SelectionDAGISel.cpp revision 86da6600aec9b8f1c3fbae157414bf1648eb639c
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61//===---------------------------------------------------------------------===//
62///
63/// RegisterScheduler class - Track the registration of instruction schedulers.
64///
65//===---------------------------------------------------------------------===//
66MachinePassRegistry RegisterScheduler::Registry;
67
68//===---------------------------------------------------------------------===//
69///
70/// ISHeuristic command line option for instruction schedulers.
71///
72//===---------------------------------------------------------------------===//
73namespace {
74  cl::opt<RegisterScheduler::FunctionPassCtor, false,
75          RegisterPassParser<RegisterScheduler> >
76  ISHeuristic("sched",
77              cl::init(&createDefaultScheduler),
78              cl::desc("Instruction schedulers available:"));
79
80  static RegisterScheduler
81  defaultListDAGScheduler("default", "  Best scheduler for the target",
82                          createDefaultScheduler);
83} // namespace
84
85namespace { struct AsmOperandInfo; }
86
87namespace {
88  /// RegsForValue - This struct represents the physical registers that a
89  /// particular value is assigned and the type information about the value.
90  /// This is needed because values can be promoted into larger registers and
91  /// expanded into multiple smaller registers than the value.
92  struct VISIBILITY_HIDDEN RegsForValue {
93    /// Regs - This list holds the register (for legal and promoted values)
94    /// or register set (for expanded values) that the value should be assigned
95    /// to.
96    std::vector<unsigned> Regs;
97
98    /// RegVT - The value type of each register.
99    ///
100    MVT::ValueType RegVT;
101
102    /// ValueVT - The value type of the LLVM value, which may be promoted from
103    /// RegVT or made from merging the two expanded parts.
104    MVT::ValueType ValueVT;
105
106    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
107
108    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
109      : RegVT(regvt), ValueVT(valuevt) {
110        Regs.push_back(Reg);
111    }
112    RegsForValue(const std::vector<unsigned> &regs,
113                 MVT::ValueType regvt, MVT::ValueType valuevt)
114      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
115    }
116
117    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
118    /// this value and returns the result as a ValueVT value.  This uses
119    /// Chain/Flag as the input and updates them for the output Chain/Flag.
120    /// If the Flag pointer is NULL, no flag is used.
121    SDOperand getCopyFromRegs(SelectionDAG &DAG,
122                              SDOperand &Chain, SDOperand *Flag) const;
123
124    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
125    /// specified value into the registers specified by this object.  This uses
126    /// Chain/Flag as the input and updates them for the output Chain/Flag.
127    /// If the Flag pointer is NULL, no flag is used.
128    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
129                       SDOperand &Chain, SDOperand *Flag) const;
130
131    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
132    /// operand list.  This adds the code marker and includes the number of
133    /// values added into it.
134    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
135                              std::vector<SDOperand> &Ops) const;
136  };
137}
138
139namespace llvm {
140  //===--------------------------------------------------------------------===//
141  /// createDefaultScheduler - This creates an instruction scheduler appropriate
142  /// for the target.
143  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
144                                      SelectionDAG *DAG,
145                                      MachineBasicBlock *BB) {
146    TargetLowering &TLI = IS->getTargetLowering();
147
148    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
149      return createTDListDAGScheduler(IS, DAG, BB);
150    } else {
151      assert(TLI.getSchedulingPreference() ==
152           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
153      return createBURRListDAGScheduler(IS, DAG, BB);
154    }
155  }
156
157
158  //===--------------------------------------------------------------------===//
159  /// FunctionLoweringInfo - This contains information that is global to a
160  /// function that is used when lowering a region of the function.
161  class FunctionLoweringInfo {
162  public:
163    TargetLowering &TLI;
164    Function &Fn;
165    MachineFunction &MF;
166    SSARegMap *RegMap;
167
168    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
169
170    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
171    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
172
173    /// ValueMap - Since we emit code for the function a basic block at a time,
174    /// we must remember which virtual registers hold the values for
175    /// cross-basic-block values.
176    DenseMap<const Value*, unsigned> ValueMap;
177
178    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
179    /// the entry block.  This allows the allocas to be efficiently referenced
180    /// anywhere in the function.
181    std::map<const AllocaInst*, int> StaticAllocaMap;
182
183#ifndef NDEBUG
184    SmallSet<Instruction*, 8> CatchInfoLost;
185    SmallSet<Instruction*, 8> CatchInfoFound;
186#endif
187
188    unsigned MakeReg(MVT::ValueType VT) {
189      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
190    }
191
192    /// isExportedInst - Return true if the specified value is an instruction
193    /// exported from its block.
194    bool isExportedInst(const Value *V) {
195      return ValueMap.count(V);
196    }
197
198    unsigned CreateRegForValue(const Value *V);
199
200    unsigned InitializeRegForValue(const Value *V) {
201      unsigned &R = ValueMap[V];
202      assert(R == 0 && "Already initialized this value register!");
203      return R = CreateRegForValue(V);
204    }
205  };
206}
207
208/// isSelector - Return true if this instruction is a call to the
209/// eh.selector intrinsic.
210static bool isSelector(Instruction *I) {
211  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
212    return II->getIntrinsicID() == Intrinsic::eh_selector;
213  return false;
214}
215
216/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
217/// PHI nodes or outside of the basic block that defines it, or used by a
218/// switch instruction, which may expand to multiple basic blocks.
219static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
220  if (isa<PHINode>(I)) return true;
221  BasicBlock *BB = I->getParent();
222  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
223    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
224        // FIXME: Remove switchinst special case.
225        isa<SwitchInst>(*UI))
226      return true;
227  return false;
228}
229
230/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
231/// entry block, return true.  This includes arguments used by switches, since
232/// the switch may expand into multiple basic blocks.
233static bool isOnlyUsedInEntryBlock(Argument *A) {
234  BasicBlock *Entry = A->getParent()->begin();
235  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
236    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
237      return false;  // Use not in entry block.
238  return true;
239}
240
241FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
242                                           Function &fn, MachineFunction &mf)
243    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
244
245  // Create a vreg for each argument register that is not dead and is used
246  // outside of the entry block for the function.
247  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
248       AI != E; ++AI)
249    if (!isOnlyUsedInEntryBlock(AI))
250      InitializeRegForValue(AI);
251
252  // Initialize the mapping of values to registers.  This is only set up for
253  // instruction values that are used outside of the block that defines
254  // them.
255  Function::iterator BB = Fn.begin(), EB = Fn.end();
256  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
257    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
258      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
259        const Type *Ty = AI->getAllocatedType();
260        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
261        unsigned Align =
262          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
263                   AI->getAlignment());
264
265        TySize *= CUI->getZExtValue();   // Get total allocated size.
266        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
267        StaticAllocaMap[AI] =
268          MF.getFrameInfo()->CreateStackObject(TySize, Align);
269      }
270
271  for (; BB != EB; ++BB)
272    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
273      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
274        if (!isa<AllocaInst>(I) ||
275            !StaticAllocaMap.count(cast<AllocaInst>(I)))
276          InitializeRegForValue(I);
277
278  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
279  // also creates the initial PHI MachineInstrs, though none of the input
280  // operands are populated.
281  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
282    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
283    MBBMap[BB] = MBB;
284    MF.getBasicBlockList().push_back(MBB);
285
286    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
287    // appropriate.
288    PHINode *PN;
289    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
290      if (PN->use_empty()) continue;
291
292      MVT::ValueType VT = TLI.getValueType(PN->getType());
293      unsigned NumRegisters = TLI.getNumRegisters(VT);
294      unsigned PHIReg = ValueMap[PN];
295      assert(PHIReg && "PHI node does not have an assigned virtual register!");
296      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
297      for (unsigned i = 0; i != NumRegisters; ++i)
298        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
299    }
300  }
301}
302
303/// CreateRegForValue - Allocate the appropriate number of virtual registers of
304/// the correctly promoted or expanded types.  Assign these registers
305/// consecutive vreg numbers and return the first assigned number.
306unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
307  MVT::ValueType VT = TLI.getValueType(V->getType());
308
309  unsigned NumRegisters = TLI.getNumRegisters(VT);
310  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
311
312  unsigned R = MakeReg(RegisterVT);
313  for (unsigned i = 1; i != NumRegisters; ++i)
314    MakeReg(RegisterVT);
315
316  return R;
317}
318
319//===----------------------------------------------------------------------===//
320/// SelectionDAGLowering - This is the common target-independent lowering
321/// implementation that is parameterized by a TargetLowering object.
322/// Also, targets can overload any lowering method.
323///
324namespace llvm {
325class SelectionDAGLowering {
326  MachineBasicBlock *CurMBB;
327
328  DenseMap<const Value*, SDOperand> NodeMap;
329
330  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
331  /// them up and then emit token factor nodes when possible.  This allows us to
332  /// get simple disambiguation between loads without worrying about alias
333  /// analysis.
334  std::vector<SDOperand> PendingLoads;
335
336  /// Case - A struct to record the Value for a switch case, and the
337  /// case's target basic block.
338  struct Case {
339    Constant* Low;
340    Constant* High;
341    MachineBasicBlock* BB;
342
343    Case() : Low(0), High(0), BB(0) { }
344    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
345      Low(low), High(high), BB(bb) { }
346    uint64_t size() const {
347      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
348      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
349      return (rHigh - rLow + 1ULL);
350    }
351  };
352
353  struct CaseBits {
354    uint64_t Mask;
355    MachineBasicBlock* BB;
356    unsigned Bits;
357
358    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
359      Mask(mask), BB(bb), Bits(bits) { }
360  };
361
362  typedef std::vector<Case>           CaseVector;
363  typedef std::vector<CaseBits>       CaseBitsVector;
364  typedef CaseVector::iterator        CaseItr;
365  typedef std::pair<CaseItr, CaseItr> CaseRange;
366
367  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
368  /// of conditional branches.
369  struct CaseRec {
370    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
371    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
372
373    /// CaseBB - The MBB in which to emit the compare and branch
374    MachineBasicBlock *CaseBB;
375    /// LT, GE - If nonzero, we know the current case value must be less-than or
376    /// greater-than-or-equal-to these Constants.
377    Constant *LT;
378    Constant *GE;
379    /// Range - A pair of iterators representing the range of case values to be
380    /// processed at this point in the binary search tree.
381    CaseRange Range;
382  };
383
384  typedef std::vector<CaseRec> CaseRecVector;
385
386  /// The comparison function for sorting the switch case values in the vector.
387  /// WARNING: Case ranges should be disjoint!
388  struct CaseCmp {
389    bool operator () (const Case& C1, const Case& C2) {
390      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
391      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
392      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
393      return CI1->getValue().slt(CI2->getValue());
394    }
395  };
396
397  struct CaseBitsCmp {
398    bool operator () (const CaseBits& C1, const CaseBits& C2) {
399      return C1.Bits > C2.Bits;
400    }
401  };
402
403  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
404
405public:
406  // TLI - This is information that describes the available target features we
407  // need for lowering.  This indicates when operations are unavailable,
408  // implemented with a libcall, etc.
409  TargetLowering &TLI;
410  SelectionDAG &DAG;
411  const TargetData *TD;
412
413  /// SwitchCases - Vector of CaseBlock structures used to communicate
414  /// SwitchInst code generation information.
415  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
416  /// JTCases - Vector of JumpTable structures used to communicate
417  /// SwitchInst code generation information.
418  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
419  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
420
421  /// FuncInfo - Information about the function as a whole.
422  ///
423  FunctionLoweringInfo &FuncInfo;
424
425  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
426                       FunctionLoweringInfo &funcinfo)
427    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
428      FuncInfo(funcinfo) {
429  }
430
431  /// getRoot - Return the current virtual root of the Selection DAG.
432  ///
433  SDOperand getRoot() {
434    if (PendingLoads.empty())
435      return DAG.getRoot();
436
437    if (PendingLoads.size() == 1) {
438      SDOperand Root = PendingLoads[0];
439      DAG.setRoot(Root);
440      PendingLoads.clear();
441      return Root;
442    }
443
444    // Otherwise, we have to make a token factor node.
445    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
446                                 &PendingLoads[0], PendingLoads.size());
447    PendingLoads.clear();
448    DAG.setRoot(Root);
449    return Root;
450  }
451
452  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
453
454  void visit(Instruction &I) { visit(I.getOpcode(), I); }
455
456  void visit(unsigned Opcode, User &I) {
457    // Note: this doesn't use InstVisitor, because it has to work with
458    // ConstantExpr's in addition to instructions.
459    switch (Opcode) {
460    default: assert(0 && "Unknown instruction type encountered!");
461             abort();
462      // Build the switch statement using the Instruction.def file.
463#define HANDLE_INST(NUM, OPCODE, CLASS) \
464    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
465#include "llvm/Instruction.def"
466    }
467  }
468
469  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
470
471  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
472                        const Value *SV, SDOperand Root,
473                        bool isVolatile, unsigned Alignment);
474
475  SDOperand getIntPtrConstant(uint64_t Val) {
476    return DAG.getConstant(Val, TLI.getPointerTy());
477  }
478
479  SDOperand getValue(const Value *V);
480
481  void setValue(const Value *V, SDOperand NewN) {
482    SDOperand &N = NodeMap[V];
483    assert(N.Val == 0 && "Already set a value for this node!");
484    N = NewN;
485  }
486
487  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
488                            std::set<unsigned> &OutputRegs,
489                            std::set<unsigned> &InputRegs);
490
491  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
492                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
493                            unsigned Opc);
494  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
495  void ExportFromCurrentBlock(Value *V);
496  void LowerCallTo(Instruction &I,
497                   const Type *CalledValueTy, unsigned CallingConv,
498                   bool IsTailCall, SDOperand Callee, unsigned OpIdx,
499                   MachineBasicBlock *LandingPad = NULL);
500
501  // Terminator instructions.
502  void visitRet(ReturnInst &I);
503  void visitBr(BranchInst &I);
504  void visitSwitch(SwitchInst &I);
505  void visitUnreachable(UnreachableInst &I) { /* noop */ }
506
507  // Helpers for visitSwitch
508  bool handleSmallSwitchRange(CaseRec& CR,
509                              CaseRecVector& WorkList,
510                              Value* SV,
511                              MachineBasicBlock* Default);
512  bool handleJTSwitchCase(CaseRec& CR,
513                          CaseRecVector& WorkList,
514                          Value* SV,
515                          MachineBasicBlock* Default);
516  bool handleBTSplitSwitchCase(CaseRec& CR,
517                               CaseRecVector& WorkList,
518                               Value* SV,
519                               MachineBasicBlock* Default);
520  bool handleBitTestsSwitchCase(CaseRec& CR,
521                                CaseRecVector& WorkList,
522                                Value* SV,
523                                MachineBasicBlock* Default);
524  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
525  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
526  void visitBitTestCase(MachineBasicBlock* NextMBB,
527                        unsigned Reg,
528                        SelectionDAGISel::BitTestCase &B);
529  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
530  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
531                            SelectionDAGISel::JumpTableHeader &JTH);
532
533  // These all get lowered before this pass.
534  void visitInvoke(InvokeInst &I);
535  void visitUnwind(UnwindInst &I);
536
537  void visitBinary(User &I, unsigned OpCode);
538  void visitShift(User &I, unsigned Opcode);
539  void visitAdd(User &I) {
540    if (I.getType()->isFPOrFPVector())
541      visitBinary(I, ISD::FADD);
542    else
543      visitBinary(I, ISD::ADD);
544  }
545  void visitSub(User &I);
546  void visitMul(User &I) {
547    if (I.getType()->isFPOrFPVector())
548      visitBinary(I, ISD::FMUL);
549    else
550      visitBinary(I, ISD::MUL);
551  }
552  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
553  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
554  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
555  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
556  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
557  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
558  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
559  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
560  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
561  void visitShl (User &I) { visitShift(I, ISD::SHL); }
562  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
563  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
564  void visitICmp(User &I);
565  void visitFCmp(User &I);
566  // Visit the conversion instructions
567  void visitTrunc(User &I);
568  void visitZExt(User &I);
569  void visitSExt(User &I);
570  void visitFPTrunc(User &I);
571  void visitFPExt(User &I);
572  void visitFPToUI(User &I);
573  void visitFPToSI(User &I);
574  void visitUIToFP(User &I);
575  void visitSIToFP(User &I);
576  void visitPtrToInt(User &I);
577  void visitIntToPtr(User &I);
578  void visitBitCast(User &I);
579
580  void visitExtractElement(User &I);
581  void visitInsertElement(User &I);
582  void visitShuffleVector(User &I);
583
584  void visitGetElementPtr(User &I);
585  void visitSelect(User &I);
586
587  void visitMalloc(MallocInst &I);
588  void visitFree(FreeInst &I);
589  void visitAlloca(AllocaInst &I);
590  void visitLoad(LoadInst &I);
591  void visitStore(StoreInst &I);
592  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
593  void visitCall(CallInst &I);
594  void visitInlineAsm(CallInst &I);
595  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
596  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
597
598  void visitVAStart(CallInst &I);
599  void visitVAArg(VAArgInst &I);
600  void visitVAEnd(CallInst &I);
601  void visitVACopy(CallInst &I);
602
603  void visitMemIntrinsic(CallInst &I, unsigned Op);
604
605  void visitUserOp1(Instruction &I) {
606    assert(0 && "UserOp1 should not exist at instruction selection time!");
607    abort();
608  }
609  void visitUserOp2(Instruction &I) {
610    assert(0 && "UserOp2 should not exist at instruction selection time!");
611    abort();
612  }
613};
614} // end namespace llvm
615
616
617/// getCopyFromParts - Create a value that contains the
618/// specified legal parts combined into the value they represent.
619static SDOperand getCopyFromParts(SelectionDAG &DAG,
620                                  const SDOperand *Parts,
621                                  unsigned NumParts,
622                                  MVT::ValueType PartVT,
623                                  MVT::ValueType ValueVT,
624                                  bool EndianOrder,
625                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
626  if (!MVT::isVector(ValueVT) || NumParts == 1) {
627    SDOperand Val = Parts[0];
628
629    // If the value was expanded, copy from the top part.
630    if (NumParts > 1) {
631      assert(NumParts == 2 &&
632             "Cannot expand to more than 2 elts yet!");
633      SDOperand Hi = Parts[1];
634      if (EndianOrder && !DAG.getTargetLoweringInfo().isLittleEndian())
635        std::swap(Val, Hi);
636      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
637    }
638
639    // Otherwise, if the value was promoted or extended, truncate it to the
640    // appropriate type.
641    if (PartVT == ValueVT)
642      return Val;
643
644    if (MVT::isVector(PartVT)) {
645      assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
646      return DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
647    }
648
649    if (MVT::isInteger(PartVT) &&
650        MVT::isInteger(ValueVT)) {
651      if (ValueVT < PartVT) {
652        // For a truncate, see if we have any information to
653        // indicate whether the truncated bits will always be
654        // zero or sign-extension.
