SelectionDAGISel.cpp revision 8927a372950be8591f298fb9650b2059e0f0a6e8
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/Statistic.h"
50#include <algorithm>
51using namespace llvm;
52
53STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
54STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
55
56static cl::opt<bool>
57EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
58          cl::desc("Enable verbose messages in the \"fast\" "
59                   "instruction selector"));
60static cl::opt<bool>
61EnableFastISelAbort("fast-isel-abort", cl::Hidden,
62          cl::desc("Enable abort calls when \"fast\" instruction fails"));
63
64#ifndef NDEBUG
65static cl::opt<bool>
66ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
67          cl::desc("Pop up a window to show dags before the first "
68                   "dag combine pass"));
69static cl::opt<bool>
70ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
71          cl::desc("Pop up a window to show dags before legalize types"));
72static cl::opt<bool>
73ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
74          cl::desc("Pop up a window to show dags before legalize"));
75static cl::opt<bool>
76ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the second "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before the post legalize types"
82                   " dag combine pass"));
83static cl::opt<bool>
84ViewISelDAGs("view-isel-dags", cl::Hidden,
85          cl::desc("Pop up a window to show isel dags as they are selected"));
86static cl::opt<bool>
87ViewSchedDAGs("view-sched-dags", cl::Hidden,
88          cl::desc("Pop up a window to show sched dags as they are processed"));
89static cl::opt<bool>
90ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
91      cl::desc("Pop up a window to show SUnit dags after they are processed"));
92#else
93static const bool ViewDAGCombine1 = false,
94                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
95                  ViewDAGCombine2 = false,
96                  ViewDAGCombineLT = false,
97                  ViewISelDAGs = false, ViewSchedDAGs = false,
98                  ViewSUnitDAGs = false;
99#endif
100
101//===---------------------------------------------------------------------===//
102///
103/// RegisterScheduler class - Track the registration of instruction schedulers.
104///
105//===---------------------------------------------------------------------===//
106MachinePassRegistry RegisterScheduler::Registry;
107
108//===---------------------------------------------------------------------===//
109///
110/// ISHeuristic command line option for instruction schedulers.
111///
112//===---------------------------------------------------------------------===//
113static cl::opt<RegisterScheduler::FunctionPassCtor, false,
114               RegisterPassParser<RegisterScheduler> >
115ISHeuristic("pre-RA-sched",
116            cl::init(&createDefaultScheduler),
117            cl::desc("Instruction schedulers available (before register"
118                     " allocation):"));
119
120static RegisterScheduler
121defaultListDAGScheduler("default", "Best scheduler for the target",
122                        createDefaultScheduler);
123
124namespace llvm {
125  //===--------------------------------------------------------------------===//
126  /// createDefaultScheduler - This creates an instruction scheduler appropriate
127  /// for the target.
128  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
129                                             CodeGenOpt::Level OptLevel) {
130    const TargetLowering &TLI = IS->getTargetLowering();
131
132    if (OptLevel == CodeGenOpt::None)
133      return createFastDAGScheduler(IS, OptLevel);
134    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
135      return createTDListDAGScheduler(IS, OptLevel);
136    assert(TLI.getSchedulingPreference() ==
137           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
138    return createBURRListDAGScheduler(IS, OptLevel);
139  }
140}
141
142// EmitInstrWithCustomInserter - This method should be implemented by targets
143// that mark instructions with the 'usesCustomInserter' flag.  These
144// instructions are special in various ways, which require special support to
145// insert.  The specified MachineInstr is created but not inserted into any
146// basic blocks, and this method is called to expand it into a sequence of
147// instructions, potentially also creating new basic blocks and control flow.
148// When new basic blocks are inserted and the edges from MBB to its successors
149// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
150// DenseMap.
151MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
152                                                         MachineBasicBlock *MBB,
153                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
154#ifndef NDEBUG
155  dbgs() << "If a target marks an instruction with "
156          "'usesCustomInserter', it must implement "
157          "TargetLowering::EmitInstrWithCustomInserter!";
158#endif
159  llvm_unreachable(0);
160  return 0;
161}
162
163//===----------------------------------------------------------------------===//
164// SelectionDAGISel code
165//===----------------------------------------------------------------------===//
166
167SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
168  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
169  FuncInfo(new FunctionLoweringInfo(TLI)),
170  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
171  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
172  GFI(),
173  OptLevel(OL),
174  DAGSize(0)
175{}
176
177SelectionDAGISel::~SelectionDAGISel() {
178  delete SDB;
179  delete CurDAG;
180  delete FuncInfo;
181}
182
183unsigned SelectionDAGISel::MakeReg(EVT VT) {
184  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
185}
186
187void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
188  AU.addRequired<AliasAnalysis>();
189  AU.addPreserved<AliasAnalysis>();
190  AU.addRequired<GCModuleInfo>();
191  AU.addPreserved<GCModuleInfo>();
192  MachineFunctionPass::getAnalysisUsage(AU);
193}
194
195bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
196  // Do some sanity-checking on the command-line options.
197  assert((!EnableFastISelVerbose || EnableFastISel) &&
198         "-fast-isel-verbose requires -fast-isel");
199  assert((!EnableFastISelAbort || EnableFastISel) &&
200         "-fast-isel-abort requires -fast-isel");
201
202  Function &Fn = *mf.getFunction();
203  const TargetInstrInfo &TII = *TM.getInstrInfo();
204  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
205
206  MF = &mf;
207  RegInfo = &MF->getRegInfo();
208  AA = &getAnalysis<AliasAnalysis>();
209  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
210
211  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
212
213  CurDAG->init(*MF);
214  FuncInfo->set(Fn, *MF, EnableFastISel);
215  SDB->init(GFI, *AA);
216
217  SelectAllBasicBlocks(Fn, *MF, TII);
218
219  // If the first basic block in the function has live ins that need to be
220  // copied into vregs, emit the copies into the top of the block before
221  // emitting the code for the block.
222  RegInfo->EmitLiveInCopies(MF->begin(), TRI, TII);
223
224  // Add function live-ins to entry block live-in set.
225  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
226         E = RegInfo->livein_end(); I != E; ++I)
227    MF->begin()->addLiveIn(I->first);
228
229#ifndef NDEBUG
230  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
231         "Not all catch info was assigned to a landing pad!");
232#endif
233
234  FuncInfo->clear();
235
236  return true;
237}
238
239/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
240/// attached with this instruction.
241static void SetDebugLoc(Instruction *I, SelectionDAGBuilder *SDB,
242                        FastISel *FastIS, MachineFunction *MF) {
243  DebugLoc DL = I->getDebugLoc();
244  if (DL.isUnknown()) return;
245
246  SDB->setCurDebugLoc(DL);
247
248  if (FastIS)
249    FastIS->setCurDebugLoc(DL);
250
251  // If the function doesn't have a default debug location yet, set
252  // it. This is kind of a hack.
253  if (MF->getDefaultDebugLoc().isUnknown())
254    MF->setDefaultDebugLoc(DL);
255}
256
257/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
258static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
259  SDB->setCurDebugLoc(DebugLoc());
260  if (FastIS)
261    FastIS->setCurDebugLoc(DebugLoc());
262}
263
264void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
265                                        BasicBlock::iterator Begin,
266                                        BasicBlock::iterator End,
267                                        bool &HadTailCall) {
268  SDB->setCurrentBasicBlock(BB);
269
270  // Lower all of the non-terminator instructions. If a call is emitted
271  // as a tail call, cease emitting nodes for this block.
272  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
273    SetDebugLoc(I, SDB, 0, MF);
274
275    if (!isa<TerminatorInst>(I)) {
276      SDB->visit(*I);
277
278      // Set the current debug location back to "unknown" so that it doesn't
279      // spuriously apply to subsequent instructions.
280      ResetDebugLoc(SDB, 0);
281    }
282  }
283
284  if (!SDB->HasTailCall) {
285    // Ensure that all instructions which are used outside of their defining
286    // blocks are available as virtual registers.  Invoke is handled elsewhere.
287    for (BasicBlock::iterator I = Begin; I != End; ++I)
288      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
289        SDB->CopyToExportRegsIfNeeded(I);
290
291    // Handle PHI nodes in successor blocks.
292    if (End == LLVMBB->end()) {
293      HandlePHINodesInSuccessorBlocks(LLVMBB);
294
295      // Lower the terminator after the copies are emitted.
296      SetDebugLoc(LLVMBB->getTerminator(), SDB, 0, MF);
297      SDB->visit(*LLVMBB->getTerminator());
298      ResetDebugLoc(SDB, 0);
299    }
300  }
301
302  // Make sure the root of the DAG is up-to-date.
303  CurDAG->setRoot(SDB->getControlRoot());
304
305  // Final step, emit the lowered DAG as machine code.
306  CodeGenAndEmitDAG();
307  HadTailCall = SDB->HasTailCall;
308  SDB->clear();
309}
310
311namespace {
312/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
313/// nodes from the worklist.
314class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
315  SmallVector<SDNode*, 128> &Worklist;
316  SmallPtrSet<SDNode*, 128> &InWorklist;
317public:
318  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
319                       SmallPtrSet<SDNode*, 128> &inwl)
320    : Worklist(wl), InWorklist(inwl) {}
321
322  void RemoveFromWorklist(SDNode *N) {
323    if (!InWorklist.erase(N)) return;
324
325    SmallVector<SDNode*, 128>::iterator I =
326    std::find(Worklist.begin(), Worklist.end(), N);
327    assert(I != Worklist.end() && "Not in worklist");
328
329    *I = Worklist.back();
330    Worklist.pop_back();
331  }
332
333  virtual void NodeDeleted(SDNode *N, SDNode *E) {
334    RemoveFromWorklist(N);
335  }
336
337  virtual void NodeUpdated(SDNode *N) {
338    // Ignore updates.
339  }
340};
341}
342
343/// TrivialTruncElim - Eliminate some trivial nops that can result from
344/// ShrinkDemandedOps: (trunc (ext n)) -> n.
345static bool TrivialTruncElim(SDValue Op,
346                             TargetLowering::TargetLoweringOpt &TLO) {
347  SDValue N0 = Op.getOperand(0);
348  EVT VT = Op.getValueType();
349  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
350       N0.getOpcode() == ISD::SIGN_EXTEND ||
351       N0.getOpcode() == ISD::ANY_EXTEND) &&
352      N0.getOperand(0).getValueType() == VT) {
353    return TLO.CombineTo(Op, N0.getOperand(0));
354  }
355  return false;
356}
357
358/// ShrinkDemandedOps - A late transformation pass that shrink expressions
359/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
360/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
361void SelectionDAGISel::ShrinkDemandedOps() {
362  SmallVector<SDNode*, 128> Worklist;
363  SmallPtrSet<SDNode*, 128> InWorklist;
364
365  // Add all the dag nodes to the worklist.
