SelectionDAGISel.cpp revision 8a7f7426eeb18fef58c3471db23fc829b67bc350
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Support/Compiler.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/Timer.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
56STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
57
58static cl::opt<bool>
59EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
60          cl::desc("Enable verbose messages in the \"fast\" "
61                   "instruction selector"));
62static cl::opt<bool>
63EnableFastISelAbort("fast-isel-abort", cl::Hidden,
64          cl::desc("Enable abort calls when \"fast\" instruction fails"));
65
66#ifndef NDEBUG
67static cl::opt<bool>
68ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
69          cl::desc("Pop up a window to show dags before the first "
70                   "dag combine pass"));
71static cl::opt<bool>
72ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
73          cl::desc("Pop up a window to show dags before legalize types"));
74static cl::opt<bool>
75ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
76          cl::desc("Pop up a window to show dags before legalize"));
77static cl::opt<bool>
78ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the second "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before the post legalize types"
84                   " dag combine pass"));
85static cl::opt<bool>
86ViewISelDAGs("view-isel-dags", cl::Hidden,
87          cl::desc("Pop up a window to show isel dags as they are selected"));
88static cl::opt<bool>
89ViewSchedDAGs("view-sched-dags", cl::Hidden,
90          cl::desc("Pop up a window to show sched dags as they are processed"));
91static cl::opt<bool>
92ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
93      cl::desc("Pop up a window to show SUnit dags after they are processed"));
94#else
95static const bool ViewDAGCombine1 = false,
96                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
97                  ViewDAGCombine2 = false,
98                  ViewDAGCombineLT = false,
99                  ViewISelDAGs = false, ViewSchedDAGs = false,
100                  ViewSUnitDAGs = false;
101#endif
102
103//===---------------------------------------------------------------------===//
104///
105/// RegisterScheduler class - Track the registration of instruction schedulers.
106///
107//===---------------------------------------------------------------------===//
108MachinePassRegistry RegisterScheduler::Registry;
109
110//===---------------------------------------------------------------------===//
111///
112/// ISHeuristic command line option for instruction schedulers.
113///
114//===---------------------------------------------------------------------===//
115static cl::opt<RegisterScheduler::FunctionPassCtor, false,
116               RegisterPassParser<RegisterScheduler> >
117ISHeuristic("pre-RA-sched",
118            cl::init(&createDefaultScheduler),
119            cl::desc("Instruction schedulers available (before register"
120                     " allocation):"));
121
122static RegisterScheduler
123defaultListDAGScheduler("default", "Best scheduler for the target",
124                        createDefaultScheduler);
125
126namespace llvm {
127  //===--------------------------------------------------------------------===//
128  /// createDefaultScheduler - This creates an instruction scheduler appropriate
129  /// for the target.
130  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
131                                             CodeGenOpt::Level OptLevel) {
132    const TargetLowering &TLI = IS->getTargetLowering();
133
134    if (OptLevel == CodeGenOpt::None)
135      return createFastDAGScheduler(IS, OptLevel);
136    if (TLI.getSchedulingPreference() == Sched::Latency)
137      return createTDListDAGScheduler(IS, OptLevel);
138    if (TLI.getSchedulingPreference() == Sched::RegPressure)
139      return createBURRListDAGScheduler(IS, OptLevel);
140    assert(TLI.getSchedulingPreference() == Sched::Hybrid &&
141           "Unknown sched type!");
142    return createHybridListDAGScheduler(IS, OptLevel);
143  }
144}
145
146// EmitInstrWithCustomInserter - This method should be implemented by targets
147// that mark instructions with the 'usesCustomInserter' flag.  These
148// instructions are special in various ways, which require special support to
149// insert.  The specified MachineInstr is created but not inserted into any
150// basic blocks, and this method is called to expand it into a sequence of
151// instructions, potentially also creating new basic blocks and control flow.
152// When new basic blocks are inserted and the edges from MBB to its successors
153// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
154// DenseMap.
155MachineBasicBlock *
156TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
157                                            MachineBasicBlock *MBB) const {
158#ifndef NDEBUG
159  dbgs() << "If a target marks an instruction with "
160          "'usesCustomInserter', it must implement "
161          "TargetLowering::EmitInstrWithCustomInserter!";
162#endif
163  llvm_unreachable(0);
164  return 0;
165}
166
167//===----------------------------------------------------------------------===//
168// SelectionDAGISel code
169//===----------------------------------------------------------------------===//
170
171SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
172  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
173  FuncInfo(new FunctionLoweringInfo(TLI)),
174  CurDAG(new SelectionDAG(tm)),
175  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
176  GFI(),
177  OptLevel(OL),
178  DAGSize(0)
179{}
180
181SelectionDAGISel::~SelectionDAGISel() {
182  delete SDB;
183  delete CurDAG;
184  delete FuncInfo;
185}
186
187void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
188  AU.addRequired<AliasAnalysis>();
189  AU.addPreserved<AliasAnalysis>();
190  AU.addRequired<GCModuleInfo>();
191  AU.addPreserved<GCModuleInfo>();
192  MachineFunctionPass::getAnalysisUsage(AU);
193}
194
195/// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
196/// other function that gcc recognizes as "returning twice". This is used to
197/// limit code-gen optimizations on the machine function.
198///
199/// FIXME: Remove after <rdar://problem/8031714> is fixed.
200static bool FunctionCallsSetJmp(const Function *F) {
201  const Module *M = F->getParent();
202  static const char *ReturnsTwiceFns[] = {
203    "setjmp",
204    "sigsetjmp",
205    "setjmp_syscall",
206    "savectx",
207    "qsetjmp",
208    "vfork",
209    "getcontext"
210  };
211#define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
212
213  for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
214    if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
215      if (!Callee->use_empty())
216        for (Value::const_use_iterator
217               I = Callee->use_begin(), E = Callee->use_end();
218             I != E; ++I)
219          if (const CallInst *CI = dyn_cast<CallInst>(I))
220            if (CI->getParent()->getParent() == F)
221              return true;
222    }
223
224  return false;
225#undef NUM_RETURNS_TWICE_FNS
226}
227
228bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
229  // Do some sanity-checking on the command-line options.
230  assert((!EnableFastISelVerbose || EnableFastISel) &&
231         "-fast-isel-verbose requires -fast-isel");
232  assert((!EnableFastISelAbort || EnableFastISel) &&
233         "-fast-isel-abort requires -fast-isel");
234
235  const Function &Fn = *mf.getFunction();
236  const TargetInstrInfo &TII = *TM.getInstrInfo();
237  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
238
239  MF = &mf;
240  RegInfo = &MF->getRegInfo();
241  AA = &getAnalysis<AliasAnalysis>();
242  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
243
244  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
245
246  CurDAG->init(*MF);
247  FuncInfo->set(Fn, *MF);
248  SDB->init(GFI, *AA);
249
250  SelectAllBasicBlocks(Fn);
251
252  // If the first basic block in the function has live ins that need to be
253  // copied into vregs, emit the copies into the top of the block before
254  // emitting the code for the block.
255  MachineBasicBlock *EntryMBB = MF->begin();
256  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
257
258  DenseMap<unsigned, unsigned> LiveInMap;
259  if (!FuncInfo->ArgDbgValues.empty())
260    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
261           E = RegInfo->livein_end(); LI != E; ++LI)
262      if (LI->second)
263        LiveInMap.insert(std::make_pair(LI->first, LI->second));
264
265  // Insert DBG_VALUE instructions for function arguments to the entry block.
266  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
267    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
268    unsigned Reg = MI->getOperand(0).getReg();
269    if (TargetRegisterInfo::isPhysicalRegister(Reg))
270      EntryMBB->insert(EntryMBB->begin(), MI);
271    else {
272      MachineInstr *Def = RegInfo->getVRegDef(Reg);
273      MachineBasicBlock::iterator InsertPos = Def;
274      // FIXME: VR def may not be in entry block.
275      Def->getParent()->insert(llvm::next(InsertPos), MI);
276    }
277
278    // If Reg is live-in then update debug info to track its copy in a vreg.
279    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
280    if (LDI != LiveInMap.end()) {
281      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
282      MachineBasicBlock::iterator InsertPos = Def;
283      const MDNode *Variable =
284        MI->getOperand(MI->getNumOperands()-1).getMetadata();
285      unsigned Offset = MI->getOperand(1).getImm();
286      // Def is never a terminator here, so it is ok to increment InsertPos.
287      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
288              TII.get(TargetOpcode::DBG_VALUE))
289        .addReg(LDI->second, RegState::Debug)
290        .addImm(Offset).addMetadata(Variable);
291    }
292  }
293
294  // Determine if there are any calls in this machine function.
295  MachineFrameInfo *MFI = MF->getFrameInfo();
296  if (!MFI->hasCalls()) {
297    for (MachineFunction::const_iterator
298           I = MF->begin(), E = MF->end(); I != E; ++I) {
299      const MachineBasicBlock *MBB = I;
300      for (MachineBasicBlock::const_iterator
301             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
302        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
303        if (II->isInlineAsm() || (TID.isCall() && !TID.isReturn())) {
304          MFI->setHasCalls(true);
305          goto done;
306        }
307      }
308    }
309  done:;
310  }
311
312  // Determine if there is a call to setjmp in the machine function.
313  MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
314
315  // Release function-specific state. SDB and CurDAG are already cleared
316  // at this point.
317  FuncInfo->clear();
318
319  return true;
320}
321
322MachineBasicBlock *
323SelectionDAGISel::SelectBasicBlock(MachineBasicBlock *BB,
324                                   const BasicBlock *LLVMBB,
325                                   BasicBlock::const_iterator Begin,
326                                   BasicBlock::const_iterator End,
327                                   bool &HadTailCall) {
328  // Lower all of the non-terminator instructions. If a call is emitted
329  // as a tail call, cease emitting nodes for this block. Terminators
330  // are handled below.
331  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
332    SDB->visit(*I);
333
334  // Make sure the root of the DAG is up-to-date.
335  CurDAG->setRoot(SDB->getControlRoot());
336  HadTailCall = SDB->HasTailCall;
337  SDB->clear();
338
339  // Final step, emit the lowered DAG as machine code.
340  return CodeGenAndEmitDAG(BB);
341}
342
343namespace {
344/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
345/// nodes from the worklist.
