SelectionDAGISel.cpp revision 8b797f5ab7527c243fa1d1310c083100ca6bdd9b
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuild.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineFunctionAnalysis.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39#include "llvm/CodeGen/SchedulerRegistry.h"
40#include "llvm/CodeGen/SelectionDAG.h"
41#include "llvm/CodeGen/DwarfWriter.h"
42#include "llvm/Target/TargetRegisterInfo.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Target/TargetFrameInfo.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetLowering.h"
47#include "llvm/Target/TargetMachine.h"
48#include "llvm/Target/TargetOptions.h"
49#include "llvm/Support/Compiler.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/Timer.h"
54#include "llvm/Support/raw_ostream.h"
55#include <algorithm>
56using namespace llvm;
57
58static cl::opt<bool>
59DisableLegalizeTypes("disable-legalize-types", cl::Hidden);
60static cl::opt<bool>
61EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
62          cl::desc("Enable verbose messages in the \"fast\" "
63                   "instruction selector"));
64static cl::opt<bool>
65EnableFastISelAbort("fast-isel-abort", cl::Hidden,
66          cl::desc("Enable abort calls when \"fast\" instruction fails"));
67static cl::opt<bool>
68SchedLiveInCopies("schedule-livein-copies",
69                  cl::desc("Schedule copies of livein registers"),
70                  cl::init(false));
71
72#ifndef NDEBUG
73static cl::opt<bool>
74ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
75          cl::desc("Pop up a window to show dags before the first "
76                   "dag combine pass"));
77static cl::opt<bool>
78ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before legalize types"));
80static cl::opt<bool>
81ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
82          cl::desc("Pop up a window to show dags before legalize"));
83static cl::opt<bool>
84ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
85          cl::desc("Pop up a window to show dags before the second "
86                   "dag combine pass"));
87static cl::opt<bool>
88ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
89          cl::desc("Pop up a window to show dags before the post legalize types"
90                   " dag combine pass"));
91static cl::opt<bool>
92ViewISelDAGs("view-isel-dags", cl::Hidden,
93          cl::desc("Pop up a window to show isel dags as they are selected"));
94static cl::opt<bool>
95ViewSchedDAGs("view-sched-dags", cl::Hidden,
96          cl::desc("Pop up a window to show sched dags as they are processed"));
97static cl::opt<bool>
98ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
99      cl::desc("Pop up a window to show SUnit dags after they are processed"));
100#else
101static const bool ViewDAGCombine1 = false,
102                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
103                  ViewDAGCombine2 = false,
104                  ViewDAGCombineLT = false,
105                  ViewISelDAGs = false, ViewSchedDAGs = false,
106                  ViewSUnitDAGs = false;
107#endif
108
109//===---------------------------------------------------------------------===//
110///
111/// RegisterScheduler class - Track the registration of instruction schedulers.
112///
113//===---------------------------------------------------------------------===//
114MachinePassRegistry RegisterScheduler::Registry;
115
116//===---------------------------------------------------------------------===//
117///
118/// ISHeuristic command line option for instruction schedulers.
119///
120//===---------------------------------------------------------------------===//
121static cl::opt<RegisterScheduler::FunctionPassCtor, false,
122               RegisterPassParser<RegisterScheduler> >
123ISHeuristic("pre-RA-sched",
124            cl::init(&createDefaultScheduler),
125            cl::desc("Instruction schedulers available (before register"
126                     " allocation):"));
127
128static RegisterScheduler
129defaultListDAGScheduler("default", "Best scheduler for the target",
130                        createDefaultScheduler);
131
132namespace llvm {
133  //===--------------------------------------------------------------------===//
134  /// createDefaultScheduler - This creates an instruction scheduler appropriate
135  /// for the target.
136  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
137                                             CodeGenOpt::Level OptLevel) {
138    const TargetLowering &TLI = IS->getTargetLowering();
139
140    if (OptLevel == CodeGenOpt::None)
141      return createFastDAGScheduler(IS, OptLevel);
142    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
143      return createTDListDAGScheduler(IS, OptLevel);
144    assert(TLI.getSchedulingPreference() ==
145         TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
146    return createBURRListDAGScheduler(IS, OptLevel);
147  }
148}
149
150// EmitInstrWithCustomInserter - This method should be implemented by targets
151// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
152// instructions are special in various ways, which require special support to
153// insert.  The specified MachineInstr is created but not inserted into any
154// basic blocks, and the scheduler passes ownership of it to this method.
155MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
156                                                 MachineBasicBlock *MBB) const {
157#ifndef NDEBUG
158  cerr << "If a target marks an instruction with "
159          "'usesCustomDAGSchedInserter', it must implement "
160          "TargetLowering::EmitInstrWithCustomInserter!";
161#endif
162  llvm_unreachable(0);
163  return 0;
164}
165
166/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
167/// physical register has only a single copy use, then coalesced the copy
168/// if possible.
169static void EmitLiveInCopy(MachineBasicBlock *MBB,
170                           MachineBasicBlock::iterator &InsertPos,
171                           unsigned VirtReg, unsigned PhysReg,
172                           const TargetRegisterClass *RC,
173                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
174                           const MachineRegisterInfo &MRI,
175                           const TargetRegisterInfo &TRI,
176                           const TargetInstrInfo &TII) {
177  unsigned NumUses = 0;
178  MachineInstr *UseMI = NULL;
179  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
180         UE = MRI.use_end(); UI != UE; ++UI) {
181    UseMI = &*UI;
182    if (++NumUses > 1)
183      break;
184  }
185
186  // If the number of uses is not one, or the use is not a move instruction,
187  // don't coalesce. Also, only coalesce away a virtual register to virtual
188  // register copy.
