SelectionDAGISel.cpp revision 890404fa0e973d1cb983c10631a0094b6be2fe7f
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/Timer.h"
49#include <algorithm>
50using namespace llvm;
51
52static cl::opt<bool>
53EnableValueProp("enable-value-prop", cl::Hidden);
54static cl::opt<bool>
55EnableLegalizeTypes("enable-legalize-types", cl::Hidden);
56
57
58#ifndef NDEBUG
59static cl::opt<bool>
60ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
61          cl::desc("Pop up a window to show dags before the first "
62                   "dag combine pass"));
63static cl::opt<bool>
64ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
65          cl::desc("Pop up a window to show dags before legalize types"));
66static cl::opt<bool>
67ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
68          cl::desc("Pop up a window to show dags before legalize"));
69static cl::opt<bool>
70ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
71          cl::desc("Pop up a window to show dags before the second "
72                   "dag combine pass"));
73static cl::opt<bool>
74ViewISelDAGs("view-isel-dags", cl::Hidden,
75          cl::desc("Pop up a window to show isel dags as they are selected"));
76static cl::opt<bool>
77ViewSchedDAGs("view-sched-dags", cl::Hidden,
78          cl::desc("Pop up a window to show sched dags as they are processed"));
79static cl::opt<bool>
80ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
81      cl::desc("Pop up a window to show SUnit dags after they are processed"));
82#else
83static const bool ViewDAGCombine1 = false,
84                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
85                  ViewDAGCombine2 = false,
86                  ViewISelDAGs = false, ViewSchedDAGs = false,
87                  ViewSUnitDAGs = false;
88#endif
89
90//===---------------------------------------------------------------------===//
91///
92/// RegisterScheduler class - Track the registration of instruction schedulers.
93///
94//===---------------------------------------------------------------------===//
95MachinePassRegistry RegisterScheduler::Registry;
96
97//===---------------------------------------------------------------------===//
98///
99/// ISHeuristic command line option for instruction schedulers.
100///
101//===---------------------------------------------------------------------===//
102static cl::opt<RegisterScheduler::FunctionPassCtor, false,
103               RegisterPassParser<RegisterScheduler> >
104ISHeuristic("pre-RA-sched",
105            cl::init(&createDefaultScheduler),
106            cl::desc("Instruction schedulers available (before register"
107                     " allocation):"));
108
109static RegisterScheduler
110defaultListDAGScheduler("default", "  Best scheduler for the target",
111                        createDefaultScheduler);
112
113namespace { struct SDISelAsmOperandInfo; }
114
115/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
116/// insertvalue or extractvalue indices that identify a member, return
117/// the linearized index of the start of the member.
118///
119static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
120                                   const unsigned *Indices,
121                                   const unsigned *IndicesEnd,
122                                   unsigned CurIndex = 0) {
123  // Base case: We're done.
124  if (Indices && Indices == IndicesEnd)
125    return CurIndex;
126
127  // Given a struct type, recursively traverse the elements.
128  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
129    for (StructType::element_iterator EB = STy->element_begin(),
130                                      EI = EB,
131                                      EE = STy->element_end();
132        EI != EE; ++EI) {
133      if (Indices && *Indices == unsigned(EI - EB))
134        return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
135      CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
136    }
137  }
138  // Given an array type, recursively traverse the elements.
139  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
140    const Type *EltTy = ATy->getElementType();
141    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
142      if (Indices && *Indices == i)
143        return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
144      CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
145    }
146  }
147  // We haven't found the type we're looking for, so keep searching.
148  return CurIndex + 1;
149}
150
151/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
152/// MVTs that represent all the individual underlying
153/// non-aggregate types that comprise it.
154///
155/// If Offsets is non-null, it points to a vector to be filled in
156/// with the in-memory offsets of each of the individual values.
157///
158static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
159                            SmallVectorImpl<MVT> &ValueVTs,
160                            SmallVectorImpl<uint64_t> *Offsets = 0,
161                            uint64_t StartingOffset = 0) {
162  // Given a struct type, recursively traverse the elements.
163  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
164    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
165    for (StructType::element_iterator EB = STy->element_begin(),
166                                      EI = EB,
167                                      EE = STy->element_end();
168         EI != EE; ++EI)
169      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
170                      StartingOffset + SL->getElementOffset(EI - EB));
171    return;
172  }
173  // Given an array type, recursively traverse the elements.
174  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
175    const Type *EltTy = ATy->getElementType();
176    uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
177    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
178      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
179                      StartingOffset + i * EltSize);
180    return;
181  }
182  // Base case: we can get an MVT for this LLVM IR type.
183  ValueVTs.push_back(TLI.getValueType(Ty));
184  if (Offsets)
185    Offsets->push_back(StartingOffset);
186}
187
188namespace {
189  /// RegsForValue - This struct represents the registers (physical or virtual)
190  /// that a particular set of values is assigned, and the type information about
191  /// the value. The most common situation is to represent one value at a time,
192  /// but struct or array values are handled element-wise as multiple values.
193  /// The splitting of aggregates is performed recursively, so that we never
194  /// have aggregate-typed registers. The values at this point do not necessarily
195  /// have legal types, so each value may require one or more registers of some
196  /// legal type.
197  ///
198  struct VISIBILITY_HIDDEN RegsForValue {
199    /// TLI - The TargetLowering object.
200    ///
201    const TargetLowering *TLI;
202
203    /// ValueVTs - The value types of the values, which may not be legal, and
204    /// may need be promoted or synthesized from one or more registers.
205    ///
206    SmallVector<MVT, 4> ValueVTs;
207
208    /// RegVTs - The value types of the registers. This is the same size as
209    /// ValueVTs and it records, for each value, what the type of the assigned
210    /// register or registers are. (Individual values are never synthesized
211    /// from more than one type of register.)
212    ///
213    /// With virtual registers, the contents of RegVTs is redundant with TLI's
214    /// getRegisterType member function, however when with physical registers
215    /// it is necessary to have a separate record of the types.
216    ///
217    SmallVector<MVT, 4> RegVTs;
218
219    /// Regs - This list holds the registers assigned to the values.
220    /// Each legal or promoted value requires one register, and each
221    /// expanded value requires multiple registers.
222    ///
223    SmallVector<unsigned, 4> Regs;
224
225    RegsForValue() : TLI(0) {}
226
227    RegsForValue(const TargetLowering &tli,
228                 const SmallVector<unsigned, 4> &regs,
229                 MVT regvt, MVT valuevt)
230      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
231    RegsForValue(const TargetLowering &tli,
232                 const SmallVector<unsigned, 4> &regs,
233                 const SmallVector<MVT, 4> &regvts,
234                 const SmallVector<MVT, 4> &valuevts)
235      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
236    RegsForValue(const TargetLowering &tli,
237                 unsigned Reg, const Type *Ty) : TLI(&tli) {
238      ComputeValueVTs(tli, Ty, ValueVTs);
239
240      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
241        MVT ValueVT = ValueVTs[Value];
242        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
243        MVT RegisterVT = TLI->getRegisterType(ValueVT);
244        for (unsigned i = 0; i != NumRegs; ++i)
245          Regs.push_back(Reg + i);
246        RegVTs.push_back(RegisterVT);
247        Reg += NumRegs;
248      }
249    }
250
251    /// append - Add the specified values to this one.
252    void append(const RegsForValue &RHS) {
253      TLI = RHS.TLI;
254      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
255      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
256      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
257    }
258
259
260    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
261    /// this value and returns the result as a ValueVTs value.  This uses
262    /// Chain/Flag as the input and updates them for the output Chain/Flag.
263    /// If the Flag pointer is NULL, no flag is used.
264    SDOperand getCopyFromRegs(SelectionDAG &DAG,
265                              SDOperand &Chain, SDOperand *Flag) const;
266
267    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
268    /// specified value into the registers specified by this object.  This uses
269    /// Chain/Flag as the input and updates them for the output Chain/Flag.
270    /// If the Flag pointer is NULL, no flag is used.
271    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
272                       SDOperand &Chain, SDOperand *Flag) const;
273
274    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
275    /// operand list.  This adds the code marker and includes the number of
276    /// values added into it.
277    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
278                              std::vector<SDOperand> &Ops) const;
279  };
280}
281
282namespace llvm {
283  //===--------------------------------------------------------------------===//
284  /// createDefaultScheduler - This creates an instruction scheduler appropriate
285  /// for the target.
286  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
287                                      SelectionDAG *DAG,
288                                      MachineBasicBlock *BB,
289                                      bool Fast) {
290    TargetLowering &TLI = IS->getTargetLowering();
291
292    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
293      return createTDListDAGScheduler(IS, DAG, BB, Fast);
294    } else {
295      assert(TLI.getSchedulingPreference() ==
296           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
297      return createBURRListDAGScheduler(IS, DAG, BB, Fast);
298    }
299  }
300
301
302  //===--------------------------------------------------------------------===//
303  /// FunctionLoweringInfo - This contains information that is global to a
304  /// function that is used when lowering a region of the function.
305  class FunctionLoweringInfo {
306  public:
307    TargetLowering &TLI;
308    Function &Fn;
309    MachineFunction &MF;
310    MachineRegisterInfo &RegInfo;
311
312    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
313
314    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
315    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
316
317    /// ValueMap - Since we emit code for the function a basic block at a time,
318    /// we must remember which virtual registers hold the values for
319    /// cross-basic-block values.
320    DenseMap<const Value*, unsigned> ValueMap;
321
322    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
323    /// the entry block.  This allows the allocas to be efficiently referenced
324    /// anywhere in the function.
325    std::map<const AllocaInst*, int> StaticAllocaMap;
326
327#ifndef NDEBUG
328    SmallSet<Instruction*, 8> CatchInfoLost;
329    SmallSet<Instruction*, 8> CatchInfoFound;
330#endif
331
332    unsigned MakeReg(MVT VT) {
333      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
334    }
335
336    /// isExportedInst - Return true if the specified value is an instruction
337    /// exported from its block.
338    bool isExportedInst(const Value *V) {
339      return ValueMap.count(V);
340    }
341
342    unsigned CreateRegForValue(const Value *V);
343
344    unsigned InitializeRegForValue(const Value *V) {
345      unsigned &R = ValueMap[V];
346      assert(R == 0 && "Already initialized this value register!");
347      return R = CreateRegForValue(V);
348    }
349
350    struct LiveOutInfo {
351      unsigned NumSignBits;
352      APInt KnownOne, KnownZero;
353      LiveOutInfo() : NumSignBits(0) {}
354    };
355
356    /// LiveOutRegInfo - Information about live out vregs, indexed by their
357    /// register number offset by 'FirstVirtualRegister'.
358    std::vector<LiveOutInfo> LiveOutRegInfo;
359  };
360}
361
362/// isSelector - Return true if this instruction is a call to the
363/// eh.selector intrinsic.
364static bool isSelector(Instruction *I) {
365  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
366    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
367            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
368  return false;
369}
370
371/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
372/// PHI nodes or outside of the basic block that defines it, or used by a
373/// switch or atomic instruction, which may expand to multiple basic blocks.
374static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
375  if (isa<PHINode>(I)) return true;
376  BasicBlock *BB = I->getParent();
377  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
378    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
379        // FIXME: Remove switchinst special case.
380        isa<SwitchInst>(*UI))
381      return true;
382  return false;
383}
384
385/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
386/// entry block, return true.  This includes arguments used by switches, since
387/// the switch may expand into multiple basic blocks.
388static bool isOnlyUsedInEntryBlock(Argument *A) {
389  BasicBlock *Entry = A->getParent()->begin();
390  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
391    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
392      return false;  // Use not in entry block.
393  return true;
394}
395
396FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
397                                           Function &fn, MachineFunction &mf)
398    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
399
400  // Create a vreg for each argument register that is not dead and is used
401  // outside of the entry block for the function.
402  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
403       AI != E; ++AI)
404    if (!isOnlyUsedInEntryBlock(AI))
405      InitializeRegForValue(AI);
406
407  // Initialize the mapping of values to registers.  This is only set up for
408  // instruction values that are used outside of the block that defines
409  // them.
410  Function::iterator BB = Fn.begin(), EB = Fn.end();
411  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
412    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
413      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
414        const Type *Ty = AI->getAllocatedType();
415        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
416        unsigned Align =
417          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
418                   AI->getAlignment());
419
420        TySize *= CUI->getZExtValue();   // Get total allocated size.
421        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
422        StaticAllocaMap[AI] =
423          MF.getFrameInfo()->CreateStackObject(TySize, Align);
424      }
425
426  for (; BB != EB; ++BB)
427    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
428      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
429        if (!isa<AllocaInst>(I) ||
430            !StaticAllocaMap.count(cast<AllocaInst>(I)))
431          InitializeRegForValue(I);
432
433  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
434  // also creates the initial PHI MachineInstrs, though none of the input
435  // operands are populated.
436  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
437    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
438    MBBMap[BB] = MBB;
439    MF.push_back(MBB);
440
441    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
442    // appropriate.
443    PHINode *PN;
444    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
445      if (PN->use_empty()) continue;
446
447      MVT VT = TLI.getValueType(PN->getType());
448      unsigned NumRegisters = TLI.getNumRegisters(VT);
449      unsigned PHIReg = ValueMap[PN];
450      assert(PHIReg && "PHI node does not have an assigned virtual register!");
451      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
452      for (unsigned i = 0; i != NumRegisters; ++i)
453        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
454    }
455  }
456}
457
458/// CreateRegForValue - Allocate the appropriate number of virtual registers of
459/// the correctly promoted or expanded types.  Assign these registers
460/// consecutive vreg numbers and return the first assigned number.
461///
462/// In the case that the given value has struct or array type, this function
463/// will assign registers for each member or element.
464///
465unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
466  SmallVector<MVT, 4> ValueVTs;
467  ComputeValueVTs(TLI, V->getType(), ValueVTs);
468
469  unsigned FirstReg = 0;
470  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
471    MVT ValueVT = ValueVTs[Value];
472    MVT RegisterVT = TLI.getRegisterType(ValueVT);
473
474    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
475    for (unsigned i = 0; i != NumRegs; ++i) {
476      unsigned R = MakeReg(RegisterVT);
477      if (!FirstReg) FirstReg = R;
478    }
479  }
480  return FirstReg;
481}
482
483//===----------------------------------------------------------------------===//
484/// SelectionDAGLowering - This is the common target-independent lowering
485/// implementation that is parameterized by a TargetLowering object.
486/// Also, targets can overload any lowering method.
487///
488namespace llvm {
489class SelectionDAGLowering {
490  MachineBasicBlock *CurMBB;
491
492  DenseMap<const Value*, SDOperand> NodeMap;
493
494  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
495  /// them up and then emit token factor nodes when possible.  This allows us to
496  /// get simple disambiguation between loads without worrying about alias
497  /// analysis.
498  SmallVector<SDOperand, 8> PendingLoads;
499
500  /// PendingExports - CopyToReg nodes that copy values to virtual registers
501  /// for export to other blocks need to be emitted before any terminator
502  /// instruction, but they have no other ordering requirements. We bunch them
503  /// up and the emit a single tokenfactor for them just before terminator
504  /// instructions.
505  std::vector<SDOperand> PendingExports;
506
507  /// Case - A struct to record the Value for a switch case, and the
508  /// case's target basic block.
509  struct Case {
510    Constant* Low;
511    Constant* High;
512    MachineBasicBlock* BB;
513
514    Case() : Low(0), High(0), BB(0) { }
515    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
516      Low(low), High(high), BB(bb) { }
517    uint64_t size() const {
518      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
519      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
520      return (rHigh - rLow + 1ULL);
521    }
522  };
523
524  struct CaseBits {
525    uint64_t Mask;
526    MachineBasicBlock* BB;
527    unsigned Bits;
528
529    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
530      Mask(mask), BB(bb), Bits(bits) { }
531  };
532
533  typedef std::vector<Case>           CaseVector;
534  typedef std::vector<CaseBits>       CaseBitsVector;
535  typedef CaseVector::iterator        CaseItr;
536  typedef std::pair<CaseItr, CaseItr> CaseRange;
537
538  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
539  /// of conditional branches.
540  struct CaseRec {
541    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
542    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
543
544    /// CaseBB - The MBB in which to emit the compare and branch
545    MachineBasicBlock *CaseBB;
546    /// LT, GE - If nonzero, we know the current case value must be less-than or
547    /// greater-than-or-equal-to these Constants.
548    Constant *LT;
549    Constant *GE;
550    /// Range - A pair of iterators representing the range of case values to be
551    /// processed at this point in the binary search tree.
552    CaseRange Range;
553  };
554
555  typedef std::vector<CaseRec> CaseRecVector;
556
557  /// The comparison function for sorting the switch case values in the vector.
558  /// WARNING: Case ranges should be disjoint!
559  struct CaseCmp {
560    bool operator () (const Case& C1, const Case& C2) {
561      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
562      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
563      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
564      return CI1->getValue().slt(CI2->getValue());
565    }
566  };
567
568  struct CaseBitsCmp {
569    bool operator () (const CaseBits& C1, const CaseBits& C2) {
570      return C1.Bits > C2.Bits;
571    }
572  };
573
574  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
575
576public:
577  // TLI - This is information that describes the available target features we
578  // need for lowering.  This indicates when operations are unavailable,
579  // implemented with a libcall, etc.
580  TargetLowering &TLI;
581  SelectionDAG &DAG;
582  const TargetData *TD;
583  AliasAnalysis &AA;
584
585  /// SwitchCases - Vector of CaseBlock structures used to communicate
586  /// SwitchInst code generation information.
587  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
588  /// JTCases - Vector of JumpTable structures used to communicate
589  /// SwitchInst code generation information.
590  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
591  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
592
593  /// FuncInfo - Information about the function as a whole.
594  ///
595  FunctionLoweringInfo &FuncInfo;
596
597  /// GCI - Garbage collection metadata for the function.
598  CollectorMetadata *GCI;
599
600  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
601                       AliasAnalysis &aa,
602                       FunctionLoweringInfo &funcinfo,
603                       CollectorMetadata *gci)
604    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
605      FuncInfo(funcinfo), GCI(gci) {
606  }
607
608  /// getRoot - Return the current virtual root of the Selection DAG,
609  /// flushing any PendingLoad items. This must be done before emitting
610  /// a store or any other node that may need to be ordered after any
611  /// prior load instructions.
612  ///
613  SDOperand getRoot() {
614    if (PendingLoads.empty())
615      return DAG.getRoot();
616
617    if (PendingLoads.size() == 1) {
618      SDOperand Root = PendingLoads[0];
619      DAG.setRoot(Root);
620      PendingLoads.clear();
621      return Root;
622    }
623
624    // Otherwise, we have to make a token factor node.
625    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
626                                 &PendingLoads[0], PendingLoads.size());
627    PendingLoads.clear();
628    DAG.setRoot(Root);
629    return Root;
630  }
631
632  /// getControlRoot - Similar to getRoot, but instead of flushing all the
633  /// PendingLoad items, flush all the PendingExports items. It is necessary
634  /// to do this before emitting a terminator instruction.
635  ///
636  SDOperand getControlRoot() {
637    SDOperand Root = DAG.getRoot();
638
639    if (PendingExports.empty())
640      return Root;
641
642    // Turn all of the CopyToReg chains into one factored node.
643    if (Root.getOpcode() != ISD::EntryToken) {
644      unsigned i = 0, e = PendingExports.size();
645      for (; i != e; ++i) {
646        assert(PendingExports[i].Val->getNumOperands() > 1);
647        if (PendingExports[i].Val->getOperand(0) == Root)
648          break;  // Don't add the root if we already indirectly depend on it.
649      }
650
651      if (i == e)
652        PendingExports.push_back(Root);
653    }
654
655    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
656                       &PendingExports[0],
657                       PendingExports.size());
658    PendingExports.clear();
659    DAG.setRoot(Root);
660    return Root;
661  }
662
663  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
664
665  void visit(Instruction &I) { visit(I.getOpcode(), I); }
666
667  void visit(unsigned Opcode, User &I) {
668    // Note: this doesn't use InstVisitor, because it has to work with
669    // ConstantExpr's in addition to instructions.
670    switch (Opcode) {
671    default: assert(0 && "Unknown instruction type encountered!");
672             abort();
673      // Build the switch statement using the Instruction.def file.
674#define HANDLE_INST(NUM, OPCODE, CLASS) \
675    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
676#include "llvm/Instruction.def"
677    }
678  }
679
680  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
681
682  SDOperand getValue(const Value *V);
683
684  void setValue(const Value *V, SDOperand NewN) {
685    SDOperand &N = NodeMap[V];
686    assert(N.Val == 0 && "Already set a value for this node!");
687    N = NewN;
688  }
689
690  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
691                            std::set<unsigned> &OutputRegs,
692                            std::set<unsigned> &InputRegs);
693
694  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
695                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
696                            unsigned Opc);
697  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
698  void ExportFromCurrentBlock(Value *V);
699  void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
700                   MachineBasicBlock *LandingPad = NULL);
701
702  // Terminator instructions.
703  void visitRet(ReturnInst &I);
704  void visitBr(BranchInst &I);
705  void visitSwitch(SwitchInst &I);
706  void visitUnreachable(UnreachableInst &I) { /* noop */ }
707
708  // Helpers for visitSwitch
709  bool handleSmallSwitchRange(CaseRec& CR,
710                              CaseRecVector& WorkList,
711                              Value* SV,
712                              MachineBasicBlock* Default);
713  bool handleJTSwitchCase(CaseRec& CR,
714                          CaseRecVector& WorkList,
715                          Value* SV,
716                          MachineBasicBlock* Default);
717  bool handleBTSplitSwitchCase(CaseRec& CR,
718                               CaseRecVector& WorkList,
719                               Value* SV,
720                               MachineBasicBlock* Default);
721  bool handleBitTestsSwitchCase(CaseRec& CR,
722                                CaseRecVector& WorkList,
723                                Value* SV,
724                                MachineBasicBlock* Default);
725  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
726  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
727  void visitBitTestCase(MachineBasicBlock* NextMBB,
728                        unsigned Reg,
729                        SelectionDAGISel::BitTestCase &B);
730  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
731  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
732                            SelectionDAGISel::JumpTableHeader &JTH);
733
734  // These all get lowered before this pass.