366  Worklist.reserve(CurDAG->allnodes_size());
367  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
368       E = CurDAG->allnodes_end(); I != E; ++I) {
369    Worklist.push_back(I);
370    InWorklist.insert(I);
371  }
372
373  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
374  while (!Worklist.empty()) {
375    SDNode *N = Worklist.pop_back_val();
376    InWorklist.erase(N);
377
378    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
379      // Deleting this node may make its operands dead, add them to the worklist
380      // if they aren't already there.
381      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
382        if (InWorklist.insert(N->getOperand(i).getNode()))
383          Worklist.push_back(N->getOperand(i).getNode());
384
385      CurDAG->DeleteNode(N);
386      continue;
387    }
388
389    // Run ShrinkDemandedOp on scalar binary operations.
390    if (N->getNumValues() != 1 ||
391        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
392      continue;
393
394    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
395    APInt Demanded = APInt::getAllOnesValue(BitWidth);
396    APInt KnownZero, KnownOne;
397    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
398                                  KnownZero, KnownOne, TLO) &&
399        (N->getOpcode() != ISD::TRUNCATE ||
400         !TrivialTruncElim(SDValue(N, 0), TLO)))
401      continue;
402
403    // Revisit the node.
404    assert(!InWorklist.count(N) && "Already in worklist");
405    Worklist.push_back(N);
406    InWorklist.insert(N);
407
408    // Replace the old value with the new one.
409    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
410          TLO.Old.getNode()->dump(CurDAG);
411          errs() << "\nWith: ";
412          TLO.New.getNode()->dump(CurDAG);
413          errs() << '\n');
414
415    if (InWorklist.insert(TLO.New.getNode()))
416      Worklist.push_back(TLO.New.getNode());
417
418    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
419    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
420
421    if (!TLO.Old.getNode()->use_empty()) continue;
422
423    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
424         i != e; ++i) {
425      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
426      if (OpNode->hasOneUse()) {
427        // Add OpNode to the end of the list to revisit.
428        DeadNodes.RemoveFromWorklist(OpNode);
429        Worklist.push_back(OpNode);
430        InWorklist.insert(OpNode);
431      }
432    }
433
434    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
435    CurDAG->DeleteNode(TLO.Old.getNode());
436  }
437}
438
439void SelectionDAGISel::ComputeLiveOutVRegInfo() {
440  SmallPtrSet<SDNode*, 128> VisitedNodes;
441  SmallVector<SDNode*, 128> Worklist;
442
443  Worklist.push_back(CurDAG->getRoot().getNode());
444
445  APInt Mask;
446  APInt KnownZero;
447  APInt KnownOne;
448
449  do {
450    SDNode *N = Worklist.pop_back_val();
451
452    // If we've already seen this node, ignore it.
453    if (!VisitedNodes.insert(N))
454      continue;
455
456    // Otherwise, add all chain operands to the worklist.
457    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
458      if (N->getOperand(i).getValueType() == MVT::Other)
459        Worklist.push_back(N->getOperand(i).getNode());
460
461    // If this is a CopyToReg with a vreg dest, process it.
462    if (N->getOpcode() != ISD::CopyToReg)
463      continue;
464
465    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
466    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
467      continue;
468
469    // Ignore non-scalar or non-integer values.
470    SDValue Src = N->getOperand(2);
471    EVT SrcVT = Src.getValueType();
472    if (!SrcVT.isInteger() || SrcVT.isVector())
473      continue;
474
475    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
476    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
477    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
478
479    // Only install this information if it tells us something.
480    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
481      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
482      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
483        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
484      FunctionLoweringInfo::LiveOutInfo &LOI =
485        FuncInfo->LiveOutRegInfo[DestReg];
486      LOI.NumSignBits = NumSignBits;
487      LOI.KnownOne = KnownOne;
488      LOI.KnownZero = KnownZero;
489    }
490  } while (!Worklist.empty());
491}
492
493void SelectionDAGISel::CodeGenAndEmitDAG() {
494  std::string GroupName;
495  if (TimePassesIsEnabled)
496    GroupName = "Instruction Selection and Scheduling";
497  std::string BlockName;
498  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
499      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
500      ViewSUnitDAGs)
501    BlockName = MF->getFunction()->getNameStr() + ":" +
502                BB->getBasicBlock()->getNameStr();
503
504  DEBUG(dbgs() << "Initial selection DAG:\n");
505  DEBUG(CurDAG->dump());
506
507  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
508
509  // Run the DAG combiner in pre-legalize mode.
510  if (TimePassesIsEnabled) {
511    NamedRegionTimer T("DAG Combining 1", GroupName);
512    CurDAG->Combine(Unrestricted, *AA, OptLevel);
513  } else {
514    CurDAG->Combine(Unrestricted, *AA, OptLevel);
515  }
516
517  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
518  DEBUG(CurDAG->dump());
519
520  // Second step, hack on the DAG until it only uses operations and types that
521  // the target supports.
522  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
523                                               BlockName);
524
525  bool Changed;
526  if (TimePassesIsEnabled) {
527    NamedRegionTimer T("Type Legalization", GroupName);
528    Changed = CurDAG->LegalizeTypes();
529  } else {
530    Changed = CurDAG->LegalizeTypes();
531  }
532
533  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
534  DEBUG(CurDAG->dump());
535
536  if (Changed) {
537    if (ViewDAGCombineLT)
538      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
539
540    // Run the DAG combiner in post-type-legalize mode.
541    if (TimePassesIsEnabled) {
542      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
543      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
544    } else {
545      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
546    }
547
548    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
549    DEBUG(CurDAG->dump());
550  }
551
552  if (TimePassesIsEnabled) {
553    NamedRegionTimer T("Vector Legalization", GroupName);
554    Changed = CurDAG->LegalizeVectors();
555  } else {
556    Changed = CurDAG->LegalizeVectors();
557  }
558
559  if (Changed) {
560    if (TimePassesIsEnabled) {
561      NamedRegionTimer T("Type Legalization 2", GroupName);
562      CurDAG->LegalizeTypes();
563    } else {
564      CurDAG->LegalizeTypes();
565    }
566
567    if (ViewDAGCombineLT)
568      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
569
570    // Run the DAG combiner in post-type-legalize mode.
571    if (TimePassesIsEnabled) {
572      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
573      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
574    } else {
575      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
576    }
577
578    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
579    DEBUG(CurDAG->dump());
580  }
581
582  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
583
584  if (TimePassesIsEnabled) {
585    NamedRegionTimer T("DAG Legalization", GroupName);
586    CurDAG->Legalize(OptLevel);
587  } else {
588    CurDAG->Legalize(OptLevel);
589  }
590
591  DEBUG(dbgs() << "Legalized selection DAG:\n");
592  DEBUG(CurDAG->dump());
593
594  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
595
596  // Run the DAG combiner in post-legalize mode.
597  if (TimePassesIsEnabled) {
598    NamedRegionTimer T("DAG Combining 2", GroupName);
599    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
600  } else {
601    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
602  }
603
604  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
605  DEBUG(CurDAG->dump());
606
607  if (OptLevel != CodeGenOpt::None) {
608    ShrinkDemandedOps();
609    ComputeLiveOutVRegInfo();
610  }
611
612  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
613
614  // Third, instruction select all of the operations to machine code, adding the
615  // code to the MachineBasicBlock.
616  if (TimePassesIsEnabled) {
617    NamedRegionTimer T("Instruction Selection", GroupName);
618    DoInstructionSelection();
619  } else {
620    DoInstructionSelection();
621  }
622
623  DEBUG(dbgs() << "Selected selection DAG:\n");
624  DEBUG(CurDAG->dump());
625
626  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
627
628  // Schedule machine code.
629  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
630  if (TimePassesIsEnabled) {
631    NamedRegionTimer T("Instruction Scheduling", GroupName);
632    Scheduler->Run(CurDAG, BB, BB->end());
633  } else {
634    Scheduler->Run(CurDAG, BB, BB->end());
635  }
636
637  if (ViewSUnitDAGs) Scheduler->viewGraph();
638
639  // Emit machine code to BB.  This can change 'BB' to the last block being
640  // inserted into.
641  if (TimePassesIsEnabled) {
642    NamedRegionTimer T("Instruction Creation", GroupName);
643    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
644  } else {
645    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
646  }
647
648  // Free the scheduler state.
649  if (TimePassesIsEnabled) {
650    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
651    delete Scheduler;
652  } else {
653    delete Scheduler;
654  }
655
656  DEBUG(dbgs() << "Selected machine code:\n");
657  DEBUG(BB->dump());
658}
659
660void SelectionDAGISel::DoInstructionSelection() {
661  DEBUG(errs() << "===== Instruction selection begins:\n");
662
663  PreprocessISelDAG();
664
665  // Select target instructions for the DAG.
666  {
667    // Number all nodes with a topological order and set DAGSize.
668    DAGSize = CurDAG->AssignTopologicalOrder();
669
670    // Create a dummy node (which is not added to allnodes), that adds
671    // a reference to the root node, preventing it from being deleted,
672    // and tracking any changes of the root.
673    HandleSDNode Dummy(CurDAG->getRoot());
674    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
675    ++ISelPosition;
676
677    // The AllNodes list is now topological-sorted. Visit the
678    // nodes by starting at the end of the list (the root of the
679    // graph) and preceding back toward the beginning (the entry
680    // node).
681    while (ISelPosition != CurDAG->allnodes_begin()) {
682      SDNode *Node = --ISelPosition;
683      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
684      // but there are currently some corner cases that it misses. Also, this
685      // makes it theoretically possible to disable the DAGCombiner.
686      if (Node->use_empty())
687        continue;
688
689      SDNode *ResNode = Select(Node);
690
691      // FIXME: This is pretty gross.  'Select' should be changed to not return
692      // anything at all and this code should be nuked with a tactical strike.
693
694      // If node should not be replaced, continue with the next one.
695      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
696        continue;
697      // Replace node.
698      if (ResNode)
699        ReplaceUses(Node, ResNode);
700
701      // If after the replacement this node is not used any more,
702      // remove this dead node.
703      if (Node->use_empty()) { // Don't delete EntryToken, etc.
704        ISelUpdater ISU(ISelPosition);
705        CurDAG->RemoveDeadNode(Node, &ISU);
706      }
707    }
708
709    CurDAG->setRoot(Dummy.getValue());
710  }
711  DEBUG(errs() << "===== Instruction selection ends:\n");
712
713  PostprocessISelDAG();
714}
715
716
717void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
718                                            MachineFunction &MF,
719                                            const TargetInstrInfo &TII) {
720  // Initialize the Fast-ISel state, if needed.