655        if (AssertOp != ISD::DELETED_NODE)
656          Val = DAG.getNode(AssertOp, PartVT, Val,
657                            DAG.getValueType(ValueVT));
658        return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
659      } else {
660        return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
661      }
662    }
663
664    if (MVT::isFloatingPoint(PartVT) &&
665        MVT::isFloatingPoint(ValueVT))
666      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
667
668    if (MVT::getSizeInBits(PartVT) ==
669        MVT::getSizeInBits(ValueVT))
670      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
671
672    assert(0 && "Unknown mismatch!");
673  }
674
675  // Handle a multi-element vector.
676  MVT::ValueType IntermediateVT, RegisterVT;
677  unsigned NumIntermediates;
678  unsigned NumRegs =
679    DAG.getTargetLoweringInfo()
680      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
681                              RegisterVT);
682
683  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
684  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
685  assert(RegisterVT == Parts[0].getValueType() &&
686         "Part type doesn't match part!");
687
688  // Assemble the parts into intermediate operands.
689  SmallVector<SDOperand, 8> Ops(NumIntermediates);
690  if (NumIntermediates == NumParts) {
691    // If the register was not expanded, truncate or copy the value,
692    // as appropriate.
693    for (unsigned i = 0; i != NumParts; ++i)
694      Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
695                                PartVT, IntermediateVT, EndianOrder);
696  } else if (NumParts > 0) {
697    // If the intermediate type was expanded, build the intermediate operands
698    // from the parts.
699    assert(NumIntermediates % NumParts == 0 &&
700           "Must expand into a divisible number of parts!");
701    unsigned Factor = NumIntermediates / NumParts;
702    for (unsigned i = 0; i != NumIntermediates; ++i)
703      Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
704                                PartVT, IntermediateVT, EndianOrder);
705  }
706
707  // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
708  // operands.
709  return DAG.getNode(MVT::isVector(IntermediateVT) ?
710                       ISD::CONCAT_VECTORS :
711                       ISD::BUILD_VECTOR,
712                     ValueVT, &Ops[0], NumParts);
713}
714
715/// getCopyToParts - Create a series of nodes that contain the
716/// specified value split into legal parts.
717static void getCopyToParts(SelectionDAG &DAG,
718                           SDOperand Val,
719                           SDOperand *Parts,
720                           unsigned NumParts,
721                           MVT::ValueType PartVT,
722                           bool EndianOrder) {
723  MVT::ValueType ValueVT = Val.getValueType();
724
725  if (!MVT::isVector(ValueVT) || NumParts == 1) {
726    // If the value was expanded, copy from the parts.
727    if (NumParts > 1) {
728      for (unsigned i = 0; i != NumParts; ++i)
729        Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
730                               DAG.getConstant(i, MVT::i32));
731      if (EndianOrder && !DAG.getTargetLoweringInfo().isLittleEndian())
732        std::reverse(Parts, Parts + NumParts);
733      return;
734    }
735
736    // If there is a single part and the types differ, this must be
737    // a promotion.
738    if (PartVT != ValueVT) {
739      if (MVT::isVector(PartVT)) {
740        assert(MVT::isVector(ValueVT) &&
741               "Not a vector-vector cast?");
742        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
743      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
744        if (PartVT < ValueVT)
745          Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
746        else
747          Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
748      } else if (MVT::isFloatingPoint(PartVT) &&
749                 MVT::isFloatingPoint(ValueVT)) {
750        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
751      } else if (MVT::getSizeInBits(PartVT) ==
752                 MVT::getSizeInBits(ValueVT)) {
753        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
754      } else {
755        assert(0 && "Unknown mismatch!");
756      }
757    }
758    Parts[0] = Val;
759    return;
760  }
761
762  // Handle a multi-element vector.
763  MVT::ValueType IntermediateVT, RegisterVT;
764  unsigned NumIntermediates;
765  unsigned NumRegs =
766    DAG.getTargetLoweringInfo()
767      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
768                              RegisterVT);
769  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
770
771  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
772  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
773
774  // Split the vector into intermediate operands.
775  SmallVector<SDOperand, 8> Ops(NumIntermediates);
776  for (unsigned i = 0; i != NumIntermediates; ++i)
777    if (MVT::isVector(IntermediateVT))
778      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
779                           IntermediateVT, Val,
780                           DAG.getConstant(i * (NumElements / NumIntermediates),
781                                           MVT::i32));
782    else
783      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
784                           IntermediateVT, Val,
785                           DAG.getConstant(i, MVT::i32));
786
787  // Split the intermediate operands into legal parts.
788  if (NumParts == NumIntermediates) {
789    // If the register was not expanded, promote or copy the value,
790    // as appropriate.
791    for (unsigned i = 0; i != NumParts; ++i)
792      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT, EndianOrder);
793  } else if (NumParts > 0) {
794    // If the intermediate type was expanded, split each the value into
795    // legal parts.
796    assert(NumParts % NumIntermediates == 0 &&
797           "Must expand into a divisible number of parts!");
798    unsigned Factor = NumParts / NumIntermediates;
799    for (unsigned i = 0; i != NumIntermediates; ++i)
800      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT, EndianOrder);
801  }
802}
803
804
805SDOperand SelectionDAGLowering::getValue(const Value *V) {
806  SDOperand &N = NodeMap[V];
807  if (N.Val) return N;
808
809  const Type *VTy = V->getType();
810  MVT::ValueType VT = TLI.getValueType(VTy);
811  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
812    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
813      visit(CE->getOpcode(), *CE);
814      SDOperand N1 = NodeMap[V];
815      assert(N1.Val && "visit didn't populate the ValueMap!");
816      return N1;
817    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
818      return N = DAG.getGlobalAddress(GV, VT);
819    } else if (isa<ConstantPointerNull>(C)) {
820      return N = DAG.getConstant(0, TLI.getPointerTy());
821    } else if (isa<UndefValue>(C)) {
822      if (!isa<VectorType>(VTy))
823        return N = DAG.getNode(ISD::UNDEF, VT);
824
825      // Create a BUILD_VECTOR of undef nodes.
826      const VectorType *PTy = cast<VectorType>(VTy);
827      unsigned NumElements = PTy->getNumElements();
828      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
829
830      SmallVector<SDOperand, 8> Ops;
831      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
832
833      // Create a VConstant node with generic Vector type.
834      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
835      return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
836                             &Ops[0], Ops.size());
837    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
838      return N = DAG.getConstantFP(CFP->getValue(), VT);
839    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
840      unsigned NumElements = PTy->getNumElements();
841      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
842
843      // Now that we know the number and type of the elements, push a
844      // Constant or ConstantFP node onto the ops list for each element of
845      // the packed constant.
846      SmallVector<SDOperand, 8> Ops;
847      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
848        for (unsigned i = 0; i != NumElements; ++i)
849          Ops.push_back(getValue(CP->getOperand(i)));
850      } else {
851        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
852        SDOperand Op;
853        if (MVT::isFloatingPoint(PVT))
854          Op = DAG.getConstantFP(0, PVT);
855        else
856          Op = DAG.getConstant(0, PVT);
857        Ops.assign(NumElements, Op);
858      }
859
860      // Create a BUILD_VECTOR node.
861      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
862      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
863                                      Ops.size());
864    } else {
865      // Canonicalize all constant ints to be unsigned.
866      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
867    }
868  }
869
870  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
871    std::map<const AllocaInst*, int>::iterator SI =
872    FuncInfo.StaticAllocaMap.find(AI);
873    if (SI != FuncInfo.StaticAllocaMap.end())
874      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
875  }
876
877  unsigned InReg = FuncInfo.ValueMap[V];
878  assert(InReg && "Value not in map!");
879
880  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
881  unsigned NumRegs = TLI.getNumRegisters(VT);
882
883  std::vector<unsigned> Regs(NumRegs);
884  for (unsigned i = 0; i != NumRegs; ++i)
885    Regs[i] = InReg + i;
886
887  RegsForValue RFV(Regs, RegisterVT, VT);
888  SDOperand Chain = DAG.getEntryNode();
889
890  return RFV.getCopyFromRegs(DAG, Chain, NULL);
891}
892
893
894void SelectionDAGLowering::visitRet(ReturnInst &I) {
895  if (I.getNumOperands() == 0) {
896    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
897    return;
898  }
899  SmallVector<SDOperand, 8> NewValues;
900  NewValues.push_back(getRoot());
901  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
902    SDOperand RetOp = getValue(I.getOperand(i));
903
904    // If this is an integer return value, we need to promote it ourselves to
905    // the full width of a register, since getCopyToParts and Legalize will use
906    // ANY_EXTEND rather than sign/zero.
907    // FIXME: C calling convention requires the return type to be promoted to
908    // at least 32-bit. But this is not necessary for non-C calling conventions.
909    if (MVT::isInteger(RetOp.getValueType()) &&
910        RetOp.getValueType() < MVT::i64) {
911      MVT::ValueType TmpVT;
912      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
913        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
914      else
915        TmpVT = MVT::i32;
916      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
917      const ParamAttrsList *Attrs = FTy->getParamAttrs();
918      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
919      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt))
920        ExtendKind = ISD::SIGN_EXTEND;
921      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt))
922        ExtendKind = ISD::ZERO_EXTEND;
923      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
924      NewValues.push_back(RetOp);
925      NewValues.push_back(DAG.getConstant(false, MVT::i32));
926    } else {
927      MVT::ValueType VT = RetOp.getValueType();
928      unsigned NumParts = TLI.getNumRegisters(VT);
929      MVT::ValueType PartVT = TLI.getRegisterType(VT);
930      SmallVector<SDOperand, 4> Parts(NumParts);
931      getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT, true);
932      for (unsigned i = 0; i < NumParts; ++i) {
933        NewValues.push_back(Parts[i]);
934        NewValues.push_back(DAG.getConstant(false, MVT::i32));
935      }
936    }
937  }
938  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
939                          &NewValues[0], NewValues.size()));
940}
941
942/// ExportFromCurrentBlock - If this condition isn't known to be exported from
943/// the current basic block, add it to ValueMap now so that we'll get a
944/// CopyTo/FromReg.
945void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
946  // No need to export constants.
947  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
948
949  // Already exported?
950  if (FuncInfo.isExportedInst(V)) return;
951
952  unsigned Reg = FuncInfo.InitializeRegForValue(V);
953  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
954}
955
956bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
957                                                    const BasicBlock *FromBB) {
958  // The operands of the setcc have to be in this block.  We don't know
959  // how to export them from some other block.
960  if (Instruction *VI = dyn_cast<Instruction>(V)) {
961    // Can export from current BB.
962    if (VI->getParent() == FromBB)
963      return true;
964
965    // Is already exported, noop.
966    return FuncInfo.isExportedInst(V);
967  }
968
969  // If this is an argument, we can export it if the BB is the entry block or
970  // if it is already exported.
971  if (isa<Argument>(V)) {
972    if (FromBB == &FromBB->getParent()->getEntryBlock())
973      return true;
974
975    // Otherwise, can only export this if it is already exported.
976    return FuncInfo.isExportedInst(V);
977  }
978
979  // Otherwise, constants can always be exported.
980  return true;
981}
982
983static bool InBlock(const Value *V, const BasicBlock *BB) {
984  if (const Instruction *I = dyn_cast<Instruction>(V))
985    return I->getParent() == BB;
986  return true;
987}
988
989/// FindMergedConditions - If Cond is an expression like
990void SelectionDAGLowering::FindMergedConditions(Value *Cond,
991                                                MachineBasicBlock *TBB,
992                                                MachineBasicBlock *FBB,
993                                                MachineBasicBlock *CurBB,
994                                                unsigned Opc) {
995  // If this node is not part of the or/and tree, emit it as a branch.
996  Instruction *BOp = dyn_cast<Instruction>(Cond);
997
998  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
999      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1000      BOp->getParent() != CurBB->getBasicBlock() ||
1001      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1002      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1003    const BasicBlock *BB = CurBB->getBasicBlock();
1004
1005    // If the leaf of the tree is a comparison, merge the condition into
1006    // the caseblock.
1007    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1008        // The operands of the cmp have to be in this block.  We don't know
1009        // how to export them from some other block.  If this is the first block
1010        // of the sequence, no exporting is needed.
1011        (CurBB == CurMBB ||
1012         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1013          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1014      BOp = cast<Instruction>(Cond);
1015      ISD::CondCode Condition;
1016      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1017        switch (IC->getPredicate()) {
1018        default: assert(0 && "Unknown icmp predicate opcode!");
1019        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1020        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1021        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1022        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1023        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1024        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1025        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1026        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1027        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1028        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1029        }
1030      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1031        ISD::CondCode FPC, FOC;
1032        switch (FC->getPredicate()) {
1033        default: assert(0 && "Unknown fcmp predicate opcode!");
1034        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1035        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1036        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1037        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1038        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1039        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1040        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1041        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1042        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1043        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1044        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1045        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1046        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1047        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1048        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1049        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1050        }
1051        if (FiniteOnlyFPMath())
1052          Condition = FOC;
1053        else
1054          Condition = FPC;
1055      } else {
1056        Condition = ISD::SETEQ; // silence warning.
1057        assert(0 && "Unknown compare instruction");
1058      }
1059
1060      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1061                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1062      SwitchCases.push_back(CB);
1063      return;
1064    }
1065
1066    // Create a CaseBlock record representing this branch.
1067    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1068                                   NULL, TBB, FBB, CurBB);
1069    SwitchCases.push_back(CB);
1070    return;
1071  }
1072
1073
1074  //  Create TmpBB after CurBB.
1075  MachineFunction::iterator BBI = CurBB;
1076  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1077  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1078
1079  if (Opc == Instruction::Or) {
1080    // Codegen X | Y as:
1081    //   jmp_if_X TBB
1082    //   jmp TmpBB
1083    // TmpBB:
1084    //   jmp_if_Y TBB
1085    //   jmp FBB
1086    //
1087
1088    // Emit the LHS condition.
1089    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1090
1091    // Emit the RHS condition into TmpBB.
1092    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1093  } else {
1094    assert(Opc == Instruction::And && "Unknown merge op!");
1095    // Codegen X & Y as:
1096    //   jmp_if_X TmpBB
1097    //   jmp FBB
1098    // TmpBB:
1099    //   jmp_if_Y TBB
1100    //   jmp FBB
1101    //
1102    //  This requires creation of TmpBB after CurBB.
1103
1104    // Emit the LHS condition.
1105    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1106
1107    // Emit the RHS condition into TmpBB.
1108    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1109  }
1110}
1111
1112/// If the set of cases should be emitted as a series of branches, return true.
1113/// If we should emit this as a bunch of and/or'd together conditions, return
1114/// false.
1115static bool
1116ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1117  if (Cases.size() != 2) return true;
1118
1119  // If this is two comparisons of the same values or'd or and'd together, they
1120  // will get folded into a single comparison, so don't emit two blocks.
1121  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1122       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1123      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1124       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1125    return false;
1126  }
1127
1128  return true;
1129}
1130
1131void SelectionDAGLowering::visitBr(BranchInst &I) {
1132  // Update machine-CFG edges.
1133  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1134
1135  // Figure out which block is immediately after the current one.
1136  MachineBasicBlock *NextBlock = 0;
1137  MachineFunction::iterator BBI = CurMBB;
1138  if (++BBI != CurMBB->getParent()->end())
1139    NextBlock = BBI;
1140
1141  if (I.isUnconditional()) {
1142    // If this is not a fall-through branch, emit the branch.
1143    if (Succ0MBB != NextBlock)
1144      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1145                              DAG.getBasicBlock(Succ0MBB)));
1146
1147    // Update machine-CFG edges.
1148    CurMBB->addSuccessor(Succ0MBB);
1149
1150    return;
1151  }
1152
1153  // If this condition is one of the special cases we handle, do special stuff
1154  // now.
1155  Value *CondVal = I.getCondition();
1156  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1157
1158  // If this is a series of conditions that are or'd or and'd together, emit
1159  // this as a sequence of branches instead of setcc's with and/or operations.
1160  // For example, instead of something like:
1161  //     cmp A, B
1162  //     C = seteq
1163  //     cmp D, E
1164  //     F = setle
1165  //     or C, F
1166  //     jnz foo
1167  // Emit:
1168  //     cmp A, B
1169  //     je foo
1170  //     cmp D, E
1171  //     jle foo
1172  //
1173  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1174    if (BOp->hasOneUse() &&
1175        (BOp->getOpcode() == Instruction::And ||
1176         BOp->getOpcode() == Instruction::Or)) {
1177      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1178      // If the compares in later blocks need to use values not currently
1179      // exported from this block, export them now.  This block should always
1180      // be the first entry.
1181      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1182
1183      // Allow some cases to be rejected.
1184      if (ShouldEmitAsBranches(SwitchCases)) {
1185        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1186          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1187          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1188        }
1189
1190        // Emit the branch for this block.
1191        visitSwitchCase(SwitchCases[0]);
1192        SwitchCases.erase(SwitchCases.begin());
1193        return;
1194      }
1195
1196      // Okay, we decided not to do this, remove any inserted MBB's and clear
1197      // SwitchCases.
1198      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1199        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1200
1201      SwitchCases.clear();
1202    }
1203  }
1204
1205  // Create a CaseBlock record representing this branch.
1206  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1207                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1208  // Use visitSwitchCase to actually insert the fast branch sequence for this
1209  // cond branch.
1210  visitSwitchCase(CB);
1211}
1212
1213/// visitSwitchCase - Emits the necessary code to represent a single node in
1214/// the binary search tree resulting from lowering a switch instruction.
1215void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1216  SDOperand Cond;
1217  SDOperand CondLHS = getValue(CB.CmpLHS);
1218
1219  // Build the setcc now.
1220  if (CB.CmpMHS == NULL) {
1221    // Fold "(X == true)" to X and "(X == false)" to !X to
1222    // handle common cases produced by branch lowering.
1223    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1224      Cond = CondLHS;
1225    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1226      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1227      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1228    } else
1229      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1230  } else {
1231    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1232
1233    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1234    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1235
1236    SDOperand CmpOp = getValue(CB.CmpMHS);
1237    MVT::ValueType VT = CmpOp.getValueType();
1238
1239    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1240      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1241    } else {
1242      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1243      Cond = DAG.getSetCC(MVT::i1, SUB,
1244                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1245    }
1246
1247  }
1248
1249  // Set NextBlock to be the MBB immediately after the current one, if any.
1250  // This is used to avoid emitting unnecessary branches to the next block.
1251  MachineBasicBlock *NextBlock = 0;
1252  MachineFunction::iterator BBI = CurMBB;
1253  if (++BBI != CurMBB->getParent()->end())
1254    NextBlock = BBI;
1255
1256  // If the lhs block is the next block, invert the condition so that we can
1257  // fall through to the lhs instead of the rhs block.
1258  if (CB.TrueBB == NextBlock) {
1259    std::swap(CB.TrueBB, CB.FalseBB);
1260    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1261    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1262  }
1263  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1264                                 DAG.getBasicBlock(CB.TrueBB));
1265  if (CB.FalseBB == NextBlock)
1266    DAG.setRoot(BrCond);
1267  else
1268    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1269                            DAG.getBasicBlock(CB.FalseBB)));
1270  // Update successor info
1271  CurMBB->addSuccessor(CB.TrueBB);
1272  CurMBB->addSuccessor(CB.FalseBB);
1273}
1274
1275/// visitJumpTable - Emit JumpTable node in the current MBB
1276void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1277  // Emit the code for the jump table
1278  assert(JT.Reg != -1U && "Should lower JT Header first!");
1279  MVT::ValueType PTy = TLI.getPointerTy();
1280  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1281  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1282  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1283                          Table, Index));
1284  return;
1285}
1286
1287/// visitJumpTableHeader - This function emits necessary code to produce index
1288/// in the JumpTable from switch case.
