, alignment must be 1
3933        unsigned MyFlags = Flags;
3934        if (i != 0)
3935          MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
3936            (1 << ISD::ParamFlags::OrigAlignmentOffs);
3937
3938        Ops.push_back(Parts[i]);
3939        Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
3940      }
3941      break;
3942    }
3943    }
3944  }
3945
3946  // Figure out the result value types.
3947  MVT::ValueType VT = getValueType(RetTy);
3948  MVT::ValueType RegisterVT = getRegisterType(VT);
3949  unsigned NumRegs = getNumRegisters(VT);
3950  SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
3951  for (unsigned i = 0; i != NumRegs; ++i)
3952    RetTys[i] = RegisterVT;
3953
3954  RetTys.push_back(MVT::Other);  // Always has a chain.
3955
3956  // Create the CALL node.
3957  SDOperand Res = DAG.getNode(ISD::CALL,
3958                              DAG.getVTList(&RetTys[0], NumRegs + 1),
3959                              &Ops[0], Ops.size());
3960  SDOperand Chain = Res.getValue(NumRegs);
3961
3962  // Gather up the call result into a single value.
3963  if (RetTy != Type::VoidTy) {
3964    ISD::NodeType AssertOp = ISD::AssertSext;
3965    if (!RetTyIsSigned)
3966      AssertOp = ISD::AssertZext;
3967    SmallVector<SDOperand, 4> Results(NumRegs);
3968    for (unsigned i = 0; i != NumRegs; ++i)
3969      Results[i] = Res.getValue(i);
3970    Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
3971  }
3972
3973  return std::make_pair(Res, Chain);
3974}
3975
3976SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3977  assert(0 && "LowerOperation not implemented for this target!");
3978  abort();
3979  return SDOperand();
3980}
3981
3982SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
3983                                                 SelectionDAG &DAG) {
3984  assert(0 && "CustomPromoteOperation not implemented for this target!");
3985  abort();
3986  return SDOperand();
3987}
3988
3989/// getMemsetValue - Vectorized representation of the memset value
3990/// operand.
3991static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
3992                                SelectionDAG &DAG) {
3993  MVT::ValueType CurVT = VT;
3994  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3995    uint64_t Val   = C->getValue() & 255;
3996    unsigned Shift = 8;
3997    while (CurVT != MVT::i8) {
3998      Val = (Val << Shift) | Val;
3999      Shift <<= 1;
4000      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4001    }
4002    return DAG.getConstant(Val, VT);
4003  } else {
4004    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4005    unsigned Shift = 8;
4006    while (CurVT != MVT::i8) {
4007      Value =
4008        DAG.getNode(ISD::OR, VT,
4009                    DAG.getNode(ISD::SHL, VT, Value,
4010                                DAG.getConstant(Shift, MVT::i8)), Value);
4011      Shift <<= 1;
4012      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4013    }
4014
4015    return Value;
4016  }
4017}
4018
4019/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4020/// used when a memcpy is turned into a memset when the source is a constant
4021/// string ptr.
4022static SDOperand getMemsetStringVal(MVT::ValueType VT,
4023                                    SelectionDAG &DAG, TargetLowering &TLI,
4024                                    std::string &Str, unsigned Offset) {
4025  uint64_t Val = 0;
4026  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4027  if (TLI.isLittleEndian())
4028    Offset = Offset + MSB - 1;
4029  for (unsigned i = 0; i != MSB; ++i) {
4030    Val = (Val << 8) | (unsigned char)Str[Offset];
4031    Offset += TLI.isLittleEndian() ? -1 : 1;
4032  }
4033  return DAG.getConstant(Val, VT);
4034}
4035
4036/// getMemBasePlusOffset - Returns base and offset node for the
4037static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4038                                      SelectionDAG &DAG, TargetLowering &TLI) {
4039  MVT::ValueType VT = Base.getValueType();
4040  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4041}
4042
4043/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4044/// to replace the memset / memcpy is below the threshold. It also returns the
4045/// types of the sequence of  memory ops to perform memset / memcpy.