189  bool Coalesced = false;
190  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
191  if (NumUses == 1 &&
192      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
193      TargetRegisterInfo::isVirtualRegister(DstReg)) {
194    VirtReg = DstReg;
195    Coalesced = true;
196  }
197
198  // Now find an ideal location to insert the copy.
199  MachineBasicBlock::iterator Pos = InsertPos;
200  while (Pos != MBB->begin()) {
201    MachineInstr *PrevMI = prior(Pos);
202    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
203    // copyRegToReg might emit multiple instructions to do a copy.
204    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
205    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
206      // This is what the BB looks like right now:
207      // r1024 = mov r0
208      // ...
209      // r1    = mov r1024
210      //
211      // We want to insert "r1025 = mov r1". Inserting this copy below the
212      // move to r1024 makes it impossible for that move to be coalesced.
213      //
214      // r1025 = mov r1
215      // r1024 = mov r0
216      // ...
217      // r1    = mov 1024
218      // r2    = mov 1025
219      break; // Woot! Found a good location.
220    --Pos;
221  }
222
223  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
224  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
225  (void) Emitted;
226
227CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
228  if (Coalesced) {
229    if (&*InsertPos == UseMI) ++InsertPos;
230    MBB->erase(UseMI);
231  }
232}
233
234/// EmitLiveInCopies - If this is the first basic block in the function,
235/// and if it has live ins that need to be copied into vregs, emit the
236/// copies into the block.
237static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
238                             const MachineRegisterInfo &MRI,
239                             const TargetRegisterInfo &TRI,
240                             const TargetInstrInfo &TII) {
241  if (SchedLiveInCopies) {
242    // Emit the copies at a heuristically-determined location in the block.
243    DenseMap<MachineInstr*, unsigned> CopyRegMap;
244    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
245    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
246           E = MRI.livein_end(); LI != E; ++LI)
247      if (LI->second) {
248        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
249        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
250                       RC, CopyRegMap, MRI, TRI, TII);
251      }
252  } else {
253    // Emit the copies into the top of the block.
254    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
255           E = MRI.livein_end(); LI != E; ++LI)
256      if (LI->second) {
257        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
258        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
259                                        LI->second, LI->first, RC, RC);
260        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
261        (void) Emitted;
262      }
263  }
264}
265
266//===----------------------------------------------------------------------===//
267// SelectionDAGISel code
268//===----------------------------------------------------------------------===//
269
270SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
271  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
272  FuncInfo(new FunctionLoweringInfo(TLI)),
273  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
274  SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo, OL)),
275  GFI(),
276  OptLevel(OL),
277  DAGSize(0)
278{}
279
280SelectionDAGISel::~SelectionDAGISel() {
281  delete SDL;
282  delete CurDAG;
283  delete FuncInfo;
284}
285
286unsigned SelectionDAGISel::MakeReg(MVT VT) {
287  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
288}
289
290void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
291  AU.addRequired<AliasAnalysis>();
292  AU.addPreserved<AliasAnalysis>();
293  AU.addRequired<GCModuleInfo>();
294  AU.addPreserved<GCModuleInfo>();
295  AU.addRequired<DwarfWriter>();
296  AU.addPreserved<DwarfWriter>();
297  MachineFunctionPass::getAnalysisUsage(AU);
298}
299
300bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
301  Function &Fn = *mf.getFunction();
302
303  // Do some sanity-checking on the command-line options.
304  assert((!EnableFastISelVerbose || EnableFastISel) &&
305         "-fast-isel-verbose requires -fast-isel");
306  assert((!EnableFastISelAbort || EnableFastISel) &&
307         "-fast-isel-abort requires -fast-isel");
308
309  // Get alias analysis for load/store combining.
310  AA = &getAnalysis<AliasAnalysis>();
311
312  MF = &mf;
313  const TargetInstrInfo &TII = *TM.getInstrInfo();
314  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
315
316  if (Fn.hasGC())
317    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
318  else
319    GFI = 0;
320  RegInfo = &MF->getRegInfo();
321  DEBUG(errs() << "\n\n\n=== " << Fn.getName() << "\n");
322
323  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
324  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
325  CurDAG->init(*MF, MMI, DW);
326  FuncInfo->set(Fn, *MF, *CurDAG, EnableFastISel);
327  SDL->init(GFI, *AA);
328
329  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
330    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
331      // Mark landing pad.
332      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
333
334  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
335
336  // If the first basic block in the function has live ins that need to be
337  // copied into vregs, emit the copies into the top of the block before
338  // emitting the code for the block.
339  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
340
341  // Add function live-ins to entry block live-in set.
342  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
343         E = RegInfo->livein_end(); I != E; ++I)
344    MF->begin()->addLiveIn(I->first);
345
346#ifndef NDEBUG
347  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
348         "Not all catch info was assigned to a landing pad!");
349#endif
350
351  FuncInfo->clear();
352
353  return true;
354}
355
356static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
357                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
358  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
359    if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
360      // Apply the catch info to DestBB.
361      AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
362#ifndef NDEBUG
363      if (!FLI.MBBMap[SrcBB]->isLandingPad())
364        FLI.CatchInfoFound.insert(EHSel);
365#endif
366    }
367}
368
369/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
370/// whether object offset >= 0.
371static bool
372IsFixedFrameObjectWithPosOffset(MachineFrameInfo *MFI, SDValue Op) {
373  if (!isa<FrameIndexSDNode>(Op)) return false;
374
375  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
376  int FrameIdx =  FrameIdxNode->getIndex();
377  return MFI->isFixedObjectIndex(FrameIdx) &&
378    MFI->getObjectOffset(FrameIdx) >= 0;
379}
380
381/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
382/// possibly be overwritten when lowering the outgoing arguments in a tail
383/// call. Currently the implementation of this call is very conservative and
384/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
385/// virtual registers would be overwritten by direct lowering.