346class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
347  SmallVector<SDNode*, 128> &Worklist;
348  SmallPtrSet<SDNode*, 128> &InWorklist;
349public:
350  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
351                       SmallPtrSet<SDNode*, 128> &inwl)
352    : Worklist(wl), InWorklist(inwl) {}
353
354  void RemoveFromWorklist(SDNode *N) {
355    if (!InWorklist.erase(N)) return;
356
357    SmallVector<SDNode*, 128>::iterator I =
358    std::find(Worklist.begin(), Worklist.end(), N);
359    assert(I != Worklist.end() && "Not in worklist");
360
361    *I = Worklist.back();
362    Worklist.pop_back();
363  }
364
365  virtual void NodeDeleted(SDNode *N, SDNode *E) {
366    RemoveFromWorklist(N);
367  }
368
369  virtual void NodeUpdated(SDNode *N) {
370    // Ignore updates.
371  }
372};
373}
374
375void SelectionDAGISel::ComputeLiveOutVRegInfo() {
376  SmallPtrSet<SDNode*, 128> VisitedNodes;
377  SmallVector<SDNode*, 128> Worklist;
378
379  Worklist.push_back(CurDAG->getRoot().getNode());
380
381  APInt Mask;
382  APInt KnownZero;
383  APInt KnownOne;
384
385  do {
386    SDNode *N = Worklist.pop_back_val();
387
388    // If we've already seen this node, ignore it.
389    if (!VisitedNodes.insert(N))
390      continue;
391
392    // Otherwise, add all chain operands to the worklist.
393    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
394      if (N->getOperand(i).getValueType() == MVT::Other)
395        Worklist.push_back(N->getOperand(i).getNode());
396
397    // If this is a CopyToReg with a vreg dest, process it.
398    if (N->getOpcode() != ISD::CopyToReg)
399      continue;
400
401    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
402    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
403      continue;
404
405    // Ignore non-scalar or non-integer values.
406    SDValue Src = N->getOperand(2);
407    EVT SrcVT = Src.getValueType();
408    if (!SrcVT.isInteger() || SrcVT.isVector())
409      continue;
410
411    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
412    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
413    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
414
415    // Only install this information if it tells us something.
416    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
417      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
418      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
419        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
420      FunctionLoweringInfo::LiveOutInfo &LOI =
421        FuncInfo->LiveOutRegInfo[DestReg];
422      LOI.NumSignBits = NumSignBits;
423      LOI.KnownOne = KnownOne;
424      LOI.KnownZero = KnownZero;
425    }
426  } while (!Worklist.empty());
427}
428
429MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
430  std::string GroupName;
431  if (TimePassesIsEnabled)
432    GroupName = "Instruction Selection and Scheduling";
433  std::string BlockName;
434  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
435      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
436      ViewSUnitDAGs)
437    BlockName = MF->getFunction()->getNameStr() + ":" +
438                BB->getBasicBlock()->getNameStr();
439
440  DEBUG(dbgs() << "Initial selection DAG:\n");
441  DEBUG(CurDAG->dump());
442
443  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
444
445  // Run the DAG combiner in pre-legalize mode.
446  if (TimePassesIsEnabled) {
447    NamedRegionTimer T("DAG Combining 1", GroupName);
448    CurDAG->Combine(Unrestricted, *AA, OptLevel);
449  } else {
450    CurDAG->Combine(Unrestricted, *AA, OptLevel);
451  }
452
453  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
454  DEBUG(CurDAG->dump());
455
456  // Second step, hack on the DAG until it only uses operations and types that
457  // the target supports.
458  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
459                                               BlockName);
460
461  bool Changed;
462  if (TimePassesIsEnabled) {
463    NamedRegionTimer T("Type Legalization", GroupName);
464    Changed = CurDAG->LegalizeTypes();
465  } else {
466    Changed = CurDAG->LegalizeTypes();
467  }
468
469  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
470  DEBUG(CurDAG->dump());
471
472  if (Changed) {
473    if (ViewDAGCombineLT)
474      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
475
476    // Run the DAG combiner in post-type-legalize mode.
477    if (TimePassesIsEnabled) {
478      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
479      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
480    } else {
481      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
482    }
483
484    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
485    DEBUG(CurDAG->dump());
486  }
487
488  if (TimePassesIsEnabled) {
489    NamedRegionTimer T("Vector Legalization", GroupName);
490    Changed = CurDAG->LegalizeVectors();
491  } else {
492    Changed = CurDAG->LegalizeVectors();
493  }
494
495  if (Changed) {
496    if (TimePassesIsEnabled) {
497      NamedRegionTimer T("Type Legalization 2", GroupName);
498      CurDAG->LegalizeTypes();
499    } else {
500      CurDAG->LegalizeTypes();
501    }
502
503    if (ViewDAGCombineLT)
504      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
505
506    // Run the DAG combiner in post-type-legalize mode.
507    if (TimePassesIsEnabled) {
508      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
509      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
510    } else {
511      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
512    }
513
514    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
515    DEBUG(CurDAG->dump());
516  }
517
518  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
519
520  if (TimePassesIsEnabled) {
521    NamedRegionTimer T("DAG Legalization", GroupName);
522    CurDAG->Legalize(OptLevel);
523  } else {
524    CurDAG->Legalize(OptLevel);
525  }
526
527  DEBUG(dbgs() << "Legalized selection DAG:\n");
528  DEBUG(CurDAG->dump());
529
530  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
531
532  // Run the DAG combiner in post-legalize mode.
533  if (TimePassesIsEnabled) {
534    NamedRegionTimer T("DAG Combining 2", GroupName);
535    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
536  } else {
537    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
538  }
539
540  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
541  DEBUG(CurDAG->dump());
542
543  if (OptLevel != CodeGenOpt::None)
544    ComputeLiveOutVRegInfo();
545
546  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
547
548  // Third, instruction select all of the operations to machine code, adding the
549  // code to the MachineBasicBlock.
550  if (TimePassesIsEnabled) {
551    NamedRegionTimer T("Instruction Selection", GroupName);
552    DoInstructionSelection();
553  } else {
554    DoInstructionSelection();
555  }
556
557  DEBUG(dbgs() << "Selected selection DAG:\n");
558  DEBUG(CurDAG->dump());
559
560  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
561
562  // Schedule machine code.
563  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
564  if (TimePassesIsEnabled) {
565    NamedRegionTimer T("Instruction Scheduling", GroupName);
566    Scheduler->Run(CurDAG, BB, BB->end());
567  } else {
568    Scheduler->Run(CurDAG, BB, BB->end());
569  }
570
571  if (ViewSUnitDAGs) Scheduler->viewGraph();
572
573  // Emit machine code to BB.  This can change 'BB' to the last block being
574  // inserted into.
575  if (TimePassesIsEnabled) {
576    NamedRegionTimer T("Instruction Creation", GroupName);
577    BB = Scheduler->EmitSchedule();
578  } else {
579    BB = Scheduler->EmitSchedule();
580  }
581
582  // Free the scheduler state.
583  if (TimePassesIsEnabled) {
584    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
585    delete Scheduler;
586  } else {
587    delete Scheduler;
588  }
589
590  // Free the SelectionDAG state, now that we're finished with it.
591  CurDAG->clear();
592
593  return BB;
594}
595
596void SelectionDAGISel::DoInstructionSelection() {
597  DEBUG(errs() << "===== Instruction selection begins:\n");
598
599  PreprocessISelDAG();
600
601  // Select target instructions for the DAG.
602  {
603    // Number all nodes with a topological order and set DAGSize.
604    DAGSize = CurDAG->AssignTopologicalOrder();
605
606    // Create a dummy node (which is not added to allnodes), that adds
607    // a reference to the root node, preventing it from being deleted,
608    // and tracking any changes of the root.
609    HandleSDNode Dummy(CurDAG->getRoot());
610    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
611    ++ISelPosition;
612
613    // The AllNodes list is now topological-sorted. Visit the
614    // nodes by starting at the end of the list (the root of the
615    // graph) and preceding back toward the beginning (the entry
616    // node).
617    while (ISelPosition != CurDAG->allnodes_begin()) {
618      SDNode *Node = --ISelPosition;
619      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
620      // but there are currently some corner cases that it misses. Also, this
621      // makes it theoretically possible to disable the DAGCombiner.
622      if (Node->use_empty())
623        continue;
624
625      SDNode *ResNode = Select(Node);
626
627      // FIXME: This is pretty gross.  'Select' should be changed to not return
628      // anything at all and this code should be nuked with a tactical strike.
629
630      // If node should not be replaced, continue with the next one.
631      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
632        continue;
633      // Replace node.
634      if (ResNode)
635        ReplaceUses(Node, ResNode);
636
637      // If after the replacement this node is not used any more,
638      // remove this dead node.
639      if (Node->use_empty()) { // Don't delete EntryToken, etc.
640        ISelUpdater ISU(ISelPosition);
641        CurDAG->RemoveDeadNode(Node, &ISU);
642      }
643    }
644
645    CurDAG->setRoot(Dummy.getValue());
646  }
647
648  DEBUG(errs() << "===== Instruction selection ends:\n");
649
650  PostprocessISelDAG();
651}
652
653/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
654/// do other setup for EH landing-pad blocks.
655void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
656  // Add a label to mark the beginning of the landing pad.  Deletion of the
657  // landing pad can thus be detected via the MachineModuleInfo.
658  MCSymbol *Label = MF->getMMI().addLandingPad(BB);
659
660  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
661  BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
662
663  // Mark exception register as live in.
664  unsigned Reg = TLI.getExceptionAddressRegister();
665  if (Reg) BB->addLiveIn(Reg);
666
667  // Mark exception selector register as live in.
668  Reg = TLI.getExceptionSelectorRegister();
669  if (Reg) BB->addLiveIn(Reg);
670
671  // FIXME: Hack around an exception handling flaw (PR1508): the personality
672  // function and list of typeids logically belong to the invoke (or, if you
673  // like, the basic block containing the invoke), and need to be associated
674  // with it in the dwarf exception handling tables.  Currently however the
675  // information is provided by an intrinsic (eh.selector) that can be moved
676  // to unexpected places by the optimizers: if the unwind edge is critical,
677  // then breaking it can result in the intrinsics being in the successor of
678  // the landing pad, not the landing pad itself.  This results
679  // in exceptions not being caught because no typeids are associated with
680  // the invoke.  This may not be the only way things can go wrong, but it
681  // is the only way we try to work around for the moment.