721  FastISel *FastIS = 0;
722  if (EnableFastISel)
723    FastIS = TLI.createFastISel(MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
724                                FuncInfo->StaticAllocaMap
725#ifndef NDEBUG
726                                , FuncInfo->CatchInfoLost
727#endif
728                                );
729
730  // Iterate over all basic blocks in the function.
731  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
732    BasicBlock *LLVMBB = &*I;
733    BB = FuncInfo->MBBMap[LLVMBB];
734
735    BasicBlock::iterator const Begin = LLVMBB->begin();
736    BasicBlock::iterator const End = LLVMBB->end();
737    BasicBlock::iterator BI = Begin;
738
739    // Lower any arguments needed in this block if this is the entry block.
740    bool SuppressFastISel = false;
741    if (LLVMBB == &Fn.getEntryBlock()) {
742      LowerArguments(LLVMBB);
743
744      // If any of the arguments has the byval attribute, forgo
745      // fast-isel in the entry block.
746      if (FastIS) {
747        unsigned j = 1;
748        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
749             I != E; ++I, ++j)
750          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
751            if (EnableFastISelVerbose || EnableFastISelAbort)
752              dbgs() << "FastISel skips entry block due to byval argument\n";
753            SuppressFastISel = true;
754            break;
755          }
756      }
757    }
758
759    if (BB->isLandingPad()) {
760      // Add a label to mark the beginning of the landing pad.  Deletion of the
761      // landing pad can thus be detected via the MachineModuleInfo.
762      MCSymbol *Label = MF.getMMI().addLandingPad(BB);
763
764      const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL);
765      BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
766
767      // Mark exception register as live in.
768      unsigned Reg = TLI.getExceptionAddressRegister();
769      if (Reg) BB->addLiveIn(Reg);
770
771      // Mark exception selector register as live in.
772      Reg = TLI.getExceptionSelectorRegister();
773      if (Reg) BB->addLiveIn(Reg);
774
775      // FIXME: Hack around an exception handling flaw (PR1508): the personality
776      // function and list of typeids logically belong to the invoke (or, if you
777      // like, the basic block containing the invoke), and need to be associated
778      // with it in the dwarf exception handling tables.  Currently however the
779      // information is provided by an intrinsic (eh.selector) that can be moved
780      // to unexpected places by the optimizers: if the unwind edge is critical,
781      // then breaking it can result in the intrinsics being in the successor of
782      // the landing pad, not the landing pad itself.  This results
783      // in exceptions not being caught because no typeids are associated with
784      // the invoke.  This may not be the only way things can go wrong, but it
785      // is the only way we try to work around for the moment.
786      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
787
788      if (Br && Br->isUnconditional()) { // Critical edge?
789        BasicBlock::iterator I, E;
790        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
791          if (isa<EHSelectorInst>(I))
792            break;
793
794        if (I == E)
795          // No catch info found - try to extract some from the successor.
796          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF.getMMI(), *FuncInfo);
797      }
798    }
799
800    // Before doing SelectionDAG ISel, see if FastISel has been requested.
801    if (FastIS && !SuppressFastISel) {
802      // Emit code for any incoming arguments. This must happen before
803      // beginning FastISel on the entry block.
804      if (LLVMBB == &Fn.getEntryBlock()) {
805        CurDAG->setRoot(SDB->getControlRoot());
806        CodeGenAndEmitDAG();
807        SDB->clear();
808      }
809      FastIS->startNewBlock(BB);
810      // Do FastISel on as many instructions as possible.
811      for (; BI != End; ++BI) {
812        // Just before the terminator instruction, insert instructions to
813        // feed PHI nodes in successor blocks.
814        if (isa<TerminatorInst>(BI))
815          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
816            ++NumFastIselFailures;
817            ResetDebugLoc(SDB, FastIS);
818            if (EnableFastISelVerbose || EnableFastISelAbort) {
819              dbgs() << "FastISel miss: ";
820              BI->dump();
821            }
822            assert(!EnableFastISelAbort &&
823                   "FastISel didn't handle a PHI in a successor");
824            break;
825          }
826
827        SetDebugLoc(BI, SDB, FastIS, &MF);
828
829        // Try to select the instruction with FastISel.
830        if (FastIS->SelectInstruction(BI)) {
831          ResetDebugLoc(SDB, FastIS);
832          continue;
833        }
834
835        // Clear out the debug location so that it doesn't carry over to
836        // unrelated instructions.
837        ResetDebugLoc(SDB, FastIS);
838
839        // Then handle certain instructions as single-LLVM-Instruction blocks.
840        if (isa<CallInst>(BI)) {
841          ++NumFastIselFailures;
842          if (EnableFastISelVerbose || EnableFastISelAbort) {
843            dbgs() << "FastISel missed call: ";
844            BI->dump();
845          }
846
847          if (!BI->getType()->isVoidTy()) {
848            unsigned &R = FuncInfo->ValueMap[BI];
849            if (!R)
850              R = FuncInfo->CreateRegForValue(BI);
851          }
852
853          bool HadTailCall = false;
854          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
855
856          // If the call was emitted as a tail call, we're done with the block.
857          if (HadTailCall) {
858            BI = End;
859            break;
860          }
861
862          // If the instruction was codegen'd with multiple blocks,
863          // inform the FastISel object where to resume inserting.
864          FastIS->setCurrentBlock(BB);
865          continue;
866        }
867
868        // Otherwise, give up on FastISel for the rest of the block.
869        // For now, be a little lenient about non-branch terminators.
870        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
871          ++NumFastIselFailures;
872          if (EnableFastISelVerbose || EnableFastISelAbort) {
873            dbgs() << "FastISel miss: ";
874            BI->dump();
875          }
876          if (EnableFastISelAbort)
877            // The "fast" selector couldn't handle something and bailed.
878            // For the purpose of debugging, just abort.
879            llvm_unreachable("FastISel didn't select the entire block");
880        }
881        break;
882      }
883    }
884
885    // Run SelectionDAG instruction selection on the remainder of the block
886    // not handled by FastISel. If FastISel is not run, this is the entire
887    // block.
888    if (BI != End) {
889      bool HadTailCall;
890      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
891    }
892
893    FinishBasicBlock();
894  }
895
896  delete FastIS;
897}
898
899void
900SelectionDAGISel::FinishBasicBlock() {
901
902  DEBUG(dbgs() << "Target-post-processed machine code:\n");
903  DEBUG(BB->dump());
904
905  DEBUG(dbgs() << "Total amount of phi nodes to update: "
906               << SDB->PHINodesToUpdate.size() << "\n");
907  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
908          dbgs() << "Node " << i << " : ("
909                 << SDB->PHINodesToUpdate[i].first
910                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
911
912  // Next, now that we know what the last MBB the LLVM BB expanded is, update
913  // PHI nodes in successors.
914  if (SDB->SwitchCases.empty() &&
915      SDB->JTCases.empty() &&
916      SDB->BitTestCases.empty()) {
917    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
918      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
919      assert(PHI->isPHI() &&
920             "This is not a machine PHI node that we are updating!");
921      if (!BB->isSuccessor(PHI->getParent()))
922        continue;
923      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
924                                                false));
925      PHI->addOperand(MachineOperand::CreateMBB(BB));
926    }
927    SDB->PHINodesToUpdate.clear();
928    return;
929  }
930
931  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
932    // Lower header first, if it wasn't already lowered
933    if (!SDB->BitTestCases[i].Emitted) {
934      // Set the current basic block to the mbb we wish to insert the code into
935      BB = SDB->BitTestCases[i].Parent;
936      SDB->setCurrentBasicBlock(BB);
937      // Emit the code
938      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
939      CurDAG->setRoot(SDB->getRoot());
940      CodeGenAndEmitDAG();
941      SDB->clear();
942    }
943
944    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
945      // Set the current basic block to the mbb we wish to insert the code into
946      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
947      SDB->setCurrentBasicBlock(BB);
948      // Emit the code
949      if (j+1 != ej)
950        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
951                              SDB->BitTestCases[i].Reg,
952                              SDB->BitTestCases[i].Cases[j]);
953      else
954        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
955                              SDB->BitTestCases[i].Reg,
956                              SDB->BitTestCases[i].Cases[j]);
957
958
959      CurDAG->setRoot(SDB->getRoot());
960      CodeGenAndEmitDAG();
961      SDB->clear();
962    }
963
964    // Update PHI Nodes
965    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
966      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
967      MachineBasicBlock *PHIBB = PHI->getParent();
968      assert(PHI->isPHI() &&
969             "This is not a machine PHI node that we are updating!");
970      // This is "default" BB. We have two jumps to it. From "header" BB and
971      // from last "case" BB.
972      if (PHIBB == SDB->BitTestCases[i].Default) {
973        PHI->addOperand(MachineOperand::
974                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
975        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
976        PHI->addOperand(MachineOperand::
977                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
978        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
979                                                  back().ThisBB));
980      }
981      // One of "cases" BB.
982      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
983           j != ej; ++j) {
984        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
985        if (cBB->isSuccessor(PHIBB)) {
986          PHI->addOperand(MachineOperand::
987                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
988          PHI->addOperand(MachineOperand::CreateMBB(cBB));
989        }
990      }
991    }
992  }
993  SDB->BitTestCases.clear();
994
995  // If the JumpTable record is filled in, then we need to emit a jump table.
996  // Updating the PHI nodes is tricky in this case, since we need to determine
997  // whether the PHI is a successor of the range check MBB or the jump table MBB
998  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
999    // Lower header first, if it wasn't already lowered
1000    if (!SDB->JTCases[i].first.Emitted) {
1001      // Set the current basic block to the mbb we wish to insert the code into
1002      BB = SDB->JTCases[i].first.HeaderBB;
1003      SDB->setCurrentBasicBlock(BB);
1004      // Emit the code
1005      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
1006      CurDAG->setRoot(SDB->getRoot());
1007      CodeGenAndEmitDAG();
1008      SDB->clear();
1009    }
1010
1011    // Set the current basic block to the mbb we wish to insert the code into
1012    BB = SDB->JTCases[i].second.MBB;
1013    SDB->setCurrentBasicBlock(BB);
1014    // Emit the code
1015    SDB->visitJumpTable(SDB->JTCases[i].second);
1016    CurDAG->setRoot(SDB->getRoot());
1017    CodeGenAndEmitDAG();
1018    SDB->clear();
1019
1020    // Update PHI Nodes
1021    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1022      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1023      MachineBasicBlock *PHIBB = PHI->getParent();
1024      assert(PHI->isPHI() &&
1025             "This is not a machine PHI node that we are updating!");
1026      // "default" BB. We can go there only from header BB.