1289void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1290                                         SelectionDAGISel::JumpTableHeader &JTH) {
1291  // Subtract the lowest switch case value from the value being switched on
1292  // and conditional branch to default mbb if the result is greater than the
1293  // difference between smallest and largest cases.
1294  SDOperand SwitchOp = getValue(JTH.SValue);
1295  MVT::ValueType VT = SwitchOp.getValueType();
1296  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1297                              DAG.getConstant(JTH.First, VT));
1298
1299  // The SDNode we just created, which holds the value being switched on
1300  // minus the the smallest case value, needs to be copied to a virtual
1301  // register so it can be used as an index into the jump table in a
1302  // subsequent basic block.  This value may be smaller or larger than the
1303  // target's pointer type, and therefore require extension or truncating.
1304  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1305    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1306  else
1307    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1308
1309  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1310  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1311  JT.Reg = JumpTableReg;
1312
1313  // Emit the range check for the jump table, and branch to the default
1314  // block for the switch statement if the value being switched on exceeds
1315  // the largest case in the switch.
1316  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1317                               DAG.getConstant(JTH.Last-JTH.First,VT),
1318                               ISD::SETUGT);
1319
1320  // Set NextBlock to be the MBB immediately after the current one, if any.
1321  // This is used to avoid emitting unnecessary branches to the next block.
1322  MachineBasicBlock *NextBlock = 0;
1323  MachineFunction::iterator BBI = CurMBB;
1324  if (++BBI != CurMBB->getParent()->end())
1325    NextBlock = BBI;
1326
1327  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1328                                 DAG.getBasicBlock(JT.Default));
1329
1330  if (JT.MBB == NextBlock)
1331    DAG.setRoot(BrCond);
1332  else
1333    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1334                            DAG.getBasicBlock(JT.MBB)));
1335
1336  return;
1337}
1338
1339/// visitBitTestHeader - This function emits necessary code to produce value
1340/// suitable for "bit tests"
1341void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1342  // Subtract the minimum value
1343  SDOperand SwitchOp = getValue(B.SValue);
1344  MVT::ValueType VT = SwitchOp.getValueType();
1345  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1346                              DAG.getConstant(B.First, VT));
1347
1348  // Check range
1349  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1350                                    DAG.getConstant(B.Range, VT),
1351                                    ISD::SETUGT);
1352
1353  SDOperand ShiftOp;
1354  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1355    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1356  else
1357    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1358
1359  // Make desired shift
1360  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1361                                    DAG.getConstant(1, TLI.getPointerTy()),
1362                                    ShiftOp);
1363
1364  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1365  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1366  B.Reg = SwitchReg;
1367
1368  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1369                                  DAG.getBasicBlock(B.Default));
1370
1371  // Set NextBlock to be the MBB immediately after the current one, if any.
1372  // This is used to avoid emitting unnecessary branches to the next block.
1373  MachineBasicBlock *NextBlock = 0;
1374  MachineFunction::iterator BBI = CurMBB;
1375  if (++BBI != CurMBB->getParent()->end())
1376    NextBlock = BBI;
1377
1378  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1379  if (MBB == NextBlock)
1380    DAG.setRoot(BrRange);
1381  else
1382    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1383                            DAG.getBasicBlock(MBB)));
1384
1385  CurMBB->addSuccessor(B.Default);
1386  CurMBB->addSuccessor(MBB);
1387
1388  return;
1389}
1390
1391/// visitBitTestCase - this function produces one "bit test"
1392void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1393                                            unsigned Reg,
1394                                            SelectionDAGISel::BitTestCase &B) {
1395  // Emit bit tests and jumps
1396  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1397
1398  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1399                                SwitchVal,
1400                                DAG.getConstant(B.Mask,
1401                                                TLI.getPointerTy()));
1402  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1403                                  DAG.getConstant(0, TLI.getPointerTy()),
1404                                  ISD::SETNE);
1405  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1406                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1407
1408  // Set NextBlock to be the MBB immediately after the current one, if any.
1409  // This is used to avoid emitting unnecessary branches to the next block.
1410  MachineBasicBlock *NextBlock = 0;
1411  MachineFunction::iterator BBI = CurMBB;
1412  if (++BBI != CurMBB->getParent()->end())
1413    NextBlock = BBI;
1414
1415  if (NextMBB == NextBlock)
1416    DAG.setRoot(BrAnd);
1417  else
1418    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1419                            DAG.getBasicBlock(NextMBB)));
1420
1421  CurMBB->addSuccessor(B.TargetBB);
1422  CurMBB->addSuccessor(NextMBB);
1423
1424  return;
1425}
1426
1427void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1428  // Retrieve successors.
1429  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1430  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1431
1432  LowerCallTo(I, I.getCalledValue()->getType(),
1433              I.getCallingConv(),
1434              false,
1435              getValue(I.getOperand(0)),
1436              3, LandingPad);
1437
1438  // If the value of the invoke is used outside of its defining block, make it
1439  // available as a virtual register.
1440  if (!I.use_empty()) {
1441    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1442    if (VMI != FuncInfo.ValueMap.end())
1443      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1444  }
1445
1446  // Drop into normal successor.
1447  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1448                          DAG.getBasicBlock(Return)));
1449
1450  // Update successor info
1451  CurMBB->addSuccessor(Return);
1452  CurMBB->addSuccessor(LandingPad);
1453}
1454
1455void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1456}
1457
1458/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1459/// small case ranges).
1460bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1461                                                  CaseRecVector& WorkList,
1462                                                  Value* SV,
1463                                                  MachineBasicBlock* Default) {
1464  Case& BackCase  = *(CR.Range.second-1);
1465
1466  // Size is the number of Cases represented by this range.
1467  unsigned Size = CR.Range.second - CR.Range.first;
1468  if (Size > 3)
1469    return false;
1470
1471  // Get the MachineFunction which holds the current MBB.  This is used when
1472  // inserting any additional MBBs necessary to represent the switch.
1473  MachineFunction *CurMF = CurMBB->getParent();
1474
1475  // Figure out which block is immediately after the current one.
1476  MachineBasicBlock *NextBlock = 0;
1477  MachineFunction::iterator BBI = CR.CaseBB;
1478
1479  if (++BBI != CurMBB->getParent()->end())
1480    NextBlock = BBI;
1481
1482  // TODO: If any two of the cases has the same destination, and if one value
1483  // is the same as the other, but has one bit unset that the other has set,
1484  // use bit manipulation to do two compares at once.  For example:
1485  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1486
1487  // Rearrange the case blocks so that the last one falls through if possible.
1488  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1489    // The last case block won't fall through into 'NextBlock' if we emit the
1490    // branches in this order.  See if rearranging a case value would help.
1491    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1492      if (I->BB == NextBlock) {
1493        std::swap(*I, BackCase);
1494        break;
1495      }
1496    }
1497  }
1498
1499  // Create a CaseBlock record representing a conditional branch to
1500  // the Case's target mbb if the value being switched on SV is equal
1501  // to C.
1502  MachineBasicBlock *CurBlock = CR.CaseBB;
1503  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1504    MachineBasicBlock *FallThrough;
1505    if (I != E-1) {
1506      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1507      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1508    } else {
1509      // If the last case doesn't match, go to the default block.
1510      FallThrough = Default;
1511    }
1512
1513    Value *RHS, *LHS, *MHS;
1514    ISD::CondCode CC;
1515    if (I->High == I->Low) {
1516      // This is just small small case range :) containing exactly 1 case
1517      CC = ISD::SETEQ;
1518      LHS = SV; RHS = I->High; MHS = NULL;
1519    } else {
1520      CC = ISD::SETLE;
1521      LHS = I->Low; MHS = SV; RHS = I->High;
1522    }
1523    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1524                                   I->BB, FallThrough, CurBlock);
1525
1526    // If emitting the first comparison, just call visitSwitchCase to emit the
1527    // code into the current block.  Otherwise, push the CaseBlock onto the
1528    // vector to be later processed by SDISel, and insert the node's MBB
1529    // before the next MBB.
1530    if (CurBlock == CurMBB)
1531      visitSwitchCase(CB);
1532    else
1533      SwitchCases.push_back(CB);
1534
1535    CurBlock = FallThrough;
1536  }
1537
1538  return true;
1539}
1540
1541static inline bool areJTsAllowed(const TargetLowering &TLI) {
1542  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1543          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1544}
1545
1546/// handleJTSwitchCase - Emit jumptable for current switch case range
1547bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1548                                              CaseRecVector& WorkList,
1549                                              Value* SV,
1550                                              MachineBasicBlock* Default) {
1551  Case& FrontCase = *CR.Range.first;
1552  Case& BackCase  = *(CR.Range.second-1);
1553
1554  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1555  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1556
1557  uint64_t TSize = 0;
1558  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1559       I!=E; ++I)
1560    TSize += I->size();
1561
1562  if (!areJTsAllowed(TLI) || TSize <= 3)
1563    return false;
1564
1565  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1566  if (Density < 0.4)
1567    return false;
1568
1569  DOUT << "Lowering jump table\n"
1570       << "First entry: " << First << ". Last entry: " << Last << "\n"
1571       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1572
1573  // Get the MachineFunction which holds the current MBB.  This is used when
1574  // inserting any additional MBBs necessary to represent the switch.
1575  MachineFunction *CurMF = CurMBB->getParent();
1576
1577  // Figure out which block is immediately after the current one.
1578  MachineBasicBlock *NextBlock = 0;
1579  MachineFunction::iterator BBI = CR.CaseBB;
1580
1581  if (++BBI != CurMBB->getParent()->end())
1582    NextBlock = BBI;
1583
1584  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1585
1586  // Create a new basic block to hold the code for loading the address
1587  // of the jump table, and jumping to it.  Update successor information;
1588  // we will either branch to the default case for the switch, or the jump
1589  // table.
1590  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1591  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1592  CR.CaseBB->addSuccessor(Default);
1593  CR.CaseBB->addSuccessor(JumpTableBB);
1594
1595  // Build a vector of destination BBs, corresponding to each target
1596  // of the jump table. If the value of the jump table slot corresponds to
1597  // a case statement, push the case's BB onto the vector, otherwise, push
1598  // the default BB.
1599  std::vector<MachineBasicBlock*> DestBBs;
1600  int64_t TEI = First;
1601  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1602    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1603    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1604
1605    if ((Low <= TEI) && (TEI <= High)) {
1606      DestBBs.push_back(I->BB);
1607      if (TEI==High)
1608        ++I;
1609    } else {
1610      DestBBs.push_back(Default);
1611    }
1612  }
1613
1614  // Update successor info. Add one edge to each unique successor.
1615  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1616  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1617         E = DestBBs.end(); I != E; ++I) {
1618    if (!SuccsHandled[(*I)->getNumber()]) {
1619      SuccsHandled[(*I)->getNumber()] = true;
1620      JumpTableBB->addSuccessor(*I);
1621    }
1622  }
1623
1624  // Create a jump table index for this jump table, or return an existing
1625  // one.
1626  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1627
1628  // Set the jump table information so that we can codegen it as a second
1629  // MachineBasicBlock
1630  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1631  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1632                                        (CR.CaseBB == CurMBB));
1633  if (CR.CaseBB == CurMBB)
1634    visitJumpTableHeader(JT, JTH);
1635
1636  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1637
1638  return true;
1639}
1640
1641/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1642/// 2 subtrees.
1643bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1644                                                   CaseRecVector& WorkList,
1645                                                   Value* SV,
1646                                                   MachineBasicBlock* Default) {
1647  // Get the MachineFunction which holds the current MBB.  This is used when
1648  // inserting any additional MBBs necessary to represent the switch.
1649  MachineFunction *CurMF = CurMBB->getParent();
1650
1651  // Figure out which block is immediately after the current one.
1652  MachineBasicBlock *NextBlock = 0;
1653  MachineFunction::iterator BBI = CR.CaseBB;
1654
1655  if (++BBI != CurMBB->getParent()->end())
1656    NextBlock = BBI;
1657
1658  Case& FrontCase = *CR.Range.first;
1659  Case& BackCase  = *(CR.Range.second-1);
1660  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1661
1662  // Size is the number of Cases represented by this range.
1663  unsigned Size = CR.Range.second - CR.Range.first;
1664
1665  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1666  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1667  double FMetric = 0;
1668  CaseItr Pivot = CR.Range.first + Size/2;
1669
1670  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1671  // (heuristically) allow us to emit JumpTable's later.
1672  uint64_t TSize = 0;
1673  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1674       I!=E; ++I)
1675    TSize += I->size();
1676
1677  uint64_t LSize = FrontCase.size();
1678  uint64_t RSize = TSize-LSize;
1679  DOUT << "Selecting best pivot: \n"
1680       << "First: " << First << ", Last: " << Last <<"\n"
1681       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1682  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1683       J!=E; ++I, ++J) {
1684    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1685    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1686    assert((RBegin-LEnd>=1) && "Invalid case distance");
1687    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1688    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1689    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1690    // Should always split in some non-trivial place
1691    DOUT <<"=>Step\n"
1692         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1693         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1694         << "Metric: " << Metric << "\n";
1695    if (FMetric < Metric) {
1696      Pivot = J;
1697      FMetric = Metric;
1698      DOUT << "Current metric set to: " << FMetric << "\n";
1699    }
1700
1701    LSize += J->size();
1702    RSize -= J->size();
1703  }
1704  if (areJTsAllowed(TLI)) {
1705    // If our case is dense we *really* should handle it earlier!
1706    assert((FMetric > 0) && "Should handle dense range earlier!");
1707  } else {
1708    Pivot = CR.Range.first + Size/2;
1709  }
1710
1711  CaseRange LHSR(CR.Range.first, Pivot);
1712  CaseRange RHSR(Pivot, CR.Range.second);
1713  Constant *C = Pivot->Low;
1714  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1715
1716  // We know that we branch to the LHS if the Value being switched on is
1717  // less than the Pivot value, C.  We use this to optimize our binary
1718  // tree a bit, by recognizing that if SV is greater than or equal to the
1719  // LHS's Case Value, and that Case Value is exactly one less than the
1720  // Pivot's Value, then we can branch directly to the LHS's Target,
1721  // rather than creating a leaf node for it.
1722  if ((LHSR.second - LHSR.first) == 1 &&
1723      LHSR.first->High == CR.GE &&
1724      cast<ConstantInt>(C)->getSExtValue() ==
1725      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1726    TrueBB = LHSR.first->BB;
1727  } else {
1728    TrueBB = new MachineBasicBlock(LLVMBB);
1729    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1730    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1731  }
1732
1733  // Similar to the optimization above, if the Value being switched on is
1734  // known to be less than the Constant CR.LT, and the current Case Value
1735  // is CR.LT - 1, then we can branch directly to the target block for
1736  // the current Case Value, rather than emitting a RHS leaf node for it.
1737  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1738      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1739      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1740    FalseBB = RHSR.first->BB;
1741  } else {
1742    FalseBB = new MachineBasicBlock(LLVMBB);
1743    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1744    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1745  }
1746
1747  // Create a CaseBlock record representing a conditional branch to
1748  // the LHS node if the value being switched on SV is less than C.
1749  // Otherwise, branch to LHS.
1750  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1751                                 TrueBB, FalseBB, CR.CaseBB);
1752
1753  if (CR.CaseBB == CurMBB)
1754    visitSwitchCase(CB);
1755  else
1756    SwitchCases.push_back(CB);
1757
1758  return true;
1759}
1760
1761/// handleBitTestsSwitchCase - if current case range has few destination and
1762/// range span less, than machine word bitwidth, encode case range into series
1763/// of masks and emit bit tests with these masks.
1764bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1765                                                    CaseRecVector& WorkList,
1766                                                    Value* SV,
1767                                                    MachineBasicBlock* Default){
1768  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1769
1770  Case& FrontCase = *CR.Range.first;
1771  Case& BackCase  = *(CR.Range.second-1);
1772
1773  // Get the MachineFunction which holds the current MBB.  This is used when
1774  // inserting any additional MBBs necessary to represent the switch.
1775  MachineFunction *CurMF = CurMBB->getParent();
1776
1777  unsigned numCmps = 0;
1778  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1779       I!=E; ++I) {
1780    // Single case counts one, case range - two.
1781    if (I->Low == I->High)
1782      numCmps +=1;
1783    else
1784      numCmps +=2;
1785  }
1786
1787  // Count unique destinations
1788  SmallSet<MachineBasicBlock*, 4> Dests;
1789  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1790    Dests.insert(I->BB);
1791    if (Dests.size() > 3)
1792      // Don't bother the code below, if there are too much unique destinations
1793      return false;
1794  }
1795  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1796       << "Total number of comparisons: " << numCmps << "\n";
1797
1798  // Compute span of values.
1799  Constant* minValue = FrontCase.Low;
1800  Constant* maxValue = BackCase.High;
1801  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1802                   cast<ConstantInt>(minValue)->getSExtValue();
1803  DOUT << "Compare range: " << range << "\n"
1804       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1805       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1806
1807  if (range>=IntPtrBits ||
1808      (!(Dests.size() == 1 && numCmps >= 3) &&
1809       !(Dests.size() == 2 && numCmps >= 5) &&
1810       !(Dests.size() >= 3 && numCmps >= 6)))
1811    return false;
1812
1813  DOUT << "Emitting bit tests\n";
1814  int64_t lowBound = 0;
1815
1816  // Optimize the case where all the case values fit in a
1817  // word without having to subtract minValue. In this case,
1818  // we can optimize away the subtraction.
1819  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1820      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1821    range = cast<ConstantInt>(maxValue)->getSExtValue();
1822  } else {
1823    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1824  }
1825
1826  CaseBitsVector CasesBits;
1827  unsigned i, count = 0;
1828
1829  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1830    MachineBasicBlock* Dest = I->BB;
1831    for (i = 0; i < count; ++i)
1832      if (Dest == CasesBits[i].BB)
1833        break;
1834
1835    if (i == count) {
1836      assert((count < 3) && "Too much destinations to test!");
1837      CasesBits.push_back(CaseBits(0, Dest, 0));
1838      count++;
1839    }
1840
1841    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1842    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1843
1844    for (uint64_t j = lo; j <= hi; j++) {
1845      CasesBits[i].Mask |=  1ULL << j;
1846      CasesBits[i].Bits++;
1847    }
1848
1849  }
1850  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1851
1852  SelectionDAGISel::BitTestInfo BTC;
1853
1854  // Figure out which block is immediately after the current one.