386static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
387                                                    MachineFrameInfo *MFI) {
388  RegisterSDNode * OpReg = NULL;
389  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
390      (Op.getOpcode()== ISD::CopyFromReg &&
391       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
392       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
393      (Op.getOpcode() == ISD::LOAD &&
394       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
395      (Op.getOpcode() == ISD::MERGE_VALUES &&
396       Op.getOperand(Op.getResNo()).getOpcode() == ISD::LOAD &&
397       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.getResNo()).
398                                       getOperand(1))))
399    return true;
400  return false;
401}
402
403/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
404/// DAG and fixes their tailcall attribute operand.
405static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
406                                           const TargetLowering& TLI) {
407  SDNode * Ret = NULL;
408  SDValue Terminator = DAG.getRoot();
409
410  // Find RET node.
411  if (Terminator.getOpcode() == ISD::RET) {
412    Ret = Terminator.getNode();
413  }
414
415  // Fix tail call attribute of CALL nodes.
416  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
417         BI = DAG.allnodes_end(); BI != BE; ) {
418    --BI;
419    if (CallSDNode *TheCall = dyn_cast<CallSDNode>(BI)) {
420      SDValue OpRet(Ret, 0);
421      SDValue OpCall(BI, 0);
422      bool isMarkedTailCall = TheCall->isTailCall();
423      // If CALL node has tail call attribute set to true and the call is not
424      // eligible (no RET or the target rejects) the attribute is fixed to
425      // false. The TargetLowering::IsEligibleForTailCallOptimization function
426      // must correctly identify tail call optimizable calls.
427      if (!isMarkedTailCall) continue;
428      if (Ret==NULL ||
429          !TLI.IsEligibleForTailCallOptimization(TheCall, OpRet, DAG)) {
430        // Not eligible. Mark CALL node as non tail call. Note that we
431        // can modify the call node in place since calls are not CSE'd.
432        TheCall->setNotTailCall();
433      } else {
434        // Look for tail call clobbered arguments. Emit a series of
435        // copyto/copyfrom virtual register nodes to protect them.
436        SmallVector<SDValue, 32> Ops;
437        SDValue Chain = TheCall->getChain(), InFlag;
438        Ops.push_back(Chain);
439        Ops.push_back(TheCall->getCallee());
440        for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; ++i) {
441          SDValue Arg = TheCall->getArg(i);
442          bool isByVal = TheCall->getArgFlags(i).isByVal();
443          MachineFunction &MF = DAG.getMachineFunction();
444          MachineFrameInfo *MFI = MF.getFrameInfo();
445          if (!isByVal &&
446              IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
447            MVT VT = Arg.getValueType();
448            unsigned VReg = MF.getRegInfo().
449              createVirtualRegister(TLI.getRegClassFor(VT));
450            Chain = DAG.getCopyToReg(Chain, Arg.getDebugLoc(),
451                                     VReg, Arg, InFlag);
452            InFlag = Chain.getValue(1);
453            Arg = DAG.getCopyFromReg(Chain, Arg.getDebugLoc(),
454                                     VReg, VT, InFlag);
455            Chain = Arg.getValue(1);
456            InFlag = Arg.getValue(2);
457          }
458          Ops.push_back(Arg);
459          Ops.push_back(TheCall->getArgFlagsVal(i));
460        }
461        // Link in chain of CopyTo/CopyFromReg.
462        Ops[0] = Chain;
463        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
464      }
465    }
466  }
467}
468
469void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
470                                        BasicBlock::iterator Begin,
471                                        BasicBlock::iterator End) {
472  SDL->setCurrentBasicBlock(BB);
473
474  // Lower all of the non-terminator instructions.
475  for (BasicBlock::iterator I = Begin; I != End; ++I)
476    if (!isa<TerminatorInst>(I))
477      SDL->visit(*I);
478
479  // Ensure that all instructions which are used outside of their defining
480  // blocks are available as virtual registers.  Invoke is handled elsewhere.
481  for (BasicBlock::iterator I = Begin; I != End; ++I)
482    if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
483      SDL->CopyToExportRegsIfNeeded(I);
484
485  // Handle PHI nodes in successor blocks.
486  if (End == LLVMBB->end()) {
487    HandlePHINodesInSuccessorBlocks(LLVMBB);
488
489    // Lower the terminator after the copies are emitted.
490    SDL->visit(*LLVMBB->getTerminator());
491  }
492
493  // Make sure the root of the DAG is up-to-date.
494  CurDAG->setRoot(SDL->getControlRoot());
495
496  // Check whether calls in this block are real tail calls. Fix up CALL nodes
497  // with correct tailcall attribute so that the target can rely on the tailcall
498  // attribute indicating whether the call is really eligible for tail call
499  // optimization.
500  if (PerformTailCallOpt)
501    CheckDAGForTailCallsAndFixThem(*CurDAG, TLI);
502
503  // Final step, emit the lowered DAG as machine code.
504  CodeGenAndEmitDAG();
505  SDL->clear();
506}
507
508void SelectionDAGISel::ComputeLiveOutVRegInfo() {
509  SmallPtrSet<SDNode*, 128> VisitedNodes;
510  SmallVector<SDNode*, 128> Worklist;
511
512  Worklist.push_back(CurDAG->getRoot().getNode());
513
514  APInt Mask;
515  APInt KnownZero;
516  APInt KnownOne;
517
518  while (!Worklist.empty()) {
519    SDNode *N = Worklist.back();
520    Worklist.pop_back();
521
522    // If we've already seen this node, ignore it.