4046static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4047                                     unsigned Limit, uint64_t Size,
4048                                     unsigned Align, TargetLowering &TLI) {
4049  MVT::ValueType VT;
4050
4051  if (TLI.allowsUnalignedMemoryAccesses()) {
4052    VT = MVT::i64;
4053  } else {
4054    switch (Align & 7) {
4055    case 0:
4056      VT = MVT::i64;
4057      break;
4058    case 4:
4059      VT = MVT::i32;
4060      break;
4061    case 2:
4062      VT = MVT::i16;
4063      break;
4064    default:
4065      VT = MVT::i8;
4066      break;
4067    }
4068  }
4069
4070  MVT::ValueType LVT = MVT::i64;
4071  while (!TLI.isTypeLegal(LVT))
4072    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4073  assert(MVT::isInteger(LVT));
4074
4075  if (VT > LVT)
4076    VT = LVT;
4077
4078  unsigned NumMemOps = 0;
4079  while (Size != 0) {
4080    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4081    while (VTSize > Size) {
4082      VT = (MVT::ValueType)((unsigned)VT - 1);
4083      VTSize >>= 1;
4084    }
4085    assert(MVT::isInteger(VT));
4086
4087    if (++NumMemOps > Limit)
4088      return false;
4089    MemOps.push_back(VT);
4090    Size -= VTSize;
4091  }
4092
4093  return true;
4094}
4095
4096void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4097  SDOperand Op1 = getValue(I.getOperand(1));
4098  SDOperand Op2 = getValue(I.getOperand(2));
4099  SDOperand Op3 = getValue(I.getOperand(3));
4100  SDOperand Op4 = getValue(I.getOperand(4));
4101  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4102  if (Align == 0) Align = 1;
4103
4104  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4105    std::vector<MVT::ValueType> MemOps;
4106
4107    // Expand memset / memcpy to a series of load / store ops
4108    // if the size operand falls below a certain threshold.
4109    SmallVector<SDOperand, 8> OutChains;
4110    switch (Op) {
4111    default: break;  // Do nothing for now.
4112    case ISD::MEMSET: {
4113      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4114                                   Size->getValue(), Align, TLI)) {
4115        unsigned NumMemOps = MemOps.size();
4116        unsigned Offset = 0;
4117        for (unsigned i = 0; i < NumMemOps; i++) {
4118          MVT::ValueType VT = MemOps[i];
4119          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4120          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4121          SDOperand Store = DAG.getStore(getRoot(), Value,
4122                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4123                                         I.getOperand(1), Offset);
4124          OutChains.push_back(Store);
4125          Offset += VTSize;
4126        }
4127      }
4128      break;
4129    }
4130    case ISD::MEMCPY: {
4131      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4132                                   Size->getValue(), Align, TLI)) {
4133        unsigned NumMemOps = MemOps.size();
4134        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4135        GlobalAddressSDNode *G = NULL;
4136        std::string Str;
4137        bool CopyFromStr = false;
4138
4139        if (Op2.getOpcode() == ISD::GlobalAddress)
4140          G = cast<GlobalAddressSDNode>(Op2);
4141        else if (Op2.getOpcode() == ISD::ADD &&
4142                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4143                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4144          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4145          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4146        }
4147        if (G) {
4148          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4149          if (GV && GV->isConstant()) {
4150            Str = GV->getStringValue(false);
4151            if (!Str.empty()) {
4152              CopyFromStr = true;
4153              SrcOff += SrcDelta;
4154            }
4155          }
4156        }
4157
4158        for (unsigned i = 0; i < NumMemOps; i++) {
4159          MVT::ValueType VT = MemOps[i];
4160          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4161          SDOperand Value, Chain, Store;
4162
4163          if (CopyFromStr) {
4164            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4165            Chain = getRoot();
4166            Store =
4167              DAG.getStore(Chain, Value,
4168                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4169                           I.getOperand(1), DstOff);
4170          } else {
4171            Value = DAG.getLoad(VT, getRoot(),
4172                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4173                        I.getOperand(2), SrcOff);
4174            Chain = Value.getValue(1);
4175            Store =
4176              DAG.getStore(Chain, Value,
4177                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4178                           I.getOperand(1), DstOff);
4179          }
4180          OutChains.push_back(Store);
4181          SrcOff += VTSize;
4182          DstOff += VTSize;
4183        }
4184      }
4185      break;
4186    }
4187    }
4188
4189    if (!OutChains.empty()) {
4190      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4191                  &OutChains[0], OutChains.size()));
4192      return;
4193    }
4194  }
4195
4196  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
4197}
4198
4199//===----------------------------------------------------------------------===//
4200// SelectionDAGISel code
4201//===----------------------------------------------------------------------===//
4202
4203unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4204  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4205}
4206
4207void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4208  AU.addRequired<AliasAnalysis>();
4209  AU.setPreservesAll();
4210}
4211
4212
4213
4214bool SelectionDAGISel::runOnFunction(Function &Fn) {
4215  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4216  RegMap = MF.getSSARegMap();
4217  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4218
4219  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4220
4221  if (ExceptionHandling)
4222    for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4223      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4224        // Mark landing pad.