1855  MachineFunction::iterator BBI = CR.CaseBB;
1856  ++BBI;
1857
1858  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1859
1860  DOUT << "Cases:\n";
1861  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1862    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1863         << ", BB: " << CasesBits[i].BB << "\n";
1864
1865    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1866    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1867    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1868                                                CaseBB,
1869                                                CasesBits[i].BB));
1870  }
1871
1872  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1873                                     -1U, (CR.CaseBB == CurMBB),
1874                                     CR.CaseBB, Default, BTC);
1875
1876  if (CR.CaseBB == CurMBB)
1877    visitBitTestHeader(BTB);
1878
1879  BitTestCases.push_back(BTB);
1880
1881  return true;
1882}
1883
1884
1885// Clusterify - Transform simple list of Cases into list of CaseRange's
1886unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1887                                          const SwitchInst& SI) {
1888  unsigned numCmps = 0;
1889
1890  // Start with "simple" cases
1891  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1892    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1893    Cases.push_back(Case(SI.getSuccessorValue(i),
1894                         SI.getSuccessorValue(i),
1895                         SMBB));
1896  }
1897  sort(Cases.begin(), Cases.end(), CaseCmp());
1898
1899  // Merge case into clusters
1900  if (Cases.size()>=2)
1901    // Must recompute end() each iteration because it may be
1902    // invalidated by erase if we hold on to it
1903    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
1904      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1905      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1906      MachineBasicBlock* nextBB = J->BB;
1907      MachineBasicBlock* currentBB = I->BB;
1908
1909      // If the two neighboring cases go to the same destination, merge them
1910      // into a single case.
1911      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1912        I->High = J->High;
1913        J = Cases.erase(J);
1914      } else {
1915        I = J++;
1916      }
1917    }
1918
1919  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1920    if (I->Low != I->High)
1921      // A range counts double, since it requires two compares.
1922      ++numCmps;
1923  }
1924
1925  return numCmps;
1926}
1927
1928void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1929  // Figure out which block is immediately after the current one.
1930  MachineBasicBlock *NextBlock = 0;
1931  MachineFunction::iterator BBI = CurMBB;
1932
1933  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1934
1935  // If there is only the default destination, branch to it if it is not the
1936  // next basic block.  Otherwise, just fall through.
1937  if (SI.getNumOperands() == 2) {
1938    // Update machine-CFG edges.
1939
1940    // If this is not a fall-through branch, emit the branch.
1941    if (Default != NextBlock)
1942      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1943                              DAG.getBasicBlock(Default)));
1944
1945    CurMBB->addSuccessor(Default);
1946    return;
1947  }
1948
1949  // If there are any non-default case statements, create a vector of Cases
1950  // representing each one, and sort the vector so that we can efficiently
1951  // create a binary search tree from them.
1952  CaseVector Cases;
1953  unsigned numCmps = Clusterify(Cases, SI);
1954  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1955       << ". Total compares: " << numCmps << "\n";
1956
1957  // Get the Value to be switched on and default basic blocks, which will be
1958  // inserted into CaseBlock records, representing basic blocks in the binary
1959  // search tree.
1960  Value *SV = SI.getOperand(0);
1961
1962  // Push the initial CaseRec onto the worklist
1963  CaseRecVector WorkList;
1964  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1965
1966  while (!WorkList.empty()) {
1967    // Grab a record representing a case range to process off the worklist
1968    CaseRec CR = WorkList.back();
1969    WorkList.pop_back();
1970
1971    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1972      continue;
1973
1974    // If the range has few cases (two or less) emit a series of specific
1975    // tests.
1976    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1977      continue;
1978
1979    // If the switch has more than 5 blocks, and at least 40% dense, and the
1980    // target supports indirect branches, then emit a jump table rather than
1981    // lowering the switch to a binary tree of conditional branches.
1982    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1983      continue;
1984
1985    // Emit binary tree. We need to pick a pivot, and push left and right ranges
1986    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
1987    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
1988  }
1989}
1990
1991
1992void SelectionDAGLowering::visitSub(User &I) {
1993  // -0.0 - X --> fneg
1994  const Type *Ty = I.getType();
1995  if (isa<VectorType>(Ty)) {
1996    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
1997      const VectorType *DestTy = cast<VectorType>(I.getType());
1998      const Type *ElTy = DestTy->getElementType();
1999      if (ElTy->isFloatingPoint()) {
2000        unsigned VL = DestTy->getNumElements();
2001        std::vector<Constant*> NZ(VL, ConstantFP::get(ElTy, -0.0));
2002        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2003        if (CV == CNZ) {
2004          SDOperand Op2 = getValue(I.getOperand(1));
2005          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2006          return;
2007        }
2008      }
2009    }
2010  }
2011  if (Ty->isFloatingPoint()) {
2012    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2013      if (CFP->isExactlyValue(-0.0)) {
2014        SDOperand Op2 = getValue(I.getOperand(1));
2015        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2016        return;
2017      }
2018  }
2019
2020  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2021}
2022
2023void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2024  SDOperand Op1 = getValue(I.getOperand(0));
2025  SDOperand Op2 = getValue(I.getOperand(1));
2026
2027  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2028}
2029
2030void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2031  SDOperand Op1 = getValue(I.getOperand(0));
2032  SDOperand Op2 = getValue(I.getOperand(1));
2033
2034  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2035      MVT::getSizeInBits(Op2.getValueType()))
2036    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2037  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2038    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2039
2040  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2041}
2042
2043void SelectionDAGLowering::visitICmp(User &I) {
2044  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2045  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2046    predicate = IC->getPredicate();
2047  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2048    predicate = ICmpInst::Predicate(IC->getPredicate());
2049  SDOperand Op1 = getValue(I.getOperand(0));
2050  SDOperand Op2 = getValue(I.getOperand(1));
2051  ISD::CondCode Opcode;
2052  switch (predicate) {
2053    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2054    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2055    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2056    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2057    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2058    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2059    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2060    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2061    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2062    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2063    default:
2064      assert(!"Invalid ICmp predicate value");
2065      Opcode = ISD::SETEQ;
2066      break;
2067  }
2068  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2069}
2070
2071void SelectionDAGLowering::visitFCmp(User &I) {
2072  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2073  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2074    predicate = FC->getPredicate();
2075  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2076    predicate = FCmpInst::Predicate(FC->getPredicate());
2077  SDOperand Op1 = getValue(I.getOperand(0));
2078  SDOperand Op2 = getValue(I.getOperand(1));
2079  ISD::CondCode Condition, FOC, FPC;
2080  switch (predicate) {
2081    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2082    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2083    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2084    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2085    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2086    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2087    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2088    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2089    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2090    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2091    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2092    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2093    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2094    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2095    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2096    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2097    default:
2098      assert(!"Invalid FCmp predicate value");
2099      FOC = FPC = ISD::SETFALSE;
2100      break;
2101  }
2102  if (FiniteOnlyFPMath())
2103    Condition = FOC;
2104  else
2105    Condition = FPC;
2106  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2107}
2108
2109void SelectionDAGLowering::visitSelect(User &I) {
2110  SDOperand Cond     = getValue(I.getOperand(0));
2111  SDOperand TrueVal  = getValue(I.getOperand(1));
2112  SDOperand FalseVal = getValue(I.getOperand(2));
2113  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2114                           TrueVal, FalseVal));
2115}
2116
2117
2118void SelectionDAGLowering::visitTrunc(User &I) {
2119  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2120  SDOperand N = getValue(I.getOperand(0));
2121  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2122  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2123}
2124
2125void SelectionDAGLowering::visitZExt(User &I) {
2126  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2127  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2128  SDOperand N = getValue(I.getOperand(0));
2129  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2130  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2131}
2132
2133void SelectionDAGLowering::visitSExt(User &I) {
2134  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2135  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2136  SDOperand N = getValue(I.getOperand(0));
2137  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2138  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2139}
2140
2141void SelectionDAGLowering::visitFPTrunc(User &I) {
2142  // FPTrunc is never a no-op cast, no need to check
2143  SDOperand N = getValue(I.getOperand(0));
2144  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2145  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2146}
2147
2148void SelectionDAGLowering::visitFPExt(User &I){
2149  // FPTrunc is never a no-op cast, no need to check
2150  SDOperand N = getValue(I.getOperand(0));
2151  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2152  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2153}
2154
2155void SelectionDAGLowering::visitFPToUI(User &I) {
2156  // FPToUI is never a no-op cast, no need to check
2157  SDOperand N = getValue(I.getOperand(0));
2158  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2159  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2160}
2161
2162void SelectionDAGLowering::visitFPToSI(User &I) {
2163  // FPToSI is never a no-op cast, no need to check
2164  SDOperand N = getValue(I.getOperand(0));
2165  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2166  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2167}
2168
2169void SelectionDAGLowering::visitUIToFP(User &I) {
2170  // UIToFP is never a no-op cast, no need to check
2171  SDOperand N = getValue(I.getOperand(0));
2172  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2173  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2174}
2175
2176void SelectionDAGLowering::visitSIToFP(User &I){
2177  // UIToFP is never a no-op cast, no need to check
2178  SDOperand N = getValue(I.getOperand(0));
2179  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2180  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2181}
2182
2183void SelectionDAGLowering::visitPtrToInt(User &I) {
2184  // What to do depends on the size of the integer and the size of the pointer.
2185  // We can either truncate, zero extend, or no-op, accordingly.
2186  SDOperand N = getValue(I.getOperand(0));
2187  MVT::ValueType SrcVT = N.getValueType();
2188  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2189  SDOperand Result;
2190  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2191    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2192  else
2193    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2194    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2195  setValue(&I, Result);
2196}
2197
2198void SelectionDAGLowering::visitIntToPtr(User &I) {
2199  // What to do depends on the size of the integer and the size of the pointer.
2200  // We can either truncate, zero extend, or no-op, accordingly.
2201  SDOperand N = getValue(I.getOperand(0));
2202  MVT::ValueType SrcVT = N.getValueType();
2203  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2204  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2205    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2206  else
2207    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2208    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2209}
2210
2211void SelectionDAGLowering::visitBitCast(User &I) {
2212  SDOperand N = getValue(I.getOperand(0));
2213  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2214
2215  // BitCast assures us that source and destination are the same size so this
2216  // is either a BIT_CONVERT or a no-op.
2217  if (DestVT != N.getValueType())
2218    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2219  else
2220    setValue(&I, N); // noop cast.
2221}
2222
2223void SelectionDAGLowering::visitInsertElement(User &I) {
2224  SDOperand InVec = getValue(I.getOperand(0));
2225  SDOperand InVal = getValue(I.getOperand(1));
2226  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2227                                getValue(I.getOperand(2)));
2228
2229  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2230                           TLI.getValueType(I.getType()),
2231                           InVec, InVal, InIdx));
2232}
2233
2234void SelectionDAGLowering::visitExtractElement(User &I) {
2235  SDOperand InVec = getValue(I.getOperand(0));
2236  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2237                                getValue(I.getOperand(1)));
2238  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2239                           TLI.getValueType(I.getType()), InVec, InIdx));
2240}
2241
2242void SelectionDAGLowering::visitShuffleVector(User &I) {
2243  SDOperand V1   = getValue(I.getOperand(0));
2244  SDOperand V2   = getValue(I.getOperand(1));
2245  SDOperand Mask = getValue(I.getOperand(2));
2246
2247  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2248                           TLI.getValueType(I.getType()),
2249                           V1, V2, Mask));
2250}
2251
2252
2253void SelectionDAGLowering::visitGetElementPtr(User &I) {
2254  SDOperand N = getValue(I.getOperand(0));
2255  const Type *Ty = I.getOperand(0)->getType();
2256
2257  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2258       OI != E; ++OI) {
2259    Value *Idx = *OI;
2260    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2261      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2262      if (Field) {
2263        // N = N + Offset
2264        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2265        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2266                        getIntPtrConstant(Offset));
2267      }
2268      Ty = StTy->getElementType(Field);
2269    } else {
2270      Ty = cast<SequentialType>(Ty)->getElementType();
2271
2272      // If this is a constant subscript, handle it quickly.
2273      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2274        if (CI->getZExtValue() == 0) continue;
2275        uint64_t Offs =
2276            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2277        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2278        continue;
2279      }
2280
2281      // N = N + Idx * ElementSize;
2282      uint64_t ElementSize = TD->getTypeSize(Ty);
2283      SDOperand IdxN = getValue(Idx);
2284
2285      // If the index is smaller or larger than intptr_t, truncate or extend
2286      // it.
2287      if (IdxN.getValueType() < N.getValueType()) {
2288        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2289      } else if (IdxN.getValueType() > N.getValueType())
2290        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2291
2292      // If this is a multiply by a power of two, turn it into a shl
2293      // immediately.  This is a very common case.
2294      if (isPowerOf2_64(ElementSize)) {
2295        unsigned Amt = Log2_64(ElementSize);
2296        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2297                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2298        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2299        continue;
2300      }
2301
2302      SDOperand Scale = getIntPtrConstant(ElementSize);
2303      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2304      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2305    }
2306  }
2307  setValue(&I, N);
2308}
2309
2310void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2311  // If this is a fixed sized alloca in the entry block of the function,
2312  // allocate it statically on the stack.
2313  if (FuncInfo.StaticAllocaMap.count(&I))
2314    return;   // getValue will auto-populate this.
2315
2316  const Type *Ty = I.getAllocatedType();
2317  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
2318  unsigned Align =
2319    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2320             I.getAlignment());
2321
2322  SDOperand AllocSize = getValue(I.getArraySize());
2323  MVT::ValueType IntPtr = TLI.getPointerTy();
2324  if (IntPtr < AllocSize.getValueType())
2325    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2326  else if (IntPtr > AllocSize.getValueType())
2327    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2328
2329  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2330                          getIntPtrConstant(TySize));
2331
2332  // Handle alignment.  If the requested alignment is less than or equal to the
2333  // stack alignment, ignore it and round the size of the allocation up to the
2334  // stack alignment size.  If the size is greater than the stack alignment, we
2335  // note this in the DYNAMIC_STACKALLOC node.
2336  unsigned StackAlign =
2337    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2338  if (Align <= StackAlign) {
2339    Align = 0;
2340    // Add SA-1 to the size.
2341    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2342                            getIntPtrConstant(StackAlign-1));
2343    // Mask out the low bits for alignment purposes.
2344    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2345                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2346  }
2347
2348  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2349  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2350                                                    MVT::Other);
2351  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2352  setValue(&I, DSA);
2353  DAG.setRoot(DSA.getValue(1));
2354
2355  // Inform the Frame Information that we have just allocated a variable-sized
2356  // object.
2357  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2358}
2359
2360void SelectionDAGLowering::visitLoad(LoadInst &I) {
2361  SDOperand Ptr = getValue(I.getOperand(0));
2362
2363  SDOperand Root;
2364  if (I.isVolatile())
2365    Root = getRoot();
2366  else {
2367    // Do not serialize non-volatile loads against each other.
2368    Root = DAG.getRoot();
2369  }
2370
2371  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2372                           Root, I.isVolatile(), I.getAlignment()));
2373}
2374
2375SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2376                                            const Value *SV, SDOperand Root,
2377                                            bool isVolatile,
2378                                            unsigned Alignment) {
2379  SDOperand L =
2380    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2381                isVolatile, Alignment);
2382
2383  if (isVolatile)
2384    DAG.setRoot(L.getValue(1));
2385  else
2386    PendingLoads.push_back(L.getValue(1));
2387
2388  return L;
2389}
2390
2391
2392void SelectionDAGLowering::visitStore(StoreInst &I) {
2393  Value *SrcV = I.getOperand(0);
2394  SDOperand Src = getValue(SrcV);
2395  SDOperand Ptr = getValue(I.getOperand(1));
2396  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2397                           I.isVolatile(), I.getAlignment()));
2398}
2399
2400/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2401/// access memory and has no other side effects at all.
2402static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2403#define GET_NO_MEMORY_INTRINSICS
2404#include "llvm/Intrinsics.gen"
2405#undef GET_NO_MEMORY_INTRINSICS
2406  return false;
2407}
2408
2409// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2410// have any side-effects or if it only reads memory.
2411static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2412#define GET_SIDE_EFFECT_INFO
2413#include "llvm/Intrinsics.gen"
2414#undef GET_SIDE_EFFECT_INFO
2415  return false;
2416}
2417
2418/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2419/// node.
2420void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2421                                                unsigned Intrinsic) {
2422  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2423  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2424
2425  // Build the operand list.
2426  SmallVector<SDOperand, 8> Ops;
2427  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2428    if (OnlyLoad) {
2429      // We don't need to serialize loads against other loads.
2430      Ops.push_back(DAG.getRoot());
2431    } else {
2432      Ops.push_back(getRoot());
2433    }
2434  }
2435
2436  // Add the intrinsic ID as an integer operand.
2437  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2438
2439  // Add all operands of the call to the operand list.
2440  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2441    SDOperand Op = getValue(I.getOperand(i));
2442    assert(TLI.isTypeLegal(Op.getValueType()) &&
2443           "Intrinsic uses a non-legal type?");
2444    Ops.push_back(Op);
2445  }
2446
2447  std::vector<MVT::ValueType> VTs;
2448  if (I.getType() != Type::VoidTy) {
2449    MVT::ValueType VT = TLI.getValueType(I.getType());
2450    if (MVT::isVector(VT)) {
2451      const VectorType *DestTy = cast<VectorType>(I.getType());
2452      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2453
2454      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2455      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2456    }
2457
2458    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2459    VTs.push_back(VT);
2460  }
2461  if (HasChain)
2462    VTs.push_back(MVT::Other);
2463
2464  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2465
2466  // Create the node.
2467  SDOperand Result;
2468  if (!HasChain)
2469    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2470                         &Ops[0], Ops.size());
2471  else if (I.getType() != Type::VoidTy)
2472    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2473                         &Ops[0], Ops.size());
2474  else
2475    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2476                         &Ops[0], Ops.size());
2477
2478  if (HasChain) {
2479    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2480    if (OnlyLoad)
2481      PendingLoads.push_back(Chain);
2482    else
2483      DAG.setRoot(Chain);
2484  }
2485  if (I.getType() != Type::VoidTy) {
2486    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2487      MVT::ValueType VT = TLI.getValueType(PTy);
2488      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2489    }
2490    setValue(&I, Result);
2491  }
2492}
2493
2494/// ExtractGlobalVariable - If V is a global variable, or a bitcast of one
2495/// (possibly constant folded), return it.  Otherwise return NULL.
2496static GlobalVariable *ExtractGlobalVariable (Value *V) {
2497  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2498    return GV;
2499  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
2500    if (CE->getOpcode() == Instruction::BitCast)
2501      return dyn_cast<GlobalVariable>(CE->getOperand(0));
2502    else if (CE->getOpcode() == Instruction::GetElementPtr) {
2503      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2504        if (!CE->getOperand(i)->isNullValue())
2505          return NULL;
2506      return dyn_cast<GlobalVariable>(CE->getOperand(0));
2507    }
2508  }
2509  return NULL;
2510}
2511
2512/// ExtractTypeInfo - Extracts the type info from a value.