523    if (!VisitedNodes.insert(N))
524      continue;
525
526    // Otherwise, add all chain operands to the worklist.
527    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
528      if (N->getOperand(i).getValueType() == MVT::Other)
529        Worklist.push_back(N->getOperand(i).getNode());
530
531    // If this is a CopyToReg with a vreg dest, process it.
532    if (N->getOpcode() != ISD::CopyToReg)
533      continue;
534
535    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
536    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
537      continue;
538
539    // Ignore non-scalar or non-integer values.
540    SDValue Src = N->getOperand(2);
541    MVT SrcVT = Src.getValueType();
542    if (!SrcVT.isInteger() || SrcVT.isVector())
543      continue;
544
545    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
546    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
547    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
548
549    // Only install this information if it tells us something.
550    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
551      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
552      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
553        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
554      FunctionLoweringInfo::LiveOutInfo &LOI =
555        FuncInfo->LiveOutRegInfo[DestReg];
556      LOI.NumSignBits = NumSignBits;
557      LOI.KnownOne = KnownOne;
558      LOI.KnownZero = KnownZero;
559    }
560  }
561}
562
563void SelectionDAGISel::CodeGenAndEmitDAG() {
564  std::string GroupName;
565  if (TimePassesIsEnabled)
566    GroupName = "Instruction Selection and Scheduling";
567  std::string BlockName;
568  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
569      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
570      ViewSUnitDAGs)
571    BlockName = MF->getFunction()->getNameStr() + ":" +
572                BB->getBasicBlock()->getNameStr();
573
574  DOUT << "Initial selection DAG:\n";
575  DEBUG(CurDAG->dump());
576
577  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
578
579  // Run the DAG combiner in pre-legalize mode.
580  if (TimePassesIsEnabled) {
581    NamedRegionTimer T("DAG Combining 1", GroupName);
582    CurDAG->Combine(Unrestricted, *AA, OptLevel);
583  } else {
584    CurDAG->Combine(Unrestricted, *AA, OptLevel);
585  }
586
587  DOUT << "Optimized lowered selection DAG:\n";
588  DEBUG(CurDAG->dump());
589
590  // Second step, hack on the DAG until it only uses operations and types that
591  // the target supports.
592  if (!DisableLegalizeTypes) {
593    if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
594                                                 BlockName);
595
596    bool Changed;
597    if (TimePassesIsEnabled) {
598      NamedRegionTimer T("Type Legalization", GroupName);
599      Changed = CurDAG->LegalizeTypes();
600    } else {
601      Changed = CurDAG->LegalizeTypes();
602    }
603
604    DOUT << "Type-legalized selection DAG:\n";
605    DEBUG(CurDAG->dump());
606
607    if (Changed) {
608      if (ViewDAGCombineLT)
609        CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
610
611      // Run the DAG combiner in post-type-legalize mode.
612      if (TimePassesIsEnabled) {
613        NamedRegionTimer T("DAG Combining after legalize types", GroupName);
614        CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
615      } else {
616        CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
617      }
618
619      DOUT << "Optimized type-legalized selection DAG:\n";
620      DEBUG(CurDAG->dump());
621    }
622
623    if (TimePassesIsEnabled) {
624      NamedRegionTimer T("Vector Legalization", GroupName);
625      Changed = CurDAG->LegalizeVectors();
626    } else {
627      Changed = CurDAG->LegalizeVectors();
628    }
629
630    if (Changed) {
631      if (TimePassesIsEnabled) {
632        NamedRegionTimer T("Type Legalization 2", GroupName);
633        Changed = CurDAG->LegalizeTypes();
634      } else {
635        Changed = CurDAG->LegalizeTypes();
636      }
637
638      if (ViewDAGCombineLT)
639        CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
640
641      // Run the DAG combiner in post-type-legalize mode.
642      if (TimePassesIsEnabled) {
643        NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
644        CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
645      } else {
646        CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
647      }
648
649      DOUT << "Optimized vector-legalized selection DAG:\n";
650      DEBUG(CurDAG->dump());
651    }
652  }
653
654  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
655
656  if (TimePassesIsEnabled) {
657    NamedRegionTimer T("DAG Legalization", GroupName);
658    CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
659  } else {
660    CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
661  }
662
663  DOUT << "Legalized selection DAG:\n";
664  DEBUG(CurDAG->dump());
665
666  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
667
668  // Run the DAG combiner in post-legalize mode.
669  if (TimePassesIsEnabled) {
670    NamedRegionTimer T("DAG Combining 2", GroupName);
671    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
672  } else {
673    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
674  }
675
676  DOUT << "Optimized legalized selection DAG:\n";
677  DEBUG(CurDAG->dump());
678
679  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
680
681  if (OptLevel != CodeGenOpt::None)
682    ComputeLiveOutVRegInfo();
683
684  // Third, instruction select all of the operations to machine code, adding the
685  // code to the MachineBasicBlock.
686  if (TimePassesIsEnabled) {
687    NamedRegionTimer T("Instruction Selection", GroupName);
688    InstructionSelect();
689  } else {
690    InstructionSelect();
691  }
692
693  DOUT << "Selected selection DAG:\n";
694  DEBUG(CurDAG->dump());
695
696  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
697
698  // Schedule machine code.