735  void visitInvoke(InvokeInst &I);
736  void visitUnwind(UnwindInst &I);
737
738  void visitBinary(User &I, unsigned OpCode);
739  void visitShift(User &I, unsigned Opcode);
740  void visitAdd(User &I) {
741    if (I.getType()->isFPOrFPVector())
742      visitBinary(I, ISD::FADD);
743    else
744      visitBinary(I, ISD::ADD);
745  }
746  void visitSub(User &I);
747  void visitMul(User &I) {
748    if (I.getType()->isFPOrFPVector())
749      visitBinary(I, ISD::FMUL);
750    else
751      visitBinary(I, ISD::MUL);
752  }
753  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
754  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
755  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
756  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
757  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
758  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
759  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
760  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
761  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
762  void visitShl (User &I) { visitShift(I, ISD::SHL); }
763  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
764  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
765  void visitICmp(User &I);
766  void visitFCmp(User &I);
767  void visitVICmp(User &I);
768  void visitVFCmp(User &I);
769  // Visit the conversion instructions
770  void visitTrunc(User &I);
771  void visitZExt(User &I);
772  void visitSExt(User &I);
773  void visitFPTrunc(User &I);
774  void visitFPExt(User &I);
775  void visitFPToUI(User &I);
776  void visitFPToSI(User &I);
777  void visitUIToFP(User &I);
778  void visitSIToFP(User &I);
779  void visitPtrToInt(User &I);
780  void visitIntToPtr(User &I);
781  void visitBitCast(User &I);
782
783  void visitExtractElement(User &I);
784  void visitInsertElement(User &I);
785  void visitShuffleVector(User &I);
786
787  void visitExtractValue(ExtractValueInst &I);
788  void visitInsertValue(InsertValueInst &I);
789
790  void visitGetElementPtr(User &I);
791  void visitSelect(User &I);
792
793  void visitMalloc(MallocInst &I);
794  void visitFree(FreeInst &I);
795  void visitAlloca(AllocaInst &I);
796  void visitLoad(LoadInst &I);
797  void visitStore(StoreInst &I);
798  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
799  void visitCall(CallInst &I);
800  void visitInlineAsm(CallSite CS);
801  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
802  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
803
804  void visitVAStart(CallInst &I);
805  void visitVAArg(VAArgInst &I);
806  void visitVAEnd(CallInst &I);
807  void visitVACopy(CallInst &I);
808
809  void visitGetResult(GetResultInst &I);
810
811  void visitUserOp1(Instruction &I) {
812    assert(0 && "UserOp1 should not exist at instruction selection time!");
813    abort();
814  }
815  void visitUserOp2(Instruction &I) {
816    assert(0 && "UserOp2 should not exist at instruction selection time!");
817    abort();
818  }
819
820private:
821  inline const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
822
823};
824} // end namespace llvm
825
826
827/// getCopyFromParts - Create a value that contains the specified legal parts
828/// combined into the value they represent.  If the parts combine to a type
829/// larger then ValueVT then AssertOp can be used to specify whether the extra
830/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
831/// (ISD::AssertSext).
832static SDOperand getCopyFromParts(SelectionDAG &DAG,
833                                  const SDOperand *Parts,
834                                  unsigned NumParts,
835                                  MVT PartVT,
836                                  MVT ValueVT,
837                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
838  assert(NumParts > 0 && "No parts to assemble!");
839  TargetLowering &TLI = DAG.getTargetLoweringInfo();
840  SDOperand Val = Parts[0];
841
842  if (NumParts > 1) {
843    // Assemble the value from multiple parts.
844    if (!ValueVT.isVector()) {
845      unsigned PartBits = PartVT.getSizeInBits();
846      unsigned ValueBits = ValueVT.getSizeInBits();
847
848      // Assemble the power of 2 part.
849      unsigned RoundParts = NumParts & (NumParts - 1) ?
850        1 << Log2_32(NumParts) : NumParts;
851      unsigned RoundBits = PartBits * RoundParts;
852      MVT RoundVT = RoundBits == ValueBits ?
853        ValueVT : MVT::getIntegerVT(RoundBits);
854      SDOperand Lo, Hi;
855
856      if (RoundParts > 2) {
857        MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
858        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
859        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
860                              PartVT, HalfVT);
861      } else {
862        Lo = Parts[0];
863        Hi = Parts[1];
864      }
865      if (TLI.isBigEndian())
866        std::swap(Lo, Hi);
867      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
868
869      if (RoundParts < NumParts) {
870        // Assemble the trailing non-power-of-2 part.
871        unsigned OddParts = NumParts - RoundParts;
872        MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
873        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
874
875        // Combine the round and odd parts.
876        Lo = Val;
877        if (TLI.isBigEndian())
878          std::swap(Lo, Hi);
879        MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
880        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
881        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
882                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
883                                         TLI.getShiftAmountTy()));
884        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
885        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
886      }
887    } else {
888      // Handle a multi-element vector.
889      MVT IntermediateVT, RegisterVT;
890      unsigned NumIntermediates;
891      unsigned NumRegs =
892        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
893                                   RegisterVT);
894      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
895      NumParts = NumRegs; // Silence a compiler warning.
896      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
897      assert(RegisterVT == Parts[0].getValueType() &&
898             "Part type doesn't match part!");
899
900      // Assemble the parts into intermediate operands.
901      SmallVector<SDOperand, 8> Ops(NumIntermediates);
902      if (NumIntermediates == NumParts) {
903        // If the register was not expanded, truncate or copy the value,
904        // as appropriate.
905        for (unsigned i = 0; i != NumParts; ++i)
906          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
907                                    PartVT, IntermediateVT);
908      } else if (NumParts > 0) {
909        // If the intermediate type was expanded, build the intermediate operands
910        // from the parts.
911        assert(NumParts % NumIntermediates == 0 &&
912               "Must expand into a divisible number of parts!");
913        unsigned Factor = NumParts / NumIntermediates;
914        for (unsigned i = 0; i != NumIntermediates; ++i)
915          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
916                                    PartVT, IntermediateVT);
917      }
918
919      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
920      // operands.
921      Val = DAG.getNode(IntermediateVT.isVector() ?
922                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
923                        ValueVT, &Ops[0], NumIntermediates);
924    }
925  }
926
927  // There is now one part, held in Val.  Correct it to match ValueVT.
928  PartVT = Val.getValueType();
929
930  if (PartVT == ValueVT)
931    return Val;
932
933  if (PartVT.isVector()) {
934    assert(ValueVT.isVector() && "Unknown vector conversion!");
935    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
936  }
937
938  if (ValueVT.isVector()) {
939    assert(ValueVT.getVectorElementType() == PartVT &&
940           ValueVT.getVectorNumElements() == 1 &&
941           "Only trivial scalar-to-vector conversions should get here!");
942    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
943  }
944
945  if (PartVT.isInteger() &&
946      ValueVT.isInteger()) {
947    if (ValueVT.bitsLT(PartVT)) {
948      // For a truncate, see if we have any information to
949      // indicate whether the truncated bits will always be
950      // zero or sign-extension.
951      if (AssertOp != ISD::DELETED_NODE)
952        Val = DAG.getNode(AssertOp, PartVT, Val,
953                          DAG.getValueType(ValueVT));
954      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
955    } else {
956      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
957    }
958  }
959
960  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
961    if (ValueVT.bitsLT(Val.getValueType()))
962      // FP_ROUND's are always exact here.
963      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
964                         DAG.getIntPtrConstant(1));
965    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
966  }
967
968  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
969    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
970
971  assert(0 && "Unknown mismatch!");
972  return SDOperand();
973}
974
975/// getCopyToParts - Create a series of nodes that contain the specified value
976/// split into legal parts.  If the parts contain more bits than Val, then, for
977/// integers, ExtendKind can be used to specify how to generate the extra bits.
978static void getCopyToParts(SelectionDAG &DAG,
979                           SDOperand Val,
980                           SDOperand *Parts,
981                           unsigned NumParts,
982                           MVT PartVT,
983                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
984  TargetLowering &TLI = DAG.getTargetLoweringInfo();
985  MVT PtrVT = TLI.getPointerTy();
986  MVT ValueVT = Val.getValueType();
987  unsigned PartBits = PartVT.getSizeInBits();
988  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
989
990  if (!NumParts)
991    return;
992
993  if (!ValueVT.isVector()) {
994    if (PartVT == ValueVT) {
995      assert(NumParts == 1 && "No-op copy with multiple parts!");
996      Parts[0] = Val;
997      return;
998    }
999
1000    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
1001      // If the parts cover more bits than the value has, promote the value.
1002      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
1003        assert(NumParts == 1 && "Do not know what to promote to!");
1004        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
1005      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
1006        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1007        Val = DAG.getNode(ExtendKind, ValueVT, Val);
1008      } else {
1009        assert(0 && "Unknown mismatch!");
1010      }
1011    } else if (PartBits == ValueVT.getSizeInBits()) {
1012      // Different types of the same size.
1013      assert(NumParts == 1 && PartVT != ValueVT);
1014      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1015    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
1016      // If the parts cover less bits than value has, truncate the value.
1017      if (PartVT.isInteger() && ValueVT.isInteger()) {
1018        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1019        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1020      } else {
1021        assert(0 && "Unknown mismatch!");
1022      }
1023    }
1024
1025    // The value may have changed - recompute ValueVT.
1026    ValueVT = Val.getValueType();
1027    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
1028           "Failed to tile the value with PartVT!");
1029
1030    if (NumParts == 1) {
1031      assert(PartVT == ValueVT && "Type conversion failed!");
1032      Parts[0] = Val;
1033      return;
1034    }
1035
1036    // Expand the value into multiple parts.
1037    if (NumParts & (NumParts - 1)) {
1038      // The number of parts is not a power of 2.  Split off and copy the tail.
1039      assert(PartVT.isInteger() && ValueVT.isInteger() &&
1040             "Do not know what to expand to!");
1041      unsigned RoundParts = 1 << Log2_32(NumParts);
1042      unsigned RoundBits = RoundParts * PartBits;
1043      unsigned OddParts = NumParts - RoundParts;
1044      SDOperand OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
1045                                     DAG.getConstant(RoundBits,
1046                                                     TLI.getShiftAmountTy()));
1047      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
1048      if (TLI.isBigEndian())
1049        // The odd parts were reversed by getCopyToParts - unreverse them.
1050        std::reverse(Parts + RoundParts, Parts + NumParts);
1051      NumParts = RoundParts;
1052      ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1053      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1054    }
1055
1056    // The number of parts is a power of 2.  Repeatedly bisect the value using
1057    // EXTRACT_ELEMENT.
1058    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
1059                           MVT::getIntegerVT(ValueVT.getSizeInBits()),
1060                           Val);
1061    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
1062      for (unsigned i = 0; i < NumParts; i += StepSize) {
1063        unsigned ThisBits = StepSize * PartBits / 2;
1064        MVT ThisVT = MVT::getIntegerVT (ThisBits);
1065        SDOperand &Part0 = Parts[i];
1066        SDOperand &Part1 = Parts[i+StepSize/2];
1067
1068        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1069                            DAG.getConstant(1, PtrVT));
1070        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1071                            DAG.getConstant(0, PtrVT));
1072
1073        if (ThisBits == PartBits && ThisVT != PartVT) {
1074          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
1075          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
1076        }
1077      }
1078    }
1079
1080    if (TLI.isBigEndian())
1081      std::reverse(Parts, Parts + NumParts);
1082
1083    return;
1084  }
1085
1086  // Vector ValueVT.
1087  if (NumParts == 1) {
1088    if (PartVT != ValueVT) {
1089      if (PartVT.isVector()) {
1090        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1091      } else {
1092        assert(ValueVT.getVectorElementType() == PartVT &&
1093               ValueVT.getVectorNumElements() == 1 &&
1094               "Only trivial vector-to-scalar conversions should get here!");
1095        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
1096                          DAG.getConstant(0, PtrVT));
1097      }
1098    }
1099
1100    Parts[0] = Val;
1101    return;
1102  }
1103
1104  // Handle a multi-element vector.
1105  MVT IntermediateVT, RegisterVT;
1106  unsigned NumIntermediates;
1107  unsigned NumRegs =
1108    DAG.getTargetLoweringInfo()
1109      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1110                              RegisterVT);
1111  unsigned NumElements = ValueVT.getVectorNumElements();
1112
1113  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1114  NumParts = NumRegs; // Silence a compiler warning.
1115  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1116
1117  // Split the vector into intermediate operands.
1118  SmallVector<SDOperand, 8> Ops(NumIntermediates);
1119  for (unsigned i = 0; i != NumIntermediates; ++i)
1120    if (IntermediateVT.isVector())
1121      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
1122                           IntermediateVT, Val,
1123                           DAG.getConstant(i * (NumElements / NumIntermediates),
1124                                           PtrVT));
1125    else
1126      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
1127                           IntermediateVT, Val,
1128                           DAG.getConstant(i, PtrVT));
1129
1130  // Split the intermediate operands into legal parts.
1131  if (NumParts == NumIntermediates) {
1132    // If the register was not expanded, promote or copy the value,
1133    // as appropriate.
1134    for (unsigned i = 0; i != NumParts; ++i)
1135      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
1136  } else if (NumParts > 0) {
1137    // If the intermediate type was expanded, split each the value into
1138    // legal parts.
1139    assert(NumParts % NumIntermediates == 0 &&
1140           "Must expand into a divisible number of parts!");
1141    unsigned Factor = NumParts / NumIntermediates;
1142    for (unsigned i = 0; i != NumIntermediates; ++i)
1143      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
1144  }
1145}
1146
1147
1148SDOperand SelectionDAGLowering::getValue(const Value *V) {
1149  SDOperand &N = NodeMap[V];
1150  if (N.Val) return N;
1151
1152  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
1153    MVT VT = TLI.getValueType(V->getType(), true);
1154
1155    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1156      return N = DAG.getConstant(CI->getValue(), VT);
1157
1158    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
1159      return N = DAG.getGlobalAddress(GV, VT);
1160
1161    if (isa<ConstantPointerNull>(C))
1162      return N = DAG.getConstant(0, TLI.getPointerTy());
1163
1164    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1165      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
1166
1167    if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
1168        !V->getType()->isAggregateType())
1169      return N = DAG.getNode(ISD::UNDEF, VT);
1170
1171    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1172      visit(CE->getOpcode(), *CE);
1173      SDOperand N1 = NodeMap[V];
1174      assert(N1.Val && "visit didn't populate the ValueMap!");
1175      return N1;
1176    }
1177
1178    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1179      SmallVector<SDOperand, 4> Constants;
1180      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1181           OI != OE; ++OI) {
1182        SDNode *Val = getValue(*OI).Val;
1183        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1184          Constants.push_back(SDOperand(Val, i));
1185      }
1186      return DAG.getMergeValues(&Constants[0], Constants.size());
1187    }
1188
1189    if (const ArrayType *ATy = dyn_cast<ArrayType>(C->getType())) {
1190      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1191             "Unknown array constant!");
1192      unsigned NumElts = ATy->getNumElements();
1193      if (NumElts == 0)
1194        return SDOperand(); // empty array
1195      MVT EltVT = TLI.getValueType(ATy->getElementType());
1196      SmallVector<SDOperand, 4> Constants(NumElts);
1197      for (unsigned i = 0, e = NumElts; i != e; ++i) {
1198        if (isa<UndefValue>(C))
1199          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1200        else if (EltVT.isFloatingPoint())
1201          Constants[i] = DAG.getConstantFP(0, EltVT);
1202        else
1203          Constants[i] = DAG.getConstant(0, EltVT);
1204      }
1205      return DAG.getMergeValues(&Constants[0], Constants.size());
1206    }
1207
1208    if (const StructType *STy = dyn_cast<StructType>(C->getType())) {
1209      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1210             "Unknown struct constant!");
1211      unsigned NumElts = STy->getNumElements();
1212      if (NumElts == 0)
1213        return SDOperand(); // empty struct
1214      SmallVector<SDOperand, 4> Constants(NumElts);
1215      for (unsigned i = 0, e = NumElts; i != e; ++i) {
1216        MVT EltVT = TLI.getValueType(STy->getElementType(i));
1217        if (isa<UndefValue>(C))
1218          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1219        else if (EltVT.isFloatingPoint())
1220          Constants[i] = DAG.getConstantFP(0, EltVT);
1221        else
1222          Constants[i] = DAG.getConstant(0, EltVT);
1223      }
1224      return DAG.getMergeValues(&Constants[0], Constants.size());
1225    }
1226
1227    const VectorType *VecTy = cast<VectorType>(V->getType());
1228    unsigned NumElements = VecTy->getNumElements();
1229
1230    // Now that we know the number and type of the elements, get that number of
1231    // elements into the Ops array based on what kind of constant it is.
1232    SmallVector<SDOperand, 16> Ops;
1233    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1234      for (unsigned i = 0; i != NumElements; ++i)
1235        Ops.push_back(getValue(CP->getOperand(i)));
1236    } else {
1237      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1238             "Unknown vector constant!");
1239      MVT EltVT = TLI.getValueType(VecTy->getElementType());
1240
1241      SDOperand Op;
1242      if (isa<UndefValue>(C))
1243        Op = DAG.getNode(ISD::UNDEF, EltVT);
1244      else if (EltVT.isFloatingPoint())
1245        Op = DAG.getConstantFP(0, EltVT);
1246      else
1247        Op = DAG.getConstant(0, EltVT);
1248      Ops.assign(NumElements, Op);
1249    }
1250
1251    // Create a BUILD_VECTOR node.
1252    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1253  }
1254
1255  // If this is a static alloca, generate it as the frameindex instead of
1256  // computation.
1257  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1258    std::map<const AllocaInst*, int>::iterator SI =
1259      FuncInfo.StaticAllocaMap.find(AI);
1260    if (SI != FuncInfo.StaticAllocaMap.end())
1261      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1262  }
1263
1264  unsigned InReg = FuncInfo.ValueMap[V];
1265  assert(InReg && "Value not in map!");
1266
1267  RegsForValue RFV(TLI, InReg, V->getType());
1268  SDOperand Chain = DAG.getEntryNode();
1269  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1270}
1271
1272
1273void SelectionDAGLowering::visitRet(ReturnInst &I) {
1274  if (I.getNumOperands() == 0) {
1275    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
1276    return;
1277  }
1278
1279  SmallVector<SDOperand, 8> NewValues;
1280  NewValues.push_back(getControlRoot());
1281  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1282    SDOperand RetOp = getValue(I.getOperand(i));
1283
1284    SmallVector<MVT, 4> ValueVTs;
1285    ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
1286    for (unsigned j = 0, f = ValueVTs.size(); j != f; ++j) {
1287      MVT VT = ValueVTs[j];
1288
1289      // FIXME: C calling convention requires the return type to be promoted to
1290      // at least 32-bit. But this is not necessary for non-C calling conventions.
1291      if (VT.isInteger()) {
1292        MVT MinVT = TLI.getRegisterType(MVT::i32);
1293        if (VT.bitsLT(MinVT))
1294          VT = MinVT;
1295      }
1296
1297      unsigned NumParts = TLI.getNumRegisters(VT);
1298      MVT PartVT = TLI.getRegisterType(VT);
1299      SmallVector<SDOperand, 4> Parts(NumParts);
1300      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1301
1302      const Function *F = I.getParent()->getParent();
1303      if (F->paramHasAttr(0, ParamAttr::SExt))
1304        ExtendKind = ISD::SIGN_EXTEND;
1305      else if (F->paramHasAttr(0, ParamAttr::ZExt))
1306        ExtendKind = ISD::ZERO_EXTEND;
1307
1308      getCopyToParts(DAG, SDOperand(RetOp.Val, RetOp.ResNo + j),
1309                     &Parts[0], NumParts, PartVT, ExtendKind);
1310
1311      for (unsigned i = 0; i < NumParts; ++i) {
1312        NewValues.push_back(Parts[i]);
1313        NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
1314      }
1315    }
1316  }
1317  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1318                          &NewValues[0], NewValues.size()));
1319}
1320
1321/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1322/// the current basic block, add it to ValueMap now so that we'll get a
1323/// CopyTo/FromReg.
1324void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1325  // No need to export constants.
1326  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1327
1328  // Already exported?
1329  if (FuncInfo.isExportedInst(V)) return;
1330
1331  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1332  CopyValueToVirtualRegister(V, Reg);
1333}
1334
1335bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1336                                                    const BasicBlock *FromBB) {
1337  // The operands of the setcc have to be in this block.  We don't know
1338  // how to export them from some other block.
1339  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1340    // Can export from current BB.
1341    if (VI->getParent() == FromBB)
1342      return true;
1343
1344    // Is already exported, noop.
1345    return FuncInfo.isExportedInst(V);
1346  }
1347
1348  // If this is an argument, we can export it if the BB is the entry block or
1349  // if it is already exported.
1350  if (isa<Argument>(V)) {
1351    if (FromBB == &FromBB->getParent()->getEntryBlock())
1352      return true;
1353
1354    // Otherwise, can only export this if it is already exported.
1355    return FuncInfo.isExportedInst(V);
1356  }
1357
1358  // Otherwise, constants can always be exported.
1359  return true;
1360}
1361
1362static bool InBlock(const Value *V, const BasicBlock *BB) {
1363  if (const Instruction *I = dyn_cast<Instruction>(V))
1364    return I->getParent() == BB;
1365  return true;
1366}
1367
1368/// FindMergedConditions - If Cond is an expression like
1369void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1370                                                MachineBasicBlock *TBB,
1371                                                MachineBasicBlock *FBB,
1372                                                MachineBasicBlock *CurBB,
1373                                                unsigned Opc) {
1374  // If this node is not part of the or/and tree, emit it as a branch.
1375  Instruction *BOp = dyn_cast<Instruction>(Cond);
1376
1377  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1378      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1379      BOp->getParent() != CurBB->getBasicBlock() ||
1380      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1381      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1382    const BasicBlock *BB = CurBB->getBasicBlock();
1383
1384    // If the leaf of the tree is a comparison, merge the condition into
1385    // the caseblock.
1386    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1387        // The operands of the cmp have to be in this block.  We don't know
1388        // how to export them from some other block.  If this is the first block
1389        // of the sequence, no exporting is needed.
1390        (CurBB == CurMBB ||
1391         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1392          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1393      BOp = cast<Instruction>(Cond);
1394      ISD::CondCode Condition;
1395      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1396        switch (IC->getPredicate()) {
1397        default: assert(0 && "Unknown icmp predicate opcode!");
1398        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1399        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1400        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1401        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1402        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1403        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1404        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1405        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1406        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1407        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1408        }
1409      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1410        ISD::CondCode FPC, FOC;
1411        switch (FC->getPredicate()) {
1412        default: assert(0 && "Unknown fcmp predicate opcode!");
1413        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1414        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1415        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1416        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1417        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1418        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1419        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1420        case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
1421        case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
1422        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1423        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1424        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1425        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1426        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1427        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1428        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1429        }
1430        if (FiniteOnlyFPMath())
1431          Condition = FOC;
1432        else
1433          Condition = FPC;
1434      } else {
1435        Condition = ISD::SETEQ; // silence warning.
1436        assert(0 && "Unknown compare instruction");
1437      }
1438
1439      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1440                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1441      SwitchCases.push_back(CB);
1442      return;
1443    }
1444
1445    // Create a CaseBlock record representing this branch.
1446    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1447                                   NULL, TBB, FBB, CurBB);
1448    SwitchCases.push_back(CB);
1449    return;
1450  }
1451
1452
1453  //  Create TmpBB after CurBB.
1454  MachineFunction::iterator BBI = CurBB;
1455  MachineFunction &MF = DAG.getMachineFunction();
1456  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1457  CurBB->getParent()->insert(++BBI, TmpBB);
1458
1459  if (Opc == Instruction::Or) {
1460    // Codegen X | Y as:
1461    //   jmp_if_X TBB
1462    //   jmp TmpBB
1463    // TmpBB:
1464    //   jmp_if_Y TBB
1465    //   jmp FBB
1466    //
1467
1468    // Emit the LHS condition.
1469    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1470
1471    // Emit the RHS condition into TmpBB.
1472    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1473  } else {
1474    assert(Opc == Instruction::And && "Unknown merge op!");
1475    // Codegen X & Y as:
1476    //   jmp_if_X TmpBB
1477    //   jmp FBB
1478    // TmpBB:
1479    //   jmp_if_Y TBB
1480    //   jmp FBB
1481    //
1482    //  This requires creation of TmpBB after CurBB.
1483
1484    // Emit the LHS condition.
1485    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1486
1487    // Emit the RHS condition into TmpBB.
1488    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1489  }
1490}
1491
1492/// If the set of cases should be emitted as a series of branches, return true.
1493/// If we should emit this as a bunch of and/or'd together conditions, return
1494/// false.
1495static bool
1496ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1497  if (Cases.size() != 2) return true;
1498
1499  // If this is two comparisons of the same values or'd or and'd together, they
1500  // will get folded into a single comparison, so don't emit two blocks.