682  const BasicBlock *LLVMBB = BB->getBasicBlock();
683  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
684
685  if (Br && Br->isUnconditional()) { // Critical edge?
686    BasicBlock::const_iterator I, E;
687    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
688      if (isa<EHSelectorInst>(I))
689        break;
690
691    if (I == E)
692      // No catch info found - try to extract some from the successor.
693      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
694  }
695}
696
697void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
698  // Initialize the Fast-ISel state, if needed.
699  FastISel *FastIS = 0;
700  if (EnableFastISel)
701    FastIS = TLI.createFastISel(*MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
702                                FuncInfo->StaticAllocaMap,
703                                FuncInfo->PHINodesToUpdate
704#ifndef NDEBUG
705                                , FuncInfo->CatchInfoLost
706#endif
707                                );
708
709  // Iterate over all basic blocks in the function.
710  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
711    const BasicBlock *LLVMBB = &*I;
712    MachineBasicBlock *BB = FuncInfo->MBBMap[LLVMBB];
713
714    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
715    BasicBlock::const_iterator const End = LLVMBB->end();
716    BasicBlock::const_iterator BI = Begin;
717
718    // Lower any arguments needed in this block if this is the entry block.
719    if (LLVMBB == &Fn.getEntryBlock())
720      LowerArguments(LLVMBB);
721
722    // Setup an EH landing-pad block.
723    if (BB->isLandingPad())
724      PrepareEHLandingPad(BB);
725
726    // Before doing SelectionDAG ISel, see if FastISel has been requested.
727    if (FastIS) {
728      // Emit code for any incoming arguments. This must happen before
729      // beginning FastISel on the entry block.
730      if (LLVMBB == &Fn.getEntryBlock()) {
731        CurDAG->setRoot(SDB->getControlRoot());
732        SDB->clear();
733        BB = CodeGenAndEmitDAG(BB);
734      }
735      FastIS->startNewBlock(BB);
736      // Do FastISel on as many instructions as possible.
737      for (; BI != End; ++BI) {
738        // Try to select the instruction with FastISel.
739        if (FastIS->SelectInstruction(BI))
740          continue;
741
742        // Then handle certain instructions as single-LLVM-Instruction blocks.
743        if (isa<CallInst>(BI)) {
744          ++NumFastIselFailures;
745          if (EnableFastISelVerbose || EnableFastISelAbort) {
746            dbgs() << "FastISel missed call: ";
747            BI->dump();
748          }
749
750          if (!BI->getType()->isVoidTy() && !BI->use_empty()) {
751            unsigned &R = FuncInfo->ValueMap[BI];
752            if (!R)
753              R = FuncInfo->CreateRegForValue(BI);
754          }
755
756          bool HadTailCall = false;
757          BB = SelectBasicBlock(BB, LLVMBB, BI, llvm::next(BI), HadTailCall);
758
759          // If the call was emitted as a tail call, we're done with the block.
760          if (HadTailCall) {
761            BI = End;
762            break;
763          }
764
765          // If the instruction was codegen'd with multiple blocks,
766          // inform the FastISel object where to resume inserting.
767          FastIS->setCurrentBlock(BB);
768          continue;
769        }
770
771        // Otherwise, give up on FastISel for the rest of the block.
772        // For now, be a little lenient about non-branch terminators.
773        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
774          ++NumFastIselFailures;
775          if (EnableFastISelVerbose || EnableFastISelAbort) {
776            dbgs() << "FastISel miss: ";
777            BI->dump();
778          }
779          if (EnableFastISelAbort)
780            // The "fast" selector couldn't handle something and bailed.
781            // For the purpose of debugging, just abort.
782            llvm_unreachable("FastISel didn't select the entire block");
783        }
784        break;
785      }
786    }
787
788    // Run SelectionDAG instruction selection on the remainder of the block
789    // not handled by FastISel. If FastISel is not run, this is the entire
790    // block.
791    if (BI != End) {
792      bool HadTailCall;
793      BB = SelectBasicBlock(BB, LLVMBB, BI, End, HadTailCall);
794    }
795
796    FinishBasicBlock(BB);
797    FuncInfo->PHINodesToUpdate.clear();
798  }
799
800  delete FastIS;
801}
802
803void
804SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
805
806  DEBUG(dbgs() << "Total amount of phi nodes to update: "
807               << FuncInfo->PHINodesToUpdate.size() << "\n");
808  DEBUG(for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
809          dbgs() << "Node " << i << " : ("
810                 << FuncInfo->PHINodesToUpdate[i].first
811                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
812
813  // Next, now that we know what the last MBB the LLVM BB expanded is, update
814  // PHI nodes in successors.
815  if (SDB->SwitchCases.empty() &&
816      SDB->JTCases.empty() &&
817      SDB->BitTestCases.empty()) {
818    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
819      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
820      assert(PHI->isPHI() &&
821             "This is not a machine PHI node that we are updating!");
822      if (!BB->isSuccessor(PHI->getParent()))
823        continue;
824      PHI->addOperand(
825        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
826      PHI->addOperand(MachineOperand::CreateMBB(BB));
827    }
828    return;
829  }
830
831  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
832    // Lower header first, if it wasn't already lowered
833    if (!SDB->BitTestCases[i].Emitted) {
834      // Set the current basic block to the mbb we wish to insert the code into
835      BB = SDB->BitTestCases[i].Parent;
836      // Emit the code
837      SDB->visitBitTestHeader(SDB->BitTestCases[i], BB);
838      CurDAG->setRoot(SDB->getRoot());
839      SDB->clear();
840      BB = CodeGenAndEmitDAG(BB);
841    }
842
843    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
844      // Set the current basic block to the mbb we wish to insert the code into
845      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
846      // Emit the code
847      if (j+1 != ej)
848        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
849                              SDB->BitTestCases[i].Reg,
850                              SDB->BitTestCases[i].Cases[j],
851                              BB);
852      else
853        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
854                              SDB->BitTestCases[i].Reg,
855                              SDB->BitTestCases[i].Cases[j],
856                              BB);
857
858
859      CurDAG->setRoot(SDB->getRoot());
860      SDB->clear();
861      BB = CodeGenAndEmitDAG(BB);
862    }
863
864    // Update PHI Nodes
865    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
866         pi != pe; ++pi) {
867      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
868      MachineBasicBlock *PHIBB = PHI->getParent();
869      assert(PHI->isPHI() &&
870             "This is not a machine PHI node that we are updating!");
871      // This is "default" BB. We have two jumps to it. From "header" BB and
872      // from last "case" BB.
873      if (PHIBB == SDB->BitTestCases[i].Default) {
874        PHI->addOperand(MachineOperand::
875                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
876                                  false));
877        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
878        PHI->addOperand(MachineOperand::
879                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
880                                  false));
881        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
882                                                  back().ThisBB));
883      }
884      // One of "cases" BB.
885      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
886           j != ej; ++j) {
887        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
888        if (cBB->isSuccessor(PHIBB)) {
889          PHI->addOperand(MachineOperand::
890                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
891                                    false));
892          PHI->addOperand(MachineOperand::CreateMBB(cBB));
893        }
894      }
895    }
896  }
897  SDB->BitTestCases.clear();
898
899  // If the JumpTable record is filled in, then we need to emit a jump table.
900  // Updating the PHI nodes is tricky in this case, since we need to determine
901  // whether the PHI is a successor of the range check MBB or the jump table MBB
902  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
903    // Lower header first, if it wasn't already lowered
904    if (!SDB->JTCases[i].first.Emitted) {
905      // Set the current basic block to the mbb we wish to insert the code into
906      BB = SDB->JTCases[i].first.HeaderBB;
907      // Emit the code
908      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
909                                BB);
910      CurDAG->setRoot(SDB->getRoot());
911      SDB->clear();
912      BB = CodeGenAndEmitDAG(BB);
913    }
914
915    // Set the current basic block to the mbb we wish to insert the code into
916    BB = SDB->JTCases[i].second.MBB;
917    // Emit the code
918    SDB->visitJumpTable(SDB->JTCases[i].second);
919    CurDAG->setRoot(SDB->getRoot());
920    SDB->clear();
921    BB = CodeGenAndEmitDAG(BB);
922
923    // Update PHI Nodes
924    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
925         pi != pe; ++pi) {
926      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
927      MachineBasicBlock *PHIBB = PHI->getParent();
928      assert(PHI->isPHI() &&
929             "This is not a machine PHI node that we are updating!");
930      // "default" BB. We can go there only from header BB.
931      if (PHIBB == SDB->JTCases[i].second.Default) {
932        PHI->addOperand
933          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
934                                     false));
935        PHI->addOperand
936          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
937      }
938      // JT BB. Just iterate over successors here
939      if (BB->isSuccessor(PHIBB)) {
940        PHI->addOperand
941          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
942                                     false));
943        PHI->addOperand(MachineOperand::CreateMBB(BB));
944      }
945    }
946  }
947  SDB->JTCases.clear();
948
949  // If the switch block involved a branch to one of the actual successors, we
950  // need to update PHI nodes in that block.
951  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
952    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
953    assert(PHI->isPHI() &&
954           "This is not a machine PHI node that we are updating!");
955    if (BB->isSuccessor(PHI->getParent())) {
956      PHI->addOperand(
957        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
958      PHI->addOperand(MachineOperand::CreateMBB(BB));
959    }
960  }
961
962  // If we generated any switch lowering information, build and codegen any
963  // additional DAGs necessary.
964  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
965    // Set the current basic block to the mbb we wish to insert the code into
966    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
967
968    // Determine the unique successors.
969    SmallVector<MachineBasicBlock *, 2> Succs;
970    Succs.push_back(SDB->SwitchCases[i].TrueBB);
971    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
972      Succs.push_back(SDB->SwitchCases[i].FalseBB);
973
974    // Emit the code. Note that this could result in ThisBB being split, so
975    // we need to check for updates.
976    SDB->visitSwitchCase(SDB->SwitchCases[i], BB);
977    CurDAG->setRoot(SDB->getRoot());
978    SDB->clear();
979    ThisBB = CodeGenAndEmitDAG(BB);
980
981    // Handle any PHI nodes in successors of this chunk, as if we were coming
982    // from the original BB before switch expansion.  Note that PHI nodes can
983    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
984    // handle them the right number of times.