699  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
700  if (TimePassesIsEnabled) {
701    NamedRegionTimer T("Instruction Scheduling", GroupName);
702    Scheduler->Run(CurDAG, BB, BB->end());
703  } else {
704    Scheduler->Run(CurDAG, BB, BB->end());
705  }
706
707  if (ViewSUnitDAGs) Scheduler->viewGraph();
708
709  // Emit machine code to BB.  This can change 'BB' to the last block being
710  // inserted into.
711  if (TimePassesIsEnabled) {
712    NamedRegionTimer T("Instruction Creation", GroupName);
713    BB = Scheduler->EmitSchedule();
714  } else {
715    BB = Scheduler->EmitSchedule();
716  }
717
718  // Free the scheduler state.
719  if (TimePassesIsEnabled) {
720    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
721    delete Scheduler;
722  } else {
723    delete Scheduler;
724  }
725
726  DOUT << "Selected machine code:\n";
727  DEBUG(BB->dump());
728}
729
730void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
731                                            MachineFunction &MF,
732                                            MachineModuleInfo *MMI,
733                                            DwarfWriter *DW,
734                                            const TargetInstrInfo &TII) {
735  // Initialize the Fast-ISel state, if needed.
736  FastISel *FastIS = 0;
737  if (EnableFastISel)
738    FastIS = TLI.createFastISel(MF, MMI, DW,
739                                FuncInfo->ValueMap,
740                                FuncInfo->MBBMap,
741                                FuncInfo->StaticAllocaMap
742#ifndef NDEBUG
743                                , FuncInfo->CatchInfoLost
744#endif
745                                );
746
747  // Iterate over all basic blocks in the function.
748  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
749    BasicBlock *LLVMBB = &*I;
750    BB = FuncInfo->MBBMap[LLVMBB];
751
752    BasicBlock::iterator const Begin = LLVMBB->begin();
753    BasicBlock::iterator const End = LLVMBB->end();
754    BasicBlock::iterator BI = Begin;
755
756    // Lower any arguments needed in this block if this is the entry block.
757    bool SuppressFastISel = false;
758    if (LLVMBB == &Fn.getEntryBlock()) {
759      LowerArguments(LLVMBB);
760
761      // If any of the arguments has the byval attribute, forgo
762      // fast-isel in the entry block.
763      if (FastIS) {
764        unsigned j = 1;
765        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
766             I != E; ++I, ++j)
767          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
768            if (EnableFastISelVerbose || EnableFastISelAbort)
769              cerr << "FastISel skips entry block due to byval argument\n";
770            SuppressFastISel = true;
771            break;
772          }
773      }
774    }
775
776    if (MMI && BB->isLandingPad()) {
777      // Add a label to mark the beginning of the landing pad.  Deletion of the
778      // landing pad can thus be detected via the MachineModuleInfo.
779      unsigned LabelID = MMI->addLandingPad(BB);
780
781      const TargetInstrDesc &II = TII.get(TargetInstrInfo::EH_LABEL);
782      BuildMI(BB, SDL->getCurDebugLoc(), II).addImm(LabelID);
783
784      // Mark exception register as live in.
785      unsigned Reg = TLI.getExceptionAddressRegister();
786      if (Reg) BB->addLiveIn(Reg);
787
788      // Mark exception selector register as live in.
789      Reg = TLI.getExceptionSelectorRegister();
790      if (Reg) BB->addLiveIn(Reg);
791
792      // FIXME: Hack around an exception handling flaw (PR1508): the personality
793      // function and list of typeids logically belong to the invoke (or, if you
794      // like, the basic block containing the invoke), and need to be associated
795      // with it in the dwarf exception handling tables.  Currently however the
796      // information is provided by an intrinsic (eh.selector) that can be moved
797      // to unexpected places by the optimizers: if the unwind edge is critical,
798      // then breaking it can result in the intrinsics being in the successor of
799      // the landing pad, not the landing pad itself.  This results in exceptions
800      // not being caught because no typeids are associated with the invoke.
801      // This may not be the only way things can go wrong, but it is the only way
802      // we try to work around for the moment.
803      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
804
805      if (Br && Br->isUnconditional()) { // Critical edge?
806        BasicBlock::iterator I, E;
807        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
808          if (isa<EHSelectorInst>(I))
809            break;
810
811        if (I == E)
812          // No catch info found - try to extract some from the successor.
813          copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
814      }
815    }
816
817    // Before doing SelectionDAG ISel, see if FastISel has been requested.
818    if (FastIS && !SuppressFastISel) {
819      // Emit code for any incoming arguments. This must happen before
820      // beginning FastISel on the entry block.
821      if (LLVMBB == &Fn.getEntryBlock()) {
822        CurDAG->setRoot(SDL->getControlRoot());
823        CodeGenAndEmitDAG();
824        SDL->clear();
825      }
826      FastIS->startNewBlock(BB);
827      // Do FastISel on as many instructions as possible.
828      for (; BI != End; ++BI) {
829        // Just before the terminator instruction, insert instructions to
830        // feed PHI nodes in successor blocks.
831        if (isa<TerminatorInst>(BI))
832          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
833            if (EnableFastISelVerbose || EnableFastISelAbort) {
834              cerr << "FastISel miss: ";
835              BI->dump();
836            }
837            assert(!EnableFastISelAbort &&
838                   "FastISel didn't handle a PHI in a successor");
839            break;
840          }
841
842        // First try normal tablegen-generated "fast" selection.
843        if (FastIS->SelectInstruction(BI))
844          continue;
845
846        // Next, try calling the target to attempt to handle the instruction.
847        if (FastIS->TargetSelectInstruction(BI))
848          continue;
849
850        // Then handle certain instructions as single-LLVM-Instruction blocks.