1501  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1502       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1503      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1504       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1505    return false;
1506  }
1507
1508  return true;
1509}
1510
1511void SelectionDAGLowering::visitBr(BranchInst &I) {
1512  // Update machine-CFG edges.
1513  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1514
1515  // Figure out which block is immediately after the current one.
1516  MachineBasicBlock *NextBlock = 0;
1517  MachineFunction::iterator BBI = CurMBB;
1518  if (++BBI != CurMBB->getParent()->end())
1519    NextBlock = BBI;
1520
1521  if (I.isUnconditional()) {
1522    // Update machine-CFG edges.
1523    CurMBB->addSuccessor(Succ0MBB);
1524
1525    // If this is not a fall-through branch, emit the branch.
1526    if (Succ0MBB != NextBlock)
1527      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1528                              DAG.getBasicBlock(Succ0MBB)));
1529    return;
1530  }
1531
1532  // If this condition is one of the special cases we handle, do special stuff
1533  // now.
1534  Value *CondVal = I.getCondition();
1535  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1536
1537  // If this is a series of conditions that are or'd or and'd together, emit
1538  // this as a sequence of branches instead of setcc's with and/or operations.
1539  // For example, instead of something like:
1540  //     cmp A, B
1541  //     C = seteq
1542  //     cmp D, E
1543  //     F = setle
1544  //     or C, F
1545  //     jnz foo
1546  // Emit:
1547  //     cmp A, B
1548  //     je foo
1549  //     cmp D, E
1550  //     jle foo
1551  //
1552  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1553    if (BOp->hasOneUse() &&
1554        (BOp->getOpcode() == Instruction::And ||
1555         BOp->getOpcode() == Instruction::Or)) {
1556      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1557      // If the compares in later blocks need to use values not currently
1558      // exported from this block, export them now.  This block should always
1559      // be the first entry.
1560      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1561
1562      // Allow some cases to be rejected.
1563      if (ShouldEmitAsBranches(SwitchCases)) {
1564        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1565          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1566          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1567        }
1568
1569        // Emit the branch for this block.
1570        visitSwitchCase(SwitchCases[0]);
1571        SwitchCases.erase(SwitchCases.begin());
1572        return;
1573      }
1574
1575      // Okay, we decided not to do this, remove any inserted MBB's and clear
1576      // SwitchCases.
1577      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1578        CurMBB->getParent()->erase(SwitchCases[i].ThisBB);
1579
1580      SwitchCases.clear();
1581    }
1582  }
1583
1584  // Create a CaseBlock record representing this branch.
1585  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1586                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1587  // Use visitSwitchCase to actually insert the fast branch sequence for this
1588  // cond branch.
1589  visitSwitchCase(CB);
1590}
1591
1592/// visitSwitchCase - Emits the necessary code to represent a single node in
1593/// the binary search tree resulting from lowering a switch instruction.
1594void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1595  SDOperand Cond;
1596  SDOperand CondLHS = getValue(CB.CmpLHS);
1597
1598  // Build the setcc now.
1599  if (CB.CmpMHS == NULL) {
1600    // Fold "(X == true)" to X and "(X == false)" to !X to
1601    // handle common cases produced by branch lowering.
1602    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1603      Cond = CondLHS;
1604    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1605      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1606      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1607    } else
1608      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1609  } else {
1610    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1611
1612    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1613    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1614
1615    SDOperand CmpOp = getValue(CB.CmpMHS);
1616    MVT VT = CmpOp.getValueType();
1617
1618    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1619      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1620    } else {
1621      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1622      Cond = DAG.getSetCC(MVT::i1, SUB,
1623                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1624    }
1625  }
1626
1627  // Update successor info
1628  CurMBB->addSuccessor(CB.TrueBB);
1629  CurMBB->addSuccessor(CB.FalseBB);
1630
1631  // Set NextBlock to be the MBB immediately after the current one, if any.
1632  // This is used to avoid emitting unnecessary branches to the next block.
1633  MachineBasicBlock *NextBlock = 0;
1634  MachineFunction::iterator BBI = CurMBB;
1635  if (++BBI != CurMBB->getParent()->end())
1636    NextBlock = BBI;
1637
1638  // If the lhs block is the next block, invert the condition so that we can
1639  // fall through to the lhs instead of the rhs block.
1640  if (CB.TrueBB == NextBlock) {
1641    std::swap(CB.TrueBB, CB.FalseBB);
1642    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1643    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1644  }
1645  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1646                                 DAG.getBasicBlock(CB.TrueBB));
1647  if (CB.FalseBB == NextBlock)
1648    DAG.setRoot(BrCond);
1649  else
1650    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1651                            DAG.getBasicBlock(CB.FalseBB)));
1652}
1653
1654/// visitJumpTable - Emit JumpTable node in the current MBB
1655void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1656  // Emit the code for the jump table
1657  assert(JT.Reg != -1U && "Should lower JT Header first!");
1658  MVT PTy = TLI.getPointerTy();
1659  SDOperand Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1660  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1661  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1662                          Table, Index));
1663  return;
1664}
1665
1666/// visitJumpTableHeader - This function emits necessary code to produce index
1667/// in the JumpTable from switch case.
1668void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1669                                         SelectionDAGISel::JumpTableHeader &JTH) {
1670  // Subtract the lowest switch case value from the value being switched on
1671  // and conditional branch to default mbb if the result is greater than the
1672  // difference between smallest and largest cases.
1673  SDOperand SwitchOp = getValue(JTH.SValue);
1674  MVT VT = SwitchOp.getValueType();
1675  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1676                              DAG.getConstant(JTH.First, VT));
1677
1678  // The SDNode we just created, which holds the value being switched on
1679  // minus the the smallest case value, needs to be copied to a virtual
1680  // register so it can be used as an index into the jump table in a
1681  // subsequent basic block.  This value may be smaller or larger than the
1682  // target's pointer type, and therefore require extension or truncating.
1683  if (VT.bitsGT(TLI.getPointerTy()))
1684    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1685  else
1686    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1687
1688  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1689  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1690  JT.Reg = JumpTableReg;
1691
1692  // Emit the range check for the jump table, and branch to the default
1693  // block for the switch statement if the value being switched on exceeds
1694  // the largest case in the switch.
1695  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1696                               DAG.getConstant(JTH.Last-JTH.First,VT),
1697                               ISD::SETUGT);
1698
1699  // Set NextBlock to be the MBB immediately after the current one, if any.
1700  // This is used to avoid emitting unnecessary branches to the next block.
1701  MachineBasicBlock *NextBlock = 0;
1702  MachineFunction::iterator BBI = CurMBB;
1703  if (++BBI != CurMBB->getParent()->end())
1704    NextBlock = BBI;
1705
1706  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1707                                 DAG.getBasicBlock(JT.Default));
1708
1709  if (JT.MBB == NextBlock)
1710    DAG.setRoot(BrCond);
1711  else
1712    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1713                            DAG.getBasicBlock(JT.MBB)));
1714
1715  return;
1716}
1717
1718/// visitBitTestHeader - This function emits necessary code to produce value
1719/// suitable for "bit tests"
1720void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1721  // Subtract the minimum value
1722  SDOperand SwitchOp = getValue(B.SValue);
1723  MVT VT = SwitchOp.getValueType();
1724  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1725                              DAG.getConstant(B.First, VT));
1726
1727  // Check range
1728  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1729                                    DAG.getConstant(B.Range, VT),
1730                                    ISD::SETUGT);
1731
1732  SDOperand ShiftOp;
1733  if (VT.bitsGT(TLI.getShiftAmountTy()))
1734    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1735  else
1736    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1737
1738  // Make desired shift
1739  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1740                                    DAG.getConstant(1, TLI.getPointerTy()),
1741                                    ShiftOp);
1742
1743  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1744  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1745  B.Reg = SwitchReg;
1746
1747  // Set NextBlock to be the MBB immediately after the current one, if any.
1748  // This is used to avoid emitting unnecessary branches to the next block.
1749  MachineBasicBlock *NextBlock = 0;
1750  MachineFunction::iterator BBI = CurMBB;
1751  if (++BBI != CurMBB->getParent()->end())
1752    NextBlock = BBI;
1753
1754  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1755
1756  CurMBB->addSuccessor(B.Default);
1757  CurMBB->addSuccessor(MBB);
1758
1759  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1760                                  DAG.getBasicBlock(B.Default));
1761
1762  if (MBB == NextBlock)
1763    DAG.setRoot(BrRange);
1764  else
1765    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1766                            DAG.getBasicBlock(MBB)));
1767
1768  return;
1769}
1770
1771/// visitBitTestCase - this function produces one "bit test"
1772void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1773                                            unsigned Reg,
1774                                            SelectionDAGISel::BitTestCase &B) {
1775  // Emit bit tests and jumps
1776  SDOperand SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
1777                                           TLI.getPointerTy());
1778
1779  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
1780                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1781  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1782                                  DAG.getConstant(0, TLI.getPointerTy()),
1783                                  ISD::SETNE);
1784
1785  CurMBB->addSuccessor(B.TargetBB);
1786  CurMBB->addSuccessor(NextMBB);
1787
1788  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1789                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1790
1791  // Set NextBlock to be the MBB immediately after the current one, if any.
1792  // This is used to avoid emitting unnecessary branches to the next block.
1793  MachineBasicBlock *NextBlock = 0;
1794  MachineFunction::iterator BBI = CurMBB;
1795  if (++BBI != CurMBB->getParent()->end())
1796    NextBlock = BBI;
1797
1798  if (NextMBB == NextBlock)
1799    DAG.setRoot(BrAnd);
1800  else
1801    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1802                            DAG.getBasicBlock(NextMBB)));
1803
1804  return;
1805}
1806
1807void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1808  // Retrieve successors.
1809  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1810  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1811
1812  if (isa<InlineAsm>(I.getCalledValue()))
1813    visitInlineAsm(&I);
1814  else
1815    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1816
1817  // If the value of the invoke is used outside of its defining block, make it
1818  // available as a virtual register.
1819  if (!I.use_empty()) {
1820    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1821    if (VMI != FuncInfo.ValueMap.end())
1822      CopyValueToVirtualRegister(&I, VMI->second);
1823  }
1824
1825  // Update successor info
1826  CurMBB->addSuccessor(Return);
1827  CurMBB->addSuccessor(LandingPad);
1828
1829  // Drop into normal successor.
1830  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1831                          DAG.getBasicBlock(Return)));
1832}
1833
1834void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1835}
1836
1837/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1838/// small case ranges).
1839bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1840                                                  CaseRecVector& WorkList,
1841                                                  Value* SV,
1842                                                  MachineBasicBlock* Default) {
1843  Case& BackCase  = *(CR.Range.second-1);
1844
1845  // Size is the number of Cases represented by this range.
1846  unsigned Size = CR.Range.second - CR.Range.first;
1847  if (Size > 3)
1848    return false;
1849
1850  // Get the MachineFunction which holds the current MBB.  This is used when
1851  // inserting any additional MBBs necessary to represent the switch.
1852  MachineFunction *CurMF = CurMBB->getParent();
1853
1854  // Figure out which block is immediately after the current one.
1855  MachineBasicBlock *NextBlock = 0;
1856  MachineFunction::iterator BBI = CR.CaseBB;
1857
1858  if (++BBI != CurMBB->getParent()->end())
1859    NextBlock = BBI;
1860
1861  // TODO: If any two of the cases has the same destination, and if one value
1862  // is the same as the other, but has one bit unset that the other has set,
1863  // use bit manipulation to do two compares at once.  For example:
1864  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1865
1866  // Rearrange the case blocks so that the last one falls through if possible.
1867  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1868    // The last case block won't fall through into 'NextBlock' if we emit the
1869    // branches in this order.  See if rearranging a case value would help.
1870    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1871      if (I->BB == NextBlock) {
1872        std::swap(*I, BackCase);
1873        break;
1874      }
1875    }
1876  }
1877
1878  // Create a CaseBlock record representing a conditional branch to
1879  // the Case's target mbb if the value being switched on SV is equal
1880  // to C.
1881  MachineBasicBlock *CurBlock = CR.CaseBB;
1882  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1883    MachineBasicBlock *FallThrough;
1884    if (I != E-1) {
1885      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1886      CurMF->insert(BBI, FallThrough);
1887    } else {
1888      // If the last case doesn't match, go to the default block.
1889      FallThrough = Default;
1890    }
1891
1892    Value *RHS, *LHS, *MHS;
1893    ISD::CondCode CC;
1894    if (I->High == I->Low) {
1895      // This is just small small case range :) containing exactly 1 case
1896      CC = ISD::SETEQ;
1897      LHS = SV; RHS = I->High; MHS = NULL;
1898    } else {
1899      CC = ISD::SETLE;
1900      LHS = I->Low; MHS = SV; RHS = I->High;
1901    }
1902    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1903                                   I->BB, FallThrough, CurBlock);
1904
1905    // If emitting the first comparison, just call visitSwitchCase to emit the
1906    // code into the current block.  Otherwise, push the CaseBlock onto the
1907    // vector to be later processed by SDISel, and insert the node's MBB
1908    // before the next MBB.
1909    if (CurBlock == CurMBB)
1910      visitSwitchCase(CB);
1911    else
1912      SwitchCases.push_back(CB);
1913
1914    CurBlock = FallThrough;
1915  }
1916
1917  return true;
1918}
1919
1920static inline bool areJTsAllowed(const TargetLowering &TLI) {
1921  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1922          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1923}
1924
1925/// handleJTSwitchCase - Emit jumptable for current switch case range
1926bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1927                                              CaseRecVector& WorkList,
1928                                              Value* SV,
1929                                              MachineBasicBlock* Default) {
1930  Case& FrontCase = *CR.Range.first;
1931  Case& BackCase  = *(CR.Range.second-1);
1932
1933  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1934  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1935
1936  uint64_t TSize = 0;
1937  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1938       I!=E; ++I)
1939    TSize += I->size();
1940
1941  if (!areJTsAllowed(TLI) || TSize <= 3)
1942    return false;
1943
1944  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1945  if (Density < 0.4)
1946    return false;
1947
1948  DOUT << "Lowering jump table\n"
1949       << "First entry: " << First << ". Last entry: " << Last << "\n"
1950       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1951
1952  // Get the MachineFunction which holds the current MBB.  This is used when
1953  // inserting any additional MBBs necessary to represent the switch.
1954  MachineFunction *CurMF = CurMBB->getParent();
1955
1956  // Figure out which block is immediately after the current one.
1957  MachineBasicBlock *NextBlock = 0;
1958  MachineFunction::iterator BBI = CR.CaseBB;
1959
1960  if (++BBI != CurMBB->getParent()->end())
1961    NextBlock = BBI;
1962
1963  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1964
1965  // Create a new basic block to hold the code for loading the address
1966  // of the jump table, and jumping to it.  Update successor information;
1967  // we will either branch to the default case for the switch, or the jump
1968  // table.
1969  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1970  CurMF->insert(BBI, JumpTableBB);
1971  CR.CaseBB->addSuccessor(Default);
1972  CR.CaseBB->addSuccessor(JumpTableBB);
1973
1974  // Build a vector of destination BBs, corresponding to each target
1975  // of the jump table. If the value of the jump table slot corresponds to
1976  // a case statement, push the case's BB onto the vector, otherwise, push
1977  // the default BB.
1978  std::vector<MachineBasicBlock*> DestBBs;
1979  int64_t TEI = First;
1980  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1981    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1982    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1983
1984    if ((Low <= TEI) && (TEI <= High)) {
1985      DestBBs.push_back(I->BB);
1986      if (TEI==High)
1987        ++I;
1988    } else {
1989      DestBBs.push_back(Default);
1990    }
1991  }
1992
1993  // Update successor info. Add one edge to each unique successor.
1994  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1995  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1996         E = DestBBs.end(); I != E; ++I) {
1997    if (!SuccsHandled[(*I)->getNumber()]) {
1998      SuccsHandled[(*I)->getNumber()] = true;
1999      JumpTableBB->addSuccessor(*I);
2000    }
2001  }
2002
2003  // Create a jump table index for this jump table, or return an existing
2004  // one.
2005  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
2006
2007  // Set the jump table information so that we can codegen it as a second
2008  // MachineBasicBlock
2009  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
2010  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
2011                                        (CR.CaseBB == CurMBB));
2012  if (CR.CaseBB == CurMBB)
2013    visitJumpTableHeader(JT, JTH);
2014
2015  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
2016
2017  return true;
2018}
2019
2020/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2021/// 2 subtrees.
2022bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
2023                                                   CaseRecVector& WorkList,
2024                                                   Value* SV,
2025                                                   MachineBasicBlock* Default) {
2026  // Get the MachineFunction which holds the current MBB.  This is used when
2027  // inserting any additional MBBs necessary to represent the switch.
2028  MachineFunction *CurMF = CurMBB->getParent();
2029
2030  // Figure out which block is immediately after the current one.
2031  MachineBasicBlock *NextBlock = 0;
2032  MachineFunction::iterator BBI = CR.CaseBB;
2033
2034  if (++BBI != CurMBB->getParent()->end())
2035    NextBlock = BBI;
2036
2037  Case& FrontCase = *CR.Range.first;
2038  Case& BackCase  = *(CR.Range.second-1);
2039  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2040
2041  // Size is the number of Cases represented by this range.
2042  unsigned Size = CR.Range.second - CR.Range.first;
2043
2044  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
2045  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
2046  double FMetric = 0;
2047  CaseItr Pivot = CR.Range.first + Size/2;
2048
2049  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2050  // (heuristically) allow us to emit JumpTable's later.
2051  uint64_t TSize = 0;
2052  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2053       I!=E; ++I)
2054    TSize += I->size();
2055
2056  uint64_t LSize = FrontCase.size();
2057  uint64_t RSize = TSize-LSize;
2058  DOUT << "Selecting best pivot: \n"
2059       << "First: " << First << ", Last: " << Last <<"\n"
2060       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
2061  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2062       J!=E; ++I, ++J) {
2063    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
2064    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
2065    assert((RBegin-LEnd>=1) && "Invalid case distance");
2066    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
2067    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
2068    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
2069    // Should always split in some non-trivial place
2070    DOUT <<"=>Step\n"
2071         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
2072         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
2073         << "Metric: " << Metric << "\n";
2074    if (FMetric < Metric) {
2075      Pivot = J;
2076      FMetric = Metric;
2077      DOUT << "Current metric set to: " << FMetric << "\n";
2078    }
2079
2080    LSize += J->size();
2081    RSize -= J->size();
2082  }
2083  if (areJTsAllowed(TLI)) {
2084    // If our case is dense we *really* should handle it earlier!
2085    assert((FMetric > 0) && "Should handle dense range earlier!");
2086  } else {
2087    Pivot = CR.Range.first + Size/2;
2088  }
2089
2090  CaseRange LHSR(CR.Range.first, Pivot);
2091  CaseRange RHSR(Pivot, CR.Range.second);
2092  Constant *C = Pivot->Low;
2093  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2094
2095  // We know that we branch to the LHS if the Value being switched on is
2096  // less than the Pivot value, C.  We use this to optimize our binary
2097  // tree a bit, by recognizing that if SV is greater than or equal to the
2098  // LHS's Case Value, and that Case Value is exactly one less than the
2099  // Pivot's Value, then we can branch directly to the LHS's Target,
2100  // rather than creating a leaf node for it.
2101  if ((LHSR.second - LHSR.first) == 1 &&
2102      LHSR.first->High == CR.GE &&
2103      cast<ConstantInt>(C)->getSExtValue() ==
2104      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
2105    TrueBB = LHSR.first->BB;
2106  } else {
2107    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2108    CurMF->insert(BBI, TrueBB);
2109    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2110  }
2111
2112  // Similar to the optimization above, if the Value being switched on is
2113  // known to be less than the Constant CR.LT, and the current Case Value
2114  // is CR.LT - 1, then we can branch directly to the target block for
2115  // the current Case Value, rather than emitting a RHS leaf node for it.
2116  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2117      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
2118      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
2119    FalseBB = RHSR.first->BB;
2120  } else {
2121    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2122    CurMF->insert(BBI, FalseBB);
2123    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2124  }
2125
2126  // Create a CaseBlock record representing a conditional branch to
2127  // the LHS node if the value being switched on SV is less than C.
2128  // Otherwise, branch to LHS.
2129  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
2130                                 TrueBB, FalseBB, CR.CaseBB);
2131
2132  if (CR.CaseBB == CurMBB)
2133    visitSwitchCase(CB);
2134  else
2135    SwitchCases.push_back(CB);
2136
2137  return true;
2138}
2139
2140/// handleBitTestsSwitchCase - if current case range has few destination and
2141/// range span less, than machine word bitwidth, encode case range into series
2142/// of masks and emit bit tests with these masks.
2143bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
2144                                                    CaseRecVector& WorkList,
2145                                                    Value* SV,
2146                                                    MachineBasicBlock* Default){
2147  unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
2148
2149  Case& FrontCase = *CR.Range.first;
2150  Case& BackCase  = *(CR.Range.second-1);
2151
2152  // Get the MachineFunction which holds the current MBB.  This is used when
2153  // inserting any additional MBBs necessary to represent the switch.
2154  MachineFunction *CurMF = CurMBB->getParent();
2155
2156  unsigned numCmps = 0;
2157  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2158       I!=E; ++I) {
2159    // Single case counts one, case range - two.
2160    if (I->Low == I->High)
2161      numCmps +=1;
2162    else
2163      numCmps +=2;
2164  }
2165
2166  // Count unique destinations
2167  SmallSet<MachineBasicBlock*, 4> Dests;
2168  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2169    Dests.insert(I->BB);
2170    if (Dests.size() > 3)
2171      // Don't bother the code below, if there are too much unique destinations
2172      return false;
2173  }
2174  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
2175       << "Total number of comparisons: " << numCmps << "\n";
2176
2177  // Compute span of values.
2178  Constant* minValue = FrontCase.Low;
2179  Constant* maxValue = BackCase.High;
2180  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
2181                   cast<ConstantInt>(minValue)->getSExtValue();
2182  DOUT << "Compare range: " << range << "\n"
2183       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
2184       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
2185
2186  if (range>=IntPtrBits ||
2187      (!(Dests.size() == 1 && numCmps >= 3) &&
2188       !(Dests.size() == 2 && numCmps >= 5) &&
2189       !(Dests.size() >= 3 && numCmps >= 6)))
2190    return false;
2191
2192  DOUT << "Emitting bit tests\n";
2193  int64_t lowBound = 0;
2194
2195  // Optimize the case where all the case values fit in a
2196  // word without having to subtract minValue. In this case,
2197  // we can optimize away the subtraction.
2198  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
2199      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
2200    range = cast<ConstantInt>(maxValue)->getSExtValue();
2201  } else {
2202    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
2203  }
2204
2205  CaseBitsVector CasesBits;
2206  unsigned i, count = 0;
2207
2208  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2209    MachineBasicBlock* Dest = I->BB;
2210    for (i = 0; i < count; ++i)
2211      if (Dest == CasesBits[i].BB)
2212        break;
2213
2214    if (i == count) {
2215      assert((count < 3) && "Too much destinations to test!");
2216      CasesBits.push_back(CaseBits(0, Dest, 0));
2217      count++;
2218    }
2219
2220    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2221    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2222
2223    for (uint64_t j = lo; j <= hi; j++) {
2224      CasesBits[i].Mask |=  1ULL << j;
2225      CasesBits[i].Bits++;
2226    }
2227
2228  }
2229  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2230
2231  SelectionDAGISel::BitTestInfo BTC;
2232
2233  // Figure out which block is immediately after the current one.