2513static GlobalVariable *ExtractTypeInfo (Value *V) {
2514  GlobalVariable *GV = ExtractGlobalVariable(V);
2515  assert (GV || isa<ConstantPointerNull>(V) &&
2516          "TypeInfo must be a global variable or NULL");
2517  return GV;
2518}
2519
2520/// addCatchInfo - Extract the personality and type infos from an eh.selector
2521/// call, and add them to the specified machine basic block.
2522static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2523                         MachineBasicBlock *MBB) {
2524  // Inform the MachineModuleInfo of the personality for this landing pad.
2525  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2526  assert(CE->getOpcode() == Instruction::BitCast &&
2527         isa<Function>(CE->getOperand(0)) &&
2528         "Personality should be a function");
2529  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2530
2531  // Gather all the type infos for this landing pad and pass them along to
2532  // MachineModuleInfo.
2533  std::vector<GlobalVariable *> TyInfo;
2534  unsigned N = I.getNumOperands();
2535
2536  for (unsigned i = N - 1; i > 2; --i) {
2537    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2538      unsigned FilterLength = CI->getZExtValue();
2539      unsigned FirstCatch = i + FilterLength + 1;
2540      assert (FirstCatch <= N && "Invalid filter length");
2541
2542      if (FirstCatch < N) {
2543        TyInfo.reserve(N - FirstCatch);
2544        for (unsigned j = FirstCatch; j < N; ++j)
2545          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2546        MMI->addCatchTypeInfo(MBB, TyInfo);
2547        TyInfo.clear();
2548      }
2549
2550      TyInfo.reserve(FilterLength);
2551      for (unsigned j = i + 1; j < FirstCatch; ++j)
2552        TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2553      MMI->addFilterTypeInfo(MBB, TyInfo);
2554      TyInfo.clear();
2555
2556      N = i;
2557    }
2558  }
2559
2560  if (N > 3) {
2561    TyInfo.reserve(N - 3);
2562    for (unsigned j = 3; j < N; ++j)
2563      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2564    MMI->addCatchTypeInfo(MBB, TyInfo);
2565  }
2566}
2567
2568/// propagateEHRegister - The specified EH register is required in a successor
2569/// of the EH landing pad. Propagate it (by adding it to livein) to all the
2570/// blocks in the paths between the landing pad and the specified block.
2571static void propagateEHRegister(MachineBasicBlock *MBB, unsigned EHReg,
2572                                SmallPtrSet<MachineBasicBlock*, 8> Visited) {
2573  if (MBB->isLandingPad() || !Visited.insert(MBB))
2574    return;
2575
2576  MBB->addLiveIn(EHReg);
2577  for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
2578         E = MBB->pred_end(); PI != E; ++PI)
2579    propagateEHRegister(*PI, EHReg, Visited);
2580}
2581
2582static void propagateEHRegister(MachineBasicBlock *MBB, unsigned EHReg) {
2583  SmallPtrSet<MachineBasicBlock*, 8> Visited;
2584  propagateEHRegister(MBB, EHReg, Visited);
2585}
2586
2587/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2588/// we want to emit this as a call to a named external function, return the name
2589/// otherwise lower it and return null.
2590const char *
2591SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2592  switch (Intrinsic) {
2593  default:
2594    // By default, turn this into a target intrinsic node.
2595    visitTargetIntrinsic(I, Intrinsic);
2596    return 0;
2597  case Intrinsic::vastart:  visitVAStart(I); return 0;
2598  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2599  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2600  case Intrinsic::returnaddress:
2601    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2602                             getValue(I.getOperand(1))));
2603    return 0;
2604  case Intrinsic::frameaddress:
2605    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2606                             getValue(I.getOperand(1))));
2607    return 0;
2608  case Intrinsic::setjmp:
2609    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2610    break;
2611  case Intrinsic::longjmp:
2612    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2613    break;
2614  case Intrinsic::memcpy_i32:
2615  case Intrinsic::memcpy_i64:
2616    visitMemIntrinsic(I, ISD::MEMCPY);
2617    return 0;
2618  case Intrinsic::memset_i32:
2619  case Intrinsic::memset_i64:
2620    visitMemIntrinsic(I, ISD::MEMSET);
2621    return 0;
2622  case Intrinsic::memmove_i32:
2623  case Intrinsic::memmove_i64:
2624    visitMemIntrinsic(I, ISD::MEMMOVE);
2625    return 0;
2626
2627  case Intrinsic::dbg_stoppoint: {
2628    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2629    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2630    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2631      SDOperand Ops[5];
2632
2633      Ops[0] = getRoot();
2634      Ops[1] = getValue(SPI.getLineValue());
2635      Ops[2] = getValue(SPI.getColumnValue());
2636
2637      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2638      assert(DD && "Not a debug information descriptor");
2639      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2640
2641      Ops[3] = DAG.getString(CompileUnit->getFileName());
2642      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2643
2644      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2645    }
2646
2647    return 0;
2648  }
2649  case Intrinsic::dbg_region_start: {
2650    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2651    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2652    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2653      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2654      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2655                              DAG.getConstant(LabelID, MVT::i32)));
2656    }
2657
2658    return 0;
2659  }
2660  case Intrinsic::dbg_region_end: {
2661    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2662    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2663    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2664      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2665      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2666                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2667    }
2668
2669    return 0;
2670  }
2671  case Intrinsic::dbg_func_start: {
2672    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2673    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2674    if (MMI && FSI.getSubprogram() &&
2675        MMI->Verify(FSI.getSubprogram())) {
2676      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2677      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2678                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2679    }
2680
2681    return 0;
2682  }
2683  case Intrinsic::dbg_declare: {
2684    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2685    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2686    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2687      SDOperand AddressOp  = getValue(DI.getAddress());
2688      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2689        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2690    }
2691
2692    return 0;
2693  }
2694
2695  case Intrinsic::eh_exception: {
2696    if (ExceptionHandling) {
2697      if (!CurMBB->isLandingPad() && TLI.getExceptionAddressRegister())
2698          propagateEHRegister(CurMBB, TLI.getExceptionAddressRegister());
2699
2700      // Insert the EXCEPTIONADDR instruction.
2701      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2702      SDOperand Ops[1];
2703      Ops[0] = DAG.getRoot();
2704      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2705      setValue(&I, Op);
2706      DAG.setRoot(Op.getValue(1));
2707    } else {
2708      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2709    }
2710    return 0;
2711  }
2712
2713  case Intrinsic::eh_selector:{
2714    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2715
2716    if (ExceptionHandling && MMI) {
2717      if (CurMBB->isLandingPad())
2718        addCatchInfo(I, MMI, CurMBB);
2719      else {
2720#ifndef NDEBUG
2721        FuncInfo.CatchInfoLost.insert(&I);
2722#endif
2723        if (TLI.getExceptionSelectorRegister())
2724          propagateEHRegister(CurMBB, TLI.getExceptionSelectorRegister());
2725      }
2726
2727      // Insert the EHSELECTION instruction.
2728      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2729      SDOperand Ops[2];
2730      Ops[0] = getValue(I.getOperand(1));
2731      Ops[1] = getRoot();
2732      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2733      setValue(&I, Op);
2734      DAG.setRoot(Op.getValue(1));
2735    } else {
2736      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2737    }
2738
2739    return 0;
2740  }
2741
2742  case Intrinsic::eh_typeid_for: {
2743    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2744
2745    if (MMI) {
2746      // Find the type id for the given typeinfo.
2747      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2748
2749      unsigned TypeID = MMI->getTypeIDFor(GV);
2750      setValue(&I, DAG.getConstant(TypeID, MVT::i32));
2751    } else {
2752      setValue(&I, DAG.getConstant(0, MVT::i32));
2753    }
2754
2755    return 0;
2756  }
2757
2758  case Intrinsic::sqrt_f32:
2759  case Intrinsic::sqrt_f64:
2760    setValue(&I, DAG.getNode(ISD::FSQRT,
2761                             getValue(I.getOperand(1)).getValueType(),
2762                             getValue(I.getOperand(1))));
2763    return 0;
2764  case Intrinsic::powi_f32:
2765  case Intrinsic::powi_f64:
2766    setValue(&I, DAG.getNode(ISD::FPOWI,
2767                             getValue(I.getOperand(1)).getValueType(),
2768                             getValue(I.getOperand(1)),
2769                             getValue(I.getOperand(2))));
2770    return 0;
2771  case Intrinsic::pcmarker: {
2772    SDOperand Tmp = getValue(I.getOperand(1));
2773    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2774    return 0;
2775  }
2776  case Intrinsic::readcyclecounter: {
2777    SDOperand Op = getRoot();
2778    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2779                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2780                                &Op, 1);
2781    setValue(&I, Tmp);
2782    DAG.setRoot(Tmp.getValue(1));
2783    return 0;
2784  }
2785  case Intrinsic::part_select: {
2786    // Currently not implemented: just abort
2787    assert(0 && "part_select intrinsic not implemented");
2788    abort();
2789  }
2790  case Intrinsic::part_set: {
2791    // Currently not implemented: just abort
2792    assert(0 && "part_set intrinsic not implemented");
2793    abort();
2794  }
2795  case Intrinsic::bswap:
2796    setValue(&I, DAG.getNode(ISD::BSWAP,
2797                             getValue(I.getOperand(1)).getValueType(),
2798                             getValue(I.getOperand(1))));
2799    return 0;
2800  case Intrinsic::cttz: {
2801    SDOperand Arg = getValue(I.getOperand(1));
2802    MVT::ValueType Ty = Arg.getValueType();
2803    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2804    if (Ty < MVT::i32)
2805      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2806    else if (Ty > MVT::i32)
2807      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2808    setValue(&I, result);
2809    return 0;
2810  }
2811  case Intrinsic::ctlz: {
2812    SDOperand Arg = getValue(I.getOperand(1));
2813    MVT::ValueType Ty = Arg.getValueType();
2814    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2815    if (Ty < MVT::i32)
2816      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2817    else if (Ty > MVT::i32)
2818      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2819    setValue(&I, result);
2820    return 0;
2821  }
2822  case Intrinsic::ctpop: {
2823    SDOperand Arg = getValue(I.getOperand(1));
2824    MVT::ValueType Ty = Arg.getValueType();
2825    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2826    if (Ty < MVT::i32)
2827      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2828    else if (Ty > MVT::i32)
2829      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2830    setValue(&I, result);
2831    return 0;
2832  }
2833  case Intrinsic::stacksave: {
2834    SDOperand Op = getRoot();
2835    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2836              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2837    setValue(&I, Tmp);
2838    DAG.setRoot(Tmp.getValue(1));
2839    return 0;
2840  }
2841  case Intrinsic::stackrestore: {
2842    SDOperand Tmp = getValue(I.getOperand(1));
2843    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2844    return 0;
2845  }
2846  case Intrinsic::prefetch:
2847    // FIXME: Currently discarding prefetches.
2848    return 0;
2849
2850  case Intrinsic::var_annotation:
2851    // Discard annotate attributes
2852    return 0;
2853  }
2854}
2855
2856
2857void SelectionDAGLowering::LowerCallTo(Instruction &I,
2858                                       const Type *CalledValueTy,
2859                                       unsigned CallingConv,
2860                                       bool IsTailCall,
2861                                       SDOperand Callee, unsigned OpIdx,
2862                                       MachineBasicBlock *LandingPad) {
2863  const PointerType *PT = cast<PointerType>(CalledValueTy);
2864  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2865  const ParamAttrsList *Attrs = FTy->getParamAttrs();
2866  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2867  unsigned BeginLabel = 0, EndLabel = 0;
2868
2869  TargetLowering::ArgListTy Args;
2870  TargetLowering::ArgListEntry Entry;
2871  Args.reserve(I.getNumOperands());
2872  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2873    Value *Arg = I.getOperand(i);
2874    SDOperand ArgNode = getValue(Arg);
2875    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2876
2877    unsigned attrInd = i - OpIdx + 1;
2878    Entry.isSExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
2879    Entry.isZExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
2880    Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
2881    Entry.isSRet  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
2882    Args.push_back(Entry);
2883  }
2884
2885  if (ExceptionHandling && MMI) {
2886    // Insert a label before the invoke call to mark the try range.  This can be
2887    // used to detect deletion of the invoke via the MachineModuleInfo.
2888    BeginLabel = MMI->NextLabelID();
2889    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2890                            DAG.getConstant(BeginLabel, MVT::i32)));
2891  }
2892
2893  std::pair<SDOperand,SDOperand> Result =
2894    TLI.LowerCallTo(getRoot(), I.getType(),
2895                    Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2896                    FTy->isVarArg(), CallingConv, IsTailCall,
2897                    Callee, Args, DAG);
2898  if (I.getType() != Type::VoidTy)
2899    setValue(&I, Result.first);
2900  DAG.setRoot(Result.second);
2901
2902  if (ExceptionHandling && MMI) {
2903    // Insert a label at the end of the invoke call to mark the try range.  This
2904    // can be used to detect deletion of the invoke via the MachineModuleInfo.
2905    EndLabel = MMI->NextLabelID();
2906    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2907                            DAG.getConstant(EndLabel, MVT::i32)));
2908
2909    // Inform MachineModuleInfo of range.
2910    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2911  }
2912}
2913
2914
2915void SelectionDAGLowering::visitCall(CallInst &I) {
2916  const char *RenameFn = 0;
2917  if (Function *F = I.getCalledFunction()) {
2918    if (F->isDeclaration())
2919      if (unsigned IID = F->getIntrinsicID()) {
2920        RenameFn = visitIntrinsicCall(I, IID);
2921        if (!RenameFn)
2922          return;
2923      } else {    // Not an LLVM intrinsic.
2924        const std::string &Name = F->getName();
2925        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2926          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2927              I.getOperand(1)->getType()->isFloatingPoint() &&
2928              I.getType() == I.getOperand(1)->getType() &&
2929              I.getType() == I.getOperand(2)->getType()) {
2930            SDOperand LHS = getValue(I.getOperand(1));
2931            SDOperand RHS = getValue(I.getOperand(2));
2932            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2933                                     LHS, RHS));
2934            return;
2935          }
2936        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2937          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2938              I.getOperand(1)->getType()->isFloatingPoint() &&
2939              I.getType() == I.getOperand(1)->getType()) {
2940            SDOperand Tmp = getValue(I.getOperand(1));
2941            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2942            return;
2943          }
2944        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2945          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2946              I.getOperand(1)->getType()->isFloatingPoint() &&
2947              I.getType() == I.getOperand(1)->getType()) {
2948            SDOperand Tmp = getValue(I.getOperand(1));
2949            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2950            return;
2951          }
2952        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2953          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2954              I.getOperand(1)->getType()->isFloatingPoint() &&
2955              I.getType() == I.getOperand(1)->getType()) {
2956            SDOperand Tmp = getValue(I.getOperand(1));
2957            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2958            return;
2959          }
2960        }
2961      }
2962  } else if (isa<InlineAsm>(I.getOperand(0))) {
2963    visitInlineAsm(I);
2964    return;
2965  }
2966
2967  SDOperand Callee;
2968  if (!RenameFn)
2969    Callee = getValue(I.getOperand(0));
2970  else
2971    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2972
2973  LowerCallTo(I, I.getCalledValue()->getType(),
2974              I.getCallingConv(),
2975              I.isTailCall(),
2976              Callee,
2977              1);
2978}
2979
2980
2981/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
2982/// this value and returns the result as a ValueVT value.  This uses
2983/// Chain/Flag as the input and updates them for the output Chain/Flag.
2984/// If the Flag pointer is NULL, no flag is used.
2985SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2986                                        SDOperand &Chain, SDOperand *Flag)const{
2987  // Get the list of registers, in the appropriate order.
2988  std::vector<unsigned> R(Regs);
2989  if (!DAG.getTargetLoweringInfo().isLittleEndian())
2990    std::reverse(R.begin(), R.end());
2991
2992  // Copy the legal parts from the registers.
2993  unsigned NumParts = Regs.size();
2994  SmallVector<SDOperand, 8> Parts(NumParts);
2995  for (unsigned i = 0; i != NumParts; ++i) {
2996    SDOperand Part = Flag ?
2997                     DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
2998                     DAG.getCopyFromReg(Chain, Regs[i], RegVT);
2999    Chain = Part.getValue(1);
3000    if (Flag)
3001      *Flag = Part.getValue(2);
3002    Parts[i] = Part;
3003  }
3004
3005  // Assemble the legal parts into the final value.
3006  return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT, false);
3007}
3008
3009/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3010/// specified value into the registers specified by this object.  This uses
3011/// Chain/Flag as the input and updates them for the output Chain/Flag.
3012/// If the Flag pointer is NULL, no flag is used.
3013void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3014                                 SDOperand &Chain, SDOperand *Flag) const {
3015  // Get the list of registers, in the appropriate order.
3016  std::vector<unsigned> R(Regs);
3017  if (!DAG.getTargetLoweringInfo().isLittleEndian())
3018    std::reverse(R.begin(), R.end());
3019
3020  // Get the list of the values's legal parts.
3021  unsigned NumParts = Regs.size();
3022  SmallVector<SDOperand, 8> Parts(NumParts);
3023  getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT, false);
3024
3025  // Copy the parts into the registers.
3026  for (unsigned i = 0; i != NumParts; ++i) {
3027    SDOperand Part = Flag ?
3028                     DAG.getCopyToReg(Chain, R[i], Parts[i], *Flag) :
3029                     DAG.getCopyToReg(Chain, R[i], Parts[i]);
3030    Chain = Part.getValue(0);
3031    if (Flag)
3032      *Flag = Part.getValue(1);
3033  }
3034}
3035
3036/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3037/// operand list.  This adds the code marker and includes the number of
3038/// values added into it.
3039void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3040                                        std::vector<SDOperand> &Ops) const {
3041  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3042  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3043  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3044    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3045}
3046
3047/// isAllocatableRegister - If the specified register is safe to allocate,
3048/// i.e. it isn't a stack pointer or some other special register, return the
3049/// register class for the register.  Otherwise, return null.
3050static const TargetRegisterClass *
3051isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3052                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
3053  MVT::ValueType FoundVT = MVT::Other;
3054  const TargetRegisterClass *FoundRC = 0;
3055  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3056       E = MRI->regclass_end(); RCI != E; ++RCI) {
3057    MVT::ValueType ThisVT = MVT::Other;
3058
3059    const TargetRegisterClass *RC = *RCI;
3060    // If none of the the value types for this register class are valid, we
3061    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3062    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3063         I != E; ++I) {
3064      if (TLI.isTypeLegal(*I)) {
3065        // If we have already found this register in a different register class,
3066        // choose the one with the largest VT specified.  For example, on
3067        // PowerPC, we favor f64 register classes over f32.
3068        if (FoundVT == MVT::Other ||
3069            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3070          ThisVT = *I;
3071          break;
3072        }
3073      }
3074    }
3075
3076    if (ThisVT == MVT::Other) continue;
3077
3078    // NOTE: This isn't ideal.  In particular, this might allocate the
3079    // frame pointer in functions that need it (due to them not being taken
3080    // out of allocation, because a variable sized allocation hasn't been seen
3081    // yet).  This is a slight code pessimization, but should still work.
3082    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3083         E = RC->allocation_order_end(MF); I != E; ++I)
3084      if (*I == Reg) {
3085        // We found a matching register class.  Keep looking at others in case
3086        // we find one with larger registers that this physreg is also in.