1027      if (PHIBB == SDB->JTCases[i].second.Default) {
1028        PHI->addOperand
1029          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1030        PHI->addOperand
1031          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1032      }
1033      // JT BB. Just iterate over successors here
1034      if (BB->isSuccessor(PHIBB)) {
1035        PHI->addOperand
1036          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1037        PHI->addOperand(MachineOperand::CreateMBB(BB));
1038      }
1039    }
1040  }
1041  SDB->JTCases.clear();
1042
1043  // If the switch block involved a branch to one of the actual successors, we
1044  // need to update PHI nodes in that block.
1045  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1046    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1047    assert(PHI->isPHI() &&
1048           "This is not a machine PHI node that we are updating!");
1049    if (BB->isSuccessor(PHI->getParent())) {
1050      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1051                                                false));
1052      PHI->addOperand(MachineOperand::CreateMBB(BB));
1053    }
1054  }
1055
1056  // If we generated any switch lowering information, build and codegen any
1057  // additional DAGs necessary.
1058  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1059    // Set the current basic block to the mbb we wish to insert the code into
1060    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1061    SDB->setCurrentBasicBlock(BB);
1062
1063    // Emit the code
1064    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1065    CurDAG->setRoot(SDB->getRoot());
1066    CodeGenAndEmitDAG();
1067
1068    // Handle any PHI nodes in successors of this chunk, as if we were coming
1069    // from the original BB before switch expansion.  Note that PHI nodes can
1070    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1071    // handle them the right number of times.
1072    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1073      // If new BB's are created during scheduling, the edges may have been
1074      // updated. That is, the edge from ThisBB to BB may have been split and
1075      // BB's predecessor is now another block.
1076      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1077        SDB->EdgeMapping.find(BB);
1078      if (EI != SDB->EdgeMapping.end())
1079        ThisBB = EI->second;
1080
1081      // BB may have been removed from the CFG if a branch was constant folded.
1082      if (ThisBB->isSuccessor(BB)) {
1083        for (MachineBasicBlock::iterator Phi = BB->begin();
1084             Phi != BB->end() && Phi->isPHI();
1085             ++Phi) {
1086          // This value for this PHI node is recorded in PHINodesToUpdate.
1087          for (unsigned pn = 0; ; ++pn) {
1088            assert(pn != SDB->PHINodesToUpdate.size() &&
1089                   "Didn't find PHI entry!");
1090            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1091              Phi->addOperand(MachineOperand::
1092                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1093                                        false));
1094              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1095              break;
1096            }
1097          }
1098        }
1099      }
1100
1101      // Don't process RHS if same block as LHS.
1102      if (BB == SDB->SwitchCases[i].FalseBB)
1103        SDB->SwitchCases[i].FalseBB = 0;
1104
1105      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1106      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1107      SDB->SwitchCases[i].FalseBB = 0;
1108    }
1109    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1110    SDB->clear();
1111  }
1112  SDB->SwitchCases.clear();
1113
1114  SDB->PHINodesToUpdate.clear();
1115}
1116
1117
1118/// Create the scheduler. If a specific scheduler was specified
1119/// via the SchedulerRegistry, use it, otherwise select the
1120/// one preferred by the target.
1121///
1122ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1123  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1124
1125  if (!Ctor) {
1126    Ctor = ISHeuristic;
1127    RegisterScheduler::setDefault(Ctor);
1128  }
1129
1130  return Ctor(this, OptLevel);
1131}
1132
1133ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1134  return new ScheduleHazardRecognizer();
1135}
1136
1137//===----------------------------------------------------------------------===//
1138// Helper functions used by the generated instruction selector.
1139//===----------------------------------------------------------------------===//
1140// Calls to these methods are generated by tblgen.
1141
1142/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1143/// the dag combiner simplified the 255, we still want to match.  RHS is the
1144/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1145/// specified in the .td file (e.g. 255).
1146bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1147                                    int64_t DesiredMaskS) const {
1148  const APInt &ActualMask = RHS->getAPIntValue();
1149  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1150
1151  // If the actual mask exactly matches, success!
1152  if (ActualMask == DesiredMask)
1153    return true;
1154
1155  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1156  if (ActualMask.intersects(~DesiredMask))
1157    return false;
1158
1159  // Otherwise, the DAG Combiner may have proven that the value coming in is
1160  // either already zero or is not demanded.  Check for known zero input bits.
1161  APInt NeededMask = DesiredMask & ~ActualMask;
1162  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1163    return true;
1164
1165  // TODO: check to see if missing bits are just not demanded.
1166
1167  // Otherwise, this pattern doesn't match.
1168  return false;
1169}
1170
1171/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1172/// the dag combiner simplified the 255, we still want to match.  RHS is the
1173/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1174/// specified in the .td file (e.g. 255).
1175bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1176                                   int64_t DesiredMaskS) const {
1177  const APInt &ActualMask = RHS->getAPIntValue();
1178  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1179
1180  // If the actual mask exactly matches, success!
1181  if (ActualMask == DesiredMask)
1182    return true;
1183
1184  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1185  if (ActualMask.intersects(~DesiredMask))
1186    return false;
1187
1188  // Otherwise, the DAG Combiner may have proven that the value coming in is
1189  // either already zero or is not demanded.  Check for known zero input bits.
1190  APInt NeededMask = DesiredMask & ~ActualMask;
1191
1192  APInt KnownZero, KnownOne;
1193  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1194
1195  // If all the missing bits in the or are already known to be set, match!
1196  if ((NeededMask & KnownOne) == NeededMask)
1197    return true;
1198
1199  // TODO: check to see if missing bits are just not demanded.
1200
1201  // Otherwise, this pattern doesn't match.
1202  return false;
1203}
1204
1205
1206/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1207/// by tblgen.  Others should not call it.
1208void SelectionDAGISel::
1209SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1210  std::vector<SDValue> InOps;
1211  std::swap(InOps, Ops);
1212
1213  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1214  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1215  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1216
1217  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1218  if (InOps[e-1].getValueType() == MVT::Flag)
1219    --e;  // Don't process a flag operand if it is here.
1220
1221  while (i != e) {
1222    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1223    if (!InlineAsm::isMemKind(Flags)) {
1224      // Just skip over this operand, copying the operands verbatim.
1225      Ops.insert(Ops.end(), InOps.begin()+i,
1226                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1227      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1228    } else {
1229      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1230             "Memory operand with multiple values?");
1231      // Otherwise, this is a memory operand.  Ask the target to select it.
1232      std::vector<SDValue> SelOps;
1233      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1234        report_fatal_error("Could not match memory address.  Inline asm"
1235                           " failure!");
1236
1237      // Add this to the output node.
1238      unsigned NewFlags =
1239        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1240      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1241      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1242      i += 2;
1243    }
1244  }
1245
1246  // Add the flag input back if present.
1247  if (e != InOps.size())
1248    Ops.push_back(InOps.back());
1249}
1250
1251/// findFlagUse - Return use of EVT::Flag value produced by the specified
1252/// SDNode.
1253///
1254static SDNode *findFlagUse(SDNode *N) {
1255  unsigned FlagResNo = N->getNumValues()-1;
1256  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1257    SDUse &Use = I.getUse();
1258    if (Use.getResNo() == FlagResNo)
1259      return Use.getUser();
1260  }
1261  return NULL;
1262}
1263
1264/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1265/// This function recursively traverses up the operand chain, ignoring
1266/// certain nodes.
1267static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1268                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1269                          bool IgnoreChains) {
1270  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1271  // greater than all of its (recursive) operands.  If we scan to a point where
1272  // 'use' is smaller than the node we're scanning for, then we know we will
1273  // never find it.
1274  //
1275  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1276  // happen because we scan down to newly selected nodes in the case of flag
1277  // uses.
1278  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1279    return false;
1280
1281  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1282  // won't fail if we scan it again.
1283  if (!Visited.insert(Use))
1284    return false;
1285
1286  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1287    // Ignore chain uses, they are validated by HandleMergeInputChains.
1288    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1289      continue;
1290
1291    SDNode *N = Use->getOperand(i).getNode();
1292    if (N == Def) {
1293      if (Use == ImmedUse || Use == Root)
1294        continue;  // We are not looking for immediate use.
1295      assert(N != Root);
1296      return true;
1297    }
1298
1299    // Traverse up the operand chain.
1300    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1301      return true;
1302  }
1303  return false;
1304}
1305
1306/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1307/// operand node N of U during instruction selection that starts at Root.
1308bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1309                                          SDNode *Root) const {
1310  if (OptLevel == CodeGenOpt::None) return false;
1311  return N.hasOneUse();
1312}
1313
1314/// IsLegalToFold - Returns true if the specific operand node N of
1315/// U can be folded during instruction selection that starts at Root.
1316bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1317                                     bool IgnoreChains) const {
1318  if (OptLevel == CodeGenOpt::None) return false;
1319
1320  // If Root use can somehow reach N through a path that that doesn't contain
1321  // U then folding N would create a cycle. e.g. In the following
1322  // diagram, Root can reach N through X. If N is folded into into Root, then
1323  // X is both a predecessor and a successor of U.
1324  //
1325  //          [N*]           //
1326  //         ^   ^           //
1327  //        /     \          //
1328  //      [U*]    [X]?       //
1329  //        ^     ^          //
1330  //         \   /           //
1331  //          \ /            //
1332  //         [Root*]         //
1333  //
1334  // * indicates nodes to be folded together.
1335  //
1336  // If Root produces a flag, then it gets (even more) interesting. Since it
1337  // will be "glued" together with its flag use in the scheduler, we need to
1338  // check if it might reach N.
1339  //
1340  //          [N*]           //
1341  //         ^   ^           //
1342  //        /     \          //
1343  //      [U*]    [X]?       //
1344  //        ^       ^        //
1345  //         \       \       //
1346  //          \      |       //
1347  //         [Root*] |       //
1348  //          ^      |       //
1349  //          f      |       //
1350  //          |      /       //
1351  //         [Y]    /        //
1352  //           ^   /         //
1353  //           f  /          //
1354  //           | /           //
1355  //          [FU]           //
1356  //
1357  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1358  // (call it Fold), then X is a predecessor of FU and a successor of
1359  // Fold. But since Fold and FU are flagged together, this will create
1360  // a cycle in the scheduling graph.
1361
1362  // If the node has flags, walk down the graph to the "lowest" node in the
1363  // flagged set.
1364  EVT VT = Root->getValueType(Root->getNumValues()-1);
1365  while (VT == MVT::Flag) {
1366    SDNode *FU = findFlagUse(Root);
1367    if (FU == NULL)
1368      break;
1369    Root = FU;
1370    VT = Root->getValueType(Root->getNumValues()-1);
1371
1372    // If our query node has a flag result with a use, we've walked up it.  If
1373    // the user (which has already been selected) has a chain or indirectly uses
1374    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1375    // this, we cannot ignore chains in this predicate.