851        if (isa<CallInst>(BI)) {
852          if (EnableFastISelVerbose || EnableFastISelAbort) {
853            cerr << "FastISel missed call: ";
854            BI->dump();
855          }
856
857          if (BI->getType() != Type::VoidTy) {
858            unsigned &R = FuncInfo->ValueMap[BI];
859            if (!R)
860              R = FuncInfo->CreateRegForValue(BI);
861          }
862
863          SDL->setCurDebugLoc(FastIS->getCurDebugLoc());
864          SelectBasicBlock(LLVMBB, BI, next(BI));
865          // If the instruction was codegen'd with multiple blocks,
866          // inform the FastISel object where to resume inserting.
867          FastIS->setCurrentBlock(BB);
868          continue;
869        }
870
871        // Otherwise, give up on FastISel for the rest of the block.
872        // For now, be a little lenient about non-branch terminators.
873        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
874          if (EnableFastISelVerbose || EnableFastISelAbort) {
875            cerr << "FastISel miss: ";
876            BI->dump();
877          }
878          if (EnableFastISelAbort)
879            // The "fast" selector couldn't handle something and bailed.
880            // For the purpose of debugging, just abort.
881            llvm_unreachable("FastISel didn't select the entire block");
882        }
883        break;
884      }
885    }
886
887    // Run SelectionDAG instruction selection on the remainder of the block
888    // not handled by FastISel. If FastISel is not run, this is the entire
889    // block.
890    if (BI != End) {
891      // If FastISel is run and it has known DebugLoc then use it.
892      if (FastIS && !FastIS->getCurDebugLoc().isUnknown())
893        SDL->setCurDebugLoc(FastIS->getCurDebugLoc());
894      SelectBasicBlock(LLVMBB, BI, End);
895    }
896
897    FinishBasicBlock();
898  }
899
900  delete FastIS;
901}
902
903void
904SelectionDAGISel::FinishBasicBlock() {
905
906  DOUT << "Target-post-processed machine code:\n";
907  DEBUG(BB->dump());
908
909  DOUT << "Total amount of phi nodes to update: "
910       << SDL->PHINodesToUpdate.size() << "\n";
911  DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
912          DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
913               << ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
914
915  // Next, now that we know what the last MBB the LLVM BB expanded is, update
916  // PHI nodes in successors.
917  if (SDL->SwitchCases.empty() &&
918      SDL->JTCases.empty() &&
919      SDL->BitTestCases.empty()) {
920    for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
921      MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
922      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
923             "This is not a machine PHI node that we are updating!");
924      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
925                                                false));
926      PHI->addOperand(MachineOperand::CreateMBB(BB));
927    }
928    SDL->PHINodesToUpdate.clear();
929    return;
930  }
931
932  for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) {
933    // Lower header first, if it wasn't already lowered
934    if (!SDL->BitTestCases[i].Emitted) {
935      // Set the current basic block to the mbb we wish to insert the code into
936      BB = SDL->BitTestCases[i].Parent;
937      SDL->setCurrentBasicBlock(BB);
938      // Emit the code
939      SDL->visitBitTestHeader(SDL->BitTestCases[i]);
940      CurDAG->setRoot(SDL->getRoot());
941      CodeGenAndEmitDAG();
942      SDL->clear();
943    }
944
945    for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
946      // Set the current basic block to the mbb we wish to insert the code into
947      BB = SDL->BitTestCases[i].Cases[j].ThisBB;
948      SDL->setCurrentBasicBlock(BB);
949      // Emit the code
950      if (j+1 != ej)
951        SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB,
952                              SDL->BitTestCases[i].Reg,
953                              SDL->BitTestCases[i].Cases[j]);
954      else
955        SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
956                              SDL->BitTestCases[i].Reg,
957                              SDL->BitTestCases[i].Cases[j]);
958
959
960      CurDAG->setRoot(SDL->getRoot());
961      CodeGenAndEmitDAG();
962      SDL->clear();
963    }
964
965    // Update PHI Nodes
966    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
967      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
968      MachineBasicBlock *PHIBB = PHI->getParent();
969      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
970             "This is not a machine PHI node that we are updating!");
971      // This is "default" BB. We have two jumps to it. From "header" BB and
972      // from last "case" BB.
973      if (PHIBB == SDL->BitTestCases[i].Default) {
974        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
975                                                  false));
976        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent));
977        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
978                                                  false));
979        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases.
980                                                  back().ThisBB));
981      }
982      // One of "cases" BB.
983      for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size();
984           j != ej; ++j) {
985        MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB;
986        if (cBB->succ_end() !=
987            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
988          PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
989                                                    false));
990          PHI->addOperand(MachineOperand::CreateMBB(cBB));
991        }
992      }
993    }
994  }
995  SDL->BitTestCases.clear();
996
997  // If the JumpTable record is filled in, then we need to emit a jump table.
998  // Updating the PHI nodes is tricky in this case, since we need to determine
999  // whether the PHI is a successor of the range check MBB or the jump table MBB
1000  for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) {
1001    // Lower header first, if it wasn't already lowered
1002    if (!SDL->JTCases[i].first.Emitted) {
1003      // Set the current basic block to the mbb we wish to insert the code into
1004      BB = SDL->JTCases[i].first.HeaderBB;
1005      SDL->setCurrentBasicBlock(BB);
1006      // Emit the code
1007      SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first);
1008      CurDAG->setRoot(SDL->getRoot());
1009      CodeGenAndEmitDAG();
1010      SDL->clear();
1011    }
1012
1013    // Set the current basic block to the mbb we wish to insert the code into
1014    BB = SDL->JTCases[i].second.MBB;
1015    SDL->setCurrentBasicBlock(BB);
1016    // Emit the code
1017    SDL->visitJumpTable(SDL->JTCases[i].second);
1018    CurDAG->setRoot(SDL->getRoot());
1019    CodeGenAndEmitDAG();
1020    SDL->clear();
1021
1022    // Update PHI Nodes
1023    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
1024      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
1025      MachineBasicBlock *PHIBB = PHI->getParent();
1026      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
1027             "This is not a machine PHI node that we are updating!");
1028      // "default" BB. We can go there only from header BB.