4225        FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4226
4227  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4228    SelectBasicBlock(I, MF, FuncInfo);
4229
4230  // Add function live-ins to entry block live-in set.
4231  BasicBlock *EntryBB = &Fn.getEntryBlock();
4232  BB = FuncInfo.MBBMap[EntryBB];
4233  if (!MF.livein_empty())
4234    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4235           E = MF.livein_end(); I != E; ++I)
4236      BB->addLiveIn(I->first);
4237
4238#ifndef NDEBUG
4239  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4240         "Not all catch info was assigned to a landing pad!");
4241#endif
4242
4243  return true;
4244}
4245
4246SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4247                                                           unsigned Reg) {
4248  SDOperand Op = getValue(V);
4249  assert((Op.getOpcode() != ISD::CopyFromReg ||
4250          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4251         "Copy from a reg to the same reg!");
4252
4253  MVT::ValueType SrcVT = Op.getValueType();
4254  MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4255  unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4256  SmallVector<SDOperand, 8> Regs(NumRegs);
4257  SmallVector<SDOperand, 8> Chains(NumRegs);
4258
4259  // Copy the value by legal parts into sequential virtual registers.
4260  getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4261  for (unsigned i = 0; i != NumRegs; ++i)
4262    Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4263  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4264}
4265
4266void SelectionDAGISel::
4267LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4268               std::vector<SDOperand> &UnorderedChains) {
4269  // If this is the entry block, emit arguments.
4270  Function &F = *LLVMBB->getParent();
4271  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4272  SDOperand OldRoot = SDL.DAG.getRoot();
4273  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4274
4275  unsigned a = 0;
4276  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4277       AI != E; ++AI, ++a)
4278    if (!AI->use_empty()) {
4279      SDL.setValue(AI, Args[a]);
4280
4281      // If this argument is live outside of the entry block, insert a copy from
4282      // whereever we got it to the vreg that other BB's will reference it as.
4283      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4284      if (VMI != FuncInfo.ValueMap.end()) {
4285        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4286        UnorderedChains.push_back(Copy);
4287      }
4288    }
4289
4290  // Finally, if the target has anything special to do, allow it to do so.
4291  // FIXME: this should insert code into the DAG!
4292  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4293}
4294
4295static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4296                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4297  assert(!FLI.MBBMap[SrcBB]->isLandingPad() &&
4298         "Copying catch info out of a landing pad!");
4299  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4300    if (isFilterOrSelector(I)) {
4301      // Apply the catch info to DestBB.
4302      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4303#ifndef NDEBUG
4304      FLI.CatchInfoFound.insert(I);
4305#endif
4306    }
4307}
4308
4309void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4310       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4311                                         FunctionLoweringInfo &FuncInfo) {
4312  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
4313
4314  std::vector<SDOperand> UnorderedChains;
4315
4316  // Lower any arguments needed in this block if this is the entry block.
4317  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4318    LowerArguments(LLVMBB, SDL, UnorderedChains);
4319
4320  BB = FuncInfo.MBBMap[LLVMBB];
4321  SDL.setCurrentBasicBlock(BB);
4322
4323  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4324
4325  if (ExceptionHandling && MMI && BB->isLandingPad()) {
4326    // Add a label to mark the beginning of the landing pad.  Deletion of the
4327    // landing pad can thus be detected via the MachineModuleInfo.
4328    unsigned LabelID = MMI->addLandingPad(BB);
4329    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4330                            DAG.getConstant(LabelID, MVT::i32)));
4331
4332    // Mark exception register as live in.
4333    unsigned Reg = TLI.getExceptionAddressRegister();
4334    if (Reg) BB->addLiveIn(Reg);
4335
4336    // Mark exception selector register as live in.