1376    IgnoreChains = false;
1377  }
1378
1379
1380  SmallPtrSet<SDNode*, 16> Visited;
1381  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1382}
1383
1384SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1385  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1386  SelectInlineAsmMemoryOperands(Ops);
1387
1388  std::vector<EVT> VTs;
1389  VTs.push_back(MVT::Other);
1390  VTs.push_back(MVT::Flag);
1391  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1392                                VTs, &Ops[0], Ops.size());
1393  New->setNodeId(-1);
1394  return New.getNode();
1395}
1396
1397SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1398  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1399}
1400
1401/// GetVBR - decode a vbr encoding whose top bit is set.
1402ALWAYS_INLINE static uint64_t
1403GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1404  assert(Val >= 128 && "Not a VBR");
1405  Val &= 127;  // Remove first vbr bit.
1406
1407  unsigned Shift = 7;
1408  uint64_t NextBits;
1409  do {
1410    NextBits = MatcherTable[Idx++];
1411    Val |= (NextBits&127) << Shift;
1412    Shift += 7;
1413  } while (NextBits & 128);
1414
1415  return Val;
1416}
1417
1418
1419/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1420/// interior flag and chain results to use the new flag and chain results.
1421void SelectionDAGISel::
1422UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1423                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1424                     SDValue InputFlag,
1425                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1426                     bool isMorphNodeTo) {
1427  SmallVector<SDNode*, 4> NowDeadNodes;
1428
1429  ISelUpdater ISU(ISelPosition);
1430
1431  // Now that all the normal results are replaced, we replace the chain and
1432  // flag results if present.
1433  if (!ChainNodesMatched.empty()) {
1434    assert(InputChain.getNode() != 0 &&
1435           "Matched input chains but didn't produce a chain");
1436    // Loop over all of the nodes we matched that produced a chain result.
1437    // Replace all the chain results with the final chain we ended up with.
1438    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1439      SDNode *ChainNode = ChainNodesMatched[i];
1440
1441      // If this node was already deleted, don't look at it.
1442      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1443        continue;
1444
1445      // Don't replace the results of the root node if we're doing a
1446      // MorphNodeTo.
1447      if (ChainNode == NodeToMatch && isMorphNodeTo)
1448        continue;
1449
1450      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1451      if (ChainVal.getValueType() == MVT::Flag)
1452        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1453      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1454      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1455
1456      // If the node became dead and we haven't already seen it, delete it.
1457      if (ChainNode->use_empty() &&
1458          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1459        NowDeadNodes.push_back(ChainNode);
1460    }
1461  }
1462
1463  // If the result produces a flag, update any flag results in the matched
1464  // pattern with the flag result.
1465  if (InputFlag.getNode() != 0) {
1466    // Handle any interior nodes explicitly marked.
1467    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1468      SDNode *FRN = FlagResultNodesMatched[i];
1469
1470      // If this node was already deleted, don't look at it.
1471      if (FRN->getOpcode() == ISD::DELETED_NODE)
1472        continue;
1473
1474      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1475             "Doesn't have a flag result");
1476      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1477                                        InputFlag, &ISU);
1478
1479      // If the node became dead and we haven't already seen it, delete it.
1480      if (FRN->use_empty() &&
1481          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1482        NowDeadNodes.push_back(FRN);
1483    }
1484  }
1485
1486  if (!NowDeadNodes.empty())
1487    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1488
1489  DEBUG(errs() << "ISEL: Match complete!\n");
1490}
1491
1492enum ChainResult {
1493  CR_Simple,
1494  CR_InducesCycle,
1495  CR_LeadsToInteriorNode
1496};
1497
1498/// WalkChainUsers - Walk down the users of the specified chained node that is
1499/// part of the pattern we're matching, looking at all of the users we find.
1500/// This determines whether something is an interior node, whether we have a
1501/// non-pattern node in between two pattern nodes (which prevent folding because
1502/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1503/// between pattern nodes (in which case the TF becomes part of the pattern).
1504///
1505/// The walk we do here is guaranteed to be small because we quickly get down to
1506/// already selected nodes "below" us.
1507static ChainResult
1508WalkChainUsers(SDNode *ChainedNode,
1509               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1510               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1511  ChainResult Result = CR_Simple;
1512
1513  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1514         E = ChainedNode->use_end(); UI != E; ++UI) {
1515    // Make sure the use is of the chain, not some other value we produce.
1516    if (UI.getUse().getValueType() != MVT::Other) continue;
1517
1518    SDNode *User = *UI;
1519
1520    // If we see an already-selected machine node, then we've gone beyond the
1521    // pattern that we're selecting down into the already selected chunk of the
1522    // DAG.
1523    if (User->isMachineOpcode() ||
1524        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1525      continue;
1526
1527    if (User->getOpcode() == ISD::CopyToReg ||
1528        User->getOpcode() == ISD::CopyFromReg ||
1529        User->getOpcode() == ISD::INLINEASM ||
1530        User->getOpcode() == ISD::EH_LABEL) {
1531      // If their node ID got reset to -1 then they've already been selected.
1532      // Treat them like a MachineOpcode.
1533      if (User->getNodeId() == -1)
1534        continue;
1535    }
1536
1537    // If we have a TokenFactor, we handle it specially.
1538    if (User->getOpcode() != ISD::TokenFactor) {
1539      // If the node isn't a token factor and isn't part of our pattern, then it
1540      // must be a random chained node in between two nodes we're selecting.
1541      // This happens when we have something like:
1542      //   x = load ptr
1543      //   call
1544      //   y = x+4
1545      //   store y -> ptr
1546      // Because we structurally match the load/store as a read/modify/write,
1547      // but the call is chained between them.  We cannot fold in this case
1548      // because it would induce a cycle in the graph.
1549      if (!std::count(ChainedNodesInPattern.begin(),
1550                      ChainedNodesInPattern.end(), User))
1551        return CR_InducesCycle;
1552
1553      // Otherwise we found a node that is part of our pattern.  For example in:
1554      //   x = load ptr
1555      //   y = x+4
1556      //   store y -> ptr
1557      // This would happen when we're scanning down from the load and see the
1558      // store as a user.  Record that there is a use of ChainedNode that is
1559      // part of the pattern and keep scanning uses.
1560      Result = CR_LeadsToInteriorNode;
1561      InteriorChainedNodes.push_back(User);
1562      continue;
1563    }
1564
1565    // If we found a TokenFactor, there are two cases to consider: first if the
1566    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1567    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1568    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1569    //     [Load chain]
1570    //         ^
1571    //         |
1572    //       [Load]
1573    //       ^    ^
1574    //       |    \                    DAG's like cheese
1575    //      /       \                       do you?
1576    //     /         |
1577    // [TokenFactor] [Op]
1578    //     ^          ^
1579    //     |          |
1580    //      \        /
1581    //       \      /
1582    //       [Store]
1583    //
1584    // In this case, the TokenFactor becomes part of our match and we rewrite it
1585    // as a new TokenFactor.
1586    //
1587    // To distinguish these two cases, do a recursive walk down the uses.
1588    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1589    case CR_Simple:
1590      // If the uses of the TokenFactor are just already-selected nodes, ignore
1591      // it, it is "below" our pattern.
1592      continue;
1593    case CR_InducesCycle:
1594      // If the uses of the TokenFactor lead to nodes that are not part of our
1595      // pattern that are not selected, folding would turn this into a cycle,
1596      // bail out now.
1597      return CR_InducesCycle;
1598    case CR_LeadsToInteriorNode:
1599      break;  // Otherwise, keep processing.
1600    }
1601
1602    // Okay, we know we're in the interesting interior case.  The TokenFactor
1603    // is now going to be considered part of the pattern so that we rewrite its
1604    // uses (it may have uses that are not part of the pattern) with the
1605    // ultimate chain result of the generated code.  We will also add its chain
1606    // inputs as inputs to the ultimate TokenFactor we create.
1607    Result = CR_LeadsToInteriorNode;
1608    ChainedNodesInPattern.push_back(User);
1609    InteriorChainedNodes.push_back(User);
1610    continue;
1611  }
1612
1613  return Result;
1614}
1615
1616/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1617/// operation for when the pattern matched at least one node with a chains.  The
1618/// input vector contains a list of all of the chained nodes that we match.  We
1619/// must determine if this is a valid thing to cover (i.e. matching it won't
1620/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1621/// be used as the input node chain for the generated nodes.
1622static SDValue
1623HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1624                       SelectionDAG *CurDAG) {
1625  // Walk all of the chained nodes we've matched, recursively scanning down the
1626  // users of the chain result. This adds any TokenFactor nodes that are caught
1627  // in between chained nodes to the chained and interior nodes list.
1628  SmallVector<SDNode*, 3> InteriorChainedNodes;
1629  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1630    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1631                       InteriorChainedNodes) == CR_InducesCycle)
1632      return SDValue(); // Would induce a cycle.
1633  }
1634
1635  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1636  // that we are interested in.  Form our input TokenFactor node.
1637  SmallVector<SDValue, 3> InputChains;
1638  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1639    // Add the input chain of this node to the InputChains list (which will be
1640    // the operands of the generated TokenFactor) if it's not an interior node.
1641    SDNode *N = ChainNodesMatched[i];
1642    if (N->getOpcode() != ISD::TokenFactor) {
1643      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1644        continue;
1645
1646      // Otherwise, add the input chain.
1647      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1648      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1649      InputChains.push_back(InChain);
1650      continue;
1651    }
1652
1653    // If we have a token factor, we want to add all inputs of the token factor
1654    // that are not part of the pattern we're matching.
1655    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1656      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1657                      N->getOperand(op).getNode()))
1658        InputChains.push_back(N->getOperand(op));
1659    }
1660  }
1661
1662  SDValue Res;
1663  if (InputChains.size() == 1)
1664    return InputChains[0];
1665  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1666                         MVT::Other, &InputChains[0], InputChains.size());
1667}
1668
1669/// MorphNode - Handle morphing a node in place for the selector.
1670SDNode *SelectionDAGISel::
1671MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1672          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1673  // It is possible we're using MorphNodeTo to replace a node with no
1674  // normal results with one that has a normal result (or we could be
1675  // adding a chain) and the input could have flags and chains as well.
1676  // In this case we need to shift the operands down.
1677  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1678  // than the old isel though.