1029      if (PHIBB == SDL->JTCases[i].second.Default) {
1030        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
1031                                                  false));
1032        PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
1033      }
1034      // JT BB. Just iterate over successors here
1035      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
1036        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
1037                                                  false));
1038        PHI->addOperand(MachineOperand::CreateMBB(BB));
1039      }
1040    }
1041  }
1042  SDL->JTCases.clear();
1043
1044  // If the switch block involved a branch to one of the actual successors, we
1045  // need to update PHI nodes in that block.
1046  for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
1047    MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
1048    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
1049           "This is not a machine PHI node that we are updating!");
1050    if (BB->isSuccessor(PHI->getParent())) {
1051      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
1052                                                false));
1053      PHI->addOperand(MachineOperand::CreateMBB(BB));
1054    }
1055  }
1056
1057  // If we generated any switch lowering information, build and codegen any
1058  // additional DAGs necessary.
1059  for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
1060    // Set the current basic block to the mbb we wish to insert the code into
1061    BB = SDL->SwitchCases[i].ThisBB;
1062    SDL->setCurrentBasicBlock(BB);
1063
1064    // Emit the code
1065    SDL->visitSwitchCase(SDL->SwitchCases[i]);
1066    CurDAG->setRoot(SDL->getRoot());
1067    CodeGenAndEmitDAG();
1068    SDL->clear();
1069
1070    // Handle any PHI nodes in successors of this chunk, as if we were coming
1071    // from the original BB before switch expansion.  Note that PHI nodes can
1072    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1073    // handle them the right number of times.
1074    while ((BB = SDL->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1075      for (MachineBasicBlock::iterator Phi = BB->begin();
1076           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
1077        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
1078        for (unsigned pn = 0; ; ++pn) {
1079          assert(pn != SDL->PHINodesToUpdate.size() &&
1080                 "Didn't find PHI entry!");
1081          if (SDL->PHINodesToUpdate[pn].first == Phi) {
1082            Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
1083                                                      second, false));
1084            Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
1085            break;
1086          }
1087        }
1088      }
1089
1090      // Don't process RHS if same block as LHS.
1091      if (BB == SDL->SwitchCases[i].FalseBB)
1092        SDL->SwitchCases[i].FalseBB = 0;
1093
1094      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1095      SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
1096      SDL->SwitchCases[i].FalseBB = 0;
1097    }
1098    assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
1099  }
1100  SDL->SwitchCases.clear();
1101
1102  SDL->PHINodesToUpdate.clear();
1103}
1104
1105
1106/// Create the scheduler. If a specific scheduler was specified
1107/// via the SchedulerRegistry, use it, otherwise select the
1108/// one preferred by the target.
1109///
1110ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1111  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1112
1113  if (!Ctor) {
1114    Ctor = ISHeuristic;
1115    RegisterScheduler::setDefault(Ctor);
1116  }
1117
1118  return Ctor(this, OptLevel);
1119}
1120
1121ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1122  return new ScheduleHazardRecognizer();
1123}
1124
1125//===----------------------------------------------------------------------===//
1126// Helper functions used by the generated instruction selector.
1127//===----------------------------------------------------------------------===//
1128// Calls to these methods are generated by tblgen.
1129
1130/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1131/// the dag combiner simplified the 255, we still want to match.  RHS is the
1132/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1133/// specified in the .td file (e.g. 255).
1134bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1135                                    int64_t DesiredMaskS) const {
1136  const APInt &ActualMask = RHS->getAPIntValue();
1137  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1138
1139  // If the actual mask exactly matches, success!
1140  if (ActualMask == DesiredMask)
1141    return true;
1142
1143  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1144  if (ActualMask.intersects(~DesiredMask))
1145    return false;
1146
1147  // Otherwise, the DAG Combiner may have proven that the value coming in is
1148  // either already zero or is not demanded.  Check for known zero input bits.
1149  APInt NeededMask = DesiredMask & ~ActualMask;
1150  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1151    return true;
1152
1153  // TODO: check to see if missing bits are just not demanded.
1154
1155  // Otherwise, this pattern doesn't match.
1156  return false;
1157}
1158
1159/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1160/// the dag combiner simplified the 255, we still want to match.  RHS is the
1161/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1162/// specified in the .td file (e.g. 255).
1163bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1164                                   int64_t DesiredMaskS) const {
1165  const APInt &ActualMask = RHS->getAPIntValue();
1166  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1167
1168  // If the actual mask exactly matches, success!
1169  if (ActualMask == DesiredMask)
1170    return true;
1171
1172  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1173  if (ActualMask.intersects(~DesiredMask))
1174    return false;
1175
1176  // Otherwise, the DAG Combiner may have proven that the value coming in is
1177  // either already zero or is not demanded.  Check for known zero input bits.
1178  APInt NeededMask = DesiredMask & ~ActualMask;
1179
1180  APInt KnownZero, KnownOne;
1181  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1182
1183  // If all the missing bits in the or are already known to be set, match!
1184  if ((NeededMask & KnownOne) == NeededMask)
1185    return true;
1186
1187  // TODO: check to see if missing bits are just not demanded.
1188
1189  // Otherwise, this pattern doesn't match.