985    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
986      BB = Succs[i];
987      // BB may have been removed from the CFG if a branch was constant folded.
988      if (ThisBB->isSuccessor(BB)) {
989        for (MachineBasicBlock::iterator Phi = BB->begin();
990             Phi != BB->end() && Phi->isPHI();
991             ++Phi) {
992          // This value for this PHI node is recorded in PHINodesToUpdate.
993          for (unsigned pn = 0; ; ++pn) {
994            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
995                   "Didn't find PHI entry!");
996            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
997              Phi->addOperand(MachineOperand::
998                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
999                                        false));
1000              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1001              break;
1002            }
1003          }
1004        }
1005      }
1006    }
1007  }
1008  SDB->SwitchCases.clear();
1009}
1010
1011
1012/// Create the scheduler. If a specific scheduler was specified
1013/// via the SchedulerRegistry, use it, otherwise select the
1014/// one preferred by the target.
1015///
1016ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1017  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1018
1019  if (!Ctor) {
1020    Ctor = ISHeuristic;
1021    RegisterScheduler::setDefault(Ctor);
1022  }
1023
1024  return Ctor(this, OptLevel);
1025}
1026
1027ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1028  return new ScheduleHazardRecognizer();
1029}
1030
1031//===----------------------------------------------------------------------===//
1032// Helper functions used by the generated instruction selector.
1033//===----------------------------------------------------------------------===//
1034// Calls to these methods are generated by tblgen.
1035
1036/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1037/// the dag combiner simplified the 255, we still want to match.  RHS is the
1038/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1039/// specified in the .td file (e.g. 255).
1040bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1041                                    int64_t DesiredMaskS) const {
1042  const APInt &ActualMask = RHS->getAPIntValue();
1043  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1044
1045  // If the actual mask exactly matches, success!
1046  if (ActualMask == DesiredMask)
1047    return true;
1048
1049  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1050  if (ActualMask.intersects(~DesiredMask))
1051    return false;
1052
1053  // Otherwise, the DAG Combiner may have proven that the value coming in is
1054  // either already zero or is not demanded.  Check for known zero input bits.
1055  APInt NeededMask = DesiredMask & ~ActualMask;
1056  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1057    return true;
1058
1059  // TODO: check to see if missing bits are just not demanded.
1060
1061  // Otherwise, this pattern doesn't match.
1062  return false;
1063}
1064
1065/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1066/// the dag combiner simplified the 255, we still want to match.  RHS is the
1067/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1068/// specified in the .td file (e.g. 255).
1069bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1070                                   int64_t DesiredMaskS) const {
1071  const APInt &ActualMask = RHS->getAPIntValue();
1072  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1073
1074  // If the actual mask exactly matches, success!
1075  if (ActualMask == DesiredMask)
1076    return true;
1077
1078  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1079  if (ActualMask.intersects(~DesiredMask))
1080    return false;
1081
1082  // Otherwise, the DAG Combiner may have proven that the value coming in is
1083  // either already zero or is not demanded.  Check for known zero input bits.
1084  APInt NeededMask = DesiredMask & ~ActualMask;
1085
1086  APInt KnownZero, KnownOne;
1087  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1088
1089  // If all the missing bits in the or are already known to be set, match!
1090  if ((NeededMask & KnownOne) == NeededMask)
1091    return true;
1092
1093  // TODO: check to see if missing bits are just not demanded.
1094
1095  // Otherwise, this pattern doesn't match.
1096  return false;
1097}
1098
1099
1100/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1101/// by tblgen.  Others should not call it.
1102void SelectionDAGISel::
1103SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1104  std::vector<SDValue> InOps;
1105  std::swap(InOps, Ops);
1106
1107  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1108  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1109  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1110
1111  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1112  if (InOps[e-1].getValueType() == MVT::Flag)
1113    --e;  // Don't process a flag operand if it is here.
1114
1115  while (i != e) {
1116    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1117    if (!InlineAsm::isMemKind(Flags)) {
1118      // Just skip over this operand, copying the operands verbatim.
1119      Ops.insert(Ops.end(), InOps.begin()+i,
1120                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1121      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1122    } else {
1123      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1124             "Memory operand with multiple values?");
1125      // Otherwise, this is a memory operand.  Ask the target to select it.
1126      std::vector<SDValue> SelOps;
1127      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1128        report_fatal_error("Could not match memory address.  Inline asm"
1129                           " failure!");
1130
1131      // Add this to the output node.
1132      unsigned NewFlags =
1133        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1134      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1135      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1136      i += 2;
1137    }
1138  }
1139
1140  // Add the flag input back if present.
1141  if (e != InOps.size())
1142    Ops.push_back(InOps.back());
1143}
1144
1145/// findFlagUse - Return use of EVT::Flag value produced by the specified
1146/// SDNode.
1147///
1148static SDNode *findFlagUse(SDNode *N) {
1149  unsigned FlagResNo = N->getNumValues()-1;
1150  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1151    SDUse &Use = I.getUse();
1152    if (Use.getResNo() == FlagResNo)
1153      return Use.getUser();
1154  }
1155  return NULL;
1156}
1157
1158/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1159/// This function recursively traverses up the operand chain, ignoring
1160/// certain nodes.
1161static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1162                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1163                          bool IgnoreChains) {
1164  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1165  // greater than all of its (recursive) operands.  If we scan to a point where
1166  // 'use' is smaller than the node we're scanning for, then we know we will
1167  // never find it.
1168  //
1169  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1170  // happen because we scan down to newly selected nodes in the case of flag
1171  // uses.
1172  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1173    return false;
1174
1175  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1176  // won't fail if we scan it again.
1177  if (!Visited.insert(Use))
1178    return false;
1179
1180  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1181    // Ignore chain uses, they are validated by HandleMergeInputChains.
1182    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1183      continue;
1184
1185    SDNode *N = Use->getOperand(i).getNode();
1186    if (N == Def) {
1187      if (Use == ImmedUse || Use == Root)
1188        continue;  // We are not looking for immediate use.
1189      assert(N != Root);
1190      return true;
1191    }
1192
1193    // Traverse up the operand chain.
1194    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1195      return true;
1196  }
1197  return false;
1198}
1199
1200/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1201/// operand node N of U during instruction selection that starts at Root.
1202bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1203                                          SDNode *Root) const {
1204  if (OptLevel == CodeGenOpt::None) return false;
1205  return N.hasOneUse();
1206}
1207
1208/// IsLegalToFold - Returns true if the specific operand node N of
1209/// U can be folded during instruction selection that starts at Root.
1210bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1211                                     CodeGenOpt::Level OptLevel,
1212                                     bool IgnoreChains) {
1213  if (OptLevel == CodeGenOpt::None) return false;
1214
1215  // If Root use can somehow reach N through a path that that doesn't contain
1216  // U then folding N would create a cycle. e.g. In the following
1217  // diagram, Root can reach N through X. If N is folded into into Root, then
1218  // X is both a predecessor and a successor of U.
1219  //
1220  //          [N*]           //
1221  //         ^   ^           //
1222  //        /     \          //
1223  //      [U*]    [X]?       //
1224  //        ^     ^          //
1225  //         \   /           //
1226  //          \ /            //
1227  //         [Root*]         //
1228  //
1229  // * indicates nodes to be folded together.
1230  //
1231  // If Root produces a flag, then it gets (even more) interesting. Since it
1232  // will be "glued" together with its flag use in the scheduler, we need to
1233  // check if it might reach N.
1234  //
1235  //          [N*]           //
1236  //         ^   ^           //
1237  //        /     \          //
1238  //      [U*]    [X]?       //
1239  //        ^       ^        //
1240  //         \       \       //
1241  //          \      |       //
1242  //         [Root*] |       //
1243  //          ^      |       //
1244  //          f      |       //
1245  //          |      /       //
1246  //         [Y]    /        //
1247  //           ^   /         //
1248  //           f  /          //
1249  //           | /           //
1250  //          [FU]           //
1251  //
1252  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1253  // (call it Fold), then X is a predecessor of FU and a successor of
1254  // Fold. But since Fold and FU are flagged together, this will create
1255  // a cycle in the scheduling graph.
1256
1257  // If the node has flags, walk down the graph to the "lowest" node in the
1258  // flagged set.
1259  EVT VT = Root->getValueType(Root->getNumValues()-1);
1260  while (VT == MVT::Flag) {
1261    SDNode *FU = findFlagUse(Root);
1262    if (FU == NULL)
1263      break;
1264    Root = FU;
1265    VT = Root->getValueType(Root->getNumValues()-1);
1266
1267    // If our query node has a flag result with a use, we've walked up it.  If
1268    // the user (which has already been selected) has a chain or indirectly uses
1269    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1270    // this, we cannot ignore chains in this predicate.
1271    IgnoreChains = false;
1272  }
1273
1274
1275  SmallPtrSet<SDNode*, 16> Visited;
1276  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1277}
1278
1279SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1280  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1281  SelectInlineAsmMemoryOperands(Ops);
1282
1283  std::vector<EVT> VTs;
1284  VTs.push_back(MVT::Other);
1285  VTs.push_back(MVT::Flag);
1286  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1287                                VTs, &Ops[0], Ops.size());
1288  New->setNodeId(-1);
1289  return New.getNode();
1290}
1291
1292SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1293  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1294}
1295
1296/// GetVBR - decode a vbr encoding whose top bit is set.
1297ALWAYS_INLINE static uint64_t
1298GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1299  assert(Val >= 128 && "Not a VBR");
1300  Val &= 127;  // Remove first vbr bit.
1301
1302  unsigned Shift = 7;
1303  uint64_t NextBits;
1304  do {
1305    NextBits = MatcherTable[Idx++];
1306    Val |= (NextBits&127) << Shift;
1307    Shift += 7;
1308  } while (NextBits & 128);
1309
1310  return Val;
1311}
1312
1313
1314/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1315/// interior flag and chain results to use the new flag and chain results.
1316void SelectionDAGISel::
1317UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1318                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1319                     SDValue InputFlag,
1320                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1321                     bool isMorphNodeTo) {
1322  SmallVector<SDNode*, 4> NowDeadNodes;
1323
1324  ISelUpdater ISU(ISelPosition);
1325
1326  // Now that all the normal results are replaced, we replace the chain and
1327  // flag results if present.