1679  int OldFlagResultNo = -1, OldChainResultNo = -1;
1680
1681  unsigned NTMNumResults = Node->getNumValues();
1682  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1683    OldFlagResultNo = NTMNumResults-1;
1684    if (NTMNumResults != 1 &&
1685        Node->getValueType(NTMNumResults-2) == MVT::Other)
1686      OldChainResultNo = NTMNumResults-2;
1687  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1688    OldChainResultNo = NTMNumResults-1;
1689
1690  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1691  // that this deletes operands of the old node that become dead.
1692  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1693
1694  // MorphNodeTo can operate in two ways: if an existing node with the
1695  // specified operands exists, it can just return it.  Otherwise, it
1696  // updates the node in place to have the requested operands.
1697  if (Res == Node) {
1698    // If we updated the node in place, reset the node ID.  To the isel,
1699    // this should be just like a newly allocated machine node.
1700    Res->setNodeId(-1);
1701  }
1702
1703  unsigned ResNumResults = Res->getNumValues();
1704  // Move the flag if needed.
1705  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1706      (unsigned)OldFlagResultNo != ResNumResults-1)
1707    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1708                                      SDValue(Res, ResNumResults-1));
1709
1710  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1711  --ResNumResults;
1712
1713  // Move the chain reference if needed.
1714  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1715      (unsigned)OldChainResultNo != ResNumResults-1)
1716    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1717                                      SDValue(Res, ResNumResults-1));
1718
1719  // Otherwise, no replacement happened because the node already exists. Replace
1720  // Uses of the old node with the new one.
1721  if (Res != Node)
1722    CurDAG->ReplaceAllUsesWith(Node, Res);
1723
1724  return Res;
1725}
1726
1727/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1728ALWAYS_INLINE static bool
1729CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1730          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1731  // Accept if it is exactly the same as a previously recorded node.
1732  unsigned RecNo = MatcherTable[MatcherIndex++];
1733  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1734  return N == RecordedNodes[RecNo];
1735}
1736
1737/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1738ALWAYS_INLINE static bool
1739CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1740                      SelectionDAGISel &SDISel) {
1741  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1742}
1743
1744/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1745ALWAYS_INLINE static bool
1746CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1747                   SelectionDAGISel &SDISel, SDNode *N) {
1748  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1749}
1750
1751ALWAYS_INLINE static bool
1752CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1753            SDNode *N) {
1754  uint16_t Opc = MatcherTable[MatcherIndex++];
1755  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1756  return N->getOpcode() == Opc;
1757}
1758
1759ALWAYS_INLINE static bool
1760CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1761          SDValue N, const TargetLowering &TLI) {
1762  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1763  if (N.getValueType() == VT) return true;
1764
1765  // Handle the case when VT is iPTR.
1766  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1767}
1768
1769ALWAYS_INLINE static bool
1770CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1771               SDValue N, const TargetLowering &TLI,
1772               unsigned ChildNo) {
1773  if (ChildNo >= N.getNumOperands())
1774    return false;  // Match fails if out of range child #.
1775  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1776}
1777
1778
1779ALWAYS_INLINE static bool
1780CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1781              SDValue N) {
1782  return cast<CondCodeSDNode>(N)->get() ==
1783      (ISD::CondCode)MatcherTable[MatcherIndex++];
1784}
1785
1786ALWAYS_INLINE static bool
1787CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1788               SDValue N, const TargetLowering &TLI) {
1789  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1790  if (cast<VTSDNode>(N)->getVT() == VT)
1791    return true;
1792
1793  // Handle the case when VT is iPTR.
1794  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1795}
1796
1797ALWAYS_INLINE static bool
1798CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1799             SDValue N) {
1800  int64_t Val = MatcherTable[MatcherIndex++];
1801  if (Val & 128)
1802    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1803
1804  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1805  return C != 0 && C->getSExtValue() == Val;
1806}
1807
1808ALWAYS_INLINE static bool
1809CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1810            SDValue N, SelectionDAGISel &SDISel) {
1811  int64_t Val = MatcherTable[MatcherIndex++];
1812  if (Val & 128)
1813    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1814
1815  if (N->getOpcode() != ISD::AND) return false;
1816
1817  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1818  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1819}
1820
1821ALWAYS_INLINE static bool
1822CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1823           SDValue N, SelectionDAGISel &SDISel) {
1824  int64_t Val = MatcherTable[MatcherIndex++];
1825  if (Val & 128)
1826    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1827
1828  if (N->getOpcode() != ISD::OR) return false;
1829
1830  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1831  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1832}
1833
1834/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1835/// scope, evaluate the current node.  If the current predicate is known to
1836/// fail, set Result=true and return anything.  If the current predicate is
1837/// known to pass, set Result=false and return the MatcherIndex to continue
1838/// with.  If the current predicate is unknown, set Result=false and return the
1839/// MatcherIndex to continue with.
1840static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1841                                       unsigned Index, SDValue N,
1842                                       bool &Result, SelectionDAGISel &SDISel,
1843                                       SmallVectorImpl<SDValue> &RecordedNodes){
1844  switch (Table[Index++]) {
1845  default:
1846    Result = false;
1847    return Index-1;  // Could not evaluate this predicate.
1848  case SelectionDAGISel::OPC_CheckSame:
1849    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1850    return Index;
1851  case SelectionDAGISel::OPC_CheckPatternPredicate:
1852    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1853    return Index;
1854  case SelectionDAGISel::OPC_CheckPredicate:
1855    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1856    return Index;
1857  case SelectionDAGISel::OPC_CheckOpcode:
1858    Result = !::CheckOpcode(Table, Index, N.getNode());
1859    return Index;
1860  case SelectionDAGISel::OPC_CheckType:
1861    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1862    return Index;
1863  case SelectionDAGISel::OPC_CheckChild0Type:
1864  case SelectionDAGISel::OPC_CheckChild1Type:
1865  case SelectionDAGISel::OPC_CheckChild2Type:
1866  case SelectionDAGISel::OPC_CheckChild3Type:
1867  case SelectionDAGISel::OPC_CheckChild4Type:
1868  case SelectionDAGISel::OPC_CheckChild5Type:
1869  case SelectionDAGISel::OPC_CheckChild6Type:
1870  case SelectionDAGISel::OPC_CheckChild7Type:
1871    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1872                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1873    return Index;
1874  case SelectionDAGISel::OPC_CheckCondCode:
1875    Result = !::CheckCondCode(Table, Index, N);
1876    return Index;
1877  case SelectionDAGISel::OPC_CheckValueType:
1878    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1879    return Index;
1880  case SelectionDAGISel::OPC_CheckInteger:
1881    Result = !::CheckInteger(Table, Index, N);
1882    return Index;
1883  case SelectionDAGISel::OPC_CheckAndImm:
1884    Result = !::CheckAndImm(Table, Index, N, SDISel);
1885    return Index;
1886  case SelectionDAGISel::OPC_CheckOrImm:
1887    Result = !::CheckOrImm(Table, Index, N, SDISel);
1888    return Index;
1889  }
1890}
1891
1892
1893struct MatchScope {
1894  /// FailIndex - If this match fails, this is the index to continue with.
1895  unsigned FailIndex;
1896
1897  /// NodeStack - The node stack when the scope was formed.
1898  SmallVector<SDValue, 4> NodeStack;
1899
1900  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1901  unsigned NumRecordedNodes;
1902
1903  /// NumMatchedMemRefs - The number of matched memref entries.
1904  unsigned NumMatchedMemRefs;
1905
1906  /// InputChain/InputFlag - The current chain/flag
1907  SDValue InputChain, InputFlag;
1908
1909  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1910  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1911};
1912
1913SDNode *SelectionDAGISel::
1914SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1915                 unsigned TableSize) {
1916  // FIXME: Should these even be selected?  Handle these cases in the caller?
1917  switch (NodeToMatch->getOpcode()) {
1918  default:
1919    break;
1920  case ISD::EntryToken:       // These nodes remain the same.
1921  case ISD::BasicBlock:
1922  case ISD::Register:
1923  //case ISD::VALUETYPE:
1924  //case ISD::CONDCODE:
1925  case ISD::HANDLENODE:
1926  case ISD::MDNODE_SDNODE:
1927  case ISD::TargetConstant:
1928  case ISD::TargetConstantFP:
1929  case ISD::TargetConstantPool:
1930  case ISD::TargetFrameIndex:
1931  case ISD::TargetExternalSymbol:
1932  case ISD::TargetBlockAddress:
1933  case ISD::TargetJumpTable:
1934  case ISD::TargetGlobalTLSAddress:
1935  case ISD::TargetGlobalAddress:
1936  case ISD::TokenFactor:
1937  case ISD::CopyFromReg:
1938  case ISD::CopyToReg:
1939  case ISD::EH_LABEL:
1940    NodeToMatch->setNodeId(-1); // Mark selected.
1941    return 0;
1942  case ISD::AssertSext:
1943  case ISD::AssertZext:
1944    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1945                                      NodeToMatch->getOperand(0));
1946    return 0;
1947  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1948  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1949  }
1950
1951  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1952
1953  // Set up the node stack with NodeToMatch as the only node on the stack.
1954  SmallVector<SDValue, 8> NodeStack;
1955  SDValue N = SDValue(NodeToMatch, 0);
1956  NodeStack.push_back(N);
1957
1958  // MatchScopes - Scopes used when matching, if a match failure happens, this
1959  // indicates where to continue checking.
1960  SmallVector<MatchScope, 8> MatchScopes;
1961
1962  // RecordedNodes - This is the set of nodes that have been recorded by the
1963  // state machine.
1964  SmallVector<SDValue, 8> RecordedNodes;
1965
1966  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1967  // pattern.
1968  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1969
1970  // These are the current input chain and flag for use when generating nodes.
1971  // Various Emit operations change these.  For example, emitting a copytoreg
1972  // uses and updates these.
1973  SDValue InputChain, InputFlag;
1974
1975  // ChainNodesMatched - If a pattern matches nodes that have input/output
1976  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1977  // which ones they are.  The result is captured into this list so that we can
1978  // update the chain results when the pattern is complete.
1979  SmallVector<SDNode*, 3> ChainNodesMatched;
1980  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1981
1982  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1983        NodeToMatch->dump(CurDAG);
1984        errs() << '\n');
1985
1986  // Determine where to start the interpreter.  Normally we start at opcode #0,
1987  // but if the state machine starts with an OPC_SwitchOpcode, then we
1988  // accelerate the first lookup (which is guaranteed to be hot) with the
1989  // OpcodeOffset table.
1990  unsigned MatcherIndex = 0;
1991
1992  if (!OpcodeOffset.empty()) {
1993    // Already computed the OpcodeOffset table, just index into it.