3087        FoundRC = RC;
3088        FoundVT = ThisVT;
3089        break;
3090      }
3091  }
3092  return FoundRC;
3093}
3094
3095
3096namespace {
3097/// AsmOperandInfo - This contains information for each constraint that we are
3098/// lowering.
3099struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3100  /// ConstraintCode - This contains the actual string for the code, like "m".
3101  std::string ConstraintCode;
3102
3103  /// ConstraintType - Information about the constraint code, e.g. Register,
3104  /// RegisterClass, Memory, Other, Unknown.
3105  TargetLowering::ConstraintType ConstraintType;
3106
3107  /// CallOperand/CallOperandval - If this is the result output operand or a
3108  /// clobber, this is null, otherwise it is the incoming operand to the
3109  /// CallInst.  This gets modified as the asm is processed.
3110  SDOperand CallOperand;
3111  Value *CallOperandVal;
3112
3113  /// ConstraintVT - The ValueType for the operand value.
3114  MVT::ValueType ConstraintVT;
3115
3116  /// AssignedRegs - If this is a register or register class operand, this
3117  /// contains the set of register corresponding to the operand.
3118  RegsForValue AssignedRegs;
3119
3120  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3121    : InlineAsm::ConstraintInfo(info),
3122      ConstraintType(TargetLowering::C_Unknown),
3123      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3124  }
3125
3126  void ComputeConstraintToUse(const TargetLowering &TLI);
3127
3128  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3129  /// busy in OutputRegs/InputRegs.
3130  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3131                         std::set<unsigned> &OutputRegs,
3132                         std::set<unsigned> &InputRegs) const {
3133     if (isOutReg)
3134       OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3135     if (isInReg)
3136       InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3137   }
3138};
3139} // end anon namespace.
3140
3141/// getConstraintGenerality - Return an integer indicating how general CT is.
3142static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3143  switch (CT) {
3144    default: assert(0 && "Unknown constraint type!");
3145    case TargetLowering::C_Other:
3146    case TargetLowering::C_Unknown:
3147      return 0;
3148    case TargetLowering::C_Register:
3149      return 1;
3150    case TargetLowering::C_RegisterClass:
3151      return 2;
3152    case TargetLowering::C_Memory:
3153      return 3;
3154  }
3155}
3156
3157void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3158  assert(!Codes.empty() && "Must have at least one constraint");
3159
3160  std::string *Current = &Codes[0];
3161  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3162  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3163    ConstraintCode = *Current;
3164    ConstraintType = CurType;
3165    return;
3166  }
3167
3168  unsigned CurGenerality = getConstraintGenerality(CurType);
3169
3170  // If we have multiple constraints, try to pick the most general one ahead
3171  // of time.  This isn't a wonderful solution, but handles common cases.
3172  for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3173    TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3174    unsigned ThisGenerality = getConstraintGenerality(ThisType);
3175    if (ThisGenerality > CurGenerality) {
3176      // This constraint letter is more general than the previous one,
3177      // use it.
3178      CurType = ThisType;
3179      Current = &Codes[j];
3180      CurGenerality = ThisGenerality;
3181    }
3182  }
3183
3184  ConstraintCode = *Current;
3185  ConstraintType = CurType;
3186}
3187
3188
3189void SelectionDAGLowering::
3190GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3191                     std::set<unsigned> &OutputRegs,
3192                     std::set<unsigned> &InputRegs) {
3193  // Compute whether this value requires an input register, an output register,
3194  // or both.
3195  bool isOutReg = false;
3196  bool isInReg = false;
3197  switch (OpInfo.Type) {
3198  case InlineAsm::isOutput:
3199    isOutReg = true;
3200
3201    // If this is an early-clobber output, or if there is an input
3202    // constraint that matches this, we need to reserve the input register
3203    // so no other inputs allocate to it.
3204    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3205    break;
3206  case InlineAsm::isInput:
3207    isInReg = true;
3208    isOutReg = false;
3209    break;
3210  case InlineAsm::isClobber:
3211    isOutReg = true;
3212    isInReg = true;
3213    break;
3214  }
3215
3216
3217  MachineFunction &MF = DAG.getMachineFunction();
3218  std::vector<unsigned> Regs;
3219
3220  // If this is a constraint for a single physreg, or a constraint for a
3221  // register class, find it.
3222  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3223    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3224                                     OpInfo.ConstraintVT);
3225
3226  unsigned NumRegs = 1;
3227  if (OpInfo.ConstraintVT != MVT::Other)
3228    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3229  MVT::ValueType RegVT;
3230  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3231
3232
3233  // If this is a constraint for a specific physical register, like {r17},
3234  // assign it now.
3235  if (PhysReg.first) {
3236    if (OpInfo.ConstraintVT == MVT::Other)
3237      ValueVT = *PhysReg.second->vt_begin();
3238
3239    // Get the actual register value type.  This is important, because the user
3240    // may have asked for (e.g.) the AX register in i32 type.  We need to
3241    // remember that AX is actually i16 to get the right extension.
3242    RegVT = *PhysReg.second->vt_begin();
3243
3244    // This is a explicit reference to a physical register.
3245    Regs.push_back(PhysReg.first);
3246
3247    // If this is an expanded reference, add the rest of the regs to Regs.
3248    if (NumRegs != 1) {
3249      TargetRegisterClass::iterator I = PhysReg.second->begin();
3250      TargetRegisterClass::iterator E = PhysReg.second->end();
3251      for (; *I != PhysReg.first; ++I)
3252        assert(I != E && "Didn't find reg!");
3253
3254      // Already added the first reg.
3255      --NumRegs; ++I;
3256      for (; NumRegs; --NumRegs, ++I) {
3257        assert(I != E && "Ran out of registers to allocate!");
3258        Regs.push_back(*I);
3259      }
3260    }
3261    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3262    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3263    return;
3264  }
3265
3266  // Otherwise, if this was a reference to an LLVM register class, create vregs
3267  // for this reference.
3268  std::vector<unsigned> RegClassRegs;
3269  const TargetRegisterClass *RC = PhysReg.second;
3270  if (RC) {
3271    // If this is an early clobber or tied register, our regalloc doesn't know
3272    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3273    // and let the regalloc do the right thing.
3274    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3275        // If there is some other early clobber and this is an input register,
3276        // then we are forced to pre-allocate the input reg so it doesn't
3277        // conflict with the earlyclobber.
3278        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3279      RegVT = *PhysReg.second->vt_begin();
3280
3281      if (OpInfo.ConstraintVT == MVT::Other)
3282        ValueVT = RegVT;
3283
3284      // Create the appropriate number of virtual registers.
3285      SSARegMap *RegMap = MF.getSSARegMap();
3286      for (; NumRegs; --NumRegs)
3287        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3288
3289      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3290      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3291      return;
3292    }
3293
3294    // Otherwise, we can't allocate it.  Let the code below figure out how to
3295    // maintain these constraints.
3296    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3297
3298  } else {
3299    // This is a reference to a register class that doesn't directly correspond
3300    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3301    // registers from the class.
3302    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3303                                                         OpInfo.ConstraintVT);
3304  }
3305
3306  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3307  unsigned NumAllocated = 0;
3308  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3309    unsigned Reg = RegClassRegs[i];
3310    // See if this register is available.
3311    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3312        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3313      // Make sure we find consecutive registers.
3314      NumAllocated = 0;
3315      continue;
3316    }
3317
3318    // Check to see if this register is allocatable (i.e. don't give out the
3319    // stack pointer).
3320    if (RC == 0) {
3321      RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3322      if (!RC) {        // Couldn't allocate this register.
3323        // Reset NumAllocated to make sure we return consecutive registers.
3324        NumAllocated = 0;
3325        continue;
3326      }
3327    }
3328
3329    // Okay, this register is good, we can use it.
3330    ++NumAllocated;
3331
3332    // If we allocated enough consecutive registers, succeed.
3333    if (NumAllocated == NumRegs) {
3334      unsigned RegStart = (i-NumAllocated)+1;
3335      unsigned RegEnd   = i+1;
3336      // Mark all of the allocated registers used.
3337      for (unsigned i = RegStart; i != RegEnd; ++i)
3338        Regs.push_back(RegClassRegs[i]);
3339
3340      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3341                                         OpInfo.ConstraintVT);
3342      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3343      return;
3344    }
3345  }
3346
3347  // Otherwise, we couldn't allocate enough registers for this.
3348  return;
3349}
3350
3351
3352/// visitInlineAsm - Handle a call to an InlineAsm object.
3353///
3354void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
3355  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
3356
3357  /// ConstraintOperands - Information about all of the constraints.
3358  std::vector<AsmOperandInfo> ConstraintOperands;
3359
3360  SDOperand Chain = getRoot();
3361  SDOperand Flag;
3362
3363  std::set<unsigned> OutputRegs, InputRegs;
3364
3365  // Do a prepass over the constraints, canonicalizing them, and building up the
3366  // ConstraintOperands list.
3367  std::vector<InlineAsm::ConstraintInfo>
3368    ConstraintInfos = IA->ParseConstraints();
3369
3370  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3371  // constraint.  If so, we can't let the register allocator allocate any input
3372  // registers, because it will not know to avoid the earlyclobbered output reg.
3373  bool SawEarlyClobber = false;
3374
3375  unsigned OpNo = 1;   // OpNo - The operand of the CallInst.
3376  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3377    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3378    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3379
3380    MVT::ValueType OpVT = MVT::Other;
3381
3382    // Compute the value type for each operand.
3383    switch (OpInfo.Type) {
3384    case InlineAsm::isOutput:
3385      if (!OpInfo.isIndirect) {
3386        // The return value of the call is this value.  As such, there is no
3387        // corresponding argument.
3388        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3389        OpVT = TLI.getValueType(I.getType());
3390      } else {
3391        OpInfo.CallOperandVal = I.getOperand(OpNo++);
3392      }
3393      break;
3394    case InlineAsm::isInput:
3395      OpInfo.CallOperandVal = I.getOperand(OpNo++);
3396      break;
3397    case InlineAsm::isClobber:
3398      // Nothing to do.
3399      break;
3400    }
3401
3402    // If this is an input or an indirect output, process the call argument.
3403    if (OpInfo.CallOperandVal) {
3404      OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3405      const Type *OpTy = OpInfo.CallOperandVal->getType();
3406      // If this is an indirect operand, the operand is a pointer to the
3407      // accessed type.
3408      if (OpInfo.isIndirect)
3409        OpTy = cast<PointerType>(OpTy)->getElementType();
3410
3411      // If OpTy is not a first-class value, it may be a struct/union that we
3412      // can tile with integers.
3413      if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3414        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3415        switch (BitSize) {
3416        default: break;
3417        case 1:
3418        case 8:
3419        case 16:
3420        case 32:
3421        case 64:
3422          OpTy = IntegerType::get(BitSize);
3423          break;
3424        }
3425      }
3426
3427      OpVT = TLI.getValueType(OpTy, true);
3428    }
3429
3430    OpInfo.ConstraintVT = OpVT;
3431
3432    // Compute the constraint code and ConstraintType to use.
3433    OpInfo.ComputeConstraintToUse(TLI);
3434
3435    // Keep track of whether we see an earlyclobber.
3436    SawEarlyClobber |= OpInfo.isEarlyClobber;
3437
3438    // If this is a memory input, and if the operand is not indirect, do what we
3439    // need to to provide an address for the memory input.
3440    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3441        !OpInfo.isIndirect) {
3442      assert(OpInfo.Type == InlineAsm::isInput &&
3443             "Can only indirectify direct input operands!");
3444
3445      // Memory operands really want the address of the value.  If we don't have
3446      // an indirect input, put it in the constpool if we can, otherwise spill
3447      // it to a stack slot.
3448
3449      // If the operand is a float, integer, or vector constant, spill to a
3450      // constant pool entry to get its address.
3451      Value *OpVal = OpInfo.CallOperandVal;
3452      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3453          isa<ConstantVector>(OpVal)) {
3454        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3455                                                 TLI.getPointerTy());
3456      } else {
3457        // Otherwise, create a stack slot and emit a store to it before the
3458        // asm.
3459        const Type *Ty = OpVal->getType();
3460        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
3461        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3462        MachineFunction &MF = DAG.getMachineFunction();
3463        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3464        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3465        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3466        OpInfo.CallOperand = StackSlot;
3467      }
3468
3469      // There is no longer a Value* corresponding to this operand.
3470      OpInfo.CallOperandVal = 0;
3471      // It is now an indirect operand.
3472      OpInfo.isIndirect = true;
3473    }
3474
3475    // If this constraint is for a specific register, allocate it before
3476    // anything else.
3477    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3478      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3479  }
3480  ConstraintInfos.clear();
3481
3482
3483  // Second pass - Loop over all of the operands, assigning virtual or physregs
3484  // to registerclass operands.
3485  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3486    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3487
3488    // C_Register operands have already been allocated, Other/Memory don't need
3489    // to be.
3490    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3491      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3492  }
3493
3494  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3495  std::vector<SDOperand> AsmNodeOperands;
3496  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3497  AsmNodeOperands.push_back(
3498          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3499
3500
3501  // Loop over all of the inputs, copying the operand values into the
3502  // appropriate registers and processing the output regs.
3503  RegsForValue RetValRegs;
3504
3505  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3506  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3507
3508  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3509    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3510
3511    switch (OpInfo.Type) {
3512    case InlineAsm::isOutput: {
3513      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3514          OpInfo.ConstraintType != TargetLowering::C_Register) {
3515        // Memory output, or 'other' output (e.g. 'X' constraint).
3516        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3517
3518        // Add information to the INLINEASM node to know about this output.
3519        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3520        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3521                                                        TLI.getPointerTy()));
3522        AsmNodeOperands.push_back(OpInfo.CallOperand);
3523        break;
3524      }
3525
3526      // Otherwise, this is a register or register class output.
3527
3528      // Copy the output from the appropriate register.  Find a register that
3529      // we can use.
3530      if (OpInfo.AssignedRegs.Regs.empty()) {
3531        cerr << "Couldn't allocate output reg for contraint '"
3532             << OpInfo.ConstraintCode << "'!\n";
3533        exit(1);
3534      }
3535
3536      if (!OpInfo.isIndirect) {
3537        // This is the result value of the call.
3538        assert(RetValRegs.Regs.empty() &&
3539               "Cannot have multiple output constraints yet!");
3540        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3541        RetValRegs = OpInfo.AssignedRegs;
3542      } else {
3543        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3544                                                      OpInfo.CallOperandVal));
3545      }
3546
3547      // Add information to the INLINEASM node to know that this register is
3548      // set.
3549      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3550                                               AsmNodeOperands);
3551      break;
3552    }
3553    case InlineAsm::isInput: {
3554      SDOperand InOperandVal = OpInfo.CallOperand;
3555
3556      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3557        // If this is required to match an output register we have already set,
3558        // just use its register.
3559        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3560
3561        // Scan until we find the definition we already emitted of this operand.
3562        // When we find it, create a RegsForValue operand.
3563        unsigned CurOp = 2;  // The first operand.
3564        for (; OperandNo; --OperandNo) {
3565          // Advance to the next operand.
3566          unsigned NumOps =
3567            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3568          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3569                  (NumOps & 7) == 4 /*MEM*/) &&
3570                 "Skipped past definitions?");
3571          CurOp += (NumOps>>3)+1;
3572        }
3573
3574        unsigned NumOps =
3575          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3576        if ((NumOps & 7) == 2 /*REGDEF*/) {
3577          // Add NumOps>>3 registers to MatchedRegs.
3578          RegsForValue MatchedRegs;
3579          MatchedRegs.ValueVT = InOperandVal.getValueType();
3580          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3581          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3582            unsigned Reg =
3583              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3584            MatchedRegs.Regs.push_back(Reg);
3585          }
3586
3587          // Use the produced MatchedRegs object to
3588          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3589          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3590          break;
3591        } else {
3592          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3593          assert(0 && "matching constraints for memory operands unimp");
3594        }
3595      }
3596
3597      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3598        assert(!OpInfo.isIndirect &&
3599               "Don't know how to handle indirect other inputs yet!");
3600
3601        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
3602                                                       OpInfo.ConstraintCode[0],
3603                                                       DAG);
3604        if (!InOperandVal.Val) {
3605          cerr << "Invalid operand for inline asm constraint '"
3606               << OpInfo.ConstraintCode << "'!\n";
3607          exit(1);
3608        }
3609
3610        // Add information to the INLINEASM node to know about this input.
3611        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
3612        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3613                                                        TLI.getPointerTy()));
3614        AsmNodeOperands.push_back(InOperandVal);
3615        break;
3616      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3617        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3618        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3619               "Memory operands expect pointer values");
3620
3621        // Add information to the INLINEASM node to know about this input.
3622        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3623        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3624                                                        TLI.getPointerTy()));
3625        AsmNodeOperands.push_back(InOperandVal);
3626        break;
3627      }
3628
3629      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3630              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3631             "Unknown constraint type!");
3632      assert(!OpInfo.isIndirect &&
3633             "Don't know how to handle indirect register inputs yet!");
3634
3635      // Copy the input into the appropriate registers.
3636      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3637             "Couldn't allocate input reg!");
3638
3639      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3640
3641      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3642                                               AsmNodeOperands);
3643      break;
3644    }
3645    case InlineAsm::isClobber: {
3646      // Add the clobbered value to the operand list, so that the register
3647      // allocator is aware that the physreg got clobbered.
3648      if (!OpInfo.AssignedRegs.Regs.empty())
3649        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3650                                                 AsmNodeOperands);
3651      break;
3652    }
3653    }
3654  }
3655
3656  // Finish up input operands.
3657  AsmNodeOperands[0] = Chain;
3658  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3659
3660  Chain = DAG.getNode(ISD::INLINEASM,
3661                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3662                      &AsmNodeOperands[0], AsmNodeOperands.size());
3663  Flag = Chain.getValue(1);
3664
3665  // If this asm returns a register value, copy the result from that register
3666  // and set it as the value of the call.
3667  if (!RetValRegs.Regs.empty()) {
3668    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3669
3670    // If the result of the inline asm is a vector, it may have the wrong
3671    // width/num elts.  Make sure to convert it to the right type with
3672    // bit_convert.
3673    if (MVT::isVector(Val.getValueType())) {
3674      const VectorType *VTy = cast<VectorType>(I.getType());
3675      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3676
3677      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3678    }
3679
3680    setValue(&I, Val);
3681  }
3682
3683  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3684
3685  // Process indirect outputs, first output all of the flagged copies out of
3686  // physregs.
3687  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3688    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3689    Value *Ptr = IndirectStoresToEmit[i].second;
3690    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3691    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3692  }
3693
3694  // Emit the non-flagged stores from the physregs.
3695  SmallVector<SDOperand, 8> OutChains;
3696  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3697    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3698                                    getValue(StoresToEmit[i].second),
3699                                    StoresToEmit[i].second, 0));
3700  if (!OutChains.empty())
3701    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3702                        &OutChains[0], OutChains.size());
3703  DAG.setRoot(Chain);
3704}
3705
3706
3707void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3708  SDOperand Src = getValue(I.getOperand(0));
3709
3710  MVT::ValueType IntPtr = TLI.getPointerTy();
3711
3712  if (IntPtr < Src.getValueType())
3713    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3714  else if (IntPtr > Src.getValueType())
3715    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3716
3717  // Scale the source by the type size.