1328  if (!ChainNodesMatched.empty()) {
1329    assert(InputChain.getNode() != 0 &&
1330           "Matched input chains but didn't produce a chain");
1331    // Loop over all of the nodes we matched that produced a chain result.
1332    // Replace all the chain results with the final chain we ended up with.
1333    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1334      SDNode *ChainNode = ChainNodesMatched[i];
1335
1336      // If this node was already deleted, don't look at it.
1337      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1338        continue;
1339
1340      // Don't replace the results of the root node if we're doing a
1341      // MorphNodeTo.
1342      if (ChainNode == NodeToMatch && isMorphNodeTo)
1343        continue;
1344
1345      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1346      if (ChainVal.getValueType() == MVT::Flag)
1347        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1348      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1349      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1350
1351      // If the node became dead and we haven't already seen it, delete it.
1352      if (ChainNode->use_empty() &&
1353          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1354        NowDeadNodes.push_back(ChainNode);
1355    }
1356  }
1357
1358  // If the result produces a flag, update any flag results in the matched
1359  // pattern with the flag result.
1360  if (InputFlag.getNode() != 0) {
1361    // Handle any interior nodes explicitly marked.
1362    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1363      SDNode *FRN = FlagResultNodesMatched[i];
1364
1365      // If this node was already deleted, don't look at it.
1366      if (FRN->getOpcode() == ISD::DELETED_NODE)
1367        continue;
1368
1369      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1370             "Doesn't have a flag result");
1371      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1372                                        InputFlag, &ISU);
1373
1374      // If the node became dead and we haven't already seen it, delete it.
1375      if (FRN->use_empty() &&
1376          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1377        NowDeadNodes.push_back(FRN);
1378    }
1379  }
1380
1381  if (!NowDeadNodes.empty())
1382    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1383
1384  DEBUG(errs() << "ISEL: Match complete!\n");
1385}
1386
1387enum ChainResult {
1388  CR_Simple,
1389  CR_InducesCycle,
1390  CR_LeadsToInteriorNode
1391};
1392
1393/// WalkChainUsers - Walk down the users of the specified chained node that is
1394/// part of the pattern we're matching, looking at all of the users we find.
1395/// This determines whether something is an interior node, whether we have a
1396/// non-pattern node in between two pattern nodes (which prevent folding because
1397/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1398/// between pattern nodes (in which case the TF becomes part of the pattern).
1399///
1400/// The walk we do here is guaranteed to be small because we quickly get down to
1401/// already selected nodes "below" us.
1402static ChainResult
1403WalkChainUsers(SDNode *ChainedNode,
1404               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1405               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1406  ChainResult Result = CR_Simple;
1407
1408  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1409         E = ChainedNode->use_end(); UI != E; ++UI) {
1410    // Make sure the use is of the chain, not some other value we produce.
1411    if (UI.getUse().getValueType() != MVT::Other) continue;
1412
1413    SDNode *User = *UI;
1414
1415    // If we see an already-selected machine node, then we've gone beyond the
1416    // pattern that we're selecting down into the already selected chunk of the
1417    // DAG.
1418    if (User->isMachineOpcode() ||
1419        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1420      continue;
1421
1422    if (User->getOpcode() == ISD::CopyToReg ||
1423        User->getOpcode() == ISD::CopyFromReg ||
1424        User->getOpcode() == ISD::INLINEASM ||
1425        User->getOpcode() == ISD::EH_LABEL) {
1426      // If their node ID got reset to -1 then they've already been selected.
1427      // Treat them like a MachineOpcode.
1428      if (User->getNodeId() == -1)
1429        continue;
1430    }
1431
1432    // If we have a TokenFactor, we handle it specially.
1433    if (User->getOpcode() != ISD::TokenFactor) {
1434      // If the node isn't a token factor and isn't part of our pattern, then it
1435      // must be a random chained node in between two nodes we're selecting.
1436      // This happens when we have something like:
1437      //   x = load ptr
1438      //   call
1439      //   y = x+4
1440      //   store y -> ptr
1441      // Because we structurally match the load/store as a read/modify/write,
1442      // but the call is chained between them.  We cannot fold in this case
1443      // because it would induce a cycle in the graph.
1444      if (!std::count(ChainedNodesInPattern.begin(),
1445                      ChainedNodesInPattern.end(), User))
1446        return CR_InducesCycle;
1447
1448      // Otherwise we found a node that is part of our pattern.  For example in:
1449      //   x = load ptr
1450      //   y = x+4
1451      //   store y -> ptr
1452      // This would happen when we're scanning down from the load and see the
1453      // store as a user.  Record that there is a use of ChainedNode that is
1454      // part of the pattern and keep scanning uses.
1455      Result = CR_LeadsToInteriorNode;
1456      InteriorChainedNodes.push_back(User);
1457      continue;
1458    }
1459
1460    // If we found a TokenFactor, there are two cases to consider: first if the
1461    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1462    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1463    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1464    //     [Load chain]
1465    //         ^
1466    //         |
1467    //       [Load]
1468    //       ^    ^
1469    //       |    \                    DAG's like cheese
1470    //      /       \                       do you?
1471    //     /         |
1472    // [TokenFactor] [Op]
1473    //     ^          ^
1474    //     |          |
1475    //      \        /
1476    //       \      /
1477    //       [Store]
1478    //
1479    // In this case, the TokenFactor becomes part of our match and we rewrite it
1480    // as a new TokenFactor.
1481    //
1482    // To distinguish these two cases, do a recursive walk down the uses.
1483    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1484    case CR_Simple:
1485      // If the uses of the TokenFactor are just already-selected nodes, ignore
1486      // it, it is "below" our pattern.
1487      continue;
1488    case CR_InducesCycle:
1489      // If the uses of the TokenFactor lead to nodes that are not part of our
1490      // pattern that are not selected, folding would turn this into a cycle,
1491      // bail out now.
1492      return CR_InducesCycle;
1493    case CR_LeadsToInteriorNode:
1494      break;  // Otherwise, keep processing.
1495    }
1496
1497    // Okay, we know we're in the interesting interior case.  The TokenFactor
1498    // is now going to be considered part of the pattern so that we rewrite its
1499    // uses (it may have uses that are not part of the pattern) with the
1500    // ultimate chain result of the generated code.  We will also add its chain
1501    // inputs as inputs to the ultimate TokenFactor we create.
1502    Result = CR_LeadsToInteriorNode;
1503    ChainedNodesInPattern.push_back(User);
1504    InteriorChainedNodes.push_back(User);
1505    continue;
1506  }
1507
1508  return Result;
1509}
1510
1511/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1512/// operation for when the pattern matched at least one node with a chains.  The
1513/// input vector contains a list of all of the chained nodes that we match.  We
1514/// must determine if this is a valid thing to cover (i.e. matching it won't
1515/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1516/// be used as the input node chain for the generated nodes.
1517static SDValue
1518HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1519                       SelectionDAG *CurDAG) {
1520  // Walk all of the chained nodes we've matched, recursively scanning down the
1521  // users of the chain result. This adds any TokenFactor nodes that are caught
1522  // in between chained nodes to the chained and interior nodes list.
1523  SmallVector<SDNode*, 3> InteriorChainedNodes;
1524  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1525    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1526                       InteriorChainedNodes) == CR_InducesCycle)
1527      return SDValue(); // Would induce a cycle.
1528  }
1529
1530  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1531  // that we are interested in.  Form our input TokenFactor node.
1532  SmallVector<SDValue, 3> InputChains;
1533  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1534    // Add the input chain of this node to the InputChains list (which will be
1535    // the operands of the generated TokenFactor) if it's not an interior node.
1536    SDNode *N = ChainNodesMatched[i];
1537    if (N->getOpcode() != ISD::TokenFactor) {
1538      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1539        continue;
1540
1541      // Otherwise, add the input chain.
1542      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1543      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1544      InputChains.push_back(InChain);
1545      continue;
1546    }
1547
1548    // If we have a token factor, we want to add all inputs of the token factor
1549    // that are not part of the pattern we're matching.
1550    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1551      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1552                      N->getOperand(op).getNode()))
1553        InputChains.push_back(N->getOperand(op));
1554    }
1555  }
1556
1557  SDValue Res;
1558  if (InputChains.size() == 1)
1559    return InputChains[0];
1560  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1561                         MVT::Other, &InputChains[0], InputChains.size());
1562}
1563
1564/// MorphNode - Handle morphing a node in place for the selector.
1565SDNode *SelectionDAGISel::
1566MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1567          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1568  // It is possible we're using MorphNodeTo to replace a node with no
1569  // normal results with one that has a normal result (or we could be
1570  // adding a chain) and the input could have flags and chains as well.
1571  // In this case we need to shift the operands down.
1572  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1573  // than the old isel though.
1574  int OldFlagResultNo = -1, OldChainResultNo = -1;
1575
1576  unsigned NTMNumResults = Node->getNumValues();
1577  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1578    OldFlagResultNo = NTMNumResults-1;
1579    if (NTMNumResults != 1 &&
1580        Node->getValueType(NTMNumResults-2) == MVT::Other)
1581      OldChainResultNo = NTMNumResults-2;
1582  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1583    OldChainResultNo = NTMNumResults-1;
1584
1585  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1586  // that this deletes operands of the old node that become dead.
1587  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1588
1589  // MorphNodeTo can operate in two ways: if an existing node with the
1590  // specified operands exists, it can just return it.  Otherwise, it
1591  // updates the node in place to have the requested operands.
1592  if (Res == Node) {
1593    // If we updated the node in place, reset the node ID.  To the isel,
1594    // this should be just like a newly allocated machine node.
1595    Res->setNodeId(-1);
1596  }
1597
1598  unsigned ResNumResults = Res->getNumValues();
1599  // Move the flag if needed.
1600  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1601      (unsigned)OldFlagResultNo != ResNumResults-1)
1602    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1603                                      SDValue(Res, ResNumResults-1));
1604
1605  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1606  --ResNumResults;
1607
1608  // Move the chain reference if needed.
1609  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1610      (unsigned)OldChainResultNo != ResNumResults-1)
1611    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1612                                      SDValue(Res, ResNumResults-1));
1613
1614  // Otherwise, no replacement happened because the node already exists. Replace
1615  // Uses of the old node with the new one.