2234  MachineFunction::iterator BBI = CR.CaseBB;
2235  ++BBI;
2236
2237  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2238
2239  DOUT << "Cases:\n";
2240  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2241    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2242         << ", BB: " << CasesBits[i].BB << "\n";
2243
2244    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2245    CurMF->insert(BBI, CaseBB);
2246    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
2247                                                CaseBB,
2248                                                CasesBits[i].BB));
2249  }
2250
2251  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
2252                                     -1U, (CR.CaseBB == CurMBB),
2253                                     CR.CaseBB, Default, BTC);
2254
2255  if (CR.CaseBB == CurMBB)
2256    visitBitTestHeader(BTB);
2257
2258  BitTestCases.push_back(BTB);
2259
2260  return true;
2261}
2262
2263
2264/// Clusterify - Transform simple list of Cases into list of CaseRange's
2265unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2266                                          const SwitchInst& SI) {
2267  unsigned numCmps = 0;
2268
2269  // Start with "simple" cases
2270  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2271    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2272    Cases.push_back(Case(SI.getSuccessorValue(i),
2273                         SI.getSuccessorValue(i),
2274                         SMBB));
2275  }
2276  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2277
2278  // Merge case into clusters
2279  if (Cases.size()>=2)
2280    // Must recompute end() each iteration because it may be
2281    // invalidated by erase if we hold on to it
2282    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2283      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2284      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2285      MachineBasicBlock* nextBB = J->BB;
2286      MachineBasicBlock* currentBB = I->BB;
2287
2288      // If the two neighboring cases go to the same destination, merge them
2289      // into a single case.
2290      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2291        I->High = J->High;
2292        J = Cases.erase(J);
2293      } else {
2294        I = J++;
2295      }
2296    }
2297
2298  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2299    if (I->Low != I->High)
2300      // A range counts double, since it requires two compares.
2301      ++numCmps;
2302  }
2303
2304  return numCmps;
2305}
2306
2307void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2308  // Figure out which block is immediately after the current one.
2309  MachineBasicBlock *NextBlock = 0;
2310  MachineFunction::iterator BBI = CurMBB;
2311
2312  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2313
2314  // If there is only the default destination, branch to it if it is not the
2315  // next basic block.  Otherwise, just fall through.
2316  if (SI.getNumOperands() == 2) {
2317    // Update machine-CFG edges.
2318
2319    // If this is not a fall-through branch, emit the branch.
2320    CurMBB->addSuccessor(Default);
2321    if (Default != NextBlock)
2322      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2323                              DAG.getBasicBlock(Default)));
2324
2325    return;
2326  }
2327
2328  // If there are any non-default case statements, create a vector of Cases
2329  // representing each one, and sort the vector so that we can efficiently
2330  // create a binary search tree from them.
2331  CaseVector Cases;
2332  unsigned numCmps = Clusterify(Cases, SI);
2333  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2334       << ". Total compares: " << numCmps << "\n";
2335
2336  // Get the Value to be switched on and default basic blocks, which will be
2337  // inserted into CaseBlock records, representing basic blocks in the binary
2338  // search tree.
2339  Value *SV = SI.getOperand(0);
2340
2341  // Push the initial CaseRec onto the worklist
2342  CaseRecVector WorkList;
2343  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2344
2345  while (!WorkList.empty()) {
2346    // Grab a record representing a case range to process off the worklist
2347    CaseRec CR = WorkList.back();
2348    WorkList.pop_back();
2349
2350    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2351      continue;
2352
2353    // If the range has few cases (two or less) emit a series of specific
2354    // tests.
2355    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2356      continue;
2357
2358    // If the switch has more than 5 blocks, and at least 40% dense, and the
2359    // target supports indirect branches, then emit a jump table rather than
2360    // lowering the switch to a binary tree of conditional branches.
2361    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2362      continue;
2363
2364    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2365    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2366    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2367  }
2368}
2369
2370
2371void SelectionDAGLowering::visitSub(User &I) {
2372  // -0.0 - X --> fneg
2373  const Type *Ty = I.getType();
2374  if (isa<VectorType>(Ty)) {
2375    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2376      const VectorType *DestTy = cast<VectorType>(I.getType());
2377      const Type *ElTy = DestTy->getElementType();
2378      if (ElTy->isFloatingPoint()) {
2379        unsigned VL = DestTy->getNumElements();
2380        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2381        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2382        if (CV == CNZ) {
2383          SDOperand Op2 = getValue(I.getOperand(1));
2384          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2385          return;
2386        }
2387      }
2388    }
2389  }
2390  if (Ty->isFloatingPoint()) {
2391    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2392      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2393        SDOperand Op2 = getValue(I.getOperand(1));
2394        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2395        return;
2396      }
2397  }
2398
2399  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2400}
2401
2402void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2403  SDOperand Op1 = getValue(I.getOperand(0));
2404  SDOperand Op2 = getValue(I.getOperand(1));
2405
2406  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2407}
2408
2409void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2410  SDOperand Op1 = getValue(I.getOperand(0));
2411  SDOperand Op2 = getValue(I.getOperand(1));
2412
2413  if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
2414    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2415  else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
2416    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2417
2418  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2419}
2420
2421void SelectionDAGLowering::visitICmp(User &I) {
2422  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2423  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2424    predicate = IC->getPredicate();
2425  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2426    predicate = ICmpInst::Predicate(IC->getPredicate());
2427  SDOperand Op1 = getValue(I.getOperand(0));
2428  SDOperand Op2 = getValue(I.getOperand(1));
2429  ISD::CondCode Opcode;
2430  switch (predicate) {
2431    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2432    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2433    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2434    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2435    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2436    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2437    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2438    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2439    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2440    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2441    default:
2442      assert(!"Invalid ICmp predicate value");
2443      Opcode = ISD::SETEQ;
2444      break;
2445  }
2446  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2447}
2448
2449void SelectionDAGLowering::visitFCmp(User &I) {
2450  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2451  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2452    predicate = FC->getPredicate();
2453  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2454    predicate = FCmpInst::Predicate(FC->getPredicate());
2455  SDOperand Op1 = getValue(I.getOperand(0));
2456  SDOperand Op2 = getValue(I.getOperand(1));
2457  ISD::CondCode Condition, FOC, FPC;
2458  switch (predicate) {
2459    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2460    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2461    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2462    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2463    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2464    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2465    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2466    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2467    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2468    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2469    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2470    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2471    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2472    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2473    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2474    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2475    default:
2476      assert(!"Invalid FCmp predicate value");
2477      FOC = FPC = ISD::SETFALSE;
2478      break;
2479  }
2480  if (FiniteOnlyFPMath())
2481    Condition = FOC;
2482  else
2483    Condition = FPC;
2484  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2485}
2486
2487void SelectionDAGLowering::visitVICmp(User &I) {
2488  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2489  if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2490    predicate = IC->getPredicate();
2491  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2492    predicate = ICmpInst::Predicate(IC->getPredicate());
2493  SDOperand Op1 = getValue(I.getOperand(0));
2494  SDOperand Op2 = getValue(I.getOperand(1));
2495  ISD::CondCode Opcode;
2496  switch (predicate) {
2497    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2498    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2499    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2500    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2501    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2502    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2503    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2504    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2505    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2506    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2507    default:
2508      assert(!"Invalid ICmp predicate value");
2509      Opcode = ISD::SETEQ;
2510      break;
2511  }
2512  setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2513}
2514
2515void SelectionDAGLowering::visitVFCmp(User &I) {
2516  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2517  if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2518    predicate = FC->getPredicate();
2519  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2520    predicate = FCmpInst::Predicate(FC->getPredicate());
2521  SDOperand Op1 = getValue(I.getOperand(0));
2522  SDOperand Op2 = getValue(I.getOperand(1));
2523  ISD::CondCode Condition, FOC, FPC;
2524  switch (predicate) {
2525    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2526    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2527    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2528    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2529    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2530    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2531    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2532    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2533    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2534    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2535    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2536    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2537    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2538    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2539    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2540    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2541    default:
2542      assert(!"Invalid VFCmp predicate value");
2543      FOC = FPC = ISD::SETFALSE;
2544      break;
2545  }
2546  if (FiniteOnlyFPMath())
2547    Condition = FOC;
2548  else
2549    Condition = FPC;
2550
2551  MVT DestVT = TLI.getValueType(I.getType());
2552
2553  setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2554}
2555
2556void SelectionDAGLowering::visitSelect(User &I) {
2557  SDOperand Cond     = getValue(I.getOperand(0));
2558  SDOperand TrueVal  = getValue(I.getOperand(1));
2559  SDOperand FalseVal = getValue(I.getOperand(2));
2560  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2561                           TrueVal, FalseVal));
2562}
2563
2564
2565void SelectionDAGLowering::visitTrunc(User &I) {
2566  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2567  SDOperand N = getValue(I.getOperand(0));
2568  MVT DestVT = TLI.getValueType(I.getType());
2569  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2570}
2571
2572void SelectionDAGLowering::visitZExt(User &I) {
2573  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2574  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2575  SDOperand N = getValue(I.getOperand(0));
2576  MVT DestVT = TLI.getValueType(I.getType());
2577  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2578}
2579
2580void SelectionDAGLowering::visitSExt(User &I) {
2581  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2582  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2583  SDOperand N = getValue(I.getOperand(0));
2584  MVT DestVT = TLI.getValueType(I.getType());
2585  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2586}
2587
2588void SelectionDAGLowering::visitFPTrunc(User &I) {
2589  // FPTrunc is never a no-op cast, no need to check
2590  SDOperand N = getValue(I.getOperand(0));
2591  MVT DestVT = TLI.getValueType(I.getType());
2592  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2593}
2594
2595void SelectionDAGLowering::visitFPExt(User &I){
2596  // FPTrunc is never a no-op cast, no need to check
2597  SDOperand N = getValue(I.getOperand(0));
2598  MVT DestVT = TLI.getValueType(I.getType());
2599  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2600}
2601
2602void SelectionDAGLowering::visitFPToUI(User &I) {
2603  // FPToUI is never a no-op cast, no need to check
2604  SDOperand N = getValue(I.getOperand(0));
2605  MVT DestVT = TLI.getValueType(I.getType());
2606  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2607}
2608
2609void SelectionDAGLowering::visitFPToSI(User &I) {
2610  // FPToSI is never a no-op cast, no need to check
2611  SDOperand N = getValue(I.getOperand(0));
2612  MVT DestVT = TLI.getValueType(I.getType());
2613  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2614}
2615
2616void SelectionDAGLowering::visitUIToFP(User &I) {
2617  // UIToFP is never a no-op cast, no need to check
2618  SDOperand N = getValue(I.getOperand(0));
2619  MVT DestVT = TLI.getValueType(I.getType());
2620  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2621}
2622
2623void SelectionDAGLowering::visitSIToFP(User &I){
2624  // UIToFP is never a no-op cast, no need to check
2625  SDOperand N = getValue(I.getOperand(0));
2626  MVT DestVT = TLI.getValueType(I.getType());
2627  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2628}
2629
2630void SelectionDAGLowering::visitPtrToInt(User &I) {
2631  // What to do depends on the size of the integer and the size of the pointer.
2632  // We can either truncate, zero extend, or no-op, accordingly.
2633  SDOperand N = getValue(I.getOperand(0));
2634  MVT SrcVT = N.getValueType();
2635  MVT DestVT = TLI.getValueType(I.getType());
2636  SDOperand Result;
2637  if (DestVT.bitsLT(SrcVT))
2638    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2639  else
2640    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2641    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2642  setValue(&I, Result);
2643}
2644
2645void SelectionDAGLowering::visitIntToPtr(User &I) {
2646  // What to do depends on the size of the integer and the size of the pointer.
2647  // We can either truncate, zero extend, or no-op, accordingly.
2648  SDOperand N = getValue(I.getOperand(0));
2649  MVT SrcVT = N.getValueType();
2650  MVT DestVT = TLI.getValueType(I.getType());
2651  if (DestVT.bitsLT(SrcVT))
2652    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2653  else
2654    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2655    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2656}
2657
2658void SelectionDAGLowering::visitBitCast(User &I) {
2659  SDOperand N = getValue(I.getOperand(0));
2660  MVT DestVT = TLI.getValueType(I.getType());
2661
2662  // BitCast assures us that source and destination are the same size so this
2663  // is either a BIT_CONVERT or a no-op.
2664  if (DestVT != N.getValueType())
2665    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2666  else
2667    setValue(&I, N); // noop cast.
2668}
2669
2670void SelectionDAGLowering::visitInsertElement(User &I) {
2671  SDOperand InVec = getValue(I.getOperand(0));
2672  SDOperand InVal = getValue(I.getOperand(1));
2673  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2674                                getValue(I.getOperand(2)));
2675
2676  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2677                           TLI.getValueType(I.getType()),
2678                           InVec, InVal, InIdx));
2679}
2680
2681void SelectionDAGLowering::visitExtractElement(User &I) {
2682  SDOperand InVec = getValue(I.getOperand(0));
2683  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2684                                getValue(I.getOperand(1)));
2685  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2686                           TLI.getValueType(I.getType()), InVec, InIdx));
2687}
2688
2689void SelectionDAGLowering::visitShuffleVector(User &I) {
2690  SDOperand V1   = getValue(I.getOperand(0));
2691  SDOperand V2   = getValue(I.getOperand(1));
2692  SDOperand Mask = getValue(I.getOperand(2));
2693
2694  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2695                           TLI.getValueType(I.getType()),
2696                           V1, V2, Mask));
2697}
2698
2699void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
2700  const Value *Op0 = I.getOperand(0);
2701  const Value *Op1 = I.getOperand(1);
2702  const Type *AggTy = I.getType();
2703  const Type *ValTy = Op1->getType();
2704  bool IntoUndef = isa<UndefValue>(Op0);
2705  bool FromUndef = isa<UndefValue>(Op1);
2706
2707  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2708                                            I.idx_begin(), I.idx_end());
2709
2710  SmallVector<MVT, 4> AggValueVTs;
2711  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2712  SmallVector<MVT, 4> ValValueVTs;
2713  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2714
2715  unsigned NumAggValues = AggValueVTs.size();
2716  unsigned NumValValues = ValValueVTs.size();
2717  SmallVector<SDOperand, 4> Values(NumAggValues);
2718
2719  SDOperand Agg = getValue(Op0);
2720  SDOperand Val = getValue(Op1);
2721  unsigned i = 0;
2722  // Copy the beginning value(s) from the original aggregate.
2723  for (; i != LinearIndex; ++i)
2724    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2725                SDOperand(Agg.Val, Agg.ResNo + i);
2726  // Copy values from the inserted value(s).
2727  for (; i != LinearIndex + NumValValues; ++i)
2728    Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2729                SDOperand(Val.Val, Val.ResNo + i - LinearIndex);
2730  // Copy remaining value(s) from the original aggregate.
2731  for (; i != NumAggValues; ++i)
2732    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2733                SDOperand(Agg.Val, Agg.ResNo + i);
2734
2735  setValue(&I, DAG.getMergeValues(DAG.getVTList(&AggValueVTs[0], NumAggValues),
2736                                  &Values[0], NumAggValues));
2737}
2738
2739void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
2740  const Value *Op0 = I.getOperand(0);
2741  const Type *AggTy = Op0->getType();
2742  const Type *ValTy = I.getType();
2743  bool OutOfUndef = isa<UndefValue>(Op0);
2744
2745  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2746                                            I.idx_begin(), I.idx_end());
2747
2748  SmallVector<MVT, 4> ValValueVTs;
2749  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2750
2751  unsigned NumValValues = ValValueVTs.size();
2752  SmallVector<SDOperand, 4> Values(NumValValues);
2753
2754  SDOperand Agg = getValue(Op0);
2755  // Copy out the selected value(s).
2756  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2757    Values[i - LinearIndex] =
2758      OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.Val->getValueType(Agg.ResNo + i)) :
2759                   SDOperand(Agg.Val, Agg.ResNo + i);
2760
2761  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValValueVTs[0], NumValValues),
2762                                  &Values[0], NumValValues));
2763}
2764
2765
2766void SelectionDAGLowering::visitGetElementPtr(User &I) {
2767  SDOperand N = getValue(I.getOperand(0));
2768  const Type *Ty = I.getOperand(0)->getType();
2769
2770  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2771       OI != E; ++OI) {
2772    Value *Idx = *OI;
2773    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2774      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2775      if (Field) {
2776        // N = N + Offset
2777        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2778        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2779                        DAG.getIntPtrConstant(Offset));
2780      }
2781      Ty = StTy->getElementType(Field);
2782    } else {
2783      Ty = cast<SequentialType>(Ty)->getElementType();
2784
2785      // If this is a constant subscript, handle it quickly.
2786      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2787        if (CI->getZExtValue() == 0) continue;
2788        uint64_t Offs =
2789            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2790        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2791                        DAG.getIntPtrConstant(Offs));
2792        continue;
2793      }
2794
2795      // N = N + Idx * ElementSize;
2796      uint64_t ElementSize = TD->getABITypeSize(Ty);
2797      SDOperand IdxN = getValue(Idx);
2798
2799      // If the index is smaller or larger than intptr_t, truncate or extend
2800      // it.
2801      if (IdxN.getValueType().bitsLT(N.getValueType())) {
2802        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2803      } else if (IdxN.getValueType().bitsGT(N.getValueType()))
2804        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2805
2806      // If this is a multiply by a power of two, turn it into a shl
2807      // immediately.  This is a very common case.
2808      if (isPowerOf2_64(ElementSize)) {
2809        unsigned Amt = Log2_64(ElementSize);
2810        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2811                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2812        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2813        continue;
2814      }
2815
2816      SDOperand Scale = DAG.getIntPtrConstant(ElementSize);
2817      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2818      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2819    }
2820  }
2821  setValue(&I, N);
2822}
2823
2824void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2825  // If this is a fixed sized alloca in the entry block of the function,
2826  // allocate it statically on the stack.
2827  if (FuncInfo.StaticAllocaMap.count(&I))
2828    return;   // getValue will auto-populate this.
2829
2830  const Type *Ty = I.getAllocatedType();
2831  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2832  unsigned Align =
2833    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2834             I.getAlignment());
2835
2836  SDOperand AllocSize = getValue(I.getArraySize());
2837  MVT IntPtr = TLI.getPointerTy();
2838  if (IntPtr.bitsLT(AllocSize.getValueType()))
2839    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2840  else if (IntPtr.bitsGT(AllocSize.getValueType()))
2841    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2842
2843  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2844                          DAG.getIntPtrConstant(TySize));
2845
2846  // Handle alignment.  If the requested alignment is less than or equal to
2847  // the stack alignment, ignore it.  If the size is greater than or equal to
2848  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2849  unsigned StackAlign =
2850    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2851  if (Align <= StackAlign)
2852    Align = 0;
2853
2854  // Round the size of the allocation up to the stack alignment size
2855  // by add SA-1 to the size.
2856  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2857                          DAG.getIntPtrConstant(StackAlign-1));
2858  // Mask out the low bits for alignment purposes.
2859  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2860                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2861
2862  SDOperand Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2863  const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2864                                                    MVT::Other);
2865  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2866  setValue(&I, DSA);
2867  DAG.setRoot(DSA.getValue(1));
2868
2869  // Inform the Frame Information that we have just allocated a variable-sized
2870  // object.
2871  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2872}
2873
2874void SelectionDAGLowering::visitLoad(LoadInst &I) {
2875  const Value *SV = I.getOperand(0);
2876  SDOperand Ptr = getValue(SV);
2877
2878  const Type *Ty = I.getType();
2879  bool isVolatile = I.isVolatile();
2880  unsigned Alignment = I.getAlignment();
2881
2882  SmallVector<MVT, 4> ValueVTs;
2883  SmallVector<uint64_t, 4> Offsets;
2884  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2885  unsigned NumValues = ValueVTs.size();
2886  if (NumValues == 0)
2887    return;
2888
2889  SDOperand Root;
2890  if (I.isVolatile())
2891    Root = getRoot();
2892  else {
2893    // Do not serialize non-volatile loads against each other.
2894    Root = DAG.getRoot();
2895  }
2896
2897  SmallVector<SDOperand, 4> Values(NumValues);
2898  SmallVector<SDOperand, 4> Chains(NumValues);
2899  MVT PtrVT = Ptr.getValueType();
2900  for (unsigned i = 0; i != NumValues; ++i) {
2901    SDOperand L = DAG.getLoad(ValueVTs[i], Root,
2902                              DAG.getNode(ISD::ADD, PtrVT, Ptr,
2903                                          DAG.getConstant(Offsets[i], PtrVT)),
2904                              SV, Offsets[i],
2905                              isVolatile, Alignment);
2906    Values[i] = L;
2907    Chains[i] = L.getValue(1);
2908  }
2909
2910  SDOperand Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2911                                &Chains[0], NumValues);
2912  if (isVolatile)
2913    DAG.setRoot(Chain);
2914  else
2915    PendingLoads.push_back(Chain);
2916
2917  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues),
2918                                  &Values[0], NumValues));
2919}
2920
2921
2922void SelectionDAGLowering::visitStore(StoreInst &I) {
2923  Value *SrcV = I.getOperand(0);
2924  SDOperand Src = getValue(SrcV);
2925  Value *PtrV = I.getOperand(1);
2926  SDOperand Ptr = getValue(PtrV);
2927
2928  SmallVector<MVT, 4> ValueVTs;
2929  SmallVector<uint64_t, 4> Offsets;
2930  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2931  unsigned NumValues = ValueVTs.size();
2932  if (NumValues == 0)
2933    return;
2934
2935  SDOperand Root = getRoot();
2936  SmallVector<SDOperand, 4> Chains(NumValues);
2937  MVT PtrVT = Ptr.getValueType();
2938  bool isVolatile = I.isVolatile();
2939  unsigned Alignment = I.getAlignment();
2940  for (unsigned i = 0; i != NumValues; ++i)
2941    Chains[i] = DAG.getStore(Root, SDOperand(Src.Val, Src.ResNo + i),
2942                             DAG.getNode(ISD::ADD, PtrVT, Ptr,
2943                                         DAG.getConstant(Offsets[i], PtrVT)),
2944                             PtrV, Offsets[i],
2945                             isVolatile, Alignment);
2946
2947  DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
2948}
2949
2950/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2951/// node.
2952void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2953                                                unsigned Intrinsic) {
2954  bool HasChain = !I.doesNotAccessMemory();
2955  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2956
2957  // Build the operand list.
2958  SmallVector<SDOperand, 8> Ops;
2959  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2960    if (OnlyLoad) {
2961      // We don't need to serialize loads against other loads.
2962      Ops.push_back(DAG.getRoot());
2963    } else {
2964      Ops.push_back(getRoot());
2965    }
2966  }
2967
2968  // Add the intrinsic ID as an integer operand.
2969  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2970
2971  // Add all operands of the call to the operand list.
2972  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2973    SDOperand Op = getValue(I.getOperand(i));
2974    assert(TLI.isTypeLegal(Op.getValueType()) &&
2975           "Intrinsic uses a non-legal type?");
2976    Ops.push_back(Op);
2977  }
2978
2979  std::vector<MVT> VTs;
2980  if (I.getType() != Type::VoidTy) {
2981    MVT VT = TLI.getValueType(I.getType());
2982    if (VT.isVector()) {
2983      const VectorType *DestTy = cast<VectorType>(I.getType());
2984      MVT EltVT = TLI.getValueType(DestTy->getElementType());
2985
2986      VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
2987      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2988    }
2989
2990    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2991    VTs.push_back(VT);
2992  }
2993  if (HasChain)
2994    VTs.push_back(MVT::Other);
2995
2996  const MVT *VTList = DAG.getNodeValueTypes(VTs);
2997
2998  // Create the node.