4337    Reg = TLI.getExceptionSelectorRegister();
4338    if (Reg) BB->addLiveIn(Reg);
4339
4340    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4341    // function and list of typeids logically belong to the invoke (or, if you
4342    // like, the basic block containing the invoke), and need to be associated
4343    // with it in the dwarf exception handling tables.  Currently however the
4344    // information is provided by intrinsics (eh.filter and eh.selector) that
4345    // can be moved to unexpected places by the optimizers: if the unwind edge
4346    // is critical, then breaking it can result in the intrinsics being in the
4347    // successor of the landing pad, not the landing pad itself.  This results
4348    // in exceptions not being caught because no typeids are associated with
4349    // the invoke.  This may not be the only way things can go wrong, but it
4350    // is the only way we try to work around for the moment.
4351    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4352
4353    if (Br && Br->isUnconditional()) { // Critical edge?
4354      BasicBlock::iterator I, E;
4355      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4356        if (isFilterOrSelector(I))
4357          break;
4358
4359      if (I == E)
4360        // No catch info found - try to extract some from the successor.
4361        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4362    }
4363  }
4364
4365  // Lower all of the non-terminator instructions.
4366  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4367       I != E; ++I)
4368    SDL.visit(*I);
4369
4370  // Ensure that all instructions which are used outside of their defining
4371  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4372  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4373    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4374      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4375      if (VMI != FuncInfo.ValueMap.end())
4376        UnorderedChains.push_back(
4377                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4378    }
4379
4380  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4381  // ensure constants are generated when needed.  Remember the virtual registers
4382  // that need to be added to the Machine PHI nodes as input.  We cannot just
4383  // directly add them, because expansion might result in multiple MBB's for one
4384  // BB.  As such, the start of the BB might correspond to a different MBB than
4385  // the end.
4386  //
4387  TerminatorInst *TI = LLVMBB->getTerminator();
4388
4389  // Emit constants only once even if used by multiple PHI nodes.
4390  std::map<Constant*, unsigned> ConstantsOut;
4391
4392  // Vector bool would be better, but vector<bool> is really slow.
4393  std::vector<unsigned char> SuccsHandled;
4394  if (TI->getNumSuccessors())
4395    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4396
4397  // Check successor nodes PHI nodes that expect a constant to be available from
4398  // this block.
4399  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4400    BasicBlock *SuccBB = TI->getSuccessor(succ);
4401    if (!isa<PHINode>(SuccBB->begin())) continue;
4402    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4403
4404    // If this terminator has multiple identical successors (common for
4405    // switches), only handle each succ once.
4406    unsigned SuccMBBNo = SuccMBB->getNumber();
4407    if (SuccsHandled[SuccMBBNo]) continue;
4408    SuccsHandled[SuccMBBNo] = true;
4409
4410    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4411    PHINode *PN;
4412
4413    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4414    // nodes and Machine PHI nodes, but the incoming operands have not been
4415    // emitted yet.
4416    for (BasicBlock::iterator I = SuccBB->begin();
4417         (PN = dyn_cast<PHINode>(I)); ++I) {
4418      // Ignore dead phi's.
4419      if (PN->use_empty()) continue;
4420
4421      unsigned Reg;
4422      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4423
4424      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4425        unsigned &RegOut = ConstantsOut[C];
4426        if (RegOut == 0) {
4427          RegOut = FuncInfo.CreateRegForValue(C);
4428          UnorderedChains.push_back(
4429                           SDL.CopyValueToVirtualRegister(C, RegOut));
4430        }
4431        Reg = RegOut;
4432      } else {
4433        Reg = FuncInfo.ValueMap[PHIOp];
4434        if (Reg == 0) {
4435          assert(isa<AllocaInst>(PHIOp) &&
4436                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4437                 "Didn't codegen value into a register!??");
4438          Reg = FuncInfo.CreateRegForValue(PHIOp);
4439          UnorderedChains.push_back(
4440                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4441        }
4442      }
4443
4444      // Remember that this register needs to added to the machine PHI node as
4445      // the input for this MBB.
4446      MVT::ValueType VT = TLI.getValueType(PN->getType());
4447      unsigned NumRegisters = TLI.getNumRegisters(VT);
4448      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4449        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4450    }
4451  }
4452  ConstantsOut.clear();
4453
4454  // Turn all of the unordered chains into one factored node.