1994    if (N.getOpcode() < OpcodeOffset.size())
1995      MatcherIndex = OpcodeOffset[N.getOpcode()];
1996    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1997
1998  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1999    // Otherwise, the table isn't computed, but the state machine does start
2000    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2001    // is the first time we're selecting an instruction.
2002    unsigned Idx = 1;
2003    while (1) {
2004      // Get the size of this case.
2005      unsigned CaseSize = MatcherTable[Idx++];
2006      if (CaseSize & 128)
2007        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2008      if (CaseSize == 0) break;
2009
2010      // Get the opcode, add the index to the table.
2011      uint16_t Opc = MatcherTable[Idx++];
2012      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2013      if (Opc >= OpcodeOffset.size())
2014        OpcodeOffset.resize((Opc+1)*2);
2015      OpcodeOffset[Opc] = Idx;
2016      Idx += CaseSize;
2017    }
2018
2019    // Okay, do the lookup for the first opcode.
2020    if (N.getOpcode() < OpcodeOffset.size())
2021      MatcherIndex = OpcodeOffset[N.getOpcode()];
2022  }
2023
2024  while (1) {
2025    assert(MatcherIndex < TableSize && "Invalid index");
2026#ifndef NDEBUG
2027    unsigned CurrentOpcodeIndex = MatcherIndex;
2028#endif
2029    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2030    switch (Opcode) {
2031    case OPC_Scope: {
2032      // Okay, the semantics of this operation are that we should push a scope
2033      // then evaluate the first child.  However, pushing a scope only to have
2034      // the first check fail (which then pops it) is inefficient.  If we can
2035      // determine immediately that the first check (or first several) will
2036      // immediately fail, don't even bother pushing a scope for them.
2037      unsigned FailIndex;
2038
2039      while (1) {
2040        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2041        if (NumToSkip & 128)
2042          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2043        // Found the end of the scope with no match.
2044        if (NumToSkip == 0) {
2045          FailIndex = 0;
2046          break;
2047        }
2048
2049        FailIndex = MatcherIndex+NumToSkip;
2050
2051        unsigned MatcherIndexOfPredicate = MatcherIndex;
2052        (void)MatcherIndexOfPredicate; // silence warning.
2053
2054        // If we can't evaluate this predicate without pushing a scope (e.g. if
2055        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2056        // push the scope and evaluate the full predicate chain.
2057        bool Result;
2058        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2059                                              Result, *this, RecordedNodes);
2060        if (!Result)
2061          break;
2062
2063        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2064                     << "index " << MatcherIndexOfPredicate
2065                     << ", continuing at " << FailIndex << "\n");
2066        ++NumDAGIselRetries;
2067
2068        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2069        // move to the next case.
2070        MatcherIndex = FailIndex;
2071      }
2072
2073      // If the whole scope failed to match, bail.
2074      if (FailIndex == 0) break;
2075
2076      // Push a MatchScope which indicates where to go if the first child fails
2077      // to match.
2078      MatchScope NewEntry;
2079      NewEntry.FailIndex = FailIndex;
2080      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2081      NewEntry.NumRecordedNodes = RecordedNodes.size();
2082      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2083      NewEntry.InputChain = InputChain;
2084      NewEntry.InputFlag = InputFlag;
2085      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2086      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2087      MatchScopes.push_back(NewEntry);
2088      continue;
2089    }
2090    case OPC_RecordNode:
2091      // Remember this node, it may end up being an operand in the pattern.
2092      RecordedNodes.push_back(N);
2093      continue;
2094
2095    case OPC_RecordChild0: case OPC_RecordChild1:
2096    case OPC_RecordChild2: case OPC_RecordChild3:
2097    case OPC_RecordChild4: case OPC_RecordChild5:
2098    case OPC_RecordChild6: case OPC_RecordChild7: {
2099      unsigned ChildNo = Opcode-OPC_RecordChild0;
2100      if (ChildNo >= N.getNumOperands())
2101        break;  // Match fails if out of range child #.
2102
2103      RecordedNodes.push_back(N->getOperand(ChildNo));
2104      continue;
2105    }
2106    case OPC_RecordMemRef:
2107      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2108      continue;
2109
2110    case OPC_CaptureFlagInput:
2111      // If the current node has an input flag, capture it in InputFlag.
2112      if (N->getNumOperands() != 0 &&
2113          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2114        InputFlag = N->getOperand(N->getNumOperands()-1);
2115      continue;
2116
2117    case OPC_MoveChild: {
2118      unsigned ChildNo = MatcherTable[MatcherIndex++];
2119      if (ChildNo >= N.getNumOperands())
2120        break;  // Match fails if out of range child #.
2121      N = N.getOperand(ChildNo);
2122      NodeStack.push_back(N);
2123      continue;
2124    }
2125
2126    case OPC_MoveParent:
2127      // Pop the current node off the NodeStack.
2128      NodeStack.pop_back();
2129      assert(!NodeStack.empty() && "Node stack imbalance!");
2130      N = NodeStack.back();
2131      continue;
2132
2133    case OPC_CheckSame:
2134      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2135      continue;
2136    case OPC_CheckPatternPredicate:
2137      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2138      continue;
2139    case OPC_CheckPredicate:
2140      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2141                                N.getNode()))
2142        break;
2143      continue;
2144    case OPC_CheckComplexPat: {
2145      unsigned CPNum = MatcherTable[MatcherIndex++];
2146      unsigned RecNo = MatcherTable[MatcherIndex++];
2147      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2148      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2149                               RecordedNodes))
2150        break;
2151      continue;
2152    }
2153    case OPC_CheckOpcode:
2154      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2155      continue;
2156
2157    case OPC_CheckType:
2158      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2159      continue;
2160
2161    case OPC_SwitchOpcode: {
2162      unsigned CurNodeOpcode = N.getOpcode();
2163      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2164      unsigned CaseSize;
2165      while (1) {
2166        // Get the size of this case.
2167        CaseSize = MatcherTable[MatcherIndex++];
2168        if (CaseSize & 128)
2169          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2170        if (CaseSize == 0) break;
2171
2172        uint16_t Opc = MatcherTable[MatcherIndex++];
2173        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2174
2175        // If the opcode matches, then we will execute this case.
2176        if (CurNodeOpcode == Opc)
2177          break;
2178
2179        // Otherwise, skip over this case.
2180        MatcherIndex += CaseSize;
2181      }
2182
2183      // If no cases matched, bail out.
2184      if (CaseSize == 0) break;
2185
2186      // Otherwise, execute the case we found.
2187      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2188                   << " to " << MatcherIndex << "\n");
2189      continue;
2190    }
2191
2192    case OPC_SwitchType: {
2193      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2194      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2195      unsigned CaseSize;
2196      while (1) {
2197        // Get the size of this case.
2198        CaseSize = MatcherTable[MatcherIndex++];
2199        if (CaseSize & 128)
2200          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2201        if (CaseSize == 0) break;
2202
2203        MVT::SimpleValueType CaseVT =
2204          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2205        if (CaseVT == MVT::iPTR)
2206          CaseVT = TLI.getPointerTy().SimpleTy;
2207
2208        // If the VT matches, then we will execute this case.
2209        if (CurNodeVT == CaseVT)
2210          break;
2211
2212        // Otherwise, skip over this case.
2213        MatcherIndex += CaseSize;
2214      }
2215
2216      // If no cases matched, bail out.
2217      if (CaseSize == 0) break;
2218
2219      // Otherwise, execute the case we found.
2220      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2221                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2222      continue;
2223    }
2224    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2225    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2226    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2227    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2228      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2229                            Opcode-OPC_CheckChild0Type))
2230        break;
2231      continue;
2232    case OPC_CheckCondCode:
2233      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2234      continue;
2235    case OPC_CheckValueType:
2236      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2237      continue;
2238    case OPC_CheckInteger:
2239      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2240      continue;
2241    case OPC_CheckAndImm:
2242      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2243      continue;
2244    case OPC_CheckOrImm:
2245      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2246      continue;
2247
2248    case OPC_CheckFoldableChainNode: {
2249      assert(NodeStack.size() != 1 && "No parent node");
2250      // Verify that all intermediate nodes between the root and this one have
2251      // a single use.
2252      bool HasMultipleUses = false;
2253      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2254        if (!NodeStack[i].hasOneUse()) {
2255          HasMultipleUses = true;
2256          break;
2257        }
2258      if (HasMultipleUses) break;
2259
2260      // Check to see that the target thinks this is profitable to fold and that
2261      // we can fold it without inducing cycles in the graph.
2262      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2263                              NodeToMatch) ||
2264          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2265                         NodeToMatch, true/*We validate our own chains*/))
2266        break;
2267
2268      continue;
2269    }
2270    case OPC_EmitInteger: {
2271      MVT::SimpleValueType VT =
2272        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2273      int64_t Val = MatcherTable[MatcherIndex++];
2274      if (Val & 128)
2275        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2276      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2277      continue;
2278    }
2279    case OPC_EmitRegister: {
2280      MVT::SimpleValueType VT =
2281        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2282      unsigned RegNo = MatcherTable[MatcherIndex++];
2283      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2284      continue;
2285    }
2286
2287    case OPC_EmitConvertToTarget:  {
2288      // Convert from IMM/FPIMM to target version.
2289      unsigned RecNo = MatcherTable[MatcherIndex++];
2290      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2291      SDValue Imm = RecordedNodes[RecNo];
2292
2293      if (Imm->getOpcode() == ISD::Constant) {
2294        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2295        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2296      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2297        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2298        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2299      }
2300
2301      RecordedNodes.push_back(Imm);
2302      continue;
2303    }
2304
2305    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2306    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2307      // These are space-optimized forms of OPC_EmitMergeInputChains.
2308      assert(InputChain.getNode() == 0 &&
2309             "EmitMergeInputChains should be the first chain producing node");
2310      assert(ChainNodesMatched.empty() &&
2311             "Should only have one EmitMergeInputChains per match");
2312
2313      // Read all of the chained nodes.
2314      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2315      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2316      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2317
2318      // FIXME: What if other value results of the node have uses not matched
2319      // by this pattern?
2320      if (ChainNodesMatched.back() != NodeToMatch &&
2321          !RecordedNodes[RecNo].hasOneUse()) {
2322        ChainNodesMatched.clear();
2323        break;
2324      }
2325
2326      // Merge the input chains if they are not intra-pattern references.
2327      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2328
2329      if (InputChain.getNode() == 0)
2330        break;  // Failed to merge.
2331      continue;
2332    }
2333
2334    case OPC_EmitMergeInputChains: {
2335      assert(InputChain.getNode() == 0 &&
2336             "EmitMergeInputChains should be the first chain producing node");
2337      // This node gets a list of nodes we matched in the input that have
2338      // chains.  We want to token factor all of the input chains to these nodes
2339      // together.  However, if any of the input chains is actually one of the
2340      // nodes matched in this pattern, then we have an intra-match reference.