2999  SDOperand Result;
3000  if (!HasChain)
3001    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
3002                         &Ops[0], Ops.size());
3003  else if (I.getType() != Type::VoidTy)
3004    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
3005                         &Ops[0], Ops.size());
3006  else
3007    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
3008                         &Ops[0], Ops.size());
3009
3010  if (HasChain) {
3011    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
3012    if (OnlyLoad)
3013      PendingLoads.push_back(Chain);
3014    else
3015      DAG.setRoot(Chain);
3016  }
3017  if (I.getType() != Type::VoidTy) {
3018    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3019      MVT VT = TLI.getValueType(PTy);
3020      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
3021    }
3022    setValue(&I, Result);
3023  }
3024}
3025
3026/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
3027static GlobalVariable *ExtractTypeInfo (Value *V) {
3028  V = V->stripPointerCasts();
3029  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3030  assert ((GV || isa<ConstantPointerNull>(V)) &&
3031          "TypeInfo must be a global variable or NULL");
3032  return GV;
3033}
3034
3035/// addCatchInfo - Extract the personality and type infos from an eh.selector
3036/// call, and add them to the specified machine basic block.
3037static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
3038                         MachineBasicBlock *MBB) {
3039  // Inform the MachineModuleInfo of the personality for this landing pad.
3040  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
3041  assert(CE->getOpcode() == Instruction::BitCast &&
3042         isa<Function>(CE->getOperand(0)) &&
3043         "Personality should be a function");
3044  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
3045
3046  // Gather all the type infos for this landing pad and pass them along to
3047  // MachineModuleInfo.
3048  std::vector<GlobalVariable *> TyInfo;
3049  unsigned N = I.getNumOperands();
3050
3051  for (unsigned i = N - 1; i > 2; --i) {
3052    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
3053      unsigned FilterLength = CI->getZExtValue();
3054      unsigned FirstCatch = i + FilterLength + !FilterLength;
3055      assert (FirstCatch <= N && "Invalid filter length");
3056
3057      if (FirstCatch < N) {
3058        TyInfo.reserve(N - FirstCatch);
3059        for (unsigned j = FirstCatch; j < N; ++j)
3060          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3061        MMI->addCatchTypeInfo(MBB, TyInfo);
3062        TyInfo.clear();
3063      }
3064
3065      if (!FilterLength) {
3066        // Cleanup.
3067        MMI->addCleanup(MBB);
3068      } else {
3069        // Filter.
3070        TyInfo.reserve(FilterLength - 1);
3071        for (unsigned j = i + 1; j < FirstCatch; ++j)
3072          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3073        MMI->addFilterTypeInfo(MBB, TyInfo);
3074        TyInfo.clear();
3075      }
3076
3077      N = i;
3078    }
3079  }
3080
3081  if (N > 3) {
3082    TyInfo.reserve(N - 3);
3083    for (unsigned j = 3; j < N; ++j)
3084      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3085    MMI->addCatchTypeInfo(MBB, TyInfo);
3086  }
3087}
3088
3089
3090/// Inlined utility function to implement binary input atomic intrinsics for
3091// visitIntrinsicCall: I is a call instruction
3092//                     Op is the associated NodeType for I
3093const char *
3094SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3095  SDOperand Root = getRoot();
3096  SDOperand L = DAG.getAtomic(Op, Root,
3097                              getValue(I.getOperand(1)),
3098                              getValue(I.getOperand(2)),
3099                              I.getOperand(1));
3100  setValue(&I, L);
3101  DAG.setRoot(L.getValue(1));
3102  return 0;
3103}
3104
3105/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3106/// we want to emit this as a call to a named external function, return the name
3107/// otherwise lower it and return null.
3108const char *
3109SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3110  switch (Intrinsic) {
3111  default:
3112    // By default, turn this into a target intrinsic node.
3113    visitTargetIntrinsic(I, Intrinsic);
3114    return 0;
3115  case Intrinsic::vastart:  visitVAStart(I); return 0;
3116  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3117  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3118  case Intrinsic::returnaddress:
3119    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
3120                             getValue(I.getOperand(1))));
3121    return 0;
3122  case Intrinsic::frameaddress:
3123    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
3124                             getValue(I.getOperand(1))));
3125    return 0;
3126  case Intrinsic::setjmp:
3127    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3128    break;
3129  case Intrinsic::longjmp:
3130    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3131    break;
3132  case Intrinsic::memcpy_i32:
3133  case Intrinsic::memcpy_i64: {
3134    SDOperand Op1 = getValue(I.getOperand(1));
3135    SDOperand Op2 = getValue(I.getOperand(2));
3136    SDOperand Op3 = getValue(I.getOperand(3));
3137    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3138    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3139                              I.getOperand(1), 0, I.getOperand(2), 0));
3140    return 0;
3141  }
3142  case Intrinsic::memset_i32:
3143  case Intrinsic::memset_i64: {
3144    SDOperand Op1 = getValue(I.getOperand(1));
3145    SDOperand Op2 = getValue(I.getOperand(2));
3146    SDOperand Op3 = getValue(I.getOperand(3));
3147    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3148    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
3149                              I.getOperand(1), 0));
3150    return 0;
3151  }
3152  case Intrinsic::memmove_i32:
3153  case Intrinsic::memmove_i64: {
3154    SDOperand Op1 = getValue(I.getOperand(1));
3155    SDOperand Op2 = getValue(I.getOperand(2));
3156    SDOperand Op3 = getValue(I.getOperand(3));
3157    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3158
3159    // If the source and destination are known to not be aliases, we can
3160    // lower memmove as memcpy.
3161    uint64_t Size = -1ULL;
3162    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3163      Size = C->getValue();
3164    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3165        AliasAnalysis::NoAlias) {
3166      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3167                                I.getOperand(1), 0, I.getOperand(2), 0));
3168      return 0;
3169    }
3170
3171    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
3172                               I.getOperand(1), 0, I.getOperand(2), 0));
3173    return 0;
3174  }
3175  case Intrinsic::dbg_stoppoint: {
3176    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3177    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3178    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
3179      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
3180      assert(DD && "Not a debug information descriptor");
3181      DAG.setRoot(DAG.getDbgStopPoint(getRoot(),
3182                                      SPI.getLine(),
3183                                      SPI.getColumn(),
3184                                      cast<CompileUnitDesc>(DD)));
3185    }
3186
3187    return 0;
3188  }
3189  case Intrinsic::dbg_region_start: {
3190    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3191    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
3192    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
3193      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
3194      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3195    }
3196
3197    return 0;
3198  }
3199  case Intrinsic::dbg_region_end: {
3200    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3201    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
3202    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
3203      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
3204      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3205    }
3206
3207    return 0;
3208  }
3209  case Intrinsic::dbg_func_start: {
3210    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3211    if (!MMI) return 0;
3212    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
3213    Value *SP = FSI.getSubprogram();
3214    if (SP && MMI->Verify(SP)) {
3215      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3216      // what (most?) gdb expects.
3217      DebugInfoDesc *DD = MMI->getDescFor(SP);
3218      assert(DD && "Not a debug information descriptor");
3219      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
3220      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
3221      unsigned SrcFile = MMI->RecordSource(CompileUnit);
3222      // Record the source line but does create a label. It will be emitted
3223      // at asm emission time.
3224      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
3225    }
3226
3227    return 0;
3228  }
3229  case Intrinsic::dbg_declare: {
3230    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3231    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3232    Value *Variable = DI.getVariable();
3233    if (MMI && Variable && MMI->Verify(Variable))
3234      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3235                              getValue(DI.getAddress()), getValue(Variable)));
3236    return 0;
3237  }
3238
3239  case Intrinsic::eh_exception: {
3240    if (!CurMBB->isLandingPad()) {
3241      // FIXME: Mark exception register as live in.  Hack for PR1508.
3242      unsigned Reg = TLI.getExceptionAddressRegister();
3243      if (Reg) CurMBB->addLiveIn(Reg);
3244    }
3245    // Insert the EXCEPTIONADDR instruction.
3246    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3247    SDOperand Ops[1];
3248    Ops[0] = DAG.getRoot();
3249    SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3250    setValue(&I, Op);
3251    DAG.setRoot(Op.getValue(1));
3252    return 0;
3253  }
3254
3255  case Intrinsic::eh_selector_i32:
3256  case Intrinsic::eh_selector_i64: {
3257    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3258    MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3259                         MVT::i32 : MVT::i64);
3260
3261    if (MMI) {
3262      if (CurMBB->isLandingPad())
3263        addCatchInfo(I, MMI, CurMBB);
3264      else {
3265#ifndef NDEBUG
3266        FuncInfo.CatchInfoLost.insert(&I);
3267#endif
3268        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3269        unsigned Reg = TLI.getExceptionSelectorRegister();
3270        if (Reg) CurMBB->addLiveIn(Reg);
3271      }
3272
3273      // Insert the EHSELECTION instruction.
3274      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3275      SDOperand Ops[2];
3276      Ops[0] = getValue(I.getOperand(1));
3277      Ops[1] = getRoot();
3278      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3279      setValue(&I, Op);
3280      DAG.setRoot(Op.getValue(1));
3281    } else {
3282      setValue(&I, DAG.getConstant(0, VT));
3283    }
3284
3285    return 0;
3286  }
3287
3288  case Intrinsic::eh_typeid_for_i32:
3289  case Intrinsic::eh_typeid_for_i64: {
3290    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3291    MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3292                         MVT::i32 : MVT::i64);
3293
3294    if (MMI) {
3295      // Find the type id for the given typeinfo.
3296      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3297
3298      unsigned TypeID = MMI->getTypeIDFor(GV);
3299      setValue(&I, DAG.getConstant(TypeID, VT));
3300    } else {
3301      // Return something different to eh_selector.
3302      setValue(&I, DAG.getConstant(1, VT));
3303    }
3304
3305    return 0;
3306  }
3307
3308  case Intrinsic::eh_return: {
3309    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3310
3311    if (MMI) {
3312      MMI->setCallsEHReturn(true);
3313      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3314                              MVT::Other,
3315                              getControlRoot(),
3316                              getValue(I.getOperand(1)),
3317                              getValue(I.getOperand(2))));
3318    } else {
3319      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3320    }
3321
3322    return 0;
3323  }
3324
3325   case Intrinsic::eh_unwind_init: {
3326     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3327       MMI->setCallsUnwindInit(true);
3328     }
3329
3330     return 0;
3331   }
3332
3333   case Intrinsic::eh_dwarf_cfa: {
3334     MVT VT = getValue(I.getOperand(1)).getValueType();
3335     SDOperand CfaArg;
3336     if (VT.bitsGT(TLI.getPointerTy()))
3337       CfaArg = DAG.getNode(ISD::TRUNCATE,
3338                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3339     else
3340       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3341                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3342
3343     SDOperand Offset = DAG.getNode(ISD::ADD,
3344                                    TLI.getPointerTy(),
3345                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3346                                                TLI.getPointerTy()),
3347                                    CfaArg);
3348     setValue(&I, DAG.getNode(ISD::ADD,
3349                              TLI.getPointerTy(),
3350                              DAG.getNode(ISD::FRAMEADDR,
3351                                          TLI.getPointerTy(),
3352                                          DAG.getConstant(0,
3353                                                          TLI.getPointerTy())),
3354                              Offset));
3355     return 0;
3356  }
3357
3358  case Intrinsic::sqrt:
3359    setValue(&I, DAG.getNode(ISD::FSQRT,
3360                             getValue(I.getOperand(1)).getValueType(),
3361                             getValue(I.getOperand(1))));
3362    return 0;
3363  case Intrinsic::powi:
3364    setValue(&I, DAG.getNode(ISD::FPOWI,
3365                             getValue(I.getOperand(1)).getValueType(),
3366                             getValue(I.getOperand(1)),
3367                             getValue(I.getOperand(2))));
3368    return 0;
3369  case Intrinsic::sin:
3370    setValue(&I, DAG.getNode(ISD::FSIN,
3371                             getValue(I.getOperand(1)).getValueType(),
3372                             getValue(I.getOperand(1))));
3373    return 0;
3374  case Intrinsic::cos:
3375    setValue(&I, DAG.getNode(ISD::FCOS,
3376                             getValue(I.getOperand(1)).getValueType(),
3377                             getValue(I.getOperand(1))));
3378    return 0;
3379  case Intrinsic::pow:
3380    setValue(&I, DAG.getNode(ISD::FPOW,
3381                             getValue(I.getOperand(1)).getValueType(),
3382                             getValue(I.getOperand(1)),
3383                             getValue(I.getOperand(2))));
3384    return 0;
3385  case Intrinsic::pcmarker: {
3386    SDOperand Tmp = getValue(I.getOperand(1));
3387    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3388    return 0;
3389  }
3390  case Intrinsic::readcyclecounter: {
3391    SDOperand Op = getRoot();
3392    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3393                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3394                                &Op, 1);
3395    setValue(&I, Tmp);
3396    DAG.setRoot(Tmp.getValue(1));
3397    return 0;
3398  }
3399  case Intrinsic::part_select: {
3400    // Currently not implemented: just abort
3401    assert(0 && "part_select intrinsic not implemented");
3402    abort();
3403  }
3404  case Intrinsic::part_set: {
3405    // Currently not implemented: just abort
3406    assert(0 && "part_set intrinsic not implemented");
3407    abort();
3408  }
3409  case Intrinsic::bswap:
3410    setValue(&I, DAG.getNode(ISD::BSWAP,
3411                             getValue(I.getOperand(1)).getValueType(),
3412                             getValue(I.getOperand(1))));
3413    return 0;
3414  case Intrinsic::cttz: {
3415    SDOperand Arg = getValue(I.getOperand(1));
3416    MVT Ty = Arg.getValueType();
3417    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3418    setValue(&I, result);
3419    return 0;
3420  }
3421  case Intrinsic::ctlz: {
3422    SDOperand Arg = getValue(I.getOperand(1));
3423    MVT Ty = Arg.getValueType();
3424    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3425    setValue(&I, result);
3426    return 0;
3427  }
3428  case Intrinsic::ctpop: {
3429    SDOperand Arg = getValue(I.getOperand(1));
3430    MVT Ty = Arg.getValueType();
3431    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3432    setValue(&I, result);
3433    return 0;
3434  }
3435  case Intrinsic::stacksave: {
3436    SDOperand Op = getRoot();
3437    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
3438              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3439    setValue(&I, Tmp);
3440    DAG.setRoot(Tmp.getValue(1));
3441    return 0;
3442  }
3443  case Intrinsic::stackrestore: {
3444    SDOperand Tmp = getValue(I.getOperand(1));
3445    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3446    return 0;
3447  }
3448  case Intrinsic::var_annotation:
3449    // Discard annotate attributes
3450    return 0;
3451
3452  case Intrinsic::init_trampoline: {
3453    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
3454
3455    SDOperand Ops[6];
3456    Ops[0] = getRoot();
3457    Ops[1] = getValue(I.getOperand(1));
3458    Ops[2] = getValue(I.getOperand(2));
3459    Ops[3] = getValue(I.getOperand(3));
3460    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3461    Ops[5] = DAG.getSrcValue(F);
3462
3463    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
3464                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3465                                                      MVT::Other), 2,
3466                                Ops, 6);
3467
3468    setValue(&I, Tmp);
3469    DAG.setRoot(Tmp.getValue(1));
3470    return 0;
3471  }
3472
3473  case Intrinsic::gcroot:
3474    if (GCI) {
3475      Value *Alloca = I.getOperand(1);
3476      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3477
3478      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3479      GCI->addStackRoot(FI->getIndex(), TypeMap);
3480    }
3481    return 0;
3482
3483  case Intrinsic::gcread:
3484  case Intrinsic::gcwrite:
3485    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3486    return 0;
3487
3488  case Intrinsic::flt_rounds: {
3489    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3490    return 0;
3491  }
3492
3493  case Intrinsic::trap: {
3494    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3495    return 0;
3496  }
3497  case Intrinsic::prefetch: {
3498    SDOperand Ops[4];
3499    Ops[0] = getRoot();
3500    Ops[1] = getValue(I.getOperand(1));
3501    Ops[2] = getValue(I.getOperand(2));
3502    Ops[3] = getValue(I.getOperand(3));
3503    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3504    return 0;
3505  }
3506
3507  case Intrinsic::memory_barrier: {
3508    SDOperand Ops[6];
3509    Ops[0] = getRoot();
3510    for (int x = 1; x < 6; ++x)
3511      Ops[x] = getValue(I.getOperand(x));
3512
3513    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3514    return 0;
3515  }
3516  case Intrinsic::atomic_cmp_swap: {
3517    SDOperand Root = getRoot();
3518    SDOperand L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, Root,
3519                                getValue(I.getOperand(1)),
3520                                getValue(I.getOperand(2)),
3521                                getValue(I.getOperand(3)),
3522                                I.getOperand(1));
3523    setValue(&I, L);
3524    DAG.setRoot(L.getValue(1));
3525    return 0;
3526  }
3527  case Intrinsic::atomic_load_add:
3528    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
3529  case Intrinsic::atomic_load_sub:
3530    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
3531  case Intrinsic::atomic_load_and:
3532    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
3533  case Intrinsic::atomic_load_or:
3534    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
3535  case Intrinsic::atomic_load_xor:
3536    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
3537  case Intrinsic::atomic_load_nand:
3538    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
3539  case Intrinsic::atomic_load_min:
3540    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
3541  case Intrinsic::atomic_load_max:
3542    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
3543  case Intrinsic::atomic_load_umin:
3544    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
3545  case Intrinsic::atomic_load_umax:
3546      return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
3547  case Intrinsic::atomic_swap:
3548    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
3549  }
3550}
3551
3552
3553void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
3554                                       bool IsTailCall,
3555                                       MachineBasicBlock *LandingPad) {
3556  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3557  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3558  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3559  unsigned BeginLabel = 0, EndLabel = 0;
3560
3561  TargetLowering::ArgListTy Args;
3562  TargetLowering::ArgListEntry Entry;
3563  Args.reserve(CS.arg_size());
3564  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3565       i != e; ++i) {
3566    SDOperand ArgNode = getValue(*i);
3567    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3568
3569    unsigned attrInd = i - CS.arg_begin() + 1;
3570    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3571    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3572    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3573    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3574    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3575    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3576    Entry.Alignment = CS.getParamAlignment(attrInd);
3577    Args.push_back(Entry);
3578  }
3579
3580  if (LandingPad && MMI) {
3581    // Insert a label before the invoke call to mark the try range.  This can be
3582    // used to detect deletion of the invoke via the MachineModuleInfo.
3583    BeginLabel = MMI->NextLabelID();
3584    // Both PendingLoads and PendingExports must be flushed here;
3585    // this call might not return.
3586    (void)getRoot();
3587    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel));
3588  }
3589
3590  std::pair<SDOperand,SDOperand> Result =
3591    TLI.LowerCallTo(getRoot(), CS.getType(),
3592                    CS.paramHasAttr(0, ParamAttr::SExt),
3593                    CS.paramHasAttr(0, ParamAttr::ZExt),
3594                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3595                    Callee, Args, DAG);
3596  if (CS.getType() != Type::VoidTy)
3597    setValue(CS.getInstruction(), Result.first);
3598  DAG.setRoot(Result.second);
3599
3600  if (LandingPad && MMI) {
3601    // Insert a label at the end of the invoke call to mark the try range.  This
3602    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3603    EndLabel = MMI->NextLabelID();
3604    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel));
3605
3606    // Inform MachineModuleInfo of range.
3607    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3608  }
3609}
3610
3611
3612void SelectionDAGLowering::visitCall(CallInst &I) {
3613  const char *RenameFn = 0;
3614  if (Function *F = I.getCalledFunction()) {
3615    if (F->isDeclaration()) {
3616      if (unsigned IID = F->getIntrinsicID()) {
3617        RenameFn = visitIntrinsicCall(I, IID);
3618        if (!RenameFn)
3619          return;
3620      }
3621    }
3622
3623    // Check for well-known libc/libm calls.  If the function is internal, it
3624    // can't be a library call.
3625    unsigned NameLen = F->getNameLen();
3626    if (!F->hasInternalLinkage() && NameLen) {
3627      const char *NameStr = F->getNameStart();
3628      if (NameStr[0] == 'c' &&
3629          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3630           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3631        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3632            I.getOperand(1)->getType()->isFloatingPoint() &&
3633            I.getType() == I.getOperand(1)->getType() &&
3634            I.getType() == I.getOperand(2)->getType()) {
3635          SDOperand LHS = getValue(I.getOperand(1));
3636          SDOperand RHS = getValue(I.getOperand(2));
3637          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3638                                   LHS, RHS));
3639          return;
3640        }
3641      } else if (NameStr[0] == 'f' &&
3642                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3643                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3644                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3645        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3646            I.getOperand(1)->getType()->isFloatingPoint() &&
3647            I.getType() == I.getOperand(1)->getType()) {
3648          SDOperand Tmp = getValue(I.getOperand(1));
3649          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3650          return;
3651        }
3652      } else if (NameStr[0] == 's' &&
3653                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3654                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3655                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3656        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3657            I.getOperand(1)->getType()->isFloatingPoint() &&
3658            I.getType() == I.getOperand(1)->getType()) {
3659          SDOperand Tmp = getValue(I.getOperand(1));
3660          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3661          return;
3662        }
3663      } else if (NameStr[0] == 'c' &&
3664                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3665                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3666                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3667        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3668            I.getOperand(1)->getType()->isFloatingPoint() &&
3669            I.getType() == I.getOperand(1)->getType()) {
3670          SDOperand Tmp = getValue(I.getOperand(1));
3671          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3672          return;
3673        }
3674      }
3675    }
3676  } else if (isa<InlineAsm>(I.getOperand(0))) {
3677    visitInlineAsm(&I);
3678    return;
3679  }
3680
3681  SDOperand Callee;
3682  if (!RenameFn)
3683    Callee = getValue(I.getOperand(0));
3684  else
3685    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3686
3687  LowerCallTo(&I, Callee, I.isTailCall());
3688}
3689
3690
3691void SelectionDAGLowering::visitGetResult(GetResultInst &I) {
3692  if (isa<UndefValue>(I.getOperand(0))) {
3693    SDOperand Undef = DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()));
3694    setValue(&I, Undef);
3695    return;
3696  }
3697
3698  // To add support for individual return values with aggregate types,
3699  // we'd need a way to take a getresult index and determine which
3700  // values of the Call SDNode are associated with it.
3701  assert(TLI.getValueType(I.getType(), true) != MVT::Other &&
3702         "Individual return values must not be aggregates!");
3703
3704  SDOperand Call = getValue(I.getOperand(0));
3705  setValue(&I, SDOperand(Call.Val, I.getIndex()));
3706}
3707
3708
3709/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3710/// this value and returns the result as a ValueVT value.  This uses
3711/// Chain/Flag as the input and updates them for the output Chain/Flag.
3712/// If the Flag pointer is NULL, no flag is used.
3713SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3714                                        SDOperand &Chain,
3715                                        SDOperand *Flag) const {
3716  // Assemble the legal parts into the final values.
3717  SmallVector<SDOperand, 4> Values(ValueVTs.size());
3718  SmallVector<SDOperand, 8> Parts;
3719  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3720    // Copy the legal parts from the registers.
3721    MVT ValueVT = ValueVTs[Value];
3722    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
3723    MVT RegisterVT = RegVTs[Value];
3724
3725    Parts.resize(NumRegs);
3726    for (unsigned i = 0; i != NumRegs; ++i) {
3727      SDOperand P;
3728      if (Flag == 0)
3729        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
3730      else {
3731        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
3732        *Flag = P.getValue(2);
3733      }
3734      Chain = P.getValue(1);
3735
3736      // If the source register was virtual and if we know something about it,
3737      // add an assert node.