3718  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
3719  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3720                    Src, getIntPtrConstant(ElementSize));
3721
3722  TargetLowering::ArgListTy Args;
3723  TargetLowering::ArgListEntry Entry;
3724  Entry.Node = Src;
3725  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3726  Args.push_back(Entry);
3727
3728  std::pair<SDOperand,SDOperand> Result =
3729    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3730                    DAG.getExternalSymbol("malloc", IntPtr),
3731                    Args, DAG);
3732  setValue(&I, Result.first);  // Pointers always fit in registers
3733  DAG.setRoot(Result.second);
3734}
3735
3736void SelectionDAGLowering::visitFree(FreeInst &I) {
3737  TargetLowering::ArgListTy Args;
3738  TargetLowering::ArgListEntry Entry;
3739  Entry.Node = getValue(I.getOperand(0));
3740  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3741  Args.push_back(Entry);
3742  MVT::ValueType IntPtr = TLI.getPointerTy();
3743  std::pair<SDOperand,SDOperand> Result =
3744    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3745                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3746  DAG.setRoot(Result.second);
3747}
3748
3749// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3750// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3751// instructions are special in various ways, which require special support to
3752// insert.  The specified MachineInstr is created but not inserted into any
3753// basic blocks, and the scheduler passes ownership of it to this method.
3754MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3755                                                       MachineBasicBlock *MBB) {
3756  cerr << "If a target marks an instruction with "
3757       << "'usesCustomDAGSchedInserter', it must implement "
3758       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3759  abort();
3760  return 0;
3761}
3762
3763void SelectionDAGLowering::visitVAStart(CallInst &I) {
3764  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3765                          getValue(I.getOperand(1)),
3766                          DAG.getSrcValue(I.getOperand(1))));
3767}
3768
3769void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3770  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3771                             getValue(I.getOperand(0)),
3772                             DAG.getSrcValue(I.getOperand(0)));
3773  setValue(&I, V);
3774  DAG.setRoot(V.getValue(1));
3775}
3776
3777void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3778  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3779                          getValue(I.getOperand(1)),
3780                          DAG.getSrcValue(I.getOperand(1))));
3781}
3782
3783void SelectionDAGLowering::visitVACopy(CallInst &I) {
3784  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3785                          getValue(I.getOperand(1)),
3786                          getValue(I.getOperand(2)),
3787                          DAG.getSrcValue(I.getOperand(1)),
3788                          DAG.getSrcValue(I.getOperand(2))));
3789}
3790
3791/// TargetLowering::LowerArguments - This is the default LowerArguments
3792/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3793/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3794/// integrated into SDISel.
3795std::vector<SDOperand>
3796TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3797  const FunctionType *FTy = F.getFunctionType();
3798  const ParamAttrsList *Attrs = FTy->getParamAttrs();
3799  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3800  std::vector<SDOperand> Ops;
3801  Ops.push_back(DAG.getRoot());
3802  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3803  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3804
3805  // Add one result value for each formal argument.
3806  std::vector<MVT::ValueType> RetVals;
3807  unsigned j = 1;
3808  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3809       I != E; ++I, ++j) {
3810    MVT::ValueType VT = getValueType(I->getType());
3811    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3812    unsigned OriginalAlignment =
3813      getTargetData()->getABITypeAlignment(I->getType());
3814
3815    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3816    // that is zero extended!
3817    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt))
3818      Flags &= ~(ISD::ParamFlags::SExt);
3819    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt))
3820      Flags |= ISD::ParamFlags::SExt;
3821    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg))
3822      Flags |= ISD::ParamFlags::InReg;
3823    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet))
3824      Flags |= ISD::ParamFlags::StructReturn;
3825    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3826
3827    switch (getTypeAction(VT)) {
3828    default: assert(0 && "Unknown type action!");
3829    case Legal:
3830      RetVals.push_back(VT);
3831      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3832      break;
3833    case Promote:
3834      RetVals.push_back(getTypeToTransformTo(VT));
3835      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3836      break;
3837    case Expand: {
3838      // If this is an illegal type, it needs to be broken up to fit into
3839      // registers.
3840      MVT::ValueType RegisterVT = getRegisterType(VT);
3841      unsigned NumRegs = getNumRegisters(VT);
3842      for (unsigned i = 0; i != NumRegs; ++i) {
3843        RetVals.push_back(RegisterVT);
3844        // if it isn't first piece, alignment must be 1
3845        if (i > 0)
3846          Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3847            (1 << ISD::ParamFlags::OrigAlignmentOffs);
3848        Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3849      }
3850      break;
3851    }
3852    }
3853  }
3854
3855  RetVals.push_back(MVT::Other);
3856
3857  // Create the node.
3858  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3859                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3860                               &Ops[0], Ops.size()).Val;
3861  unsigned NumArgRegs = Result->getNumValues() - 1;
3862  DAG.setRoot(SDOperand(Result, NumArgRegs));
3863
3864  // Set up the return result vector.
3865  Ops.clear();
3866  unsigned i = 0;
3867  unsigned Idx = 1;
3868  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3869      ++I, ++Idx) {
3870    MVT::ValueType VT = getValueType(I->getType());
3871
3872    switch (getTypeAction(VT)) {
3873    default: assert(0 && "Unknown type action!");
3874    case Legal:
3875      Ops.push_back(SDOperand(Result, i++));
3876      break;
3877    case Promote: {
3878      SDOperand Op(Result, i++);
3879      if (MVT::isInteger(VT)) {
3880        if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt))
3881          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3882                           DAG.getValueType(VT));
3883        else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt))
3884          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3885                           DAG.getValueType(VT));
3886        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3887      } else {
3888        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3889        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3890      }
3891      Ops.push_back(Op);
3892      break;
3893    }
3894    case Expand: {
3895      MVT::ValueType PartVT = getRegisterType(VT);
3896      unsigned NumParts = getNumRegisters(VT);
3897      SmallVector<SDOperand, 4> Parts(NumParts);
3898      for (unsigned j = 0; j != NumParts; ++j)
3899        Parts[j] = SDOperand(Result, i++);
3900      Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT, true));
3901      break;
3902    }
3903    }
3904  }
3905  assert(i == NumArgRegs && "Argument register count mismatch!");
3906  return Ops;
3907}
3908
3909
3910/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3911/// implementation, which just inserts an ISD::CALL node, which is later custom
3912/// lowered by the target to something concrete.  FIXME: When all targets are
3913/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3914std::pair<SDOperand, SDOperand>
3915TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3916                            bool RetTyIsSigned, bool isVarArg,
3917                            unsigned CallingConv, bool isTailCall,
3918                            SDOperand Callee,
3919                            ArgListTy &Args, SelectionDAG &DAG) {
3920  SmallVector<SDOperand, 32> Ops;
3921  Ops.push_back(Chain);   // Op#0 - Chain
3922  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3923  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3924  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3925  Ops.push_back(Callee);
3926
3927  // Handle all of the outgoing arguments.
3928  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3929    MVT::ValueType VT = getValueType(Args[i].Ty);
3930    SDOperand Op = Args[i].Node;
3931    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3932    unsigned OriginalAlignment =
3933      getTargetData()->getABITypeAlignment(Args[i].Ty);
3934
3935    if (Args[i].isSExt)
3936      Flags |= ISD::ParamFlags::SExt;
3937    if (Args[i].isZExt)
3938      Flags |= ISD::ParamFlags::ZExt;
3939    if (Args[i].isInReg)
3940      Flags |= ISD::ParamFlags::InReg;
3941    if (Args[i].isSRet)
3942      Flags |= ISD::ParamFlags::StructReturn;
3943    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
3944
3945    switch (getTypeAction(VT)) {
3946    default: assert(0 && "Unknown type action!");
3947    case Legal:
3948      Ops.push_back(Op);
3949      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3950      break;
3951    case Promote:
3952      if (MVT::isInteger(VT)) {
3953        unsigned ExtOp;
3954        if (Args[i].isSExt)
3955          ExtOp = ISD::SIGN_EXTEND;
3956        else if (Args[i].isZExt)
3957          ExtOp = ISD::ZERO_EXTEND;
3958        else
3959          ExtOp = ISD::ANY_EXTEND;
3960        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3961      } else {
3962        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3963        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
3964      }
3965      Ops.push_back(Op);
3966      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3967      break;
3968    case Expand: {
3969      MVT::ValueType PartVT = getRegisterType(VT);
3970      unsigned NumParts = getNumRegisters(VT);
3971      SmallVector<SDOperand, 4> Parts(NumParts);
3972      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, true);
3973      for (unsigned i = 0; i != NumParts; ++i) {
3974        // if it isn't first piece, alignment must be 1
3975        unsigned MyFlags = Flags;
3976        if (i != 0)
3977          MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
3978            (1 << ISD::ParamFlags::OrigAlignmentOffs);
3979
3980        Ops.push_back(Parts[i]);
3981        Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
3982      }
3983      break;
3984    }
3985    }
3986  }
3987
3988  // Figure out the result value types.
3989  MVT::ValueType VT = getValueType(RetTy);
3990  MVT::ValueType RegisterVT = getRegisterType(VT);
3991  unsigned NumRegs = getNumRegisters(VT);
3992  SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
3993  for (unsigned i = 0; i != NumRegs; ++i)
3994    RetTys[i] = RegisterVT;
3995
3996  RetTys.push_back(MVT::Other);  // Always has a chain.
3997
3998  // Create the CALL node.
3999  SDOperand Res = DAG.getNode(ISD::CALL,
4000                              DAG.getVTList(&RetTys[0], NumRegs + 1),
4001                              &Ops[0], Ops.size());
4002  SDOperand Chain = Res.getValue(NumRegs);
4003
4004  // Gather up the call result into a single value.
4005  if (RetTy != Type::VoidTy) {
4006    ISD::NodeType AssertOp = ISD::AssertSext;
4007    if (!RetTyIsSigned)
4008      AssertOp = ISD::AssertZext;
4009    SmallVector<SDOperand, 4> Results(NumRegs);
4010    for (unsigned i = 0; i != NumRegs; ++i)
4011      Results[i] = Res.getValue(i);
4012    Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, false, AssertOp);
4013  }
4014
4015  return std::make_pair(Res, Chain);
4016}
4017
4018SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4019  assert(0 && "LowerOperation not implemented for this target!");
4020  abort();
4021  return SDOperand();
4022}
4023
4024SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4025                                                 SelectionDAG &DAG) {
4026  assert(0 && "CustomPromoteOperation not implemented for this target!");
4027  abort();
4028  return SDOperand();
4029}
4030
4031/// getMemsetValue - Vectorized representation of the memset value
4032/// operand.
4033static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4034                                SelectionDAG &DAG) {
4035  MVT::ValueType CurVT = VT;
4036  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4037    uint64_t Val   = C->getValue() & 255;
4038    unsigned Shift = 8;
4039    while (CurVT != MVT::i8) {
4040      Val = (Val << Shift) | Val;
4041      Shift <<= 1;
4042      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4043    }
4044    return DAG.getConstant(Val, VT);
4045  } else {
4046    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4047    unsigned Shift = 8;
4048    while (CurVT != MVT::i8) {
4049      Value =
4050        DAG.getNode(ISD::OR, VT,
4051                    DAG.getNode(ISD::SHL, VT, Value,
4052                                DAG.getConstant(Shift, MVT::i8)), Value);
4053      Shift <<= 1;
4054      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4055    }
4056
4057    return Value;
4058  }
4059}
4060
4061/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4062/// used when a memcpy is turned into a memset when the source is a constant
4063/// string ptr.
4064static SDOperand getMemsetStringVal(MVT::ValueType VT,
4065                                    SelectionDAG &DAG, TargetLowering &TLI,
4066                                    std::string &Str, unsigned Offset) {
4067  uint64_t Val = 0;
4068  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4069  if (TLI.isLittleEndian())
4070    Offset = Offset + MSB - 1;
4071  for (unsigned i = 0; i != MSB; ++i) {
4072    Val = (Val << 8) | (unsigned char)Str[Offset];
4073    Offset += TLI.isLittleEndian() ? -1 : 1;
4074  }
4075  return DAG.getConstant(Val, VT);
4076}
4077
4078/// getMemBasePlusOffset - Returns base and offset node for the
4079static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4080                                      SelectionDAG &DAG, TargetLowering &TLI) {
4081  MVT::ValueType VT = Base.getValueType();
4082  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4083}
4084
4085/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4086/// to replace the memset / memcpy is below the threshold. It also returns the
4087/// types of the sequence of  memory ops to perform memset / memcpy.
4088static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4089                                     unsigned Limit, uint64_t Size,
4090                                     unsigned Align, TargetLowering &TLI) {
4091  MVT::ValueType VT;
4092
4093  if (TLI.allowsUnalignedMemoryAccesses()) {
4094    VT = MVT::i64;
4095  } else {
4096    switch (Align & 7) {
4097    case 0:
4098      VT = MVT::i64;
4099      break;
4100    case 4:
4101      VT = MVT::i32;
4102      break;
4103    case 2:
4104      VT = MVT::i16;
4105      break;
4106    default:
4107      VT = MVT::i8;
4108      break;
4109    }
4110  }
4111
4112  MVT::ValueType LVT = MVT::i64;
4113  while (!TLI.isTypeLegal(LVT))
4114    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4115  assert(MVT::isInteger(LVT));
4116
4117  if (VT > LVT)
4118    VT = LVT;
4119
4120  unsigned NumMemOps = 0;
4121  while (Size != 0) {
4122    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4123    while (VTSize > Size) {
4124      VT = (MVT::ValueType)((unsigned)VT - 1);
4125      VTSize >>= 1;
4126    }
4127    assert(MVT::isInteger(VT));
4128
4129    if (++NumMemOps > Limit)
4130      return false;
4131    MemOps.push_back(VT);
4132    Size -= VTSize;
4133  }
4134
4135  return true;
4136}
4137
4138void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4139  SDOperand Op1 = getValue(I.getOperand(1));
4140  SDOperand Op2 = getValue(I.getOperand(2));
4141  SDOperand Op3 = getValue(I.getOperand(3));
4142  SDOperand Op4 = getValue(I.getOperand(4));
4143  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4144  if (Align == 0) Align = 1;
4145
4146  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4147    std::vector<MVT::ValueType> MemOps;
4148
4149    // Expand memset / memcpy to a series of load / store ops
4150    // if the size operand falls below a certain threshold.
4151    SmallVector<SDOperand, 8> OutChains;
4152    switch (Op) {
4153    default: break;  // Do nothing for now.
4154    case ISD::MEMSET: {
4155      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4156                                   Size->getValue(), Align, TLI)) {
4157        unsigned NumMemOps = MemOps.size();
4158        unsigned Offset = 0;
4159        for (unsigned i = 0; i < NumMemOps; i++) {
4160          MVT::ValueType VT = MemOps[i];
4161          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4162          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4163          SDOperand Store = DAG.getStore(getRoot(), Value,
4164                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4165                                         I.getOperand(1), Offset);
4166          OutChains.push_back(Store);
4167          Offset += VTSize;
4168        }
4169      }
4170      break;
4171    }
4172    case ISD::MEMCPY: {
4173      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4174                                   Size->getValue(), Align, TLI)) {
4175        unsigned NumMemOps = MemOps.size();
4176        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4177        GlobalAddressSDNode *G = NULL;
4178        std::string Str;
4179        bool CopyFromStr = false;
4180
4181        if (Op2.getOpcode() == ISD::GlobalAddress)
4182          G = cast<GlobalAddressSDNode>(Op2);
4183        else if (Op2.getOpcode() == ISD::ADD &&
4184                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4185                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4186          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4187          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4188        }
4189        if (G) {
4190          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4191          if (GV && GV->isConstant()) {
4192            Str = GV->getStringValue(false);
4193            if (!Str.empty()) {
4194              CopyFromStr = true;
4195              SrcOff += SrcDelta;
4196            }
4197          }
4198        }
4199
4200        for (unsigned i = 0; i < NumMemOps; i++) {
4201          MVT::ValueType VT = MemOps[i];
4202          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4203          SDOperand Value, Chain, Store;
4204
4205          if (CopyFromStr) {
4206            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4207            Chain = getRoot();
4208            Store =
4209              DAG.getStore(Chain, Value,
4210                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4211                           I.getOperand(1), DstOff);
4212          } else {
4213            Value = DAG.getLoad(VT, getRoot(),
4214                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4215                        I.getOperand(2), SrcOff);
4216            Chain = Value.getValue(1);
4217            Store =
4218              DAG.getStore(Chain, Value,
4219                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4220                           I.getOperand(1), DstOff);
4221          }
4222          OutChains.push_back(Store);
4223          SrcOff += VTSize;
4224          DstOff += VTSize;
4225        }
4226      }
4227      break;
4228    }
4229    }
4230
4231    if (!OutChains.empty()) {
4232      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4233                  &OutChains[0], OutChains.size()));
4234      return;
4235    }
4236  }
4237
4238  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
4239}
4240
4241//===----------------------------------------------------------------------===//
4242// SelectionDAGISel code
4243//===----------------------------------------------------------------------===//
4244
4245unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4246  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4247}
4248
4249void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4250  AU.addRequired<AliasAnalysis>();
4251  AU.setPreservesAll();
4252}
4253
4254
4255
4256bool SelectionDAGISel::runOnFunction(Function &Fn) {
4257  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4258  RegMap = MF.getSSARegMap();
4259  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4260
4261  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4262
4263  if (ExceptionHandling)
4264    for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4265      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4266        // Mark landing pad.
4267        FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4268
4269  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4270    SelectBasicBlock(I, MF, FuncInfo);
4271
4272  // Add function live-ins to entry block live-in set.
4273  BasicBlock *EntryBB = &Fn.getEntryBlock();
4274  BB = FuncInfo.MBBMap[EntryBB];
4275  if (!MF.livein_empty())
4276    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4277           E = MF.livein_end(); I != E; ++I)
4278      BB->addLiveIn(I->first);
4279
4280#ifndef NDEBUG
4281  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4282         "Not all catch info was assigned to a landing pad!");
4283#endif
4284
4285  return true;
4286}
4287
4288SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4289                                                           unsigned Reg) {
4290  SDOperand Op = getValue(V);
4291  assert((Op.getOpcode() != ISD::CopyFromReg ||
4292          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4293         "Copy from a reg to the same reg!");
4294
4295  MVT::ValueType SrcVT = Op.getValueType();
4296  MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4297  unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4298  SmallVector<SDOperand, 8> Regs(NumRegs);
4299  SmallVector<SDOperand, 8> Chains(NumRegs);
4300
4301  // Copy the value by legal parts into sequential virtual registers.
4302  getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT, false);
4303  for (unsigned i = 0; i != NumRegs; ++i)
4304    Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4305  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4306}
4307
4308void SelectionDAGISel::
4309LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4310               std::vector<SDOperand> &UnorderedChains) {
4311  // If this is the entry block, emit arguments.