4455  if (!UnorderedChains.empty()) {
4456    SDOperand Root = SDL.getRoot();
4457    if (Root.getOpcode() != ISD::EntryToken) {
4458      unsigned i = 0, e = UnorderedChains.size();
4459      for (; i != e; ++i) {
4460        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4461        if (UnorderedChains[i].Val->getOperand(0) == Root)
4462          break;  // Don't add the root if we already indirectly depend on it.
4463      }
4464
4465      if (i == e)
4466        UnorderedChains.push_back(Root);
4467    }
4468    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4469                            &UnorderedChains[0], UnorderedChains.size()));
4470  }
4471
4472  // Lower the terminator after the copies are emitted.
4473  SDL.visit(*LLVMBB->getTerminator());
4474
4475  // Copy over any CaseBlock records that may now exist due to SwitchInst
4476  // lowering, as well as any jump table information.
4477  SwitchCases.clear();
4478  SwitchCases = SDL.SwitchCases;
4479  JTCases.clear();
4480  JTCases = SDL.JTCases;
4481  BitTestCases.clear();
4482  BitTestCases = SDL.BitTestCases;
4483
4484  // Make sure the root of the DAG is up-to-date.
4485  DAG.setRoot(SDL.getRoot());
4486}
4487
4488void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4489  // Get alias analysis for load/store combining.
4490  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4491
4492  // Run the DAG combiner in pre-legalize mode.
4493  DAG.Combine(false, AA);
4494
4495  DOUT << "Lowered selection DAG:\n";
4496  DEBUG(DAG.dump());
4497
4498  // Second step, hack on the DAG until it only uses operations and types that
4499  // the target supports.
4500  DAG.Legalize();
4501
4502  DOUT << "Legalized selection DAG:\n";
4503  DEBUG(DAG.dump());
4504
4505  // Run the DAG combiner in post-legalize mode.
4506  DAG.Combine(true, AA);
4507
4508  if (ViewISelDAGs) DAG.viewGraph();
4509
4510  // Third, instruction select all of the operations to machine code, adding the
4511  // code to the MachineBasicBlock.
4512  InstructionSelectBasicBlock(DAG);
4513
4514  DOUT << "Selected machine code:\n";
4515  DEBUG(BB->dump());
4516}
4517
4518void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4519                                        FunctionLoweringInfo &FuncInfo) {
4520  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4521  {
4522    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4523    CurDAG = &DAG;
4524
4525    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4526    // types that are not supported by the target.
4527    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4528
4529    // Second step, emit the lowered DAG as machine code.
4530    CodeGenAndEmitDAG(DAG);
4531  }
4532
4533  DOUT << "Total amount of phi nodes to update: "
4534       << PHINodesToUpdate.size() << "\n";
4535  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4536          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4537               << ", " << PHINodesToUpdate[i].second << ")\n";);
4538
4539  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4540  // PHI nodes in successors.
4541  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4542    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4543      MachineInstr *PHI = PHINodesToUpdate[i].first;
4544      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4545             "This is not a machine PHI node that we are updating!");
4546      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4547      PHI->addMachineBasicBlockOperand(BB);
4548    }
4549    return;
4550  }
4551
4552  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4553    // Lower header first, if it wasn't already lowered
4554    if (!BitTestCases[i].Emitted) {
4555      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4556      CurDAG = &HSDAG;
4557      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4558      // Set the current basic block to the mbb we wish to insert the code into
4559      BB = BitTestCases[i].Parent;
4560      HSDL.setCurrentBasicBlock(BB);
4561      // Emit the code
4562      HSDL.visitBitTestHeader(BitTestCases[i]);
4563      HSDAG.setRoot(HSDL.getRoot());
4564      CodeGenAndEmitDAG(HSDAG);
4565    }
4566
4567    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4568      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4569      CurDAG = &BSDAG;
4570      SelectionDAGLowering BSDL(BSDAG, TLI, FuncInfo);
4571      // Set the current basic block to the mbb we wish to insert the code into
4572      BB = BitTestCases[i].Cases[j].ThisBB;
4573      BSDL.setCurrentBasicBlock(BB);
4574      // Emit the code
4575      if (j+1 != ej)
4576        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4577                              BitTestCases[i].Reg,
4578                              BitTestCases[i].Cases[j]);
4579      else
4580        BSDL.visitBitTestCase(BitTestCases[i].Default,
4581                              BitTestCases[i].Reg,
4582                              BitTestCases[i].Cases[j]);
4583
4584
4585      BSDAG.setRoot(BSDL.getRoot());
4586      CodeGenAndEmitDAG(BSDAG);
4587    }
4588
4589    // Update PHI Nodes
4590    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4591      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4592      MachineBasicBlock *PHIBB = PHI->getParent();
4593      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4594             "This is not a machine PHI node that we are updating!");
4595      // This is "default" BB. We have two jumps to it. From "header" BB and
4596      // from last "case" BB.