3738      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
3739          RegisterVT.isInteger() && !RegisterVT.isVector()) {
3740        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
3741        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
3742        if (FLI.LiveOutRegInfo.size() > SlotNo) {
3743          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
3744
3745          unsigned RegSize = RegisterVT.getSizeInBits();
3746          unsigned NumSignBits = LOI.NumSignBits;
3747          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
3748
3749          // FIXME: We capture more information than the dag can represent.  For
3750          // now, just use the tightest assertzext/assertsext possible.
3751          bool isSExt = true;
3752          MVT FromVT(MVT::Other);
3753          if (NumSignBits == RegSize)
3754            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
3755          else if (NumZeroBits >= RegSize-1)
3756            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
3757          else if (NumSignBits > RegSize-8)
3758            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
3759          else if (NumZeroBits >= RegSize-9)
3760            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
3761          else if (NumSignBits > RegSize-16)
3762            isSExt = true, FromVT = MVT::i16;   // ASSERT SEXT 16
3763          else if (NumZeroBits >= RegSize-17)
3764            isSExt = false, FromVT = MVT::i16;  // ASSERT ZEXT 16
3765          else if (NumSignBits > RegSize-32)
3766            isSExt = true, FromVT = MVT::i32;   // ASSERT SEXT 32
3767          else if (NumZeroBits >= RegSize-33)
3768            isSExt = false, FromVT = MVT::i32;  // ASSERT ZEXT 32
3769
3770          if (FromVT != MVT::Other) {
3771            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
3772                            RegisterVT, P, DAG.getValueType(FromVT));
3773
3774          }
3775        }
3776      }
3777
3778      Parts[Part+i] = P;
3779    }
3780
3781    Values[Value] = getCopyFromParts(DAG, &Parts[Part], NumRegs, RegisterVT,
3782                                     ValueVT);
3783    Part += NumRegs;
3784  }
3785
3786  return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
3787                            &Values[0], ValueVTs.size());
3788}
3789
3790/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3791/// specified value into the registers specified by this object.  This uses
3792/// Chain/Flag as the input and updates them for the output Chain/Flag.
3793/// If the Flag pointer is NULL, no flag is used.
3794void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3795                                 SDOperand &Chain, SDOperand *Flag) const {
3796  // Get the list of the values's legal parts.
3797  unsigned NumRegs = Regs.size();
3798  SmallVector<SDOperand, 8> Parts(NumRegs);
3799  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3800    MVT ValueVT = ValueVTs[Value];
3801    unsigned NumParts = TLI->getNumRegisters(ValueVT);
3802    MVT RegisterVT = RegVTs[Value];
3803
3804    getCopyToParts(DAG, Val.getValue(Val.ResNo + Value),
3805                   &Parts[Part], NumParts, RegisterVT);
3806    Part += NumParts;
3807  }
3808
3809  // Copy the parts into the registers.
3810  SmallVector<SDOperand, 8> Chains(NumRegs);
3811  for (unsigned i = 0; i != NumRegs; ++i) {
3812    SDOperand Part;
3813    if (Flag == 0)
3814      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3815    else {
3816      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
3817      *Flag = Part.getValue(1);
3818    }
3819    Chains[i] = Part.getValue(0);
3820  }
3821
3822  if (NumRegs == 1 || Flag)
3823    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
3824    // flagged to it. That is the CopyToReg nodes and the user are considered
3825    // a single scheduling unit. If we create a TokenFactor and return it as
3826    // chain, then the TokenFactor is both a predecessor (operand) of the
3827    // user as well as a successor (the TF operands are flagged to the user).
3828    // c1, f1 = CopyToReg
3829    // c2, f2 = CopyToReg
3830    // c3     = TokenFactor c1, c2
3831    // ...
3832    //        = op c3, ..., f2
3833    Chain = Chains[NumRegs-1];
3834  else
3835    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
3836}
3837
3838/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3839/// operand list.  This adds the code marker and includes the number of
3840/// values added into it.
3841void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3842                                        std::vector<SDOperand> &Ops) const {
3843  MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3844  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3845  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
3846    unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
3847    MVT RegisterVT = RegVTs[Value];
3848    for (unsigned i = 0; i != NumRegs; ++i)
3849      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
3850  }
3851}
3852
3853/// isAllocatableRegister - If the specified register is safe to allocate,
3854/// i.e. it isn't a stack pointer or some other special register, return the
3855/// register class for the register.  Otherwise, return null.
3856static const TargetRegisterClass *
3857isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3858                      const TargetLowering &TLI,
3859                      const TargetRegisterInfo *TRI) {
3860  MVT FoundVT = MVT::Other;
3861  const TargetRegisterClass *FoundRC = 0;
3862  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3863       E = TRI->regclass_end(); RCI != E; ++RCI) {
3864    MVT ThisVT = MVT::Other;
3865
3866    const TargetRegisterClass *RC = *RCI;
3867    // If none of the the value types for this register class are valid, we
3868    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3869    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3870         I != E; ++I) {
3871      if (TLI.isTypeLegal(*I)) {
3872        // If we have already found this register in a different register class,
3873        // choose the one with the largest VT specified.  For example, on
3874        // PowerPC, we favor f64 register classes over f32.
3875        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
3876          ThisVT = *I;
3877          break;
3878        }
3879      }
3880    }
3881
3882    if (ThisVT == MVT::Other) continue;
3883
3884    // NOTE: This isn't ideal.  In particular, this might allocate the
3885    // frame pointer in functions that need it (due to them not being taken
3886    // out of allocation, because a variable sized allocation hasn't been seen
3887    // yet).  This is a slight code pessimization, but should still work.
3888    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3889         E = RC->allocation_order_end(MF); I != E; ++I)
3890      if (*I == Reg) {
3891        // We found a matching register class.  Keep looking at others in case
3892        // we find one with larger registers that this physreg is also in.
3893        FoundRC = RC;
3894        FoundVT = ThisVT;
3895        break;
3896      }
3897  }
3898  return FoundRC;
3899}
3900
3901
3902namespace {
3903/// AsmOperandInfo - This contains information for each constraint that we are
3904/// lowering.
3905struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
3906  /// CallOperand - If this is the result output operand or a clobber
3907  /// this is null, otherwise it is the incoming operand to the CallInst.
3908  /// This gets modified as the asm is processed.
3909  SDOperand CallOperand;
3910
3911  /// AssignedRegs - If this is a register or register class operand, this
3912  /// contains the set of register corresponding to the operand.
3913  RegsForValue AssignedRegs;
3914
3915  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3916    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
3917  }
3918
3919  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3920  /// busy in OutputRegs/InputRegs.
3921  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3922                         std::set<unsigned> &OutputRegs,
3923                         std::set<unsigned> &InputRegs,
3924                         const TargetRegisterInfo &TRI) const {
3925    if (isOutReg) {
3926      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3927        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3928    }
3929    if (isInReg) {
3930      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3931        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3932    }
3933  }
3934
3935private:
3936  /// MarkRegAndAliases - Mark the specified register and all aliases in the
3937  /// specified set.
3938  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3939                                const TargetRegisterInfo &TRI) {
3940    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3941    Regs.insert(Reg);
3942    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3943      for (; *Aliases; ++Aliases)
3944        Regs.insert(*Aliases);
3945  }
3946};
3947} // end anon namespace.
3948
3949
3950/// GetRegistersForValue - Assign registers (virtual or physical) for the
3951/// specified operand.  We prefer to assign virtual registers, to allow the
3952/// register allocator handle the assignment process.  However, if the asm uses
3953/// features that we can't model on machineinstrs, we have SDISel do the
3954/// allocation.  This produces generally horrible, but correct, code.
3955///
3956///   OpInfo describes the operand.
3957///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
3958///     or any explicitly clobbered registers.
3959///   Input and OutputRegs are the set of already allocated physical registers.
3960///
3961void SelectionDAGLowering::
3962GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
3963                     std::set<unsigned> &OutputRegs,
3964                     std::set<unsigned> &InputRegs) {
3965  // Compute whether this value requires an input register, an output register,
3966  // or both.
3967  bool isOutReg = false;
3968  bool isInReg = false;
3969  switch (OpInfo.Type) {
3970  case InlineAsm::isOutput:
3971    isOutReg = true;
3972
3973    // If this is an early-clobber output, or if there is an input
3974    // constraint that matches this, we need to reserve the input register
3975    // so no other inputs allocate to it.
3976    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3977    break;
3978  case InlineAsm::isInput:
3979    isInReg = true;
3980    isOutReg = false;
3981    break;
3982  case InlineAsm::isClobber:
3983    isOutReg = true;
3984    isInReg = true;
3985    break;
3986  }
3987
3988
3989  MachineFunction &MF = DAG.getMachineFunction();
3990  SmallVector<unsigned, 4> Regs;
3991
3992  // If this is a constraint for a single physreg, or a constraint for a
3993  // register class, find it.
3994  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3995    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3996                                     OpInfo.ConstraintVT);
3997
3998  unsigned NumRegs = 1;
3999  if (OpInfo.ConstraintVT != MVT::Other)
4000    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
4001  MVT RegVT;
4002  MVT ValueVT = OpInfo.ConstraintVT;
4003
4004
4005  // If this is a constraint for a specific physical register, like {r17},
4006  // assign it now.
4007  if (PhysReg.first) {
4008    if (OpInfo.ConstraintVT == MVT::Other)
4009      ValueVT = *PhysReg.second->vt_begin();
4010
4011    // Get the actual register value type.  This is important, because the user
4012    // may have asked for (e.g.) the AX register in i32 type.  We need to
4013    // remember that AX is actually i16 to get the right extension.
4014    RegVT = *PhysReg.second->vt_begin();
4015
4016    // This is a explicit reference to a physical register.
4017    Regs.push_back(PhysReg.first);
4018
4019    // If this is an expanded reference, add the rest of the regs to Regs.
4020    if (NumRegs != 1) {
4021      TargetRegisterClass::iterator I = PhysReg.second->begin();
4022      for (; *I != PhysReg.first; ++I)
4023        assert(I != PhysReg.second->end() && "Didn't find reg!");
4024
4025      // Already added the first reg.
4026      --NumRegs; ++I;
4027      for (; NumRegs; --NumRegs, ++I) {
4028        assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
4029        Regs.push_back(*I);
4030      }
4031    }
4032    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4033    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4034    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4035    return;
4036  }
4037
4038  // Otherwise, if this was a reference to an LLVM register class, create vregs
4039  // for this reference.
4040  std::vector<unsigned> RegClassRegs;
4041  const TargetRegisterClass *RC = PhysReg.second;
4042  if (RC) {
4043    // If this is an early clobber or tied register, our regalloc doesn't know
4044    // how to maintain the constraint.  If it isn't, go ahead and create vreg
4045    // and let the regalloc do the right thing.
4046    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
4047        // If there is some other early clobber and this is an input register,
4048        // then we are forced to pre-allocate the input reg so it doesn't
4049        // conflict with the earlyclobber.
4050        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
4051      RegVT = *PhysReg.second->vt_begin();
4052
4053      if (OpInfo.ConstraintVT == MVT::Other)
4054        ValueVT = RegVT;
4055
4056      // Create the appropriate number of virtual registers.
4057      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4058      for (; NumRegs; --NumRegs)
4059        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
4060
4061      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4062      return;
4063    }
4064
4065    // Otherwise, we can't allocate it.  Let the code below figure out how to
4066    // maintain these constraints.
4067    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
4068
4069  } else {
4070    // This is a reference to a register class that doesn't directly correspond
4071    // to an LLVM register class.  Allocate NumRegs consecutive, available,
4072    // registers from the class.
4073    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
4074                                                         OpInfo.ConstraintVT);
4075  }
4076
4077  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4078  unsigned NumAllocated = 0;
4079  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
4080    unsigned Reg = RegClassRegs[i];
4081    // See if this register is available.
4082    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
4083        (isInReg  && InputRegs.count(Reg))) {    // Already used.
4084      // Make sure we find consecutive registers.
4085      NumAllocated = 0;
4086      continue;
4087    }
4088
4089    // Check to see if this register is allocatable (i.e. don't give out the
4090    // stack pointer).
4091    if (RC == 0) {
4092      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
4093      if (!RC) {        // Couldn't allocate this register.
4094        // Reset NumAllocated to make sure we return consecutive registers.
4095        NumAllocated = 0;
4096        continue;
4097      }
4098    }
4099
4100    // Okay, this register is good, we can use it.
4101    ++NumAllocated;
4102
4103    // If we allocated enough consecutive registers, succeed.
4104    if (NumAllocated == NumRegs) {
4105      unsigned RegStart = (i-NumAllocated)+1;
4106      unsigned RegEnd   = i+1;
4107      // Mark all of the allocated registers used.
4108      for (unsigned i = RegStart; i != RegEnd; ++i)
4109        Regs.push_back(RegClassRegs[i]);
4110
4111      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
4112                                         OpInfo.ConstraintVT);
4113      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4114      return;
4115    }
4116  }
4117
4118  // Otherwise, we couldn't allocate enough registers for this.
4119}
4120
4121
4122/// visitInlineAsm - Handle a call to an InlineAsm object.
4123///
4124void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
4125  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4126
4127  /// ConstraintOperands - Information about all of the constraints.
4128  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
4129
4130  SDOperand Chain = getRoot();
4131  SDOperand Flag;
4132
4133  std::set<unsigned> OutputRegs, InputRegs;
4134
4135  // Do a prepass over the constraints, canonicalizing them, and building up the
4136  // ConstraintOperands list.
4137  std::vector<InlineAsm::ConstraintInfo>
4138    ConstraintInfos = IA->ParseConstraints();
4139
4140  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
4141  // constraint.  If so, we can't let the register allocator allocate any input
4142  // registers, because it will not know to avoid the earlyclobbered output reg.
4143  bool SawEarlyClobber = false;
4144
4145  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
4146  unsigned ResNo = 0;   // ResNo - The result number of the next output.
4147  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4148    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
4149    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
4150
4151    MVT OpVT = MVT::Other;
4152
4153    // Compute the value type for each operand.
4154    switch (OpInfo.Type) {
4155    case InlineAsm::isOutput:
4156      // Indirect outputs just consume an argument.
4157      if (OpInfo.isIndirect) {
4158        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4159        break;
4160      }
4161      // The return value of the call is this value.  As such, there is no
4162      // corresponding argument.
4163      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4164      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
4165        OpVT = TLI.getValueType(STy->getElementType(ResNo));
4166      } else {
4167        assert(ResNo == 0 && "Asm only has one result!");
4168        OpVT = TLI.getValueType(CS.getType());
4169      }
4170      ++ResNo;
4171      break;
4172    case InlineAsm::isInput:
4173      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4174      break;
4175    case InlineAsm::isClobber:
4176      // Nothing to do.
4177      break;
4178    }
4179
4180    // If this is an input or an indirect output, process the call argument.
4181    // BasicBlocks are labels, currently appearing only in asm's.
4182    if (OpInfo.CallOperandVal) {
4183      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
4184        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
4185      else {
4186        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
4187        const Type *OpTy = OpInfo.CallOperandVal->getType();
4188        // If this is an indirect operand, the operand is a pointer to the
4189        // accessed type.
4190        if (OpInfo.isIndirect)
4191          OpTy = cast<PointerType>(OpTy)->getElementType();
4192
4193        // If OpTy is not a single value, it may be a struct/union that we
4194        // can tile with integers.
4195        if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4196          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4197          switch (BitSize) {
4198          default: break;
4199          case 1:
4200          case 8:
4201          case 16:
4202          case 32:
4203          case 64:
4204            OpTy = IntegerType::get(BitSize);
4205            break;
4206          }
4207        }
4208
4209        OpVT = TLI.getValueType(OpTy, true);
4210      }
4211    }
4212
4213    OpInfo.ConstraintVT = OpVT;
4214
4215    // Compute the constraint code and ConstraintType to use.
4216    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
4217
4218    // Keep track of whether we see an earlyclobber.
4219    SawEarlyClobber |= OpInfo.isEarlyClobber;
4220
4221    // If we see a clobber of a register, it is an early clobber.
4222    if (!SawEarlyClobber &&
4223        OpInfo.Type == InlineAsm::isClobber &&
4224        OpInfo.ConstraintType == TargetLowering::C_Register) {
4225      // Note that we want to ignore things that we don't trick here, like
4226      // dirflag, fpsr, flags, etc.
4227      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4228        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4229                                         OpInfo.ConstraintVT);
4230      if (PhysReg.first || PhysReg.second) {
4231        // This is a register we know of.
4232        SawEarlyClobber = true;
4233      }
4234    }
4235
4236    // If this is a memory input, and if the operand is not indirect, do what we
4237    // need to to provide an address for the memory input.
4238    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4239        !OpInfo.isIndirect) {
4240      assert(OpInfo.Type == InlineAsm::isInput &&
4241             "Can only indirectify direct input operands!");
4242
4243      // Memory operands really want the address of the value.  If we don't have
4244      // an indirect input, put it in the constpool if we can, otherwise spill
4245      // it to a stack slot.
4246
4247      // If the operand is a float, integer, or vector constant, spill to a
4248      // constant pool entry to get its address.
4249      Value *OpVal = OpInfo.CallOperandVal;
4250      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
4251          isa<ConstantVector>(OpVal)) {
4252        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
4253                                                 TLI.getPointerTy());
4254      } else {
4255        // Otherwise, create a stack slot and emit a store to it before the
4256        // asm.
4257        const Type *Ty = OpVal->getType();
4258        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
4259        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
4260        MachineFunction &MF = DAG.getMachineFunction();
4261        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
4262        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4263        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
4264        OpInfo.CallOperand = StackSlot;
4265      }
4266
4267      // There is no longer a Value* corresponding to this operand.
4268      OpInfo.CallOperandVal = 0;
4269      // It is now an indirect operand.
4270      OpInfo.isIndirect = true;
4271    }
4272
4273    // If this constraint is for a specific register, allocate it before
4274    // anything else.
4275    if (OpInfo.ConstraintType == TargetLowering::C_Register)
4276      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4277  }
4278  ConstraintInfos.clear();
4279
4280
4281  // Second pass - Loop over all of the operands, assigning virtual or physregs
4282  // to registerclass operands.
4283  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4284    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4285
4286    // C_Register operands have already been allocated, Other/Memory don't need
4287    // to be.
4288    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
4289      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4290  }
4291
4292  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
4293  std::vector<SDOperand> AsmNodeOperands;
4294  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
4295  AsmNodeOperands.push_back(
4296          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
4297
4298
4299  // Loop over all of the inputs, copying the operand values into the
4300  // appropriate registers and processing the output regs.
4301  RegsForValue RetValRegs;
4302
4303  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
4304  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
4305
4306  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4307    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4308
4309    switch (OpInfo.Type) {
4310    case InlineAsm::isOutput: {
4311      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
4312          OpInfo.ConstraintType != TargetLowering::C_Register) {
4313        // Memory output, or 'other' output (e.g. 'X' constraint).
4314        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
4315
4316        // Add information to the INLINEASM node to know about this output.
4317        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4318        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4319                                                        TLI.getPointerTy()));
4320        AsmNodeOperands.push_back(OpInfo.CallOperand);
4321        break;
4322      }
4323
4324      // Otherwise, this is a register or register class output.
4325
4326      // Copy the output from the appropriate register.  Find a register that
4327      // we can use.
4328      if (OpInfo.AssignedRegs.Regs.empty()) {
4329        cerr << "Couldn't allocate output reg for constraint '"
4330             << OpInfo.ConstraintCode << "'!\n";
4331        exit(1);
4332      }
4333
4334      // If this is an indirect operand, store through the pointer after the
4335      // asm.
4336      if (OpInfo.isIndirect) {
4337        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
4338                                                      OpInfo.CallOperandVal));
4339      } else {
4340        // This is the result value of the call.
4341        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4342        // Concatenate this output onto the outputs list.
4343        RetValRegs.append(OpInfo.AssignedRegs);
4344      }
4345
4346      // Add information to the INLINEASM node to know that this register is
4347      // set.
4348      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
4349                                               AsmNodeOperands);
4350      break;
4351    }
4352    case InlineAsm::isInput: {
4353      SDOperand InOperandVal = OpInfo.CallOperand;
4354
4355      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
4356        // If this is required to match an output register we have already set,
4357        // just use its register.
4358        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
4359
4360        // Scan until we find the definition we already emitted of this operand.
4361        // When we find it, create a RegsForValue operand.
4362        unsigned CurOp = 2;  // The first operand.
4363        for (; OperandNo; --OperandNo) {
4364          // Advance to the next operand.
4365          unsigned NumOps =
4366            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4367          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
4368                  (NumOps & 7) == 4 /*MEM*/) &&
4369                 "Skipped past definitions?");
4370          CurOp += (NumOps>>3)+1;
4371        }
4372
4373        unsigned NumOps =
4374          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4375        if ((NumOps & 7) == 2 /*REGDEF*/) {
4376          // Add NumOps>>3 registers to MatchedRegs.
4377          RegsForValue MatchedRegs;
4378          MatchedRegs.TLI = &TLI;
4379          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
4380          MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
4381          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
4382            unsigned Reg =
4383              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4384            MatchedRegs.Regs.push_back(Reg);
4385          }
4386
4387          // Use the produced MatchedRegs object to
4388          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4389          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
4390          break;
4391        } else {
4392          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
4393          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4394          // Add information to the INLINEASM node to know about this input.
4395          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4396          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4397                                                          TLI.getPointerTy()));
4398          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4399          break;
4400        }
4401      }
4402
4403      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4404        assert(!OpInfo.isIndirect &&
4405               "Don't know how to handle indirect other inputs yet!");
4406
4407        std::vector<SDOperand> Ops;
4408        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
4409                                         Ops, DAG);
4410        if (Ops.empty()) {
4411          cerr << "Invalid operand for inline asm constraint '"
4412               << OpInfo.ConstraintCode << "'!\n";
4413          exit(1);
4414        }
4415
4416        // Add information to the INLINEASM node to know about this input.
4417        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4418        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4419                                                        TLI.getPointerTy()));
4420        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4421        break;
4422      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4423        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4424        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4425               "Memory operands expect pointer values");
4426
4427        // Add information to the INLINEASM node to know about this input.
4428        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4429        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4430                                                        TLI.getPointerTy()));
4431        AsmNodeOperands.push_back(InOperandVal);
4432        break;
4433      }
4434
4435      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4436              OpInfo.ConstraintType == TargetLowering::C_Register) &&
4437             "Unknown constraint type!");
4438      assert(!OpInfo.isIndirect &&
4439             "Don't know how to handle indirect register inputs yet!");
4440
4441      // Copy the input into the appropriate registers.
4442      assert(!OpInfo.AssignedRegs.Regs.empty() &&
4443             "Couldn't allocate input reg!");
4444
4445      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4446
4447      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
4448                                               AsmNodeOperands);
4449      break;
4450    }
4451    case InlineAsm::isClobber: {
4452      // Add the clobbered value to the operand list, so that the register
4453      // allocator is aware that the physreg got clobbered.
4454      if (!OpInfo.AssignedRegs.Regs.empty())
4455        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
4456                                                 AsmNodeOperands);
4457      break;
4458    }
4459    }
4460  }
4461
4462  // Finish up input operands.