1616  if (Res != Node)
1617    CurDAG->ReplaceAllUsesWith(Node, Res);
1618
1619  return Res;
1620}
1621
1622/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1623ALWAYS_INLINE static bool
1624CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1625          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1626  // Accept if it is exactly the same as a previously recorded node.
1627  unsigned RecNo = MatcherTable[MatcherIndex++];
1628  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1629  return N == RecordedNodes[RecNo];
1630}
1631
1632/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1633ALWAYS_INLINE static bool
1634CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1635                      SelectionDAGISel &SDISel) {
1636  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1637}
1638
1639/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1640ALWAYS_INLINE static bool
1641CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1642                   SelectionDAGISel &SDISel, SDNode *N) {
1643  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1644}
1645
1646ALWAYS_INLINE static bool
1647CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1648            SDNode *N) {
1649  uint16_t Opc = MatcherTable[MatcherIndex++];
1650  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1651  return N->getOpcode() == Opc;
1652}
1653
1654ALWAYS_INLINE static bool
1655CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1656          SDValue N, const TargetLowering &TLI) {
1657  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1658  if (N.getValueType() == VT) return true;
1659
1660  // Handle the case when VT is iPTR.
1661  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1662}
1663
1664ALWAYS_INLINE static bool
1665CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1666               SDValue N, const TargetLowering &TLI,
1667               unsigned ChildNo) {
1668  if (ChildNo >= N.getNumOperands())
1669    return false;  // Match fails if out of range child #.
1670  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1671}
1672
1673
1674ALWAYS_INLINE static bool
1675CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1676              SDValue N) {
1677  return cast<CondCodeSDNode>(N)->get() ==
1678      (ISD::CondCode)MatcherTable[MatcherIndex++];
1679}
1680
1681ALWAYS_INLINE static bool
1682CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1683               SDValue N, const TargetLowering &TLI) {
1684  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1685  if (cast<VTSDNode>(N)->getVT() == VT)
1686    return true;
1687
1688  // Handle the case when VT is iPTR.
1689  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1690}
1691
1692ALWAYS_INLINE static bool
1693CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1694             SDValue N) {
1695  int64_t Val = MatcherTable[MatcherIndex++];
1696  if (Val & 128)
1697    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1698
1699  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1700  return C != 0 && C->getSExtValue() == Val;
1701}
1702
1703ALWAYS_INLINE static bool
1704CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1705            SDValue N, SelectionDAGISel &SDISel) {
1706  int64_t Val = MatcherTable[MatcherIndex++];
1707  if (Val & 128)
1708    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1709
1710  if (N->getOpcode() != ISD::AND) return false;
1711
1712  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1713  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1714}
1715
1716ALWAYS_INLINE static bool
1717CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1718           SDValue N, SelectionDAGISel &SDISel) {
1719  int64_t Val = MatcherTable[MatcherIndex++];
1720  if (Val & 128)
1721    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1722
1723  if (N->getOpcode() != ISD::OR) return false;
1724
1725  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1726  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1727}
1728
1729/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1730/// scope, evaluate the current node.  If the current predicate is known to
1731/// fail, set Result=true and return anything.  If the current predicate is
1732/// known to pass, set Result=false and return the MatcherIndex to continue
1733/// with.  If the current predicate is unknown, set Result=false and return the
1734/// MatcherIndex to continue with.
1735static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1736                                       unsigned Index, SDValue N,
1737                                       bool &Result, SelectionDAGISel &SDISel,
1738                                       SmallVectorImpl<SDValue> &RecordedNodes){
1739  switch (Table[Index++]) {
1740  default:
1741    Result = false;
1742    return Index-1;  // Could not evaluate this predicate.
1743  case SelectionDAGISel::OPC_CheckSame:
1744    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1745    return Index;
1746  case SelectionDAGISel::OPC_CheckPatternPredicate:
1747    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1748    return Index;
1749  case SelectionDAGISel::OPC_CheckPredicate:
1750    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1751    return Index;
1752  case SelectionDAGISel::OPC_CheckOpcode:
1753    Result = !::CheckOpcode(Table, Index, N.getNode());
1754    return Index;
1755  case SelectionDAGISel::OPC_CheckType:
1756    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1757    return Index;
1758  case SelectionDAGISel::OPC_CheckChild0Type:
1759  case SelectionDAGISel::OPC_CheckChild1Type:
1760  case SelectionDAGISel::OPC_CheckChild2Type:
1761  case SelectionDAGISel::OPC_CheckChild3Type:
1762  case SelectionDAGISel::OPC_CheckChild4Type:
1763  case SelectionDAGISel::OPC_CheckChild5Type:
1764  case SelectionDAGISel::OPC_CheckChild6Type:
1765  case SelectionDAGISel::OPC_CheckChild7Type:
1766    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1767                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1768    return Index;
1769  case SelectionDAGISel::OPC_CheckCondCode:
1770    Result = !::CheckCondCode(Table, Index, N);
1771    return Index;
1772  case SelectionDAGISel::OPC_CheckValueType:
1773    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1774    return Index;
1775  case SelectionDAGISel::OPC_CheckInteger:
1776    Result = !::CheckInteger(Table, Index, N);
1777    return Index;
1778  case SelectionDAGISel::OPC_CheckAndImm:
1779    Result = !::CheckAndImm(Table, Index, N, SDISel);
1780    return Index;
1781  case SelectionDAGISel::OPC_CheckOrImm:
1782    Result = !::CheckOrImm(Table, Index, N, SDISel);
1783    return Index;
1784  }
1785}
1786
1787namespace {
1788
1789struct MatchScope {
1790  /// FailIndex - If this match fails, this is the index to continue with.
1791  unsigned FailIndex;
1792
1793  /// NodeStack - The node stack when the scope was formed.
1794  SmallVector<SDValue, 4> NodeStack;
1795
1796  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1797  unsigned NumRecordedNodes;
1798
1799  /// NumMatchedMemRefs - The number of matched memref entries.
1800  unsigned NumMatchedMemRefs;
1801
1802  /// InputChain/InputFlag - The current chain/flag
1803  SDValue InputChain, InputFlag;
1804
1805  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1806  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1807};
1808
1809}
1810
1811SDNode *SelectionDAGISel::
1812SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1813                 unsigned TableSize) {
1814  // FIXME: Should these even be selected?  Handle these cases in the caller?
1815  switch (NodeToMatch->getOpcode()) {
1816  default:
1817    break;
1818  case ISD::EntryToken:       // These nodes remain the same.
1819  case ISD::BasicBlock:
1820  case ISD::Register:
1821  //case ISD::VALUETYPE:
1822  //case ISD::CONDCODE:
1823  case ISD::HANDLENODE:
1824  case ISD::MDNODE_SDNODE:
1825  case ISD::TargetConstant:
1826  case ISD::TargetConstantFP:
1827  case ISD::TargetConstantPool:
1828  case ISD::TargetFrameIndex:
1829  case ISD::TargetExternalSymbol:
1830  case ISD::TargetBlockAddress:
1831  case ISD::TargetJumpTable:
1832  case ISD::TargetGlobalTLSAddress:
1833  case ISD::TargetGlobalAddress:
1834  case ISD::TokenFactor:
1835  case ISD::CopyFromReg:
1836  case ISD::CopyToReg:
1837  case ISD::EH_LABEL:
1838    NodeToMatch->setNodeId(-1); // Mark selected.
1839    return 0;
1840  case ISD::AssertSext:
1841  case ISD::AssertZext:
1842    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1843                                      NodeToMatch->getOperand(0));
1844    return 0;
1845  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1846  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1847  }
1848
1849  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1850
1851  // Set up the node stack with NodeToMatch as the only node on the stack.
1852  SmallVector<SDValue, 8> NodeStack;
1853  SDValue N = SDValue(NodeToMatch, 0);
1854  NodeStack.push_back(N);
1855
1856  // MatchScopes - Scopes used when matching, if a match failure happens, this
1857  // indicates where to continue checking.
1858  SmallVector<MatchScope, 8> MatchScopes;
1859
1860  // RecordedNodes - This is the set of nodes that have been recorded by the
1861  // state machine.
1862  SmallVector<SDValue, 8> RecordedNodes;
1863
1864  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1865  // pattern.
1866  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1867
1868  // These are the current input chain and flag for use when generating nodes.
1869  // Various Emit operations change these.  For example, emitting a copytoreg
1870  // uses and updates these.
1871  SDValue InputChain, InputFlag;
1872
1873  // ChainNodesMatched - If a pattern matches nodes that have input/output
1874  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1875  // which ones they are.  The result is captured into this list so that we can
1876  // update the chain results when the pattern is complete.
1877  SmallVector<SDNode*, 3> ChainNodesMatched;
1878  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1879
1880  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1881        NodeToMatch->dump(CurDAG);
1882        errs() << '\n');
1883
1884  // Determine where to start the interpreter.  Normally we start at opcode #0,
1885  // but if the state machine starts with an OPC_SwitchOpcode, then we
1886  // accelerate the first lookup (which is guaranteed to be hot) with the
1887  // OpcodeOffset table.
1888  unsigned MatcherIndex = 0;
1889
1890  if (!OpcodeOffset.empty()) {
1891    // Already computed the OpcodeOffset table, just index into it.
1892    if (N.getOpcode() < OpcodeOffset.size())
1893      MatcherIndex = OpcodeOffset[N.getOpcode()];
1894    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1895
1896  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1897    // Otherwise, the table isn't computed, but the state machine does start
1898    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1899    // is the first time we're selecting an instruction.
1900    unsigned Idx = 1;
1901    while (1) {
1902      // Get the size of this case.
1903      unsigned CaseSize = MatcherTable[Idx++];
1904      if (CaseSize & 128)
1905        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1906      if (CaseSize == 0) break;
1907
1908      // Get the opcode, add the index to the table.
1909      uint16_t Opc = MatcherTable[Idx++];
1910      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
1911      if (Opc >= OpcodeOffset.size())
1912        OpcodeOffset.resize((Opc+1)*2);
1913      OpcodeOffset[Opc] = Idx;
1914      Idx += CaseSize;
1915    }
1916
1917    // Okay, do the lookup for the first opcode.