4597      if (PHIBB == BitTestCases[i].Default) {
4598        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4599        PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4600        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4601        PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4602      }
4603      // One of "cases" BB.
4604      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4605        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4606        if (cBB->succ_end() !=
4607            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4608          PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4609          PHI->addMachineBasicBlockOperand(cBB);
4610        }
4611      }
4612    }
4613  }
4614
4615  // If the JumpTable record is filled in, then we need to emit a jump table.
4616  // Updating the PHI nodes is tricky in this case, since we need to determine
4617  // whether the PHI is a successor of the range check MBB or the jump table MBB
4618  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4619    // Lower header first, if it wasn't already lowered
4620    if (!JTCases[i].first.Emitted) {
4621      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4622      CurDAG = &HSDAG;
4623      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4624      // Set the current basic block to the mbb we wish to insert the code into
4625      BB = JTCases[i].first.HeaderBB;
4626      HSDL.setCurrentBasicBlock(BB);
4627      // Emit the code
4628      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4629      HSDAG.setRoot(HSDL.getRoot());
4630      CodeGenAndEmitDAG(HSDAG);
4631    }
4632
4633    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4634    CurDAG = &JSDAG;
4635    SelectionDAGLowering JSDL(JSDAG, TLI, FuncInfo);
4636    // Set the current basic block to the mbb we wish to insert the code into
4637    BB = JTCases[i].second.MBB;
4638    JSDL.setCurrentBasicBlock(BB);
4639    // Emit the code
4640    JSDL.visitJumpTable(JTCases[i].second);
4641    JSDAG.setRoot(JSDL.getRoot());
4642    CodeGenAndEmitDAG(JSDAG);
4643
4644    // Update PHI Nodes
4645    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4646      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4647      MachineBasicBlock *PHIBB = PHI->getParent();
4648      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4649             "This is not a machine PHI node that we are updating!");
4650      // "default" BB. We can go there only from header BB.
4651      if (PHIBB == JTCases[i].second.Default) {
4652        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4653        PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4654      }
4655      // JT BB. Just iterate over successors here
4656      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4657        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4658        PHI->addMachineBasicBlockOperand(BB);
4659      }
4660    }
4661  }
4662
4663  // If the switch block involved a branch to one of the actual successors, we
4664  // need to update PHI nodes in that block.
4665  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4666    MachineInstr *PHI = PHINodesToUpdate[i].first;
4667    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4668           "This is not a machine PHI node that we are updating!");
4669    if (BB->isSuccessor(PHI->getParent())) {
4670      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4671      PHI->addMachineBasicBlockOperand(BB);
4672    }
4673  }
4674
4675  // If we generated any switch lowering information, build and codegen any
4676  // additional DAGs necessary.
4677  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4678    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4679    CurDAG = &SDAG;
4680    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4681
4682    // Set the current basic block to the mbb we wish to insert the code into
4683    BB = SwitchCases[i].ThisBB;
4684    SDL.setCurrentBasicBlock(BB);
4685
4686    // Emit the code
4687    SDL.visitSwitchCase(SwitchCases[i]);
4688    SDAG.setRoot(SDL.getRoot());
4689    CodeGenAndEmitDAG(SDAG);
4690
4691    // Handle any PHI nodes in successors of this chunk, as if we were coming
4692    // from the original BB before switch expansion.  Note that PHI nodes can
4693    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4694    // handle them the right number of times.
4695    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4696      for (MachineBasicBlock::iterator Phi = BB->begin();
4697           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4698        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4699        for (unsigned pn = 0; ; ++pn) {
4700          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4701          if (PHINodesToUpdate[pn].first == Phi) {
4702            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4703            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4704            break;
4705          }
4706        }
4707      }
4708
4709      // Don't process RHS if same block as LHS.