4463  AsmNodeOperands[0] = Chain;
4464  if (Flag.Val) AsmNodeOperands.push_back(Flag);
4465
4466  Chain = DAG.getNode(ISD::INLINEASM,
4467                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4468                      &AsmNodeOperands[0], AsmNodeOperands.size());
4469  Flag = Chain.getValue(1);
4470
4471  // If this asm returns a register value, copy the result from that register
4472  // and set it as the value of the call.
4473  if (!RetValRegs.Regs.empty()) {
4474    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4475
4476    // If any of the results of the inline asm is a vector, it may have the
4477    // wrong width/num elts.  This can happen for register classes that can
4478    // contain multiple different value types.  The preg or vreg allocated may
4479    // not have the same VT as was expected.  Convert it to the right type with
4480    // bit_convert.
4481    if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
4482      for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
4483        if (Val.Val->getValueType(i).isVector())
4484          Val = DAG.getNode(ISD::BIT_CONVERT,
4485                            TLI.getValueType(ResSTy->getElementType(i)), Val);
4486      }
4487    } else {
4488      if (Val.getValueType().isVector())
4489        Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
4490                          Val);
4491    }
4492
4493    setValue(CS.getInstruction(), Val);
4494  }
4495
4496  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
4497
4498  // Process indirect outputs, first output all of the flagged copies out of
4499  // physregs.
4500  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4501    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4502    Value *Ptr = IndirectStoresToEmit[i].second;
4503    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4504    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4505  }
4506
4507  // Emit the non-flagged stores from the physregs.
4508  SmallVector<SDOperand, 8> OutChains;
4509  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4510    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4511                                    getValue(StoresToEmit[i].second),
4512                                    StoresToEmit[i].second, 0));
4513  if (!OutChains.empty())
4514    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4515                        &OutChains[0], OutChains.size());
4516  DAG.setRoot(Chain);
4517}
4518
4519
4520void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4521  SDOperand Src = getValue(I.getOperand(0));
4522
4523  MVT IntPtr = TLI.getPointerTy();
4524
4525  if (IntPtr.bitsLT(Src.getValueType()))
4526    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4527  else if (IntPtr.bitsGT(Src.getValueType()))
4528    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4529
4530  // Scale the source by the type size.
4531  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4532  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4533                    Src, DAG.getIntPtrConstant(ElementSize));
4534
4535  TargetLowering::ArgListTy Args;
4536  TargetLowering::ArgListEntry Entry;
4537  Entry.Node = Src;
4538  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4539  Args.push_back(Entry);
4540
4541  std::pair<SDOperand,SDOperand> Result =
4542    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4543                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4544  setValue(&I, Result.first);  // Pointers always fit in registers
4545  DAG.setRoot(Result.second);
4546}
4547
4548void SelectionDAGLowering::visitFree(FreeInst &I) {
4549  TargetLowering::ArgListTy Args;
4550  TargetLowering::ArgListEntry Entry;
4551  Entry.Node = getValue(I.getOperand(0));
4552  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4553  Args.push_back(Entry);
4554  MVT IntPtr = TLI.getPointerTy();
4555  std::pair<SDOperand,SDOperand> Result =
4556    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4557                    CallingConv::C, true,
4558                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4559  DAG.setRoot(Result.second);
4560}
4561
4562// EmitInstrWithCustomInserter - This method should be implemented by targets
4563// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4564// instructions are special in various ways, which require special support to
4565// insert.  The specified MachineInstr is created but not inserted into any
4566// basic blocks, and the scheduler passes ownership of it to this method.
4567MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4568                                                       MachineBasicBlock *MBB) {
4569  cerr << "If a target marks an instruction with "
4570       << "'usesCustomDAGSchedInserter', it must implement "
4571       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4572  abort();
4573  return 0;
4574}
4575
4576void SelectionDAGLowering::visitVAStart(CallInst &I) {
4577  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4578                          getValue(I.getOperand(1)),
4579                          DAG.getSrcValue(I.getOperand(1))));
4580}
4581
4582void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4583  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4584                             getValue(I.getOperand(0)),
4585                             DAG.getSrcValue(I.getOperand(0)));
4586  setValue(&I, V);
4587  DAG.setRoot(V.getValue(1));
4588}
4589
4590void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4591  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4592                          getValue(I.getOperand(1)),
4593                          DAG.getSrcValue(I.getOperand(1))));
4594}
4595
4596void SelectionDAGLowering::visitVACopy(CallInst &I) {
4597  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4598                          getValue(I.getOperand(1)),
4599                          getValue(I.getOperand(2)),
4600                          DAG.getSrcValue(I.getOperand(1)),
4601                          DAG.getSrcValue(I.getOperand(2))));
4602}
4603
4604/// TargetLowering::LowerArguments - This is the default LowerArguments
4605/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4606/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4607/// integrated into SDISel.
4608void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
4609                                    SmallVectorImpl<SDOperand> &ArgValues) {
4610  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4611  SmallVector<SDOperand, 3+16> Ops;
4612  Ops.push_back(DAG.getRoot());
4613  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4614  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4615
4616  // Add one result value for each formal argument.
4617  SmallVector<MVT, 16> RetVals;
4618  unsigned j = 1;
4619  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4620       I != E; ++I, ++j) {
4621    SmallVector<MVT, 4> ValueVTs;
4622    ComputeValueVTs(*this, I->getType(), ValueVTs);
4623    for (unsigned Value = 0, NumValues = ValueVTs.size();
4624         Value != NumValues; ++Value) {
4625      MVT VT = ValueVTs[Value];
4626      const Type *ArgTy = VT.getTypeForMVT();
4627      ISD::ArgFlagsTy Flags;
4628      unsigned OriginalAlignment =
4629        getTargetData()->getABITypeAlignment(ArgTy);
4630
4631      if (F.paramHasAttr(j, ParamAttr::ZExt))
4632        Flags.setZExt();
4633      if (F.paramHasAttr(j, ParamAttr::SExt))
4634        Flags.setSExt();
4635      if (F.paramHasAttr(j, ParamAttr::InReg))
4636        Flags.setInReg();
4637      if (F.paramHasAttr(j, ParamAttr::StructRet))
4638        Flags.setSRet();
4639      if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4640        Flags.setByVal();
4641        const PointerType *Ty = cast<PointerType>(I->getType());
4642        const Type *ElementTy = Ty->getElementType();
4643        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4644        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4645        // For ByVal, alignment should be passed from FE.  BE will guess if
4646        // this info is not there but there are cases it cannot get right.
4647        if (F.getParamAlignment(j))
4648          FrameAlign = F.getParamAlignment(j);
4649        Flags.setByValAlign(FrameAlign);
4650        Flags.setByValSize(FrameSize);
4651      }
4652      if (F.paramHasAttr(j, ParamAttr::Nest))
4653        Flags.setNest();
4654      Flags.setOrigAlign(OriginalAlignment);
4655
4656      MVT RegisterVT = getRegisterType(VT);
4657      unsigned NumRegs = getNumRegisters(VT);
4658      for (unsigned i = 0; i != NumRegs; ++i) {
4659        RetVals.push_back(RegisterVT);
4660        ISD::ArgFlagsTy MyFlags = Flags;
4661        if (NumRegs > 1 && i == 0)
4662          MyFlags.setSplit();
4663        // if it isn't first piece, alignment must be 1
4664        else if (i > 0)
4665          MyFlags.setOrigAlign(1);
4666        Ops.push_back(DAG.getArgFlags(MyFlags));
4667      }
4668    }
4669  }
4670
4671  RetVals.push_back(MVT::Other);
4672
4673  // Create the node.
4674  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4675                               DAG.getVTList(&RetVals[0], RetVals.size()),
4676                               &Ops[0], Ops.size()).Val;
4677
4678  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4679  // allows exposing the loads that may be part of the argument access to the
4680  // first DAGCombiner pass.
4681  SDOperand TmpRes = LowerOperation(SDOperand(Result, 0), DAG);
4682
4683  // The number of results should match up, except that the lowered one may have
4684  // an extra flag result.
4685  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4686          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4687           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4688         && "Lowering produced unexpected number of results!");
4689
4690  // The FORMAL_ARGUMENTS node itself is likely no longer needed.
4691  if (Result != TmpRes.Val && Result->use_empty()) {
4692    HandleSDNode Dummy(DAG.getRoot());
4693    DAG.RemoveDeadNode(Result);
4694  }
4695
4696  Result = TmpRes.Val;
4697
4698  unsigned NumArgRegs = Result->getNumValues() - 1;
4699  DAG.setRoot(SDOperand(Result, NumArgRegs));
4700
4701  // Set up the return result vector.
4702  unsigned i = 0;
4703  unsigned Idx = 1;
4704  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4705      ++I, ++Idx) {
4706    SmallVector<MVT, 4> ValueVTs;
4707    ComputeValueVTs(*this, I->getType(), ValueVTs);
4708    for (unsigned Value = 0, NumValues = ValueVTs.size();
4709         Value != NumValues; ++Value) {
4710      MVT VT = ValueVTs[Value];
4711      MVT PartVT = getRegisterType(VT);
4712
4713      unsigned NumParts = getNumRegisters(VT);
4714      SmallVector<SDOperand, 4> Parts(NumParts);
4715      for (unsigned j = 0; j != NumParts; ++j)
4716        Parts[j] = SDOperand(Result, i++);
4717
4718      ISD::NodeType AssertOp = ISD::DELETED_NODE;
4719      if (F.paramHasAttr(Idx, ParamAttr::SExt))
4720        AssertOp = ISD::AssertSext;
4721      else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4722        AssertOp = ISD::AssertZext;
4723
4724      ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4725                                           AssertOp));
4726    }
4727  }
4728  assert(i == NumArgRegs && "Argument register count mismatch!");
4729}
4730
4731
4732/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4733/// implementation, which just inserts an ISD::CALL node, which is later custom
4734/// lowered by the target to something concrete.  FIXME: When all targets are
4735/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4736std::pair<SDOperand, SDOperand>
4737TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4738                            bool RetSExt, bool RetZExt, bool isVarArg,
4739                            unsigned CallingConv, bool isTailCall,
4740                            SDOperand Callee,
4741                            ArgListTy &Args, SelectionDAG &DAG) {
4742  SmallVector<SDOperand, 32> Ops;
4743  Ops.push_back(Chain);   // Op#0 - Chain
4744  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4745  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4746  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4747  Ops.push_back(Callee);
4748
4749  // Handle all of the outgoing arguments.
4750  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4751    SmallVector<MVT, 4> ValueVTs;
4752    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
4753    for (unsigned Value = 0, NumValues = ValueVTs.size();
4754         Value != NumValues; ++Value) {
4755      MVT VT = ValueVTs[Value];
4756      const Type *ArgTy = VT.getTypeForMVT();
4757      SDOperand Op = SDOperand(Args[i].Node.Val, Args[i].Node.ResNo + Value);
4758      ISD::ArgFlagsTy Flags;
4759      unsigned OriginalAlignment =
4760        getTargetData()->getABITypeAlignment(ArgTy);
4761
4762      if (Args[i].isZExt)
4763        Flags.setZExt();
4764      if (Args[i].isSExt)
4765        Flags.setSExt();
4766      if (Args[i].isInReg)
4767        Flags.setInReg();
4768      if (Args[i].isSRet)
4769        Flags.setSRet();
4770      if (Args[i].isByVal) {
4771        Flags.setByVal();
4772        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4773        const Type *ElementTy = Ty->getElementType();
4774        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4775        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4776        // For ByVal, alignment should come from FE.  BE will guess if this
4777        // info is not there but there are cases it cannot get right.
4778        if (Args[i].Alignment)
4779          FrameAlign = Args[i].Alignment;
4780        Flags.setByValAlign(FrameAlign);
4781        Flags.setByValSize(FrameSize);
4782      }
4783      if (Args[i].isNest)
4784        Flags.setNest();
4785      Flags.setOrigAlign(OriginalAlignment);
4786
4787      MVT PartVT = getRegisterType(VT);
4788      unsigned NumParts = getNumRegisters(VT);
4789      SmallVector<SDOperand, 4> Parts(NumParts);
4790      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4791
4792      if (Args[i].isSExt)
4793        ExtendKind = ISD::SIGN_EXTEND;
4794      else if (Args[i].isZExt)
4795        ExtendKind = ISD::ZERO_EXTEND;
4796
4797      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4798
4799      for (unsigned i = 0; i != NumParts; ++i) {
4800        // if it isn't first piece, alignment must be 1
4801        ISD::ArgFlagsTy MyFlags = Flags;
4802        if (NumParts > 1 && i == 0)
4803          MyFlags.setSplit();
4804        else if (i != 0)
4805          MyFlags.setOrigAlign(1);
4806
4807        Ops.push_back(Parts[i]);
4808        Ops.push_back(DAG.getArgFlags(MyFlags));
4809      }
4810    }
4811  }
4812
4813  // Figure out the result value types. We start by making a list of
4814  // the potentially illegal return value types.
4815  SmallVector<MVT, 4> LoweredRetTys;
4816  SmallVector<MVT, 4> RetTys;
4817  ComputeValueVTs(*this, RetTy, RetTys);
4818
4819  // Then we translate that to a list of legal types.
4820  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4821    MVT VT = RetTys[I];
4822    MVT RegisterVT = getRegisterType(VT);
4823    unsigned NumRegs = getNumRegisters(VT);
4824    for (unsigned i = 0; i != NumRegs; ++i)
4825      LoweredRetTys.push_back(RegisterVT);
4826  }
4827
4828  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
4829
4830  // Create the CALL node.
4831  SDOperand Res = DAG.getNode(ISD::CALL,
4832                              DAG.getVTList(&LoweredRetTys[0],
4833                                            LoweredRetTys.size()),
4834                              &Ops[0], Ops.size());
4835  Chain = Res.getValue(LoweredRetTys.size() - 1);
4836
4837  // Gather up the call result into a single value.
4838  if (RetTy != Type::VoidTy) {
4839    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4840
4841    if (RetSExt)
4842      AssertOp = ISD::AssertSext;
4843    else if (RetZExt)
4844      AssertOp = ISD::AssertZext;
4845
4846    SmallVector<SDOperand, 4> ReturnValues;
4847    unsigned RegNo = 0;
4848    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4849      MVT VT = RetTys[I];
4850      MVT RegisterVT = getRegisterType(VT);
4851      unsigned NumRegs = getNumRegisters(VT);
4852      unsigned RegNoEnd = NumRegs + RegNo;
4853      SmallVector<SDOperand, 4> Results;
4854      for (; RegNo != RegNoEnd; ++RegNo)
4855        Results.push_back(Res.getValue(RegNo));
4856      SDOperand ReturnValue =
4857        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4858                         AssertOp);
4859      ReturnValues.push_back(ReturnValue);
4860    }
4861    Res = DAG.getMergeValues(DAG.getVTList(&RetTys[0], RetTys.size()),
4862                             &ReturnValues[0], ReturnValues.size());
4863  }
4864
4865  return std::make_pair(Res, Chain);
4866}
4867
4868SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4869  assert(0 && "LowerOperation not implemented for this target!");
4870  abort();
4871  return SDOperand();
4872}
4873
4874
4875//===----------------------------------------------------------------------===//
4876// SelectionDAGISel code
4877//===----------------------------------------------------------------------===//
4878
4879unsigned SelectionDAGISel::MakeReg(MVT VT) {
4880  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4881}
4882
4883void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4884  AU.addRequired<AliasAnalysis>();
4885  AU.addRequired<CollectorModuleMetadata>();
4886  AU.setPreservesAll();
4887}
4888
4889bool SelectionDAGISel::runOnFunction(Function &Fn) {
4890  // Get alias analysis for load/store combining.
4891  AA = &getAnalysis<AliasAnalysis>();
4892
4893  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4894  if (MF.getFunction()->hasCollector())
4895    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4896  else
4897    GCI = 0;
4898  RegInfo = &MF.getRegInfo();
4899  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4900
4901  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4902
4903  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4904    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4905      // Mark landing pad.
4906      FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4907
4908  SelectAllBasicBlocks(Fn, MF, FuncInfo);
4909
4910  // Add function live-ins to entry block live-in set.
4911  BasicBlock *EntryBB = &Fn.getEntryBlock();
4912  BB = FuncInfo.MBBMap[EntryBB];
4913  if (!RegInfo->livein_empty())
4914    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4915           E = RegInfo->livein_end(); I != E; ++I)
4916      BB->addLiveIn(I->first);
4917
4918#ifndef NDEBUG
4919  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4920         "Not all catch info was assigned to a landing pad!");
4921#endif
4922
4923  return true;
4924}
4925
4926void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
4927  SDOperand Op = getValue(V);
4928  assert((Op.getOpcode() != ISD::CopyFromReg ||
4929          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4930         "Copy from a reg to the same reg!");
4931  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
4932
4933  RegsForValue RFV(TLI, Reg, V->getType());
4934  SDOperand Chain = DAG.getEntryNode();
4935  RFV.getCopyToRegs(Op, DAG, Chain, 0);
4936  PendingExports.push_back(Chain);
4937}
4938
4939void SelectionDAGISel::
4940LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) {
4941  // If this is the entry block, emit arguments.
4942  Function &F = *LLVMBB->getParent();
4943  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4944  SDOperand OldRoot = SDL.DAG.getRoot();
4945  SmallVector<SDOperand, 16> Args;
4946  TLI.LowerArguments(F, SDL.DAG, Args);
4947
4948  unsigned a = 0;
4949  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4950       AI != E; ++AI) {
4951    SmallVector<MVT, 4> ValueVTs;
4952    ComputeValueVTs(TLI, AI->getType(), ValueVTs);
4953    unsigned NumValues = ValueVTs.size();
4954    if (!AI->use_empty()) {
4955      SDL.setValue(AI, SDL.DAG.getMergeValues(&Args[a], NumValues));
4956      // If this argument is live outside of the entry block, insert a copy from
4957      // whereever we got it to the vreg that other BB's will reference it as.
4958      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4959      if (VMI != FuncInfo.ValueMap.end()) {
4960        SDL.CopyValueToVirtualRegister(AI, VMI->second);
4961      }
4962    }
4963    a += NumValues;
4964  }
4965
4966  // Finally, if the target has anything special to do, allow it to do so.
4967  // FIXME: this should insert code into the DAG!
4968  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4969}
4970
4971static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4972                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4973  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4974    if (isSelector(I)) {
4975      // Apply the catch info to DestBB.
4976      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4977#ifndef NDEBUG
4978      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4979        FLI.CatchInfoFound.insert(I);
4980#endif
4981    }
4982}
4983
4984/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
4985/// whether object offset >= 0.
4986static bool
4987IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDOperand Op) {
4988  if (!isa<FrameIndexSDNode>(Op)) return false;
4989
4990  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
4991  int FrameIdx =  FrameIdxNode->getIndex();
4992  return MFI->isFixedObjectIndex(FrameIdx) &&
4993    MFI->getObjectOffset(FrameIdx) >= 0;
4994}
4995
4996/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
4997/// possibly be overwritten when lowering the outgoing arguments in a tail
4998/// call. Currently the implementation of this call is very conservative and
4999/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
5000/// virtual registers would be overwritten by direct lowering.
5001static bool IsPossiblyOverwrittenArgumentOfTailCall(SDOperand Op,
5002                                                    MachineFrameInfo * MFI) {
5003  RegisterSDNode * OpReg = NULL;
5004  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
5005      (Op.getOpcode()== ISD::CopyFromReg &&
5006       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
5007       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
5008      (Op.getOpcode() == ISD::LOAD &&
5009       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
5010      (Op.getOpcode() == ISD::MERGE_VALUES &&
5011       Op.getOperand(Op.ResNo).getOpcode() == ISD::LOAD &&
5012       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.ResNo).
5013                                       getOperand(1))))
5014    return true;
5015  return false;
5016}
5017
5018/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
5019/// DAG and fixes their tailcall attribute operand.
5020static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
5021                                           TargetLowering& TLI) {
5022  SDNode * Ret = NULL;
5023  SDOperand Terminator = DAG.getRoot();
5024
5025  // Find RET node.
5026  if (Terminator.getOpcode() == ISD::RET) {
5027    Ret = Terminator.Val;
5028  }
5029
5030  // Fix tail call attribute of CALL nodes.
5031  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
5032         BI = DAG.allnodes_end(); BI != BE; ) {
5033    --BI;
5034    if (BI->getOpcode() == ISD::CALL) {
5035      SDOperand OpRet(Ret, 0);
5036      SDOperand OpCall(BI, 0);
5037      bool isMarkedTailCall =
5038        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
5039      // If CALL node has tail call attribute set to true and the call is not
5040      // eligible (no RET or the target rejects) the attribute is fixed to
5041      // false. The TargetLowering::IsEligibleForTailCallOptimization function
5042      // must correctly identify tail call optimizable calls.
5043      if (!isMarkedTailCall) continue;
5044      if (Ret==NULL ||
5045          !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
5046        // Not eligible. Mark CALL node as non tail call.
5047        SmallVector<SDOperand, 32> Ops;
5048        unsigned idx=0;
5049        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
5050              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5051          if (idx!=3)
5052            Ops.push_back(*I);
5053          else
5054            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
5055        }
5056        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5057      } else {
5058        // Look for tail call clobbered arguments. Emit a series of
5059        // copyto/copyfrom virtual register nodes to protect them.
5060        SmallVector<SDOperand, 32> Ops;
5061        SDOperand Chain = OpCall.getOperand(0), InFlag;
5062        unsigned idx=0;
5063        for(SDNode::op_iterator I = OpCall.Val->op_begin(),
5064              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5065          SDOperand Arg = *I;
5066          if (idx > 4 && (idx % 2)) {
5067            bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
5068              getArgFlags().isByVal();
5069            MachineFunction &MF = DAG.getMachineFunction();
5070            MachineFrameInfo *MFI = MF.getFrameInfo();
5071            if (!isByVal &&
5072                IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
5073              MVT VT = Arg.getValueType();
5074              unsigned VReg = MF.getRegInfo().
5075                createVirtualRegister(TLI.getRegClassFor(VT));
5076              Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
5077              InFlag = Chain.getValue(1);
5078              Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
5079              Chain = Arg.getValue(1);
5080              InFlag = Arg.getValue(2);
5081            }
5082          }
5083          Ops.push_back(Arg);
5084        }
5085        // Link in chain of CopyTo/CopyFromReg.
5086        Ops[0] = Chain;
5087        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5088      }
5089    }
5090  }
5091}
5092
5093void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
5094       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
5095                                         FunctionLoweringInfo &FuncInfo) {
5096  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
5097
5098  // Lower any arguments needed in this block if this is the entry block.
5099  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
5100    LowerArguments(LLVMBB, SDL);
5101
5102  BB = FuncInfo.MBBMap[LLVMBB];
5103  SDL.setCurrentBasicBlock(BB);
5104
5105  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
5106
5107  if (MMI && BB->isLandingPad()) {
5108    // Add a label to mark the beginning of the landing pad.  Deletion of the
5109    // landing pad can thus be detected via the MachineModuleInfo.
5110    unsigned LabelID = MMI->addLandingPad(BB);
5111    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, DAG.getEntryNode(), LabelID));
5112
5113    // Mark exception register as live in.
5114    unsigned Reg = TLI.getExceptionAddressRegister();
5115    if (Reg) BB->addLiveIn(Reg);
5116
5117    // Mark exception selector register as live in.
5118    Reg = TLI.getExceptionSelectorRegister();
5119    if (Reg) BB->addLiveIn(Reg);
5120
5121    // FIXME: Hack around an exception handling flaw (PR1508): the personality
5122    // function and list of typeids logically belong to the invoke (or, if you
5123    // like, the basic block containing the invoke), and need to be associated
5124    // with it in the dwarf exception handling tables.  Currently however the
5125    // information is provided by an intrinsic (eh.selector) that can be moved
5126    // to unexpected places by the optimizers: if the unwind edge is critical,
5127    // then breaking it can result in the intrinsics being in the successor of
5128    // the landing pad, not the landing pad itself.  This results in exceptions
5129    // not being caught because no typeids are associated with the invoke.