1190  return false;
1191}
1192
1193
1194/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1195/// by tblgen.  Others should not call it.
1196void SelectionDAGISel::
1197SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1198  std::vector<SDValue> InOps;
1199  std::swap(InOps, Ops);
1200
1201  Ops.push_back(InOps[0]);  // input chain.
1202  Ops.push_back(InOps[1]);  // input asm string.
1203
1204  unsigned i = 2, e = InOps.size();
1205  if (InOps[e-1].getValueType() == MVT::Flag)
1206    --e;  // Don't process a flag operand if it is here.
1207
1208  while (i != e) {
1209    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1210    if ((Flags & 7) != 4 /*MEM*/) {
1211      // Just skip over this operand, copying the operands verbatim.
1212      Ops.insert(Ops.end(), InOps.begin()+i,
1213                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1214      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1215    } else {
1216      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1217             "Memory operand with multiple values?");
1218      // Otherwise, this is a memory operand.  Ask the target to select it.
1219      std::vector<SDValue> SelOps;
1220      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1221        llvm_report_error("Could not match memory address.  Inline asm"
1222                          " failure!");
1223      }
1224
1225      // Add this to the output node.
1226      MVT IntPtrTy = TLI.getPointerTy();
1227      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1228                                              IntPtrTy));
1229      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1230      i += 2;
1231    }
1232  }
1233
1234  // Add the flag input back if present.
1235  if (e != InOps.size())
1236    Ops.push_back(InOps.back());
1237}
1238
1239/// findFlagUse - Return use of MVT::Flag value produced by the specified
1240/// SDNode.
1241///
1242static SDNode *findFlagUse(SDNode *N) {
1243  unsigned FlagResNo = N->getNumValues()-1;
1244  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1245    SDUse &Use = I.getUse();
1246    if (Use.getResNo() == FlagResNo)
1247      return Use.getUser();
1248  }
1249  return NULL;
1250}
1251
1252/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1253/// This function recursively traverses up the operand chain, ignoring
1254/// certain nodes.
1255static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1256                          SDNode *Root,
1257                          SmallPtrSet<SDNode*, 16> &Visited) {
1258  if (Use->getNodeId() < Def->getNodeId() ||
1259      !Visited.insert(Use))
1260    return false;
1261
1262  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1263    SDNode *N = Use->getOperand(i).getNode();
1264    if (N == Def) {
1265      if (Use == ImmedUse || Use == Root)
1266        continue;  // We are not looking for immediate use.
1267      assert(N != Root);
1268      return true;
1269    }
1270
1271    // Traverse up the operand chain.
1272    if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
1273      return true;
1274  }
1275  return false;
1276}
1277
1278/// isNonImmUse - Start searching from Root up the DAG to check is Def can
1279/// be reached. Return true if that's the case. However, ignore direct uses
1280/// by ImmedUse (which would be U in the example illustrated in
1281/// IsLegalAndProfitableToFold) and by Root (which can happen in the store
1282/// case).
1283/// FIXME: to be really generic, we should allow direct use by any node
1284/// that is being folded. But realisticly since we only fold loads which
1285/// have one non-chain use, we only need to watch out for load/op/store
1286/// and load/op/cmp case where the root (store / cmp) may reach the load via
1287/// its chain operand.
1288static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
1289  SmallPtrSet<SDNode*, 16> Visited;
1290  return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
1291}
1292
1293/// IsLegalAndProfitableToFold - Returns true if the specific operand node N of
1294/// U can be folded during instruction selection that starts at Root and
1295/// folding N is profitable.
1296bool SelectionDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
1297                                                  SDNode *Root) const {
1298  if (OptLevel == CodeGenOpt::None) return false;
1299
1300  // If Root use can somehow reach N through a path that that doesn't contain
1301  // U then folding N would create a cycle. e.g. In the following
1302  // diagram, Root can reach N through X. If N is folded into into Root, then
1303  // X is both a predecessor and a successor of U.
1304  //
1305  //          [N*]           //
1306  //         ^   ^           //
1307  //        /     \          //
1308  //      [U*]    [X]?       //
1309  //        ^     ^          //
1310  //         \   /           //
1311  //          \ /            //
1312  //         [Root*]         //
1313  //
1314  // * indicates nodes to be folded together.
1315  //
1316  // If Root produces a flag, then it gets (even more) interesting. Since it
1317  // will be "glued" together with its flag use in the scheduler, we need to
1318  // check if it might reach N.
1319  //
1320  //          [N*]           //
1321  //         ^   ^           //
1322  //        /     \          //
1323  //      [U*]    [X]?       //
1324  //        ^       ^        //
1325  //         \       \       //
1326  //          \      |       //
1327  //         [Root*] |       //
1328  //          ^      |       //
1329  //          f      |       //
1330  //          |      /       //
1331  //         [Y]    /        //
1332  //           ^   /         //
1333  //           f  /          //
1334  //           | /           //
1335  //          [FU]           //
1336  //
1337  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1338  // (call it Fold), then X is a predecessor of FU and a successor of
1339  // Fold. But since Fold and FU are flagged together, this will create
1340  // a cycle in the scheduling graph.
1341
1342  MVT VT = Root->getValueType(Root->getNumValues()-1);
1343  while (VT == MVT::Flag) {
1344    SDNode *FU = findFlagUse(Root);
1345    if (FU == NULL)
1346      break;
1347    Root = FU;
1348    VT = Root->getValueType(Root->getNumValues()-1);
1349  }
1350
1351  return !isNonImmUse(Root, N, U);
1352}
1353
1354
1355char SelectionDAGISel::ID = 0;
1356