1918    if (N.getOpcode() < OpcodeOffset.size())
1919      MatcherIndex = OpcodeOffset[N.getOpcode()];
1920  }
1921
1922  while (1) {
1923    assert(MatcherIndex < TableSize && "Invalid index");
1924#ifndef NDEBUG
1925    unsigned CurrentOpcodeIndex = MatcherIndex;
1926#endif
1927    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
1928    switch (Opcode) {
1929    case OPC_Scope: {
1930      // Okay, the semantics of this operation are that we should push a scope
1931      // then evaluate the first child.  However, pushing a scope only to have
1932      // the first check fail (which then pops it) is inefficient.  If we can
1933      // determine immediately that the first check (or first several) will
1934      // immediately fail, don't even bother pushing a scope for them.
1935      unsigned FailIndex;
1936
1937      while (1) {
1938        unsigned NumToSkip = MatcherTable[MatcherIndex++];
1939        if (NumToSkip & 128)
1940          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
1941        // Found the end of the scope with no match.
1942        if (NumToSkip == 0) {
1943          FailIndex = 0;
1944          break;
1945        }
1946
1947        FailIndex = MatcherIndex+NumToSkip;
1948
1949        unsigned MatcherIndexOfPredicate = MatcherIndex;
1950        (void)MatcherIndexOfPredicate; // silence warning.
1951
1952        // If we can't evaluate this predicate without pushing a scope (e.g. if
1953        // it is a 'MoveParent') or if the predicate succeeds on this node, we
1954        // push the scope and evaluate the full predicate chain.
1955        bool Result;
1956        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
1957                                              Result, *this, RecordedNodes);
1958        if (!Result)
1959          break;
1960
1961        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
1962                     << "index " << MatcherIndexOfPredicate
1963                     << ", continuing at " << FailIndex << "\n");
1964        ++NumDAGIselRetries;
1965
1966        // Otherwise, we know that this case of the Scope is guaranteed to fail,
1967        // move to the next case.
1968        MatcherIndex = FailIndex;
1969      }
1970
1971      // If the whole scope failed to match, bail.
1972      if (FailIndex == 0) break;
1973
1974      // Push a MatchScope which indicates where to go if the first child fails
1975      // to match.
1976      MatchScope NewEntry;
1977      NewEntry.FailIndex = FailIndex;
1978      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
1979      NewEntry.NumRecordedNodes = RecordedNodes.size();
1980      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
1981      NewEntry.InputChain = InputChain;
1982      NewEntry.InputFlag = InputFlag;
1983      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
1984      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
1985      MatchScopes.push_back(NewEntry);
1986      continue;
1987    }
1988    case OPC_RecordNode:
1989      // Remember this node, it may end up being an operand in the pattern.
1990      RecordedNodes.push_back(N);
1991      continue;
1992
1993    case OPC_RecordChild0: case OPC_RecordChild1:
1994    case OPC_RecordChild2: case OPC_RecordChild3:
1995    case OPC_RecordChild4: case OPC_RecordChild5:
1996    case OPC_RecordChild6: case OPC_RecordChild7: {
1997      unsigned ChildNo = Opcode-OPC_RecordChild0;
1998      if (ChildNo >= N.getNumOperands())
1999        break;  // Match fails if out of range child #.
2000
2001      RecordedNodes.push_back(N->getOperand(ChildNo));
2002      continue;
2003    }
2004    case OPC_RecordMemRef:
2005      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2006      continue;
2007
2008    case OPC_CaptureFlagInput:
2009      // If the current node has an input flag, capture it in InputFlag.
2010      if (N->getNumOperands() != 0 &&
2011          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2012        InputFlag = N->getOperand(N->getNumOperands()-1);
2013      continue;
2014
2015    case OPC_MoveChild: {
2016      unsigned ChildNo = MatcherTable[MatcherIndex++];
2017      if (ChildNo >= N.getNumOperands())
2018        break;  // Match fails if out of range child #.
2019      N = N.getOperand(ChildNo);
2020      NodeStack.push_back(N);
2021      continue;
2022    }
2023
2024    case OPC_MoveParent:
2025      // Pop the current node off the NodeStack.
2026      NodeStack.pop_back();
2027      assert(!NodeStack.empty() && "Node stack imbalance!");
2028      N = NodeStack.back();
2029      continue;
2030
2031    case OPC_CheckSame:
2032      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2033      continue;
2034    case OPC_CheckPatternPredicate:
2035      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2036      continue;
2037    case OPC_CheckPredicate:
2038      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2039                                N.getNode()))
2040        break;
2041      continue;
2042    case OPC_CheckComplexPat: {
2043      unsigned CPNum = MatcherTable[MatcherIndex++];
2044      unsigned RecNo = MatcherTable[MatcherIndex++];
2045      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2046      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2047                               RecordedNodes))
2048        break;
2049      continue;
2050    }
2051    case OPC_CheckOpcode:
2052      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2053      continue;
2054
2055    case OPC_CheckType:
2056      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2057      continue;
2058
2059    case OPC_SwitchOpcode: {
2060      unsigned CurNodeOpcode = N.getOpcode();
2061      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2062      unsigned CaseSize;
2063      while (1) {
2064        // Get the size of this case.
2065        CaseSize = MatcherTable[MatcherIndex++];
2066        if (CaseSize & 128)
2067          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2068        if (CaseSize == 0) break;
2069
2070        uint16_t Opc = MatcherTable[MatcherIndex++];
2071        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2072
2073        // If the opcode matches, then we will execute this case.
2074        if (CurNodeOpcode == Opc)
2075          break;
2076
2077        // Otherwise, skip over this case.
2078        MatcherIndex += CaseSize;
2079      }
2080
2081      // If no cases matched, bail out.
2082      if (CaseSize == 0) break;
2083
2084      // Otherwise, execute the case we found.
2085      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2086                   << " to " << MatcherIndex << "\n");
2087      continue;
2088    }
2089
2090    case OPC_SwitchType: {
2091      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2092      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2093      unsigned CaseSize;
2094      while (1) {
2095        // Get the size of this case.
2096        CaseSize = MatcherTable[MatcherIndex++];
2097        if (CaseSize & 128)
2098          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2099        if (CaseSize == 0) break;
2100
2101        MVT::SimpleValueType CaseVT =
2102          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2103        if (CaseVT == MVT::iPTR)
2104          CaseVT = TLI.getPointerTy().SimpleTy;
2105
2106        // If the VT matches, then we will execute this case.
2107        if (CurNodeVT == CaseVT)
2108          break;
2109
2110        // Otherwise, skip over this case.
2111        MatcherIndex += CaseSize;
2112      }
2113
2114      // If no cases matched, bail out.
2115      if (CaseSize == 0) break;
2116
2117      // Otherwise, execute the case we found.
2118      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2119                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2120      continue;
2121    }
2122    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2123    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2124    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2125    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2126      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2127                            Opcode-OPC_CheckChild0Type))
2128        break;
2129      continue;
2130    case OPC_CheckCondCode:
2131      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2132      continue;
2133    case OPC_CheckValueType:
2134      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2135      continue;
2136    case OPC_CheckInteger:
2137      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2138      continue;
2139    case OPC_CheckAndImm:
2140      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2141      continue;
2142    case OPC_CheckOrImm:
2143      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2144      continue;
2145
2146    case OPC_CheckFoldableChainNode: {
2147      assert(NodeStack.size() != 1 && "No parent node");
2148      // Verify that all intermediate nodes between the root and this one have
2149      // a single use.
2150      bool HasMultipleUses = false;
2151      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2152        if (!NodeStack[i].hasOneUse()) {
2153          HasMultipleUses = true;
2154          break;
2155        }
2156      if (HasMultipleUses) break;
2157
2158      // Check to see that the target thinks this is profitable to fold and that
2159      // we can fold it without inducing cycles in the graph.
2160      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2161                              NodeToMatch) ||
2162          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2163                         NodeToMatch, OptLevel,
2164                         true/*We validate our own chains*/))
2165        break;
2166
2167      continue;
2168    }
2169    case OPC_EmitInteger: {
2170      MVT::SimpleValueType VT =
2171        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2172      int64_t Val = MatcherTable[MatcherIndex++];
2173      if (Val & 128)
2174        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2175      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2176      continue;
2177    }
2178    case OPC_EmitRegister: {
2179      MVT::SimpleValueType VT =
2180        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2181      unsigned RegNo = MatcherTable[MatcherIndex++];
2182      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2183      continue;
2184    }
2185
2186    case OPC_EmitConvertToTarget:  {
2187      // Convert from IMM/FPIMM to target version.
2188      unsigned RecNo = MatcherTable[MatcherIndex++];
2189      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2190      SDValue Imm = RecordedNodes[RecNo];
2191
2192      if (Imm->getOpcode() == ISD::Constant) {
2193        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2194        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2195      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2196        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2197        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2198      }
2199
2200      RecordedNodes.push_back(Imm);
2201      continue;
2202    }
2203
2204    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2205    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2206      // These are space-optimized forms of OPC_EmitMergeInputChains.
2207      assert(InputChain.getNode() == 0 &&
2208             "EmitMergeInputChains should be the first chain producing node");
2209      assert(ChainNodesMatched.empty() &&
2210             "Should only have one EmitMergeInputChains per match");
2211
2212      // Read all of the chained nodes.
2213      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2214      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2215      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2216
2217      // FIXME: What if other value results of the node have uses not matched
2218      // by this pattern?
2219      if (ChainNodesMatched.back() != NodeToMatch &&
2220          !RecordedNodes[RecNo].hasOneUse()) {
2221        ChainNodesMatched.clear();
2222        break;
2223      }
2224
2225      // Merge the input chains if they are not intra-pattern references.
2226      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2227
2228      if (InputChain.getNode() == 0)
2229        break;  // Failed to merge.
2230      continue;
2231    }
2232
2233    case OPC_EmitMergeInputChains: {
2234      assert(InputChain.getNode() == 0 &&
2235             "EmitMergeInputChains should be the first chain producing node");
2236      // This node gets a list of nodes we matched in the input that have
2237      // chains.  We want to token factor all of the input chains to these nodes
2238      // together.  However, if any of the input chains is actually one of the
2239      // nodes matched in this pattern, then we have an intra-match reference.
2240      // Ignore these because the newly token factored chain should not refer to
2241      // the old nodes.
2242      unsigned NumChains = MatcherTable[MatcherIndex++];
2243      assert(NumChains != 0 && "Can't TF zero chains");
2244
2245      assert(ChainNodesMatched.empty() &&
2246             "Should only have one EmitMergeInputChains per match");
2247
2248      // Read all of the chained nodes.