2341      // Ignore these because the newly token factored chain should not refer to
2342      // the old nodes.
2343      unsigned NumChains = MatcherTable[MatcherIndex++];
2344      assert(NumChains != 0 && "Can't TF zero chains");
2345
2346      assert(ChainNodesMatched.empty() &&
2347             "Should only have one EmitMergeInputChains per match");
2348
2349      // Read all of the chained nodes.
2350      for (unsigned i = 0; i != NumChains; ++i) {
2351        unsigned RecNo = MatcherTable[MatcherIndex++];
2352        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2353        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2354
2355        // FIXME: What if other value results of the node have uses not matched
2356        // by this pattern?
2357        if (ChainNodesMatched.back() != NodeToMatch &&
2358            !RecordedNodes[RecNo].hasOneUse()) {
2359          ChainNodesMatched.clear();
2360          break;
2361        }
2362      }
2363
2364      // If the inner loop broke out, the match fails.
2365      if (ChainNodesMatched.empty())
2366        break;
2367
2368      // Merge the input chains if they are not intra-pattern references.
2369      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2370
2371      if (InputChain.getNode() == 0)
2372        break;  // Failed to merge.
2373
2374      continue;
2375    }
2376
2377    case OPC_EmitCopyToReg: {
2378      unsigned RecNo = MatcherTable[MatcherIndex++];
2379      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2380      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2381
2382      if (InputChain.getNode() == 0)
2383        InputChain = CurDAG->getEntryNode();
2384
2385      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2386                                        DestPhysReg, RecordedNodes[RecNo],
2387                                        InputFlag);
2388
2389      InputFlag = InputChain.getValue(1);
2390      continue;
2391    }
2392
2393    case OPC_EmitNodeXForm: {
2394      unsigned XFormNo = MatcherTable[MatcherIndex++];
2395      unsigned RecNo = MatcherTable[MatcherIndex++];
2396      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2397      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2398      continue;
2399    }
2400
2401    case OPC_EmitNode:
2402    case OPC_MorphNodeTo: {
2403      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2404      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2405      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2406      // Get the result VT list.
2407      unsigned NumVTs = MatcherTable[MatcherIndex++];
2408      SmallVector<EVT, 4> VTs;
2409      for (unsigned i = 0; i != NumVTs; ++i) {
2410        MVT::SimpleValueType VT =
2411          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2412        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2413        VTs.push_back(VT);
2414      }
2415
2416      if (EmitNodeInfo & OPFL_Chain)
2417        VTs.push_back(MVT::Other);
2418      if (EmitNodeInfo & OPFL_FlagOutput)
2419        VTs.push_back(MVT::Flag);
2420
2421      // This is hot code, so optimize the two most common cases of 1 and 2
2422      // results.
2423      SDVTList VTList;
2424      if (VTs.size() == 1)
2425        VTList = CurDAG->getVTList(VTs[0]);
2426      else if (VTs.size() == 2)
2427        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2428      else
2429        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2430
2431      // Get the operand list.
2432      unsigned NumOps = MatcherTable[MatcherIndex++];
2433      SmallVector<SDValue, 8> Ops;
2434      for (unsigned i = 0; i != NumOps; ++i) {
2435        unsigned RecNo = MatcherTable[MatcherIndex++];
2436        if (RecNo & 128)
2437          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2438
2439        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2440        Ops.push_back(RecordedNodes[RecNo]);
2441      }
2442
2443      // If there are variadic operands to add, handle them now.
2444      if (EmitNodeInfo & OPFL_VariadicInfo) {
2445        // Determine the start index to copy from.
2446        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2447        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2448        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2449               "Invalid variadic node");
2450        // Copy all of the variadic operands, not including a potential flag
2451        // input.
2452        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2453             i != e; ++i) {
2454          SDValue V = NodeToMatch->getOperand(i);
2455          if (V.getValueType() == MVT::Flag) break;
2456          Ops.push_back(V);
2457        }
2458      }
2459
2460      // If this has chain/flag inputs, add them.
2461      if (EmitNodeInfo & OPFL_Chain)
2462        Ops.push_back(InputChain);
2463      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2464        Ops.push_back(InputFlag);
2465
2466      // Create the node.
2467      SDNode *Res = 0;
2468      if (Opcode != OPC_MorphNodeTo) {
2469        // If this is a normal EmitNode command, just create the new node and
2470        // add the results to the RecordedNodes list.
2471        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2472                                     VTList, Ops.data(), Ops.size());
2473
2474        // Add all the non-flag/non-chain results to the RecordedNodes list.
2475        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2476          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2477          RecordedNodes.push_back(SDValue(Res, i));
2478        }
2479
2480      } else {
2481        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2482                        EmitNodeInfo);
2483      }
2484
2485      // If the node had chain/flag results, update our notion of the current
2486      // chain and flag.
2487      if (EmitNodeInfo & OPFL_FlagOutput) {
2488        InputFlag = SDValue(Res, VTs.size()-1);
2489        if (EmitNodeInfo & OPFL_Chain)
2490          InputChain = SDValue(Res, VTs.size()-2);
2491      } else if (EmitNodeInfo & OPFL_Chain)
2492        InputChain = SDValue(Res, VTs.size()-1);
2493
2494      // If the OPFL_MemRefs flag is set on this node, slap all of the
2495      // accumulated memrefs onto it.
2496      //
2497      // FIXME: This is vastly incorrect for patterns with multiple outputs
2498      // instructions that access memory and for ComplexPatterns that match
2499      // loads.
2500      if (EmitNodeInfo & OPFL_MemRefs) {
2501        MachineSDNode::mmo_iterator MemRefs =
2502          MF->allocateMemRefsArray(MatchedMemRefs.size());
2503        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2504        cast<MachineSDNode>(Res)
2505          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2506      }
2507
2508      DEBUG(errs() << "  "
2509                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2510                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2511
2512      // If this was a MorphNodeTo then we're completely done!
2513      if (Opcode == OPC_MorphNodeTo) {
2514        // Update chain and flag uses.
2515        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2516                             InputFlag, FlagResultNodesMatched, true);
2517        return Res;
2518      }
2519
2520      continue;
2521    }
2522
2523    case OPC_MarkFlagResults: {
2524      unsigned NumNodes = MatcherTable[MatcherIndex++];
2525
2526      // Read and remember all the flag-result nodes.
2527      for (unsigned i = 0; i != NumNodes; ++i) {
2528        unsigned RecNo = MatcherTable[MatcherIndex++];
2529        if (RecNo & 128)
2530          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2531
2532        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2533        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2534      }
2535      continue;
2536    }
2537
2538    case OPC_CompleteMatch: {
2539      // The match has been completed, and any new nodes (if any) have been
2540      // created.  Patch up references to the matched dag to use the newly
2541      // created nodes.
2542      unsigned NumResults = MatcherTable[MatcherIndex++];
2543
2544      for (unsigned i = 0; i != NumResults; ++i) {
2545        unsigned ResSlot = MatcherTable[MatcherIndex++];
2546        if (ResSlot & 128)
2547          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2548
2549        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2550        SDValue Res = RecordedNodes[ResSlot];
2551
2552        assert(i < NodeToMatch->getNumValues() &&
2553               NodeToMatch->getValueType(i) != MVT::Other &&
2554               NodeToMatch->getValueType(i) != MVT::Flag &&
2555               "Invalid number of results to complete!");
2556        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2557                NodeToMatch->getValueType(i) == MVT::iPTR ||
2558                Res.getValueType() == MVT::iPTR ||
2559                NodeToMatch->getValueType(i).getSizeInBits() ==
2560                    Res.getValueType().getSizeInBits()) &&
2561               "invalid replacement");
2562        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2563      }
2564
2565      // If the root node defines a flag, add it to the flag nodes to update
2566      // list.
2567      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2568        FlagResultNodesMatched.push_back(NodeToMatch);
2569
2570      // Update chain and flag uses.
2571      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2572                           InputFlag, FlagResultNodesMatched, false);
2573
2574      assert(NodeToMatch->use_empty() &&
2575             "Didn't replace all uses of the node?");
2576
2577      // FIXME: We just return here, which interacts correctly with SelectRoot
2578      // above.  We should fix this to not return an SDNode* anymore.
2579      return 0;
2580    }
2581    }
2582
2583    // If the code reached this point, then the match failed.  See if there is
2584    // another child to try in the current 'Scope', otherwise pop it until we
2585    // find a case to check.
2586    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2587    ++NumDAGIselRetries;
2588    while (1) {
2589      if (MatchScopes.empty()) {
2590        CannotYetSelect(NodeToMatch);
2591        return 0;
2592      }
2593
2594      // Restore the interpreter state back to the point where the scope was
2595      // formed.
2596      MatchScope &LastScope = MatchScopes.back();
2597      RecordedNodes.resize(LastScope.NumRecordedNodes);
2598      NodeStack.clear();
2599      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2600      N = NodeStack.back();
2601
2602      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2603        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2604      MatcherIndex = LastScope.FailIndex;
2605
2606      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2607
2608      InputChain = LastScope.InputChain;
2609      InputFlag = LastScope.InputFlag;
2610      if (!LastScope.HasChainNodesMatched)
2611        ChainNodesMatched.clear();
2612      if (!LastScope.HasFlagResultNodesMatched)
2613        FlagResultNodesMatched.clear();
2614
2615      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2616      // we have reached the end of this scope, otherwise we have another child
2617      // in the current scope to try.
2618      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2619      if (NumToSkip & 128)
2620        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2621
2622      // If we have another child in this scope to match, update FailIndex and
2623      // try it.
2624      if (NumToSkip != 0) {
2625        LastScope.FailIndex = MatcherIndex+NumToSkip;
2626        break;
2627      }
2628
2629      // End of this scope, pop it and try the next child in the containing
2630      // scope.
2631      MatchScopes.pop_back();
2632    }
2633  }
2634}
2635
2636
2637
2638void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2639  std::string msg;
2640  raw_string_ostream Msg(msg);
2641  Msg << "Cannot yet select: ";
2642
2643  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2644      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2645      N->getOpcode() != ISD::INTRINSIC_VOID) {
2646    N->printrFull(Msg, CurDAG);
2647  } else {
2648    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2649    unsigned iid =
2650      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2651    if (iid < Intrinsic::num_intrinsics)
2652      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2653    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2654      Msg << "target intrinsic %" << TII->getName(iid);
2655    else
2656      Msg << "unknown intrinsic #" << iid;
2657  }
2658  report_fatal_error(Msg.str());
2659}
2660
2661char SelectionDAGISel::ID = 0;
2662