5130    // This may not be the only way things can go wrong, but it is the only way
5131    // we try to work around for the moment.
5132    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
5133
5134    if (Br && Br->isUnconditional()) { // Critical edge?
5135      BasicBlock::iterator I, E;
5136      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
5137        if (isSelector(I))
5138          break;
5139
5140      if (I == E)
5141        // No catch info found - try to extract some from the successor.
5142        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
5143    }
5144  }
5145
5146  // Lower all of the non-terminator instructions.
5147  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
5148       I != E; ++I)
5149    SDL.visit(*I);
5150
5151  // Ensure that all instructions which are used outside of their defining
5152  // blocks are available as virtual registers.  Invoke is handled elsewhere.
5153  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
5154    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
5155      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
5156      if (VMI != FuncInfo.ValueMap.end())
5157        SDL.CopyValueToVirtualRegister(I, VMI->second);
5158    }
5159
5160  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
5161  // ensure constants are generated when needed.  Remember the virtual registers
5162  // that need to be added to the Machine PHI nodes as input.  We cannot just
5163  // directly add them, because expansion might result in multiple MBB's for one
5164  // BB.  As such, the start of the BB might correspond to a different MBB than
5165  // the end.
5166  //
5167  TerminatorInst *TI = LLVMBB->getTerminator();
5168
5169  // Emit constants only once even if used by multiple PHI nodes.
5170  std::map<Constant*, unsigned> ConstantsOut;
5171
5172  // Vector bool would be better, but vector<bool> is really slow.
5173  std::vector<unsigned char> SuccsHandled;
5174  if (TI->getNumSuccessors())
5175    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
5176
5177  // Check successor nodes' PHI nodes that expect a constant to be available
5178  // from this block.
5179  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5180    BasicBlock *SuccBB = TI->getSuccessor(succ);
5181    if (!isa<PHINode>(SuccBB->begin())) continue;
5182    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
5183
5184    // If this terminator has multiple identical successors (common for
5185    // switches), only handle each succ once.
5186    unsigned SuccMBBNo = SuccMBB->getNumber();
5187    if (SuccsHandled[SuccMBBNo]) continue;
5188    SuccsHandled[SuccMBBNo] = true;
5189
5190    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5191    PHINode *PN;
5192
5193    // At this point we know that there is a 1-1 correspondence between LLVM PHI
5194    // nodes and Machine PHI nodes, but the incoming operands have not been
5195    // emitted yet.
5196    for (BasicBlock::iterator I = SuccBB->begin();
5197         (PN = dyn_cast<PHINode>(I)); ++I) {
5198      // Ignore dead phi's.
5199      if (PN->use_empty()) continue;
5200
5201      unsigned Reg;
5202      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5203
5204      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5205        unsigned &RegOut = ConstantsOut[C];
5206        if (RegOut == 0) {
5207          RegOut = FuncInfo.CreateRegForValue(C);
5208          SDL.CopyValueToVirtualRegister(C, RegOut);
5209        }
5210        Reg = RegOut;
5211      } else {
5212        Reg = FuncInfo.ValueMap[PHIOp];
5213        if (Reg == 0) {
5214          assert(isa<AllocaInst>(PHIOp) &&
5215                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5216                 "Didn't codegen value into a register!??");
5217          Reg = FuncInfo.CreateRegForValue(PHIOp);
5218          SDL.CopyValueToVirtualRegister(PHIOp, Reg);
5219        }
5220      }
5221
5222      // Remember that this register needs to added to the machine PHI node as
5223      // the input for this MBB.
5224      MVT VT = TLI.getValueType(PN->getType());
5225      unsigned NumRegisters = TLI.getNumRegisters(VT);
5226      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5227        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5228    }
5229  }
5230  ConstantsOut.clear();
5231
5232  // Lower the terminator after the copies are emitted.
5233  SDL.visit(*LLVMBB->getTerminator());
5234
5235  // Copy over any CaseBlock records that may now exist due to SwitchInst
5236  // lowering, as well as any jump table information.
5237  SwitchCases.clear();
5238  SwitchCases = SDL.SwitchCases;
5239  JTCases.clear();
5240  JTCases = SDL.JTCases;
5241  BitTestCases.clear();
5242  BitTestCases = SDL.BitTestCases;
5243
5244  // Make sure the root of the DAG is up-to-date.
5245  DAG.setRoot(SDL.getControlRoot());
5246
5247  // Check whether calls in this block are real tail calls. Fix up CALL nodes
5248  // with correct tailcall attribute so that the target can rely on the tailcall
5249  // attribute indicating whether the call is really eligible for tail call
5250  // optimization.
5251  CheckDAGForTailCallsAndFixThem(DAG, TLI);
5252}
5253
5254void SelectionDAGISel::ComputeLiveOutVRegInfo(SelectionDAG &DAG) {
5255  SmallPtrSet<SDNode*, 128> VisitedNodes;
5256  SmallVector<SDNode*, 128> Worklist;
5257
5258  Worklist.push_back(DAG.getRoot().Val);
5259
5260  APInt Mask;
5261  APInt KnownZero;
5262  APInt KnownOne;
5263
5264  while (!Worklist.empty()) {
5265    SDNode *N = Worklist.back();
5266    Worklist.pop_back();
5267
5268    // If we've already seen this node, ignore it.
5269    if (!VisitedNodes.insert(N))
5270      continue;
5271
5272    // Otherwise, add all chain operands to the worklist.
5273    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5274      if (N->getOperand(i).getValueType() == MVT::Other)
5275        Worklist.push_back(N->getOperand(i).Val);
5276
5277    // If this is a CopyToReg with a vreg dest, process it.
5278    if (N->getOpcode() != ISD::CopyToReg)
5279      continue;
5280
5281    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
5282    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
5283      continue;
5284
5285    // Ignore non-scalar or non-integer values.
5286    SDOperand Src = N->getOperand(2);
5287    MVT SrcVT = Src.getValueType();
5288    if (!SrcVT.isInteger() || SrcVT.isVector())
5289      continue;
5290
5291    unsigned NumSignBits = DAG.ComputeNumSignBits(Src);
5292    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
5293    DAG.ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
5294
5295    // Only install this information if it tells us something.
5296    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
5297      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
5298      FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5299      if (DestReg >= FLI.LiveOutRegInfo.size())
5300        FLI.LiveOutRegInfo.resize(DestReg+1);
5301      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
5302      LOI.NumSignBits = NumSignBits;
5303      LOI.KnownOne = NumSignBits;
5304      LOI.KnownZero = NumSignBits;
5305    }
5306  }
5307}
5308
5309void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
5310  std::string GroupName;
5311  if (TimePassesIsEnabled)
5312    GroupName = "Instruction Selection and Scheduling";
5313  std::string BlockName;
5314  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
5315      ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs)
5316    BlockName = DAG.getMachineFunction().getFunction()->getName() + ':' +
5317                BB->getBasicBlock()->getName();
5318
5319  DOUT << "Initial selection DAG:\n";
5320  DEBUG(DAG.dump());
5321
5322  if (ViewDAGCombine1) DAG.viewGraph("dag-combine1 input for " + BlockName);
5323
5324  // Run the DAG combiner in pre-legalize mode.
5325  if (TimePassesIsEnabled) {
5326    NamedRegionTimer T("DAG Combining 1", GroupName);
5327    DAG.Combine(false, *AA);
5328  } else {
5329    DAG.Combine(false, *AA);
5330  }
5331
5332  DOUT << "Optimized lowered selection DAG:\n";
5333  DEBUG(DAG.dump());
5334
5335  // Second step, hack on the DAG until it only uses operations and types that
5336  // the target supports.
5337  if (EnableLegalizeTypes) {// Enable this some day.
5338    if (ViewLegalizeTypesDAGs) DAG.viewGraph("legalize-types input for " +
5339                                             BlockName);
5340
5341    if (TimePassesIsEnabled) {
5342      NamedRegionTimer T("Type Legalization", GroupName);
5343      DAG.LegalizeTypes();
5344    } else {
5345      DAG.LegalizeTypes();
5346    }
5347
5348    DOUT << "Type-legalized selection DAG:\n";
5349    DEBUG(DAG.dump());
5350
5351    // TODO: enable a dag combine pass here.
5352  }
5353
5354  if (ViewLegalizeDAGs) DAG.viewGraph("legalize input for " + BlockName);
5355
5356  if (TimePassesIsEnabled) {
5357    NamedRegionTimer T("DAG Legalization", GroupName);
5358    DAG.Legalize();
5359  } else {
5360    DAG.Legalize();
5361  }
5362
5363  DOUT << "Legalized selection DAG:\n";
5364  DEBUG(DAG.dump());
5365
5366  if (ViewDAGCombine2) DAG.viewGraph("dag-combine2 input for " + BlockName);
5367
5368  // Run the DAG combiner in post-legalize mode.
5369  if (TimePassesIsEnabled) {
5370    NamedRegionTimer T("DAG Combining 2", GroupName);
5371    DAG.Combine(true, *AA);
5372  } else {
5373    DAG.Combine(true, *AA);
5374  }
5375
5376  DOUT << "Optimized legalized selection DAG:\n";
5377  DEBUG(DAG.dump());
5378
5379  if (ViewISelDAGs) DAG.viewGraph("isel input for " + BlockName);
5380
5381  if (!FastISel && EnableValueProp)
5382    ComputeLiveOutVRegInfo(DAG);
5383
5384  // Third, instruction select all of the operations to machine code, adding the
5385  // code to the MachineBasicBlock.
5386  if (TimePassesIsEnabled) {
5387    NamedRegionTimer T("Instruction Selection", GroupName);
5388    InstructionSelect(DAG);
5389  } else {
5390    InstructionSelect(DAG);
5391  }
5392
5393  DOUT << "Selected selection DAG:\n";
5394  DEBUG(DAG.dump());
5395
5396  if (ViewSchedDAGs) DAG.viewGraph("scheduler input for " + BlockName);
5397
5398  // Schedule machine code.
5399  ScheduleDAG *Scheduler;
5400  if (TimePassesIsEnabled) {
5401    NamedRegionTimer T("Instruction Scheduling", GroupName);
5402    Scheduler = Schedule(DAG);
5403  } else {
5404    Scheduler = Schedule(DAG);
5405  }
5406
5407  if (ViewSUnitDAGs) Scheduler->viewGraph();
5408
5409  // Emit machine code to BB.  This can change 'BB' to the last block being
5410  // inserted into.
5411  if (TimePassesIsEnabled) {
5412    NamedRegionTimer T("Instruction Creation", GroupName);
5413    BB = Scheduler->EmitSchedule();
5414  } else {
5415    BB = Scheduler->EmitSchedule();
5416  }
5417
5418  // Free the scheduler state.
5419  if (TimePassesIsEnabled) {
5420    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
5421    delete Scheduler;
5422  } else {
5423    delete Scheduler;
5424  }
5425
5426  // Perform target specific isel post processing.
5427  if (TimePassesIsEnabled) {
5428    NamedRegionTimer T("Instruction Selection Post Processing", GroupName);
5429    InstructionSelectPostProcessing();
5430  } else {
5431    InstructionSelectPostProcessing();
5432  }
5433
5434  DOUT << "Selected machine code:\n";
5435  DEBUG(BB->dump());
5436}
5437
5438void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF,
5439                                            FunctionLoweringInfo &FuncInfo) {
5440  // Define AllNodes here so that memory allocation is reused for
5441  // each basic block.
5442  alist<SDNode, LargestSDNode> AllNodes;
5443
5444  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
5445    SelectBasicBlock(I, MF, FuncInfo, AllNodes);
5446    AllNodes.clear();
5447  }
5448}
5449
5450void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
5451                                        FunctionLoweringInfo &FuncInfo,
5452                                        alist<SDNode, LargestSDNode> &AllNodes) {
5453  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
5454  {
5455    SelectionDAG DAG(TLI, MF, FuncInfo,
5456                     getAnalysisToUpdate<MachineModuleInfo>(),
5457                     AllNodes);
5458    CurDAG = &DAG;
5459
5460    // First step, lower LLVM code to some DAG.  This DAG may use operations and
5461    // types that are not supported by the target.
5462    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
5463
5464    // Second step, emit the lowered DAG as machine code.
5465    CodeGenAndEmitDAG(DAG);
5466  }
5467
5468  DOUT << "Total amount of phi nodes to update: "
5469       << PHINodesToUpdate.size() << "\n";
5470  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
5471          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
5472               << ", " << PHINodesToUpdate[i].second << ")\n";);
5473
5474  // Next, now that we know what the last MBB the LLVM BB expanded is, update
5475  // PHI nodes in successors.
5476  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
5477    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5478      MachineInstr *PHI = PHINodesToUpdate[i].first;
5479      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5480             "This is not a machine PHI node that we are updating!");
5481      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5482                                                false));
5483      PHI->addOperand(MachineOperand::CreateMBB(BB));
5484    }
5485    return;
5486  }
5487
5488  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
5489    // Lower header first, if it wasn't already lowered
5490    if (!BitTestCases[i].Emitted) {
5491      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5492                         getAnalysisToUpdate<MachineModuleInfo>(),
5493                         AllNodes);
5494      CurDAG = &HSDAG;
5495      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5496      // Set the current basic block to the mbb we wish to insert the code into
5497      BB = BitTestCases[i].Parent;
5498      HSDL.setCurrentBasicBlock(BB);
5499      // Emit the code
5500      HSDL.visitBitTestHeader(BitTestCases[i]);
5501      HSDAG.setRoot(HSDL.getRoot());
5502      CodeGenAndEmitDAG(HSDAG);
5503    }
5504
5505    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5506      SelectionDAG BSDAG(TLI, MF, FuncInfo,
5507                         getAnalysisToUpdate<MachineModuleInfo>(),
5508                         AllNodes);
5509      CurDAG = &BSDAG;
5510      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
5511      // Set the current basic block to the mbb we wish to insert the code into
5512      BB = BitTestCases[i].Cases[j].ThisBB;
5513      BSDL.setCurrentBasicBlock(BB);
5514      // Emit the code
5515      if (j+1 != ej)
5516        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
5517                              BitTestCases[i].Reg,
5518                              BitTestCases[i].Cases[j]);
5519      else
5520        BSDL.visitBitTestCase(BitTestCases[i].Default,
5521                              BitTestCases[i].Reg,
5522                              BitTestCases[i].Cases[j]);
5523
5524
5525      BSDAG.setRoot(BSDL.getRoot());
5526      CodeGenAndEmitDAG(BSDAG);
5527    }
5528
5529    // Update PHI Nodes
5530    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5531      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5532      MachineBasicBlock *PHIBB = PHI->getParent();
5533      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5534             "This is not a machine PHI node that we are updating!");
5535      // This is "default" BB. We have two jumps to it. From "header" BB and
5536      // from last "case" BB.
5537      if (PHIBB == BitTestCases[i].Default) {
5538        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5539                                                  false));
5540        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
5541        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5542                                                  false));
5543        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
5544                                                  back().ThisBB));
5545      }
5546      // One of "cases" BB.
5547      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5548        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
5549        if (cBB->succ_end() !=
5550            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
5551          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5552                                                    false));
5553          PHI->addOperand(MachineOperand::CreateMBB(cBB));
5554        }
5555      }
5556    }
5557  }
5558
5559  // If the JumpTable record is filled in, then we need to emit a jump table.
5560  // Updating the PHI nodes is tricky in this case, since we need to determine
5561  // whether the PHI is a successor of the range check MBB or the jump table MBB
5562  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
5563    // Lower header first, if it wasn't already lowered
5564    if (!JTCases[i].first.Emitted) {
5565      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5566                         getAnalysisToUpdate<MachineModuleInfo>(),
5567                         AllNodes);
5568      CurDAG = &HSDAG;
5569      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5570      // Set the current basic block to the mbb we wish to insert the code into
5571      BB = JTCases[i].first.HeaderBB;
5572      HSDL.setCurrentBasicBlock(BB);
5573      // Emit the code
5574      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
5575      HSDAG.setRoot(HSDL.getRoot());
5576      CodeGenAndEmitDAG(HSDAG);
5577    }
5578
5579    SelectionDAG JSDAG(TLI, MF, FuncInfo,
5580                       getAnalysisToUpdate<MachineModuleInfo>(),
5581                       AllNodes);
5582    CurDAG = &JSDAG;
5583    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
5584    // Set the current basic block to the mbb we wish to insert the code into
5585    BB = JTCases[i].second.MBB;
5586    JSDL.setCurrentBasicBlock(BB);
5587    // Emit the code
5588    JSDL.visitJumpTable(JTCases[i].second);
5589    JSDAG.setRoot(JSDL.getRoot());
5590    CodeGenAndEmitDAG(JSDAG);
5591
5592    // Update PHI Nodes
5593    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5594      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5595      MachineBasicBlock *PHIBB = PHI->getParent();
5596      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5597             "This is not a machine PHI node that we are updating!");
5598      // "default" BB. We can go there only from header BB.
5599      if (PHIBB == JTCases[i].second.Default) {
5600        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5601                                                  false));
5602        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
5603      }
5604      // JT BB. Just iterate over successors here
5605      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
5606        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5607                                                  false));
5608        PHI->addOperand(MachineOperand::CreateMBB(BB));
5609      }
5610    }
5611  }
5612
5613  // If the switch block involved a branch to one of the actual successors, we
5614  // need to update PHI nodes in that block.
5615  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5616    MachineInstr *PHI = PHINodesToUpdate[i].first;
5617    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5618           "This is not a machine PHI node that we are updating!");
5619    if (BB->isSuccessor(PHI->getParent())) {
5620      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5621                                                false));
5622      PHI->addOperand(MachineOperand::CreateMBB(BB));
5623    }
5624  }
5625
5626  // If we generated any switch lowering information, build and codegen any
5627  // additional DAGs necessary.
5628  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
5629    SelectionDAG SDAG(TLI, MF, FuncInfo,
5630                      getAnalysisToUpdate<MachineModuleInfo>(),
5631                      AllNodes);
5632    CurDAG = &SDAG;
5633    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
5634
5635    // Set the current basic block to the mbb we wish to insert the code into
5636    BB = SwitchCases[i].ThisBB;
5637    SDL.setCurrentBasicBlock(BB);
5638
5639    // Emit the code
5640    SDL.visitSwitchCase(SwitchCases[i]);
5641    SDAG.setRoot(SDL.getRoot());
5642    CodeGenAndEmitDAG(SDAG);
5643
5644    // Handle any PHI nodes in successors of this chunk, as if we were coming
5645    // from the original BB before switch expansion.  Note that PHI nodes can
5646    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5647    // handle them the right number of times.
5648    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5649      for (MachineBasicBlock::iterator Phi = BB->begin();
5650           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5651        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5652        for (unsigned pn = 0; ; ++pn) {
5653          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5654          if (PHINodesToUpdate[pn].first == Phi) {
5655            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5656                                                      second, false));
5657            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5658            break;
5659          }
5660        }
5661      }
5662
5663      // Don't process RHS if same block as LHS.
5664      if (BB == SwitchCases[i].FalseBB)
5665        SwitchCases[i].FalseBB = 0;
5666
5667      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5668      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5669      SwitchCases[i].FalseBB = 0;
5670    }
5671    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5672  }
5673}
5674
5675
5676/// Schedule - Pick a safe ordering for instructions for each
5677/// target node in the graph.
5678///
5679ScheduleDAG *SelectionDAGISel::Schedule(SelectionDAG &DAG) {
5680  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5681
5682  if (!Ctor) {
5683    Ctor = ISHeuristic;
5684    RegisterScheduler::setDefault(Ctor);
5685  }
5686
5687  ScheduleDAG *Scheduler = Ctor(this, &DAG, BB, FastISel);
5688  Scheduler->Run();
5689
5690  return Scheduler;
5691}
5692
5693
5694HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5695  return new HazardRecognizer();
5696}
5697
5698//===----------------------------------------------------------------------===//
5699// Helper functions used by the generated instruction selector.
5700//===----------------------------------------------------------------------===//
5701// Calls to these methods are generated by tblgen.
5702
5703/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5704/// the dag combiner simplified the 255, we still want to match.  RHS is the
5705/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5706/// specified in the .td file (e.g. 255).
5707bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
5708                                    int64_t DesiredMaskS) const {
5709  const APInt &ActualMask = RHS->getAPIntValue();
5710  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5711
5712  // If the actual mask exactly matches, success!
5713  if (ActualMask == DesiredMask)
5714    return true;
5715
5716  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5717  if (ActualMask.intersects(~DesiredMask))
5718    return false;
5719
5720  // Otherwise, the DAG Combiner may have proven that the value coming in is
5721  // either already zero or is not demanded.  Check for known zero input bits.
5722  APInt NeededMask = DesiredMask & ~ActualMask;
5723  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5724    return true;
5725
5726  // TODO: check to see if missing bits are just not demanded.
5727
5728  // Otherwise, this pattern doesn't match.
5729  return false;
5730}
5731
5732/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5733/// the dag combiner simplified the 255, we still want to match.  RHS is the
5734/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5735/// specified in the .td file (e.g. 255).
5736bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5737                                   int64_t DesiredMaskS) const {
5738  const APInt &ActualMask = RHS->getAPIntValue();
5739  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5740
5741  // If the actual mask exactly matches, success!
5742  if (ActualMask == DesiredMask)
5743    return true;
5744
5745  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5746  if (ActualMask.intersects(~DesiredMask))
5747    return false;
5748
5749  // Otherwise, the DAG Combiner may have proven that the value coming in is
5750  // either already zero or is not demanded.  Check for known zero input bits.
5751  APInt NeededMask = DesiredMask & ~ActualMask;
5752
5753  APInt KnownZero, KnownOne;
5754  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5755
5756  // If all the missing bits in the or are already known to be set, match!
5757  if ((NeededMask & KnownOne) == NeededMask)
5758    return true;
5759
5760  // TODO: check to see if missing bits are just not demanded.
5761
5762  // Otherwise, this pattern doesn't match.
5763  return false;
5764}
5765
5766
5767/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5768/// by tblgen.  Others should not call it.
5769void SelectionDAGISel::
5770SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5771  std::vector<SDOperand> InOps;
5772  std::swap(InOps, Ops);
5773
5774  Ops.push_back(InOps[0]);  // input chain.
5775  Ops.push_back(InOps[1]);  // input asm string.
5776
5777  unsigned i = 2, e = InOps.size();
5778  if (InOps[e-1].getValueType() == MVT::Flag)
5779    --e;  // Don't process a flag operand if it is here.
5780
5781  while (i != e) {
5782    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5783    if ((Flags & 7) != 4 /*MEM*/) {
5784      // Just skip over this operand, copying the operands verbatim.
5785      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5786      i += (Flags >> 3) + 1;
5787    } else {
5788      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5789      // Otherwise, this is a memory operand.  Ask the target to select it.
5790      std::vector<SDOperand> SelOps;
5791      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5792        cerr << "Could not match memory address.  Inline asm failure!\n";
5793        exit(1);
5794      }
5795
5796      // Add this to the output node.
5797      MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5798      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5799                                          IntPtrTy));
5800      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5801      i += 2;
5802    }
5803  }
5804
5805  // Add the flag input back if present.
5806  if (e != InOps.size())
5807    Ops.push_back(InOps.back());
5808}
5809
5810char SelectionDAGISel::ID = 0;
5811