2249      for (unsigned i = 0; i != NumChains; ++i) {
2250        unsigned RecNo = MatcherTable[MatcherIndex++];
2251        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2252        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2253
2254        // FIXME: What if other value results of the node have uses not matched
2255        // by this pattern?
2256        if (ChainNodesMatched.back() != NodeToMatch &&
2257            !RecordedNodes[RecNo].hasOneUse()) {
2258          ChainNodesMatched.clear();
2259          break;
2260        }
2261      }
2262
2263      // If the inner loop broke out, the match fails.
2264      if (ChainNodesMatched.empty())
2265        break;
2266
2267      // Merge the input chains if they are not intra-pattern references.
2268      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2269
2270      if (InputChain.getNode() == 0)
2271        break;  // Failed to merge.
2272
2273      continue;
2274    }
2275
2276    case OPC_EmitCopyToReg: {
2277      unsigned RecNo = MatcherTable[MatcherIndex++];
2278      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2279      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2280
2281      if (InputChain.getNode() == 0)
2282        InputChain = CurDAG->getEntryNode();
2283
2284      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2285                                        DestPhysReg, RecordedNodes[RecNo],
2286                                        InputFlag);
2287
2288      InputFlag = InputChain.getValue(1);
2289      continue;
2290    }
2291
2292    case OPC_EmitNodeXForm: {
2293      unsigned XFormNo = MatcherTable[MatcherIndex++];
2294      unsigned RecNo = MatcherTable[MatcherIndex++];
2295      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2296      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2297      continue;
2298    }
2299
2300    case OPC_EmitNode:
2301    case OPC_MorphNodeTo: {
2302      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2303      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2304      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2305      // Get the result VT list.
2306      unsigned NumVTs = MatcherTable[MatcherIndex++];
2307      SmallVector<EVT, 4> VTs;
2308      for (unsigned i = 0; i != NumVTs; ++i) {
2309        MVT::SimpleValueType VT =
2310          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2311        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2312        VTs.push_back(VT);
2313      }
2314
2315      if (EmitNodeInfo & OPFL_Chain)
2316        VTs.push_back(MVT::Other);
2317      if (EmitNodeInfo & OPFL_FlagOutput)
2318        VTs.push_back(MVT::Flag);
2319
2320      // This is hot code, so optimize the two most common cases of 1 and 2
2321      // results.
2322      SDVTList VTList;
2323      if (VTs.size() == 1)
2324        VTList = CurDAG->getVTList(VTs[0]);
2325      else if (VTs.size() == 2)
2326        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2327      else
2328        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2329
2330      // Get the operand list.
2331      unsigned NumOps = MatcherTable[MatcherIndex++];
2332      SmallVector<SDValue, 8> Ops;
2333      for (unsigned i = 0; i != NumOps; ++i) {
2334        unsigned RecNo = MatcherTable[MatcherIndex++];
2335        if (RecNo & 128)
2336          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2337
2338        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2339        Ops.push_back(RecordedNodes[RecNo]);
2340      }
2341
2342      // If there are variadic operands to add, handle them now.
2343      if (EmitNodeInfo & OPFL_VariadicInfo) {
2344        // Determine the start index to copy from.
2345        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2346        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2347        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2348               "Invalid variadic node");
2349        // Copy all of the variadic operands, not including a potential flag
2350        // input.
2351        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2352             i != e; ++i) {
2353          SDValue V = NodeToMatch->getOperand(i);
2354          if (V.getValueType() == MVT::Flag) break;
2355          Ops.push_back(V);
2356        }
2357      }
2358
2359      // If this has chain/flag inputs, add them.
2360      if (EmitNodeInfo & OPFL_Chain)
2361        Ops.push_back(InputChain);
2362      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2363        Ops.push_back(InputFlag);
2364
2365      // Create the node.
2366      SDNode *Res = 0;
2367      if (Opcode != OPC_MorphNodeTo) {
2368        // If this is a normal EmitNode command, just create the new node and
2369        // add the results to the RecordedNodes list.
2370        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2371                                     VTList, Ops.data(), Ops.size());
2372
2373        // Add all the non-flag/non-chain results to the RecordedNodes list.
2374        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2375          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2376          RecordedNodes.push_back(SDValue(Res, i));
2377        }
2378
2379      } else {
2380        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2381                        EmitNodeInfo);
2382      }
2383
2384      // If the node had chain/flag results, update our notion of the current
2385      // chain and flag.
2386      if (EmitNodeInfo & OPFL_FlagOutput) {
2387        InputFlag = SDValue(Res, VTs.size()-1);
2388        if (EmitNodeInfo & OPFL_Chain)
2389          InputChain = SDValue(Res, VTs.size()-2);
2390      } else if (EmitNodeInfo & OPFL_Chain)
2391        InputChain = SDValue(Res, VTs.size()-1);
2392
2393      // If the OPFL_MemRefs flag is set on this node, slap all of the
2394      // accumulated memrefs onto it.
2395      //
2396      // FIXME: This is vastly incorrect for patterns with multiple outputs
2397      // instructions that access memory and for ComplexPatterns that match
2398      // loads.
2399      if (EmitNodeInfo & OPFL_MemRefs) {
2400        MachineSDNode::mmo_iterator MemRefs =
2401          MF->allocateMemRefsArray(MatchedMemRefs.size());
2402        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2403        cast<MachineSDNode>(Res)
2404          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2405      }
2406
2407      DEBUG(errs() << "  "
2408                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2409                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2410
2411      // If this was a MorphNodeTo then we're completely done!
2412      if (Opcode == OPC_MorphNodeTo) {
2413        // Update chain and flag uses.
2414        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2415                             InputFlag, FlagResultNodesMatched, true);
2416        return Res;
2417      }
2418
2419      continue;
2420    }
2421
2422    case OPC_MarkFlagResults: {
2423      unsigned NumNodes = MatcherTable[MatcherIndex++];
2424
2425      // Read and remember all the flag-result nodes.
2426      for (unsigned i = 0; i != NumNodes; ++i) {
2427        unsigned RecNo = MatcherTable[MatcherIndex++];
2428        if (RecNo & 128)
2429          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2430
2431        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2432        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2433      }
2434      continue;
2435    }
2436
2437    case OPC_CompleteMatch: {
2438      // The match has been completed, and any new nodes (if any) have been
2439      // created.  Patch up references to the matched dag to use the newly
2440      // created nodes.
2441      unsigned NumResults = MatcherTable[MatcherIndex++];
2442
2443      for (unsigned i = 0; i != NumResults; ++i) {
2444        unsigned ResSlot = MatcherTable[MatcherIndex++];
2445        if (ResSlot & 128)
2446          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2447
2448        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2449        SDValue Res = RecordedNodes[ResSlot];
2450
2451        assert(i < NodeToMatch->getNumValues() &&
2452               NodeToMatch->getValueType(i) != MVT::Other &&
2453               NodeToMatch->getValueType(i) != MVT::Flag &&
2454               "Invalid number of results to complete!");
2455        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2456                NodeToMatch->getValueType(i) == MVT::iPTR ||
2457                Res.getValueType() == MVT::iPTR ||
2458                NodeToMatch->getValueType(i).getSizeInBits() ==
2459                    Res.getValueType().getSizeInBits()) &&
2460               "invalid replacement");
2461        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2462      }
2463
2464      // If the root node defines a flag, add it to the flag nodes to update
2465      // list.
2466      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2467        FlagResultNodesMatched.push_back(NodeToMatch);
2468
2469      // Update chain and flag uses.
2470      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2471                           InputFlag, FlagResultNodesMatched, false);
2472
2473      assert(NodeToMatch->use_empty() &&
2474             "Didn't replace all uses of the node?");
2475
2476      // FIXME: We just return here, which interacts correctly with SelectRoot
2477      // above.  We should fix this to not return an SDNode* anymore.
2478      return 0;
2479    }
2480    }
2481
2482    // If the code reached this point, then the match failed.  See if there is
2483    // another child to try in the current 'Scope', otherwise pop it until we
2484    // find a case to check.
2485    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2486    ++NumDAGIselRetries;
2487    while (1) {
2488      if (MatchScopes.empty()) {
2489        CannotYetSelect(NodeToMatch);
2490        return 0;
2491      }
2492
2493      // Restore the interpreter state back to the point where the scope was
2494      // formed.
2495      MatchScope &LastScope = MatchScopes.back();
2496      RecordedNodes.resize(LastScope.NumRecordedNodes);
2497      NodeStack.clear();
2498      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2499      N = NodeStack.back();
2500
2501      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2502        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2503      MatcherIndex = LastScope.FailIndex;
2504
2505      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2506
2507      InputChain = LastScope.InputChain;
2508      InputFlag = LastScope.InputFlag;
2509      if (!LastScope.HasChainNodesMatched)
2510        ChainNodesMatched.clear();
2511      if (!LastScope.HasFlagResultNodesMatched)
2512        FlagResultNodesMatched.clear();
2513
2514      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2515      // we have reached the end of this scope, otherwise we have another child
2516      // in the current scope to try.
2517      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2518      if (NumToSkip & 128)
2519        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2520
2521      // If we have another child in this scope to match, update FailIndex and
2522      // try it.
2523      if (NumToSkip != 0) {
2524        LastScope.FailIndex = MatcherIndex+NumToSkip;
2525        break;
2526      }
2527
2528      // End of this scope, pop it and try the next child in the containing
2529      // scope.
2530      MatchScopes.pop_back();
2531    }
2532  }
2533}
2534
2535
2536
2537void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2538  std::string msg;
2539  raw_string_ostream Msg(msg);
2540  Msg << "Cannot yet select: ";
2541
2542  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2543      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2544      N->getOpcode() != ISD::INTRINSIC_VOID) {
2545    N->printrFull(Msg, CurDAG);
2546  } else {
2547    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2548    unsigned iid =
2549      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2550    if (iid < Intrinsic::num_intrinsics)
2551      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2552    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2553      Msg << "target intrinsic %" << TII->getName(iid);
2554    else
2555      Msg << "unknown intrinsic #" << iid;
2556  }
2557  report_fatal_error(Msg.str());
2558}
2559
2560char SelectionDAGISel::ID = 0;
2561