4312  Function &F = *LLVMBB->getParent();
4313  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4314  SDOperand OldRoot = SDL.DAG.getRoot();
4315  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4316
4317  unsigned a = 0;
4318  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4319       AI != E; ++AI, ++a)
4320    if (!AI->use_empty()) {
4321      SDL.setValue(AI, Args[a]);
4322
4323      // If this argument is live outside of the entry block, insert a copy from
4324      // whereever we got it to the vreg that other BB's will reference it as.
4325      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4326      if (VMI != FuncInfo.ValueMap.end()) {
4327        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4328        UnorderedChains.push_back(Copy);
4329      }
4330    }
4331
4332  // Finally, if the target has anything special to do, allow it to do so.
4333  // FIXME: this should insert code into the DAG!
4334  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4335}
4336
4337static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4338                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4339  assert(!FLI.MBBMap[SrcBB]->isLandingPad() &&
4340         "Copying catch info out of a landing pad!");
4341  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4342    if (isSelector(I)) {
4343      // Apply the catch info to DestBB.
4344      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4345#ifndef NDEBUG
4346      FLI.CatchInfoFound.insert(I);
4347#endif
4348    }
4349}
4350
4351void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4352       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4353                                         FunctionLoweringInfo &FuncInfo) {
4354  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
4355
4356  std::vector<SDOperand> UnorderedChains;
4357
4358  // Lower any arguments needed in this block if this is the entry block.
4359  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4360    LowerArguments(LLVMBB, SDL, UnorderedChains);
4361
4362  BB = FuncInfo.MBBMap[LLVMBB];
4363  SDL.setCurrentBasicBlock(BB);
4364
4365  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4366
4367  if (ExceptionHandling && MMI && BB->isLandingPad()) {
4368    // Add a label to mark the beginning of the landing pad.  Deletion of the
4369    // landing pad can thus be detected via the MachineModuleInfo.
4370    unsigned LabelID = MMI->addLandingPad(BB);
4371    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4372                            DAG.getConstant(LabelID, MVT::i32)));
4373
4374    // Mark exception register as live in.
4375    unsigned Reg = TLI.getExceptionAddressRegister();
4376    if (Reg) BB->addLiveIn(Reg);
4377
4378    // Mark exception selector register as live in.
4379    Reg = TLI.getExceptionSelectorRegister();
4380    if (Reg) BB->addLiveIn(Reg);
4381
4382    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4383    // function and list of typeids logically belong to the invoke (or, if you
4384    // like, the basic block containing the invoke), and need to be associated
4385    // with it in the dwarf exception handling tables.  Currently however the
4386    // information is provided by an intrinsic (eh.selector) that can be moved
4387    // to unexpected places by the optimizers: if the unwind edge is critical,
4388    // then breaking it can result in the intrinsics being in the successor of
4389    // the landing pad, not the landing pad itself.  This results in exceptions
4390    // not being caught because no typeids are associated with the invoke.
4391    // This may not be the only way things can go wrong, but it is the only way
4392    // we try to work around for the moment.
4393    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4394
4395    if (Br && Br->isUnconditional()) { // Critical edge?
4396      BasicBlock::iterator I, E;
4397      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4398        if (isSelector(I))
4399          break;
4400
4401      if (I == E)
4402        // No catch info found - try to extract some from the successor.
4403        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4404    }
4405  }
4406
4407  // Lower all of the non-terminator instructions.
4408  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4409       I != E; ++I)
4410    SDL.visit(*I);
4411
4412  // Ensure that all instructions which are used outside of their defining
4413  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4414  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4415    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4416      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4417      if (VMI != FuncInfo.ValueMap.end())
4418        UnorderedChains.push_back(
4419                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4420    }
4421
4422  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4423  // ensure constants are generated when needed.  Remember the virtual registers
4424  // that need to be added to the Machine PHI nodes as input.  We cannot just
4425  // directly add them, because expansion might result in multiple MBB's for one
4426  // BB.  As such, the start of the BB might correspond to a different MBB than
4427  // the end.
4428  //
4429  TerminatorInst *TI = LLVMBB->getTerminator();
4430
4431  // Emit constants only once even if used by multiple PHI nodes.
4432  std::map<Constant*, unsigned> ConstantsOut;
4433
4434  // Vector bool would be better, but vector<bool> is really slow.
4435  std::vector<unsigned char> SuccsHandled;
4436  if (TI->getNumSuccessors())
4437    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4438
4439  // Check successor nodes PHI nodes that expect a constant to be available from
4440  // this block.
4441  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4442    BasicBlock *SuccBB = TI->getSuccessor(succ);
4443    if (!isa<PHINode>(SuccBB->begin())) continue;
4444    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4445
4446    // If this terminator has multiple identical successors (common for
4447    // switches), only handle each succ once.
4448    unsigned SuccMBBNo = SuccMBB->getNumber();
4449    if (SuccsHandled[SuccMBBNo]) continue;
4450    SuccsHandled[SuccMBBNo] = true;
4451
4452    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4453    PHINode *PN;
4454
4455    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4456    // nodes and Machine PHI nodes, but the incoming operands have not been
4457    // emitted yet.
4458    for (BasicBlock::iterator I = SuccBB->begin();
4459         (PN = dyn_cast<PHINode>(I)); ++I) {
4460      // Ignore dead phi's.
4461      if (PN->use_empty()) continue;
4462
4463      unsigned Reg;
4464      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4465
4466      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4467        unsigned &RegOut = ConstantsOut[C];
4468        if (RegOut == 0) {
4469          RegOut = FuncInfo.CreateRegForValue(C);
4470          UnorderedChains.push_back(
4471                           SDL.CopyValueToVirtualRegister(C, RegOut));
4472        }
4473        Reg = RegOut;
4474      } else {
4475        Reg = FuncInfo.ValueMap[PHIOp];
4476        if (Reg == 0) {
4477          assert(isa<AllocaInst>(PHIOp) &&
4478                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4479                 "Didn't codegen value into a register!??");
4480          Reg = FuncInfo.CreateRegForValue(PHIOp);
4481          UnorderedChains.push_back(
4482                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4483        }
4484      }
4485
4486      // Remember that this register needs to added to the machine PHI node as
4487      // the input for this MBB.
4488      MVT::ValueType VT = TLI.getValueType(PN->getType());
4489      unsigned NumRegisters = TLI.getNumRegisters(VT);
4490      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4491        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4492    }
4493  }
4494  ConstantsOut.clear();
4495
4496  // Turn all of the unordered chains into one factored node.
4497  if (!UnorderedChains.empty()) {
4498    SDOperand Root = SDL.getRoot();
4499    if (Root.getOpcode() != ISD::EntryToken) {
4500      unsigned i = 0, e = UnorderedChains.size();
4501      for (; i != e; ++i) {
4502        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4503        if (UnorderedChains[i].Val->getOperand(0) == Root)
4504          break;  // Don't add the root if we already indirectly depend on it.
4505      }
4506
4507      if (i == e)
4508        UnorderedChains.push_back(Root);
4509    }
4510    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4511                            &UnorderedChains[0], UnorderedChains.size()));
4512  }
4513
4514  // Lower the terminator after the copies are emitted.
4515  SDL.visit(*LLVMBB->getTerminator());
4516
4517  // Copy over any CaseBlock records that may now exist due to SwitchInst
4518  // lowering, as well as any jump table information.
4519  SwitchCases.clear();
4520  SwitchCases = SDL.SwitchCases;
4521  JTCases.clear();
4522  JTCases = SDL.JTCases;
4523  BitTestCases.clear();
4524  BitTestCases = SDL.BitTestCases;
4525
4526  // Make sure the root of the DAG is up-to-date.
4527  DAG.setRoot(SDL.getRoot());
4528}
4529
4530void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4531  // Get alias analysis for load/store combining.
4532  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4533
4534  // Run the DAG combiner in pre-legalize mode.
4535  DAG.Combine(false, AA);
4536
4537  DOUT << "Lowered selection DAG:\n";
4538  DEBUG(DAG.dump());
4539
4540  // Second step, hack on the DAG until it only uses operations and types that
4541  // the target supports.
4542  DAG.Legalize();
4543
4544  DOUT << "Legalized selection DAG:\n";
4545  DEBUG(DAG.dump());
4546
4547  // Run the DAG combiner in post-legalize mode.
4548  DAG.Combine(true, AA);
4549
4550  if (ViewISelDAGs) DAG.viewGraph();
4551
4552  // Third, instruction select all of the operations to machine code, adding the
4553  // code to the MachineBasicBlock.
4554  InstructionSelectBasicBlock(DAG);
4555
4556  DOUT << "Selected machine code:\n";
4557  DEBUG(BB->dump());
4558}
4559
4560void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4561                                        FunctionLoweringInfo &FuncInfo) {
4562  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4563  {
4564    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4565    CurDAG = &DAG;
4566
4567    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4568    // types that are not supported by the target.
4569    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4570
4571    // Second step, emit the lowered DAG as machine code.
4572    CodeGenAndEmitDAG(DAG);
4573  }
4574
4575  DOUT << "Total amount of phi nodes to update: "
4576       << PHINodesToUpdate.size() << "\n";
4577  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4578          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4579               << ", " << PHINodesToUpdate[i].second << ")\n";);
4580
4581  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4582  // PHI nodes in successors.
4583  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4584    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4585      MachineInstr *PHI = PHINodesToUpdate[i].first;
4586      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4587             "This is not a machine PHI node that we are updating!");
4588      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4589      PHI->addMachineBasicBlockOperand(BB);
4590    }
4591    return;
4592  }
4593
4594  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4595    // Lower header first, if it wasn't already lowered
4596    if (!BitTestCases[i].Emitted) {
4597      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4598      CurDAG = &HSDAG;
4599      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4600      // Set the current basic block to the mbb we wish to insert the code into
4601      BB = BitTestCases[i].Parent;
4602      HSDL.setCurrentBasicBlock(BB);
4603      // Emit the code
4604      HSDL.visitBitTestHeader(BitTestCases[i]);
4605      HSDAG.setRoot(HSDL.getRoot());
4606      CodeGenAndEmitDAG(HSDAG);
4607    }
4608
4609    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4610      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4611      CurDAG = &BSDAG;
4612      SelectionDAGLowering BSDL(BSDAG, TLI, FuncInfo);
4613      // Set the current basic block to the mbb we wish to insert the code into
4614      BB = BitTestCases[i].Cases[j].ThisBB;
4615      BSDL.setCurrentBasicBlock(BB);
4616      // Emit the code
4617      if (j+1 != ej)
4618        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4619                              BitTestCases[i].Reg,
4620                              BitTestCases[i].Cases[j]);
4621      else
4622        BSDL.visitBitTestCase(BitTestCases[i].Default,
4623                              BitTestCases[i].Reg,
4624                              BitTestCases[i].Cases[j]);
4625
4626
4627      BSDAG.setRoot(BSDL.getRoot());
4628      CodeGenAndEmitDAG(BSDAG);
4629    }
4630
4631    // Update PHI Nodes
4632    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4633      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4634      MachineBasicBlock *PHIBB = PHI->getParent();
4635      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4636             "This is not a machine PHI node that we are updating!");
4637      // This is "default" BB. We have two jumps to it. From "header" BB and
4638      // from last "case" BB.
4639      if (PHIBB == BitTestCases[i].Default) {
4640        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4641        PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4642        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4643        PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4644      }
4645      // One of "cases" BB.
4646      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4647        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4648        if (cBB->succ_end() !=
4649            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4650          PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4651          PHI->addMachineBasicBlockOperand(cBB);
4652        }
4653      }
4654    }
4655  }
4656
4657  // If the JumpTable record is filled in, then we need to emit a jump table.
4658  // Updating the PHI nodes is tricky in this case, since we need to determine
4659  // whether the PHI is a successor of the range check MBB or the jump table MBB
4660  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4661    // Lower header first, if it wasn't already lowered
4662    if (!JTCases[i].first.Emitted) {
4663      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4664      CurDAG = &HSDAG;
4665      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4666      // Set the current basic block to the mbb we wish to insert the code into
4667      BB = JTCases[i].first.HeaderBB;
4668      HSDL.setCurrentBasicBlock(BB);
4669      // Emit the code
4670      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4671      HSDAG.setRoot(HSDL.getRoot());
4672      CodeGenAndEmitDAG(HSDAG);
4673    }
4674
4675    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4676    CurDAG = &JSDAG;
4677    SelectionDAGLowering JSDL(JSDAG, TLI, FuncInfo);
4678    // Set the current basic block to the mbb we wish to insert the code into
4679    BB = JTCases[i].second.MBB;
4680    JSDL.setCurrentBasicBlock(BB);
4681    // Emit the code
4682    JSDL.visitJumpTable(JTCases[i].second);
4683    JSDAG.setRoot(JSDL.getRoot());
4684    CodeGenAndEmitDAG(JSDAG);
4685
4686    // Update PHI Nodes
4687    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4688      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4689      MachineBasicBlock *PHIBB = PHI->getParent();
4690      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4691             "This is not a machine PHI node that we are updating!");
4692      // "default" BB. We can go there only from header BB.
4693      if (PHIBB == JTCases[i].second.Default) {
4694        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4695        PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4696      }
4697      // JT BB. Just iterate over successors here
4698      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4699        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4700        PHI->addMachineBasicBlockOperand(BB);
4701      }
4702    }
4703  }
4704
4705  // If the switch block involved a branch to one of the actual successors, we
4706  // need to update PHI nodes in that block.
4707  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4708    MachineInstr *PHI = PHINodesToUpdate[i].first;
4709    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4710           "This is not a machine PHI node that we are updating!");
4711    if (BB->isSuccessor(PHI->getParent())) {
4712      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4713      PHI->addMachineBasicBlockOperand(BB);
4714    }
4715  }
4716
4717  // If we generated any switch lowering information, build and codegen any
4718  // additional DAGs necessary.
4719  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4720    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4721    CurDAG = &SDAG;
4722    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4723
4724    // Set the current basic block to the mbb we wish to insert the code into
4725    BB = SwitchCases[i].ThisBB;
4726    SDL.setCurrentBasicBlock(BB);
4727
4728    // Emit the code
4729    SDL.visitSwitchCase(SwitchCases[i]);
4730    SDAG.setRoot(SDL.getRoot());
4731    CodeGenAndEmitDAG(SDAG);
4732
4733    // Handle any PHI nodes in successors of this chunk, as if we were coming
4734    // from the original BB before switch expansion.  Note that PHI nodes can
4735    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4736    // handle them the right number of times.
4737    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4738      for (MachineBasicBlock::iterator Phi = BB->begin();
4739           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4740        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4741        for (unsigned pn = 0; ; ++pn) {
4742          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4743          if (PHINodesToUpdate[pn].first == Phi) {
4744            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4745            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4746            break;
4747          }
4748        }
4749      }
4750
4751      // Don't process RHS if same block as LHS.
4752      if (BB == SwitchCases[i].FalseBB)
4753        SwitchCases[i].FalseBB = 0;
4754
4755      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4756      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4757      SwitchCases[i].FalseBB = 0;
4758    }
4759    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4760  }
4761}
4762
4763
4764//===----------------------------------------------------------------------===//
4765/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4766/// target node in the graph.
4767void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4768  if (ViewSchedDAGs) DAG.viewGraph();
4769
4770  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4771
4772  if (!Ctor) {
4773    Ctor = ISHeuristic;
4774    RegisterScheduler::setDefault(Ctor);
4775  }
4776
4777  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4778  BB = SL->Run();
4779  delete SL;
4780}
4781
4782
4783HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4784  return new HazardRecognizer();
4785}
4786
4787//===----------------------------------------------------------------------===//
4788// Helper functions used by the generated instruction selector.
4789//===----------------------------------------------------------------------===//
4790// Calls to these methods are generated by tblgen.
4791
4792/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4793/// the dag combiner simplified the 255, we still want to match.  RHS is the
4794/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4795/// specified in the .td file (e.g. 255).
4796bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4797                                    int64_t DesiredMaskS) {
4798  uint64_t ActualMask = RHS->getValue();
4799  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4800
4801  // If the actual mask exactly matches, success!
4802  if (ActualMask == DesiredMask)
4803    return true;
4804
4805  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4806  if (ActualMask & ~DesiredMask)
4807    return false;
4808
4809  // Otherwise, the DAG Combiner may have proven that the value coming in is
4810  // either already zero or is not demanded.  Check for known zero input bits.
4811  uint64_t NeededMask = DesiredMask & ~ActualMask;
4812  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
4813    return true;
4814
4815  // TODO: check to see if missing bits are just not demanded.
4816
4817  // Otherwise, this pattern doesn't match.
4818  return false;
4819}
4820
4821/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4822/// the dag combiner simplified the 255, we still want to match.  RHS is the
4823/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4824/// specified in the .td file (e.g. 255).
4825bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4826                                    int64_t DesiredMaskS) {
4827  uint64_t ActualMask = RHS->getValue();
4828  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4829
4830  // If the actual mask exactly matches, success!
4831  if (ActualMask == DesiredMask)
4832    return true;
4833
4834  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4835  if (ActualMask & ~DesiredMask)
4836    return false;
4837
4838  // Otherwise, the DAG Combiner may have proven that the value coming in is
4839  // either already zero or is not demanded.  Check for known zero input bits.
4840  uint64_t NeededMask = DesiredMask & ~ActualMask;
4841
4842  uint64_t KnownZero, KnownOne;
4843  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4844
4845  // If all the missing bits in the or are already known to be set, match!
4846  if ((NeededMask & KnownOne) == NeededMask)
4847    return true;
4848
4849  // TODO: check to see if missing bits are just not demanded.
4850
4851  // Otherwise, this pattern doesn't match.
4852  return false;
4853}
4854
4855
4856/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4857/// by tblgen.  Others should not call it.
4858void SelectionDAGISel::
4859SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4860  std::vector<SDOperand> InOps;
4861  std::swap(InOps, Ops);
4862
4863  Ops.push_back(InOps[0]);  // input chain.
4864  Ops.push_back(InOps[1]);  // input asm string.
4865
4866  unsigned i = 2, e = InOps.size();
4867  if (InOps[e-1].getValueType() == MVT::Flag)
4868    --e;  // Don't process a flag operand if it is here.
4869
4870  while (i != e) {
4871    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4872    if ((Flags & 7) != 4 /*MEM*/) {
4873      // Just skip over this operand, copying the operands verbatim.
4874      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4875      i += (Flags >> 3) + 1;
4876    } else {
4877      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4878      // Otherwise, this is a memory operand.  Ask the target to select it.
4879      std::vector<SDOperand> SelOps;
4880      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4881        cerr << "Could not match memory address.  Inline asm failure!\n";
4882        exit(1);
4883      }
4884
4885      // Add this to the output node.
4886      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4887      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4888                                          IntPtrTy));
4889      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4890      i += 2;
4891    }
4892  }
4893
4894  // Add the flag input back if present.
4895  if (e != InOps.size())
4896    Ops.push_back(InOps.back());
4897}
4898
4899char SelectionDAGISel::ID = 0;
4900