4710      if (BB == SwitchCases[i].FalseBB)
4711        SwitchCases[i].FalseBB = 0;
4712
4713      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4714      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4715      SwitchCases[i].FalseBB = 0;
4716    }
4717    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4718  }
4719}
4720
4721
4722//===----------------------------------------------------------------------===//
4723/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4724/// target node in the graph.
4725void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4726  if (ViewSchedDAGs) DAG.viewGraph();
4727
4728  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4729
4730  if (!Ctor) {
4731    Ctor = ISHeuristic;
4732    RegisterScheduler::setDefault(Ctor);
4733  }
4734
4735  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4736  BB = SL->Run();
4737  delete SL;
4738}
4739
4740
4741HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4742  return new HazardRecognizer();
4743}
4744
4745//===----------------------------------------------------------------------===//
4746// Helper functions used by the generated instruction selector.
4747//===----------------------------------------------------------------------===//
4748// Calls to these methods are generated by tblgen.
4749
4750/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4751/// the dag combiner simplified the 255, we still want to match.  RHS is the
4752/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4753/// specified in the .td file (e.g. 255).
4754bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4755                                    int64_t DesiredMaskS) {
4756  uint64_t ActualMask = RHS->getValue();
4757  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4758
4759  // If the actual mask exactly matches, success!
4760  if (ActualMask == DesiredMask)
4761    return true;
4762
4763  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4764  if (ActualMask & ~DesiredMask)
4765    return false;
4766
4767  // Otherwise, the DAG Combiner may have proven that the value coming in is
4768  // either already zero or is not demanded.  Check for known zero input bits.
4769  uint64_t NeededMask = DesiredMask & ~ActualMask;
4770  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
4771    return true;
4772
4773  // TODO: check to see if missing bits are just not demanded.
4774
4775  // Otherwise, this pattern doesn't match.
4776  return false;
4777}
4778
4779/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4780/// the dag combiner simplified the 255, we still want to match.  RHS is the
4781/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4782/// specified in the .td file (e.g. 255).
4783bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4784                                    int64_t DesiredMaskS) {
4785  uint64_t ActualMask = RHS->getValue();
4786  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4787
4788  // If the actual mask exactly matches, success!
4789  if (ActualMask == DesiredMask)
4790    return true;
4791
4792  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4793  if (ActualMask & ~DesiredMask)
4794    return false;
4795
4796  // Otherwise, the DAG Combiner may have proven that the value coming in is
4797  // either already zero or is not demanded.  Check for known zero input bits.
4798  uint64_t NeededMask = DesiredMask & ~ActualMask;
4799
4800  uint64_t KnownZero, KnownOne;
4801  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4802
4803  // If all the missing bits in the or are already known to be set, match!
4804  if ((NeededMask & KnownOne) == NeededMask)
4805    return true;
4806
4807  // TODO: check to see if missing bits are just not demanded.
4808
4809  // Otherwise, this pattern doesn't match.
4810  return false;
4811}
4812
4813
4814/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4815/// by tblgen.  Others should not call it.
4816void SelectionDAGISel::
4817SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4818  std::vector<SDOperand> InOps;
4819  std::swap(InOps, Ops);
4820
4821  Ops.push_back(InOps[0]);  // input chain.
4822  Ops.push_back(InOps[1]);  // input asm string.
4823
4824  unsigned i = 2, e = InOps.size();
4825  if (InOps[e-1].getValueType() == MVT::Flag)
4826    --e;  // Don't process a flag operand if it is here.
4827
4828  while (i != e) {
4829    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4830    if ((Flags & 7) != 4 /*MEM*/) {
4831      // Just skip over this operand, copying the operands verbatim.
4832      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4833      i += (Flags >> 3) + 1;
4834    } else {
4835      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4836      // Otherwise, this is a memory operand.  Ask the target to select it.
4837      std::vector<SDOperand> SelOps;
4838      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4839        cerr << "Could not match memory address.  Inline asm failure!\n";
4840        exit(1);
4841      }
4842
4843      // Add this to the output node.
4844      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4845      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4846                                          IntPtrTy));
4847      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4848      i += 2;
4849    }
4850  }
4851
4852  // Add the flag input back if present.
4853  if (e != InOps.size())
4854    Ops.push_back(InOps.back());
4855}
4856
4857char SelectionDAGISel::ID = 0;
4858